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Variance reduction in randomised trials
by inverse probability weighting using
the propensity score
Elizabeth J. Williamson,a,b*† Andrew Forbesa and Ian R. Whitec

In individually randomised controlled trials, adjustment for baseline characteristics is often undertaken to
increase precision of the treatment effect estimate. This is usually performed using covariate adjustment in
outcome regression models. An alternative method of adjustment is to use inverse probability-of-treatment
weighting (IPTW), on the basis of estimated propensity scores. We calculate the large-sample marginal vari-
ance of IPTW estimators of the mean difference for continuous outcomes, and risk difference, risk ratio or
odds ratio for binary outcomes. We show that IPTW adjustment always increases the precision of the treatment
effect estimate. For continuous outcomes, we demonstrate that the IPTW estimator has the same large-sample
marginal variance as the standard analysis of covariance estimator. However, ignoring the estimation of the
propensity score in the calculation of the variance leads to the erroneous conclusion that the IPTW treatment
effect estimator has the same variance as an unadjusted estimator; thus, it is important to use a variance
estimator that correctly takes into account the estimation of the propensity score. The IPTW approach has
particular advantages when estimating risk differences or risk ratios. In this case, non-convergence of covariate-
adjusted outcome regression models frequently occurs. Such problems can be circumvented by using the IPTW
adjustment approach. © 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: variance estimation; baseline adjustment

1. Introduction

Propensity scores were introduced in 1983 as a tool to estimate the causal effect of a binary exposure
or treatment from non-randomised data [1]. In recent years, the use of propensity scores in the analysis
of non-randomised studies has increased dramatically. The propensity score is the probability of receiv-
ing the treatment conditional on measured characteristics, a probability that can be estimated from the
data by modelling the treatment allocation as a function of measured characteristics. Rosenbaum and
Rubin demonstrated the important property that at any value of the propensity score, the distributions
of confounders included in the model are balanced between treatment groups, a property that carries
over to the estimated propensity score as long as the propensity score model is correctly specified [1].
This property allows unbiased estimation of the causal treatment effect at each value of the propensity
score. This leads to various ways of using the propensity score to estimate the treatment effect, including
matching or stratifying on the estimated propensity score or inverse probability weighting by functions
of the estimated propensity score [2, 3].

In contrast to the traditional approach of building a statistical model for the outcome variable
conditional on measured confounders, therefore, the propensity score approach instead models the
treatment allocation process. In a simple individually randomised controlled trial, the treatment
allocation process is known. Further, because treatment is randomised, there is no confounding. Thus,
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it is unclear how the propensity score approach could be usefully applied to the analysis of individually
randomised controlled trials. In this context, Senn [4, Section 7.2.13] had described propensity scores as
‘superfluous and misleading’.

In this paper, we argue that propensity scores are a useful tool for the analysis of individually ran-
domised controlled trials. This does, however, require a change in perspective. Rather than viewing the
propensity score as a method of bias reduction as for non-randomised studies, we will view the propen-
sity score analysis as a method of covariate adjustment aimed at increasing precision of the treatment
effect estimate. In order to achieve this, we will move away from the philosophy of modelling the treat-
ment allocation process and towards the idea of modelling chance imbalance or designed balance (such
as stratified randomisation) of prognostic variables between treatment groups. In this context, the utility
of propensity scores in randomised trials becomes much clearer. Although adjustment for baseline char-
acteristics is unnecessary to avoid bias in randomised studies, it can greatly enhance the precision of the
treatment effect estimate. Currently, such adjustments are often performed in individually randomised
controlled trials using linear regression models for continuous outcomes or logistic regression for binary
outcomes [5]. We will call these approaches ‘covariate-adjustment’ in order to distinguish them from the
propensity score estimators described in the succeeding text.

Our aim is, therefore, to suggest that a propensity score approach, specifically inverse probability
of treatment weighting (IPTW), is an attractive way of implementing pre-specified adjustment for
baseline characteristics or factors used to stratify randomisation in individually randomised controlled
trials. However, we demonstrate that particular care needs to be taken with the method of variance
estimation in order to capitalise on the benefits of IPTW. We organise the paper as follows.
In Section 2, we define the inverse probability of treatment weighted estimator. In Section 3, we cal-
culate the large-sample marginal variance for this propensity score estimator. In Section 4, we apply
our variance results to show that for continuous outcomes, the propensity score estimator has similar
statistical properties to the covariate-adjusted (linear regression) estimator, but that in order to achieve
comparable precision to the covariate-adjusted estimator, the standard error must be correctly estimated;
naive estimators of the standard error can greatly understate the precision of the propensity score estima-
tor. In Section 5, we provide some guidelines for how propensity scores should be used in randomised
trials, and how this differs from their standard use in observational studies. We present results from a
small simulation study in Section 6. In Section 7, we demonstrate these methods using an individually
randomised trial of physiotherapy for the treatment of adhesive capsulitis (a painful shoulder condition).
We end, in Section 8, with a discussion.

2. A propensity score (inverse probability of treatment weighting)
estimator of treatment effect

2.1. Notation

We consider a trial comprising n participants who are individually randomised to two treatment arms.
For participant i , the binary treatment allocation is Zi (0=placebo, 1=active), the outcome is Yi and we
have a vector of measured baseline characteristics that we wish to adjust for, xi D .X0i ; X1i ; ::; Xpi />.
In the regression models in the succeeding text, we set X0i D 1 for each participant in order to include
an intercept term in each regression model that involves the vector xi . Each participant has two possible
or potential outcomes: the one that would occur under allocation to placebo and the other that would
occur under allocation to the active treatment. We will denote these two potential outcomes by Y0i and
Y1i , respectively. For each participant, we can observe only one of these potential outcomes because
only one treatment is allocated. We can quantify the causal treatment effect by contrasts of �1 D EŒY1�
and �0 D EŒY0�. For continuous outcomes, the mean difference ı1 D �1 � �0 is often of interest.
For binary outcomes, ı1 is the risk difference. The marginal risk ratio or odds ratio are also frequently
used to quantify the treatment effect. We will define these two estimands on the natural logarithm scale
because this is the scale on which inference will later be performed. We will define the log marginal risk
ratio and log marginal odds ratio as ı2 D log.�1=�0/ and ı3 D log .f�1=.1��1/g=f�0=.1��0/g/,
respectively.

2.2. Assumptions

Before estimating a causal treatment effect, we must make several assumptions. The first two assump-
tions, which in a non-randomised setting must be made but cannot be verified, are automatically satisfied
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by a randomised design. Firstly, we make the consistency assumption, which states that the observed out-
come Yi is equal to the appropriate potential outcome: if Zi D ´ then Yi D Y´. This is guaranteed by
design in a randomised trial, because the treatment is well-defined and under the control of the inves-
tigators [6]. The positivity assumption states that each participant must have a non-zero probability of
receiving either treatment allocation, which again is guaranteed by the design of the trial [7]. We further
assume that the data .Yi ; Zi ; xi / are independently distributed for different subjects indexed by i and
that the treatment received by one participant does not affect the potential outcomes of another par-
ticipant, where the latter is often termed as the stable unit treatment value assumption (SUTVA). We
note that SUTVA includes the consistency assumption. The SUTVA assumption is often made in both
non-randomised and randomised settings. The final assumption, that of strongly ignorable treatment
assignment, states that there is (in expectation) no unmeasured confounding: .Y0i ; Y1i /qZi jvi , where
vi is a (vector) subset of the measured baseline characteristics xi , withq indicating conditional indepen-
dence. This assumption cannot be verified in non-randomised settings but is satisfied by randomisation
of treatment with vi being the empty set [8].

2.3. An inverse probability of treatment weighted estimator

We will define the propensity score as the conditional probability of receiving the active treatment given
the measured baseline characteristics, e.x/D P r.Z D 1jx/. Suppose that the binary treatment indicator
Z follows a logistic model parametrized by ˛D .˛0; ˛1; � � � ; ˛p/>, so that logfe.x/=.1�e.x//g D x>˛.
We can obtain maximum likelihood estimates Ǫ by fitting a standard logistic regression model. We will
estimate the propensity score for participant i as

Oei D Oe.xi /D
exp

�
x>i Ǫ

�
1C exp

�
x>i Ǫ

�
Although we have chosen to use a logistic regression model for the propensity score, other approaches
are possible. Various authors have considered the application of different methods including neural net-
works, recursive partitioning and boosting [7, 9–11], and they have identified some situations in which
these methods can perform better than logistic regression. In the current paper, however, we consider
only the logistic regression model.

Once the propensity score has been estimated, the IPTW estimators for the two marginal means are

O�1 D

 
nX
iD1

YiZi

Oei

! 
nX
iD1

Zi

Oei

!�1
O�0 D

 
nX
iD1

Yi .1�Zi /

.1� Oei /

! 
nX
iD1

.1�Zi /

.1� Oei /

!�1
(1)

We use appropriate contrasts of these estimators to obtain estimators for the treatment effect, Oıj , for
j D 1; 2; 3. These will be referred to as the IPTW or propensity score, treatment effect estimators.

We note that the IPTW estimator is derived from the equality EŒY1� D EŒYZ=e.x/�. To see this,
by conditioning on x, we have EŒYZ=e.x/� D EŒEŒYZ=e.x/jx�� D EŒEŒY1jx�EŒZjx�=e.x/� where the
last equality follows from the consistency and strongly ignorable treatment assignment assumptions.
Because EŒZjx� D e.x/, the right-hand side cancels to give EŒEŒY1jx�� D EŒY1�, from which we have
EŒYZ=e.x/�D EŒY1� as desired. Similarly, EŒY0�D EŒY.1�Z/=.1� e.x//�.

We can also obtain the estimates given in Equation (1) by fitting a linear or binomial regression model,
as appropriate, for outcome Y on treatment allocation Z with no other independent variables, applying
the following probability weights: wi D 1= Oei if Zi D 1, and wi D 1=.1 � Oei / if Zi D 0, using the
appropriate link function (identity for ı1, log-link for ı2 and logit link for ı3). However, we note that
the sandwich variances typically produced by statistical software for such models are incorrect because
they do not allow for the estimation of the propensity score; they are typically conservative, sometimes
greatly so. We will return to this point in the next section.

One attractive feature of the IPTW approach is that a treatment effect estimate can be obtained even
when the outcome is a rare binary outcome, and we wish to adjust for many covariates. Equation (1)
is simply two weighted means, which will be defined provided that neither treatment arm is empty,
and estimation of the propensity score does not involve the outcome. Thus, the convergence problems,
which can occur when fitting outcome regression models to rare binary outcomes, will not occur for
IPTW estimators derived from Equation (1).

If the propensity score model includes only a constant term, the estimated propensity score will be a
constant, in which case the estimators in Equation (1) become the unweighted sample means, and the
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treatment effect is estimated by the standard unadjusted difference in means, risk difference, risk ratio or
odds ratio. We will call these unadjusted estimators Oıuj , for j D 1; 2; 3. In the succeeding discussion, we
compare the large sample marginal variances of the unadjusted and propensity-score adjusted (IPTW)
treatment effect estimators, Oıuj and Oıj , respectively.

3. Variance estimation for inverse probability-of-treatment weighted estimators

Using the theory of M-estimation [12], Lunceford and Davidian [13] have calculated the large-sample
marginal variance of the difference in means for continuous outcomes. This variance can also be applied
to estimates of the risk difference for binary outcomes. We now extend this calculation to risk ratios and
odds ratios.

3.1. Marginal large-sample variance of inverse probability-of-treatment weighted estimates

Substituting estimated propensity scores, Oei , derived from a logistic regression model as described ear-
lier, into Equation (1) to estimate �1 and �0 is equivalent to simultaneously solving the estimating
equations

Pn
iD1 u.�IYi ; Zi ; xi /D 0 for the parameter � D .�1; �0;˛>/>, where

u.�IY;Z; x/D

0
@ .Y ��1/Ze

�1

.Y ��0/.1�Z/.1� e/
�1

x.Z � e/

1
A

The first two components of u are scalars, and the third is a p � 1 column vector. The resulting estima-
tor O� is asymptotically normally distributed, with large-sample variance equal to n�1A�1BA�> where

A D �E
h
@u=@�>

i
and B D E

�
uu>

�
, with the derivative evaluated at the true value of the parameter

� and the expectations taken over the true distribution of the data. [12] These matrices are calculated in
Appendix 1, and standard matrix multiplication is applied to give the marginal covariance matrix for O� .
From this, we can obtain Var. O�1/; Var. O�0/ and Cov. O�1; O�0/. Because the treatment effect estimate Oıj
is simply a function of O�1 and O�0, we then apply the delta method to obtain the large-sample marginal
variances of Oıj , for j D 1; 2; 3. The Appendix shows that this gives

nVar
�
Oıj

�
D Vun � v>C˛v (2)

where C˛ D E
�
xx>e.1� e/

��1
is the large-sample covariance matrix of the estimated propensity score

parameters Ǫ , and

Vun DK
2
1j E

�
.Y1 ��1/

2

e

	
CK20j E

�
.Y0 ��0/

2

.1� e/

	
vDK1j EŒx.Y1 ��1/.1� e/�CK0j EŒx.Y0 ��0/e�

withK01 DK11 D 1;K02 D O��10 andK12 D O��11 , andK03 D f O�0.1� O�0/g�1; K13 D f O�1.1� O�1/g�1.
We note that these constants are simply the derivatives of the link functions that would be used to esti-
mate these parameters via a generalised linear model, evaluated at the expected mean under universal
treatment .�1/ or no treatment .�0/, respectively.

Repeating the aforementioned variance calculation including only a constant in the propensity score
model shows that the standard unadjusted estimates Oıuj have large-sample variance equal to nVar. Oıuj /D
Vun. Because the second term of (2) is the negative of a quadratic form around a positive definite matrix,
Var. Oıj / � Var. Oı

u
j /. Thus, using the propensity score to adjust for baseline characteristics results in an

estimated treatment effect (mean difference, risk difference, risk ratio or odds ratio) at least as precise as
the unadjusted treatment effect estimate.

We note that this result—that adjustment will not result in an increase in the variance of the treat-
ment effect estimate—does not hold in non-randomised settings. When treatment is not randomised,
adjusting for a baseline characteristic that predicts treatment allocation but not outcome can result in an
increase in variance [14]. In a simple randomised trial, the true propensity score e is not a function of any
baseline characteristics; thus, the first term in the aforementioned Equation (2), Vun, remains the same
no matter what variables are included in the propensity score model. The second term of Equation (2)
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is always negative; thus, adjustment can never increase the variance. In no-randomised settings, the
true propensity score is a function of the characteristics included in the propensity score. In this case,
when predictors of treatment but not outcome are included, the first term is typically increased, whereas
the magnitude of the second term is unchanged; thus, the variance is increased. The effect of adjust-
ment on the variance of the treatment effect estimate in non-randomised settings is discussed in detail
elsewhere [15].

3.2. Sample estimate of the marginal large-sample variance of inverse probability-of-treatment
weighted estimates

Variance formula (2) could be used to estimate the variance of the IPTW estimator in a sample of data,
by replacing unknown quantities with sample estimates. However, this requires the estimation of the
two potential outcomes, Y1 and Y0, which requires further assumptions to be made. For example, when
estimating the mean difference, we could assume a constant treatment effect giving Y1 D Y C.1�Z/ Oı1.
An alternative approach, which avoids the estimation of these potential outcomes, is to repeat the afore-
mentioned calculation replacing the expectations by sample averages and leaving expressions in terms
of observable quantities (i.e. Y and Z, not Y1 and Y0). [12] This estimates the variance of O� by

OV . O�/D n�1 OA�1 OB OA�>; where OBD
1

n

nX
iD1

ui
�
O�
�

u>i
�
O�
�
; OAD

1

n

nX
iD1

�
@u

@�>

ˇ̌̌
ˇ̌
O�

(3)

As previously discussed, we can then apply the delta method to obtain the following sample estimate of
the variance of the treatment effect estimator

nbVar. Oıj /D OVun � Ov>
�
2 OM1 � OM2

�
Ov (4)

where, letting 1
n

Pn
iD1

Zi
Oei
D Ow1 and 1

n

Pn
iD1

1�Zi
1�Oei

D Ow0, we have

OVun D
OK21j

Ow21

1

n

nX
iD1

.Yi � O�1/
2Zi

Oe2i
C
OK20j

Ow20

1

n

nX
iD1

.Yi � O�0/
2.1�Zi /

.1� Oei /2

OvD
OK1j

Ow1

1

n

nX
iD1

xi .Yi � O�1/Zi .1� Oei /
Oei

C
OK0j

Ow0

1

n

nX
iD1

xi .Yi � O�0/.1�Zi / Oei
.1� Oei /

and

OM1 D

 
1

n

nX
iD1

xix>i Oei .1� Oei /

!�1
and OM2 D OM1

 
1

n

nX
iD1

xix>i .Zi � Oei /
2

!
OM1

We obtain the OK´j ’s by replacing �0 and �1 by their sample estimates. For continuous outcomes, setting
Ow1 and Ow0 to their expectation of 1 in the formula for bVar. Oı1/ gives the variance estimate proposed by

Lunceford and Davidian [13], which, in practice, gives very similar variance estimates to our formula.

3.3. Consequences of ignoring the estimation of the propensity score

We now suppose that the treatment effect estimate was obtained via IPTW estimates of the two means,
�1 and �0, but that the estimated propensity scores were replaced by specified propensity score values,
e�i . Repeating the aforementioned calculation, removing the component of the estimating equation that

estimates the propensity score parameters shows that our new treatment effect estimator, Oıj .e�/ say,
would have an estimated variance of nbVar. Oıj .e�//D OVun.e�/, where OVun.e�/ is obtained by replacing
Oei by e�i in OVun. In particular, this shows that if the propensity score is estimated but we treat the esti-

mated scores, Oei as known quantities the sample estimate of the variance would be nbVar. Oıj / D OVun.
This is a sample estimate of the variance of the unadjusted estimator. Therefore, by treating the estimated
propensity scores as known quantities, we would appear to lose all the precision that has been gained by
the IPTW adjustment for baseline characteristics.

© 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 721–737
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Although this result may sound counterintuitive—that ignoring a source of variation will artificially
decrease the precision—we note that the estimation of the propensity score is not a source of variation
in the usual sense. In a simple randomised trial, the true propensity score is 0.5 for all participants; thus,
using this in inverse weights will result in unadjusted estimators of treatment effect. Inverse weighting
using the true propensity score does not, therefore, take account of chance imbalance of prognostic base-
line characteristics. The variability in the estimated propensity score simply reflects chance imbalances
in the prognostic baseline characteristics that are included in the propensity score model across treat-
ment groups. The increased balance of these covariates caused by the weighting using these estimated
propensity scores (in comparison with using the true propensity score, i.e. calculating unadjusted esti-
mates) results in increased precision of the treatment effect estimate. Failure to account for the estimation
of the propensity score will not take into account the decrease in precision obtained by the re-balancing
of prognostic characteristics created by weighting using the estimated (rather than true) propensity score;
thus, the precision will be falsely decreased.

If we instead estimate the IPTW treatment effect by fitting a probability-weighted outcome regression
model as described previously, the same considerations apply. Standard robust or empirical sandwich
variance estimators for the estimated regression parameters typically treat the probability weights—
which in this case are functions of the estimated propensity scores—as known values. To obtain the
correct variance for the estimated regression parameters from these probability-weighted models, the full
sandwich variance estimator based on all the estimating equations, including the components estimating
the propensity score, involved in the estimation process should be used. This is our sample variance
estimator given in Equation (4). We note that the recently released version 13.1 of statistical software
package Stata [16] has added the IPTW estimators of treatment effect with the correct variance as part
of the new ‘teffects ipw’ command.

Ignoring the estimation of the propensity score will have the greatest consequences with a continuous
outcome, where adjustment produces the largest reduction in variance. Using the naive variance esti-
mator, nbVar. Oıj / D OVun, will result in very high coverages for confidence intervals and conservative
p-values. Comparisons between methods, based on this incorrect variance estimator, will erroneously
lead to the conclusion that IPTW adjustment offers no increase in precision compared with a simple
unadjusted comparison between treatment groups.

4. Comparing the variance of the inverse probability-of-treatment weighted
estimator with covariate-adjusted estimators

4.1. Continuous outcomes

We now consider a scenario where a linear regression model holds for the outcome and the treatment allo-
cation probability does not depend on baseline characteristics, that is, e.x/D e, a constant, as with simple
randomisation. We calculate the large-sample marginal variances of the IPTW and covariate-adjusted
estimators in this setting and show that they are equal.

We let X denote a characteristic measured at baseline that we wish to adjust for. This will often be
the measurement of the outcome variable taken at baseline. We set w D .1;Z;X/> and assume that
the following mean model is correct: EŒY jZ;X� D w>� , where � D .�0; �Z ; �X /

>. We also assume
that the variance of Y does not depend on X or Z, in which case Var.Y jX;Z/ D �2y .1 � �

2/, where
�2y D Var.Y jZ/ and �D Corr.Y;X jZ/ [17, Section 10.3]. We denote the marginal mean and variance
of X by �x and �2x , respectively.

4.1.1. Covariate-adjusted estimator. Kenward et al. [18] found that the marginal variance of the
covariate-adjusted estimate of treatment effect O�Z , from a linear regression model of Y on Z and
X , conditional on the number of participants in the active arm n1 D

P
i Zi and the placebo arm

n0 D
P
i .1�Zi / is given by

Var. O�Z jn0; n1/D �
2
y .1� �

2/



1

n1
C
1

n0

�

n� 3

n� 4

�
(Note that we have replaced the authors’ original notation of �T T:0 by the equivalent in our notation
Var.Y jX;Z/ D �2y .1 � �

2/). To obtain the unconditional large-sample variance, we appeal to the
equality Var. O�Z/ D EŒVar. O�Z jn0; n1/� C Var.EŒ O�Z jn0; n1�/. The second term of this equation is
zero, because O�Z is unbiased. For the first term, as n ! 1, n1=n !p e, and n0=n !p .1 � e/.
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By Slutsky’s lemma .n1=n/�1 C .n0=n/�1 !p e�1 C .1 � e/�1. Further, .n � 3/=.n � 4/ !p 1. So
nVar. O�Z jn0; n1/!

p �2y .1� �
2/.e�1C .1� e/�1/. Thus, for large samples,

Var. O�Z/D
�2y

n
.1� �2/



1

e
C

1

.1� e/

�
(5)

We obtain the large-sample marginal variance of the unadjusted (t-test) estimator, �uZ , in the same way:

Var. O�uZ/D
�2y

n



1

e
C

1

.1� e/

�
(6)

We note that these variance results can also be arrived at by applying the M-estimation procedure to the
score functions for the linear regression model.

4.1.2. Inverse probability-of-treatment weighted estimator. For the IPTW estimator, Oı1, we have
EŒ.Y1 ��1/2�D Var.Y1/D �2y . Similarly, EŒ.Y0 ��0/2�D �2y . Then

Var. Oıu1 /D
Vun

n
D
�2y

n



1

e
C

1

.1� e/

�
(7)

For the covariance matrix for the estimated propensity score parameters,

E
�
xx>

�
D



1 �x

�x �2x C�
2
x

�
so C˛ D E

�
xx>e.1� e/

��1
D

1

�2xe.1� e/



�2x C�

2
x ��x

��x 1

�

EŒ.Y1 � �1/� D EŒ.Y0 � �0/� D 0, and EŒX.Y1 � �1/� D Cov.X; Y1/ D � �x�y , and similarly,
EŒX.Y0 ��0/�D � �x�y . Then vD � �x�y.0; 1/>. Standard matrix multiplication gives

Var. Oı1/D
Vun

n
�

v>C˛v
n
D
�2y

n
.1� �2/



1

e
C

1

.1� e/

�
(8)

4.1.3. Comparison of inverse probability-of-treatment weighting and covariate-adjusted estimators. As
expected, the large-sample marginal variances of the two unadjusted estimates (7) and (6) are equal. Per-
haps less expected is the fact that the large-sample marginal variances of the covariate-adjusted (5) and
IPTW (8) treatment effect estimates are identical. By modelling a known treatment allocation process,
we achieve a reduction in variance that is the same as the reduction achieved by standard covariate-
adjustment via outcome linear regression modelling, in comparison with the variance of the unadjusted
estimate.

4.2. Binary outcomes

With a continuous outcome, adjustment does not change the underlying estimand; the marginal and
conditional (on characteristics adjusted for) population mean differences are equal. Similarly, when we
estimate the risk difference or risk ratio for binary outcomes, the marginal and conditional estimands
are equal. However, the marginal and conditional population odds ratios are not equal because of the
non-collapsibility of the odds ratio. Typically, the conditional odds ratio is further from the null value of
one [19]. Therefore, comparisons between variances of marginal and conditional odds ratio estimators
are further complicated by the fact that the two estimators are not estimating the same number.

When the treatment probability, e, is constant, OVun=n is equal to the usual variances of the unadjusted
risk difference, log risk ratio or log odds ratio. We have shown that adjustment for baseline characteristics
via the ITPW approach reduces the variance of each of these estimators.

When estimating the covariate-adjusted risk difference or risk ratio, it is unclear what effect adjust-
ment has on the variance of the treatment effect estimator. When estimating the odds ratio via a logistic
regression model for the outcome, Robinson and Jewell [20] showed that covariate adjustment increases,
or leaves the same, the variance of the estimated log odds ratio for treatment.

The comparison between the variance of the IPTW and covariate-adjusted estimates of the risk differ-
ence and risk ratio is therefore unclear. In the case of the odds ratio, adjustment for baseline character-
istics decreases the variance of the IPTW estimator but increases the variance for the covariate-adjusted
(logistic regression) estimator. Therefore, after adjustment for baseline characteristics, the IPTW log
odds ratio is more precisely estimated than the logistic regression log odds ratio. Which estimator has

© 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 721–737

727



E. J. WILLIAMSON, A. FORBES AND I. R. WHITE

greater statistical power, however, is not clear, because although adjustment increases the variance for
the logistic regression estimator, moving from a marginal to a conditional estimator takes the estimand
further from the null value, which has the net result of increasing the statistical power to detect the treat-
ment effect [20]. However, in this case, the IPTW estimator has the advantage of increasing statistical
power without changing the underlying estimand.

5. Variable selection for the propensity score model

In this section, we begin by reviewing standard approaches to modelling the propensity score in
non-randomised settings. We then propose a slightly modified strategy for individually randomised trials.

In non-randomised settings, to obtain a consistent estimate of treatment effect, the variables included
in the propensity score model must satisfy the assumption of strong ignorability of treatment assignment
(no unmeasured confounders), which means that all confounders must be included in the model. Often,
but not always [21], variables that are predictive only of treatment, or only of outcome, can additionally
be included without violating the strong ignorability assumption. Modelling strategies for the propensity
score in non-randomised studies generally fall into two categories. In the first, advocated by Rubin [22],
only predictors of treatment are included in the propensity score model, allowing the propensity score
model to be estimated without reference to the outcome variable. The second, more recent, approach
advises the inclusion of predictors of outcome whether or not they are predictive of treatment [23]. This
latter approach focuses on minimising the variance of the treatment effect estimate: including predictors
of outcome but not treatment typically decreases the variance of the estimate of treatment effect while
including predictors of treatment but not outcome will generally increase the variance of the estimate of
treatment effect [14]. Once the candidate variables have been selected for the propensity score model, an
iterative procedure is often used to choose the final model. The ‘correct’ propensity score model is the
one that achieves balance in the confounders across treatment groups, with the degree of imbalance often
assessed using percentage standardised differences [24]. If balance is not achieved by the current model,
variables can be added or removed, and non-linear terms and interactions can be added or removed until
balance is achieved.

In randomised trials, randomisation ensures that the assumption of strong ignorability of treatment
assignment is met with no variables included in the propensity score model. The first propensity score
modelling approach, including only predictors of treatment, therefore, is not helpful in this context
because randomisation ensures that there are none. The second approach, however, is more useful. Prog-
nostic variables for the outcome can be additionally included in the propensity score model without
introducing bias, in order to reduce the variance. In particular, variables used to stratify randomisation
are typically strongly prognostic. The first approach to propensity score modelling would suggest that
because, by definition, stratifying variables are not predictive of treatment allocation, they should not be
included in the propensity score model [4]. However, taking the second approach, we would advise the
opposite: that stratifying variables must be included in the propensity score model. Although inclusion
of such variables will not change the point estimate, the variance of the treatment effect estimate will
then take account of the fact that this strongly prognostic variable is balanced by design.

Because the randomisation ensures that all imbalance is due to chance, there is no defined correct
propensity score model, removing the need for an iterative procedure to identify the correct model. Thus,
the propensity score model can, and should, be pre-specified in the same way as a covariate adjustment
analysis.

In summary, we suggest the propensity score model should include variables stratified during ran-
domisation and a pre-specified selection of a small number of key prognostic variables measured at
baseline. This parallels the advice given for the choice of covariates to include in a covariate-adjusted
analysis [25]. The propensity score model can thus be completely pre-specified in accordance with stan-
dard procedure for randomised trials [25,26]. We note that this allows the adjustment (the calculation of
the inverse probability weights) to be undertaken prior to the collection of outcome data, thus increas-
ing the amount of pre-specification, in comparison with more traditional methods of adjustment, and
avoiding the possibility of the outcome data influencing the statistical models used.

6. Simulation study

In this section, we present results from a small simulation study that we undertook to compare the
statistical properties of covariate-adjusted estimators with the IPTW estimators.
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6.1. Description of the simulation study

We randomly allocated treatment, Z, by drawing from a Bernouilli.0:5/ distribution. We independently
simulated four baseline characteristics, X1; X2; X3 and X4, from a normal distribution with mean 0 and
variance of 9. We simulated a continuous outcome variable, Ycts , from a normal distribution with vari-
ance of 0.25 and mean given by EŒYcts� D 0:8X1 C 0:5X2 C 0:15X3 C 2Z. These distributions result
in (marginal) correlations within each randomised arm between the outcome Ycts and the four baseline
characteristics X1; X2; X3; X4 of approximately 0:8; 0:5; 0:15 and 0, respectively. The true treatment
effect, as measured by the mean difference, is 2.

We have drawn a binary outcome, Ybin, from a Bernouilli.py/ distribution, with py D .1Cexp.1:5�
0:05X1 � 0:025X2 � 0:025X3 � 0:4Z//

�1, resulting in a prevalence of Ybin of approximately 20%.
The true odds ratio, conditional on the three baseline characteristics, for randomised treatment is
exp.0:4/ � 1:49. We approximated the marginal odds ratio from a large simulated dataset, giving
exp.0:398/ � 1:489. So in this scenario, the marginal and conditional odds ratios are almost iden-
tical. The true risk ratio and risk difference, also approximated from a large simulated dataset, are
exp.0:31/� 1:36 and 0.007, respectively.

We have drawn sample sizes of 100, 200 and 1000, giving samples of approximately 50, 100 and 500
per arm. For each sample size, we have drawn 5000 simulated datasets.

We calculated unadjusted estimates of each treatment effect (mean difference, risk difference, risk
ratio and odds ratio), then estimates adjusting only for the most prognostic baseline characteristic, X1,
followed by estimates adjusting for all three prognostic baseline characteristics (X1; X2 and X3), and
finally estimates adjusting only for a baseline characteristic unrelated to the outcome,X4. We performed
adjustment via covariate adjustment (linear regression or binomial regression with the appropriate link
function) and using the IPTW estimators described in this paper.

We used standard variance estimators for the treatment effect estimates obtained from an outcome
regression model. For the IPTW estimates, we used the variance formula derived previously
(Equation (4)). We calculated the uncorrected robust variance estimate (Equation (4) omitting the second
term of the variance formula) for the purposes of comparison. Finally, we calculated the variance from
Equation (2), substituting estimates for �0; �1; e and replacing Y1; Y0 by estimates (adding (if Z D 0)
or subtracting (if Z D 1) the estimated treatment effect to the linear predictor and, for binary outcomes,
drawing a binary outcome from the appropriate Bernouilli distribution). We refer to this as the ‘plug-
in’ variance estimator. We used each variance estimator to generate estimated 95% confidence intervals
for each simulated sample, on the basis of approximate asymptotic normality except in the case of the
linear regression model where the exact t-distribution was used, from which estimated 95% coverage
probabilities were derived.

6.2. Results from the simulation study

For the continuous outcome, estimating the mean difference, there was no bias in any of the estimators at
any sample size (Table I). In general, the incorrect variance estimate for the IPTW treatment effect esti-
mate greatly overestimated the variance, resulting in 95% coverage probabilities close to 1. This was the
case in all situations other than when only X4, a covariate unrelated to the outcome, was adjusted for. In
this case, the propensity score adjustment results in improved balance of this non-prognostic character-
istic across treatment groups, which has no effect on the precision of the treatment effect estimate. Thus
ignoring the effect of the estimation of the propensity score does not result in an incorrect variance in this
case. When three baseline characteristics were simultaneously adjusted for, the IPTW approach fraction-
ally over-estimated the variance for a sample size of approximately 50 per treatment arm, resulting in a
coverage of 0.97. Adjusting for an unrelated covariate only resulted in a slightly increased variance for
smaller sample sizes (empirical variance of 0.347 versus 0.327 for nD 50), but no difference for larger
sample sizes.

Results for the analysis of binary outcomes are shown in Table II. For covariate-adjusted estima-
tors, the results shown are restricted to samples where convergence of the binomial outcome regression
model was achieved and the estimated value was in the correct range (i.e. estimated risk differences
outside the interval [-1,1] were excluded). For the estimation of the risk difference when adjusting for
X1 only, 12.5%, 6.8% and 0.6% of samples encountered non-convergence of the binomial regression
model for sample sizes of n D 50, 100 and 500, respectively, and a further 0.1% of the samples with
nD 50 produced estimated risk differences outside the correct range. When adjusting for three baseline
characteristics, 40.9%, 22.9% and 2.9% of samples encountered convergence problems in estimating the
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Table I. Estimated mean differences from nD 5000 simulated datasets, with sample sizes
per arm (n) of 50, 100 and 500. The mean treatment effect estimate (Est), the empirical
variance across simulations (Emp Var), the mean of the variance estimates (Est Var),
and the coverage of the 95% confidence interval calculated from that variance estimate
are shown.

Mean difference
(True value = 2)

Adjustment Method n per arm Est Emp Var Est Var 95% Cov

Unadjusted
50 2.01 0.327 0.342 95.3

100 2.00 0.170 0.170 95.1
500 2.00 0.034 0.034 95.1

Adjusting for X1 only
Covariate adjustment 50 2.00 0.107 0.110 95.7

100 2.00 0.054 0.055 95.1
500 2.00 0.011 0.011 95.0

IPTW 50 2.00 0.108 0.109 95.4
(i) 0.346 99.9
(ii) 0.108 95.3
100 2.00 0.055 0.054 94.9
(i) 0.171 100.0
(ii) 0.054 95.0
500 2.00 0.011 0.011 94.9
(i) 0.034 100.0
(ii) 0.011 94.9

Adjusting for X1; X2 and X3
Covariate adjustment 50 2.00 0.010 0.010 95.5

100 2.00 0.005 0.005 94.7
500 2.00 0.001 0.001 94.8

IPTW 50 2.00 0.013 0.016 96.9
(i) 0.358 100.0
(ii) 0.013 94.9
100 2.00 0.006 0.006 95.1
(i) 0.173 100.0
(ii) 0.005 94.1
500 2.00 0.001 0.001 94.7
(i) 0.034 100.0
(ii) 0.001 94.6

Adjusting for X4 only
Covariate adjustment 50 2.00 0.347 0.347 95.6

100 1.99 0.175 0.171 94.9
500 2.00 0.034 0.034 94.8

IPTW 50 2.00 0.347 0.336 95.1
(i) 0.340 95.3
(ii) 0.337 95.3
100 1.99 0.175 0.168 94.7
(i) 0.169 94.8
(ii) 0.168 94.7
500 2.00 0.034 0.034 94.8
(i) 0.034 94.8
(ii) 0.034 94.8

(i) = Est Var is the incorrect robust estimate (n�1 OVun); (ii) = Est Var is the ‘plug-in’ variance estimator.
IPTW, inverse probability-of-treatment weighting.

risk difference, and 0.2% and 0.1% of samples with n D 50 and 100, respectively, produced estimates
outside the correct range. When adjusting only for an unrelated characteristic, we encountered fewer
convergence problems than when adjusting for X1 only, and no estimates outside the correct range were
produced. For the estimation of the risk ratio when adjusting for X1 only, 2.8%, 1.4% and 0.1% of sam-
ples encountered non-convergence of the binomial regression model for sample sizes of nD 50, 100 and
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Table II. Estimated risk differences, log risk ratios and log odds ratios from n D 5; 000 simulated datasets,
with sample sizes per arm (n) of 50, 100 and 500. The mean treatment effect estimate (Est), the empirical
variance across simulations (Emp Var), the mean of the variance estimates (Est Var) and the coverage of the
95% confidence interval (95% Cov) calculated from that variance estimate are shown.

Risk difference Log risk ratio Log odds ratio
(True value = 0.07) (True value = 0.31) (True value = 0.4)

Adjustment n per Est Emp Est 95% Est Emp Est 95% Est Emp Est 95%
Method arm Var Var Cov Var Var Cov Var Var Cov

Unadjusted
50 0.07 0.007 0.007 94.8 0.33 0.169 0.169 96.8 0.42 0.333 0.263 95.8

100 0.07 0.003 0.003 95.1 0.32 0.080 0.079 95.2 0.40 0.126 0.125 95.4
500 0.07 0.001 0.001 94.4 0.31 0.015 0.015 95.2 0.40 0.024 0.024 94.8

Adjusting for X1 only
Covariate adjustment 50 0.06 0.007 0.006 93.3 0.32 0.172 0.168 96.2 0.43 0.341 0.270 95.7

100 0.07 0.003 0.003 94.9 0.32 0.081 0.079 95.0 0.41 0.128 0.127 95.4
500 0.07 0.001 0.001 94.5 0.31 0.015 0.015 95.0 0.40 0.025 0.024 94.7

IPTW 50 0.07 0.007 0.007 94.6 0.33 0.171 0.166 96.4 0.42 0.333 0.259 95.5
(i) 0.007 94.7 0.169 96.6 0.263 95.7
(ii) 0.007 94.3 0.168 96.2 0.300 96.7
100 0.07 0.003 0.003 95.1 0.32 0.080 0.078 95.0 0.40 0.126 0.124 95.3
(i) 0.003 95.1 0.079 95.2 0.125 95.4
(ii) 0.003 95.0 0.078 95.2 0.145 96.7
500 0.07 0.001 0.001 94.5 0.31 0.015 0.015 95.1 0.40 0.024 0.024 94.6
(i) 0.001 94.6 0.015 95.1 0.024 94.7
(ii) 0.001 94.4 0.015 95.0 0.028 96.4

Adjusting for X1; X2 and X3
Covariate adjustment 50 0.06 0.007 0.006 90.7 0.31 0.182 0.167 95.0 0.43 0.316 0.284 95.0

100 0.06 0.003 0.003 94.1 0.30 0.751 0.078 95.3 0.41 0.132 0.130 95.3
500 0.07 0.001 0.001 94.9 0.31 0.015 0.015 95.4 0.41 0.024 0.024 95.2

IPTW 50 0.07 0.007 0.007 94.0 0.32 0.182 0.167 95.2 0.42 0.293 0.257 94.4
(i) 0.007 94.4 0.174 95.6 0.269 95.1
(ii) 0.007 94.1 0.172 95.2 0.306 96.1
100 0.07 0.003 0.003 94.9 0.32 0.081 0.078 95.7 0.40 0.126 0.124 95.2
(i) 0.003 95.4 0.080 96.0 0.127 95.4
(ii) 0.003 94.9 0.079 95.8 0.146 96.9
500 0.07 0.001 0.001 94.9 0.31 0.015 0.015 95.3 0.40 0.024 0.024 95.3
(i) 0.001 95.0 0.015 95.4 0.024 95.4
(ii) 0.001 95.0 0.015 95.3 0.028 96.8

Adjusting for X4 only
Covariate adjustment 50 0.06 0.007 0.007 94.1 0.33 0.176 0.169 96.2 0.43 0.280 0.269 95.7

100 0.07 0.003 0.003 94.4 0.31 0.081 0.079 95.2 0.41 0.128 0.126 95.2
500 0.07 0.001 0.001 95.2 0.31 0.015 0.015 95.2 0.40 0.024 0.024 95.8

IPTW 50 0.07 0.007 0.007 95.2 0.33 0.178 0.168 96.0 0.42 0.273 0.260 95.6
(i) 0.007 95.3 0.170 96.2 0.263 95.7
(ii) 0.007 94.7 0.168 95.3 0.300 96.6
100 0.07 0.003 0.003 94.7 0.32 0.081 0.079 95.2 0.40 0.127 0.124 95.1
(i) 0.003 94.7 0.079 95.2 0.125 95.2
(ii) 0.003 94.7 0.079 95.2 0.145 96.7
500 0.07 0.001 0.001 95.2 0.31 0.015 0.015 95.1 0.40 0.024 0.024 95.8
(i) 0.001 95.2 0.015 95.2 0.024 95.8
(ii) 0.001 95.3 0.015 95.1 0.028 97.0

(i) = Est Var is the incorrect robust estimate (n�1 OVun); (ii) = Est Var is the ‘plug-in’ variance estimator.
IPTW, inverse probability-of-treatment weighting.

500, respectively. When adjusting for three baseline characteristics, 14.0%, 5.5% and 1.2% of samples
encountered convergence problems in estimating the risk ratio. When adjusting only for X4, we encoun-
tered fewer convergence problems than when adjusting only for X1. In contrast, the logistic regression
model converged for all samples. Similarly, we estimated all estimands using the IPTW approach for all
samples, and no values fell outside the correct range.
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For the estimation of the risk difference, covariate-adjustment using a binomial outcome regression
model resulted in a slight under-estimate of the treatment effect with the smaller sample sizes (50 and
100 per treatment arm). These models also slightly under-estimated the variance, leading to slightly
lower coverage probabilities. With 50 people per arm, the coverage probability of the treatment effect
from a binomial regression model adjusting for the three baseline characteristics was only 0.907. The
IPTW approach, conversely, showed no evidence of bias and produced coverage probabilities closer to
the nominal value.

For the estimation of the risk ratio, where the binomial outcome model converged, the estimates
appear to have good statistical properties. The IPTW estimators provide estimates that are similar to
those from the covariate-adjustment. For the odds ratio, all methods appear to have good statistical
properties. There is no evidence of bias, and most coverage probabilities were around 0.95. The one
exception is for the ‘plug-in’ variance estimators for the IPTW approach. These tended to overestimate
the variance, resulting in coverage probabilities that were a little larger than the nominal value.

7. Example

To illustrate the use of IPTW estimators in randomised trials, we analyse data taken from an individu-
ally randomised placebo-controlled trial of physiotherapy for the treatment of adhesive capsulitis (frozen
shoulder or painful stiff shoulder).[27]

7.1. Description of the data

In the original trial, 156 participants over 18 years of age with shoulder pain and stiffness of at least
3-month duration were randomised to either placebo (sham ultrasound) or physiotherapy (manual
therapy and directed exercise), each given twice weekly for 4 weeks. Shoulder pain and function were
assessed at baseline, 6, 12 and 26 weeks, and participant-perceived success of the intervention was
assessed at 6, 12 and 26 weeks post-randomisation. The primary measure of shoulder pain was the
Shoulder Pain and Disability Index (SPADI), a score ranging from zero to 100 with higher scores repre-
senting more pain/disability. The investigators assessed a range of function and active motion measures,
including total shoulder flexion, which can range from 0 to 180 with higher numbers indicating a greater
degree of motility. At post-randomisation follow-up visits, participants rated their recovery on a 5-point
ordinal scale from 1 (worsening) to 5 (marked recovery). These were dichotomised into improvement
(score of 5) versus no improvement (scores 1–4). At each follow-up time, the original analysis used
a covariate-adjustment approach: linear regression models for continuous outcomes adjusting for the
baseline measurement of the outcome and binomial regression models with a log-link to estimate the
risk ratio for binary outcomes.

The trial concluded that physiotherapy provided no benefits for pain, function or quality of life out-
comes but resulted in improvement in shoulder movement and increased participant-perceived improve-
ment. In particular, the estimated mean difference in SPADI at 12 weeks was �3:2 (95% CI: �9:3, 2:9),
p D 0:302. The estimated mean difference in total shoulder flexion at 12 weeks was 9:5 (95% CI: 2:9,
16:0), p D 0:005. Finally, the relative risk for improvement was 1.4 (95% CI: 1:1, 1:8), p D 0:016.

We have taken a random sample of approximately 80% of the participants from the trial for our current
analysis. We estimate the effect of physiotherapy on the three outcome measures mentioned earlier—
total shoulder flexion, SPADI and participant-perceived improvement—at 12 weeks post-randomisation.
These analyses are for illustration of the methods only; clinical implications of the trial are discussed in
the original paper [27].

7.2. Statistical analysis

We conducted all statistical analyses using Stata version 11.1 [28]. For the two continuous outcomes,
we calculated the unadjusted difference in means between treatment groups at 12 weeks. We obtained
covariate-adjusted estimates, adjusting for the baseline measurement of the outcome, from linear regres-
sion models for each outcome including the baseline outcome measurement and treatment arm as
independent variables. We calculated IPTW estimates of the mean difference. For the latter, we esti-
mated the propensity score separately for each continuous outcome, using a logistic regression model
of treatment on the baseline value of the continuous outcome variable. For the IPTW treatment effect
estimates, we report the usual robust standard errors from a probability-weighted regression model
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(using Stata’s ‘pweight’ option) of outcome on treatment, weighting by the inverse of the probability
of receiving the treatment actually received. We also report corrected standard errors calculated from
Equation (4).

For the binary outcome—patient-perceived improvement at 12 weeks—we calculated the unadjusted
risk difference, risk ratio and odds ratio. We obtained covariate-adjusted estimates, adjusting for baseline
pain and function as measured by SPADI, from a binomial regression model of outcome on treatment
using the appropriate link function (via Stata’s ‘binreg’ command). We calculated IPTW estimators,
using a propensity score estimated from a logistic regression model of treatment on baseline SPADI
score.

7.3. Results

Our sub-sample of data contained 122 participants, 62 (50.8%) of whom were in the active arm with
the remaining 60 (49.2%) in the placebo arm. Table III shows the baseline demographics of these par-
ticipants. There was a moderate partial correlation of 0.50 between baseline and follow-up shoulder
flexion after adjusting for treatment arm, and a partial correlation of 0.46 between SPADI measure-
ments at baseline and 12-week follow-up. Patient-perceived improvement was negatively correlated
(correlation D �0:19) with baseline SPADI (participants with higher pain at baseline tended to report
less improvement).

Table IV shows the estimates of the effect of physiotherapy. For the first continuous outcome mea-
sure, total shoulder flexion, the unadjusted mean difference was 6:87 (SED 3:88), with 95% confidence
interval of .�0:8; 14:5/ and a p-value of p D 0:08. The covariate-adjusted estimate of effect, adjusting
for baseline shoulder flexion, was slightly increased to 7:62 (95% CI: 0:95; 14:3), p D 0:03. The IPTW
estimated mean difference was identical to the covariate-adjusted estimate, but the uncorrected standard
error was the same as the unadjusted difference in means, resulting in a wide confidence interval and
a p-value of p D 0:05. Correcting the standard error for the estimation of the propensity score gave a
similar standard error to the covariate-adjusted estimate and consequently a similar confidence interval
and p-value. For this outcome, adjustment for the baseline value resulted in a decrease in variance of
approximately 25%.

For the second continuous outcome, SPADI, we see a similar pattern. All estimates of treatment effect
were in the direction of improved outcomes in the physiotherapy arm, but none reach statistical signif-
icance. Adjustment for the baseline value of the outcome resulted in approximately a 20% reduction in
variance. For the IPTW estimate, this reduction was only seen when the corrected standard error was
calculated.

We quantified the treatment effect for the binary outcome, patient-perceived improvement, using the
risk ratio (the estimand in the original trial) and also using the risk difference and odds ratio, for illus-
tration. The unadjusted log risk ratio was 0.3 (95% CI: 0:03; 0:57), equivalent to a risk ratio of 1.35
(95% CI: 1:03; 1:77), with p D 0:03. Participants in the physiotherapy arm had an increased chance of
perceiving an improvement at 12-week post-randomisation. Calculating a covariate-adjusted risk ratio,
adjusting for the baseline SPADI, was not possible; convergence was not achieved. Conversely, we calcu-
lated adjusted treatment effect estimates using IPTW. The point estimate was identical to the unadjusted
estimate with a slightly decreased standard error, although the correct formula for the standard error
was required to achieve this variance reduction. The magnitude of the variance reduction achieved by
adjustment (approximately 2%) was much smaller than that seen for continuous outcomes.

Table III. Demographic and clinical characteristics of the sub-sample of data.

Physiotherapy Placebo
Characteristic (nD 62) .nD 60/

Age (yrs), mean (SD) 55.1 (9.8) 56.0 (7.4)
Female, n (%) 41 (66.1) 31 (51.7)
Left shoulder affected, n (%) 39 (52.7) 35 (47.3)
Duration of symptoms (months), median (Q1,Q3) 6 (4, 10) 6 (4, 8)
SPADI, mean (SD) 60.2 (21.5) 60.5 (20.5)
Shoulder flexion (range 0–180), mean (SD) 92.1 (21.8) 93.7 (25.0)

SD D standard deviation; Q1,Q3 D 25th and 75th percentiles; SPADI D Shoulder and Pain
Disability Index.
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Table IV. Estimated treatment effects for the randomised trial of shoulder pain.

Analysis Estimate SE 95% CI p-value

Continuous outcomes
Total shoulder flexion

Unadjusted 6.87, 3.88 (-0.80, 14.54) 0.079
Covariate adjustment (linear regression) 7.62, 3.37 (0.95, 14.29) 0.026
IPTW (uncorrected SE) 7.62, 3.88 (0.02, 15.22) 0.049
IPTW (corrected SE) 7.62, 3.34 (1.07, 14.17) 0.023

SPADI
Unadjusted -2.05, 3.55 (-9.08, 4.98) 0.565
Covariate adjustment (linear regression) -1.91, 3.16 (-8.16, 4.35) 0.547
IPTW (uncorrected SE) -1.91, 3.56 (-8.88, 5.06) 0.592
IPTW (corrected SE) -1.91, 3.14 (-8.06, 4.24) 0.544

Binary outcome
Improvement (logarithm of risk ratio)

Unadjusted 0.30, 0.139 (0.03, 0.57) 0.031
Covariate adjustment (binomial regression) Convergence not achieved
IPTW (uncorrected SE) 0.30, 0.139 (0.02, 0.57) 0.033
IPTW (corrected SE) 0.30, 0.137 (0.03, 0.57) 0.030

Improvement (risk difference)
Unadjusted 0.19, 0.085 (0.03, 0.36) 0.024
Covariate adjustment (binomial regression) 0.20, 0.080 (0.04, 0.35) 0.015
IPTW (uncorrected SE) 0.19, 0.085 (0.02, 0.36) 0.026
IPTW (corrected SE) 0.19, 0.084 (0.03, 0.35) 0.023

Improvement (logarithm of odds ratio)
Unadjusted 0.86, 0.389 (0.09, 1.62) 0.028
Covariate adjustment (binomial regression) 0.89, 0.400 (0.11, 1.66) 0.026
IPTW (uncorrected SE) 0.85, 0.391 (0.08, 1.61) 0.030
IPTW (corrected SE) 0.85, 0.383 (0.10, 1.60) 0.027

For continuous outcomes, adjusted estimates are adjusted for the baseline value of the outcome measure
For binary outcomes adjusted estimates are adjusted for baseline SPADI.
IPTWD inverse probability-of-treatment weighting; SPADI D Shoulder and Pain Disability Index.

When estimating the risk difference, we achieved adjustment for baseline SPADI using both a bino-
mial regression model adjusting for SPADI and via IPTW. In this case, we see that variance reduction
achieved by covariate-adjustment was bigger than the reduction achieved using IPTW. However, we saw
in the simulation study that the variance of the estimated risk difference was often slightly underesti-
mated by the outcome regression model with small sample sizes like this one. So the larger variance
reduction achieved by the outcome regression model may not reflect a real increase in precision.

Logistic regression adjusting for baseline SPADI yielded, as expected, a conditional adjusted log odds
ratio further away from the null value of zero, a change from 0.86 to 0.89. At the same time, the standard
error was slightly increased, but the overall effect of the adjustment took the p-value from p D 0:028

(unadjusted) to p D 0:026 (covariate-adjusted using logistic regression). In contrast, the adjusted IPTW
estimate was very similar to the unadjusted estimate, but the standard error was slightly decreased.

8. Discussion

We have demonstrated that propensity scores are a useful tool for analysing randomised studies where
pre-specified adjustment for a baseline characteristic is planned. Although modelling the propensity
score is often viewed as modelling the treatment allocation process, the process can be viewed as an
adjustment for chance imbalance of prognostic variables. Particularly in randomised trials, predictors of
outcome can, and should, be included in the (pre-specified) propensity score model in order to account
for chance imbalances. In a randomised setting, the propensity score IPTW analysis can be pre-specified
in the same way as is performed for other common covariate-adjustment approaches, thereby avoiding
biases due to post-hoc modelling decisions.

For continuous outcomes, we have shown that the IPTW estimator has large-sample statistical proper-
ties similar to covariate-adjustment via a linear regression model, in scenarios where the linear regression
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modelling assumptions hold. In our shoulder-pain example, where the linear regression model assump-
tions appeared to hold, for our moderately-correlated baseline and follow-up measurements of continu-
ous variables, adjustment for the baseline value resulted in between 20% and 25% reduction in variance
of the treatment effect estimate using either linear regression or the IPTW estimator. This variance reduc-
tion would be greater for variables with higher correlation. However, using an IPTW estimate with the
uncorrected standard error could lead to incorrect inference and conclusions being drawn.

In scenarios where the linear regression model does not hold, for example, where the assumption
of a linear relationship between the baseline and outcome measurements is false, the IPTW estima-
tor may be preferable. We are planning future work in which we will examine the relative merits of
covariate-adjustment and IPTW in cases where the linear regression model is misspecified.

For binary outcomes, particularly rare binary outcomes, covariate-adjustment on a risk difference or
risk ratio scale may not be possible because of instability of these models. Adjustment using the propen-
sity score approach will, conversely, be possible. This is illustrated in our shoulder-pain example and
in our previous work on risk differences in observational studies [29]. When analysing the binary out-
come of patient perceived improvement, we were able to obtain covariate-adjustment estimates of the
risk difference but not the risk ratio. In contrast, adjustment using IPTW was successful in providing an
estimate for all three estimands. Convergence will always be achieved with the IPTW estimators because
they are simply based on weighted sample means.

When the odds ratio is of interest but adjustment is necessary, the IPTW approach has the advantage
of preserving the original estimand, the marginal odds ratio, whereas covariate-adjustment via logistic
regression changes the target parameter because of non-collapsibility of the odds ratio. However, further
work is required to determine which of these approaches provides the greatest statistical power to detect
a treatment effect.

We have only considered one propensity score method—inverse probability of treatment weighting.
Other methods that use the propensity score, such as matching or sub-classification on the propensity
score or including the estimated propensity score in an outcome regression model, may be less useful
in this context. In particular, matching would have the undesirable feature of omitting some randomised
individuals from the analysis. Further, all these methods estimate a conditional estimand, in contrast to
the marginal IPTW estimand; thus, care is required when estimating odds ratios. However, this is the
same for the commonly used adjusted logistic regression models so is not necessarily a barrier to the use
of these methods. Further research evaluating the use of other propensity score methods in randomised
trials is needed to establish the utility of these methods in this context.

We have also considered only a logistic parameterization for the propensity score model. Other
approaches, for example, neural networks or boosting, may perform better. We would require further
research to identify situations in which such models provided further variance reductions in comparison
with the logistic regression model.

We have considered large-sample results in this paper. Further work will be needed to investigate
small sample properties of these estimators. On the basis of our limited work to date, we expect these
results to hold for fairly small sample sizes, for example 50 participants per arm.

In summary, we can perform pre-planned adjustment for baseline characteristics in individually ran-
domised trials using inverse probability weighted estimators based on the estimated propensity score.
These estimators have comparable statistical properties to more common alternatives and, in certain cir-
cumstances, may be a preferable analysis method. The propensity score approach would increase the
amount of pre-specification, by allowing the adjustment to be undertaken prior to outcome data collec-
tion, thus removing any possibility of bias due to influence of the outcome data on the chosen analysis
approach.

Appendix

The unknown parameter is � D .�1; �0;˛>/>, with the first two components as scalars and the third a
p � 1 vector. Partitioning the matrix B as for � and noticing that EŒZ.1�Z/�D 0, we have

BD

0
B@
b11 0 b13

0 b22 b23

bT
13

bT
23

b33

1
CA ; where

b11 DE
h
.Y ��1/

2Ze�2
i
; b22 DE

h
.Y ��0/

2.1�Z/.1� e/�2
i

b13 DE
h
x>.Y ��1/Ze�1.1� e/

i
; b23 D�E

h
x>.Y ��0/.1�Z/e.1� e/�1

i
b33 DEŒxx>.Z � e/2�
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Similarly, because @e=@˛> D x>e.1� e/ and so @e�1=@˛> D �x>e�1.1� e/ and @.1� e/�1=@˛> D
x>e.1� e/�1,

AD

0
@ a11 0 a13
0 a22 a23
0 0 a33

1
A ; with A�1 D

0
B@
a�111 0 �a�111 a13a

�1
33

0 a�122 �a�122 a23a
�1
33

0 0 a�133

1
CA ;

a11 D E
�
Ze�1

�
; a13 D b13

a22 D E
�
.1�Z/.1� e/�1

�
; a23 D b23

a33 D E
�
xx>e.1� e/

�
Large sample variance: By conditioning on x and using the equality EŒZjx� D e and replac-
ing the observed by the potential outcomes, we can simplify these expressions, giving b11 D
E
�
.Y1 ��1/

2e�1
�
, b22 D E

�
.Y0 ��0/

2.1� e/�1
�
, b13 D EŒx>.Y1��1/.1� e/�, b23 D�EŒx>.Y0�

�0/e�, and b33 D a33. Also, we have a11 D a22 D 1.
After simplifying A and B using these large-sample equalities, direct matrix multiplication gives

Var . O�1/D n
�1
�
A�1BA�>

�
1;1
D n�1

�
b11 � b13b

�1
33 b

>
13
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�
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>
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�
Cov . O�1; O�0/D n

�1
�
A�1BA�>

�
1;2
D�n�1b13b

�1
33 b

>
23

The multivariate delta method states that for a function f .w/ of two random variables, w D
.w1; w2/

>, the large-sample variance of f is given by @f=@w>Cov.w/ @f=@w. Applying this to
Oıj . O�1; O�0/, for j D 1; 2; 3, gives

Var. Oıj /DK
2
j1Var. O�1/CK

2
j0Var. O�0/� 2Kj0Kj1Cov. O�1; O�0/

where K11 D K10 D 1, K21 D O��11 ; K20 D O�
�1
0 , K31 D f O�1.1� O�1/g�1 and K30 D f O�0.1� O�0/g�1.

Substituting in expressions for the submatrices of A and B gives the expression in the main text,
Equation (2).
Sample estimate of variance: Rather than simplifying the expectations in A and B, we simply estimate
each component by replacing the expectation by a sample average. Using hats to denote sample
estimates,

bVar . O�1/D n
�1
�
OA�1 OB OA�>

�
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D n�1 Oa�211

n
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�
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o
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Applying the delta method gives the variance in the text, Equation (4), noting that we have let
w1 D Oa11; w0 D Oa22, OM1 D Oa

�1
33 and OM2 D OM1

Ob33 OM1.
Omitting estimation of propensity score: If the propensity score is a known, or specified function,
we repeat the aforementioned calculations omitting the third row of u, (x.Z � e/), which results in the
deletion of the third columns and rows of matrices A and B.

Acknowledgements

This work was supported under a National Health and Medical Research Council Centre of Research Excellence
grant, ID number 1035261, to the Victorian Centre for Biostatistics (ViCBiostat), and by the Medical Research
Council [Unit Programme number U105260558]. We thank the anonymous reviewers for their constructive
comments on our manuscript.

References
1. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika

1983; 70:41–55.

736

© 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 721–737



E. J. WILLIAMSON, A. FORBES AND I. R. WHITE

2. D’Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control
group. Statistics in Medicine 1998; 17:2265–2281.

3. Williamson E, Morley R, Lucas A, Carpenter J. Propensity scores: from naive enthusiasm to intuitive understanding.
Statistical Methods in Medical Research 2011; 21:273–93.

4. Senn S. Statistical Issues in Drug Development, Second edition, 2007.
5. Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis)uses of baseline data in clinical trials.

Lancet 2000; 355:1064–1069.
6. Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or an assumption? Epidemiology 2009;

20:3–5.
7. Westreich D, Cole SR. Invited commentary: positivity in practice. American Journal of Epidemiology 2010; 171:674–677.
8. Hernán MA, Robins JM. Estimating causal effects from epidemiological data. Journal of Epidemiology and Community

Health 2006; 60:578–586.
9. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010;

29:337–346.
10. McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects

in observational studies. Psychological Methods 2004; 9:403–25.
11. Setoguchi S, Schneeweiss S, Brookhart MA, Glynn RJ, Cook EF. Evaluating uses of data mining techniques in propensity

score estimation: a simulation study. Pharmacoepidemiology and Drug Safety 2008; 17:546–555.
12. Stefanski LA, Boos DD. The calculus of M-estimation. The American Statistician 2002; 56:29–38.
13. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects:

a comparative study. Statistics in Medicine 2004; 23:2937–2960.
14. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Sturmer T. Variable selection for propensity score

models. American Journal of Epidemiology 2006; 163:1149–1156.
15. Williamson E, Morley R, Lucas A, Carpenter J. Variance estimation for stratified propensity score estimators. Statistics in

Medicine 2012; 31:1617–32.
16. StataCorp. Stata Statistical Software: Release 13. College Station, TX: StataCorp LP, 2013.
17. Larsen RJ, Marx ML. An Introduction to Mathematical Statistics and Its Applications, 1981.
18. Kenward MG, White IR, Carpenter JR. Letter to the editor: should baseline be a covariate or dependent variable in analyses

of change from baseline in clinical trials? Statistics in Medicine 2010; 29:1455–1456.
19. Hauck WW, Anderson S, Marcus SM. Should we adjust for covariates in nonlinear regression analyses of randomized

trials? Controlled Clinical Trials 1998; 19:249–256.
20. Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression models. International

Statistical Review 1991; 58:227–240.
21. Pearl J. Letter to the editor: remarks on the method of propensity score. Statistics in Medicine 2009; 28:1415–1424.
22. Rubin DB. Estimating causal effects from large data sets using propensity scores. Annals of Internal Medicine 1997;

127:757–763.
23. Westreich D, Cole SR, Funk MJ, Brookhart MA, Sturmer T. The role of the c-statistic in variable selection for propensity

score models. Pharmacoepidemiology and Drug Safety 2011; 20:317–320.
24. Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score.

Pharmacoepidemiology and Drug Safety 2008; 17:1218–1225.
25. Raab GM, Day S, Sales J. How to select covariates to include in the analysis of a clinical trial. Controlled Clinical Trials

2000; 21:330–342.
26. Lewis JA. Statistical principles for clinical trials (ICH E9): an introductory note on an international guideline. Statistics in

Medicine 1999; 18:1903–1942.
27. Buchbinder R, Youd JM, Green S, Stein A, Forbes A, Harris A, Bennell K, Bell S, Wright WJL. Efficacy and cost-

effectiveness of physiotherapy following glenohumeral joint distension for adhesive capsulitis: a randomized trial. Arthritis
& Rheumatism 2007; 57:1027–1037.

28. StataCorp. Stata Statistical Software: Release 11. College Station, TX: StataCorp LP, 2009.
29. Ukoumunne OC, Williamson E, Forbes AB, Gulliford MC, B. CJ. Confounder-adjusted estimates of the risk difference

using propensity score-based weighting. Statistics in Medicine 2010; 29:3126–3136.

© 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 721–737

737


