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Background.  Transmitted drug resistance (TDR) compromises clinical management and outcomes. Transmitted drug resist-
ance surveillance and identification of growing transmission clusters are needed in the Southeast, the epicenter of the US HIV epi-
demic. Our study investigated prevalence and transmission dynamics in North Carolina.

Methods.  We analyzed surveillance drug resistance mutations (SDRMs) using partial pol sequences from patients presenting 
to 2 large HIV outpatient clinics from 1997 to 2014. Transmitted drug resistance prevalence was defined as ≥1 SDRMs among anti-
retroviral therapy (ART)–naïve patients. Binomial regression was used to characterize prevalence by calendar year, drug class, and 
demographic and clinical factors. We assessed the transmission networks of patients with TDR with maximum likelihood trees and 
Bayesian methods including background pol sequences (n = 15 246).

Results.  Among 1658 patients with pretherapy resistance testing, ≥1 SDRMs was identified in 199 patients, with an aggre-
gate TDR prevalence of 12% (95% confidence interval, 10% to 14%) increasing over time (P = .02). Resistance to non-nucleoside 
reverse transcriptase inhibitors (NNRTIs; 8%) was common, followed by nucleoside reverse transcriptase inhibitors (4%) and 
protease inhibitors (2%). Factors associated with TDR were being a man reporting sex with men, white race, young age, higher 
CD4 cell count, and being a member of a transmission cluster. Transmitted drug resistance was identified in 106 clusters ranging 
from 2 to 26 members. Cluster resistance was primarily NNRTI and dominated by ART-naïve patients or those with unknown 
ART initiation.

Conclusions.  Moderate TDR prevalence persists in North Carolina, predominantly driven by NNRTI resistance. Most TDR 
cases were identified in transmission clusters, signifying multiple local transmission networks and TDR circulation among ART-
naïve persons. Transmitted drug resistance surveillance can detect transmission networks and identify patients for enhanced ser-
vices to promote early treatment.

Keywords.  antiretroviral therapy; drug resistance; HIV-1; molecular epidemiology; Southeastern United States.
 

The widespread use of antiretroviral therapy (ART) has a pro-
found impact on reducing morbidity and mortality of people 
living with HIV and lowering the risk of onward HIV trans-
mission [1, 2]. However, the emergence of drug resistance 
mutations can compromise the effectiveness of ART and, for 
some regimens, result in a longer time to viral suppression 
and jeopardize treatment success [3]. Most drug resistance 
mutations are transmissible, resulting in treatment-naïve per-
sons with drug-resistant virus [4]. Globally, transmitted drug 
resistance (TDR) limits effective options of the treatment of 

HIV among treatment-naïve persons, a critical challenge to 
the consistent gains of effective ART [5]. In recognition of this 
emerging problem, since 2007 the US Department of Health 
and Human Services (DHHS) has recommended HIV gen-
otyping for all treatment-naïve patients before initiation of 
ART [6]. The presence of a surveillance drug resistance muta-
tion (SDRM) in pretreatment HIV genotyping is indicative of 
TDR [7].

National and global estimates of TDR vary widely [4, 8]. 
In a meta-analysis of studies from 2000 to 2013, TDR prev-
alence ranged from 2.8% in sub-Saharan Africa to 11.5% in 
North America [9]. From 2007 to 2010, however, up to 16% 
of persons with new HIV diagnoses among 10 US surveil-
lance sites had TDR [10]. An increasing trend in TDR was 
specifically observed in mutations to non-nucleoside reverse 
transcriptase inhibitors (NNRTIs). Similarly, TDR preva-
lence has increased in San Diego [11] and is as high as 20% 
in Washington, DC [12, 13]. Conversely, several European 
countries recently reported stabilized TDR prevalence of 
around 8% [8, 14, 15] or evidence that TDR may be decreasing 
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[16–19]. Phylogenetic clustering studies have revealed that 
persistence of TDR, particularly for mutations to NNRTIs, 
is largely due to transmission from treatment-naïve persons 
[15, 18–20]. Thus, TDR may persist within transmission net-
works despite decreasing use of NNRTIs in resource-rich 
settings. Given prior findings of TDR circulation among 
treatment-naïve persons, TDR may serve as a marker of 
recent transmission and possible cluster growth. It could be 
studied as a potential indication for enhanced testing, link-
age, and prevention services.

We investigated the prevalence and transmission dynamics 
of TDR in North Carolina, drawing from a large cohort with 
genetic sequencing and clinical data available since 1997 and 
using phylogenetic reconstruction of HIV transmission net-
works. Our objectives were to characterize temporal trends in 
TDR by ART drug class, identify the demographic and clin-
ical factors associated with TDR, and assess genetic cluster-
ing of TDR within statewide transmission networks. A better 
understanding of TDR trends and transmission dynamics can 
help identify where surveillance and prevention efforts could 
be intensified, such as for implementation of rapid ART and 
pre-exposure prophylaxis.

METHODS

Study Population

Clinical Cohort
We assessed TDR prevalence among HIV patients who were 
enrolled in the University of North Carolina Center for AIDS 
Research HIV Clinical Cohort (UCHCC) or who received 
HIV care at the Duke University Infectious Diseases Clinic. 
The UNC and Duke clinics provide HIV care for most HIV 
patients in central NC. Patients were included if they had 
≥1 pretherapy HIV-1 pol sequences available for analysis. 
HIV-1 pol sequences were derived from a statewide data set 
of 15 246 adult patients (aged 18  years or older) with rou-
tine drug resistance testing performed by the largest refer-
ence laboratory in North Carolina (Laboratory Corporation 
of America) from 1997 through June 2014. Sequences were 
matched to clinical data by specimen identifiers and medical 
record numbers.

At UNC, the UCHCC collects comprehensive data from 
institutionally available electronic health and administrative 
records and performs expansive medical record reviews. The 
data cover demographic factors, clinical diagnoses, laboratory 
findings, and medication provision. At Duke, clinical data 
were retrieved by query of the Duke Enterprise Data Unified 
Content Explorer and manual abstraction of electronic medical 
records. Patients who received care at both clinics were iden-
tified, and data associated with the earliest visit were retained. 
Following final data collection, all phylogenetic and statistical 
analyses were performed on de-identified data sets to protect 

participants’ anonymity. The study was approved by the UNC 
Institutional Review Board (No. 16-0228).

Statewide HIV Sequence Data
To characterize transmission clusters involving TDR, the study 
population was expanded beyond the clinical cohorts of UNC 
and Duke to include all sequences in the statewide data set 
(n = 15 246). This data set is estimated to represent more than 
50% of people living with HIV in North Carolina [21]. Within 
the statewide data set, we identified transmission clusters that 
included ≥1 sequences from a clinical cohort patient with TDR. 
We analyzed these clusters to understand the connectivity of 
patients with TDR to other sequences that had SDRMs but did 
not come from patients in the clinical cohorts.

Sequence and Drug Resistance Analysis

Most genotypic resistance tests were GenoSure MG assay. 
Sequences spanned protease nucleotide positions 1–297 and 
reverse transcriptase positions 1–1200 and were aligned using 
MUSCLE [22] and edited manually in Bioedit [23]. Gapped 
positions were stripped, and the final sequence length was 
1497 bases. We determined HIV subtypes using the Context-
based Modeling for Expeditious Typing (COMET) tool [24]. 
We identified mutations by ART drug class (non-nucleoside 
reverse transcriptase inhibitor, nucleoside reverse transcriptase 
inhibitor [NRTI], protease inhibitor [PI]) using the Stanford 
University HIV Drug Resistance Database genotypic resistance 
interpretation algorithm (Sierra, v. 1.1) [25]. Major mutations 
were selected using the 2009 standardized list of SDRMs from 
the World Health Organization [7]. We defined TDR as the 
presence of ≥1 SDRMs in a pretreatment genotype.

Phylogenetic Analyses

Using sequence data from all patients (n = 15 246), a maximum 
likelihood (ML) phylogenetic tree was constructed in FastTree, 
v. 2.1.4 [26], with the general time-reversible model of nucle-
otide substitution using the earliest available sequence from 
each person. Statistical support of clades was assessed with 
local branch support values (Shimodaira-Hasegawa-like test 
[SH test]) in FastTree [27]. Putative transmission clusters were 
identified using the automated tool ClusterPicker, v.  1.3 [28]. 
We defined clusters as clades with high branch support (proba-
bility ≥0.90, SH test) and a maximum pairwise genetic distance 
<3.5% difference between all sequences (ie, no 2 sequences in 
the cluster with a pairwise genetic distance ≥0.035 substitutions 
per site) [29, 30].

Putative clusters of subtype B sequences in the ML tree 
were confirmed using Bayesian Markov Chain Monte Carlo 
(MCMC) inference in BEAST, v.  1.8.2 [31]. Non-B subtypes 
were investigated in a separate analysis [32]. Sequences clus-
tered in the initial ML tree were split into 40 alignments along 
cluster lines with <200 sequences per file to decrease compu-
tational time in BEAST. Care was taken not to divide potential 
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clusters. All analyses were conducted using the SRD06 nucleo-
tide substitution model, a log-normal relaxed molecular clock 
model, and the Bayesian Skyline model as coalescent tree prior. 
The MCMC chain was run for 50–100 million generations with 
1–5 runs performed for each file. Convergence of the estimates 
was considered satisfactory when the effective sample size was 
>200 in all parameters, as calculated in Tracer, v.  1.6.0 [31]. 
BEAST log and tree files obtained for data sets with multiple 
runs were combined using LogCombiner, v. 1.8.2; 10% of the 
generations were discarded as burn-in. Maximum clade cred-
ibility trees (MCCTs) were summarized using TreeAnnotator, 
v. 1.8.2, keeping the median height over the posterior distribu-
tion of trees [31]. Clades with a posterior probability ≥0.95 were 
considered highly supported.

We analyzed clusters that included ≥1 sequences with TDR 
from the clinical cohort to determine the degree of connectivity 
to other sequences with SDRMs. The time of the most recent 
common ancestor (tMRCA) was estimated for each cluster as 
the difference in the sampling date of the most recent sequence 
in the tree from the median height of the basal node of the clus-
ter identified in the MCCT. Cluster time span was calculated as 
the difference between each cluster’s tMRCA and the sampling 
date of the most recent sequence in the cluster.

Statistical Analyses

We estimated the prevalence of TDR over the study period 
and by year among the patients whose first genotype occurred 
before ART initiation. We calculated binomial exact 95% con-
fidence intervals for prevalence estimates. Binomial regression 
models with an identity link were used to assess trends in preva-
lence by sequencing year and to compare TDR by demographic 
and clinical factors. Our regression models estimated preva-
lence differences (PDs), the absolute difference in TDR prev-
alence (in percentage points) when comparing 1 group with 
another. All models were unadjusted for other covariates, given 
that our focus was to identify general associations rather than 
infer causal relationships. Statistical significance was defined at 
the P <.05 level. All analyses were conducted using R, v. 3.4.3 (R 
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Study Population

Between 1997 and mid-2014, HIV-1 pol sequences for 4477 
patients were sent from UNC or Duke to the reference labora-
tory, and 3711 of those patients were successfully matched to 
UCHCC or Duke clinical data. For 1658 of 3711 (45%) patients, 
≥1 sequences were available before ART exposure, and these 
1658 patients were the focus of our analysis (Table 1). Most par-
ticipants were male (73%) and black (62%). The average age of 
patients at the time of genotyping (interquartile range [IQR]) 
was 37 (27–46) years. The most commonly reported risk factor 
for transmission was being a man who has sex with men (MSM; 

50%), with few patients reporting injection drug use (7%). At 
the time of genotyping (within 90 days), the median HIV viral 
load (IQR) was 4.8 (4.1–5.3) log10 copies/mL, and the median 
CD4 cell count (IQR) was 283 (75–465) cells/mm3. Nearly all 
patients were infected with HIV-1 subtype B (98%).

Overall Prevalence of TDR

Among 1658 ART-naïve patients, the prevalence of TDR was 12% 
(95% confidence interval [CI], 10% to 14%); 199 patients had 
≥1 SDRMs for NNRTI, NRTI, or PI resistance (Table 2). Among 
patients with TDR, most had 1 drug class mutation (174/1658, 
10.5%), whereas dual- and triple-class TDR were uncommon, at 
1.2% (20/1658) and 0.3% (5/1658), respectively. Most patients 
with TDR harbored resistance to NNRTIs (132/1658, 8%), fol-
lowed by NRTIs (70/1658, 4%) and PIs (27/1658, 2%). The most 

Table 1.  Characteristics of 1658 ART-Naïve Patients in Central NC at First 
Genotype Sequencing During the Study Period, 1997–2014

Characteristic No. (%)

Sex

  Male 1211 (73)

  Female 447 (27)

Race/ethnicity

  Black 1024 (62)

  White 454 (27)

  Other race or Hispanic/Latino 180 (11)

Age, y

  <20 56 (3)

  20–29 473 (29)

  30–39 456 (28)

  40–49 439 (26)

  ≥50 234 (14)

HIV transmission risk factora

  MSM 763 (50)

  IDU 69 (7)

  MSM + IDU 16 (2)

HIV-1 subtype B 1620 (98)

CD4 cell count, cells/mm3

  <200 544 (40)

  200–349 272 (20)

  350–499 264 (19)

  ≥500 295 (21)

  Median CD4 (IQR) 283 (75–465)

  No CD4 within 90 d of sequencing 283

Viral load, copies/mL

  Median viral load 64 381

  Median log10 viral load (IQR) 4.8 (4.2–5.3)

  No viral load within 90 d of sequencing 280

Transmission cluster

  Sequence identified in cluster 1084 (65)

  Sequence not in cluster 574 (35)

Abbreviations: ART, antiretroviral therapy; IDU, injection drug user; IQR, interquartile range; 
MSM, men who have sex with men.
aFor MSM, there were 135 missing values, and the percentage is based on the number 
of patients with nonmissing data (n = 1523). For IDU, data were only available for UNC 
clinical cohort patients, and the percentage is based on the number of UNC patients with 
nonmissing data (n = 975). The percentage for MSM + IDU is based on the total number 
of UNC patients with nonmissing data on both MSM and IDU (n = 956).
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frequent SDRM was NNRTI-associated K103N, which was 
observed for 5.9% of patients (97/1658). For NRTI resistance, 
thymidine analogue mutations (TAMs) were most commonly 
observed, with T215Y/F/I/S/D/E/C/V mutations seen in 2.2% 
of patients (37/1658), followed by M41L in 1.2% (20/1658). 
M184V was seen in 0.5% (9/1658). Of the PI-associated muta-
tions, L90M was seen in 0.8% of patients (13/1658).

The yearly prevalence of TDR varied from 1997 to mid-2014 
but, in general, increased over time (Figure  1A). We found an 
absolute increase in TDR prevalence of 0.5% (95% CI, 0.1% 
to 0.8%; P =  .02) per calendar year. Although TDR prevalence 
decreased in the first half of 2014 (data only available through 
June 2014), we found no statistical evidence that the temporal 
relationship was parabolic rather than linear (quadratic term 
P =  .12, no change in Akaike information criterion (AIC) AIC 
[linear model AIC, 1216; quadratic model AIC, 1216]). The prev-
alence of TDR over time varied by drug class; NNRTI-associated 
SDRMs increased across the study period (P < .01), whereas NRTI 
and PI resistance did not show a significant trend (Figure 1B).

Increasing NNRTI resistance over the study period is in con-
trast to the declining use of NNRTI regimens among UNC and 
Duke cohort patients (Figure 1C). Cohort-wide use of ART reg-
imens that included an NNRTI decreased by 6% per year from 
2001 to 2014 (95% CI, –10% to –2%; P < .01). Despite this declin-
ing use, the prevalence of NNRTI-associated TDR increased by 
0.6% each year over the same period (95% CI, 0.3% to 0.9%; 
P < .01), driving the overall rise in TDR prevalence. Consistent 
with this overall trend in TDR, we observed a decrease in 
NNRTI resistance in the first half of 2014; however, again, we 
found no statistical evidence that the temporal relationship was 
parabolic rather than linear (quadratic term P = .21, no change 
in AIC [linear AIC, 913; quadratic AIC, 913]).

Factors Associated With TDR

We explored the association between TDR and the demo-
graphic and clinical characteristics of patients using absolute 
differences in TDR prevalence (PDs) (Table  3). Compared 
with MSM, TDR was less common among men who did not 

report sex with men (PD,  –4.4%; 95% CI, –8.6% to 0.3%; 
P =  .03) and women (PD, –4.0%; 95% CI, –7.7% to –0.3%; P 
=  .03). TDR prevalence was highest among patients younger 
than age 20 years; for patients aged 19–29, 30–39, 40–49, and 
≥50 years, the PDs were –12.2%, –9.8%, –12.5%, and –12.1%, 
respectively (all P < .10). Compared with white patients, TDR 
prevalence was lower among black patients (PD, –3.9%; 95% CI, 
–7.7% to –0.1%; P = .04) and patients of Hispanic ethnicity or 
other race (PD,  –5.0%; 95% CI, –10.5% to 0.5%; P =  .07). At 
pretherapy sequencing, patients with TDR had higher CD4 cell 
counts (median, 331 vs 277; P = .04) but similar HIV viral loads 
(median, 4.79 vs 4.81; P =  .18). TDR prevalence was higher 
among patients identified in a transmission cluster than among 
patients whose sequence did not cluster (PD,  5.0%; 95% CI, 
1.9% to 8.1%; P = .001).

Phylogenetic Clusters With TDR

Using sequences from all 15  246 patients with routine geno-
typing in NC from 1997 to 2014, 7591 sequences (50%) were 
identified in 2297 transmission clusters. Approximately half 
of the clusters (1111/2297, 48%) included ≥1 patients from 
the UNC or Duke clinical cohorts (data available on ART 
exposure and presence of TDR). The prevalence of TDR was 
strongly associated with transmission clusters; 75% of patients 
with TDR (149/199) were identified in a transmission clus-
ter, whereas 64% of patients without TDR (935/1459) were 
in a cluster (P  =  .001). Therefore, our phylogenetic analysis 
focused on clusters containing ≥1 patients with TDR. We iden-
tified TDR in 106 transmission clusters that ranged from 2 to 
26 members (35% pairs, 54% 3–9, 11% 10–26) and involved a 
total of 546 persons (296/546 from clinical cohorts, 54%). Most 
sequences in TDR clusters had ≥1 SDRMs (348/546, 64%), and 
only a minority of patients with an SDRM were known to be 
ART-exposed (41/348, 12%). Most patients in clusters with an 
SDRM were either known to be ART-naïve (149/348, 43%) or 
had missing data on ART initiation if they were not in the UNC 
or Duke clinical cohorts (158/348, 45%).

Of 69 TDR clusters with 3 or more members, 25 (36%) were 
composed of sequences that all had ≥1 SDRMs (Figure 2; phy-
logenetic trees in Supplementary Figure 1). In 20 of 25 clusters, 
all members shared an identical SDRM. NNRTI drug resistance 
was common, and overall resistance was dominated by patients 
known to be ART-naïve or with unknown ART initiation (89% 
of patients in 25 clusters). Among these 25 clusters, most had 
time of the most recent common ancestor before 2005 (median 
year of tMRCA, 1997), and the time span of clusters ranged 
from 3.6 to 20.3  years (median, 12.5  years). In comparison, 
among all 2297 clusters identified in the statewide data set, the 
median year of tMRCA was slightly more recent (2000), and 
the median time span was slightly shorter (11.0  years). Most 
of the 25 clusters were male-dominated; more than half of the 
members in 20 of 25 clusters were male, and of these clusters, 

Table  2.  Prevalence of TDR From 1997 to 2014 Among 1658 Patients in 
Central NC

TDR Category No. (%) Common SDRMs No. (%)

Any TDR 199 (12.0) K103N 97 (5.9)

NNRTI 113 (6.8) T215Y/F/S/C/D/E/I/V 37 (2.2)

NRTI 48 (2.9) M41L 20 (1.2)

PI 13 (0.8) G190A 19 (1.1)

NNRTI + NRTI 11 (0.7) Y181C 13 (0.8)

NRTI + PI 6 (0.4) L90M 13 (0.8)

NNRTI + NRTI + PI 5 (0.3) M46I/L 11 (0.7)

NNRTI + PI 3 (0.2) L210W 10 (0.6)

Abbreviations: NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside 
reverse transcriptase inhibitor; PI, protease inhibitor; SDRM, surveillance drug resistance 
mutation; TDR, transmitted drug resistance.
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75% (15/20) consisted only of men. Most members of these 25 
clusters were aged 30 years or older, although 7 of 25 clusters 
were dominated by persons younger than age 30 years.

DISCUSSION

Transmitted drug resistance persists among treatment-naïve 
persons and can impact successful HIV therapy, particularly in 
resource-limited settings. We found a moderate TDR prevalence 
estimate of 12% overall, but TDR has steadily increased over 
the 15  years of observation. The TDR rise was driven largely 
by NNRTI resistance; few cases of dual and triple class resist-
ance were noted. By incorporating >15 000 HIV-1 pol sequences 

collected statewide, we traced genetic networks involving TDR, 
revealing significant clustering of NNRTI mutations among 
ART-naïve persons, including several clusters of young MSM. 
Altogether, our study provides important insight into TDR 
trends and characteristics of drug resistance clustering in the 
Southeast, which has the greatest burden of HIV infection com-
pared with other US regions [33, 34].

Although our prevalence estimate of 12% is consistent with 
other US-based studies [10, 11], recent trends in TDR are higher 
compared with European studies reporting stable [8, 14, 15]  
or decreasing [16–19] TDR prevalence. The persistence of TDR 
in North Carolina is predominantly driven by transmitted 
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Figure 1.  A, Overall transmitted drug resistance (TDR) prevalence by year among 1658 antiretroviral therapy (ART)–naïve patients from 1997 to mid-2014. Fitted linear 
model indicated an increasing trend in the percentage of ART-naïve patients with ≥1 surveillance drug resistance mutations. B, Prevalence of TDR broken down by drug 
class resistance (non-nucleoside reverse transcriptase inhibitor [NNRTI], nucleoside reverse transcriptase inhibitor [NRTI], protease inhibitor [PI]). C, Increasing prevalence of 
NNRTI-associated TDR among 1658 ART-naïve patients despite decreasing prevalence of NNRTI-containing regimen use among UNC and Duke patients on ART. ART regimen 
data were abstracted starting in 2001.

D
ow

nloaded from
 https://academ

ic.oup.com
/ofid/article-abstract/5/8/ofy178/5056760 by London School of H

ygiene & Tropical M
edicine user on 20 Septem

ber 2018



6  •  OFID  •  Levintow et al

resistance to NNRTI-containing regimens. Despite declining 
use of these regimens in our clinical cohort, most transmitted 
resistance mutations were NNRTI-associated, which increased 
over time. The prevalence of NNRTI-transmitted resistance in 
our study (8.0%) mirrors a recent study in San Diego [11]; over 

the same time period, they observed that prevalence was 8.5% 
and that it increased in more recent years. This continued prop-
agation of NNRTI SDRMs could be driven by the high trans-
missibility of the K103N mutation, corroborated by prior work 
[35]. Despite the absence of drug pressure, the persistence of 
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Figure 2.  Twenty-five transmission clusters illustrating resistance circulation among antiretroviral therapy (ART)–naïve and ART-unknown members. Each horizontal line of 
dots represents 1 cluster, and each dot indicates a single patient in the cluster by date of first sequencing. All clusters have at least 3 members, all with a surveillance drug 
resistance mutation (SDRM) and ≥1 members with transmitted drug resistance. Clusters are ordered by drug class resistance (non-nucleoside reverse transcriptase inhibitor 
[NNRTI], NNRTI/nucleoside reverse transcriptase inhibitor [NRTI], NRTI, protease inhibitor) based on the SDRM shared by the majority of sequences. Within each drug class, 
clusters are ordered by the most recent member’s sequencing date.

Table 3.  Prevalence of TDR Associated With Patient Characteristics, With Absolute Differences in TDR Prevalence Estimated With Binomial Regression 
Using an Identity Link

Patient Characteristic TDR, No. (%) No TDR, No. (%) Prevalence Difference (95% CI), %

Sex

  Male, MSM 108 (14) 671 (86) Ref

  Male, not MSM 28 (9) 269 (91) –4.4 (–8.6 to –0.3)a

  Female 44 (10) 403 (90) –4.0 (–7.7 to –0.3)a

Age, y

  <20 13 (23) 43 (77) Ref

  20–29 52 (11) 421 (89) –12.2 (–23.6 to –0.8)a

  30–39 61 (13) 395 (87) –9.8 (–21.3 to 1.7)

  40–49 47 (11) 392 (89) –12.5 (–23.9 to –1.1)a

  ≥50 26 (11) 208 (89) –12.1 (–23.9 to –0.3)a

Race

  White 68 (15) 386 (85) Ref

  Black 113 (11) 911 (89) –3.9 (–7.7 to –0.1)a

  Hispanic or other 18 (10) 162 (90) –5.0 (–10.5 to 0.5)

Transmission cluster

  In cluster 149 (14) 935 (86) 5.0 (1.9 to 8.1)a

  Not in cluster 50 (9) 524 (91) Ref

Median CD4 cell count (IQR) 331 (147–505) 277 (72–459) 0.7 (0.04 to 1.4)a per 100 cells/mm3

Median log10 viral load (IQR) 4.79 (4.13–5.22) 4.81 (4.16–5.32) –1.3 (–3.2 to 0.6) per log10 copies/mL

Abbreviations: CI, confidence interval; IQR, interquartile range; MSM, men who have sex with men; TDR, transmitted drug resistance.
aP < .05.
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K103N and other NNRTI-associated SDRMs may be a result 
of low fitness costs (ie, limited effect of the mutation on path-
ogen replication) or compensation through additional muta-
tions [36]. In contrast, transmitted resistance to NRTIs and PIs 
was less common and remained at low levels throughout the 
study period. Our study could not assess transmitted resistance 
to integrase inhibitors (INSTIs) given that pre-ART integrase 
genotyping was not yet routine in the UNC or Duke clinics. 
However, recent work indicates that major INSTI-transmitted 
resistance is rare in North Carolina [37].

We found that the prevalence of TDR was highest among 
young white MSM. Globally, the highest rates of TDR have been 
reported for MSM [36], whereas research is more limited on 
other demographic or clinical factors associated with transmis-
sion of drug resistance. The disproportionately high risk of TDR 
among MSM could result from unprotected sexual intercourse 
in the early stages of infection, when HIV is undiagnosed and 
more likely to have SDRMs (before possible reversion) [15, 38].  
The factors found to be associated with TDR—higher CD4 
count and transmission cluster member, in addition to young 
white MSM—represent markers of earlier diagnosis and poten-
tially more recent transmission. The enhanced ability to detect 
TDR in earlier infection may then have resulted in the observed 
associations.

In addition to examining individual risk factors, we used 
phylogenetic reconstruction of HIV transmission networks to 
understand the degree of connectivity of patients with TDR. 
Most TDR cases were identified in clusters, signifying multiple 
local transmission networks. Resistance in clusters was dom-
inated by patients known to be ART-naïve or with unknown 
ART initiation, with few known to be ART-exposed. This sug-
gests that TDR circulation is driven by ART-naïve persons, 
which is consistent with previous reports from Europe that 
treatment-naïve persons are the major source of TDR [4, 9, 15, 
18–20]. Compared with prior work in the United States, in our 
study, we identified a higher proportion of TDR cases in local 
transmission clusters (75%) than previously found in San Diego 
(24%) and Washington, DC (6%) [11, 12]. Phylogenetic analy-
ses are limited by the inability to infer direction of transmission 
and the fact that genetic linkage does not indicate direct trans-
mission as unsampled persons may be involved in the transmis-
sion chain. Nonetheless, transmission networks appear to be an 
important driver of propagation of SDRM in North Carolina 
(as opposed to de novo acquisition of resistance), and their con-
tinued identification and surveillance will be critical for future 
intervention efforts and to promote early treatment. In fact, the 
consolidation of TDR cases in clusters suggests that intervention 
based on phylogenetic analyses may be particularly effective in 
identifying and abrogating onward transmission of SDRMs in 
our region. Similar studies are needed in other locales to better 
define whether this consolidation of TDR is a unique feature of 
transmission networks in the Southeast.

Although our data stem from a large HIV patient popula-
tion in North Carolina, the cohort may not be representative 
of all people living with HIV in the state, as only persons diag-
nosed and engaged in care were included. The statewide data 
set included more than 15  000 patients with sequences, but 
we could only measure TDR prevalence for patients with ≥1 
sequences before known ART exposure, resulting in a sample of 
1658 patients. However, our phylogenetic analysis involved all 
15 246 patients with genotyping and provides an indication of 
potential TDR cases missed by our study; of the 546 sequences 
identified in TDR clusters, 158 contained ≥1 SDRMs but were 
from patients with missing data on ART initiation. In add-
ition, the demographic and clinical data on our sample of 1658 
patients are derived from observational clinical cohorts with 
potential for measurement error, and in particular, the data on 
transmission risk categories (MSM, injection drug user [IDU]) 
were not available for all patients (8% missing MSM, 41% miss-
ing IDU). We did not have estimates of recency of infection, 
which would have been informative in understanding the per-
sistence of NNRTI drug resistance. Despite these limitations, 
this study still provides an important indication of the propaga-
tion of TDR in the Southeastern United States, where little work 
has been done previously.

In conclusion, TDR has persisted in North Carolina and is 
predominantly driven by NNRTI resistance, despite declining 
use of NNRTI-containing regimens. Most TDR cases were 
identified in transmission clusters, where resistance was dom-
inated by patients known to be ART-naïve or with unknown 
ART initiation; few were known to be ART-exposed. Consistent 
with previous findings in Europe, TDR persistence appears to 
be due to circulation among ART-naïve persons, rather than 
those failing therapy. Continued TDR surveillance may help 
detect transmission networks and identify local clusters at high 
risk of propagating TDR to inform future intervention.
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