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Abstract: 

Background: Changes in climatic conditions are hypothesized to play a role in the increasing 

number of West Nile Virus (WNV) outbreaks observed in Europe in recent years. 

Objectives: We aimed to investigate the association between WNV infection and climatic 

parameters recorded in the 8 weeks before the diagnosis in Northern Italy. 

Methods: We collected epidemiological data about new infected cases for the period 2010-

2015 from the European Center for Disease Control and Prevention (ECDC) and 

meteorological data from 25 stations throughout the study area. Analyses were performed using 

a conditional Poisson regression with a time-stratified case-crossover design, specifically 

modified to account for seasonal variations. Exposures included weekly average of maximum 

temperatures, weekly average of mean temperatures, weekly average of minimum temperatures 

and weekly total precipitation.  

Results: We found an association between incidence of WNV infection and temperatures 

recorded 5-6 weeks before diagnosis (Incidence Rate Ratio (IRR) for 1°C increase in maximum 

temperatures at lag 6: 1.11; 95% CI 1.01-1.20). Increased weekly total precipitation, recorded 

1-4 weeks before diagnosis, were associated with higher incidence of WNV infection, 

particularly for precipitation recorded 2 weeks before diagnosis (IRR for 5 mm increase of 

cumulative precipitation at lag 2: 1.16; 95% CI 1.08-1.25). 

Conclusions: Increased precipitation and temperatures might have a lagged direct effect on the 

incidence of WNV infection. Climatic parameters may be useful for detecting areas and periods 

of the year potentially characterized by a higher incidence of WNV infection.  
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1. Introduction 1 

West Nile Virus (WNV) is a globally distributed RNA virus of Flaviviridae family (Campbell 2 

et al. 2002). It is maintained in nature through an enzootic cycle. Adult mosquitoes, generally 3 

of Culex genus, represent primary bridge vectors, while susceptible bird species play the role 4 

of amplification hosts (Chancey et al. 2015). Humans usually develop infection after being 5 

bitten by an infected mosquito. Infection in humans is generally asymptomatic, but 20% of 6 

infected subjects can develop a febrile syndrome, known as West Nile Fever (WNF), and less 7 

than 1% of infected subjects can develop a West Nile Neuroinvasive Disease (WNND) 8 

characterized by encephalitis or meningitis symptoms (David and Abraham 2016). 9 

In recent years, several outbreaks of WNV infection have been recorded in many European and 10 

Mediterranean countries (Rizzoli et al. 2015). Infected migratory birds are responsible for the 11 

introduction of the virus in new areas, while native mosquitoes feeding behaviour, presence of 12 

susceptible endemic birds and local environmental conditions are essential for persistence and 13 

amplification of the virus in new areas (Reisen and K. 2013, Rizzoli et al. 2015). Climatic and 14 

meteorological conditions have been suggested as important factors for virus transmission in 15 

newly affected areas (Paz 2015a; Paz et al. 2013). High extrinsic temperatures are associated 16 

with virus replication and the growth rate of the vector population (Gubler et al. 2001). Levels 17 

of precipitation are also believed to play an important role in pathogen/vector ecology: some 18 

studies reported that vector replication and activity are positively associated with heavy rainfall 19 

and other studies reported that mosquitoes’ abundance is associated with drought periods (Nile 20 

et al. 2009, Paz 2015).  21 

In Italy, the WNV was isolated for the first time in 1998 in 14 equine cases and the first human 22 

case was identified in 2008. Since then, human cases of WNV infection have been repeatedly 23 

notified, and now the virus is considered endemic in Italy (Rizzo et al. 2016).  Concurrently 24 

the number of provinces set in Northern Italy affected by WNV circulation has increased during 25 

the study period (3 provinces in 2010 vs 16 in 2015). Thus, Italy can be considered as an 26 

example of area that is facing the process of endemization of an emerging pathogen. 27 

The purpose of this study is to evaluate the short-term effects of air temperatures and 28 

precipitation on the incidence of WNV infection to understand the role of climatic parameters 29 

in the spread of WNV infection in an area, such as Northern Italy, where the process of 30 

endemization has recently started.   31 

 32 

 33 



2. Methods 34 

2.1  Data collection and elaboration 35 

Epidemiological data were obtained from the European Center for Disease Control and 36 

Prevention (ECDC). In our study, WNV cases are subjects resident in Northern Italy who, 37 

during the period 2010-2015, met the European criteria for probable or confirmed case of WNV 38 

infection (European Commission Decision 2008/426/E). Cases are confirmed if at least one 39 

following laboratory criterion is present:  isolation of WNV from blood or Cerebrospinal Fluid 40 

(CSF), detection of WNV nucleic acid in blood or CSF, WNV specific IgM in CSF, WNV IgM 41 

high titer and subsequent detection of WNV IgG. Cases are considered probable in presence of 42 

stable and elevated virus specific serum antibody titer in association with one clinical criterion 43 

(fever, meningitis or encephalitis) or evidence of an epidemiological link that proves 44 

animal/human to human transmission. Thus, notified cases recorded by ECDC are a 45 

heterogeneous population and include: WNV positive blood donors, cases of WNF and cases 46 

of WNND. For each case, the ECDC provides information on the year, the week and the 47 

geographical province of diagnosis.  48 

Meteorological data were obtained from the Regional Environmental Protection Agency 49 

(ARPA) for each province that reported at least one case of infection between 2010 and 2015. 50 

We used the information recorded by the land-based meteorological stations set in the capital 51 

of each province. Meteorological data included minimum, mean, maximum daily temperatures, 52 

and daily precipitation. On the daily data of temperatures and precipitation a quality control 53 

was carried out to exclude the possibility of measurement error (Fortin et al 2017; Acquaotta 54 

et al, 2016; Zandonadi et al, 2016). In order to conform meteorological data to epidemiological 55 

data, we calculated the weekly average of the minimum, mean and maximum temperatures, as 56 

well as, the weekly total precipitation. We considered missing all weeks with at least one 57 

missing daily information (information missing on weekly scale: 4.4% for maximum 58 

temperatures, 6.4 % for mean temperatures, 5.1% for minimum temperatures and 6.1% for total 59 

precipitation).   60 

 61 

 62 

 63 

 64 



2.2  Study design  65 

To estimate the association between climatic parameters and WNV infection, we used a case-66 

crossover design, which is a special case-control design where every case serves as its own 67 

control and originally developed to study the acute effect of transient exposures on the risk of 68 

rapid onset events (Maclure and Mittleman 2000). For each case, exposures occurring during 69 

the period prior to the event (known as “hazard period”) are compared to exposures at 70 

comparable control periods (known as “reference periods”) (Janes et al. 2005a; Janes et al. 71 

2005b, Levy et al. 2001). In our study, control periods were identified according to a time-72 

stratified sampling scheme, which uses fixed and relatively short time strata (e.g. calendar 73 

month) to match case and control periods (e.g. calendar week). Time-stratified case-crossover 74 

design has been repeatedly applied in environmental studies as it can control for long time 75 

trends (e.g. variability from year to year) and seasonality (variability from month to month) 76 

and can provide results equivalent to time series regression (Bateson and Schwartz 1999; 77 

Navidi 1998; Lu and Zeger 2007). We further modified the original time-stratified approach 78 

with the inclusion of a b-spline function of time to control for residual temporal variation within 79 

strata, given the strong seasonality of WNV infection (Whitaker et al. 2007).   80 

After observing the 2010-2015 cumulative epidemic curve, we firstly defined the transmission 81 

period of WNV, identifying the time interval going from the 27th to the 46th weeks of each year 82 

(length of 20 weeks). We secondly divided the identified period into 5 strata, each of 4 weeks 83 

length. For each week in which at least one human WNV case was reported (case period), we 84 

selected the other 3 weeks of the stratum as control periods. Exposure to meteorological 85 

variables, recorded in the capital of the province, were attributed to each case on the basis of 86 

the province in which her/his diagnosis was made.  87 

 88 

2.3  Statistical analysis 89 

The analysis was performed using conditional Poisson regression (Armstrong et al. 2014). 90 

Since weather effects on infectious disease risk may be delayed (lag-effect), we studied the 91 

incidence of WNV infection in relation to meteorological data recorded during the 8 weeks 92 

prior to the diagnosis. Therefore, we implemented a conditional Poisson regression in the 93 

context of lag-distributed models, which are suitable to explore the delayed effect of an 94 

exposure. Specifically, we used distributed lag non-linear models (DNLM), two-dimensional 95 

models developed to explore exposure-lag-response relationships along both the dimensions of 96 

exposure and lag (Gasparrini et al. 2010; Imai et al. 2015). These models use a cross-basis 97 



function, derived through a special tensor product of two independent functions, in order to 98 

analyze the exposure-response relationship and lag-response effect jointly. In our study, the 99 

effect of climatic parameters was modelled with a linear function, while the lag effect was 100 

modelled through a cubic basis spline with 4 degrees of freedom (df). The selection of the 101 

proper spline function for the lag-effect was based on the Akaike Information Criterion (AIC).  102 

We began the distributed lag models at lag 1 (the week before the week of diagnosis), 103 

hypothesizing that, since that WNV incubation period lasts 0-7 days (Rudolph et al. 2014), the 104 

risk should be null at lag 0 (week of diagnosis). The estimates can be plotted using a three-105 

dimensional graph to show the Incidence Rate Ratio (IRR) along both exposure and lag 106 

dimension. Since the effect of climatic parameters was modelled as linear we estimated, for 107 

each lag, the IRR for an increase of 1 °C for the weekly average of minimum, mean and 108 

maximum temperatures and an increase of 5mm for the weekly total precipitation. The lag-109 

specific IRR was derived by exponentiating the estimated regression coefficient, namely the 110 

variation in log-rate, for a unit increase of each climatic parameter for all specific lag (lag 1-111 

8). In addition, we estimated the overall cumulative effect, that is the sum of each specific lag 112 

contribution over the whole lag period and can be interpreted as the overall risk. To control 113 

further for residual seasonal confounding, we included a cubic basis spline function with 5 df 114 

of the week number of the year, able to capture the seasonal pattern of the case distribution 115 

observed during the transmission period.  116 

In addition, during summer holidays people are more likely to move out from their area of 117 

residence for leisure reasons. Thus, change of geographical location between the case and the 118 

control period would violate an assumption of the case-crossover design and possibly introduce 119 

bias. The potential impact of this source of bias was assessed in a sensitivity analysis in which 120 

we adjusted for holiday periods, defined as the two weeks around the 15th of August. 121 

The software used to compute analysis is R, version 3.5.0 (R Development Core Team 2018). 122 

The packages used for statistical analysis are “splines” “dlnm” and “gnm”. 123 

 124 

 125 

 126 

 127 



3. Results 128 

In total, 213 cases were diagnosed during the study period in Northern Italy and included in 129 

the case-crossover analysis. During 2010-2015 period, 25 provinces of Northern Italy out of 130 

42 (60%) reported human cases of WNV infection. Figure 1 shows the average of crude 131 

incidences of WNV infection per 1,000,000 inhabitants in each province over the 6-year period.  132 

Distribution of cases by week of the year (Fig 2) shows that the WNV infection has a seasonal 133 

pattern in Italy, with all cases being notified during the summer/autumn period. All human 134 

cases occurred between the 28th and 44thweek of the year with a peak at the end of August (36th 135 

week). This pattern has suggested the inclusion of the spline function of time to further adjust 136 

seasonal confounding. 137 

Results, both crude and adjusted for seasonality, conducted on climatic parameters recorded up 138 

to 8 weeks prior to the diagnosis in relation to the risk of WNV infection are shown in Figure 139 

3 and Table 1. The three-dimensional plots, show the entire surface of the adjusted IRRs in 140 

relation to maximum temperatures/precipitation at all lags considered (Figure 3a). Figure 3b 141 

shows the estimated effect of a unit increase in maximum temperatures and precipitation over 142 

the 8-week lag (continuous line: adjusted IRR, dashed line: crude IRR).  Crude and adjusted 143 

lag-specific estimates for a unit increase in temperatures/precipitation are reported in Table 1. 144 

We found that the weekly average of maximum temperatures might affect the risk of WNV 145 

infection after 5 and 6 weeks (Fig 3). As shown in Table 1, the highest effect on WNV incidence 146 

was observed considering maximum temperatures recorded in the 6th week prior to diagnosis 147 

(adjusted IRR for 1°C increase in maximum temperatures at lag 6: 1.11; 95% CI 1.01-1.20). 148 

However, we did not find evidence of a positive overall cumulative effect for 1°C increase in 149 

maximum temperatures on WNV infection risk in the following weeks (Table 1). Weekly 150 

average of mean and minimum temperatures was not associated with the risk of WNV infection 151 

at any lag (Table 1). Weekly total precipitation recorded at lag 1-4 resulted positively 152 

associated with the risk of WNV infection (Fig 2b). As reported in Table 1, the maximum effect 153 

of precipitation was found with the precipitation recorded two weeks before diagnosis (lag 2) 154 

(adjusted IRR for 5 mm increase of weekly total precipitation at lag 2: 1.16; 95% CI 1.08-1.25). 155 

We found that 5 mm increase in weekly total precipitation was associated with a positive 156 

overall cumulative effect in the following 8 weeks: adjusted overall risk of 1.62 (95% CI 1.03-157 

2.56). Lastly, when we adjusted for summer holidays in sensitivity analyses results were not 158 

affected more than marginally (results not shown). 159 

 160 



Table 1 161 
 Risk of WNV infection in relation to unit increasea in temperature and precipitation. 162 

1°C increase in weekly average of maximum temperature 

Lag (Weeks) IRR1b 95% CI IRR2 95% CI 

1 0.95 0.88-1.03 0.91 0.81-1.01 

2 1.00 0.95-1.03 0.93 0.83-1.04 

3 1.04 1.00-1.09 0.98 0.88-1.10 

4 1.09 1.05-1.14 1.04 0.95-1.15 

5 1.13 1.08-1.17 1.09 1.00-1.19 

6 1.13 1.08-1.18 1.11 1.01-1.20 

7 1.09 1.04-1.14 1.06 0.98-1.15 

8 0.99 0.91-1.08 0.94 0.84-1.04 

Cumulative effect 1.48 1.22-1.80 1.03 0.56-1.87 

1°C increase in weekly average of mean temperature 

Lag (Weeks) IRR1 95% CI IRR2 95% CI 

1 0.95 0.86-1.05 0.88 0.77-1.01 

2 1.00 0.96-1.04 0.90 0.79-1.03 

3 1.05 1.00-1.11 0.95 0.83-1.09 

4 1.10 1.05-1.15 1.02 0.90-1.15 

5 1.13 1.08-1.18 1.08 0.97-1.20 

6 1.13 1.08-1.19 1.09 0.99-1.21 

7 1.09 1.03-1.15 1.04 0.94-1.15 

8 1.00 0.91-1.12 0.91 0.79-1.04 

Cumulative effect 1.53 1.23-1.92 0.86 0.41-1.80 

1°C increase in weekly average of minimum temperature 

Lag (Weeks) IRR1 95% CI IRR2 95% CI 

1 0.96 0.86-1.07 0.91 0.80-1.05 

2 1.01 0.96-1.06 0.90 0.79-1.03 

3 1.06 1.00-1.12 0.93 0.81-1.07 

4 1.10 1.05-1.15 0.98 0.86-1.12 

5 1.12 1.08-1.17 1.03 0.92-1.15 

6 1.12 1.07-1.18 1.04 0.93-1.17 

7 1.09 1.03-1.16 1.00 0.89-1.12 

8 1.02 0.92-1.15 0.88 0.75-1.02 

Cumulative effect 1.60 1.24-2.07 0.71 0.32-1.56 

5 mm increase in weekly total precipitation 

Lag (Weeks) IRR1 95% CI IRR2 95% CI 

1 1.02 0.97-1.08 1.12 1.06-1.20 

2 1.05 1.00-1.10 1.16 1.08-1.25 

3 1.03 0.98-1.09 1.15 1.06-1.24 

4 1.00 0.95-1.05 1.10 1.02-1.19 

5 0.95 0.90-1.01 1.04 0.97-1.12 

6 0.92 0.87-0.97 0.99 0.92-1.07 

7 0.91 0.86-0.96 0.97 0.90-1.03 

8 0.94 0.88-0.99 0.98 0.92-1.05 

Cumulative effect 0.82 0.57-1.14 1.62 1.03-2.56 
a Estimates for a unit increase are derived by exponentiating the estimated regression coefficient, namely the variation in log-163 
rate, for a unit increase of meteorological variables. Estimates for n-fold unit increase is obtainable by raising the estimate to 164 
the n-power  165 
b IRR1: Crude Incidence Rate Ratio; IRR2: Incidence Rate Ratio adjusted for seasonality; CI: Confidence Interval  



Figure 1 

Average of crude incidences of WNV infection per 1,000,000 person-years in Italian provinces during the study period. 

Framed area corresponds to the study area. 

 

Figure 2  

Total number of WNV infection cases observed in Northern Italy during the study period (2010-2015) by week of the year 

(left) and by week and year (right) 
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Figure 3 

Fig. 3a (left) IRR2 (adjusted for seasonality) of WNV infection by weekly average of maximum temperatures (°C) and 

weekly total precipitation (mm), using a natural cubic spline–linear effect DLNM with 4 df basis cubic spline for lag and 

linear effect for exposure. 

Fig. 3b (right) The estimated IRR2 (adjusted for seasonality) and 95% confidence intervals in unit increase of weekly 

average of maximum/minimum temperature (1 °C) and of weekly total precipitation (5mm) over 8 weeks of lag. Dashed 

line: IRR1 (not adjusted for seasonality) 

Figure 3 168 
 169 
                          Figure 3a                                                                                              Figure 3b 

3D Graph of effect of Max T                                  Lag effect of 1°C increase in weekly average of Max T         

         
 

                       

3D Graph of effect of Tot Prec                                                   Lag effect of 5mm increase in weekly Tot Prec 

 

 

 

 

 

 



4. Discussion 170 

Our study revealed that cases in Northern Italy are notified between July and October, with a 171 

peak at the end of August. The transmission season is similar to the activity period (May-172 

November) of mosquito Culex Pipiens, the main WNV vector in Italy (Bisanzio et al. 2011).   173 

 174 

Our study is, to our knowledge, the first to assess the lag-effect of meteorological exposures 175 

and risk of WNV infection in Italy, including all incident cases diagnosed in Northern Italy 176 

between 2010 and 2015. Methodologically, the main strength of this study is the application of 177 

DLNMs in the context of a time stratified case-crossover design in order to explore delayed 178 

effects of exposures. We further included in the model a seasonal term (namely a spline 179 

function of time) to enhance the study validity, as it has been shown that in presence of a strong 180 

seasonal pattern of exposures and outcomes, time-stratified case-crossover studies might still 181 

be biased by residual seasonal confounding (Whitaker et al. 2007). Since we were interested in 182 

evaluating the short-term effect of the weekly variation of climatic parameters on the incidence 183 

of WNV infection from here onwards we will discuss only results adjusted for seasonality. 184 

 185 

We found evidence of association, despite no overall cumulative effect, between maximum 186 

temperatures recorded in the 5th and 6th weeks prior to diagnosis (lags 5 and 6) and the 187 

incidence of WNV infection. Several studies have evaluated the effect of the temperatures on 188 

WNV ecology and transmission among mosquitoes, birds and humans in different areas 189 

worldwide (Gubler 2007; Paz 2015a; Paz and Semenza 2013), and many of them showed that 190 

temperatures may play an important role in the virus transmission cycle. However, only few 191 

studies have assessed the risk of WNV infection in humans in relation to temperatures with 192 

the specific aim of evaluating the lag effect. One correlation study conducted in Israel, 193 

Greece, Romania and Russia analyzed human cases of WNV infection notified during the 194 

summer of 2010 in relation to temperature anomalies, namely temperatures recorded in 2010 195 

compared with the perennial weekly average of 1981–2010.  This study found an association 196 

between WNV cases and temperature at lag 0-1 (weeks) in Israel and Greece and at lag 3-4 197 

(weeks) in Romania and Russia (Paz et al. 2013). One US study, a bidirectional case-198 

crossover, not adjusted for seasonality, analyzed all incident cases of WNV infection notified 199 

between 2001 and 2005 (n= 16.298) in relation to the temperatures recorded in the 4 previous 200 

weeks, finding associations of similar strength for each lag (0-4 weeks) (Nile et al. 2009).  201 



The lag of 5-6 weeks observed in our study might be explained by the complexity of the 202 

host/pathogen ecology. However, our study was not designed to assess the underlying 203 

mechanisms through which temperatures and precipitation may affect WNV infection, thus we 204 

can only speculate on the effects of climate parameters on vector and virus ecology.  205 

It has been observed that the air temperature can augment virus replication rate and lead to 206 

higher viremia level in mosquito population (Reisen et al. 2006). Higher temperatures have 207 

been also shown to impact the vector transmission rate, by shortening the extrinsic incubation 208 

period (namely “the time from ingestion of an infectious bloodmeal until a mosquito is capable 209 

of transmitting virus infection to a susceptible organism”) (Reisen 1989, Reisen et al. 2006). 210 

In addition, elevated temperatures can cause an expansion of the absolute number of 211 

mosquitoes and affect their feeding behaviours (Bisanzio et al. 2011; Conte et al. 2015). Thus, 212 

higher temperatures are believed to first impact the virus transmission in the enzootic cycle 213 

among mosquitoes and birds (Kilpatrick et al. 2008; Reisen et al. 2006) and, second, to affect 214 

the expansion of the proportion of infective mosquitoes, on which depend the human infection.  215 

The aforementioned pathways intrinsically imply a latency of the effect that, in addition to an 216 

incubation period of 0-7 days of human infection (Rudolph et al. 2014), might explain the 217 

overall latency of 5-6 weeks observed between increased temperatures and higher incidence of 218 

WNV infection cases. 219 

However, it is noteworthy that the whole lag pattern presents negative point estimates at lag 1-220 

2 and that the overall cumulative effect estimate is close to zero. For these reasons we cannot 221 

exclude that our findings of association between increased maximum temperatures and 222 

incidence of WNV infection at lag 5-6 might be due to chance.  223 

 224 

Our results revealed an association between WNV infection and total precipitation recorded 225 

between the 1 and 4 weeks prior the diagnosis (lag 1-4). Levels of precipitations are believed 226 

to affect the patterns and the transmission of WNV (Paz 2015). However, findings about the 227 

relationship between precipitation and incidence of WNV cases are contradictory. Some 228 

studies reported that above-average precipitation can lead to higher risk of WNV outbreaks by 229 

expanding mosquitoes (Di Sabatino et al. 2014; Nile et al. 2009). On the contrary, other studies 230 

found that drought periods can induce outbreaks favoring the bird-to-bird viral transmission by 231 

facilitating the concentration of avian species in the few existing pools (Shaman et al. 2005). It 232 

is plausible that the response to precipitation might change over different geographical areas, 233 

depending on the differences in the characteristics of the local environment and in the ecology 234 

of vectors (Shaman et al. 2002, Paz 2015). Our results of associations between WNV infection 235 



cases and increased precipitation at lag 1-4 (weeks) can be due to the close relationship between 236 

aquatic environment and mosquito proliferation. Intermediate stages of Culex mosquitoes, such 237 

as larvae, are water dependent, and therefore, precipitation might be important, especially in 238 

drought periods such as summer, to create and maintain water pools that are necessary for the 239 

development of mosquitoes. Accordingly, an observational study reported that the WNV 240 

outbreak recorded in 2010 in central Macedonia, Greece, was preceded by unusually 241 

precipitation (Danis at al 2011).  242 

 243 

Our study has three main limitations. First, we had information on the week but not on the day 244 

of diagnosis. Thus, we could not date back the exposure history starting from the day of 245 

symptoms onset, but only from the week preceding the week of the diagnosis. However, our 246 

study aligns with most of environmental studies conducted on infectious diseases, as typically 247 

surveillance systems for communicable diseases notify cases on a weekly scale. Second, since 248 

we had no information about the municipality but only about the province of residence of the 249 

cases, we linked each case to the meteorological station of the capital of its province in order 250 

to obtain data on the corresponding environmental exposures. This linkage might have 251 

introduced some non-negligible degree of exposure misclassification. However, since in case-252 

crossover analysis the same subject is used both as case and as its own control, misclassification 253 

is likely to be non-directional, which would likely lead to conservative estimates. Third, the 254 

reason of the diagnosis (asymptomatic subjects: WNV positive blood; symptomatic subjects: 255 

West Nile Fever or West Nile Neuroinvasive Disease) was not available at the individual level. 256 

Asymptomatic subjects, such as blood donors, can be diagnosed during the incubation period, 257 

and therefore the lag-effect of environmental exposures might be different between 258 

asymptomatic and symptomatic groups. However, WNV infection cases diagnosed among the 259 

blood donors represent a minority of cases identified through the surveillance system. For 260 

instance, only 13 out of 61 cases (21% of the total) observed in Italy in 2015 were blood donors 261 

(ISS, 2015).  262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 



5. Conclusions 270 

In conclusion, our results suggest that high temperatures might be associated with the incidence 271 

of WNV infection after a lag of 5-6 weeks, while heavy precipitation after a lag of 2-3 weeks. 272 

These results strengthen the evidence that the WNV is a climate-sensitive disease in an area 273 

where the process of endemization has recently started and underline that climatic parameters 274 

might be useful for detecting areas and periods of the year potentially characterized by a higher 275 

incidence of WNV infection 276 

 277 
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