IMAGING SERVICES NORTH
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

This PDF was created from the British Library's microfilm copy of the original thesis. As such the images are greyscale and no colour was captured.

Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured.

This is the best available copy
$\therefore \quad$.

DX

85359

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

AUTHOR

INSTITUTION and DATE

C. E. ught

North London Polytechnic

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

ψ

A STUDY OF SPECTRAL LINE INTENSTTIES AND EXCITED ATOM POPULATIONS IN A HOLLOW CATHODE DISCHARGE by C.E.LIGHT, B.Sc, P.G.C.E.

A Thesis submitted for the degree of Doctor Of Philosophy of the Council for National Academic Awards.
The work was carried out at the Polytechnic of North London.
Collaborating Establishment: Cathodeon Led., Cambridge.
September 1988

ABSTRACT

Discharge processes within hollow cathode lamps with cylindrical mild steel cathodes and neon carrier gas were investignted for a range of discharge curreits and different neon pressures. Experimental methods used were :-
(a) Visual inspection of the cathode glow.
(b) Photographic recording of spectua.
(c) Measurement of the intensity / current (I/i) relationship of selected Ne I spectral lines.
(d) Recording of emission spectral line profiles using a pressure scanning Fabry Perot interferometer.
(e) Measurement of voltage / current characteristics.
(f) Absorption measurements of the number density of excited neon atoms in the 3s, 3s' group of states.
Self - reversal of spectral lines terminating in the $3 \mathrm{~s}[3 / 2]_{2}^{0}$ metastable state was detected. Number densities of atoms in the $3 \mathrm{~s}[3 / 2]_{2}^{0}$ state were $\sim 2 \times 10^{17} \mathrm{~m}^{-3}$ and marked saturation of the density with current noted. Densities of atoms in other states of the $38,3 s^{\prime}$ group were $\sim 10^{16}-10^{17} \mathrm{~m}^{\mathbf{3}}$. A model equation of the I / i relationship was developed of the form

$$
I=A i\left(1+B \sum N_{j}(i)\right)+D
$$

where $\mathrm{N}_{\mathrm{j}}(\mathrm{i}), \mathrm{j}=1, \ldots .4$ are the number densities of atoms in the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group of states and A, B, C and D parameters independent of current. The I / i results were fitted to this equation. Evidence of the breakdown of proportionality between electron density and current at low curreat values was obatined and related to observed discharge properties. A method for conrecting recorded spectral line profiles for instrumental broadening was developed.

STATENIPNT
The suthor attended a portenduate course a Southampron Univenity in thooretical physics, and ameaded speciahst short courres on analytical asomic abeorption end optical emission spectrocoopy and final year honours courses, at the Polytechnic of North London. Purt of the work was presented by the muthor in a lecture at the Second Biemial National Aromic Spectrocoopy Sympostum, Leede, July 1984 (eubrequeatly published in the Analya (73]) and a further lecture was given an Gas Discharges and Thetr Applications, Oxford, September 1985 [74]. A poster including pert of the wodk was presented by Dr. B.B.M. Steers at the 21 it Colloquium Spectroccopium Inermationale, Garmish - Parrenkirchen, September 1985. Copies of the abetracts and Analyat paper are included at the end of this thesis.

ACKNOWLEDGEMENTS

The author would like to thank Dr. E.B.M. Steers for his supervision and advice and Mr. D.W. Ward of Cathodeon Led. Cambridge for helpful discussion and the
vacuum furmace processing of lamp components by Cathodeon Led.

CONTENTS
p 1 LISTOR DIAGRAMS
p 7 LIST ORTABLES
p 8 CHAPTER 1
p 8 I/A HOLOW CATHODE DISCHARGES
p 8 1/B REVIEW OF PREVIOUS INVESTIGATIONS
p 10 1/B. 3 Electron Densities and Distributions
p 15 CHAPTER 2
HOLLOW CATHODE LAMP SYSTEMS
p 15
p 15
p 15
p 15
p 19
p 19
p 22
p 22
p 23
p 23
p 23
p 26
p 26
p 27

INTRODUCTION
p 8 1/B. 1 Discharges Investigated
p 9 1/B. 2 Electrical Properties
p 11 1/B.4 Ion Densities and Sputtering
p 12 1/B. $5 \quad$ Visual Observations
p 12 1/C ORIGIN OF THE WORK

CHAPTER 3

EXPERIMIENTAL METHODS
3/A OUTLINE OF EXPERIMENTAL METHODS
3/B PHOTOMETRICMRASUREMENTS
2/B EXPERIMENTAL H.C.L. SYSTEM
2/B. 1 Outine of System
2/B. 2 Vacuum / Fill Gas Supply System
2/B.3 Vacuum System Control
2/B. 4 Leak Testing
2/B.5 Degassing of U.H.V. Section of the System
2/B.6 Impurity Products of Outgnssing
2/B.7 Vacuum Performance
2/B.8 Experimental Lamp
2/B.8(a) Outine
2/B.8(b) Lemp Configuration A
2/B.8(c) Lemp Configuration B
2/C SEALEDH.C.L.'S (GENERAL DESCRIPTION)

[^0]

P 144	6 C .4	Prumeter Valoce
p 147		CHAPTER 7
	DISCUSSION AND CONCLUSIONS	
p 147	7/A	SELF - REVERSAL OP SPECTRAL LINE PROFILES
P 147	7/B	NUMBER DENSITIES OF EXCTIED ATOMS IN THE 38, 38' STATES
p 147	7/B.1	Generil Features of Number Density Results
p 149	7/B. 2	Comperison with Results of Other Woakers
p 150	7/B. 3	Saturation of Metustable Atom Popalation
p 153	7/8. 4	Quadi - metamelle Arom Population
p 156	7¢	INTENSTTY/CURRENT CURVES
p 156	7/6. 1	Comperison with Howerd's Results
p 156	7/C. 2	Summery of I/i Fitting
p 158	7/D	VA CHARACTERISTICS AND VISUAL ORSERVATIONS
p 159	7/8	HPFBCTS OF FILL OAS IMPURITY
p 160	7/F	CORRECTION OF SPBCTRAL PROFILES FOR INSTRUMIENTAL BROADEENLNG
p 160	70	SUMMARY OP CONCLUSIONS
p 163	7/8	SUGGESTIONS POR FURTHER STUDY
		LIST OR REPERENCES
APPE		ABSTRACTS AND PAPER
APPE		COMPUTER CODE

LLST OF DIAGRAM		
p 16	FIG. 1	HCL. POWER SUPPLY \& VA MEASUREMENT
		CIRCUT
p 17	FGG. 2	SCHEMATIC DIAORAM OF VACUUM SYSTEM
P 20	Fig. 3	UHV. SECTION OF VACUUM SYSTEM
p 21	FIG. 4	VACUUM SYSTEM CONTROL CIRCUIT
p 24	FIG. 5	EXPERIMENTAL HCLL IN CONFIGURATION A
P 25	FIG. 6	EXPERIMENTAL HCL IN \mathbf{N} CONFIGURATION B
P 30	FIG. 7	EAOLE MONOCHROMATOR
p 31	FIG. 8	SCHEMATIC DIAGRAMS OF MONOCHROMATOR
p 33	Fig. 9	SCHEMATIC DIAORAM OP I/ MEASUREMENT
		SYSTEM POR SEALED H.CL.'S
p 34	FIG. 10	FABRY - PEROT SYSTEM USED TO RECORD
		EmISSIONLINE PROFILES
p 35	FIG. 11	SCHEMATIC DIAGRAM OF FABRY - PEROT
		ABSORPTION MEASUREMENT SYSTEM
p 37	FIG. 12	LOO PLOT OP P.M.T. RESPONSEPOTENTIAL
p 45	FIG. 13	EXAGGERATED SCHEMATIC DIAORAMS OF RAY
		PATES THROUGH HOLIOW CATHODE
p 50	FIG. 14	Ne I ENERGY LEVEL DIAGRAM
p 53	FIG. 15	Ne I EMISSION LINE PROFILES, EXPERMENTAL
		LAMP (CONFM. A) (1\& 2 TORR)
P 54	FIG. 16	Ne I 640.2 mm EMISSION LINE PROFILES AT
		THREE LAMP CURRENTS, SEALED HCL
p ${ }^{54}$	FMG. 17	Ne I EMISSION LINE PROFILES AFFECTED BY
		CONTAMINATION OF FILL GAS
P 56	FIG. 18	I/ CURVES OF Ne I LINES, EXPPRMMENTAL LAMP
		(CONFIG. A) (1 TORR)

p 57	FIG. 19	I/i CURVES OF Ne I LINES, EXPERIMENTAL LAMP (CONFIG. A) (2 TORR)
p 58	FIG. 20	I/ CURVES OF Ne I LINES, EXPERIMENTAL LAMP (CONFIG. A) (3 TORR)
p 59	FIG. 21	I/i CURVES OF Ne I LINES, EXPERIMENTAL LAMP (CONFIG. A) (5 TORR)
p 60	FIG. 22	I/i CURVES OF Ne I AND Fe I LINES, SEALED H.C.L.
p 61	FIG. 23	Ne I LINE PROFILES RECORDED IN FABRY PEROT ABSORPTION EXPERIMENTS (1 TORR)
p 62	FIG. 24	Ne I LINE PROFILES RECORDED IN FABRY PEROT ABSORPTION EXPERIMENTS (1 TORR)
p 63	FIG. 25	Ne I LINE PROFILES RECORDED IN FABRY PEROT ABSORPTION EXPERIMENTS (2 TORR)
p 66	FIG. 26	VARIATION OF PROBE BEAM SPECTRAL INTENSITY WITH EXPERIMENTAL LAMP CURRENT (1 AND 5 TORR)
p 67	FIG. 27	V/i CHARACTERISTICS OF EXPERIMENTAL LAMP (CONFIG. A) (1 AND 2 TORR)
p 68	FIG. 28	V/I CHARACTERISTICS OF EXPERIMENTAL LAMP (CONFIG. A) (3 AND 5 TORR)
p 69	FIG. 29	Vfi CHARACTERISTICS OF SEALED H.C.L. SHOWING HYSTERESIS EFFECT
p 69	FIG. 30	I/ CURVE OF Ne I LINE AFFECTED BY CONTAMINATION OF FILL GAS
p 71	FIG. 31	MEDIUM QUARTZ AND GLASS SPECTROGRAMS OF CONTAMINATED H.C.L. EMISSION

p 72	FIG. 32	MEDIUM QUARTZ SPECTROORAMS OF
		CONTAMINATED H.CL. EMISSION
p 79	FIG. 33	VARIATION OP FABRY - PEROT LIF. WITH
		CHANGING ETALON APARALLIELSM
p 79	FIG. 34	VARIATION OP PABRY - PER OT LF. WITH
		Chanding etalon orientation
p 80	FIG. 35	VARLATION Of FABRY - PEROTLF. WITH ETALON
		DIAMETER A_{1}, POOR PARALLELISM
p 80	FIC. 36	VARIATION Of FABRY - PEROTIL. WITH
		DIFFERENT DIAMETERS OF APERTURE A_{2}
p 81	FIG. 37	VARIATION OF FABRY - PEROTLL. WITH ETALON
		DIAMETER A_{1}, OPTIMIEED PARALLEI
p 81	FIG. 38	CHANOE IN PABRY - PRROT LT. ON LOCKING
		ORIIENTATION ADJUST. SCREW
P ${ }^{88}$	FIC. 39	FABRY - PEROT LF. OVER TWO ORDERS OF
		INTERPERENCE, OPTIMITED ETALON
		adjustmint
p 89	FIG. 40	FABRY - PEROT LF. EXHIBITING RESIDUAL
		ASYMMETRY AFTER LIMITED OPTIMIZATION OF
		Etalon parallelism
p 92	FIG. 41	PLOT Of APPARENT ABSORPTION COBFFICIENT
		AGAINST WAVENUMBER
p 92	FIG. 42	PLOT OF NUMBER DENSTTY OF METASTABLE
		STATE $38\left[3 / 21^{\circ}\right.$ AGANNST LAMP CURRENT
p 97	FIG. 43	FLOWCHART OF DIGITIZATION AND CUBIC
		Spline fiting of data .


```
p101 FIG.44 FLOWCHART OR SOURCE PROFILE SYNTHIESIS
p 108 FO. 45 FLOWCHART OPABSORPION LINB PROFILE
SYNITIESIS
p111 FIGS.46 (a), (b) AND (c)
TYFICAL FORMS OR SOURCE PROFLLE AND
INSTRUMIRNT FUNCIION
p 113 FIGS. }47\mathrm{ (a), (b) AND (c)
                                    SCHEMATICDIAGRAMS SHOWING
                                    CONVOLUIION OP TYPICAL LP. AND SOURCE
                                    PROFILES
```

p 114 FİGS. 48 (a), (b) AND (c)
SCHEMATIC DIAGRAMS SHOWING CORRECIION
OR TYPICAL OBSERVED SPECTRAL INE
PROFILES FOR EFFBCT OR LF.
p 115 FIG. 49 SYNTHESTZED SOURCE \& RECORDED EMISSION
PROFILES \& RBSIDUAL VALUES
SYNITESIZED TRANSMIITED SOURCE PROFILE
\& RBCORDED TRANSNITIED PROFILE,
RESIDUAL VALUES
p 117 FIG. 51
SYNTHRSTIED SOURCR \& RECORDED
PROFILES, \& RBSIDUAL VALUES
p 119 FIG. 52
SYNTHESEAED ABSORPTION PROFILE \&
RESIDUAL VALUES
p 121 FIGS. 53 (a) AND (b)

PLOTS AOANSTT LANP CURRENT OF NE I EXCITED STATE NUMBER DENSIIIBS AT 1 TORR

p 122 FIGS. 54 (a) AND (b)

PLOTS AGAINST LAMP CURRENT OF NE I EXCITED STATE NUMBER DENSIIIES AT 2 TORR

p 123 FIOS. 55 (a) AND (b)

PLOTS AGAINST LAMP CURRENT OF Ne I EXCITED STATE NUMBER DENSITIES AT 5 TORR
p 124 FIGS. 56 (a) AND (b)
PLOTS AGANST LAMP CURRENT OF Ne I EXCITED STATE NUMBER DENSITIES SUMMED OVER 38, 38' LEVELS (1 AND 2 TORR) PLOTS AGANST LAMP CURRENT OF Ne I EXCITED STATE NUMBER DENSITIES SUMAMED OVER 32, 38' LEVELS (5 TORR) FIO. 60

FIG. 61

FIG. 62

FIG. 63

LOTS AGANST LAMP CURRENT OF SPECTRAL ABSORBANCE AT 1 AND 5 TORR FOR Ne I 640.2 nm FLOWCHART OR I/ FITTING PROGRAM EXCTTATION AND DE - POPULATION PROCBSSES Of Ne I EXCITED STATE U FITTED CURVE, DATA AND RESIDUALS FOR Ne I $630.5 \mathrm{~nm}, 1$ TORR If FITTED CURVE, DATA AND RESIDUALS FOR Ne $1630.5 \mathrm{~nm}, 1$ TORR

IA FITIED CURVE, DATA AND RESIDUALS FOR Ne I $630.5 \mathrm{~mm}, 2$ TORR

Ne I $585.2 \mathrm{~nm}, 1$ TORR
I/ FITTED CURVE, DATA AND RESIDUALS FOR Ne I
$630.5 \mathrm{~nm}, 5$ TORR
p 151 FIGS. 67 (a) AND (b)
SCHBMATIC PLOTS OF METASTABLE ATOM NUMBER DENSITY AGAINST CURRENT

ENLARGED Ne I ENERGY LEVEL DIAGRAM OF 3s, 3s' STATES

POTENTIAL ENERGY CURVES FOR $\mathbf{C O}$ AND CO+

LIST OF TABLES
p 49 TABLE 1
SPBCTRAL LINES STUDIED IN EXPERMMENTS
p 51 TABLE 2
SOME Ne I SPECTRAL LINES AND ENERGY LEVELS
p 93 TABLE 3
NUMBER DENSITY OF ATOMS $\operatorname{NN} 3[3 / 2]_{2}^{\circ}$ AT 20 mA AND THREE PRESSURES, GRAPFICAL ANALYSIS ($\pm \sim 15 \%$)
P93 TABLE4
NUMBER DENSITY OF ATOMS IN STATES OF 3\&, 38' OROUP AT 2 TORR AND 20 mA GRAPHICAL ANALYSIS ($\pm \sim 15 \%$)
p 142 TABLE 5
VALUES OF PARAMETERS OBTAINED FITTING MODEL EQUATIONS B6 \& B7 TO OBSERVED I/ CURVES
p 143 TABLB 6
VALUES OF PARAMETERS OBTANED FITING MODEL EQUATIONS (OTHER THAN B6 \& B7) TO OBSERVED I/ CURVES

P 131 LST OFI/ MODEL EQUATIONS

Chapter 1

INTRODUCTION

1/A HOLLOW CATHODE DISCHARGRS

The woit described was pert of an extenative stady of the discharge processer within hollow cathode lamps (H.CL. צ) carriod out at the Polytochnic of North London. Since its first nae by Paschen [1] over seventy years apo the hollow cathode discharge (H.C.D.) has been employed as a source of intense apectral line emission with curreats that may rise up to 1A. However H.C.L's are mote commonly used as sources of nanow line emission of anslytic elements in modern smomic abeorption eppectroccopy. A typical commerciel lemp consints of a cathode, made wholly or pertly of the element in question, which has a cylindrical hollow $\sim 10 \mathrm{~mm}$ deep and $\sim 3 \mathrm{~mm}$ bore. In froat of his is a emall, ofven ring -haped mode made of an chersically steble meenl. The eloctrodes
 uemally neon or agea, to a presure between ~ 0.1 and ~ 20 torr. Typically, discharge currents ned are ~ 10 to 20 mA . The epectrum of the emission is rich in spectral lines of both catiode mmental and cerrier gan.

In the oedy 1970 'it was shown by a mumber of workers (ce. Schenbel [2], Piper
 one for the exchuidoa of upper har lovels of mevel ions in boltume - meal vapour
 spuased catbode marial and a mubber of H.C. kerer symems have been devoloped [5]. The opea - caded cuthodes neod th herer upplicmions ere of similer bore io those used in

IS REVEW OT FRYIOUS DNVETIGATIOAS
 1/8. 1 Dectionges linemizenod

of the cathode ta relation to the negatve dow. The samaller dimension of the cathode cavity is uspilly ~ 0.2 - 4 cm ; research endies have tended to be caried out with lirger cathode hollows $\sim 10 \mathrm{~mm}$ than the emaller commercial epectroncopic eovers. The cathode tnner aurice area is usually in the range $\sim 1-50 \mathrm{~cm}^{2}$. The anode is often poritioned so as to allow litile or no podtive colums. At animble carrier gie presure the discharge consists nimoet entinaly of negative flow within the cathode cavity. A number of porre gases and gas mistures have been studied, montly inent gases in the pressure range $-0.1-100$ torr. Current ranges in mont studies [eg. 11, 20] have not exceeded $\sim 200 \mathrm{~mA}$ with current densitios usally $<10 \mathrm{~mA} / \mathrm{cm}^{2}$. However more recent invertigations by waders interested in laser applications $[25,5]$ have been for higher currents densities in the range $\sim 10-200 \mathrm{mN} / \mathrm{cm}^{2}$ with water cooled cathodes.

1. 2 Electrical Properties

A distinctive electrical property of the H.C.D. 5000 recognised was the pronounced current enhancement relative so 1 similer plene cathode discharge, with increased current for a given maintenence wolnge and rednced volrge for a given current. Guntherschalze [8], who used a cathode consisting of two perallel weter cooled blocks about 1 cm apert, showed that when both blocks were connected no act as one cathode the desk spece was reduced compered to the case of one cathode sod the depth of dart eppece was essendilly independent of pressere. The curreat for a given volage was incressed by manmount that depended on gas preserra. Listie med Voa Engel [9] obvined stmiler resalks and showed that almont the entre applied voluge fill occurred acroses this nerrow dent spece. Clobotaru [10$]$ showed that the 'amplificaticn fuctor, ia. the ratio of the currenx for a given volinge complered so a plase centoda, was a function of the
 The depeadence oa the prodect of p and a is coulimex with te eimiluatiy princtple brown for plane cathode discharges in which properties depead on the product of preserre and a cherctieriatic Hoeer dimeosion.

The diseribution of currut denity over the inger curfice of herpes with cytindrical HC's has beea investgrad by Lompe, Soeliger and Wolver [11] end also by Howorta
 Curreat (-100 mA) for a anges of gas presaures, at higher curreatl (-250 mA) and
 wothers [12, 13] have foend evideace of matred vatimion of curreax dendily over the cathode surfinee.

moen currox dessity j. The V/f charncterntics beceme progreatively flamer for deoper cathode cavisies undil the voluge is relatively insenditive to chenges in cursens and equal to aboux 200V. Stmiler behaviour has been obeerved by namerous workers og. Dopel [14], Musha [15, 16] and Whise [17], who also noted a 'bump' at low current. Typical madrenance voltages obverved heve been in the range - $50-500 \mathrm{~V}$ depending on the preseure and type of gis and cathode sime. The redrced canhode fall and enhanced current of the H.C.D. relative to a planar discharge have been a subject of considerable discussion by Littie and Von Engel [9], and by Warren [18], and have been atributed to (a) enhmiced electron amission from the cathode aristag from bomberdment by photons and metrstables more effiectively reatined by the concave geometry of the H.CD.
(b) an increased ionization efficiency due to the oncillatory motion of high energy electrons.

1/B.3 Frectron Deaities and Diteributions

The namber deasity and energy distribution of eloctrons within H.C.D.'s have been studied at lower energies by means of small probes, notably by Kagan and different ∞-workers [19-23], and Howoda and Pahl [12], and higher cnergies have been studied by Oldmmovid [24] usiag an clectroutaio malymer. These measprements have been made an crrrean dendries $<\sim 10 \mathrm{~mA} \mathrm{~cm}^{2}$. More recently van Veldhuizen and de Hoos [25] have used Surts bromdening of line profiles recorded with saturnted
 10-100 m mcm^{2}. Kggan er al [20] found electron denstion to be to the range $-1-5 x$ $10^{17} \mathrm{ma}^{3}$, whomitive dimes thoee of the poettive column med meribedly different in energy dieraibetion. The cloctron eaergy disuribution in the poditve colvma was very nemity Maxwellima and perked ax aboun 6 eV . This distriberion may reasonably be secribed an electron temperatire In contrax the olectron eneryy distribution in the K.C.D. is meakedly mon - Minwelisan with a shapp peak a about $\sim 0.5 \mathrm{eV}$ but a greater propartion
 popention haviag neenty the fill cumbode fill carecy. Such a dibaribotion cmanor be necrlbed a unique rempermare sad has boea doccrlbed by Howatal and Pan (12] in

planar cathode negative glow. The difference in eloctron energy distribution compared io the poitive column is seen as a consequence of the proximity of negntive glow to the canhode 10 that electrons emiurd from the cathode are sccelerned by the cathode fill and injected at hich energy into the negative glow region.

Electeron number deasitios reported by van Velathulzea and de Hoog at higher curront deasity $\left(10-100 \mathrm{~mA} / \mathrm{cm}^{2}\right)$ are in the range $\sim 1-9 \times 10^{19} \mathrm{~m}^{3}$.

The radial distribution of electron number denaity in cylindrical H.C.D.'s have been atodied with probes by Howorka and Pahl [12] and Kagan et al [23] and marked veriations in radial electron densiry diseribution with gas pressure have been found. At low pressures the electron density is concentruted tin the ceatre of the cavity, is more miform at intermediate pressure and is concentrated in an annular region near the cathode at high presure. The electron densiry in the cathode dark space remains very low.

Eloctric field strengths within the H.C. glow have been found in probe meaguremenss $[19,12]$ ob be small compered to those in the negative dest apece and rreily exceed $400 \mathrm{~V} / \mathrm{m}$. This indicates that the plesma is near macroncopic neutrolity.

1/BA Ion Dealties and Sputtering

The apocies and energy distribution of ions tmpinging on the cathode have been trvestigued with mass apectrometers for the planer and H.C. discharges, usually for agon carrier gas. For a planer cuthode normal giow diachurge booh \mathbf{A}^{+}and $\mathbf{A}^{\text {th }}$ have been dewected, though prodominanity \mathbf{A}^{+}. The majority of \mathbf{A}^{+}toas had less then half the volmge fill energy though a smill proportion had up to the madmum (eg. Cheodri and Oltphemat [27], and Bodarcalo [29]). Similiar remalse have been oborined by Bodarcaloo tor the abnormal pleaer canthode glow. However Bodercalbo [29] found the energy
 phoner case with a lege proportion of ions with nemity the full fill caeryy. \mathbf{A}^{+}whis sill found to be the dominant ergon ion species.

Howota, Lindinger mad Pahl [30] memerred the number density and radial distribution of argon ions in an HLC.D. a low currens ($-2-4 \mathrm{~mA}$) using a mass epectrometer and obtained demelifez $\sim 2 \times 10^{16} \mathrm{~m}^{3}$ mad detected an manoler radial

Spectul cminion by moms of contode macrial in the negnive glow arives becmase
 The removel of artive momes by bombertmeas by iose and sccelemed noens is krown as spouttering and remalss in significant cathode erosion. The process has boen stodied by Whiner et al $[31,32,35]$ mad others mid soviowed by Gumbersctualise [33], and by

Weston [34]. The spattaring efficiency of ions has been found to rise rapidly above 30 eV and approwches a constint at higher energy $\sim 200 \mathrm{eV}$ (35). The lerge proportion of lons with high energy trilting the cathode in the H.C.D. easures a high epoutering rute.

Outhode aputaring can lead to significant number dessitios of cathode stoms in the H.C.D. which have been measured by de Hoos, McNell, Collins and Persson [5] in a high curreat deasity $\mathrm{Ne}-\mathrm{Cu}$ H.C. inser discharge and found to be $-2 \times 10^{19} \mathrm{~m}^{-3}$ with strons dependence on current.

1/B. 5 Vhas Obearvations

The changes to the radial distribution of electron density are accompanied by changes in visible glow distribution and the intensity of apectral emission. Lompe ex al [11] reported the resalts of detailed visaal observation of a H.C.D. in an inert gas - metal vaporr mixture. They noted outwerd movement of the orange and brick red glow, spreading an higher currents. Mensoremenss of the radinl distribution of intensity of epectal lines were made phorographically by Lompe ef al and showed variations in radial disernbation which depended on the epectral line. Kagan et al [21,22] aleo report similar reaulse and Gill and Webb [30] found comparable behaviour for Zn^{+}emission in laser trvestigntions; recensty Howerd [37] at the Polyechnic carried out a more sysematic investigution consideent with eartier work.

1/C ORIGIN OP THE FORK
Mimba [15] endied the relationsthip between the invensity (I) of some necon lines and discharye curreas (i) for an H.C.L. with a molybdenum cathode coasisting of two peraliel plemes and pobiliched his recults in the form of log - log plote, aspuming in intensity / cument (1) relationentip of the form I \propto P. He obesined very approximately stridet lones of diffiering gredients -1 , some considerably lese thm 1 , but suggested no phyical remosas for a fructional power law relacioneshipe berween innosity and curreat.
(Unilos otherwise saned, ill H.C.L's referred io subrequenty had mild meel cuthodes and were fillod with neon as the cantier gis).

Howerd $(37,38]$ minestgased the I/ relationestlp of selocted Ne I spectril lines

 propoend in a paper by Howned, Fillow, Sroers and Wand [38], deatved from a model in

intermediate state and depopulation of the state by radiation and electron collision. The equation had the form

$$
I=\frac{A^{\prime} i\left(1+B^{\prime} i\right)}{(1+C i)}
$$

where the magnitude of A^{\prime} depended on the rate of single - step excitation and intensity scaling, B^{\prime} depended on the relative importance of two - step compared to single - step excitation and \mathbf{C} the relative importance of depopulation by electron collision and radiation. It was assumed that both electron number density and the density of neon atoms in the intermediate state, were proportional to discharge current.

Howard's results fitted reasonably well to the proposed equation, but the lack of measurements below 3 mA and above 20 mA and limited number of data points, did not allow a rigorous test of the model. Also there was some evidence of self - absorption effects. The nature of the intermediate state in the proposed model was not elucidated.

In the light of this work, a programme of research was undertaken by the author intended to develop the experimental methods and the proposed model. The initial aims of this programme were : -
(i) To investigate the possibility of self - absorption of Ne I spectral lines by recording line profiles.
(ii) To confirm Howard's I/i results for the dempuntable lamp with large cathode and sealed lamps, with a different monochromator and experimental set - up.
(iii) To extend the measurements to allow a more rigorous test of the balance model proposed.
(iv) To investigate how different observable properties of H.C. discharge such as V/i characteristics, I/i curves and spectral line profiles could be related.
In onder to achieve these aims various experimental methods were employed, namely :-
(a) Visual inspection of the H.C. glow.
(b) Photographic reconds of spectra.
(c) Recording of emission spectral line profiles with a pressure scanning FabryPerot interferometer.
(d) Measurement of the $\mathrm{I} / \mathrm{relationship}$ of selected Ne I spectral lines.
(c) Measurement of V / ch characteristics (d) and (e) to be carried out with continuous reconding of results using an X - Y recorder and over a wider range of current values.
In the course of this programme of research, evidence was gathered from the line profile measurements of high population densities of excited atoms in the metrastable state 3s $[3 / 2]_{2}^{p}$, suggesting that this was the intermediate state proposed in the model. The

demountable lamp was modified to allow absorption measurements to be carried out and the number densities of neon atoms in the four excited states of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group, measured for a number of current values and neon pressures.

As a result of these measurements the assumption of proportionality between the number density of the intermediate state(s) and current was found to be incorrect and a new model equation of the $I / 1$ relationship was developed and fitted to the results obtained.

CHAPTER 2

HOLLOW CATHODE LAMP SYSTEM

2/A POWER SUPPLY

A controlled curreat D.C. supply (KSM, HVI 2200) was used to power the H.C.L.'s - Phe 1 shows a diagram of the H.C.L. supply and Vf measuring circuit - The curreat was controlled rather than supply voluge, as the Vfi characteristic of H.C.L.'s are typically very fint and the tamp volage is almot constant for a wide range of lamp current - Rg. wee the VA charracteristic ahown in Fis 25 - The P.S.U. could provide a maximum current of 200 mA and maximum voltage of 1.5 kV . The minimum controlled current that the urit could stably supply was $\sim 0.1 \mathrm{~mA}$ depending on lond conditions. A lond resistance (R_{L}), 10 or $20 \mathrm{lR} \Omega$ depending on maximum current, was included in the circuit to tuprove stability a low currents. The current control knob could be driven by en electric motor fitted by the author to provide a steadily increasing or decreasing current when requitrod.

The cathode was earthed and the anode poteatial measured with a calibrated digital multimeter (Keithley, 169). The lamp current was measured with in Avometer podtioned in the chicuit an neme earth potentinl for renons of safoty, as extreme caution is necesery when dealing with an up to 1.5 kV controiled current source -soe Pig. 1 -. The corrent flowing wo carth through \mathbf{R}_{1} and \mathbf{R}_{2} and the D.M.M., causing a small difference beiween the Avometer reading and the true lamp currenc, was very amall and less than the error in reading the meter.

2/B EXPRRMMENTAL H.C.L. SYSTHM

2B. 1 Outine of Symem

An experimenal H.C.L. symem built by a previous worker in the group C. Howerd [37], which allowed the fill gis prosarase and electrode configuration to be aliered, was developed and modified by the arthor for use in the work. In this H.C.L. syurem, demouneable lemp clectrodes were eaclosed in an experimeneal chamber - see Fis. 5 - which wes compected to a vicuum/gas supply system, 20 that after evicuation the chember could be fillod wth gas so the deaured pressure.

2/B2 Vecurmirivi Gan 8upphy 8yeten.

 whit a liquid nitrogen cold urop (Bdweds, NCT 63) oa the diffusion poup and a

Fig. 2 shows a schematc dingram of the system, and Fig. 3 a deteriled diagram of the high vacuum secrion of the symam with the experimennal chamber and lamp electrodes in
 components were used in the bigh vacuum section of the syatem end 15 mm copper whing with brased jotnts for the low vecume section

A 64mm L.D. 4-way croes (VG, XP 64) formed the math walls of the experimeatel chamber and this was connecied to the ditituion pamp cold trip via a 34mm I.D. 6 -way crose (VG, XXP 38) to which fill ges supply, roughing line ind two pressure grage hoeds were also connected - mee Fig. 3 - . A Ptinui grage (Bdwerde, M9 range $10^{-2} \mathrm{mor}$ - atmoepheric) moniticed the pressure in the low vacurm mection of the symem, an ionization grage (VG, VIO 21 and TCS 6 control panal, range $10^{-11}-10^{-2}$
 D - 10, range 0-10 imer) the preseure of the fill gat. Connections between components in the high vacuman section were of conflat fleage type with copper gerbets (VG), except thove to the Bermoron garge hoed end ens fill supply which were Rloin fingeo type with aluminimm gaskets (Leybold - Herreas, 88151 015). Bellows sealed U.H.V. valves with vion seating (VG, VRD 38A) were reed in the high vecrum section.

FIl gus was supplied trom a gioss boute of reserch grade neon via a glass to metal graded seal and variable leak valve. When the syatem was first built, a neodle valve (Balser, EVN 010 HI) with a vition 'O' ring seal to itmoephere had boen nsod, however this was found to have unsatisfictary vacuem performance and was replecod by the muthor, with an all - meal varimble look valve (VG, MD Q). Maintenance of gas puity in the experimeorel chamber wis asimed with a getter (SAES 171/H1/16-10300) of croonium/aluminam powder sinsered inso one plece around an activation heatar.

In addition to replecement of the needie valve, other molifioninase were made by the author to improve the vecuum performance of the sytuem. Modifications Fide to te symen were: -
(i) Recricatation of vilve T_{7} - see Pis. 3-so that the bellows were not enclomed In the expermental soction when the valve was cloced.
(ii) Improved bake - out heming and the addition of thermocouples in onder to
 baling so that no "cool spos" codstad on which impuritien conld menen
(iii) Replacement of a vion soel betweea the cold trap and pump with an indium whe meal.
(Av) Repiecemont of the needic vilve with the all - meonl variable leak valive as deccribed abova
(v) Changes to vacuum system control circuit to provide improved protection in

the ovent of power fillure.

When the sysuem was firt used by the antior the ohbimate prespre atur babe - out wes $\sim 10^{-7}$ torr, the sealed presure rive rate was $\sim 10^{-7}$ aryte and imparity ellocts were
 modificatione the nitimes preverns was reduced io $<10^{-}$tor and the socited presure rise rate to -10^{-9} torrfs and the impurity elfocts were eliminaved.

2/B. 3 Vacuman Controll Syetern

The vacum control system was confrolled from a centrel pasel cricit wich incorponated a number of sufety fermies - me Fig. 4 for ctrcut dingram -. The control circuit was designed to prowet the syatem agoinst:-
(i) Loss of mains power.
(ii) Return of madns power niter symem shat down - undeatrable becamse of the burat of gas, which occurs when a magnetic atr release valve opens.
(iii) Love of cooling waver for the diffusion pump.
(iv) Overheating of the diffusion pamp.
(v) The low vacuum becidag presarue rising above 10^{-2} tor.

The relay logic ctrenit fichoded a thermal swech to monitor the diffurion pamp mamenture, a weper preseare sutich and a met of contrets in the Ptrani groge costrol panel - See Figen 2 and 4-.

2/B. 4 Lenk teeting

Leak vexting wes carriod out wo check the overall U.H.V. seel of the system io stroophere and was visilly nocesary when the seal of the aluminium gastor Kein flange connecting the Beration gange heed to the 6- way croes fribed during cooling after babe - out - wee Fig. 3 - This type of flenge was found to be prope to frilure if not cooled very slowiy and care was subrequently tiken wo ename very slow coolthg of the overill system and IJlein flanges in particular, atter babe - out.

Probe gas leat resting was employed [39]. Probe ges from a regulaed supply was allowed to eacape through a tine drawn gimes nocrie and the jet procuced, moved slowiy over the vicinity of suspected leates, while the iontation gruse reading was monitored and the chamber pormped. When the jet covered a loek, probe gus envered the sytsem and was regiocesed on the ionisation guage by citber ma becrease or decrease in reating depeoding on the probe ges riod. Two probe gaser wese tried, butane and bellium, the former registering as an increase in tonisation garge reading and the lutter as a decreaso. The iondenion gange was found to be leses senstive io holinon, bet helium was prefecced lon grounds of safery as it is not inflemmabia.

FIG. 3 UH.V. SECTION OF VACUUM SYSTEM

2/B.5 Deparing of U.FI.V. Section of the 85verim

The U.I.V. section of the aystem meeded to bo babed excenstvely while pomplan in order to degas the gymem before fill gas was introdeced. To do this the expertmenese chamber could be cacioned in man oven and other parts bemed with electical upo. Whea firs eacoumered, the lowest ultione preseare, ater belting, achiovable wes $\sim 2 \times 10^{-7}$ rorr alchough the diffusion pormp was rated as achioving $<2 \times 10^{-6} \mathrm{mor}[40]$, furthermore impurity effictst in lnop emineion were devected - see $2 / B .6$ and $6 / C$ - It was realized that the beuting amangements of the perts of the syatem ouscide the oven were inadequate.

Mave henting tape and cond (Electrothermal) were added and curefully wrapped eround ill the perts of the U.H.V. section of the symem not within the oven. The oven beaser and individual heaing upes and conds were provided with sepermo varible power supplies and themocouples pleced on sll crtical composents. Chromel - alumel thermocouples were ased and themo - am.f.'s measpred with a digital muldimeter (D.M.M.) 10 wishin $\pm 0.1 \mathrm{mV}$, allowing temperature to be determined to within $\pm 25^{\circ} \mathrm{C}$. The thermocouples were insolaved electrically from the metal of the system with thin mica shoess and good thermal contact was ensured with zinc oodide grease. Tempernere limited coruponeats were the Beratron garee head, bekeable to $150^{\circ} \mathrm{C}$ (with lead removed), and the vtron seading U.H.V. valves bebeable to $140^{\circ} \mathrm{C}$. The needie valve initially used was only bateeble wo $120^{\circ} \mathrm{C}$ but the all metal, variable loak valve used subrequendy was beleable so $200{ }^{\circ} \mathrm{C}$.

These chagges to the babe - our heating and the introdection of temperituse monitoring on limbed componenter, allowved the whole U.H.V. section of the system to be uniformly hemed so $140^{\circ} \mathrm{C}$. A bebeable lead was made for the ionizution garge beed wo sllow the high vacuum preserre to be monitored during belding of the syytem.

The fict that the liquid nitrogeo cold trap on the diffusion pamp noeded refiling a leats overy 12 bours, proved incoaveniest during beling, which required sovenl days if the system had been returned to atmoepheric preseara. Dry nitrogeo was usod linseed of str to fill the symem when bringing it up to atmongheric pressure to order 10 reduce contrminastion.

The gever was sctivated as $900^{\circ} \mathrm{C}$ for 10 min , by supplying curreat 10 its inemal heater, while cooling of the symem after bube - out. The gever we repinced atter ubout 8 setivations.

2/B. 6 Impurity Products of Outgensha

 devesped in in eminion spectra of the expedmeneil hup by the anthor. Theco lupudites wee the prodects of outyontas, identifed from thetr apectre as princtponly $C 0$ mad to a

mach leacer extera OH and H [41]. Spectus of the lamp emission under impure gas conditiona, photogriphed with medifum quartz end ginse spectrogrephs (filger), - see Fig. 32 - excibitit prominent moleculer bends due to OO and $\mathrm{CO}^{+}[41]$. The modifications to the vacuan symem carried out by the aushor removed these impurity effiects.

2/B.7 Vacmum Performance

The rotiry pancp earily manintined the low vacuum becking pressure below 10^{-2} sorr, as required for the diftrusion pamp, but the loweat ultimate pressure of U.H.V. section achievable with the aywem as indisilly built was only -10^{-7} ror. The diffusion pump was quoted by the menafincturer [40) as betng capable of 2×10^{-5} wor with a vion seal between cold trup and pump and 2×10^{9} rorr with an indium wire seal. The pamp sif epeed was quoved as $90 \mathrm{l} / \mathrm{s}$ when used with the liquid nitrogen cold trup.

The reorientution of vive T_{7} and inppoved system bake - out as described above, reduced the ultimate presures atter bable - out 102.5×10^{8} torr. The change from viton seel to indium whe soell between cold trap and diffruion purup, at first only reduced the ulfimate prevare to 1.5×10^{8} tor but ather replacement of the needie valve with the all - meenl variable lonk valve - soe Fis 3 - the lowest uldimate pressure achieved was $\sim 2 \times 10^{-9}$ wrir. The senled preserre rise rave was alep reduced by two docendes from 10^{-7} so 10^{-9} wack and with U.H.V. $<10^{-8} \mathrm{morr}$, between lamp refills with neon, routhely obsimate, all impurity effictus in thop emiscion were eliminated.

2/8.8 Expritanmial Lamp

2/8.8 (a) Ontine
Two configurions of experimental H.C.L. were studied and will be referred to as configurntions A and B - diagrams shown in Figa. 5 and 6 respectively -. In both configurutions a cyitiditical mild steel hollow cathode of 15 mm bore and 50 mm deep wis mod, mounsed in 14 - way cross experimensal chember. The cathode and expecturenal chember wills were connected and moinstatred at earth potential and hamp
 stiolding was necememy to provent erny discharges between the anode and the cathode
 Cubtodean Led. before monatios the the chamber in arder to remove aboorbed gas. All
 holes. Lemp configuration A, the first suctiod ta the wock, was deeigned by Howard [37] for emiselon mousurements oaly, configurndion B wes designed by the author to allow abecrption meamerneats to be carded ous as woll.

FIG. 6 EXPERIMENTAL HCL. IN CONFIGURATION B

2/8.8 (b) Lamp configuration A.
In lamp configuration A - see Fis. 5 - the hollow cathode, closed at one end, whs mounted hocironmilly, supported at the cloned end by a suel rod which screwed into the centre of a plain flange covering one side port of the chamber 4-why crose. This flange also admitted the eloctrial supply for anode and petuer via cermonic insulated foedthroughs in the flange. The light weight anode was supported by a thin strinless stoel rod, shielded with gass tube, joined directly to one of the electrical feedithroughs in the flange. The anode ring was conxinl with the cylindrical hollow cathode and reparased from it by $\sim 5 \mathrm{~mm}$. A 63 mm diemeter querty viewport, connected to the opposite side port of the 4 -way croes allowed light emitted by the hollow cathode glow and having passed through the anode ring, to leave the chamber. An onter glase sleeve and annular mica disce prevented atray dircharges between anode and chamber walls; the other surface of the hollow cathode was glass shielded.

2/B.8 (c) Lamp configuration B

In lamp configuration B - see Fig. 6 - the bollow cathode, this time open at both ends, was mounted horizontally supported by three steel rods cumected to a non standerd flange (made to order by VG) on the chamber side port. The lamp configuration and flenge were designed so that the flange could:-
(i) Support the cathode mounting.
(ii) Admit eloctrical supply separately to two anodes, one at either end of the hollow cathode.
(iii) Allow a beem of light to enter the experimental chember through a 19 mm quartz viewport mounted on the ceatral axis of the flange, pess trrough the open ended hollow cathode and out of the main viewport, for abmorption measurements.
(iv) Allow an H.C. . with variable bollow cathode depth to be stuxied by replacting the 19 mm viewport with a linear motion feedtrough joined io a clearance fil disc "plunger" in the cathode cyilinder.
Electrical supply to the getter was via a feedhrough in the flange covering the wop port of the chamber.

The electrode structure and mounting were built in the Polytechnic physics workshop. In this structure the three stocl rods screwed into an annulus which supported the cathode from a shoulder on the cathode cylinder midway between the ends. This arrangement allowed the cathode to be changed without afficeting the rest of the structure. The anode rings at each end of the cathode were joined with short lengths of plaxtuum Whe to thin stoel rods compected to the electrical feeditroughs to the aupport finge

An outer ginst sleeve and gleas ehielding on the cathode structure and inouming

Was used to prevent stray dischrrges and a thin mica disc with holes for mounting rods shieldod the support flarge. A mica sheet only covering the anmilar, vertical flange surface was not found to be adequate, as the stainless steel tube supporting the 19 mm socond viewport tended to act as an extension of the hollow cathode and contrin cathode sjow if not shiclded. A very thin, uniform shect of mica was nsed so that the probe beam of light, which hed to pass throagh it, suffiered little attennation.

2K STALED HLCL.'s

Two sealed H.CL's (Cathodeon, 3QNY/Re), of the type manofictured for use in commercial anomic abeorption spectrometers, were studied. The two similar lample, coded C12 and 22639 by the mannficturer, were filled with neon at different pressures. C12 at 10 ± 1 rorr and 22639 at 15 ± 1 mar. Both had cylindrical mild steel hollow cathodes of 3 mm bore and 10 mm depth, however the anodes differed; 22639 had a ring anode coaxial with the cathorle and C12 an anode which was a curved rectengular plate. The anode connections were shielded with cermomic and amuler mica sheess prevented surny discharge to the cambode exterior.

CHAPTES 3
EAPYRNMENTAL METEODS

3/A OUTLINE OF EXPRRNIBNTAL MIETEODS
Spectral sources were sudied with a number of experimental methods.
(i) Pbowomeric

Phowometric surdy of H.C.L. Ne I spectul lines, to which the greater pert of the work was devoced. Emission and abeorption meagrements were made in experiments of four types.
Emistion -
(a) Pabry - Perof incerferometer scans of epoctral lines.
(b) Measurement of the variation of spectral line intensity with lamp current (I/i measarements).
Absorption
(c) Pabry - Perot inerferometer scans of probe beam spectral line profiles.
(d) Measurement of tool traspuited intensity of epectul lines of the probe beam.
(ii) Elocruical

Reconding of V/A chancteristics.
(iii) Spectrograptic

Phoworaphic reconding of emission spectra with prism
spectrograph to identify gavecne impurities (see 2/B.6)
(iv) Visual

Vispal inspection of discharge glow both directly and through
direct vision spectroscope.

3/B PROTONETRIC MRASURENENTS
 (GENERAL DESCRIPTION)

3/B. 1 Introduction

In all the photometric experiments the seme monoctromaor and photorminfipliex ube (P.M.T.) were used to isolese and detect spectral lines and oprical beach used to support conponents, additional smilier apical henches betas used, as necersury in each experimenial arrangement. Resolts of experiments were recondod on an $\mathbf{X}-\mathbf{Y}$ chart recorder, with the P.MT. output controlling the Y - deffection of the recorder and either inerferomerer honsing preegre or lamp curent controllitg the X - defiection.

3/B. 2 The Monochromator
The monochromavor used to isolate spectral lines for study was a concave grating spectrometer with Eagle mounting and in - plane configuration, buils previously in the Polytechnic - wee Fig. 7 -. The 1 m radius grating was ruled with 600 linesform over an area $90 \mathrm{~mm} \times 50 \mathrm{~mm}$ and blarod for use in firat order. The P.M.T. mounted in a bousing behind the exir slit could be changed and a tube of muitable apectral reaponse chosen. The night angled priem was made of high quality fused silica to ensure the monochromator could be used in the ultraviolet spectral region. With a critical slit width of $15 \mu \mathrm{~m}$ the wavelength passband was $\sim 0.05 \mathrm{~nm}$, however except in those cases in which close lying spectral lines cocurred, a slit width of $50 \mu \mathrm{~m}$ with passband $\sim 0.15 \mathrm{~nm}$ was used, as this provided sufficient wavelength isolation and allowed greater light transmission.

The grating tuble was froe to rovase about a vertical axis (AX) -see Fig. 8 - for waveleagth selection and to travel on a track towards and away from the exit slit for focussing. Theae motions were controlled via mechanical linkages, and care was necessary to avoid "backlash". Focussing was controlled manually and uble rotation driven electrically or set by hand. The roterion setting and focus setting indicasod by counter and wheel markings, were wavelength calibrated with a set of Phillips hmps of different elements ($\mathrm{Hs}, \mathrm{Zn}, \mathrm{Cd}$, and Ne). The correct focus was obrained by repeated rescamning of chosen spectral lines and the beas focus setting was that which gave maximum peak beight on a chart recorder.

The monochrounaur anquired modification and adjustment when first encountered. These were gready fucilitited by the employment of a low power He - Ne laser io define the optical axis, as the narrow high intensity beam was easy to follow through the instrument. The monochromator had trree principal faults which required rectification:
(i) The right - angled prisem was woo small, so the eratiag could not be folly illuminated (a smaller grating had bocan repleced previously). This reduced the light trough - put and preverted the full resolving power beting realisod.
(ii) As the grating was rocused the point at which Hight fell on the exit alit moved up ar down.
(iii) Light leatege from outelide the monochromator and stray light within it, were unscoeprably hish.
The exiatias prisen was repleced with a larger one (Spectrouil) of eatrance fice $25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm}$, wich trumemitued about two and a half umes as moch lifht and allowed the full maber of groving lines 10 be illuminated. A new prisem mounthy whs dedged by the wathor and bult in the Physics wortachop. The monnting was dedgaed for moximum ease of aljosument combined with rigid poittive location.

Cureful obvervidion of the path of a liser boem through the instrument showod that the movemeat of the opical axis reledve to the ecti alt was cansed by metecienanion of the grating on the groing rable-me Fig. 8-. The grouing fice was not normel to the graing tuble and the ralinga were skew to the aris of tuble rotation AX. Mevel shlmen, choven by trinl and enor, placed under one edge of the grating holling before in was clamped to the tuble, corrected the till of the grating fince and rowtion of the gratug th the plane of the holder cocrected the scew error of the rulinge. With these edjustenents made the opsical adis remained at the centre of the exis stit as the able was rotuod.

The monoctrommor box and join to the PM.T. housing were Hght sealed with matt blect tupe and cloth, and internal stray lighs reduced by suimbly poitioned matt black baffles. With these molificmions the intrument functioned satisfactorily as a epectral line isolmor.

3/B. 3 Photodetector and Recoriling Syuterm

Spectral lines suctiod lay in the waveleagth range $330-750 \mathrm{~mm}$. The photomultipler tube chosen ($\mathbf{1 D} 1 \mathrm{I}, 95588$) had peak quantum efficiency of -20% at 400 mon falling to $15 \% \approx 330 \mathrm{~mm}$ and $\sim 2 \%$ an 750 nm [42], and allowed the full wavelength range of interest to be studied. The P.M.T. was powered by a steblised high voluge D.C. supply, (Thom - EMI, PMD8B) and tube potential monitored with a calibrated digital moldimeer. Tube volts used were in the rage $-300-1100 \mathrm{~V}$.

The PM.T. output signal curreat peacing through a high resistuce (R) developed a potentinl difference which, when amplifiod, controlled the Y - deflection of a RIKADENKI model BN-133A X - Y chert reconder. The X - deflection of the recorder was controlled by H.CL. current (1) when mating I/ measurments and the Fabry Perot inceferometer howsing pressure when recording epectral line profiles.

Two different systems were used to amplify the P.M.T. signal - see Figa. 10 mod 11-. When recording the profiles of spectral lines emitred by lempes and the varimion of spectral line intensities with discharge conditions, a D.C. coupled vive amplifier was used - see Pif. 10 -. The amplifier which had bocn buile previously in the Physics lebormory specifically for phovometric work, incorporned a choice of 6 vilues of R (1 io $110 \mathrm{M} \Omega$), in parallel with a choice of 7 valves of smoothing capacitor $C(-0$. 0.01 to $0.5 \mu \mathrm{~F})$. The value of R relected determined the amplifier $\mathrm{p}^{\mathrm{a}} \mathrm{in}$. The choice of values of C and R, which fixed the thene constant RC, depended on the sigmal to nolse ratio encountered.

The second amplifier system - Fig 11 - was nsed when maling abeorption measurements of excised anom number deneidies in HC. discharyes. In order to diaccriminate between the inconity of the probe beann and the light emined by the discharge ireelf, the probe beam we motulated at 33.33 Fiz by a routing mechenical

FIg. 10 fabry-PEROT SYSTEM USED TO RECORD EMISSION LINE PROFILES

chopper, and a phase rensidive amplifier (Brookdenl, 401) used in place of the D.C. coupled vilve amplifier. The chopper aloo internupred lighe falling on a photodiode illuminated by a small light bulb, providing a reference dignal to the phase sensdive empHifier which ooly amplified that component of the P.M.T. signal which had a fixed phase relative to the reference signal. The phase angle could be varied with a concrol on the amplifier. Resistor R was external to the amplifier and value fixed at $2 \mathrm{M} \Omega$, and gain was varied by turning the seasidivity control. The time constant was also controlled at the amplifier with no capecitor in perallel with resistor R. Both amplifiers used were subject to baseline drit and provided balance controle to adjust baseline offiet.

By verying the P.M.T. porential V and amplifice gain, a suitable output level could be obcained for a whde range of intensitics. The veriation of P.M.T. reapoase wth tube potential V was measured in a series of steps. Sturting with a high light flux and low tube porential, the light invensity was reduced until the signal level was halved, then \mathbf{V} increased unil the output was restored to the original level. By repeating this process the full range of the P.M.T. could be covered. A loylog plot of the reeponse curve is shown in Fig. 12, which is well represeated, within experimental error, by a straight line of gradient ~ 9.5, which indicated that the reeponse was proportional io $\mathrm{V}^{=}$with $\mathrm{n} \sim 9.5$.
This is typical of P.M.T.'s, with the value of a increasing with the number of dynodes. The 9558B has eleven dynodes.

3/B. 4 Bavic Arrangement of Optical Syetem
Seting up of the optical system was facilitated by the use of a low power He - Ne laser to define the opetcal axis. The monochromator and 1.5 m main opticul bench (P.T.I.) were supported by separaxe heavy oak tables reasing on a concrete floor and after initial setting - p of the beach, remained in the same position throughout the photometric experiments.

Plecing surinble shtms under it the 1.5 m optical boach was made parallel to the optical axis defined by the laser beam, to within 1 mm in its entire leagth. Components, supported by bench saddles, were positioned with their centres on the optical axis and orientaved normal to the axis by ensuring that light from the laser reflected at component faces, returned down the axis.

Leas L_{1} and L_{2}, and pinhole aperture A_{2} - see Fig. 10 - remained th the same position on the mata optical bench, in the different arrangements used in the photometric experiments. L_{1} and L_{2} were identical plano-conver, fused stica lens, of 350 mm focal lengen and 45 mm diameter. The two lemere, convex surfices facing each other, were 0.6 m apert with pinhole aperture A_{2} at the focal point of I_{1} and L_{2} with tes focal polnt an the centre of the monochrommor entrance slit.

FIG. 12 LOG PLOT OF PMT RESPONSE/POTENTIAL

An tmage of the light source to be analyred was formed on the pinhole aperture A_{2} which acted as a neme point source at the focal point of lens L_{2}. Rays pasing through aperture A_{2} and insercepted by leas L_{2}, travellod parallel to the optical ads betweea L_{2} and L_{1} and were converged io in tmage at the centre of the monochromator catronce slit. An iris aperture A_{1} between L_{1} and L_{2} limbed the dismeter of the paraliel beam between the lenses.

The inverferometer housing, comadoing the Febry - Perot etalon, wis placed beiween L_{1} and L_{2} for inverterometric experimense and removed when nor requited. Filters, when used, were also postioned between L_{1} and L_{2}.

3/B. 5 Proware Scanaing Fabry - Perot Interferometer

3/B.5 (a) The Interferometer

A pressure scanning Pubry - Perot inverferometer developed by a previous wodker in the group A.Reed [43] was adepted to record Ne I spectell line profiles in this work A schematic diagrum of the interferometer aystem need is shown in Fis. 10. The Fabry Perot ctelon (constructed at Pye Unicam Cmobridge) was mounsed in an itr ifigis housing, the thternal pressure of which could be nised by allowing utrogen from a regulated high pressure cyltuder to enter the housing and reduced again coarcollably by allowing the gas to eacape to ntroophere inrongh a needic valva. The prespure within the housing whe sensed by a Schaevitz P744-002 presaure trensducer, the ouput of which controlled the X - deflection of an X - Y chart rocorder vin an offect amplifier. The offer emplifier soblerected that porion of the trinaducer output cocrespoeding io atmoerpheric pressure. The Y - deflection of the X . Y reconder was controlled by the amplified P.M.T. output. By raising the preserre in the housing by about one atmoophere and then allowing is to fill, the refrective index of the gres between the enion plases could be varied and the ctalon pasmbend be made to scan a apectul line isolved by the unonechnomener and the line profile ploced on the X - Y recorder. Direar reoording of the housing prespure removed the need for an mccurnisly controllod rute of change of pressure. A slow rate of change of presure was necessery to ensure equal temperiture and pressure in all points within the extion bousing end to prevent poadbio scaming caror doe wo the X - Y recarder reeponse time and the P.M.T. amplifer thme constunt. Typical apectenl line scans took soveral minuties, and slower scemonag rues were necessary with wenk spectral Hines requiring long P.M.T. time conatents to smooth signal nolve.

The cenlon, plates supporved by a seed sloeve, were presed wogecter agninat a

quate epmeer by two sets of three ball bearings, ane set fixed, the other forced inwerds via lever anns by three loef epetings. The tension in the leaf eppings could be adjusted from overide the presure housing in wheh the ceplon wes momed. By virying the tension in the leaf epringe the degree of purllelisen of the coned faces of the plates conid be adjasted. The etaico housters wes expported on the 1.5 m optical bench by a mounting on two bench saddes which pouvded positive location but allowed the orientation and poition of the etalon to be alhered.

The place, of quored fintoest $\lambda 150$, hed a molrilayer coming of dimener 35 mm with a peak reiecutvily of 93% at 700 nm with 140 mm bandwidth [43]. The piries were of average thictoness 10 mm with oppocite froes sifigtly aperallel to eneure thet unwaried lifing reflected at the uncound fices "wnlised of" the oplical suis. The quarte pate spacer used mest 6 mm thick corresponding to a free epectill range of $83.3 \mathrm{~m}^{-1}$.

3/B. 5 (b) Adjuctanent and Finene
The ceatres of the optical components were aligned on the optical axis defined by the laver bean and ocieatited so that the tinages of aperture A_{2}, formed on the beck of the aperture diapham becanse of reflection, wexe colncideat with the eperture and heace the component gurfices were normal to the adis.

The Pabry - Perct interferometer inserument furction and its width (nsonilly expressed in terms of finesse $P=A \sigma$) ere perticularty sensitive to ences in the arientesion and parallelism of the ctalon. The acientation of the etalon obtained with the sbove method served as a first approximation before further optimisation. Initial etalon parallelism before optimisation wes obentned by removing lens L_{1}, replacing eperture A_{2} whin Hg single inolope lamp and viewing the checular tureference fringes produced by the eplion. The porition of the oberver's eye was moved over the mance of the craion and the reation in the leaf eprings edfusted undil the diameser of the finge cincles remined conerers independert of eye position.

The mothods of optimisation employed werce-
The peofle of a spectral line excribiting isoope or hypernme eptinting (Bs. Hs 546.1 nm or $\mathrm{L} \mathbf{6 7 0 . 8} \mathrm{rm}$) was reconded repenaely and evion orienation and

A mode - tublized He - Ne lave obtainul malipocily trom the Nintional Phylical Laboracry was ned as a source of neer ideally monochummic light, allowing the instrument fenction of the interficrometer at a wavelength of 632.8 nm to be recorded. The lacer been wes difineed with a ground gians screea and the High focrmed on eperture A_{2}, entring that the fill exion are

whe illuminited. The laser emindion provile wast repensedly recouded and celon ocicatation and parallolism adoused for mintmane widh and madonen peak heifin of the profile.
With this lateor optimismion rechnique a finesse of >35 could be obentned atter very careful adjastment however doe to thenited dime for adfasemens and teroperature drit of ecolon perallelism, routinely mensurements were made with a finesse of ~ 30 (aperture A_{2} dimeter of 1.1 mm and A_{1} dimeter of 30 mm$)$. The instrument function and finesse, and their dependence on inerferometer permeters are discusted fully in Chapter 5.

3/C FROTOMIETRIC MBASUREMTENTS (PABTICULAR EXPRRMMENT DETAILS)

3/C1 Emimeion Experimente
3/C. 1 (a) Interforometer Scan of Eminaion Line Pronilees
The optical sysuems in the different photometric experimens inchoded the same P.M.T., monochromator and arrangement of lens L_{1} and L_{2} and aperture A_{2}. The systems differed in whether the interferometer housing was in position bevween L_{1} and L_{2}, for scanning spectral hines or not, and the systems used to form the image of the analytical source.

The sytuom used for interferometric recording of the profile of spectral lines emitred by the expertmentil H.CL. in configuration A is shown in Fis. 10. The imege of the cathode glow, reduced by magnification of $1 / 2$, formed at pinhole aperture A_{2} was produced by a bi - convex fused silica lens L_{3} via two plane minars M_{1} and M_{2} arranged as a periscope. By adjusting the orientation of mitror M_{1}, the position of the cathode image could be varied in onder to isolve Hight from ditierent regions of the glow.

When smaller, sealed lamps were analyed plase 瞄rors M_{1} and M_{2} were not used. The image of the cource was formed drectly with megnification of 1 by a shorter foral length condenger lemt The arrangement was the ame as that shown in Fic. 9 for I/ measurements but with the invenferometur housing in plaoe betwoon $I_{1} \operatorname{sod} I_{2}$.

3/C. 1 (b) If Mcasurements

The sytrem used wo mearure the variation of emission, spectenl the inveadity whth bup current, was similer to that wed for Pabry - Perot scens of emiacion lines but with the emann preapre housing removed and limp cureat controllting the X - deflection of
the X - Y recorder, instead of etulon houstos pressurce As in the case of the Fabry perot scans silighily differsut opical ammerecments were need for mesourements on sealod remps and the experimeatal lamp. A diagram of the symem used for sealed laxpe is shown in Fig. 9, a ecperase dingram of the arrangement used for the experimental lamp is not provided, as the pedicope arrangement whs the same as that shown in Fis. 10 for Pabry - Perot scans.

Once the monoctromator had been set wo isolate the spectral line of intereat und suituble grin and ume consmant choven, the hmp curren was alowly ramped and a curve of spectral intensity aginst happ current plowed by the X. Y reconder. Curreats were in the range $\sim 0-20 \mathrm{~mA}$ and $\sim 0-50 \mathrm{~mA}$ for wealed lampe and expertmental lamp respectively, and were numped in both increasing and decreasing current directions. Mensurements could not be made from true zero current but from a small minfmam curremt, that the controlled current P.S.U. could stably supply. This minimum curreat, indicated above by ~ 0, was in fact $\sim 0.1 \mathrm{~mA}$ depending on lond conditions, and is discussed further in section 2/A on the lemp power supply.

Typical signal so noise ratios were mose fivourable than thone encurntered during Fabry - Peror scans, as, at high resolution only a very limited wavelength region is desected as any one time.

3/C. 2 Abeorption Experiments
 3/C.2 (a) Abeorptioa Mamarmenta by Fabry - Perot Scam of Probe Beam Spectral Lhe Profiaes

A diagram of the sysuem is shown in Fig. 11; the experimental lamp, in configuration B, had an open - coded hollow cathode moumted in a chamber between two viewports, which allowed a peobe beam to pass axillly through the H.C. discharge. The experimental lemp is deacribed fully in $2 / B .8$ and a diagram of lemp configuntion B shown in Pig. 6.

A neon, microwave excited, eloctrodeless discharge lamp (B.D.L.) was used as the source of the probe beam. This type of primary source was chosen sa it was the moat invense neon source available and hish primary source intensity was importand bectuse of the low level of P.M.T. signal in these experiments. This was becmuse only a small fraction of the totel source emission passed through the optical system dre to tes emill solid angle and bectanse of the high resolution of the Fabry - Peror interferometer only a small wavelength range was detected by the PM.T. The RD.L. condised of a fuscod silica covelopen contrining meon it ~ 1 torr, ose end of which was imserted in an Evenson type microwave caviry, which had been dexigned at the Polytechnic (ENSS, 215L). The tuable cavty was water cooled and driven by a 245 GHz microw we genernotor (EMSS, MICROTRON 200 ME 2), via a reflectod power meter und couvial

cable interconnectione. After intimion of the diacharge with a Teala coil, the microwave exative RD.L. Wes rua for m loent half an hour before use, to allow conditions to sublitise. Microw we gencrmor power we set at 50 W and the cavity mang screws edjosed for minimem reflocted power ($\sim 13 \mathrm{~W}$).

In the opticel arragement ued - see Fis 11 -, snimage of the B.D.L. was formed by lens L_{5} on phabole aperture A_{4}, which was at the focal point of lens L_{4}. The paralled probe beam so prodeced, reflected by plane miriors $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} pasced axially through the expermental bollow cathode discharge to be converged to sa image on pinhole aperture A_{2}. Probe bemon width was controlled by iris apertures A_{3} and A_{4}.

The Fabry - Perot syatem was the same as that nsed for emission line profile mesourements, except that the P.M.T. output was amplified by a phase sensitive amplifier instead of a D.C. coupled emplifier - soe 3/B. 3 for further detrils - The probe beem wes modulated at 33.33 Hz by a routing "chopper" which also interrupted lighe illmminating a phondiode providing a reference signal for the phase sensitive amplifier (P.S.A). The P.S.A. only amplified that purt of the P.M.T. output signal chenging with fired phase relative to the probe beam, heace the sendy experimental H.C.L. emission was not amplifiod and colly the probe beam spectul line profies reconded. A modulating frequency of 33.33 Hz was neod, to avoid spurions amplification of the 50 Hz mains frequency or ths hermoaice.

Spectral lines ceminanting in the Ne I levels of interest were chowen and the profles of these spectual lines of the probe beam were recorded, initially with the experimental hrop off, then with the discharge running.

In this way the source spectral line profilet, with no abmarption by the HLC. discharge, could be compered with the profile of these spectral lines after pasage of the same source emision through the H.C. discharge, 80 that the abeorption coefficients could be calculmed and heace the number density of the Ne I lower levels deduced. Dearils of the theory and method of the amilysis are deacribed in section 6/A . Absorpion measmemeats were carried out at 1,2 and 5 worr H.C.L. fill gas pressures and lemp curcens of $1,2,5,10,20$ and 50 mA .

The probe beam fillod the fall dimeter of the hollow castode so that average
 scmaning a nenow probe beam were not found posible as the small apertres required,

 carried out ind are descibed in the rext subeection.

A measuremens "rua" on a number of spectral lines was preceded and followed by a reconding of the inveferometer instrument function (L.F.), by scanning Ne I 632.8 am

Inter emistion - see 3/B.S (b) - to devect any veriation. This was done as the calculation of abecting arom number domity required that the LP. be known so that epectul hoes, corrected for the effect of the interferomever, could be syntheised.

Measuremons for a given spectell Hine and H.C.L. Ill ges pressure sarted with a recording of the probe beam spectral profile with the H.C.L. switched - off. Then with the lamp running at current values of $0.6,1.0,2.0,5.0,10.0,20.0$ and 50.0 mA then decreasing through the same current values and finally with the H.C.L swiched - off agnin. In this way reproducability of the revents could be chocised, and any showing excessive drit repensed. Usually the proflles were reproducable within a few percent.

Intermituent pulves of external imerference bedily dopraded some profile measurements which had to be repeated with extra scans. The phase sensitive amplifier system, nsed in the Fabry - Perot abecrption experiments, was found to be moch mare susceppible to this type of interference than the D.C. Coupled suphifier system nsed in the I/ measurements. The inerference coold not be eliminated with stmple mains filters and considerable time was wasted with the extra measurements.

3/C. 2 (b) Mesurements of Total Tranaritted Intenaity of Probe Beam

 Spectral LineIn order to measure the toval epectral line intendty transmitsed by the H.C.L. the system deacribed above for Pabry - Perot scanning aboorption measurements - see Fis. 11 - was modified. The exilon preseure housing was removed and H.C.L. lamp current controlled the \mathbf{X} - deflection of the \mathbf{X} - \mathbf{Y} recorder insteed of evion housing preserre. The intensity of the epectral line ivolned by the monochromitor was recorded with the H.C.L. swtucted off, then the lamp was swibched on and the lamp current rapped slowly trom ~ 0 to 50 mA in the same why that H.C.I. IA emision measurements were made - see 3/C. 1 (b) -

Measurements were made with a probe beem which filly filled the H.C. dimmoter for cocmparison with reeulse from the Fabry - Perce scanning abeorption experiments deacribed in the previous subection (3/C2 (a)) and with a narrow probe beam for spatially resolved meamrements of abocrption. Spatilly resolved measurements of totel epectral abeorption were poesible, whereas spatial resolution could not be achioved in Fabry - Perot scanning abeorption moasurements, becanse, as the sotal inecasity of a epectrll line was detected, tasead of the natiow wavelength range tranmimed by the cevion, the P.M.T. signal lovel was mech greater withort the eilon. Consequencty simal to noler raios were much more favourable whon the intin difeperion of the crion and allowed measuremeats to be made whth the emall apertures necesary to produce a

used for aperture A_{5} to enaure a high degree of probe beam paralleltem and ints aperture A_{4} (3 mm diameter) Hmented beam vidith - ges Fig. 11.

The total abenption enperiments vere ceried out when fitie thene remelned of the period alloured for expertmentil wort, consequenty measurements ware restricted to Ne I 640.2 mm from the number of spectral lines studied in the scenning sbarption experimeats. Furithermore an error was meda in the design of the epatially resolved aheopption experimente and by the time the error was recognised the measurements could not be repeated with the error in experimental method courected.

When measuing the spatial variation of coell abworption acrose a dimmeter of the hollow cathode, either the probe beam or the cathode can in principal be moved. The anthor chove to move the probe bean becanse the experimental sumangment could be set up mare quicidy for stuctural reasons. In the experimental method nsed, aperture A was placed at different positions acrose the full probe berm width to coafine the beam to different regions of H.C. diow.

It would have been mach bester to move the cathode and beep aperture A fixed. and so keep constant the angles at which rays of the probe beam pasued through the optical symeon. The hervy axperimental happ apperates conid have been jecised up and down or traversed laterally on a sturdy carriage. Scheonaic ray diagrams which illustrate the problem with the method used axe shown in Fig. 13, the idealiped case of parille rays, parallal to the cathode adis is shown in Fig. 13 (a). Although different rays (1 to 5 in diagran) tire diffiexent pathe throngh the subrequent opics, this may be corrected for by adjusing the PM.T. potential so them the deflection on the X - Y recorder, with the H.C.L. switched off, was the same for each position of aperture A. . However, if one includes a degree of beem divergeace (whith solid angle determined by the focil length of L_{4} and dimeter of aperture \mathbf{A}_{5}) and aparalleliem of jrobe bean and cathode adis dne to seting - up crror, the problem is apperent - ase Fis 13 (b) -. Pencils of reys icolened by A_{4} in different positions of plane XX' do not take stomilar, perallel pathe through the H.C. producing asymonetric resols

Fig. 13 (c) shows the situation if the cathode is traversed laterally relative to a single nerrow peacil of rays. The effect of beam divergence will be smill, and asuanoing the cathode travel is accurate, ray pathe relative to the canhode will be stricily self paralled.

With the method used, the mymmetry of ray pathe made it diticontt to analyse the remits and dednce informetion about the rafin variaion of the denalify of the mexable excited atoms.

(a) Ideal case-no probe beam divergence or aparallelism of probe beam and hollow cathode axis

(b) Situation with probe beam divergence and aparallelism of beam and cathode axis

(c) Positions of ray 3 relative to cathode as the cathode is traversed- same aparallelism of beam and cathode axis as (b)

FIG. 13 EXAGGERATED SCHEMATIC DIAGRAMS OF RAY PATHS THROUGH HOLLOW CATHODE

3/D RECORDING OF VA CHARACTEPISTICS

V/i characteristice of the HLCL's were recorded for the following reasons:-
(a) at low currenss there are changes in the $I /$ curves red other obverved peramesers; there were linlod changes in V/ chacucteristics.
(b) the Vficharncteristic is senstitive to ges pority, which was perticularty importunt in carly stages of the work.
(c) subsequently the maintenance voliage was routinely montiored.

A system for measuring the variation of H.C.L. maintenance voluge wth lanop current (VI characteristic) was incorporaved into the power supply ctrcuit - Fis. 1 show a diagram of the circuit used -. The design and performance of the H.C.L. power supply is described in subecction $2 / \mathrm{A}$. When recording V/ charncteristics the lemp curreat whe slowly ramped and the Vif charsateristic recorded on the $\mathrm{X}-\mathrm{Y}$ chert recorder. The hap current was made to control the X - deflection of the X - Y recorder by pasing the current through a resistance bor $\left(R_{1}\right)$ which provided a suitable pocential difference (\sim 1V) to drive the reconder's X - axis input.

The anode voltage controlled the Y - defiection of the recorder via a potential divider $\left(R_{2}\right.$ and $\left.R_{y}\right)$ end an office ampitier. The potential divider reduced the voluge to a level (\sim IV) suitable to drive the reconders Y - axis input. The offiset amplifier was used, because of the very flat nature of H.C.L. V/i chancteristics, to subtract a portion of the voltage signal cocreeponding to 150 V of mode potendinl.

The V is scales, voltage 150 to 250 V end current ($(5020$ or 50 mA), were calibrased against the DM.M. and Avometer, adjusting the values of \mathbf{R}_{1}, R_{2} and amplifier offiet, with the H.C.L. replaced by a 20 kO resisocr. The X - acis input verminals were provided with Zener diodes connected to earth to provect the recorder input emplififer in the event of an accidennal open circuit to which case the P.S.U. would deliver the full 1.5 kV .

3/E VISUAL INSPECTION OF GLOW

The HC. glow of the 15 mm bore experimental lamp in boch configurations unod, were inspected visually and viewed through a drect vision apectroccope. Vienal inspection of the clow provided usectul information as the madden chasges ta glow brightress at low currents could be detected. Further, the dovelopment of en ennoler slow seructure at higher pressure and curreas could be obverved - see section 4D. Vhean inspection was also very usetul when eliminating arny discharges in the experimental Lemp in configuration B (see 2/B.8 (c)). Postive colume, stray difchnges could be sherved viemily ber alo could be desected by thetr effect on the V/h charsueristic. The

H.C. stray discharge described in 2/B.8 (c) however, could only be detected by visual inspection as it did not affect the V / i characteristic significantly.

Observation via the spectroscope was used as a quick check for the presence of impurity bands.

CHAPTER 4
 RESULTS

4A PROTOMETRIC MEASURENENTS

4/A. 1 Spectral Limes Stucied
The wodk was pimerily concerned with No I spectral lines ahbough some results were obenined for Ne II spectral lines and one Fe I spectral line. A complete list of the epectral lines studied is provided in Table 1, showing which epectrll lines were inchoded for shody in each of the four types of phonometric experiment : -

Pmigrion
 (a) Fabry - Pexot scans

(b) II measurements

Absorption
(c) Fabry - Perot scans of probe beam
(d) Meamemente of monl trinsmitied probe beam fittonsity

An Ne I energy level diagram and tuble of lovels $[4,45]$ are provided in $\mathrm{F} / \mathrm{g} 14$ and Table 2.

The choice of spectral lines studied was restricted in boh wavelength and intendty by the range of the P.M.T. spectral reeponse, the P.M.T. dert current and the level of noise. When the Pabry - Perot etnion was need, its high diepersion redsced the detected intensity and so further restricted the chaice of epectral lines which conid be usefully studied.

Interference by clove laying spectal lines of eputered cathode matrial and, io a leseer extent, Ne II , aleo eliminated some Ne I spectral lines from poedble study.

The promineat Ne I epectral lines in the red region of the spectruan, accounting for a large majority of epectenl energy emittred, arise from momic transitions between the 3p, 3p' group of energy levels and the $38,38^{\prime}$ group of lovels. Consequently all the results obteined from Fabry - Perot manning experiments and the majority of those from If measurements were for spectral bines with transitions between thete groups of energy levels.

The 3s, $3 s^{\prime}$ group of four energy levels includes the two metistable stutes 3s [$3 / 2$] and $3 s^{\prime}[1 / 2]_{0}^{0}$; the former is the loweat energy No I excited sate. Spectral lines with trandions terminating in both meustable and non - metastable energy levels were atudied.

Within the constraints deacribed sbove, the basis on which Ne I spectral hises were chowen for study were : -

Rmigion exymilmens

Fehry - Perox scans - I wide seloction α ef pectril linet with atomic transitoos between the 3n, 34' and 3p, 3p' zroups of exergy levele.

Spectrum	$\underset{\|n \mathrm{n}\|}{\lambda}$	Enission		Absorption	
		I/i	Fabry-Perot	Fabry-Perot	Total
Fel	363.4	\checkmark			
NeII	371.3	\checkmark			
NeII	337.8	\checkmark			
NeI	360.0	\checkmark			
0	363.4	v			
\cdots	470.4	\checkmark			
"	534.3	\checkmark			
	540.1	\checkmark			
	585.2	\checkmark	\checkmark	\checkmark	
	588.2	\checkmark	\checkmark	\checkmark	
	614.3	\checkmark	\checkmark	\checkmark	
	630.5	\checkmark	\checkmark	\checkmark	
	640.2	\checkmark	\checkmark	\checkmark	\checkmark
	659.9	\checkmark	\checkmark		
	667.8	\checkmark			
	671.7	\checkmark			
	692.9	\checkmark			
	703.2	\checkmark	\checkmark	\checkmark	
	724.5	\checkmark		-	
	743.8	\checkmark			
	748.9	\checkmark			
	626.6	\checkmark	\checkmark	\checkmark	
	594.5		\checkmark		
	633.4		\checkmark		
	665.2		\checkmark		
	616.4	.	\checkmark		
	618.2		\checkmark		
	705.9		\checkmark		
	621.7		\checkmark		

TABLE 1 SPECTRAL LINES STUDIED IN EXPTS.

fig. 14 NeI energy level diagram

$\left[\begin{array}{c} \lambda \\ {[n \mathrm{n}]} \end{array}\right.$	$\begin{array}{\|l\|} \hline \dot{y y y y} \\ \text { 号 } \\ \hline \end{array}$	Level	$\begin{array}{\|l\|} \hline \text { Energy } \\ \text { (CVI } \\ \hline \end{array}$		Level	$\begin{gathered} \text { Energy } \\ \mathrm{EVY} \\ \hline \end{gathered}$
360.0	${ }^{3} \mathrm{~B}$	$4 \mathrm{P}^{1} \mathrm{~m}_{1}$	20.29	$1 s_{2}$	3 Stin	16.85
363.4	$3 \mathrm{p}_{3}$	4 PPKL	20.26	15_{2}		16.85
470.4	5 ch_{4}		21.02	2 pm	3plti，	18.38
534.3	4 d	$4 \mathrm{dit}_{5}^{5}$	20.70	2 pm	3piti，	18.38
560.1	2p．	1.	18．97	15．	3 s 碞	16.67
585.2	2p．	3pith	18.97	15	$3 s^{\prime} 1 \lambda_{1} 0_{1}$	16.85
588.2	$2 \mathrm{P}_{2}$	3plk	18.73	$1 s_{8}$	3sith	16.62
614.3	$2 \mathrm{p}_{6}$	$3 p\left(h_{2}\right)_{2}$	18.64	1s．	3s FM	16.62
630.5	$2 \mathrm{P}_{6}$	$3 \mathrm{pl} \mathrm{l}_{2}$	1864	154＊	3 c 15 5	16.67
640.2	$2 \mathrm{P}_{4}$	30¢ \square_{3}	18.56	1s\％	3s 1312	16.62
659.9	2p	3¢124	1873	15_{2}	$3 s^{\prime}$（tp．	16.85
667.8	2 Pm	3p¢k ${ }^{2}$	18.70	15_{2}	3 s kt	16.85
671.7	$2 \mathrm{pr}_{5}$	$30 \cdot 121$ ，	12.67	15_{2}	$33^{1} \mathrm{tzp}$	16.85
692.9	2P6	$3 \mathrm{plt}]_{2}$	18.64	$1 s_{2}$	3s	16.85
703.2	2pm	3pizt	1838	956	3 s 各㐌	16－62
724.5	2Ra	3p12h	18.38	154	3sikf	16.67
743.8	2 p	3 p ［24	18.38	15，	$3)^{1 \times 5}$	16.72
748.9	34	3012 ${ }_{2}$	2004	$2 p_{4}$	3pl／a，	1838
626.6	2p	3p［ 2 k ］	18.69	is	3 CHE	16.72

TABLE 2
SOME NeI SPECTRAL LNES \＆ENERGY LEVELS

(b) I/i moseuremeats - wide selection of the spectel Hides with 3p, 3p' - 38, 38' transitions and transitions from highar energy levels.
Abecopion Experiments
(c) Fabry - Percer acans of probe besm - two spectal lines with transitions from the 3p, 3p' group of energy levels to each of the metastable 38, 38' exergy levels and ose cach for the two noon - mexastable levelh.
(d) Toul abooppion experiments - confined, becanse of lack of time to Ne I 640.2 nm with a trunsition from a level of the $3 \mathrm{p}, 3 \mathrm{p}^{\prime}$ group $(3 \mathrm{p}[5 / 2 \mathrm{~h})$ to $3 s\left[\frac{3}{2}\right]_{2}^{\circ}$.

A/A. 2 Photometric Remults
4/A. 2 (a) Fabry - Purot Scans of Emindion fince
Reconding of the profiles of Ne I spectral lines emitued by H.C. discharyes proved interesting as it revealed self - revermal of spectral lines with transitions terominating in the metartable state $3 s\left[3 / 2 F_{2}\right.$. This self - reversal wis first obecrved with a sealed H.C.L menufictured by Cuthodeon and subeequently with the experimensal lamp at different fill gas presures $(1,2,3$, and 5 worr) and in the two lamp configurntions stuctiod

The self - reversal first noted in Ne 1614.3 mm , was oberved in all spectral hines with mancitions marminating in $3 \mathrm{E}\left[\frac{3}{2} \mathrm{~L}\right.$ 2 with the exception of Ne I 588.2 nm . No speceral lines with tramitions wo other energy levels were obeerved to abow this effect.

An exsemple of this effiect is shown in Fig 15 (a) contuining Fabry - Perct scans of Ne 1640.2 mm mod Ne 1585.2 mm emitued by the experimental hups (confif. A) at 1 torr, the former with a transition emminating in $38\left[3 / 2 f_{2}^{9}\right.$ shows martiod self reversal whereas the letuer with transition terminating in $38^{\prime}[1 / 2]_{1}$ shows no sign of reversal. Ne 1640.2 mm was found to have the greateat degree of salf - reversal of all the spectral liness studied.

Fabry - Peroc scans of Ne I 640.2 nm emitued by a scalod H.C.L. at differeat values of larmp current are chown in Fig 16 whth symem gine sdiused to malbe the profiles of approximesty the same heighe. As the lerup current is focreased the dopree of soif - reversel mod overill line widd increases elvo. This is consistent with the behaviour obeerved in the bemer knowi seif - reversil sad seff - absorption of resoansce radiation of spatiered cathode atoms [43, 46].

Solf - teversel of Ne I spectenl lines was found to be very menstive to the presonce of impruitios pondrced by ourgasing and thorcoust depasaing of the experimenal lempen men necesery befose reproducible reauls could be obeined - wee

flg. 15 NeI EMISSION LINE PROFILES EXPERIMENTAL LAMP (CONFIG. A)

fIG. 17 NeI EMISSION LINE PROFILES AFFECTED BY CONTAMINATION OF FILL GAS

FIG. 16 NeI 640.2 nm EMISSION LINE PROFILES at three lamp currents, SEALED HCL.

Fis. 17 - . In fact, the degree of self - reversal was later used as a check of fill ges purity.

The effect of impurties on Ne I spectual line profiles is described in the section on impurties 7/E.

4/A. 2 (b) IA meamurements

Examples of typical results obestred from measurements of the veriation of Ne I spectral invendity with hmp curreat are uhown in Fige. 18 to 21. Results precented ere for the experimeatal H.C.L. tn configuration A and ill gas preasures of $1,2,3$ and 5 worr and a sealed H.C.L.; examples of recults for Ne II and Fe I apectenl lines are provided in Fig. 22 for comparison. Resulss obsained for the experimental H.C.L. in configuration A and B were very similer and only those for happ configuration A are presented.

A slight hymeresis effioct was obverved when measurements were made with the lemp current rmped in both increasing and decreasing curreat directions. This effiect disappearod atter prolonged running of discharge and reaulas presemod axe for increasing curreut, atter runing the lamp to estublish spendy condition.

The form of the In curves was found to depead on fill gas purity and resalcs presented bere ere for conditions of madrom neon party. The efficet on I/i curves of gis impurities, dee no contminintion inifielly caccumered with the expertmental lempe (see section $2 / B .6$), is disenseed in section 7/B on impurthy effiects.

The principel features of the $\mathrm{Ne} \mathrm{I} / / /$ curves obuined under high purty condition, may be summerizod:
(i) The therasity I shows a generilly fincreasing trend with increading lamp currenti.
(ii) The Li curves of specten lines with atomic trandions from hish energy levels (i.e. 3 d and above) curve over tending to saturute with increasing current - Bg. Ne I 360.0 mm, Fig. 18.
(iii) 1/i curves of spectral lines conresponding to atomic transitions between the $3 s, 38^{\prime}$ and the $3 p, 3 p^{\prime}$ groups of energy levels, with the exception of $3 p^{\prime}[1 / 2]_{0}$, are approximately linear with an upward curvature - Ee. Ne I 588.2 mm , Fig. 18.
(iv) If curves of epectrel lines with transitions from $3 p^{\prime}[1 / 2]_{0}$ (which is of dignificantly higher caergy than the reat of the $3 p, 3 p^{\prime}$ eroup) exe dimiler to thove for the reat of the group but offict at low curreat -Eg. No I 585.2 nm , Fis. 19.
(v) At High oin ges premure Ih curves for epectral lines with transitions between the

FIG. 18 I/i CURVES OF NeI LINES EXPERIMENTAL LAMP (CONFIG. A)

FIG. 19 I/i CURVES OF NeI LINES EXPERIMENTAL LAMP (CONFIG.A)

FIG. $20 \mathrm{l} / \mathrm{i}$ CURVES OF Ne I LINES EXPERIMENTAL LAMP (CONFIG. A).

FlG. 21 I/i CURVES OF NeI LINES EXPERIMENTAL LAMP (CONFIG. A)

FIG. 22 I/i CURVES OF NeI \& FeI LINES SEALED HCL. 60

fig. 23 NeI LINE PROFILES RECORDED IN FABRY-PEROT ABSORPTION EXPERIMENTS

fig. 24 Ne I line profiles Recorded in FABRY-PEROT ABSORPTION EXPERIMENTS 62

FlG. 25 NeI LINE PROFILES RECORDED IN FABRY-PEROT ABSORPTION EXPERIMENTS 63

3s, 3s' and 3p, 3p' groups of levels develop a "hump" at about 6 mA - see Fig. 21.

In contrast to results for Ne I spectral lines, I/i curves for Ne II spectral lines are in general straight lines passing through the origin. I/i curves for Pe I spectral lines of sputtered cathode material however exhibit strong curvature. They are tangential to the current axis near the origin and rise steeply at higher currents - see Fig. 22.

4/A. 2 (c) Fabry - Perot Scanning Abeorption Measurements
Typical probe beam, spectral line profiles, reconded with the HLC.L. switched off and with it running are shown in Figs. 23 to 25.

Some general feabures of thene results are: -
(i) The profiles of Ne I 640.2 and 614.3 nm spectral lines with transitions terminating in the metastable state $38[3 / 2]_{2}$ show evidence of strong absorption by the H.C. discharge - see Figs. 23 and 25.
(ii) Spectral lines with transitions terminating in other energy levels of the $3 \mathrm{~s}, 38^{\prime}$ group exhibit (eg. Ne I 585.2 nm) less pronounced absorption - see Fig. 23.
(iii) The spectral profiles for H.C.L. fill gas pressures of 1,2 and 5 torr are similar, indicating that the degree of absorption (and hence the population of aboorting aroms) varies little with fill gas prescure.
(iv) Profiles reocended exhibit a pronounced saturation of the degree of absorption with increasing H.C.L. current.
(v) The profile of the Ne I 640.2 nm spectral line emitred by the primary source was broadened and has a alight dip near the peak indicating that come self absorption by $3 s[3 / 2]$ metastable excited neon atoms occurred within the microwave excited E.D.L. - sec Fig. 25 -.

4/A. 2 (d) Total Absorption Measurements

The measurements of probe beam total absorption of Ne I 640.2 mm , carried out were of two types
(a) full aperture
(b) limited aperture measureonents intended to schieve spatial resolution.

For reasons described in the experimental section 3/C. 2(b) the latter measurements were unreliable and will not be presented.

The former measurements of tool absorption were made with the same optical arrangement as the Fabry - Perot scanning absorption measurements and are useful for comparison with these results.

Spectral absorbance (given by $\log \frac{I(i=0)}{I(i)}$ where $I(i)$ is the total line intensity), I(i)
is usually assumed to be proportional to the number density of absorting atoms. Measurements of spectral absorbance are much easier wo both record experimeneally and analyse, than measurements of absorption coefficieat. Consequently, investigntions of the variation of excited atom number densities are often made vis measurements of spectral absorbance, though absolute number densities cannot readily be calculated from absorptance.

Typical results of the cotal absorption experiments are provided in Fig. 26. In these figures the detected intensity of the probe beam Ne I 640.2 mm spectral line is shown as the experimental lemp current was increased from the minimum value that would sustain a stable discharge to 50 mA . The detected intensity with experimental lamp swiched off, which provided the reference ($\mathrm{i}=0$) intensity level with no absorption, is indicated.

Notable features of these results are : -
(a) Slow change in transmitred probe beam spectral intensity with lamp current. (b) Local minimum in transmitted spectral intensity in low current region at 5 torr.

4/B V/ CHARACTERISTICS

The voltage/current characteristics of the experimental H.C.L. in configuration A with fill gas pressures of 1, 2,3 and 5 torr are shown in Figs. 27 and 28 and that of a sealed lamp in Fig. 29 (Note that these graphs have an expanded voluge scale with the origin not shown). The Vfi characteristics of the experimental H.C.L. in configurations A and B were very similar and only those for configuration A are presented.

Hysteresis effects were noted as in the $I / 1$ measurements and results were not reproducible until the lamp had warmed - up and stabilized.

Principal features of the resulte are :-
(a) The prooounced flatness of the V/icharacteristics. The maintensince voltage typically changes by no more than a few percent over the main zone of the chanacteristic (i.e. current above $\sim 5 \mathrm{~mA}$), while the lamp current increases many times.
(b) The maintenance voltage and V / h characeristic form vary littie with different fill gas pressures.
(c) However the V/icharractersitics develop a small 'bump' in the low current region as fill gas pressure is increased - sec Pig. 28.

fig. 26 Variation of probe beam spectral. INTENSITY WITH EXPERIMENTAL
LAMP CURRENT

flG. 27 V/i CHARACTERISTICS OF EXPERIMENTAL LAMP (CONFIG. A)

FIG. 28 V/i CHARACTERISTICS OF EXPERIMENTAL LAMP (CONFIG. A)

FIG. 29 V/i CHARACTERISTICS OF SEALED HCL. SHOWING HYSTERESIS EFFECT

FIG. $30 \mathrm{I} / i$ CURVE OF NeI LINE AFFECTED BY CONTAMINATION OF FILL GAS

4/C SPECTROGRAPHIC EXPERIMENTS

Copies of spectrograms of the experimental H.C.L. emission made with quartz and glass prism spectrographs are shown in Figs. 31 and 32. Spectrographs shown in Fig. 31 were recorded when the H.C.L. fill gas was contaminated and Fig. 32 under conditions of maximum gas purity.

Molecular bands may be seen in the spectrogram of the contaminated lamp. By comparison with standard molecular spectra [41] the bands were identified as being predominanuly due CO and CO^{+}and to a lesser extent OH and H . No O_{2} or N_{2} bands were detected, indicating that the contamination was due to outgassing and not a real leak.

An additional notable difference between the medium quartz spectrograms recorded under 'clean' high purity conditions and contaminated gas conditions is the strong quenching of Fe spectral lines of sputtered cathode atoms, most noticeably in the ultraviolet spectral region, by gas impurities. The effects of fill gas impurities is discussed further in section 7/E.

4D VISUAL INSPECTION OF GLOW

The H.C. glow in the experimental lamp was visually inspected over the full current range ($0-50 \mathrm{~mA}$) and with fill gas pressures of $1,2,3$ and 5 torr. Some general features of the glow appearance and its variation with discharge conditions were noted : -
(a) In the low current range of a few mA the colour, brightness and distribution of
(b) In the higher current range above about 5 mA the appearance of the glow was very stable, showing litule change as lamp current was increased.
At low current the glow was confined to a central cylinder of reddish colour, which suddenly brightened in colour and intensity as current was increased, and grew to fill the cathode hollow except for a narrow dark space near the cathode wall.
(d) This rapid change was accompanied by a jump in the I/i curve and a 'bump' in the Vficharacteristic - see Fig 28.
(e) With the H.C.L. filled to low neon pressures of 1 and 2 torr, the glow in the都 current range was uniform up to the dark space.
(f) At fill gas pressures of 3 and 5 torr the glow had an annular bright region near the cathode and the central region was less bright and reddened in colour. This was more noticeable at 5 tort than at 3 torr.

FIG. 32 MEDIUM QUARTZ SPECTROGRAMS OF 'CLEAN' HCL.L. EMISSION

CHAPTER 5

THE INSTRUMENT FUNCTION OF THE FABRY - PEROT INTERFEROMETER

5/A INTRODUCTION

Reconding of the instrument function (1.F.) of the Fabry - Perot interferometer was necessary for optimization of the etalon adjustment (see 3/B. 5 (b)) and was required for the synthesis of spectral profiles corrected for instrumental broadening (see 6/A).

The LF. of a Fabry - Perot interferometer depends sensitively on a number of parameters and is subject to considerable variation with even quire small changes in some of them. A study was made of the interferometer L.F. and its dependence on the different parameters investigated.

5/B THEORY

5/B. 1 Instrument Function Definition
Any spectrometer may be analysed into three main elements: -
(i) A dispersing element, combining wavefronts of differing phase retarded by optical depth Δ which may be varied by means of a control parametcr ν.
(ii) An optical imaging system of overall transmimance. (including the dispersing element) $\tau(\sigma)$.
(iii) A detector of sensitivity $D(\sigma)$
(where σ represents wavenumber in m^{-1})
The recorded spectral profile is a graph of the variation of detector output with changing values of the control parameters over some interval.

If the spectrometer is illuminated with radiation, with a distribution of intensity with wavenumber $I(\sigma)$, then the recordod profile value $Y(\nu)$ is given by

$$
\begin{equation*}
\mathbf{Y}(\nu)=\int I(\sigma) \tau(\sigma) D(\sigma) G(\sigma, \nu) d \sigma \tag{5.1}
\end{equation*}
$$

where $G(\sigma, \nu)$ is the Green's Function describing the relationship between the dispersion and the control parameter space.

If the optical retardation varies linearly with changing control parameter and the Green's function is invariant over the range of the spectral distribution and ν is suitably scaled in wavenumber units then eq. $\mathbf{5 . 1}$ may be expressed as the convolution integral

$$
\begin{equation*}
Y\left(\sigma^{\prime}\right)=\int I(\sigma) g\left(\sigma^{\prime}-\sigma\right) d \sigma \tag{5.2}
\end{equation*}
$$

where $\quad g\left(\sigma^{\prime} \cdot \sigma\right)=\tau(\sigma) D(\sigma) G(\sigma, \nu)$
is the instrument function of the spectrometer, and σ^{\prime} is the scaled control parameter.

If the source illumination is monochromatic radiation of wavenumber σ_{0}, then $I(\sigma)$ is an impulsive distribution
$I(\sigma)=\alpha \delta\left(\sigma-\sigma_{0}\right)$
where $\alpha=\int \mathrm{I}(\sigma) \mathrm{d} \sigma$, is the source luminance and $\delta\left(\sigma-\sigma_{0}\right)$ is the Dirac δ-function.

Then

$$
Y\left(\sigma^{\prime}\right) \mid \sigma=\sigma_{0}=g\left(\sigma^{\prime}-\sigma_{0}\right)
$$

and hence the instrument function $g\left(\sigma^{\prime}-\sigma_{0}\right)$ is the profile reconded with unit source luminance.

5/B. 2 Theory of the Fabry - Perot Instrument Function

5/B. 2(a) History of theory

The theory of the Fabry - Peror I.F. has received considerable attention from a number of workers [see 47], notably by Jacquinot and various $c o$ - workers [48]. The salient features of the theory of the I.F. of the ideal and practical case may be outlined as follows.

5/B.2 (b) Ideal Case

In the ideal Fabry - Perot the dispersing element is an etalon consisting of two plane parallel partially reflecting surfaces of infinite extent. If one surface of the etalon is lluminated by a parallel beam of monochromatic radiation of wavenumber σ and intensity I, incident at angle of incidence i.

Then the intensity of light transmitted by the etalon $I^{\prime}(\sigma)$ given by the Airy function

$$
r(\psi)=\frac{1}{(1+A / T)^{2}\left(1+f \sin ^{2} \psi / 2\right)}
$$

where $\quad f=\frac{14 R}{1(1-R)^{2}}$
$\gamma=2 \pi \sigma \Delta \quad$, the phase change due to optical path retardation
$\Delta=2 t n \operatorname{cosi}$
and R, A and T are the surface intensity reflectance, absorptance and transmittance respectively,: is the separation of the etalon surfaces and n is the refractive index of the intersurface medium.

If the surface reflectance is high, the Airy function is a "comb" of evenly spaced sharp peaks which occur when $\sigma \Delta$ assumes integer values N and $\psi=2 \pi N$,

where N is the order of interference. The width of the peaks at half maximum value . is most conveniently expressed in terms of the finesse \mathbf{F} defined as the ratio between the inter-order spacing $\Delta \psi=2 \pi$ and the width $\delta \psi$

$$
\begin{align*}
F=\frac{\Delta \psi}{\delta \psi} \quad \text { where } \quad F & =\frac{\pi \sqrt{f}}{2} \\
& =\frac{\pi \sqrt{R}}{(1-R)}
\end{align*}
$$

It should be noted that in this ideal case, the finesse depends only on the surface reflectance, and may be more correctly termed the reflectance finesse and denoted by F_{R}

If the optical retardation is fixed, the etalon transmits radiation of narrow ranges of wavenumber centred about successive, evenly spaced values

$$
\begin{equation*}
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{j}, \ldots \quad \text {, where } \quad j=1,2, \ldots \tag{5.5}
\end{equation*}
$$

satisfying $\quad \sigma \Delta=\mathbf{N}$
The difference in wavenumber between successive orders of interference $\sigma_{j+1}-\sigma_{j}$ is termed the free spectral range, and conventionally denoted (somewhat confusingly) by $\Delta \sigma$. From eq. 5.5 it follows that $\Delta \sigma$ is given by

$$
\begin{equation*}
\Delta \sigma=\frac{1}{\Delta} \tag{5.6}
\end{equation*}
$$

Conversely, for a fixed wavenumber of monchromatic illumination, if the optical retandation is varied the ecalon will transmit radiation for narrow ranges of optical retardation centred on successive, evenly spaced values $\Delta_{1}, \Delta_{2}, \Delta_{j}, \cdot$,

$$
\text { where } \quad \begin{array}{ll}
j=1,2,3, \ldots & \text { satisfyin } \\
& \Delta_{j+1} \cdot \Delta_{j}
\end{array}=\frac{1}{\sigma^{2}}
$$

satisfying eq (5.3), with

When the etalon is used as the dispersing element of an interferometer, the radiation to be spectrum analysed is limited to a wavenumber range less than $\Delta \sigma$, and the optical recardation is varied via a suitable control parameter. The optical path retardation $\Delta=2 \mathrm{tn} \cos \mathrm{i}$ may be varied by changing any of the three variables $\mathrm{i} n$ or i , and in the pressure scanning interferometer the refractive index n of the gaseous intersurface medium is varied by changing the gas pressure which is the control parameter.

If the control parameter ν, is scaled so that the difference in value of the scaled parameter σ^{\prime}, between successive onders of interference is $\Delta \sigma$, then the $I F$. is an Airy function
$g\left(\sigma^{\prime}\right)$

$$
\begin{aligned}
& =\mathbb{A}\left(\sigma^{\prime}\right) \\
& =\frac{1}{(1+A / T)^{2}\left(1+f \sin ^{2}\left(\pi \sigma^{\prime} \Delta\right)\right)}
\end{aligned}
$$

of width
and maximum value

5/B. 2(c) Practical Case

In a practical Fabry - Perot interferometer the situation is complicated by a number of additional factors so that the instrument function departs significantly from the Airy function of the ideal case and the finesse achieved in practice is less than that calculated from the reflectance of the etalon surface.

In the simplest and commonly used practical arrangement (also that employed in the work), a pinhole aperture at the focal point of a collimating lens on the optical axis, normal to the etalon, limits angles of incidence to a small range around zero (an annular aperture is possible in principle, but rarely used in practice). Consequently the radiation falling on the etalon is not incident at a fixed angle ($\mathrm{i}=0$) but a small range of angles determined by the diameter of the aperture and the focal length of the lens.

Also the etalon surfaces are not perfectly flat or parallel, hence the surface separation is not fixed but varies slighly over different regions of the etalon. Furthermore the surfaces are not of infinate extent but limited to a finite area, either by the size of etalon or more usually by a circular aperture placed on axis, near it.

If the situation is considered in which the finesse is limited to a value, the aperture finesse F_{A}, much less than that calculated from the reflectance, only by the range of angles of incidence. Then the I.F. $\mathbb{F}\left(\sigma^{\prime}\right)$ is rectangular and the aperture finesse given by $\quad F_{A}=\frac{2 \pi}{\Omega N}$
where Ω is the solid angle subtended at the centre of the collimating lens by the pinhole aperture.

Considering the case where the finesse is limited to a value F_{D} much less than the calculated reflectance finesse, only by the range of values of etalon surface separation. Then, if the range of values of surface separation and t is δt, the finesse F_{D} is given

```
by
\(F_{D}=\frac{m}{2}\)
```



```
- (5.11).
```

The form of the I.F. (1D (σ^{\prime}) depends on the nature of the source of variation of surface separation. Three sources of variation can be identified.
(i) local departures of the ectaion surfaces from plane, due to small, randomaly

(ii) Non-local departures of the ecalon surfaces from plane due to figuring error, e.g. a slight curvature of the surfaces.
(iii) Aparallelism of the etalon surfaces due to initial setting error or temperature variations.
Consider each source of variation of surface separation in turn, assuming it to be the only source of variation present. Randomly distributed defects can be expected to give rise to a Gaussian form for $\mathbb{D}\left(\sigma^{\prime}\right)$, figuring error a form depending on the nature of the figuring enor and aparallelism anon-symmetrical form corresponding to the I.F. of a circular section of a wedge of small angle of inclination.

If comparable contributions to the variation of the surface separation are made by the three sources, then $\mathbb{D}\left(\sigma^{\prime}\right)$ will be the convolution of functions representing the effect of each separate source.

Similarly, in a practical interferometer all of the above effects will contribute to the observed L.F. which will be the convolution of functions representing each of them, so that
$g\left(\sigma^{\prime}\right)=\lambda\left(\sigma^{\prime}\right) * \mathbb{F}\left(\sigma^{\prime}\right) \cdot \rrbracket\left(\sigma^{\prime}\right)$
and the observed finesse P will depend on the finesse factors F_{R}, F_{A} and F_{D} in a manner dependant on the form of $\mathbb{F}\left(\sigma^{\prime}\right)$ and $\mathbb{D}\left(\sigma^{\prime}\right)$. This is excluding the possible effects of aperture diffraction and finice etalon area.

To evaluate such a convolution for the general case is very difficult, though calculations relating the observed finesse F to F_{R}, F_{A} and F_{D} have boen carried out by various workers for some simple cases [sec 47 and 48]. The author feels that all that can be stated with a measure of certainty about the general case is: -
(i) F is less than the smallest of F_{R}, F_{A} and F_{D}
(ii) F is probably greater than that calculated from

$$
\frac{1}{F}=\frac{1}{F_{R}}+\frac{1}{F_{A}}+\frac{1}{F_{D}}
$$

(iii) if one of the three separate finesse parameters F_{D} (say) is much less than the other two then
${ }^{\prime} P \simeq F_{D}$
and $g\left(\sigma^{\prime}\right) \simeq I I\left(\sigma^{\prime}\right)$
5/C Empirical Investigation
Because of the involved nature of a full theoretical description of the L.F. of the Fabry - Perot interferometer it is not possible to calculate what the I.F. of a given device will be, except in some limiting cases. The I.F. of the interferometer used in the work was measured experimentully, and is dependence on some variable parameters of the

was measured experimentally, and its dependence on some variable parameters of the instrument investigated.

The Fabry - Perot etalon, used with a 6 mm spacer, had quoted flatness of λ il50 with reflective coatings over regions of 35 mm diameter and measured reflectance of 93% [43] at a wavelength of 700 mm with 140 nm bandwidth. The I.F. was recorded at a wavelength of 632.8 nm by scanning diffused emission of a mode - stabilized He - Ne laser which acted as a near ideal monochromatic source. Details of the practical interferometer arrangement and bow the L.F. was recorded may be found in Section 3/B.5; Fig. 10 shows a schematic diagram of the interferometer.

The free spectral range $\Delta \sigma$, reflectance finesse F_{R} and "limiting" finesse due to surface defects F_{D}, calculated for the instrument from the above values, were:

$\Delta \sigma$	$=83.3 \mathrm{~m}^{-1}$
F_{R}	$=43.3$
F_{D}	$=70$

The finesse measured in practice, could vary widely, from as little as 10 to as much as 40, depending on the values of several variable instruments parameters, namely
(i) The diameter of the pinhole aperture A_{2}
(ii) The diameter of the iris aperture A_{1} limiting the effective etalon area.
(iii) The orientation of the etalon, relative to the oprical axis of the imaging system
(iv) The degree of aparallelism of the ctaton surfaces

The values of these parameters had to be set empirically when adjusting the interferometer for use, and the effect of varying them was examined in order to assist the setting of optimal values. Examples of experimental recordings of the I.F. showing the effect on the observed function of varying each of instrument parameters in turn, are provided in Figs. 33 to 37.

An immediately noticeable feature of these I.F. recordings is the sensitivity of the observed I.F. to, fmall change in etalon orientation and degree of parallelism. Fig. 34 shows the effect of changing etalon orientation and Fig. 33 changing degree of parallelism. The marked change in the profile shown in the figures correspond to small changes of position of the adjustment screws controlling the two instrument parameters. The sensitivity to changes in etalon orientation is further illustrated in Fig. 38 where merely tightening the nut locking the adjustment screw can be seen to have a significant effect on the I .R., and allowance had to be made for this.

In addition, it is evident that as the etalon orientation or degree of parailelism

FIG. 34 VARIATION OF FABRY-PEROT IF. WITH CHANGING ETALON ORIENTATION

Mode-stable $\mathrm{He}-\mathrm{Ne}$ laser 632.8 nm

fig. 33 VARIATION OF FABRY-PEROT I.F. WITH CHANGING ETALON APARALLELISM
fig. 36 VARIATION OF FABRY-PEROT I.F. WITH DIFFERENT DIAMETERS OF APERTURE A_{1}

Mode-stable $\mathrm{He}-\mathrm{Ne}$ loser 632.8 nm

[^1]
fig. 37 VARIATION OF FABRY-PEROT I.F. WITH ETALON DIAMETER A_{2}, OPTIMIZED PARALLELISM

Mode-stable
$\mathrm{He}-\mathrm{Ne}$ laser
632.8 nm

FIG. 38 CHANGE IN FABRY-PEROT I.F. ON LOCKING ORIENTATION ADJUST. SCREW

departs further from optimum adjustment, the I. F. not only reduces in peak height and increases in width, but also becomes progressively more asymmetric

The I.F. is however, much less sensitive to changes in the diameter of the pinhole aperture \mathbf{A}_{2}, and the diameter of the inis aperture \mathbf{A}_{1} limiting the effective etalon area. Increasing the diameter of either aperture clearly increased the light flux transmitted and consequently the peak height of the I.F.; however the width and shape of the IF changed much less significantly.

When a series of pinhole apertures were used, the diameter increasing by about 0.1 mm between each aperture, the instrumental width was unchanged until apertures larger then about $\sim 1.2 \mathrm{~mm}$, whereafter the I.F. slowly broadened with the profile remaining symmetrical. Fig. 36 shows two recordings of the L.F. with diameter of aperture A_{2} of 0.78 amd 1.50 mm , detector gain having been adjusted to give similar peak heights. The exalon adjustment was near optimal and the effective etalon diameter limited to 10 mm

The effect on the observed I.F. of increasing the effective etalon area by varying the diameter of aperture A_{1}, depended on the degree of aparallelism of the etalon surfaces. Increasing the aperture diameters generally increased the width of the I.F., however the rate of increase was greater the more aparallel the etalon surfaces. The profile also tended to become asymmetric with large apertures if the degree of parallelism was poor.

This dependence may be seen by comparing Fig. 33 and 37. Fig. 37 shows recordings of the I.F. with aperture A_{1} diameters of 5 mm and 30 mm with near optimum adjustment of parallelism and Fig. 35 shows similar recordings but with poorer parallelism adjustment (detector gain adjusted).

5/D Comparison of Empirical I.F. Results With Theory
The first question to consider is how well the measured values of finesse calculated from $\quad F=\frac{\Delta \sigma}{\delta \sigma}$
can be explained in terms of the finesse factors relatod to reflectance, flatness and aperture, given by
$F_{R}=\frac{\pi \sqrt{R}}{1-R}$
$F_{D}=\frac{m}{2}$
$F_{A}=\frac{2 \pi}{\Omega N}$

In order to do this an estimate of the likely errors in values of finesse must be made.
The measured values of finesse given by eq. 5.12 will be considered first. The free spectral range $\Delta \sigma$ could be determined, by measuring the spacer thickness, much more accurately than the width of the recorded I.F. $\delta \sigma$, bence the error in the observed finesse was dominated by errors in measuring the instrumental width. The width $\delta \sigma$ could be determined to $\sim \pm 8 \%$, so that the finesse could also be determined to about $\sim \pm 8 \%$, equivalent to $\sim \pm 3$ in value.

The likely errors in the values calculated for F_{R}, F_{D} and F_{A}. given by eqs. $5.13,5.11 \& 5.10$ will be considered next. It should be noted that the expression $\frac{\pi \sqrt{ }}{1-\frac{R}{2}}$. giving the value of F_{R}, is very sensitive to small errors in R if the value of
R is close to unity, as it is in a Fabry - Perot etalon. If $R=0.93$, then a change of $\pm 1 \%$ in the value of R results in a change of $\sim \pm 15 \%$ in the calculated value of F_{R} corresponding to a change in value of $\sim \pm 6$.

Accurate determinations of reflectance are difficult to achieve; the reflectance of the etalon surfaces used in the work had been measured on specialized commercial equipment, some time before, by a previous worker [43] and could not be readily repeated. Any small error in these measurements or changes due to ageing, would cause a considerable error in the calculated reflectance finesse. Hence the value of reflectance finesse of 43.3, calculated for the etalon, should be considered an estimate of uncertain accuracy.

The likely error in the value calculated for the aperture finesse F_{A} given by eq. 5.10 depended on the error in the value of solid angle Ω subtended by the pinhole aperture. The distance between the aperture and collimating lens could be measured to $\sim \pm 1 \%$ and the mean aperture diameter to $\sim \pm 2 \%$, giving an error estimate for F_{A} of $\sim \pm 5 \%$ or $\sim \pm 2$ in value.

As the finesse $F_{D}(=70)$ calculated from the manufacturers quoted value of flatness ($\lambda / 150$) was much greater than the reflectance finesse, errors in its value had little significant effect.

To directly compare measured values of finesse with calculated values, configurations of the instrument must be considered where the finesse is dominated by one parameter only and is hence approximately equal to the finesse factor corresponding to that parameter. With well optimized etalon orientation and parallelism, and small effective etalon area limiting the effects of any residual aparallelism, the finesse will be determined by the relative magnitude of F_{A} and F_{R}. Flatness finesse F_{D} is much larger

than F_{R} and has litice effect.
The diameter of pinhole aperture $A_{\mathbf{2}}$ which gives a value of aperture finesse $F_{A}=43$, equal to the calculated refloctive finesse, is 1.1 mm . If a pinhole diameter less than 1 mm is used, then the finesse can be expected to be approximately equal to F_{R}. The observed finesse in these circumstances was ~ 45, in remarkably good agreement with calculated value of reflectrance finesse of 43 , given the uncertainty in the calculated value.

If aperture diameters larger than $\sim 1.1 \mathrm{~mm}$ are used then the finesse may be expected to be approximately equal to $\mathrm{F}_{\mathbf{R}}$. This is in reasonable agreement with that which was observed in prictice, where broadening of the I.F. was noted if apertures larger than $\sim 1.2 \mathrm{~mm}$ were usod. However the finesse measured, when pinhole diameters larger than 1.2 mm were used, tended to be larger than the calculated value of F_{A} by an amount more than would be expected from the estimated eriors. For example, the recording of L.F. shown in Fig. 36 for a diameter of 1.50 mm has a corresponding measured finesse of $\sim 33 \pm 3$, but the calculated aperture finesse was $\sim 23 \pm 1$. As theory indicates that the overall finesse is always less than the smallest separate finesse factor, this observation was initially puzzling.

Detailed analysis of ray pachs however, suggests a possible explanation. Apenture limitation aftur the etalon, causes a greater proportion of rays with large angles of incidence at the etalon not to reach the detector than with small angles of incidence make a greater contribution to the detected intensity. As a result, the finesse is not degraded as much as would have occured with no aperture limitation after the ctalon.

The dependence of the observed I.F. on the degree of ecalon aparallelism is fully consistent with theory, and the fuct that the varintion of the LF. with effective etalon aperture also depended on the degree of etalon aparallelism may be readily explained. The range of values of ecalon surface separation, caused by aparallelism of the surfaces, increases with increasing effective etalon diameter. As a result, the width and shape of the I.F. is more influenced by aparallelism the larger the effective ctalon aperture.

The sensitivity of the shape and width of the observed I.F. to small errors in etalon orientation has nox been addressed in the theoretical treatuent (outlined above), as fur as the author is aware. Analysis of ray paths however again suggests a possible explanation. When the plane of the etrion is inclined at some angle to the optical axis, rays suffering successive reflection between the etalon surfaces will be progressively displeced further from the axis, and finally make no contribution to the detected intensity, because of the limited effective aperture. The loss of these higher order ierms

1.F. of errors in etalon orientation and parallelism, producing both broadening and asymmetry, would seem no confirm this.

/E Choice of Instrument Parameters Used

The choice of instrument parameters used in practice, depends in part on the performance desired in a given application. The resolving power, light transmitrance and wavenumber invariance of the LF. are interdependent factors, the relative importance of which can vary considerably. As the finesse, which determines resolving power for a given free spectral range, is very sensitive to the orientation and degree of parallelism of the etalon, the adjustment of the parameters have to be well optimized to achieve high resolution. However increases in finesse gained by reducing either aperture A_{1} or A_{2} must necessarily entail loss of light transmission, a serious problem when dealing with low levels of intensity.

Invariance of the L.F. over a range of wavenumber values was a desirable feature because the I.F. could only be measured at one wavelength, that of the mode stable He Ne laser available, but knowledge of the L.F. was required over a range of wavelength values, in order to correct observed spectral profiles for instrumental broadening. If the finesse was dominated by reflectance, then because F_{R} is very sensitive to small change in R, any slight variation of reflectance with wavelength (a small "ripple" for example) would cause the I.F. to vary rapidly with changing wavelength making profile corrections impossible. Finesse contributions corresponding to other parameters can be expected to vary more slowly with changing wavelengths.

The diameter of pinhole aperture A_{2} was set at 1.16 mm for routine measurements. This value was chosen from the sequence of apertures, as it was slightly less than the value at which broadening of the I.F. was observed so that light
transmitted was the maximum possible with no loss of finesse. In addition the aperture was sufficiently small so that the light eccepted by the instrument was limited to a small region of the source image.

The maximum diameter of the effective etalon aperture A_{1} was limited by the diameter of the coated regions of the etalon plates to 35 mm . The value used for routine measurements was 30 mm , set by the diameter of the iris aperture \mathbf{A}_{1}. The best choice of value of diameter A_{1} was not straight - forward however. The desirable features of high resolution and high light transmission are naturally conflicting but the situation was further complicated by the effect of small errors in the adjustroent of etalon parallelism.

Optimization of etalon adjustment by the methods of scanning laser emission was

further complicated by the effect of small errors in the adjusment of etalon parallelism.
Optimization of etalon adjustment by the methods of scanning laser emission was very time consuming and optimization of parallelism particularly so. Once etalion orientation had been set, the adjustment was stable; this was not the case however, with the adjustment of etalon parallelism. Because of the extreme sensitivity of the I.F to small changes in the degree of parallelism of the etalon surfaces and the limitations of the linkages, via which the tension of the leaf springs and so the parallelism of the etalon surfaces [see section 3/B. 5 for details] were controlled, the optimization of parallelism adjustment was a slow process. In addition,the adjustment of parallelism once set, was not stable but tended to drift out of optimal adjustment with time, particularly when fluctuations in ambient temperature occurred. The most likely reason for this drift in parallelism adjustment, was differences in the temperarure coefficients of the stiffness of the three leaf springs causing uneven changes in the tensions of the springs. But whatever the true source of this drift, it was a serious problem, as reoptimization of parallelism took a long time and the mode - stable laser was available for a limited period. Reducing the effective aperture of the etalon, reduced the effect of small errors in parallelism, so increasing the period for which interferometer could be used before the etalon parallelism had to be reoptimized.

An additional consequence of the tendency of the parallelism adjustment to drift was that the I.F. had to be recorded before and after a run of measurements to ensure that it had not changed appreciably due to parallelism drift. This was important when carrying out the Fabry - Perot scanning absorption experiments where correction of spectral profiles for instrumental broadening was required.

Use of the maximum possible effective aperture diameter of 35 mm was found to produce unacceptable sensitivity of the I.F. to parallelism drift and use of apertures of diameter less than $\sim \mathbf{2 5 m m}$ caused problems of insufficient light transmission with weaker spectral lines. The effective aperture diameter of 30 mm was chosen as an uneasy compromise between the factors.

Fig. 39 shows a typical recording of the I.F., over two orders of interference, with the above aperture diameters and optimized etalon adjustment. The measured finesse for this recording is $\mathbf{\sim} \mathbf{3 0}$ typical of values obtained during routine experiments. Fig. 40 shows a typical recording of the I.F. over one onder of interference exhibiting residual asymmetry due to a small error of etalon adjustment. The finesse for this recording is however $\boldsymbol{\sim} \mathbf{3 0}$. If the measured finesse fell below $\sim \mathbf{2 5}$, parallelism adjustment of the etalon was reoptimized.

As the value of finesse for routine measurements was significantly less than the calculated reflectance finesse and so dominated by setting errors, small changes of

reflectance with wavelength would not cause large changes in the I.F.

Mode-stable

FIG. 39 FABRY-PEROT I.F. OVER TWO ORDERS OF INTERFERENCE, OPTIMIZED ETALON ADJUSTMENT

Mode-stable $\mathrm{He}-\mathrm{Ne}$ laser 632.8 nm

FIG. 40 FABRY-PEROT I.F. EXHIBITING RESIDUAL ASYMMETRY AFTER LIMITTED optimization of etalon parallelism

CHAPTER 6

ANALYSIS

6/A FABRY - PEROT ABSORPTION MEASUREMENTS OF EXCITED STATE NUMBER DENSITIES

6/A. 1 Theory of Method

Methods usually used $[5,49]$ to determine number densities of excited atoms are based on one of the methods described by Mitchell and Zemansky. All of these methods contain various assumptions as to the form and stability of spectral line profiles and are prone to systematic error. The method used in this work, developed from that employed by Jarrett and Frankin, and Gibbs and Hull [51, 52] to measure atomic number densities in alkali metal vapours, avoids these uncerminties by desermining number densities of absorbing atoms from measurements of the absorption profiles. The absorption line profiles are calculated from Fabry - Peroc interferometric measurements of primary source and transmitted spectral line profiles.

The observed primary source and transmitted line profiles ($\mathrm{I}_{0}(\sigma)$ and $\mathrm{I}_{0}^{\prime}(\sigma)$ respectively) are given by :
$I_{0}(\sigma)=\quad \int f\left(\sigma^{\prime}\right) g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime}$
$I_{0}^{\prime}(\sigma)=\int f\left(\sigma^{\prime}\right) \exp \left[-k\left(\sigma^{\prime}\right) l\right] g\left(\sigma-\sigma^{\prime}\right) d o^{\prime}$
and the apparent absorption coefficient $\left(k_{0}(\sigma)\right)$ by
$k_{0}(\sigma)=\quad \quad^{-1} \ln \left[I_{0}(\sigma) / I_{0}^{\prime}(\sigma)\right]$
where $f\left(\sigma^{\prime}\right)$ is the primary source line profile
$g\left(\sigma^{\prime}\right)$ the interferometer instrument function
$\mathbf{k}\left(\sigma^{\prime}\right)$ the true absorption coefficient
$k_{0}\left(\sigma^{\prime}\right)$ the apparent absorption coefficient
1 the absorption path length
and
The number density of absorbing atoms (N) is given by :
$N=\frac{8 \pi g_{2} c \quad \int k(\sigma) d \sigma}{g_{1} A_{12}}$
where g_{1} is the statistical weight of the upper energy level
g_{2} the statistical weight of the lower energy level the central wavelength of the spectral line
\mathbf{A}_{12} the transition probability

and $c \quad$ the speed of light.
In order to substitute in this expression to determine N , the true absorption profile, $k(\sigma)$ must be obtained from the observed profiles, conrected for the effect of the interferometer instrument function. This requires solutions of integral equations 6.1 and 6.2 which can only be obtained after considerable date processing.

A preliminary graphical annlysis was carried out on some of the results in which effect of the instrument function was ignored, and the absorbing atom number density calculated using the apparent absorption coefficient given by eq. 6.3 in eq. 6.4. This is justified as the instrument function is nerrow compered to the observed profiles and hence the true and apparent absorption coefficients are approximately the same.

6/A. 2 Graphical Analysis

Denoting the estimate of N , calculuted from data uncorrected for the interierometer instrument function, by N_{o}. then

$$
N_{e}=\alpha \int k_{0}(\sigma) d \sigma
$$

where $\quad \alpha=\frac{8 \pi g_{2} c}{g_{1} A_{12}}$
The apparent absorption coefficient was calculaved from raw intensity values at about fifteen evenly spaced points across the spectral profile and a graph of these values ploted against wavenumber. If was found that points near the "wings" of the spectral lines, where intensity values were smill, gave rise to divergences and were not ploted. (divergences are discussed in detail in soction 6/A.3 (a))

The area under the curve was found by counting squares of graph paper and N_{\circ} calculated using this graphical estimate of $\int \mathbf{k}_{\mathrm{o}}(\sigma) \mathrm{d} \sigma$ and values of atomic transition probability obrained from data publishod by the National Burean of Sundards [53]. This was a laborious process and was only carried out on a limited number of the results.

Fig 41 shows a typical graph of apparent absorption coefficient aguinst wavenumber plotwed for Ne 1640.2 nm (2 torr neon pressure) and Fig 42 a graph of the estimated number density of neon atoms in metastable excived state $38[3 / 2]_{2}^{\circ}$, against lamp current (calculated from Ne I $640.2 \mathrm{~nm}, 1$ torr neon pressure). Table 3 gives the estimated number density ($\sim \pm 15 \%$) of atoms in metastable state $38\left[3 / 2 f_{2}\right.$ (calculated from Ne I 640.2 am resulss) at a fixed lamp current of 20 mA , for 1,2 and 5 tort neon pressure.

The strong saturation of the metastable atom population with increasing lamp

FIG. 41 PLOT OF APPARENT ABSORPTION COEFFICIENT AGAINST WAVENUMBER

FIG. 42 PLOT OF NUMBER DENSITY OF METASTABLE STATE $3 \mathrm{~s}[3 / 2]_{2}^{\circ}$ AGAINST LAMP CURRENT

Pressure [Torr]	Number density $\left[\mathrm{m}^{-3}\right]$
1	1.7×10^{17}
2	1.6×10^{17}
5	1.65×10^{17}

TABLE 3
NUMBER DENSITY OF ATOMS IN $3 s[3 / 2]_{2}^{\circ}$ AT 20 mA \& THREE PRESSURES, GRAPHICAL ANALYSIS ($\pm \sim 15 \%)$

Level	Number density $\left[\mathrm{m}^{-3}\right]$
$3 \mathrm{~s}[3 / 2]_{2}^{0}$	2.0×10^{17}
$3 \mathrm{~s}[3 / 2]_{1}^{0}$	1.0×10^{17}
$3 \mathrm{~s}^{\prime}[1 / 2]_{0}^{0}$	4.3×10^{16}
$3 \mathrm{~s}^{\prime}\left[\frac{1}{2}\right]_{1}^{0}$	1.8×10^{16}

TABLE 4
NUMBER DENSITY OF ATOMS IN STATES OF $3 \mathrm{~s}, 3 \mathrm{~s}$ GROUP AT 2 TORR \& 20 mA , GRAPHICAL ANALYSIS ($\pm \sim 15 \%)$

current and its lack of sensitivity to fill gas pressure is apparent. The graphically estimated number density of atoms in state $3 \mathrm{~s}[3 / 2]_{2}^{0}$ calculatod from Ne I 640.2 mm is $\sim 2 \times 10^{17} \mathrm{~m}^{-3}$ for a wide range of discharge conditions.

When the number density (at 20 mA) of atoms in this state is estimated from results for Ne 1614.3 nm , a value of $\sim 4 \times 10^{17} \mathrm{~m}^{-3}$ is obtained, which is reasonable agreement bearing in mind the poor sccuracy to which atomic transition probabilities are known and the rough and ready nature of this graphical treatonent of the analysis.

The number density of neon atoms in the three other excited states in the $38,38^{\prime}$ group were also graphically estimated and the values obtained ($20 \mathrm{~mA}, 2$ torr neon pressure) shown in Table 4. The estimated number densities are of the same order of magnitude as that of $3 s[3 / 2]_{2}^{0}$ but smaller by factors between 2 and 10 .

6/A. 3 Computer Aided Analyais (Method)

6/A. 3 (a) Methods Review

An analysis of the results, taking into account the effects of the instrument function, was carried out with the aid of a digital computer (DEC, DEC - 10). In order to do this it was necessary to devise algorithms which would provide approximate solutions to integral equations

$$
\begin{align*}
& I_{0}(\sigma)=\int f\left(\sigma^{\prime}\right) g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime} \tag{6.1}\\
& \text { and } \quad I_{0}(\sigma)=\int f\left(\sigma^{\prime}\right) \exp \left[-k\left(\sigma^{\prime}\right) 1\right] g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime}
\end{align*}
$$

from data experimentally determined and inevitably containing errors. Direct methods of obmining solutions generally encoumer difficulty as they are numerically unstable and produce spurious value divergences in the presence of experimental errors in the input data.

Both equations 6.1 and 6.2 involve convolution integrals and two direct methods of obtaining solution to this type of integral equation were examined :
(a) Fourier Transform method. [54] Denoting the Fourier transfrom of $I_{0}\left(\sigma^{\prime}\right)$, $f(\sigma)$ and $g(\sigma)$ by $T(s), F(s)$ and $G(s)$ where s is a generalised complex frequency and the transform is defined as:

$$
\begin{equation*}
F(s)=\int f(\sigma) \exp (-j 2 \pi s \sigma) d s \tag{6.6}
\end{equation*}
$$

if $I_{0}(\sigma)=\int f\left(\sigma^{\prime}\right) g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime}$
then by the convolution theorem $T=F G$ and hence $F=T / G$
Fourier Transforms $F(s)$ and $G(s)$ can be obtained by using a Fast Fourier Transform (F.F.T.) algorithm on the measured values of $I_{0}(\sigma)$ and $g(\sigma)$, and values of $f(\sigma)$ found by applying the transform to the value of $P(s)$

calculated from equation (6.7).
(b) Serial product inversion

If the functions $f(\sigma)$ and $g(\sigma)$ are represented by sequences of discrete values
(f) and (g)
$(f)=\left(f_{i}\right), i=0,1, \ldots \ldots \ldots, m$
(g$)=\left(\mathrm{g}_{\mathrm{j}}\right), \mathrm{j}=0,1, \ldots \ldots . . ., \mathrm{n}$
corresponding to samples of the function taken at even closely spaced intervals
of width w.
Then the convolution of $f(\sigma)$ and $g(\sigma), \int f\left(\sigma^{\prime}\right) g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime}$.
is approximated by sequence of discrete values
$\{h\}=\left\{h_{k}\right\}, k=0,1, \ldots \ldots, m+n$ where

$$
\begin{equation*}
h_{k}=w \sum_{i} f_{i} g_{k-i} \tag{6.8}
\end{equation*}
$$

which is termed the serial product of sequence (f) and (g) and may be written in the shorthand form $(\mathrm{h})=(\mathrm{f}) *(\mathrm{~g})$
Obtaining a solution to eq. 6.1 corresponds in this discrete representation to calculating the sequence (f) given values of the sequences (h) and (g). This may be achieved by a stepwise process, first calculating $f_{0}\left(=h_{d} / g_{0}\right)$ then the next term f_{1} and so on through the sequence [55].

Both of these solution methods are numerically unstable because they involve evaluation of expressions of the form x / y, where x and y may assume small values. When x and y do assume small values, in the presence of data errors, then the value of x / y is dominated by the effect of the errors and divergences may occur. The same type of problem was encountered in the graphical analysis, where divergent points in the wings of the spectral lines were simply ignored (- see section 6/A.2)

To overcome these divergence difficulties, a procedure was developed which provided approximate solutions to the equations by iterative refinement. Use was made of numerical analysis subroutines from NAG library wherever possible, with GINO and GINOGRAF library subroutines used for graphical output. All source coding was written in FORTRAN 77. Code listings of those program sections marked by x on the flowcharts (Figs. 44, 45, and 59) are included in Appendix B of the thesis

6/A. 3 (b) The Iterative Procedure

The procedure breaks nadurally into two separate parts; first obtain an adequate approximation to $f(\sigma)$ from equation 6.1, then use this to generate an approximation to $k(\sigma)$ from equation 6.2. The strategy adopted in developing the procedure, suggested

by D. Stacey [56], may be outlined as follows: Part 1
(1) Find a function, with sufficient perameters, that can represent $f(\sigma)$ to a good degree of approximation when suitable values of the parameters are chosen.
(2) Guess an initial set of parameters, convolve the function with the instrument function $g(\sigma)$ then compare the result with the observed profile $I_{0}(\sigma)$.
(3) Vary the parameters until the two profiles agree as closely as possible.

Part 2
(4) Find a function with sufficient parameters which can represent k(σ) to a good degree of approximation when suitable values of the parameters are chosen.
(5) Take approximation to $f(\sigma)$ found from the first part, guess initial parameters of the absorption coefficient and apply the abeorption feature to the approximation to $f(\sigma)$.
(6) Convolve with the instrument function $\mathrm{g}(\sigma)$ and compare result with the observed transmitted profile $I_{0}^{\prime}(\sigma)$.
(7) Vary the parameters of the absorption coefficient until the profiles agree as closely as possible.

6/A. 3 (c) Data Fit

Before any manipulation of the date could be carried out it was first necessary to translate the raw graphical line profiles into numerical form stored in the computer memary. To do this a peripheral digitizer (Hypad) was used which could determine the (x, y) $\mathbf{C O}$ - ordinates of chosen points to an accuracy of $\pm 0.1 \mathrm{~mm}$ and transmit them to the computer for storage, from a V.D.U. terminal. A program was written which opened a memory file of user chosen name and directed data into it. The program allowed the first line for the file to conmain information typed in by the user and was used to hold a specification of the raw experimental data, wavelength profile type erc.

With the graph paper tempararily fixed to the digitization surface, two points defining the chosen origin and baseline were digitized and then a large number of points across the line profile. For reasons discussed below more points were digitized, where the profiles changed rapidly such as near peaks, and near the ends of the interval digitized.

Fig. 43 shows a flowchart of the first stages of data proceasing carried out after digitization of a spectral line profile. The processing was broken into relatively small steps with data stored in files between execution of separate programs. Although this required extra file storage space and execution time reading and writing files it allowed

FIG. 43 FLOWCHART OF DIGITIZATION AND CUBIC SPLINE FITTING OF DATA

greater control of the process and made testing and debugging easier.
After initial digitizution of a line profile, the coordinates of points relative to the chosen origin and baseline were calculated. The program conrected for the slight aparallelism of the graph and digitizer axes due to positioning error and allowed for manual correction of baseline drift if desired. Also any points of the corrected set with x - ordinate not in strictly non - decreasing order were eliminated, as such points were unacceptable to the cubic spline fiting subroutine EO2BAF described below and could easily be generated by mistake, particulariy when digitizing rapidly changing curves such as the intereferometer I.F.

Curve fitting to the profile data, carried out next, was often easier if the data was scaled, with the y-coordinate replaced by $\ln (1+y)$. This is generally true of sharply peaked curves such as the instrument function [see 57] and usually a scaled and an unscaled version of the data were stored.

Curve fiting to the data points was necessary so that arrays of exactly evenly spaced sample values could be obtrained, and digitization errors smoothed. Least squares fits to Chebichef polynomial series and cubic splines were tried, and cubic splines found to give better results.

The fituing program called the NAG subroutine E02BAF [59] which computed a weighted least - squares approximation to the data points with spline knots chosen by the user. After retum from E02BAF the cubic spline was evaluated with NAG subroutine E02BBF [60] and the fitted curve and data points plotted on line with a graphics V.D.U., or a plot file created for subsequent output on a Benson plotter. The plot was examined by the user and new knots chosen as necessary. The process was repeated until a satisfactory fit was obtained and the lenot position and the spline coefficients stored in a file. The cubic splines were represented in the form of normalized B - splines of degree 3 [see 62,63]. The data points had equal absolute error probabilities and hence equal weights of 1 were used for unscaled data, however scaling of the data by $y \rightarrow \ln (1+y)$ required the weights to be adjusted to $1 /(1+y)$ [see 61, 57].

Algorithms which least squares fit polynomials to data can generate unwanved oscillations of value, particularly towards the ends of the x - interval digitized [61, 57]. To reduce this tendency to oscillation, extra data points, near the ends of the x - interval and in regions of abrupt change, were digitized. The scaling of the data referred to above also helped reduce unwanted oscillations when firting rapidly changing functions. The number and position of the knots are also important factors and knots were chosen so that the underlaying function being represented was separated into sections of different curvature [57].

6/A. 3 (d) Source Profile Synthesis Procedure
The generation, by iterative refinement, of an approximate solution of equation 6.1 for the source profile $f(\sigma)$, given the observed emission profile $I_{0}(\sigma)$ and the L.F. (σ), will be refered to as source profile synthesis and the approximate solution profile so generated refered to as the synthesized source profile. The convolution of the synthesized source profile with the L.F. will be refered to as the syntherized emission profile.

Once an acceptable representation of the experimentally observed emission profiles had been found, the next step in obtaining an approximate solution to equation 6.1 was choose the functional form used to represent the source profile. A function derived from a model of the primary source discharge could be used or a more generalized epresentation such as the polynomial splines used to represent the observed profiles.

A function derived from a model has the disadvantage that an adoquate model of he primary source discharge is required to start with. The source profile depends on spectral broadening and radiative transfer processes within the discharge, about which, it is difficult to have adequate information. The effect of self - absorption in regions of in homogeneous temperature creates particular uncertainty.

A further disadvantage is the loss of generality implied by model dependence. Solutions of integral equations of the convolution type similar to equation (6.1) are often required in a number of important applications and it was desirable to develop a method which could be applied generally to equations of this type.

The main advantage of a model derived function is that unwanted oscillations, which can occur with more generalized functions such as polynomials, can more easily be avoided.

The most straight forward approach, and the one adopted, was to use the same type of generalized representation of the source profile as that used when curve fitting the observed emission profile. In fact cubic spline fitting of the observed line profile was chosen in preference to a single Chebyshef polynomial fit, because a cubic spline representation of the profile was found to be less prone to unwanted oscillation in the source profiue synthesis.

The other important choice which had to be made before the source profile synthesis algorithm could be designed was the method of approximating the convolution integral. Three possible mechods were considered
(a) Fast Fourier Transform (F.F.T.)
(b) Serial product
(c) Other integral approximation

The F.F.T. method is somewhat complicated, requiring three Pourier transforms for each evaluation of the convolution integral. The principal advantage of the method is that it is porentially the fastest for sequences with large numbers of elements. If a sequence has N elements, then the number of calculations required to obtain its discrete Fourier transform by F.F.T. is $\sim \mathbf{N} \log _{2} \mathbf{N}$ [55], hence the time taken to obtrin an approximation to the convolution of two functions, represented by sequences of N elements, is roughly proportional to $\mathrm{N} \log _{2} \mathrm{~N}$. The number of calculations required to form the serial product of these sequences is $\sim N^{2}$ and other methods of approximating the integral will, at least, require numbers of calculations proportional to $\mathbf{N}^{2} . N \log _{2} N$ grows more slowly than \mathbf{N}^{2} with increasing N, and the F.F.T. method is the only computational feasible method if N is very large.

The main advantage of the serial product method is that it is straight forward and an algorithm forming the serial product of two arbitrary sequences of numbers given by eq, 6.8 can easily be constructed.

The serial product method approximates the convolution integral by a summation and some other type of integral approximation could be used. However a separate approximation of the integral would be necessary for each point at which the value of the convolution integral was desired. It would probably require more calculations, and consequently computation time, and would be more complicated to implement.

The serial product method was chosen and execution of the source profile synthesis program not found to be excessively slow as long as it involved sequences not larger than about 150 elements.

6/A. 3 (e) Source Profile Synthesis Program

The flowchart of the program which synthesized a source profile as an approximate solution to equation 6.1 is shown in Fig. 44. The main program segment in particular has been simplified for reasons of clarity, and details, such as user contro over the choice of the files opened and minimization parameters, have been omitted.

The program used the NAG subroutine E04FCF, a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of M residual functions in N variables ($\mathrm{M} \geq \mathrm{N}$), with no derivatives required [58]. B04FCP calls two subroutines supplied by the user, LSQFUN which calculates the values of the residual functions $f_{i}(X), i=1,2, \ldots, M$ at a given point X in the space of N varisbles, and LSQMON which monitors the minimization process. After an initial starting point $X^{(1)}$ is supplied, the routine generates a sequence of points $X^{(2)}, X^{(3)}, \ldots$ intended to converge to the

FIG. 44 FLOWCHART OF SOURCE PROFILE SYNTHESIS

local minimum of $F(X)=\quad \Sigma\left(f_{i}\right)^{2}, i=1,2, \ldots, M$

In this application a point X was a given ser of cubic spline coefficients and the residual functions f_{i}, the difference between elements of an array representing the observed emission profile and elements of an array representing the synthesized amission profile. The knot positions were not included in the variable set as this would have imposed constraints on the values of this subset of the variables, precluding the use of an unconstrained minimization algorithm such as E04FCF, gready complicating the problem. Constraint on the knot positions arises because the NAG routine EO2BBF, used to evaluate the cubic spline, requires that the knots be in strictly non - decreasing order and be confined to the base interval. Frilure to satisfy this condition causes immediate termination of program execution.

After initiating execution of the program, the user supplied the names of the two files holding the knot positions and spline coefficients derived from fitting of the I.F. and observed emission profile. The user also supplied the number of points to be evaluated across the observed profile and a factor controlling the accuracy to which a solution was required.

The main segment then calculated arrays ARRI and ARRP, representing the I.F. and the observed profile respectively, from the cubic spline fits as sequences of discrete values of equal sample width. A small calibration correction was necessssary for the difference in wavelength of the laser spectral line (632.8 nm) and the spectral line in question. The values of the eiements of array ARRI were normalized so that their sum was always equal to unity, and the array ARRP packed with strings of leading and trailing zeroes at each end. The two arrays were held in a common memory block so that values could be transfered to the subroutine LSQFUN, called by E04FCF, which calculated the residual functions f_{i}.

The routine E04FCF requires values to be assigned to number of parameters which control the minimization process, in addition to the number of residuals and acceptable solution accuracy [see 58]. These parameters were set to suivable values within the main program segment, however it was found convenient to have residual number and solution accuracy under user control for reasons discussed below.

After a file, of user supplied name, had been opened to hold the monitor output of subroutine LSQMON, control was transfered to NAG routine E04FCF with the spline coefficients of the observed line profile as the starting point of the minimization.

E04FCF in turn called subroutine LSQFUN wo calculate the residual function for different sets of spline coefficients. LSQFUN calculated an array of profile values with the current set of spline coefficients, packed the array with strings of leading and trailing

zeroes, formed the serial product with the array ARRI, representing the I.F., obtained from the common block and calculared the difference between resulting array and the array ARRP representing the observed profile, also obtained from common.

The serial product of two sequences of numbers, is a sequence contrining one element less than the sum of the numbers of elements in the initial sequence [55]. Consequently the serial product of ARRI and the current ARRP, calculated from the spline coefficients supplied by E04FCF, contains more elements than the array ARRP representing the observed profile. Hence when calculating the difference between the array values representing the observed profile, and serial product of ARRI and the current ARRP, a large number of elements had to be ignored. The packing of the current and observed ARRP with strings of zeroes at the array ends was done to prevent possible loss of significant residual contributions from the sequence ends. Fifteen zeroes at each end were found to be sufficient to ensure that the residual were very small near the ends of the sequance of residuals, hence lost elements of small value.

The sum of the elements of the serial product of two sequences of numbers, is the product of the sums of the elements in the two initial sequences. The normalization of the elements of ARRI so that they summed to unity, ensured that the sum of elements of the array representing the current profile, and hence the area under the profile it represented, remained unchanged by the formation of the serial product with ARRI.

During the process of minimizing $\Sigma\left(f_{i}\right)^{2}$, EO4FCF provided useful information on its progress and this information was handled by monitor subroutined LSQMON. The frequency with which LSQMON was called was determined by the value of an interger parameter on entry to EO4FCP, and as the monitor information was found very useful this parameter was set so that LSQMON was called once every iteration.

The information available was extensive and some compaction was necessary to save space and make the information more easily intelligible. The information available from E04FCF and that file stored by LSQMON was :
(a) co-ordinates of the current point X (i.e. the current set of spline coefficients)

- file stared with no reduction.
(b) the current values of the residuals $f_{i}-F=\Sigma\left(f_{i}\right)^{2}$ stored
(c) an approximation to the Jacobian Matrix $\frac{\partial f}{\partial X_{j}}$-gradient vector $g_{i}=\frac{\partial F}{\partial X_{i}}$ and $g^{r} g$ - stored
singular values of the current approximation to the Jacobian matrix - stored
(c) the grade of the Jacobian Matrix - stored
(f) number of iterations performed by EO4FCF so far - stored

The number of times LSQFUN has been called - stored
On exit from E04FCF, returning to the main segment it was important to check the value of the interger parameter IFAIL, which indicated the exit status. On successful exit IFAIL $=0$, however if IPAIL $\neq 0$ some form of failure had occurred [see 58]. The most common non - zero exit value of IPAII was 3 , indicating that no soceprable solution had to be found. This could happen if the parameter XTOL, which specifies the accuracy to which the solution was sought, was set too small.

If an exit with IFAIL $=3$ ccurred, then control was returned to the point in the main segment at which the user determined the accuracy of acceptable solutions and E04FCF re - entered. It was found convenient to fix the value of XTOL by the user specifying the value of a scale factor XTOLSF, so that XTOL $=$ XTOLSF $\sqrt{ } \varepsilon$, where ε is the smallest positive real number such that $1.0+\varepsilon>1.0$. The value of ε is machine dependent and was obtained with NAG routine X02AAF. Values of XTOLSF were ~ 10 .

Exit from E04FCF with a non - zero value of IFAIL other than 3, resulted in termination of program execution. The program was restarted after suitable changes in the light of the exit value of IFAIL, and the other routine parameters.

On exit from EOAFCF with IPAIL $=0$, indicating that an acceptable local minimum of $\Sigma\left(f_{i}\right)^{2}$ had been found, subroutine parameters provided the solution point $X^{(k)}$ (i.e. the set of spline coefficients of the synthesized source profile) and information describing the nature of the solution. The user supplied the names for two files; the solution set of spline coefficients and associated knows were stored in one file and the solution description stored in the other.

The solution description, complementing the information provided by the last call of LSQMON by E04FCP before exit, included a complete list of the residuals f_{i} for the solution obtained.

A plot of the synthesized source profile and observed emission profile data points could be produced if desired. In addition the user could return execution to the point in the main segment at which the number of residuals and scceptable solution socuracy were determined, or restart the program altogether. Fig 49 shows an example of a typical plot of a synthesised source profile and observed emission profile with a plot of the residual values below.

The quality of solution fit could be judged from the magnitudes of the residual values (i.e. the differences between the synthesized emission profile and the observed emiscion profile) in comparison to the estimated experimental error ($\sim \pm 1.5 \mathrm{~mm}$ deflection). These residual values showed an oscillatory pattern and this is a general feature of any polynomial representation. The magnitude of these oscillations, and bence

the quality of fit, was found to depend on a number of factors.
In particular :
(a) the number of residuals calculated
(b) Whether scaled data was used or not
(c) the accuracy of acceptable solutions determined by the value of XTOLSF
(d) the number and positions of the bnoss of the cubic spline representation.

Optimum values of these parameters were determined by trial and error. Choice of the optimum number of residuals calculated was a compromise between the quality of fit obtained and program execution time. The number of residuals calculated had to be sufficiently high so that the serial product of discrete array representation of the profiles was a good approximation to their convolution. The execution time of the program was dominated by the time taken to calculate the serial product of the sequences of discrete values, including the total of 30 extra zeroes added to the beginning and end of the sequences to improve numerical stability. It was found that the number of unpacked residuals had to be greater than about 50 and less than about 12 , and 80 residuals was chosen as a reasonable value

Scaling of the profiles had a relatively small effect on the values of residuals obtained, usually moving the position of value oscillations without greatly changing the maximum values. As a result unscaled representations of the recorded and synthesised source profiles were used; scaling in the representation of the L.F. was always used as described in section 6/A. 3 (c).

The accuracy of acceprable solutions determined by the value of XTOLSF also had a relatively small effect on the residual values obtained. Setting of this parameter to too small a value (found to be about $\boldsymbol{\sim} \mathbf{2 0}$) resulted in an exit from NAO routine with IFAIL $=3$ indicating that an scceptable solution had not been found. However, the synthesized source profiles in these cases were found to be similar to the acceptable solutions obrained by increasing of this scale factor and in practice it was set at 20 and IFALL $=3$ solutions accepted.

With suitable choices of (a), (b) and (c), which once determined usually did not have to be changed, the most important factor was (d), the knot set used. If an acceptable fit could not be obtained with the initially chosen set of knots, then a new set whs chosen, and the observed profile fitted again and the synthesis program renun. This process was repeated until an acceptable fit was obrained. Facility at choosing lonot sets increased with practice and an appropriate set could usually be obtained on the first or second attermpt.

6/A. 3 (f) Absorption Profite Synthesis Procedure

Once a source profile has been synthesized, with acceptably small residuals, as an pproximate solution to equation 6.1 , it is possible to progress to the synthesis of an bsorption profile as an approximate solution to equation 6.2.

As in the synthesis of the source profile, the functional form of the profile to be synthesized has to be decided. As before, an initial choice has to be made between a generalized representation, such as the cubic splines used in the case of the source profile, and a function derived from a model.

The advantages and disadvantages of the two approaches are similar to those already described for the source profile case (see 6/A.3 (d)), however a model derived unction was chosen to represent the absorption profile. There were several reasons for this different choice of functional form,
(a) Absorption profiles can be more readily modelled than emission line profiles. Unaffected by self - absorption, they can generally be well represented by Gaussian or Voigt profiles.
(b) Solutions to integral equations of the form of eq. 6.2 are not required as often as solutions to convolution integral equations like eq. 6.1 , hence the desirability of a general method of approximate solution was not as great.
(c) Polynomial spline functions had been used to represent the synthesized source profile and some oscillations of value had inevitably occurred. As the synthesis of the absorption profile depended on the source profile, these value oscillations could "seed" large oscillations in the absorption profile synthesized if represented in a similar manner.
(d) The ease with which x and y shifts of the profile, corresponding to amplifier drift effects and shift of the absorption profile relative to the emission line profile, could be incorporated in a model derived function
Having decide to use a model function representation of the absorption profile, the exact function form must be determined. A Gaussian profile has the great advantage over a Voigt profile that an explicit analytic function is available for its calculation. A Voigt profile can only be obtained from an approximation to the convolution integral of Gaussian and Lorentrian functions.

A Gaussian function representation would clearly be easier to implement, and importantly, Gaussian function values could be obtained much faster during program execution than Voigt profile values generated by an approximation algorithm. Such an algorithm would have to approximate the convolution integral each time a profile was required or interpolated from an extensive pre - calculated table of values. In either case it
would require substantial numbers of calculations. As the subroutine which calculate the residuals is called many times by E04FCF during the minimization, slow evaluation of the absorption profile would entail a substantial increase in overall execution time.

A heuristic approach was taken based on the size of the residual values obtsined, starting with a Gaussian type function and modifying its form if necessary to obtain a satisfactory set of residuals. It should be nored that a true theoretical expression is not required, merely one that with suitable values of its parameter can approximate the profile closely enough to obtain residual values of the order of experimental error.

6/A. 3 (g) Absorption Profile Syntheais Program

The flowchart of the program which synthesized an absorption profile as an approximate solution to eq. 6.2 is shown in Fig. 45. The program structure is similar to that used in the program to synthesize the source profile (compare Fig. 44) and as before the main segment flowchart has been simplified, and control details omitted, for clarity.

The user provided the names of three files in which were stored the cubic spline coefficients and associated knots representing the instrument function, synthesized emission profile and observed transmitted profile, respectively. When the user had specified the number of points to calculated across the synthesized profile, three arrays of numbers representing these profiles were computed and held in a common memary block.

The program main segment set suitable values for most of the parameters of E04FCF and when the user had specified the scale factor controlling the accuracy of acceptable solutions and the name of a file to openned to hold the minimization monitor output of LSQMON, program control was transferred to E04FCF.

The coordinate of the point $X^{(0)}$, in the space of variables, in this case correspond to parameters specifying the Gaussian absorption profile and three $x-y$ shifts, i.e. :
(a) the absorption profile peak height
(b) the profile width
(c) relative shift of absorption and emission spectral lines.
(d) shift in x-direction due to amplifier drift
(c) shift in y-direction due to amplifier drift

The values at the starting point of the minimization, for the absorption profile peak height and width were estimates derived from the preliminary graphical analysis (see 6/A.2) and the three shift components set to zero.

After entry, NAG routine E04FCF sought to minimize $\mathrm{FCX}=\Sigma\left(\mathrm{f}_{i}\right)^{2}$, where the residual functions f_{i} were the differences between corresponding elements of two arrays, one representing the observed transmitted profile and the other the synthesized

transmitted profile. The values of f_{1} were calculated by calls to subroutine LSQFN and the progress of minimization monitored with calls to subroutine LSQMON. This was the same subroutine used to monitor the minimization process in the source profile synthesis described in 6/A. 3 (e).

On entry to subroutine LSQFN from E04FCF at a given variable point $X^{(\mathbf{k})}$ an array ARRABS was computed representing the term $\exp [-k(\sigma) 1], 1=0.05 \mathrm{~m}$, where $\mathbf{k}(\sigma)$, the absorption coefficient was a Gausssian function depending on the first three components of $X^{(k)}$ corresponding to peak height, width and wavenumber shift. The ranges of function arguments had to be limited to prevent floating point underflow errors. The number of elements of ARRABS was the same as the number of elements as the array ARRE representing the synthesized source profile, held in the common memory block.

The component by component product of the two arrays ARRT, was formed representing the transmitted profile $f(\sigma) \exp [-\mathbf{k}(\sigma) 1]$, and array ARRT packed with leading and trailing zeroes (see 6/A. 3 (e)).

The serial product of ARRT (packed with zeroes) was formed with the array ARRI representing the instrument function, the values of which were obtained from the common memory block. As in the synthesis of the source profile the elements of ARRI had to be normalized so that they summed to unity.

Shifts in the X and y directions, controlled by the 4th and 5th component of $X^{(0)}$ corresponding to amplifier drift, were introduced, and the difference in element values computed, between the resulting array and ARRO representing the observed transmitted profile obtained from the common memory block. These residual values f_{l} were then transfered and control returned to E04FCF.

On exit from E04FCF, returning to the main program segment, the value of the integer parameter IFAIL, indicating the exit status, was examined in the same manner as in the synthesis of the source profile and the program restarted if necessary at a suitable point in the execution.

Exit from E04FCF with IFAIL $=0$, indicated that an acceptable local minimum of $\Sigma\left(f_{i}\right)^{2}$ had been found and the coordinates of the final point $X^{(k)}$ (i.e. the optimal absorption and shift parameters) and solution description stored in files, named by the user as in the source profile synthesis.

Residual values of the order of the experimental error -1.5 mm (deflection) could be obtained and Fig. 52 shows a plot of a typical set of residuals at an acceptable solution point.

The integration of the synthesized absorption coefficient required in Eq. 6.4 in

order to calculate the absorbing atom number density was approximated by means of the traperium rule applied to a large number of points over the base interval (200 points was found to be sufficient). This numerical method was used in preference to one based on analytic integration, as no modification was necessary if the assumed functional form of the absorption coefficient was changed, and the method did nor depend on the feasibility of analytical integration.

The dependence of the calculated values of number density on the qualities of fit at the two stages of solution synthesis and parameters such as the number of residuals is discussed in sections 6/A.4 (c) and (d) describing the characteristics of the analysis output.

6/A.4 Computer Aided Analysis (Output)

6/A.4 (a) Correction of Recorded Profiles for Effect of L.F.

Before discussing the emission profiles, corrected for instrumental broadening, obtained by the synthesis method described above, it is worth enquiring what may be expected from general considerations.

Eq. 6.1 relating the observed emission profile $h(\sigma)$ (denoted by $Y(\sigma)$ on $p 90$), the true source profile $f(\sigma)$ and the instrument function $g(\sigma)$,

$$
\begin{equation*}
h(\sigma)=\int f\left(\sigma^{\prime}\right) g\left(\sigma-\sigma^{\prime}\right) d \sigma^{\prime} \tag{6.1}
\end{equation*}
$$

may be written more compactly as

$$
\begin{equation*}
h=f * g \tag{6.10}
\end{equation*}
$$

with h, f and g representing the complete functions $h(\sigma), f(\sigma)$ and $g(\sigma)$ respectively, and * convolution. How may we expect the form of h, f and g to be related?

These questions may be divided into two components:
(a) What shapes of function are likely for f and g ?
(b) How is the shape of the function h likely to be related to functions f and g of these shapes?
Clearly, as frepresents the physical intensity distribution of a spectral emission line, its values are strictly non - negative, finite, and have a finite integral so that, $f(\sigma) \geq 0$ for all σ and $\int f(\sigma)$ d σ is well defined. Furthermore f is localized so tha an interval [a, b] may be defined outside which, values of $\mathrm{f}(\sigma)$ are negligible. i.e. $f(\sigma)=0$ if $\sigma<a$ or $\sigma>b$.

The simplest form that f can have is that of a single peaked function with "wings" decreasing asymptotically to zero such as that shown in Fig. 46 (a), or it may have a more complex structure, with a number of peaks separated by troughs, such as that shown in Fig. 46 (b).

(a)

(b)

TYPICAL SOURCE PROFILE WITH SINGLE PEAK

TYPICAL SOURCE PROFILE WITH THREE PEAKS AND TWO TROUGHS

TYPICAL INSTRUMENT FUNCTION WITH SINGLE PEAK NARROW relative to source PROFILE

FIGS. 46 (a), (b) \& (c) TYPICAL FORMS OF SOURCE PROFILE AND INSTRUMENT FUNCTION

Functions g and h however, represent distributions of values of deflection on an instrument output device, in this case an instrument output device, in this case an X - \mathbf{Y} recorder, and are only strictly non - negative if the baseline is correctly adjusted to compensate for any amplifier drift, and this will be assumed.

The instoment function of a reasonably well adjusted Fabry - Perot interferometer is a "comb" of impulse - like peaks of constant separation $\Delta \sigma$, the free spectral range (see section 5/B.2). If the free spectral range is much greater than the width of the spectral line, i.e. $\Delta \sigma * b-a$, then no overlap between different orders will occur and we may confine our attention to a single order. Further, if much useful information is to be obtained about the spectral line of interest the instrument function must be significantly narrower than this spectral line, in which case g is a localized, narrow function with a single peak, such as that shown in Fig. 46 (c). Significant values of $g(\sigma)$ are limited to an interval and the integral of g is well defined. As the units of intensity measurement are arbitrary, depending on overall gain, the shape of the L.F., rather than the magnitude of values, is of interest, and it will be assumed that g has been normalized to unity so that $\int \mathrm{g}(\sigma) \mathrm{d} \sigma=1$.

Having established the possible shapes of the functions fand g, it must now be considered what shape of function will result from their convolution.

The convolution of one profile function with another will in general have a "smoothing" effect, leading to a profile which is broader. and less rapidly varying than either of the initial functions. In a case such as that under discussion, where one of the functions (g) has a rapidly varying "impulse - like" profile and the other function (f) varies relatively slowly, the result of their convolution will be a "smoother" version of the relatively slowly varying function (f). Consequently peaks of the source profile will be reduced, troughs "filled - in" and the wings moved further outward, while keeping the area under the profile constant, as shown schematicly with arrows in Figs. 47 (a), (b) and (c). Hence a procedure which corrects observed emission profiles for the effect of instrumental broadening, should raise peaks of the profile, deepen troughs and move the wings inward, while keeping the area under the profile constant, as shown in Figs 48 (a), (b) and (c).

6/A.4 (b) Syntheaized Source Profiles

Some typical synthesized source profiles, along with observed profiles and plots of the residual between the latter and the synthesized emission profiles, are shown in Figs. 49, 50 and 51. As the source profile synthesis procedure was developed as part of the synthesis procedure of absorption profiles,it was mainly applied to profile recordings obtained in the absorption measurements. The primary source, emission line profiles in

FIGS. 47 (a),(b) \& (c) SCHEMATIC DIAGRAMS SHOWING CONVOLUTION OF TYPICAL I.F. AND SOURCE

PROFILES

FIGS. 48 (a),(b)\&(c) SCHEMATIC DIAGRAMS SHOWING CORRECTION OF TYPICAL OBSERVED SPECTRAL LINE PROFILES FOR EFFECT OF I.F.

 PROFILE, \& RESIDUAL VaLUES
position

$$
\begin{aligned}
& \text { - Spline knot } \\
& \text { oposition }
\end{aligned}
$$

FIG. 50 SYNTHESIZED TRANSMITTED SOURCE PROFILE \& RECORDED TRANSMITTED

these experiments had for the most part single symmetrical peaks, as shown in Fig. 49, the exception was Ne I 640.2 nm which had a single peak but with a noticeably asymmetric top, shown in Fig. 51. The synthesis procedure was also applied to some spectral line recordings having more complex profiles with two peaks and a trough as shown in Fig. 50. This example is not a pure emission profile but a transmitted probe beam spectral profile.

As can be seen from these examples, the synthesized profiles obtained conformed well with that expected of specral profiles corrected for the effect of instrumental broadening as described in section 6/A.4 (a) above. If one compares the synthesized profiles with the recorded spectral profiles the principle effects of the correction procedure may be summerized as :
(a) Peaks of the recorded profiles were raised
(b) Troughs of the recorded profiles were deepened
(c) Wings of the recorded profiles were moved inward
(d) The width of profile (at half peak height) was reducea slighly but not by very (e) The flattened peak of a recorded profile, deepened into a trough (see Fig.51) As discussed in section $6 / \mathrm{A} .3(\mathrm{~g})$, the quality of fit obtained depended on the values chosen for parameters of the synthesis procedure. The synthesized source profiles shown in the examples were generated with suitable values of these parameters to obain good fits over the regions containing the most significant spectral information, though oscillations of value about zero can be detectod.

6/A. 4 (c) Synthesized Absorption Profiles

A typical synthesized absorption profile obtained and plot of the corresponding residual values is shown in Fig. S2. Naturally the quality of fit obtained for the synthesized absorption profile depended on the quality of fit obtained for the synthesized source profile and the final residual values were usually about double those at the source profile stage. The residual values obtained in the absorption profile synchesis, also depended on the number of residuals calculated, the value of the solution accurncy scale factor XTOSF and whecher scaled data was used, in a manner similar to that discussed in 6/A. 3 (e) for the source profile synthesis. The number of residuals in the absorption profile synthesis was fixed at 80 , the same number as in the source profile synthesis, not because they had to be the same but because 80 was close to the optimum value in both cases. A value of XTOLSF of 20 and unscaled data was used, the same as in the source profile synthesis.

The Gaussian functional form assumed for the absorption profile was found to be

sufficient to obtain a reasonable quality of fit relative to the underlaying experimental error ($\pm \sim 1.5 \mathrm{~mm}$) and approximation to the area under the profile needed to calcula the number density of absorbing atoms. The general pattern of residuals obtained, with greater values in the wings and centre of the profile did suggest a small Lorentrian component which would however have made little difference to the area under the curve, and a Lorentzian component was not introduced into the functional representation of the absorption profile.

6/A.4 (d) Excited Atom Number Densities

Plots of the number densities of neon atoms in the four $3 \mathrm{~s}, 3 \mathrm{~s}$ excited states, obtained by the synthesis method, against discharge current, at pressures of 1,2 and 5 torr are shown in Figs. 53, 54 and 55. Values of number density obtained by this method, which were in the range $\sim 10^{16}-10^{17} \mathrm{~m}^{-3}$. were of the same order of magnitude as those obtained from the graphical method (see 6/A.2), differing by factors ranging from $\sim 1-2$.

Values of number density for the same excited state obtained from different spectral lines with the same lower level, were in agreement to within $\sim 10-25 \%$, consistant with the uncertainties in the values of individual transition probabilities stated by NBS as being in this range [53]. For example, Figs. 54 (a) and (b) show plots of number density against current for $3 \mathrm{~s}\left[\frac{3}{2}\right]_{2}^{0}$ at 2 torr, obtained from two different spectral lines Ne I 588.2 and 640.2 nm . The two plots are very similar to each other and that obtained for 614.3 nm (not shown) also terminating in $3 \mathrm{~s}\left[\frac{3}{2}\right]_{2}^{0}$. The error bars shown in all these plots represent estimates of error excluding that due to uncertainty in the value of transition probabilities.

Plots against lamp current of the sum of the number densities of excited atoms in the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group of states are shown in Figs. 56 (a) and (b) and 57 for pressures of 1 , 2 and 5 torr.

6/A. 4 (e) Estimation of Errors
A number of factors contributed to the uncertainty in the values of number density obtained and these were, in descending order of importance:
(a) Uncertainty in the values of transition probability
(b) Variations in recorded profiles due either to amplifier drift or variations in primary source intensity
(c) Poor quality of fit in the two stages of the synthesis procedure
(d) Error due to the purely Gaussian form assumed for the absorption profile.
(e) Errors due to numerical approximation such as the serial product approximation

FIGS. 53 (a)\&(b) PLOTS AGAINST LAMP CURRENT OF NeI EXCITED STATE NUMBER DENSITIES AT 1 TORR

FIGS. 54 (a) \& (b) PLOTS AGAINST LAMP CURRENT OF NeI EXCITED STATE NUMBER DENSITIES AT 2 TORR

FIGS. 55 (a)\&(b) PLOTS AGAINST LAMP CURRENT OF NeI EXCITED STATE NUMBER DENSITIES AT 5 TORR

FIGS. 56 (a)\&(b) PLOTS AGAINST LAMP CURRENT OF NeI EXCITED STATE NUMBER DENSITJES SUMMED OVER 3s,3s' LEVELS

124

FIG. 57 PLOT AGAINST LAMP CURRENT OF NeI EXCITED STATE NUMBER DENSITIES SUMMED OVER 3s, $3 s^{\prime}$ LEVELS

to the convolution integral and the use of the trapesoidal rule to evaluate the area under the absorption profile.
The values of transition probability used, were classified by NBS [53] with an arbitrary notation $A A, B, C, D$ and E indicating the uncertainty limits of the value provided. The values for the spectral lines used in the absorption measurements were classified as B^{-}or B , with uncertainty of B stated as being within 10% and of C within $\mathbf{2 5 \%}$. Hence uncertainty in the values of transition probability introduced an uncertainty of about $\pm \sim 15 \%$ in the values of absolute number density calculated; so that number densities calculated for the same atomic state with different spectral lines should agree within $\sim 30 \%$, consistent with that obtained - see Figs 54 (a) and (b) -. This uncertainty of $\sim 15 \%$ due to the uncertainty in values of transition probability was the dominant source in error the absolute values of number density.

For a given spectral line and vaiue of transition probability, uncertainty in the relative variation of the values of number density with current and pressure, depended on the other error contributions. Uncertainty in the values of number density due to drift in the recorded profiles and poor filling during the synthesis procedure were estimated by noting the change caused in the final calculated value, by changing these factors.

Uncertainty due to drift of the recorded profile intensities (a) was estimated by calculating a number of values using the emission profiles ($\mathrm{i}=0$) reconded before and after a set of transmitted intensity profiles recorded at different H.C. discharge currents. The two values differed by up $t \sim \sim 5 \%$ and $\pm 5 \%$ was taken as an estimate of the uncertainty in the value of number density due to drift of reconded intensity.

Poor fitting during the synthesis procedure (c) was found to have considerably less effect on the final number density values. For results recorded at lamp pressures of 1 and 2 torr the values obtained when considerable care had been taken to ensure good fitting, with residual values much less than experimental error in deflection ($\pm 0.15 \mathrm{~cm}$), differed by only $\sim 1-2 \%$, from those obtained for the same recorded profiles where the fitting had been poor, with maximum residual values several times the experimental error. Hence the uncertainty in the values of number density obtained, due to variations in the quality of fit was estimated as $\sim \pm 1.5 \%$ for 1 and 2 torr results, increasing to about $\pm 4 \%$ for results recorded at 5 torr lamp pressure or very low degrees of absorption.

The uncertainty in values due to error contributions (d) and (e), a small Lorentrian component in the absorption profile and errors in numerical approximation respectively, were estimated to be not greater than 1% and were neglected as relatively insignificant.

The combined effect of contributions (b) and (c) to the uncertainty in relative number density values obtained (as indicated by the error bars in Figs. 53 to 55) was

estimated about $\pm 5 \%$ at 1 and 2 torr and about $\pm 8-10 \%$ at 5 torm.

6/B TOTAL ABSORPTION MEASUREMENTS

Spectral absorbances, defined as the logarithm of the ratio of the probe beam spectral intensity with and without absorption,
$A=\log \frac{I(i=0)}{I(i)}$
were calculated for the Ne I 640.2 nm total absorption results shown in Fig. 26. Plots of absorbance (A) against lamp current (i) for the 1 and 5 torr results are shown in Figs. 58 (a) and (b).

The error bars shown in the A/i plots, corresponding to relative errors of $\sim \pm 4 \%$, were obtained by recalculating absorbance at a typical point with values of intensity deflection differing by the estimated error in deflection of $\sim 1.5 \mathrm{~mm}$

Principal features of these A / i curves are :
(i) Sudden increase in absorbance to within $\sim 30 \%$ of maximum value as soon as H.C. discharge is initiated at the lowest current at which a discharge could be maintained ($\sim 0.5 \mathrm{~mA}$)
(ii) Slow variation of absorbance with lamp current with value changing by no more than $\sim 30 \%$ over a range of current of $0.5-50 \mathrm{~mA}$.
(iii) Smooth increase of absorbance with current for 1 torr results.
(iv) A peak in absorbance at $\sim 5 \mathrm{~mA}$ for the 5 torr results with very slow change with current thereafter.
Comparing these plots of absorbance against lamp current with plots of the values of number density of $3 \mathrm{~s}[3 / 2]_{2}^{0}$ obtained by the Fabry - Perot scanning method shown in Figs. 5.3 (a) and 5.5 (a), there is close similarity between the forms of the curves obtained by the two methods.

6/C I/ MEASUREMENTS

6/C. 1 Fitting Procedure and Computer Program
The procedure used to fit the I / i curve data to various possible model functions, employed the same NAG subroutine E04FCF as was used in the profile syntheses [see 6/A. 3 (e) and (g) to minimize the sum of square of residuals by varying the components of a vector X. V/i data curves to be fitted were digitized at 2 mA intervals and then the values corrected for the orientation of the graph on the digitizer pad and the scaling of the current axis and the data stored in a file. The summed number density/current ($\Sigma N_{j}(i) / i i$) curves for 1,2 and 5 torr were processed in a similar manner but with points digitized more densely, and the values representing the curves then

FIGS. 58 (a) \& (b) PLOTS AGAINST LAMP CURRENT OF SPECTRAL ABSORBANCE AT 1\&5 TORR FOR NeI 640.2 nm

fitted to cubic spline representations with a program using NAG subroutine E02BAF and the spline coefficients and knots stored in files. This cubic spline fitting procedure was similar to that used when fitting the spectral profiles in the synthesis procedure (see 6/A. 3 (c) for further details).

The flow chart of the main fitting program is shown in Fig. 59. After initiating program execution the user provided the name of the file containing the I / i data to be fitted and chose the model to be used in the fit. The choice of model fixed the value of an integer identifier which controlled program execution approproiately for each type of model, and determined how the residual values depended on the components of \mathbf{X}.

When the name of the I / i data file had been provided, the file of this name was opened and intensity and current values read, along with the pressure at which the results had been obtained, wavelength and experimental run information. If the fitting model required $\Sigma N_{j}(i) / i$ values, then a file containing the cubic spline fit of the curve at the correct pressure (1,2 or 5 torr) was opened and read. An array of $\Sigma \mathrm{N}_{\mathrm{j}}(\mathrm{i})$ values at the current values obtained from the file containing the I / i data were calculated from the spline knots and coefficients.

The arrays of intensity and current values from the data file, array containing values of summed excited state number density ($\Sigma \mathrm{N}_{\mathrm{j}}(\mathrm{i})$) at these current values, and the model identifier were stored in a common memory block (blank common) so that the values could be accessed by RESI2, the subroutine which evaluated the residuals f_{i} without having to be transfered through the NAG routine E04FCF. The value of a given residual was the difference between the observed intensity deflection and the deflection calculated from the model function at the observed value of current.

For the starting point of the minimization process the first component of X was set to 0.5 and all other components set to zero. The number (N) of components of X depended on the model that was chosen and the number of residuals fixed by the number of I/i points stored in the file. The choice of the other input parameters required by E04FCF was similar to that used in the synthesis procedure (6/A.3 (g)) and will not be discussed further.

On entry to EO4FCF the subroutine sought to minimize the sum of residuals $\Sigma\left(f_{i}\right)^{2}$ by varying the components of X as it did so information about the minimization process was provided by E04FCF and handled by monitor subroutine LSQMON and compressed information stored in a file (see 6/A.3 (g) for further details).

The subroutine RESI 2 was called by EO4FCF in order to calculate the array of residual values for a given set of components of X and model identifier. The physical models assumed the components of X to be positive, however E04FCF sought

FIG. 59 FLOWCHART OF $1 / i$ FITTING PROGRAM

unconstrained minima and would generate negative values of the components if allowed to do so. To ensure that only positive values of the components of \mathbf{X} were examined in the minimization process. RESI2 replaced the components of \mathbf{X} by their absolute value immediately after entry irrespective of the model identifier value. RESI2 then calculated the set residual values for the current X, using the arrays transfered from common and the given model.

The model functions used in the fitting, fell into two groups denoted by A and B with each model group containing several versions. The physical bases of the model functions are discussed separately below (see 6/C.). The models in group A did not use data derived from the measured number densities, those in group B did. The only difference between B 2 and B 5 is the order in which the terms are evaluated.

	Group A	
Al	$\mathrm{I}=$	$A^{\prime} \mathrm{i}\left(1+\mathrm{B}^{\prime} \mathrm{i}\right)$
A2	$\mathrm{I}=$	$\frac{A^{\prime} i\left(1+B^{\prime} i\right)}{(1+C i)}$
A3	$\mathrm{I}=$	$A^{\prime} \mathrm{i}\left(1+\mathrm{B}^{\prime} \mathrm{i}\right)(1-\mathrm{Hi})$
A4	$\mathrm{I}=$	$\frac{A^{\prime} i\left(1+B^{\prime} i\right)(1-H i)}{(1+C i)}$
B1	Group B $\mathrm{I}=$	Ai($1+\mathrm{B} \sum \mathrm{N}(\mathrm{i})$)
B2	$\mathrm{I}=$	$\frac{A i\left(1+B \sum N(i)\right)}{(1+C i)}$
B3	$1=$	
B4	$\mathrm{I}=$	$\frac{A i\left(1+B \sum N(i)\right)\left(1-G \sum N(i)\right)}{(1+C i)}$
B5	$\mathrm{I}=$	$\frac{i A+i E \sum N(i)}{(1+C i)}$
B6	$\mathrm{I}=$	Ai($1+\mathrm{B} \boldsymbol{\sum N (i)) + D}$
B7	$\mathrm{I}=$	$\frac{A i\left(1+B \sum N(i)\right)+D}{(1+C i)}$
B8	I =	$\left(\mathrm{Ai}\left(1+\mathrm{B} \sum \mathrm{N}(\mathrm{i})\right.\right.$) +D$)(1-\mathrm{Hi})$

The program was structured so that additional model functions could be

 introduced with littue difficulty into the software in the light of the fits obtained with the model functions tried initially. Model functions A2 and B2 were the first to be tried and the others listed, introduced later.The integer parameter IFAIL (see 6/A. 3 (f)) set to 1 before entry to EOFCF was

examined on exit, with IFAIL $=0$ or 3 accepted as a solution. In the event of an IFAIL $=$ 3 exit from E04FCF the minimization could be rerun with a greater scale factor XIOLSF (see 6/A. 3 (f)) but this was not found to be necessary as it made little difference to the minimum point obtained. On exit with IFAIL $=2$, indicating a minimum had not been reached within the prescribed number of interations ($400 \times \mathrm{M}$), an option was provided to re-enter EO4FCF using the final point of the minimization just obtained, as a starting point. Exit with IFAIIL $=0$ or 3 was usually obtained after one rerun of this type after an exit with IFAIL $=2$.

After an acceptable minimum had been obtained (IFAll $=0$ or 3) the fiting function and the I/i data points to be fitted were plotted, with the residual values shown beneath (see Fig. 61). A plot was created on the VDU screen and a hard copy plot created on a Benson plotter as an on - line plotter (eg. an HP plotter) was not available.

The components of \mathbf{X} at the solution point, model function used, and the name of the I/ data file and monitor output file, were finally stored in a solution file.

The user then had the option to rerun the fiting of the $1 / 1$ data with a different model function or to rerun the program with a different set of I/i data.

6/C. 2 Physical Models of I/i Curves

A model function for H.C.L. Ne I I/i curves was proposed by Howard et al [38] and had the form : -
$I=$

$$
\frac{A^{\prime} i\left(1+B^{\prime} i\right)}{(1+C i)}
$$

In the physical model from which this function was derived, the population of atoms in the upper level of the transition, and hence the intensity of corresponding spectral emission was determined by the relative magnitudes of four rates - represented schematically in Fig. 60 -: -
(a) the rate of single - step excitation by electron collision from neon ground state.
(b) the rate of two - step excitation by electron collision via an intermediate state.
(c) the rate of de - population by electron collision (further excitation, de - excitation or ionization)
(d) the rate of radiative de-excitation.

If the drift velocity of electrons within the discharge is independent of discharge current, then the electron number density and hence the rate of electron collisions with neon atoms will be proportional to current. Consequently the rate of single - step excitation by electron collision will be proportional to current, giving rise to linear term $\mathbf{A i}$, with the magnitude of \mathbf{A} depending on the single - step excitation rate and intensity scaling. Similarly the rate of de - population by electron collision will also be

FIG. 60 EXCITATION \& DE-POPULATION PROCESSES OF NeI EXCITED STATE

proportional to the discharge current giving rise to the term $1 /(1+\mathrm{Ci})$ with the magnitude of C depending on the relative magnitudes of the rates of de-population by electron collision and raciation.

The rate of two - step excitation by electron collision via an intermediate state will depend on the rate of electron collision with neon atoms in the intermediate state. If it is assumed that the number density of atoms in the intermediate state is proportional to discharge current then the rate of two - step excitation will be proportional to the square of the current, giving rise to the term ($1+\mathrm{Bi}$) with the magnitude of B depending on the relative magnitudes of the rases of single and two - step excitation

For such two - step excitation to be probable the number density of atoms in the intermediate staic would have to be relatively high, suggesting that the intermediate state was metastable or quasi - metastable. A suitable candidate for this intermediate level was metastable state $3 \mathrm{~s}[3 / 2]_{2}^{0}$.

The detection of self - reversal in the profiles of a number of the Ne I emission lines terminating in $3 \mathrm{~s}[3 / 2]_{2}^{\circ}$, recorded by means of Fabry - Perot interferometry by the author - see 4/A.2 (a) -, confirmed that this state was indeed highly populated. However direct measurements of the number densities of neon atoms in all four of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group of excited states, carried out subsequently by the author - see $6 / \mathrm{A} .4$ (d) - , show that the number density of neon atoms in excited state $3 \mathrm{~s}[3 / 2]_{2}^{0}$ is not proportional to discharge current. Furthermore the number densities of atoms in the other three states of the group (one metastable, two non - metastable) were shown to be significant with number densities down by factors between 1 and 10 from that of the $3 \mathrm{~s}[3 / 2]_{2}^{\rho}$ state, the most highly populated of the group.

With direct information about the number densities of excited neon atoms in the $3 \mathrm{~s}, 3 \mathrm{~s}$ group of state within the discharge available, the I / i model function had to be modified, as the assumption of the proportionality between the number density of the intermediate state and discharge current had been proved incorrect.

If the number density of excited neon atoms in the four states in $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group are denoted, at a given current i, by $N_{j}(i), j=1,2,3$ or 4 , with the j index indicating the level in order of increasing energy, then the rate of excitation of the upper level of a spectral line by two - step excitation via any of their levels will be proportional to $i \sum_{j} w_{j}(i)$ where w_{j} are weighting factors depending on the cross sections for excitation, by electron collision, from each of the four levels to the upper level of the transition corresponding to the spectral line. If it is assumed that the cross sections are equal then the rate is proportional to $\mathrm{i} \Sigma \mathrm{N}_{\mathrm{j}}(\mathrm{i})$, the four states of the group acting as

one 'super - state' intermediate level of summed number density $\quad \Sigma N_{j}(i)$.
The $I / /$ function resulting from this model is

$$
I=\frac{A i\left(1+B \sum N_{j}(i)\right)}{(1+C i)}
$$

with the magnitude of A depending on the rate of single - step excitation by electron collision and intensity scaling, the magnitude of B, the relative importance of two step and single - step excitation and the magnitude of C , the relative importance of de population by electron collision and radiation. It should be noted that if $\Sigma N_{j}(i) \simeq a+b i$ then eq. 6.11 takes the same form as eq. 6.1 with $A^{\prime}=A(1+B a)$ and $B^{\prime}=B b /(1+B a)$. Plots of $\sum N_{j}(i)$ against i, calculated from the Fabry - Perot scanning number density measurements at 1,2 and 5 torr neon pressure, are shown in Figs. 56 (a), 56 (b) and 57.

Self - absorption within the H.C. may also have an effect on the shape of the I/i curve of spectral lines corresponding to transition terminating in the highly populated states of the $3 \mathrm{~s}, 3 \mathrm{~s}$ group. The amount of self - absorption of photons of a given spectral line will be proportional to the number density of excited neon atoms in the lower energy state of the transition $N_{j}(i)$, giving rise to a term of the form ($1-G N_{j}(i)$), with magnitude of G depending on the importance of self - absorption. The effect of a self - absorption term of this form was not investigated as cubic spline fitting of the $\mathbf{N}_{\mathrm{j}}(\mathrm{i}) / \mathrm{i}$ curves of individual states in the $3 \mathrm{~s}, 3 \mathrm{~s}$ ' group and the resulting modification of the $1 / i$ fitting program was not attempted due to lack of time remaining at the end of the work. However the effect of terms of the form ($1-\mathrm{Hi}$) and
($1-G \sum N_{j}(i)$), not requiring further fitting of the $N_{j}(i) / /$ curves, were examined.
A number of different model functions based on equations 1.1 and 6.11 , including and excluding various terms described above, were tried and are listed in subsection $6 / C .1$ divided into two groups A and B, model functions A1 to A4 derived from eq. 6.1 and B 1 to B 8 derived from eq. 6.11 .

6/C. 3 Fitting I/ Curves

Examples of plots of the fitted $I /$ curves obtained with different model functions and I / i data are shown in Figs. 61 to 66 , with corresponding residual values plotted beneath. The model function number and the fitted values of the parameters (A, B, C etc) in the function are also shown. Table 5 shows the values of the parameters obtained by fiting model equations B 6 and B 7 to all the 1 \& 2 torr experimental results analysed. Parameter values obcained fitting the other model functions are given in Table 6.

1 Torr						2 Torr				
$\begin{array}{\|c} \text { wave- } \\ \text { length } \\ \mathrm{nm} \end{array}$	$f i t$	A a. u. $/ \mathrm{mA}$		$\begin{aligned} & C \\ & \mathrm{~mA}^{-1} \end{aligned}$	D	fit	A. $\mathrm{A}^{\text {a }}$ / 1 mA	$\left\|\begin{array}{c} B \\ 10^{-17} \mathrm{~m}^{3} \end{array}\right\|$	$\begin{gathered} C \\ m A^{-1} \end{gathered}$	D
748.9	α^{+}	0.301	0.035	0.000	0.53	α^{+}	0.216	0.16	0.000	0.55
743.8	α^{+}	0.154	0.36	0.000	0.00	α^{+}	0.0767	0.99	0.000	0.02
724.	α	0.256	0.085	0.000	0.05	α^{+}	0.129	0.47	0.000	0.16
703.2	α	0.254	0.094	0.000	0.00	α	0.139	0.37	0.000	0.00
692.	α	0.311	0.025	0.000	0.19	α^{+}	0.239	0.13	0.000	0.08
671.	α^{-}	0.206	0.176	0.000	0.17	α^{+}	0.0984	0.70	0.000	0.02
667.8	α	0.311	0.044	0.000	0.05	α	0.207	0.20	0.000	0.00
659.9	α^{-}	0.239	0.12	0.000	0.14	α^{+}	0.148	0.37	0.000	0.01
640.2	α	0.306	0.038	0.000	0.00	α^{+}	0.123	0.45	0.000	0.31
630.5	\propto	0.164	0.31	0.000	0.21	α	0.0407	1.8	0.000	0.25
630.5	β^{+}	0.182	0.25	0.000	0.10					
614.3	α	0.251	0.080	0.000	0.04	α	0.102	0.61	0.000	0.00
588.2	α	0.167	0.31	0.000	0.09	α^{+}	0.0284	3.0	0.000	0.00
585.2	α^{+}	0.37	0.00	0.002	1.28	α^{+}	0.0731	1.5	0.0088	1.00
585.2	α	0.339	0.00	0.000	1.45					
363.4	α^{+}	0.172	0.98	0.0323	1.22	' α	0.481	0.00	0.0086	1.21
360.0	α^{+}	0.382	0.27	0.028	1.52	α	0.166	2.4	0.0747	0.80

(1) arbitrary units (a.u.) $=\mathrm{cm}$ deflection of XY recorder
(2) * Indicates a fit to model equation
$I=A i\left(1+B \Sigma N_{j}(i)\right)+D$
($1+C i$)
unmarked a fit to $B 6$ (i.e. C clamped to value $C=0$)
(3) \dagger parameter values obtained with fits to model equations
including absorption terms are provided in Table 6
(4) $\alpha=$ good fit, all residuals less than experimental error ($\pm 1.5 \mathrm{a} . \mathrm{u}$.) $\beta=$ fair fit, most residuals of the order of experimental error

TABLE 5. VALUES OF PARAMETERS OBTAINED FITTING MODEL EQUATIONS B6 \& B7 TO OBSERVED I/i CURVES

TABLE 6. VALUES OF PARAMETERS OBTAINED FITTING MODEL III CURVES

For I/i results at neon pressures of 1 and 2 torr, model functions $\mathbf{A} 2$ and $\mathbf{B 2}$ provided acceptable fit, with residual values of the arder of experimental enor ($\sim \pm 1.5 \mathrm{~mm}$), except in the low current region. The term $1 /(1+\mathrm{C} i)$ was not found necessary except in the case of spectral lines, such as Ne I 360.0 nm , with transitions from high lying energy levels. The inclusion of this term in cases of spectral lines with transitions from lower lying energy levels, such as Ne I 630.5 nm , which do not "turn over" with increasing current, did not improve the fit but merely changed the values of A and B, with C small, because of the effect of "trade - off". Model functions A1 and B1 were adequate in these cases. The only exception to this was the I/i curve of 585.2 nm which corresponds to a transition from the highest energy state of the $3 \mathrm{p}, 3 \mathrm{p}^{\prime}$ groups. The I/i curve of this spectral line had slight downward curvature and a significant but small value for parameter C was required in order to obrain a good fit. Acceptable fits for the 5 torr results could not be obrained. The main difference between the fits obrained for 1 and 2 torr $I / 1$ results corresponding to transitions betweeen the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ and the $3 \mathrm{p}, 3 \mathrm{p}^{\prime}$ group of states, was that B was always greater for the 2 torr than the 1 torr results. This reflects that fact the I / i curves corresponding to these transitions show greater departure from linearity at 1 torr than at 2 torr and curve upward more rapidly - See Figs. 18 and 19 and Figs. 62 and 63.

Inclusion of terms corresponding to the effect of self - absorption in model functions A3 and A4 and B3, B4 and B8 did not improve the fit in cases were an acceptable fit had been obtained without such terms and did not provide an acceptable fit for results at 5 torr where acceptable fits had not been obrained with $\mathbf{A 1}, \mathbf{A} 2, \mathrm{~B} 1$ and B 2 , the only exception to this being Ne I 640.2 nm for which model function B3 provided an improved fit.

In an attempt to improve the fit obrained with model functions B1 and B2 in the low current region of the 1 and 2 torr results, a factor (D) independent of current was introduced in model function B 6 lacking the $1 /(1+\mathrm{Ci})$ term and B 7 including this term. With these two model functions B6 and B7, good fits over the whole current range could be obtained for all 1 and 2 torr results; model function A7 including the $1 /(1+C i)$ term was only necessary for spectral lines with transitions from high lying levels.

6/C. 4 Parameter Values

If one considers different spectral lines with transitions from the same upper energy level, it may be expected that the values of the parameters B and C obvained will be the same for the diferent spectral lines, because the values of these parameters depend only on the ratios of excitation or de - excitation rates of the energy level. The values of

parameters A and D however will depend on the arbitrary intensity scaling.
However the value of parameter B obtained fitting experimental data to eq. 7.5 is subject to considerable uncertainty because of the effect of trade - off, particularly trade off with respect to parameter A. (Trade - off is the complementary variation of parameters so that the value of $\mathbf{F}(\mathbf{X})=\Sigma\left(f_{i}\right)^{2}$ is not significantly changed.) The large degree of trade - off in this case arises because of the relatively slow variation of $\Sigma N_{j}(i)$ with increasing current. If one considers the extreme case in which $\Sigma N_{j}(i)$ is a constant, then the expression $A\left(1+B \Sigma N_{j}(i)\right)$ can be replaced by a single parameter (P say) independent of current and all values of A and B giving the same value P will give the same residual contributions. A family of solutions will exist with small values of A matched with suitably large values of B with parameter ranges $0 \leq A \leq$ P and $0 \leq B \leq \infty$,

In fact $\sum N_{j}(i)$ is not constant but increases slowly with increasing current so that the trade - off effect between A and B will only be partial but will still allow considerable complementary variation of the parameters without significantly changing the value of $F(X)$. The value of B in particular will be subject to most uncertainty. The presence of parameters D and C will further increase the scope for trade - off uncertainty.

The effect of trade - off may be seen in parameter values obtained fitting the 1 torr 630.5 nm I/i curve data to the model equation (B 6) with C clamped to $C=0$, and with C free to vary (B7) - see Table 5 -. The value of C obtained when C was free to vary was not zero but very small ($\sim 2 \times 10^{-6} \mathrm{~mA}^{-1}$). The value of D changed by an amount approximately equal to the experimental error in deflection ($\pm 0.15 \mathrm{~cm}$). The value of A obtained increased by $\sim 10 \%$ and the value of B reduced by $\sim 25 \%$. Even with numerically identical input data substantial trade - off occurred. Sets of data affected by different random experimental errors will be subject to greater trade -off. Thus the values of B obtained fitting the $I /$ curves of spectral lines with the same upper level may differ considerably (although they should be of similar order of magnitude).

The variances of solution parameter values $X_{\text {col }}$ are measures of the uncertainty of the solutions obtained from least squares fitting. If the matrix H is the inverse of the Hessian matrix $G=\frac{\partial^{2} F(X)}{\partial X^{2}}$ and $S=P\left(X_{\text {sol }}\right)$ then the best unbiased estimate of

$$
\partial X_{i} \partial X_{j}
$$

the variance of $X_{i \text { sol }}$ is approximately

$$
\operatorname{var} X_{i}=\frac{2 S}{m-n} H_{i i}
$$

where m is the number of residuals and n the number of parameters [75]. Hence a 95\% confidence interval for the true solution parameter is approximately
$\mathrm{X}_{\mathrm{isol}} \pm 2 \sqrt{2 \mathrm{SH}_{\mathrm{if}} /(\mathrm{m}-\mathrm{n})}$
As H is the inverse of G it is given by
$\mathbf{H}=\operatorname{adj}(\mathbf{G}) / \operatorname{det}(G)$.
where $\operatorname{adj}(\mathbf{G})$ is the adjoint matrix of \mathbf{G} and $\operatorname{det}(\mathbf{G})$ the determinant of \mathbf{G}, if $\operatorname{det}(G)$ is small then the components of H can assume very large values. The values of G and S are provided by E04FCF and further analysis could establish estimates of the confidence limits.

A number of the spectral the $\bar{V} /$ curves of which were analysed (and parameter values obrained listed in Table 5) have atomic transitions with common upper energy levels. Ne I 743.8, 724.5 and 703.2 nm have transitions from $3 \mathrm{p}[1 / 2]_{1}, 692.9$ and 614.3 nm have transitions from $3 \mathrm{p}[3 / 2]_{2}$, and 659.9 and 588.2 nm transitions from $3 p^{\prime}[1 / 2]_{1}$

The values of parameter B obvained for spectral lines with common upper energy levels of their transitions differ by factors $\boldsymbol{\sim} \mathbf{2}$.

CHAPTER 7

DISCUSSION AND CONCLUSIONS

7/A SELF - REVERSAL OF SPECTRAL LINE PROFILES

The observation of self - reversal and broadening by self - absorption of the profiles of spectral lines with transitions terminating in metastable state $3 s[3 / 2]_{2}^{0}$, was the first direct evidence obrained in the work that the number density of neon atoms in this state was sufficiently high to make two -step excitation of higher energy levels, via this state, probable. The profiles of all spectral lines studied with transitions terminating in $3 \mathrm{~s}[3 / 2]_{2}^{0}$ exhibited varying degrees of self - reversal, with the exception of 588.2 nm . The lack of self - reversal of the profile 588.2 nm may be explained by the lower transition probability and less favourable ratio of statistical weights for this spectral line than other lines with transitions terminating in the $3 \mathrm{~s}[\mathbf{3} / 2]_{2}^{0}$ state.

The lack of self - reversal of the profiles of any of the spectral lines with transitions terminating in other state of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group, supports the results of direct measurements of excited state densities that the $3 \mathrm{~s}[3 / 2]_{2}^{0}$ state is the most highly populated of the group.

Changes in spectral profiles caused by differing degrees of self - absorption and reversal, noted in early stages of the work due to contamination of the lamp gas, were an important indication of the contamination and, subsequently, recording of the profiles provided a useful, sensitive check of neon purity.

7/B NUMBER DENSITIES OF EXCITED ATOMS IN 38, 38' STATES

7/B. 1 General Features of Number Density Results

The absolute number densities of neon atoms in four excited Ne I states $3 s[3 / 2]_{2}^{\circ}$, 3s $\left[\frac{3}{2}\right]_{1}^{0}, 3 s^{\prime}[1 / 2]_{0}^{0}$ and $3 s^{\prime}\left[\frac{1}{2}\right]_{1}^{0}$ and their variation with discharge curent. differed considerably for the four states. The pressure of the neon in the H.C.L. also affected the shape of the number density/current curves ($\mathrm{N}(\mathrm{i}) / 1$) and to a lesser extent the absolute number density values - soc Figs. 53 to $57-$

Starting with the 2 torr results - see Figs. 54 (a) and (b) - for which the best low drift results were available and the most extensive analysis carried out, principal features of the number density results obtained, grouped by energy level, were :

(a) $3 s[3 / 2]_{2}^{0}$ (the lowest energy metastable state)

- highest population of the $38,3 s^{\prime}$ group of states with mean number density $\sim 1.5 \times 10^{17} \mathrm{~m}^{-3}$
- the number density attained this value at the lowest current for which a discharge current could be maintained ($\sim 0.5 \mathrm{~mA}$) and varied by less than 20% as the discharge current was increased one hundred fold wo 50 mA
- there is a sharp local peak in number density at low current $(\sim 2 \mathrm{~mA})$ falling in value near ~ 5 mA and thereafter increasing slowly and approximately linearly with current up to 50 mA .
(b) $3 s[3 / 2]_{1}^{0}$ (non-metastable state)
- the second most populated state with mean number density $\sim 0.6 \times 10^{17} \mathrm{~m}^{-3}$ - the number density attained a significant value $\sim 0.2 \times 10^{17} \mathrm{~m}^{-3}$ at lowest possible discharge current but increased by a factor ~ 4 as the current was increased to 50 mA
- the N (i$) / 1$ curve has smooth shape with no local peaks and slowly docreasing gradient with increasing current.
(c) $3 s^{\prime}\left[\frac{1}{2}\right]_{0}^{0}$ (metastable state)
- one of the least populated of $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group with mean number density
$\sim 0.3 \times 10^{17} \mathrm{~m}^{-3}$
- $\mathrm{N}(\mathrm{i}) / \mathrm{i}$ curve has the same shape as that for the other metastable state of group
($3 s[3 / 2]_{2}$) but with number density scaled down by a factor ~ 5. Both exhibit similar strong saturation with increasing lamp current.
(d) $3 s^{\prime}\left[\frac{1}{2}\right]_{1}^{0}$ (non - metastable state)
- one of the least populated of 3 s , $3 \mathrm{~s}^{\prime}$ group with mean number density
$\sim 0.3 \times 10^{17} \mathrm{~m}^{-3}$
$-N(i) / i$ curve does not saturate with increasing discharge current and the number density is approximately proportional to current.
Considering now the effect of changing neon pressure, the most notable difference in the $\mathrm{N}(\mathrm{i}) / \mathrm{i}$ curves at different pressures is in the low current region, where local peaks occur in the curves for the two metastable states $3 s[3 / 2]_{2}^{0}$ and $3 s^{\prime}[1 / 2]_{0}^{0}$ at 2 torr.
The 1 torr N (i)/i curves are almost identical to those for 2 tor above a lamp current of
$\sim 15 \mathrm{~mA}$, but do not have local peaks in the curves for the metastable states in the low current region.

At 5 wort the peaks in the low current region of the N (i) ic curves for the two metastable states are more pronounced than at 2 torr and extend to greater values of lamp

current. The overall number densities of all four excited states are slightly higher at 5 tor than at 1 and 2 torr (however the estimated errors and 'scatter' of $3 s\left[\frac{3}{2}\right]_{1}^{0}$ and $3 s^{\prime}[1 / 2]_{1}^{0}$ results are poorer).

7/B. 2 Comparison with Reaults of Other Workers

Measurements of the number densities of excited neon atoms in hollow cathode discharges using various methods have been made by workers principally interested in laser applications [5,25]. These measurements have been made for higher current densities of the order of 10 t $100 \mathrm{~mA} / \mathrm{cm}^{2}$, with water cooled copper cathodes of different dimensions than those used by the author and have mainly been concerned with the number densities of the two metastable states $3 \mathrm{~s}\left[\frac{3}{2}\right]_{2}^{0}$ and $3 s^{\prime}[1 / 2]_{0}^{0}$. Measurements carried out by the author were for current densities $<2.12 \mathrm{~mA} / \mathrm{cm}^{2}$ without water cooling of the mild steel cathode and were made for all four states of the $3 s, 3 s^{\prime}$ group.

Number densities of atoms in metastable states $3 \mathrm{~s}[3 / 2]_{2}^{0}$ and $3 s^{\prime}[1 / 2]_{0}^{0}$ obtained by de Hoog, McNeil, Collins and Persson [5] using the method of Ladenburg and Reiche [64], were $\sim 10^{18}$ and $\sim 1.5 \times 10^{17} \mathrm{~m}^{-3}$ respectively at 10.6 tort neon pressure, compared with number densities of atoms in these states of $\sim 1.5 \times 10^{17}$ and $\sim 2 \times 10^{16} \mathrm{~m}^{-3}$ respectively, at neon pressures of 1,2 and 5 torr, obtained by the author. The number densities of atoms in the two metastable states obrained by these workers also exhibit the strong saturation with increasing discharge current observed by the author, and peaks in the number densities at low currents observed by the author at neon pressures of 2 and 5 tom.

Number densities of neon atoms in metastable state $3 s\left[\frac{3}{2}\right]_{2}^{0}$ obenined by van Veldluizen and de Hoog [25] using laser absorption, for a different water cooled $\mathrm{Cu}-\mathrm{Ne}$ H.C.L. system at current densities ~ 10 to $100 \mathrm{mN} / \mathrm{cm}^{2}$ were also $\sim 10^{18} \mathrm{~m}^{-3}$.

Measurements of the number densities of neon atoms in excited states of the 3s, 3s' group of energy levels have been made by Djulgerova, Jechev, Pacheva and Rashev [65] using a modified form of the method of Ledenburg and Reiche for an H.C.L. with an aluminium cathode, without water cooling, at similar current densities to those used by the author. These workers obrained number densities of neon atoms in the four excired states $\sim 10^{17} \mathrm{~m}^{-3}$, as did the author, however the relative magnitudes of the number densities of atoms in the four states were different to those obtained in the present work. Most notably these workers reported that the $38[3 / 2]_{2}$ metastable state was not the most highly populated of the $3 s, 3 s^{\prime}$ group of states, whereas the author found that this was the most highly populated state of the group, a conclusion supported

by the fact that self - reversal was derected by the author in the profiles of spectral lines with transitions terminating in this state but not those terminating in other states of the group.

7/B. 3 Saturation of Metastable Atom Population
Saturation of the neon metastable atom populations with increasing current, observed in the present work and by de Hoog et al $[5,25]$ in the H.C.D., has also been observed in the helium metastable population in the He - Ne positive column laser discharge by White and Gordon [66].

How may the strong saturation of the number densities of atoms in the two metastable excited states with increasing discharge current be explained? The explanation put forward by Webb $[67,68]$ for the saturation with increasing electron number density of the population of noble gas metastable states in all types of discharge, is depopulation of these states by electron collision, particularly those collisions causing ionization of the metastable atoms. He argues that, although only a relatively small proportion of the plasma electrons in the discharge have sufficient energy to excite the metastable states from the ground state ($\sim 16.6 \mathrm{eV}$ for neon) a larger proportion of the electrons have the energy necessary to ionize atoms in the metastable states (-5 eV for neon). In addition, the electron collision cross - section for ionization of metastable atoms is greater than the cross - section for excitation of their ground state atoms. Hence, although increasing the electron density increases the rate of creation of metastable atoms, it also increases the rate of their destruction, so that, once the electron density reaches the point where ionization of the metastables dominates over all other forms of their destruction, the population of metastable atoms bucomes insensitive to further increases in electron density. Expressing this argument algebraically, if N_{e} is the electron number density, N_{m} the metastable number density and i the discharge current, then

$$
\begin{equation*}
N_{m}=\frac{A_{e} N_{e}}{\left(1+C_{e} N_{e}\right)} \tag{7.1}
\end{equation*}
$$

where A_{e} depends on the cross - section for excitation of the metastable state by electron collision and $\mathrm{C}_{\mathbf{t}}$ the ratio of the rate of destruction of metastable atoms by electron collision and all other modes of destruction.

If $\mathrm{N}_{\mathrm{B}} \propto \mathrm{i}$ then this expression becomes

$$
N_{\mathrm{m}}=\frac{A_{1}^{\prime} i}{\left(1+C_{e}^{\prime} i\right)}
$$

where A_{e}^{\prime} and C_{e}^{\prime} are related by constant factors to A_{e} and C_{e} respectively.

(a)
$N_{m}=D+A^{\prime \prime} i$
$\left(1+C^{*} i\right)$

FIGS. 67 (a)\&(b) SCHEMATIC PLOTS OF METASTABLE ATOM NUMBER DENSITY AGAINST CURRENT

A plot of N_{e} against i will then be of the form shown in Fig. 67. If one compares this curve with the observed variation of metastable atom numbers density with current Figs. 53,54 and 55 - it can be seen that there are two important differences. Firstly the observed number density 'jumps' very abruptly near the origin so that, at the lowest sustainable current, the number density has a significant value and secondly there are peaks in number density in the low curreat region at the higher neon pressure of 2 and 5 torr.

Consider first the peaks in metastable atom number density in the low current region at higher neon pressures. These peaks are accompanied by rapid changes in the radial distribution and appearance of the cathode glow observed visually. The number density measurements were made with a wide probe beam so that an average number density across the beam width was measured. A greater proportion of probe beam rays near the centre of the beam finally reached the detector than those near the edge of the beam, becance of aperture limitation; hence absorption at the centre of the H.C. glow provided a greater proportion to the measured metastable number density than that near the cathode. Thus, changes in the radial distribution could cause fluctuations in the measured number density not reflecting true variations in the average number density, and produce the local peaks in measured density observed at low currents and higher neon pressure. This effect however cannor explain the sudden jump in measured metastable density from the crigin to a significant value at the lowest sustainable discharge current.

This suggests that the assumption of proportionality between electron number density and discharge current breaks down at low currents, with the electron number density increasing abrupdy at the lowest sustainable current, so that

$$
\begin{equation*}
N_{0}=\quad N_{\theta}(i=\sim 0)+a_{0} i \tag{7.3}
\end{equation*}
$$

where $N_{d}(i=\sim 0)$ is the electron number density at the lowest sustainable discharge current and a_{e} the increase in electron density per unit current. Equation 7.2 now takes the form

$$
\begin{equation*}
N_{m}=\frac{D_{e}+A_{e}^{\prime \prime}}{\left(1+C_{e}^{\prime \prime} i\right)} \tag{7.4}
\end{equation*}
$$

and shifts the origin in Fig. 67 (a) to the right so that the plot of N_{m} against i becomes as shown in Fig. 67 (b), which agrees more closely with the observed variation, ignoring the local peaks in density at low current for 2 and 5 torr discussed above. As discussed further below (see 7/C. 2) the I / i of some spectral lines also indicate that electron number density is nor proportional to discharge current at low current. Results by

Borodin and Kagan [19, 20] show an approximate proportionality between electron number density and discharge current, in the current range 15 to 60 mA for similar sized nickel cathodes in a helium H.C. discharge, but they do not give any values for very low currents. Results by van Veldhuizen and de Hoog [25] for neon also show approximate proportionality between electron density and currrent at higher current density but with slight downward curvature.

At discharge currents greater than $\sim 10 \mathrm{~mA}\left(\sim 0.42 \mathrm{~mA} / \mathrm{cm}^{2}\right)$ below which the local peaks in metastable density occur, the main difference between the 1 and 2 torr, and 5 torr measured metastable density versus current curves, is that at 1 and 2 torr the metastable density increases with increasing current whereas at 5 torr the density hardly increases at all. This difference may be associated with the longer diffusion time of metastable atoms at higher neon pressure, so that destruction of the metastable states by electron collision dominates over their destruction at cathode surfaces, at lower current density.

7/B.4 Quasi - metastable Atom Population
The number densities of neon atoms in the two non - metastable states in the $3 \mathrm{~s}, 3 \mathrm{~s}$ ' group might initially be expected to be very small compared to the density of metastables, because of fast radiative de - excitation to the ground state. However the effect of radiation trapping greatly increases the effective lifetime of these two states which may be described as quasi - metastable. Radiation tapping [69] is the strong reabsorption of the ultra - violet emission by ground state atoms, so repopulating the resonance state in question.

Also, another populating mechanism is possible for the two states in addition to excitation from the ground state by electron collision and population by radiative cascade from higher energy excited states. Thermally excited transitions from atoms in the two metastable states $3 s[3 / 2]_{2}^{0}$ and $3 s^{\prime}[1 / 2]_{0}^{0}$ may also take place [70], as the differences in energy are of the same order of magnitude as that available from thermal collision with atoms, ions or electrons. Clearily the majority of these thermal collisions will be with ground state neon atoms as these particles have the highest number density $\sim 10^{23} \mathrm{~m}^{-3}$.

The gas temperature of the H.C. discharge estimatod from the width of the Ne I 585.2 nm emission spectral line, was $\sim 600 \mathrm{~K}$, so that the average thermal kinetic energy $\mathrm{KT} \sim 0.052 \mathrm{eV}$. This spectral line showed no evidence of broadening by self - absorption and the number density ($\sim 2 \times 10^{16} \mathrm{~m}^{-3}$) of atoms in the lower state ($3 \mathrm{~s}^{\prime}\left[1 / 2 \mathrm{f}_{1}\right.$) of the transition was an order of magnitude less than the number density of $3 \mathrm{~s}\left[\frac{3}{2}\right]_{2}^{0}$, for which spectral lines did show evidence of self - absorption. Herice the width of this

spectral line was mainly determined by Doppler broadening. State $3 s[3 / 2]_{1}^{0}$ is roughly halfway between the two metastable states in energy - see Fig. $68-; 3 s[3 / 2]_{2}^{0}$ is 0.052 eV lower than it in energy and $38^{\prime}[1 / 2]_{0}^{0}$ is 0.045 eV higher in energy. As these differences in energy are approximately equal to the average thermal kinetic energy, the rate of thermally excited transitions between these three staves will be very high. State $3 s^{\prime}\left[\frac{1}{2}\right]_{1}^{\circ}$ however, is higher in energy than the two metastable states and the other quasi - metastable states and the differences in energy are significantly greater, $3 s^{\prime}[1 / 2]_{2}^{0}$ is 0.133 eV higher than $3 s^{\prime}\left[1 / 2 ~_{0}^{0}\right.$ and 0.229 eV higher than $3 \mathrm{~s}[3 / 2]_{2}^{0}$ in energy. As these differences in energy are several times ($\sim 2.6-\sim 4.4$) the average thermal kinetic energy, the rate of thermally excited transitions between $3 s^{\prime}\left[\frac{1}{2}\right]_{1}^{0}$ and the other states of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group will be much lower than for $3 \mathrm{~s}\left[\frac{3}{2}\right]_{1}^{0}$ due to the rapid decline of the Boltzmann function with increasing energy difference.

The number density of atoms in the $3 s[3 / 2]_{1}^{0}$ state was found to be intermediate between those of two metastable states and exhibited saturation with increasing discharge current, as did the metastables - see Fig. 54 -. This suggests that populating rate of $3 \mathrm{~s}[3 / 2]_{1}^{0}$ is dominated by thermally excited transitions from the two metastable states and in particular $3 \mathrm{~s}[\mathbf{3} / \mathbf{2}]_{2}^{0}$ the most highly populated state. The rate of thermally excited uransitions may be expected to change only slowly with increasing discharge current as the gas temperature is relatively insensitive to changes in current.

In contrast the number density of atoms in state $3 s^{\prime}[1 / 2]_{1}^{0}$ was found to be roughly proportional to discharge current, with no saturation, and exceeded that of metastable state $3 s^{\prime}[1 / 2]_{0}^{0}$ at currents greater than $\sim 30 \mathrm{~mA}\left(\sim 1.3 \mathrm{~mA} / \mathrm{cm}^{2}\right)$ - see Fig. 54 - This suggests that thermally excited transitions from the other states in the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group was not the dominant populating mechanism for $3 \mathrm{~s}^{\prime}[1 /]_{1}^{0}$ but rather excitation from the ground state by electron collision and radiative cascade from higher energy levels. Although excitation by electron collision almost certainly dominates over radiative cascade, both rates may be expected to be approximately proportional to discharge current. As the maintenance voltage of a H.C.L. is essentially independant of discharge current and equal to $\mathbf{\sim} 200 \mathrm{~V}$ in the case under discussion, the drift velocity of the electrons is also constant and the electron number density and hence the rate excitation by electron collisions are proportional to current. The populating rate of a given atomic state by radiative cascade depends on the number densities of the higher energy states from which these transitions take place. In this instance by far the most

intense spectral lines and hence highest rates of transition correspond to transitions from the 3p, 3p' groups of energy levels. As the intensity of these spectral lines was found to be roughly proportional to current - see Figs. 18 to 21 and section 4/A. 2 (b) - the rate of population by radiative cascade from them must also be roughly proportional to current.

7K INTENSITY / CURRENT CURVES

7/C. 1 Comparison with Howard's Results
The experimental I / i results obtained by Howard $[37,38]$ for a limited number of data points and range of currents are in general agreement with those obrained by the author. However the model equation (eq. 1.1) used for fitting Howard's results was based on an assumption of proportionality between the intermediate state number density and discharge current, an assumption shown by the author to be incorrect. A reasonable fit had been obtained for lines originating in high lying levels which correspond to relatively large values of C. The fit had been less satisfactory for $I / /$ curves showing upward curvature. Detailed comparison between the two sets of fitted data will not be carried out

7/C. 2 Summary of I/A Fitting
(i) 1 and 2 tom I / i curves well represented by equation of the form

$$
\begin{equation*}
I=\frac{A i\left(1+B \Sigma N_{j}(i)\right)+D}{(1+C i)} \tag{7.5}
\end{equation*}
$$

where $N_{j}(i), j=1,2,3,4$ are the number densities of the four excited states of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group of states. An equation of the form

$$
\begin{equation*}
I=\quad A^{\prime} i\left(1+B^{\prime} i\right) \tag{1.1}
\end{equation*}
$$

also represented the $I / 1$ curves but fitted less well than 7.5 .
(ii) 5 torr $1 / i$ curves could not be fitted to an equation of this form or any other tried.
(iii) For spectral lines corresponding to transitions between $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ and $3 \mathrm{p}, 3 \mathrm{p}{ }^{\prime}$ groups of states $\mathrm{C}=0$.
(iv) For spectral lines corresponding to transitions from high energy states $\mathrm{C}>0$.
(v) B is greater at 2 torr than 1 torr.
(vi) With the exception of 640.2 nm the I / i curves are not significantly affected by self-absorption.
(vii) $\mathrm{D}>0$ for spectral lines the I / i curves of which are not
asymptotic to the origin at the lowest sustainable discharge current.
Discussion of the above observations will be confined to those for 1 and 2 torr for which a fit could be obtained. The lack of success in fitting the 5 torr results to an

equation of the form of eq. 7.5 or one derived from it was almost certainly because the I/i measurements were made for the centre of the discharge but the measurements of metastable atom number density were average values for a lange area of the discharge. At 1 and 2 torr neon pressure the H.C. glow was visibly quite uniform, however at 5 torr it assumed an annular distribution. The work of Kagan et al [19-23] Howorka and Pahl [12], and others has shown that the development of an annular glow structure at high pressure is accompanied by radial variations in electron number density and intensity of spectral emission. Van Veldhuizen and de Hoog [25] observed radial veriations in metastable atom populations at high pressure. Clearly eq. 7.5 needs to be modified at high pressure to take into account these radial variations.

Equation 7.4 is a balanced rate equation for the variation of the number density of excited atoms in the upper state of the atomic transition corresponding to a spectral line, with the numerator being proportional to the excitation of the state and the denominator the depopulation rate. Equation 1.1 based on the incorrect assumption of proportionality of intermediate state density and discharge current can also be fitted to these results as the intermediate state density increases in an approximately linear manner from an initial high value, so that eq. 7.5 has a similar current dependence as eq. 1.1.

Consider first the excitation of the state in this model, in which single - step and two-step excitation via an intermediate state in the $3 \mathrm{~s}, 3 \mathrm{~s}$ ' group, both make significant contribution to the overall excitation; a question that arises is, why they both make contributions of similar orders of magnitude when the number density of neon ground state atoms, from which single step excitation takes place, $\sim 10^{23} \mathrm{~m}^{-3}$, while the number density of excited atoms in states of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\mathrm{s}}$ group is only $\sim 10^{17} \mathrm{~m}^{-3}$? Using an argument similar to Webb's $[67,68]$ explanation of the current saturation of metastable populations, it can be seen that two factors greatly increase the probabilty of excitation of a state from the metastable and quasi - metastable states of the $3 \mathrm{~s}, 3 \mathrm{~s}^{\prime}$ group relative to direct excitation. Firstly, the electron collision cross - section for further excitation of atoms in the metastable and quasi - metastable states is much greater than for excitation of atoms in the neon ground state with its compact electronic structure typical of noble gases. Secondly, the proportion of discharge electrons with sufficient energy $\sim 19 \mathrm{eV}$ needed to directly excite the state from the ground state will be much smaller than proportion of electrons with sufficient energy $\sim 2 \mathrm{eV}$ to excite the state for a metastable or quasi - metastable state. The larger contribution made by two - step excitation at 2 torr than 1 torrr neon pressure, indicated by the larger B at 2 torr, may be explained by changes in the energy distribution of electrons with neon pressure (observed in probe measurements by Borodin and Kagan [20]), so that the proportion of low energy compared to high energy electrons increases with gas pressure.

The need for an excitation contribution, D in equation 7.5 , not depending on discharge current, in order to obtain a good fit in the low current region is consistent with the argument put forward to explain the metastable number densities - see 7/B. 3 -, that the proportionality between electron number density and discharge current breaks down at low current, with electron density atraining a significant value at the lowest sustainable current, so that

$$
\begin{equation*}
N_{6}=N_{0}(i=-0)+a_{6} i \tag{7.3}
\end{equation*}
$$

The fact that the value of D differs considerably between spectral lines, being negligible for some (eg. 640.2 nm) and of considerable value for others (eg. 585.2 nm), suggests that the energy distribution of electrons arising from the current dependeat and current independent terms of eq. 7.3 are different from each other and have different excitation efficiencies for different states because of the variations of excitation cross - section with electron energy [71]. It is known from the measurement by Kagan's group [1923] and others $[24,12]$ that the electron energy distribution in the H.C.D. is non Maxwellian and has been described in terms of three groups of electrons of low, intermediate and high energy by Howorka and Pahl [12]. The relative proportions of electrons in three energy groups may be different for the contributions to total electron density made by the two terms in 7.3 .

Consider now the depopulation rate term of model equation 7.5 , it is apparent that the depopulation rates of states of higher energy are dominated by electron collision but not those of states belonging to the $3 \mathrm{p}, 3 \mathrm{p}^{\prime}$ group, from which transitions corresponding to the prominent neon spectral lines take place. Clearly the very high probability of radiative transitions from the states of the $3 p, 3 p^{\prime}$ group ensures that radiative de - excitation dominates over de - population by electron collision at the current densities used. In addition, less energy is required to ionize atoms in the higher excited states than in states of the $3 \mathrm{p}, 3 \mathrm{p}^{\prime}$ group.

The fact that the I / i curve for $\mathbf{6 4 0 . 2 \mathrm { nm } \text { was the only one for which inclusion of a }}$ self - absorption term provided any improvement in fit, is consistent with the observation that the profile of this spectral line also showed evidence of significant self - absorption.

71D V/ CHARACTERISTICS AND VISUAL OBSERVATIONS

The recorded V/i characteristics of the H.C.L. and results of visual observation provide additional evidence of changes in electron energy distribution and radial density distribution with increasing discharge current, in the low current regime. At neon pressures of 1 and 2 vorr the maintenance voltage only changes significantly with discharge current, at currents below $\sim 5 \mathrm{~mA}\left(\sim 0.21 \mathrm{~mA} / \mathrm{cm}^{2}\right)$. Changes in maintenance voltage will cause changes in average electron energy. At these low currents the colour

of the discharge also varies with current, changing from a dull red to an orange colour with increasing current, as well as increasing in overall brightness. At such current densities sputtering of cathode material will be small and these colour changes cannot be explained by emission from sputtered cathode atoms. Rather, they indicate that the relative intensities of neon spectral lines have changed, reflecting changes in electron energy distribution.

The "bumps" in I/i curves and peaks in measured metastable atom density in the low current region, occuring at higher neon pressure, were accompanied by changes in the V/i characteristics and visual appearance of the H.C. discharge. At 5 torr neon pressure these changes extend up to currents of $\sim 10 \mathrm{~mA}\left(\sim 0.5 \mathrm{~mA} / \mathrm{cm}^{2}\right)$, above which the properties of the discharge become stable.

7/E EFFECTS OF FILL GAS IMPURITY

The properties of the H.C. discharge in the experimental lamp were found to be very sensitive to the presence of impurities in the neon fill gas, due to contamination. The problem of contamination was overcome and the bulk of the results referred to in the thesis are for conditions of maximum purity with no detectable impuritr, effects. However these impurity effects are interesting in their own right and warrant separate discussion.

The principal impurity in the carrier gas of the experimental lamp, when contaminated, after initial filling with high purity neon, was identified spectroscopically as CO and to a lesser extent H and OH , outgassing products of the inner surfaces of the UHV lamp system - see 2/B.6 and 4/C -.

The major effects of the presence of impurities on the observed spectral properties of the H.C. discharge were :
(i) General reduction of both Ne and Fe spectral intensities, and the almost complete absence of Fe spectral lines in the ultra - violet region of the spectrogram of the contaminated lamp.
(ii) Reduction in the broadening and self - reversal of Ne I spectral lines corresponding to transitions terminating in metastable state $3 s[3 / 2]_{2}^{0}$. Eg. see Fig. 17 showing profiles of Ne I 640.2 nm under clean and contaminated conditions - .
(iii) Alteration of the form of the $I / 1$ curve of Ne I spectral lines, see Fig 30. Changes in the non - spectral properties of the discharge, principally the V/ characteristic, due to the presence of impurities, were also noted but were less pronounced than the changes in spectral properties.

The reduction in bromdening and self - reversal of Ne I spectral lines

corresponding to transitions to metastable atate $3 s[3 / 2]$, indicates that the population of neon atoms in this excited state had been 'quenched' by the presence of the impurity molecules. The spectur of both CO and CO^{+}were prominent in the spectrograms reconded of the contaminated lamp emission (see Fig. 31); and potential energy curves of these two molecular species and some excited states are provided in Fig. 69 [72]. The difference in energy between the ground state of CO and the ground state CO^{+}is ~ 14 cV and the first excited electronic state $\sim 16.5 \mathrm{eV}$. The difference in energy between the $3 s[3 / 2]_{2}^{\circ}$ metagtable state and the neon ground state is $\sim 16.7 \mathrm{eV}$. The likely quenching mechanism is the Penning - like collision process

$$
\mathrm{Ne}^{+}+\mathrm{CO} \rightarrow \mathrm{Ne}+\mathrm{CO}^{+*}+e
$$

,where CO^{+*} denotes the first excited electronic state of CO^{+}.
This F ocess may be expected to have high relacive probability as there is near energy resonance, giving a high matrix element for the reaction, and the three product particles allows a large volume of phase space to be available for the product states.

The reduction of Fe and Ne spectral intensities and the changes in Ne I I/i curves, caused by the presence of impurities may be readily explained in terms of the quenching of the population of metastable excited neon atoms.

Quenching of the population of metastable excited neon atoms will reduce the probebilty of two - step excitation vis the metastable state, so reducing the Ne I spectral intensity and by changing the relative contribution of one - step and two - step excitation. change the form of the $1 / 1$ curve.

The quenching of the neon metastable population can also be expected to reduce the intensity of Fe spectral lines by reducing the rate of excitation of sputtered cathode atoms in collisions with metastable excited atoms. The marked decrease in Fe spectral intensities when impurities were present, could also be related to a reduction in the population density of sputtered atoms. This could arise if a reduced rate of ionization of neon atoms lead to a reduced number density of neon ions, and hence a reduced rate of sputtering of cathode atoms.

7/F CORRECTION OF SPECTRAL PROFLLES FOR INSTRUMENTAL BROADENING

The technique developed in the work for the correction of recorded spectral line profiles for the effect of instrumental bromdening, using synthesis of a cubic spline representation of the profile, is applicable to any situation where an approximate solution of a convolution integral equation is required. The main disadvantage of the technique is the occurrence of unwanted oscillations of value. However such oscillations are to 2 greater or lesser degree unavoidable in approximate solution methods, particularly if a

FIG. 69 POTENTIAL ENERGY CURVES

$$
\text { FOR } \begin{gathered}
C O \& C 0^{+} \\
161
\end{gathered}
$$

polynomial representation of the solution is used. If the analytic form of the solution is known, the synthesis of a solution of this form may be expected to give better results.

The cubic spline synthesis technique could be developed further, by allowing the spline knot positions to be variable and including them in the set of parameters varied by the minimization algorithm. This would entail use of a constrained least squares minimization algorithm which preserved the order of spline knots.

Another development of the technique could be the use of the set of residual values obtained with a good fit approximate solution, as an indication of the size of value oscillation and then the removal their effect from the approximate solution.

7/G SUMMARY OF CONCLUSIONS

- All states of the $3 \mathrm{~s}, 3 \mathrm{~s}$ group of neon levels highly populated with number densities
$-0.3-2 \times 10^{17} \mathrm{~m}^{-3}$
- Population of metastable state $3 s[3 / 2]_{2}^{0}$ is highest of group with mean density
$\sim 1.5 \times 10^{17} \mathrm{~m}^{-3}$
- Populations of the two metastable states $3 \mathrm{~s}[3 / 2]_{2}^{0}$ and $3 \mathrm{~s}^{\prime}[1 / 2]_{0}^{0}$ exhibit strong saturation with the number density attaining significant values at the lowest obtainable current and changing only slowly with increasing current therafter. Non - metastable state $3 \mathrm{~s}[3 / 2]_{1}^{0}$ exhibits a weaker saturation effect
- Number density of non - meta' iable $3 s^{\prime}[1 / 2]_{1}^{0}$ is approximately proportional to current - Self - absorption and reversal of most lines with transitions terminating in $3 \mathrm{~s}[3 / 2]_{2}^{0}$ - Neon pressure in the range $1-5$ torr has little effect on the average number density of atoms in the $3 s, 3 s^{\prime}$ group of states but does influence the shape of $N(i) / i$ curves. - The results suggest that the proportionality between electron number density and current breaks down at low current density.
- Electron number density increases approximately linearly with increasing current thereafter
- The energy distribution of electrons changes with increasing discharge current at low current density $\sim 0.1 \mathrm{~mA} / \mathrm{cm}^{-2}$
- The form of the IVi curves of Ne I spectral lines can (at least at lower pressure) be explained by a balanced rate model for the population of the upper state of the corresponding transition. There is a small effect by self - absorption for spectral lines such as Ne I 640.2 nm
- In addition to single - step excitation by electron collision of the upper state of the transition, two - step excitation by electron collision is significant.
- De - population of the upper state is both radiative and by electron collision. Radiative

de - population dominates for states of the 3p, 3p' group but de - population by electron collision is important for higher energy states.
- The I/i relationship of most Ne I spectral lines at lower pressure (1 and 2 torr for the size of cathode studied) may be described by an equation of the form

$$
I=\frac{A i\left(1+B \sum N_{i}(i)\right)+D}{(1+C i)}
$$

where A, B, C and D are independent of current and values depend on
A - the rate of single - step excitation.
B - the relative importance of two- step excitation
C - the relative rates of depopulation by radiation and electron collision
D. the number density and energy distribution of electrons at low current and the energy dependence of the excitation cross - sections.

7/F SUGGESTIONS FOR FURTHER STUDY

The work could be developed further experimentally in two important ways -
(a) Extension of the measurements tol ower currents
(b) Inclusion of the effect of radial variation within the discharge

The lowest current for which a discharge could be maintained was mainly limited by the stability of the current supply used at low values of current. Increasing the value of load resistance in series with the H.C.L. only slightly improved the low current stability. Extension of the current range studied below $\sim 0.5 \mathrm{~mA}$ would require a differen electrical supply to be used, which has greater stability at low current. In order to take into account radial variations within the discharge, spatially resolved measurements of absorbance with fixed probe beam and movable cathode could be carried out. These measurements could be related to the I / i relationships of spectral line emission from different regions of the H.C.D.

The model for the population of the upper level of the transitions could be developed theorecically to take into account different cross - sections for excitation from different states of the $3 \mathrm{~s}, 3 \mathrm{~s}$ group.

LIST OF REFERENCES

[1] Paschen, F., 1916, Ann. Phys., 50, 901
[2] Scheubel, W.K., 1970. IEEE J. Quantum Electron., QE - 6, 654
[3] Piper, J.A. and Webb, C.E., 1973, J.Phys. D: App. Phys., 6, 600-7
[4] Csillag, L., Janossy, M., Rosza, K., and Salomom, T., 1974, Phys. Lett., 50B, 13
[5] de Hoog, F.J., McNeil, J.R., Collins, G.J., and Persson, K.B., J.Appl.Phys., 1977, 48, No 9, 3701
[6] Pillow, ME., 1981, Spectrochim. Acta., 36B, No 8, 821
[7] Caroli, S., 1983, Prog. Anal. Atom. Spectrosc., 6, 253
[8] Guntherschulze, A.,1930, Z. Tech. Phys., 11, 49
[9] Little, P.F. and Von Engel, A., 1954, Proc. R. Soc. London, A224, 209
[10] Ciobotaru, D., 1964, J. Electron. Control., 17, 529
[11] Lompe, A., Seeliger,R. and Wolter, E., 1939, Ann. Phys. (Leipzig), 36, 9
[12] Howorka, F. and Pahl, M., 1972, Z. Naturforsch. Teil A., 27, 1425
[13] Kirichenko, V.I., Tkachenko, V. M. and Tyutyunnik, V. B., 1976, Sov. Phys. Tech. Phys. (Engl. Transl), 21, 1080
[14] Dopel, R., 1969, Wiss. Z. Tech. Hochsch, Imenau, 15, 55
[15] Musha, T., 1962, J. Phys. Soc. Japan, 17, 1440
[16] Musha, T., 1962, J. Phys. Soc. Japan, 17, 1447
[17] White, A. D., 1959, J. Appl. Phys., 30, 711
[18] Warren, R., 1955, Phys. Rev, 98, 1658
[19] Borodin, V. S. and Kagan, Yu. M., 1965, Optics and Spectroscopy (U.S.S.R.) (Engl. Transl.), 18, 546
[20] Borodin, V. S. and Kagan, Yu. M., 1966, Sov. Phys. Tech. Phys. (Engl. Transl.), 11, 131
[21] Borodin, V. S., Gerasimov, G. N. and Kagan, Yu. M., 1967, Sov. Phys. Tech. Phys. (Engl. Transl.), 12, 283
[22] Gofmeister, V. P. and Kagan, Yu. M., 1968, Optics and Spectroscopy (U.S.S.R.) (Engl. Transl.), 25, 185
[23] Desai, Sh. K. and Kagan, Yu. M., 1970, Optics and Spectroscopy (U.S.S.R.) (Engl. Transl.), 28, 352
[24] Otchmatovski, G. V., 1978, Sov. Phys. Tech. Phys. (Engl. Transl.), 23, 552
[25] van Veldhuizen, E.M. and de Hcog, F.G., 1984, J. Phys. D: Appl. Phys, 17, 953
[26] Pringle, D. H. and Farvis, N. E., 1954, Phys. Rev., 96, 536

[27] Chaudhri, R. M. and Oliphant, M. L., 1932, Proc. R. Soc. London., A137, 662
[28] Bodarenko, A. V., 1975, Sov. Phys. Tech. Phys. (Engl. Transl.), 20, 195
[29] Bodarenko, A. V., 1976, Sov. Phys. Tech. Phys. (Engl. Transl.), 21, 1497
[30] Howorka, F., Lindinger, W. and Pahl, M., 1973, Int. J. Mass Spectrom. Ion Phys., 12, 67
[31] Wehner, G. K., 1956, Phys. Rev., 102, 690
[32] Langreid, N. and Wehner, G. K., 1961, J. Appl. Phys., 32, 365
[33] Guntherschulze, A., 1953, Vacuum III, 360
[34] Weston, G. F., Cold Cathode Discharge Tubes Ch 4, lliffe (London), 1968
[35] Stuart, R. V. and Wehner, G. K., 1962, J. Appl. Phys., 33, 2345
[36] Gill, P. and Webb, C.E., 1978, J. Phys. D, 11, 245
[37] Howard, C., MPhil Thesis, Council for National Academic Awards, 1983
[38] Howard, C., Pillow, M. E., Steers, E. B. M. and Ward, D. W., 1983, Analysis, 108, 145
[39] Pirani, M. and Yarwood, J., Principles of Vacuum Engineering, (Chapman and Hall), 1961
[40] Edwards Manual 01-C100-00-895
[41] Pearce, R. W. B. and Gaydon, A.G., The Identification of Molecular Spectra, (Chapman and Hall), 1965
[42] EMI Photomultipliers, 1975, P001/D75, 16
[43] Reed, A. M. PhD Thesis, Council for National Academic Awards, 1980
[44] Moore, C. E., 1949, N.B.S. Circular 467, 76
[45] Amer. Inst. Phys. Handbook Ed 2, 1957, 7-47
[46] Wagenaar, H. C., and De Galan, L., Spectrochim. Acta, Part B, 1975, 30, 361
[47] Steel, W. H., Interferometry, (Cambridge University Press), 1967
[48] Jacquinot, P., Rep. Prgr. Phys., 1960, 23, 267
[49] Strauss, J. A., et al, Spectrchim. Acta, 37B, 947 - 954
[50] Mitchell, A. C. G. and Zemansky, M. W., Resonance Radiation and Excited Aloms, 1971, (Cambridge University Press), 92
[51] Jarrett, S. M. and Franken, P. A., J. Opt. Soc. Amer., 1965, 35, 1603
[52] Gibbs, H. M. and Hull, R. J., Phys. Rev., 1967, 153, 132
[53] Wiese, W. L. et al. Nat. Std. Ref. Data, 1966, NBS4, 126-129
[54] Rollett, J. S. and Higgs, L. A., Proc. Phys. Soc., 1962, 79, 87-93
[55] Bracewell, R. N., The Fourier Transform and its Applications (McGraw Hill) 1965

[57] Cox, M. G. and Hayes, J. G., Report NAC26, Nat. Phys. Lab. Teddington, Middlesex, 1973
[58] NAGFLIB : 1652/0: Mk 7: Jan 1981
[59] NAGFLIB : 1354/0: ME 5: Dec 1978
[60] NAGFLIB : 13560: Mk 5: Dec 1978
[61] NAGFLIB : 1691/1510: Mk 8: Aug 1980
[62] Cox, M. G., J. Inst. Maths Applics., 1972, 10, 134-149
[63] De Boor, C., J. Approx. Theory, 1972, 6, 50-62
[64] Mitchell, A. C. G. and Zemansky, M. W., Resonance Radiation and Excited Atoms, 1971, (Cambridge University Press), 118
[65] Djulgerova, R., Jechev, D., Pacheva, Y. and Rashev, S., 1975, Spectrosc. Lett., 8(12), 1001
[66] White, A. D. and Gordon, E. I., 1963, Appl. Phys. Lett., 3, 197
[67] Webb, C. E., J. Appl. Phys., 1968, 39, No 12, 5441
[68] Webb, C. E., Lasers; Physics Systems and Techniques, Proc. 23rd Scottish Univs. Summer School Phys. Heriot - Watt, Ed. Firth, W. J. and Harrison, G. G., (S.U.S.S.P.), 1982, 175
[69] Comey, A., Atomic and Laser Spectrosopy (Oxford University Press), 1977, 168
[70] Mitchell, A. C. G. and Zemansky, M. W., Resonance Radiation and Excited Atoms, 1971, (Cambridge University Press), 240
[71] Hasted, J. B., Physics of Atomic Collsiions (Butterworth) 2nd Ed, 1972, 357
[72] Pillow, M. E., 1982, Private Communication
[73] Light, C. E. and Steers, E. B. M., 1985, Analyst, 110, 439
[74] Light, C. E. and Steers, E. B. M., Proc. Eight International Conference on Gas Discharges and their Applications (Leeds University Press), 1985, 559 NAGLIB:1499/1417:Mk6:May 77

APPENDIX A. ABSTRACTS \& PAPER
analyst may ins. vol 110
Observations on Metastable Neon Atoms in Hollow-cathode Discharges

 mesisie sithin ortention of arion den

等
М
 Romwh min

\qquad

 moin

amalrstmarima. vol. 110

 Hef $1=0$

 Nomen zin
$\mathrm{NO}_{\mathrm{NO}}^{\mathrm{Na}}+\mathrm{CO} \rightarrow \mathrm{N}_{0}+\mathrm{CO}++0(+-2.7 \mathrm{av})$
Coententen

 anico DN

[^2]

Cithant ond is in scoors
The Shool of Aoplide phrict

2. ixpaningital

 the temo

 erose

 nit

 imrourtine

 orior
 cort.

 3. Theotive

$x_{0}(0) \cos ^{-1} \operatorname{sm}\left[1_{0}(0) / \pi_{0}^{\prime}(0)\right]$
where f(0') it the primery nource tin
(0)

- : ifficiont inc ition peck lonith

Theo the zumpr donsity (w) of aboortins

(4)
one atertioticol wigut of the
az inporzertiticel woight of ome

and A_{12} time proisithity of the crosatiton

 her cht in thif wist the the aporont

4
 4. Mesults

 adiortion astheof corront

 ARtar fis?

 some fenio

s. mprizacss

3. Streus,

The vericition with curront, i, of the taten-
 bees atudice as pert of an investisetion of une xcitertion procosesos in mollow cathede di charien. The ratulti indicute that two. 2 top

 ditcherse ta lav prossurto noon mave 8130 ber Anvoctigatod for comparizon. To astist is Incorprotian the $\mathrm{T-1}$ rosults, dots on tho

 11 nes.
Notheds usurily used to dororatime number

 shancy of the 18:5 protiles. Thase ume cafaties cas be aveided by doriving the atReppition 11ac proflise, $k(0)$, froen Pabry-Porot

 m, of ebsortias aromes le ziven by
$N=\frac{b_{1} i_{2} t}{s_{0} i_{1} A_{11}} \int k(0) d o$
haore z_{1} and s_{1} are the suatiotical

 2. expanixatal petalks Ryamatial
 thons: the vacume aystee for the cositive colume tures ma olatior to thes for the milow cribode (2]. In wit caser, the dis.
 wiocd to mantain wurity
The beillow crethode assombly vas muntiod 10 : $\Delta 4=1.0 .4$ vay crou' (Pig.1); the oph-oddod
 and is mbore. mas hoid britiontaliy by enre aunport rods. The cathode send chanber wer
 orovoni zerriv dise wern curronts ta the roage $1-50 \mathrm{ma}$.
a 13882 or fusco sintea dischargo sube van
 atror proileinory apportmante with cold cal dor. hollow cathodes and a masited coetof cosurfosite. The fore of the tube (rit. 2) dith attornative smodes (1 asa 2) sivini ifferent loseth positive colvens. allovid an betwoen ar am as ever mar

A neon, atcrovave ascrised, sinectrodeless dis. charge 10p (106) wot urod an the prisery spoctral lines entetec or the 1DL vero tacho spoctral inmes onittoe or the int were shatioby coene of the prosaure scasolas Pebry-Porot
 This was carrioc ous zor ipoctral ithes with
 He 1040.2 snd 016.3 sm) sme on the ot the
 charts curtents. The last rument fumciton of the Iatorforomeser was doteroinod by rocordag the profile of the ne 1631.8 ne 1 1ac colted by a mode-bteblized lasor.
colted

3. Rasults

Fig.t anows an oxample of tho Pabry.parot scant for Me 1040.2 me. Brow such data, the variation of $\mathrm{B}(\mathrm{O})$ with wevonubar - con bo dosived; - corroction for inatrumeat proflio nogiocted fer orenlisimery colculartios of ro. sults. Pist is a plot of sumber donitity of
 moliou cathodo ditch nerse at 1 rotry. Roth

 agrocmat with the receute of val Velicmizon sod do hoos [s]; number dontition frow botit courcos are of the sule or cathode alsechertio shousd vory 13 tithe variasion with prosura,
 acriod depondenco on prossurfo. Purther cortiched antypis of the rasulte is boin corriod out, AmA will bo presontod

sermazices

3. y.n vellous.

APPENDIX B. COMPUTER CODE

cuakacterent y
THT:GEK I, unssi, null
NHOMS $=20$
NCOLS $=5$
116
10

MKITE(5, 99999)

II (A.FL. ${ }^{-18}{ }^{\circ}$)
MHITE $(5,99947)$ RILEI
REAL 5,99900 .

NEAU(2n, 221) UIIIP
FORHAT(A1)

$1=0$

continue
4l contrille
CLOSE (UNIT=2A)
CALL POIHIC($X X, Y Y, X I, Y I, I, N I T S I, A I I G L E G) ~$

CHITE XNONC XT, YI, IPPTS 1, XOUT, YUUT, I.OUT, NUEL

KR1TE 5.991)
READCS,99996)FTLEE

CAP $(1,1)$ E FILEE
HAD (2,1) $=$ YTLEL
CALL HAPM,
WRITE(2u, 9ya) MUUT

cortiale
CLOSE: (UIIITEZZ)
call uectufa u. 1. U. iulit

cunls = "scallo.
CUPL(1,1) $=\forall$ TLK:
AP(2,1) = FTLL

chose (uhit $=24$
enin
It
WRITE(5,9y901)


```
9y1099 Pukhat(%
```



```
4y%y% vulat(0.
MuNHAT(A10)
FuN|A](A1,12,A1,F1,1,1x,A1",12,1X,A2H)
```



```
Cumiat(2ri.3)
```



```
S%OP
Eca>
```



```
TMTEGER T,MPTS.N.IST
MST=2
NPTSE= =1-(ST
AHGLEG = ST. BAAGGLET
CLSANG = CDL(ANM(LE)
Du 10 J= H5T+1
```



```
YI(JNST)=YY(J)-YY(1)
(JNST)=CUSANC*XI(JIIST)+5IMANGOYI(JHST)

```

唯位位
fltura

```

```

SGAL XTIIIITH),YNN(MIH), XOUT(NIN),YOUT(NIM)
CAL XTM(lIIH),Y\&N(HLH), XOUT(N
MiTLGER
xur(1)=xIn(1)
YuT(1) = Y1N(1)
Mos J=2.11
xulut(J) =
MuNziNuE
CN

```

```

M0|T(1) = XIN(J)
ELSEL
M,
Ent ik

```


```

YETUPl/
SuBROUTINE SCALCLIC Y, N. YSG
PEALY(BN, YSA.Cic
MIITGGRRN

```

```

Ysc(J)= AluG(c \& X(J))
MUTURII
Mutur

```




            Mi.rums \(=5\)
VCRLS \(=5\)
            MCLLS \(=5\)
N
0

            Thing \(=0\),
ISCALE(1)


        Ellecerrispu
        - Male




        curishatic






        Furvat (i7.3.F4.5)
        Curtilut



        FURAT \((2 F 7,3)\)
FUKIAI \((A 1,15,1,1 \times, A 1(1,12,1 \lambda, A 11)\)




        whitr (5.999)
        Hritris.
rictor
rontinue

        CALL UCCIUE(0,1, 1 , TUITT)
        Tf (Iolly. ED,1i ( CoTo \({ }^{13}\)

        Fukhat 5,998 )
        とAu(S.997)l.Cas
        NEAU(S.997) H.cap
        iflichencal : ?

        traile
    If (NCAP.EQ:1) CUTO 13
    no \(23 \mathrm{~J}=5\). ncar. \({ }^{2}\)
    MRITE(5,661)
    RCAL(5.662) A(J)
    ruphater)
    cungjnge




    B(J)N1.
CuTINIE
Guto




WkITR（ 5,996 ）
fuTu
WRITE（5，995）
41 GuTV \(\quad\) WKITE（5，994）
GuTE 15.994 ）
5t WKITE（5，9y3）
MKITE \((5,969)\)
WHITE \((5,964)\)


－1stcpitscale：
If（TSTuR．EL．：！）（：utu 27

\(2: 3\)




－Filec）
Fligif（iFlac．ev．0）gutu 515



（F（＇．EU．\({ }^{\circ} \mathrm{N}^{\circ}\) ）GUTU SLS
－Falees）
515
rumtiuve
3031
WKITE（5：3031）
－urtats vo yull waht lehsuh plot ：y ur ine
PLA（5．9世5）
HLLL \(={ }^{3}\) ，


TF（1）．EO．Y Y \(^{\circ}\) ）GOTO gun
510
cultilule
WKTTE（5：8も2）
uriat（－imput name yile to nold splinl itit＇）
REAL（5，861）ETLES

NEW（1）\(=\) YHLES


hite（21．7722）L．CAP


CuHTHNE






 READ（ 5,985 ）
It（A．EG．\({ }^{\circ} \mathrm{Y}^{-}\)）GuTU 1

```

7771 FURH1AZ (E2S.7)
M,

```







```

c

```

    - KINT, YKLLOTS, IjPUR RSCALE), YCALC(ICCALC),

    - rrmut (Sw)









    18 (ISCALE(2).M.
CUKTIINE
XCALC ("CALC)

        IT (IFAIL.IIE.⿹) GOjo 2vM
        If (IFAIL.

        GuTu ta
KkIIE ( 5 , 992) IFAIL
Fullat :
        KkITE (5, 992) TFAIL
    •กpa
ISTuP
(
        CuTV MER





        cutu imiono


        CHOTILUE
        METURK
    E. \(1 . \mathrm{U}\)


CiAMKACTER 111 FILF:K. HAME

FILLK \(=\) SHOTS. LATO

CALL UECIUE ( \(0,1,6\), TUUT)
 CURHAT ( IN'UT VAHE
KEAUC 5, Bu? ) FILLK
Furliat
EhDIF

KLALC 20.771 , NAME
FORIMT
A14,
FORIAT ( A1H
READ (20,991,
NCAP \(3=\) NCAP +3
 DU 10
REA
R REAU(2U,992,EKK=91) K(I)
FURB:AT (F)
CUNTIHEE
GuTV 1MU
GuT0 1000
 CONTIHUE
CCOSE (UHITT \(=2(1)\) CLOSE(II
RETURH retur
R:NU

        Mrolsyucigom.
```



```
        CHAKACER&1E RUNG
        C,IAKACTEK*RO
    MEAL XPL(2), WAVEL, SELU(SOU),
        *SAC(500),
        MHTEGER A"(1), ICOHUS(2)
        R:XTLRHAL LSUFUM. LSOMO
        CUMAOH/A/ SEGI, SEUP
        Cunfoh/b/
        cumbion/c'
        CONTTHUE
        uHOLS
        NCOLS=3
```



```
        CALILNL:CO.1) COTO INAUN
        CALL KEADFL(TILLS;HCALT, K.C,WAVELANCAP7F,KP,CP,COBDS,
    IEHKOK, TYPFP, LATEP, HLEASF, MAP1, AAHZ,NKOLS MCOLS.NK,NC)
        IF (IFKROR,ELU.U) COSO IDM


```

ICOlis(1)=A
1COnDS(2)=A
If
MrOLSF=
IPRINT E dou hant to use lefault parametfe values?0
lol
if (10UT LEO. i; ; GOTO IU
Mrite(5:992)
REAU (5,993)M
If (N.GT.2.UN.N.LT.45N) GuTV 1N

```

```

 GOTO 2&
 XPE(1) = KP(1)
 XPE(2) = KP(CCALTR) HE HAVEL,N,NI,EEUL, STOP
    ```

```

 lol
 gutur 1boá
 CGCATBUME nCAPTP .
    ```

```

 HIJAL: =M M IPAK AIPAK
 CALL AKHP(HCAPTP. AP,C(; N, SFUH, 15TOD)
 IF (ISTUR.Eu; ")'GO
    ```

```

 qgortat(egos
 C'UWTIHUEK(SLOH, M, HIPAK, EEUP, ISTOP)
 11. (1sT0P,&Q%\mu) <пTO 22
 #NITE (S.22.29),
 cGMTINGK
 l,J=50.%
 LV=Se
 Lu=2752s
    ```


```

M,
KLA1A{',903; '11/M1H
"AXCA
MA za,5

```

```

migE(S: :44)
HEAL (S, Sis) XIOLSt
Mukliat(})
*10L = xTULSV *SOHT(XU2AAI (XTOL))
S1Et'mx = 1avblo.y
SHE J=1."NCAIBM
crSYN(J)
cuhtinUG:
MKTE(5,1:1)
MEAL (S, UVI) MONIT

```

```

CALL EGGFCF(MPAK,h,LSOFUH,LSRYNU, IPKTMT, HAXCAL,ETA, XTOL,
SIEPHX.CRSYM,FSUMSD,FVEC,FJAC,I.J.S.V,LV,HITEH,UF,IW,
LI*,w,in,1FAIL)
CLOSHCUNITE26) white(5,999)ItAl
MMHAT(":."E\lambdaIT EGAFCF MITH WAL BFMTL=".13
IF (IfAIL.fu.1) GUTE IOMUG
MITE(S: 331) YOU WAIIT PLOT OF SYNTH % Y OR N')
HEAL(5, BY4) UH

```


```

 PMA!E,FVEC,HPLK,M,IYAh,
    ```

```

 MEAL(5,489)BR (BE) GOO 33
    ```
```

 MHITE(S;日{1)
 m&AU(S,682) FILESY(1)
 MRITE (5,8Q4)
 kLAL(5,B82; FILESY(2)
 CALL CLEAE:I(NEN.NCOLS)
 HEW(1) =FTLESY(1)
 HEM(2) = FrLESY(2)
 MW(3) = MOH1I
    ```



```

 HKITE(2W, GUIJTYPEP,WAVIL,OATEP;
 FUH1'AI(A1, F!,I,1x,A1い,12,1x,A1N)
 #HIE(2H: 55j1)M
 NKITE(2u;72q) ,\Cip7p
 Fuhl:AT(ciz)
 WHIHE (24.8U3) (KP(J),J=1,N(NAP7!)
 :KITE (2*, 883) (CPSYT|(J), J: 1. 1.)
 * GRHaf(liz.7)
 CALL LSUGHD (HPAR,H,FVFC,FJAC,L.J.W)
 l
 FUR|AT(F12;5)
 FMRIAT(0.0-G
 -h)TE(20.*氏丶J) (c(J).J=1, 1.)
 F unfat(riog.b)
 MKITE(20.b52)
    ```

```

MHITE (20,GLG)(FVEC(J),j=1,|,PaK)
MPHAT(A1)

White(5:771)

HEAL(5.889)UB
WGITE(5,772)

```

```

KGAl, (5,809)BG

```

```

SrO%

```
864
33
771

SUBKOUTINE RLAUFLCFILES, ICAPT,N,C.MAVEL, UCAPTP,KP,CP,
- CUNUS, IERROK, YYPER, DATEP, MAEASD.

 CLEALACTRAVEL,K(5U),C(50),KP(50),CP(5U) CHAI:ACTER:1 TYPE, TYPEP



HEAL ( \(2 \mathrm{~V}, 8 \mathrm{8t2}\),
FURHIAT \(\quad 2 \mathrm{~V} 7.3\) )

REAL \((20\),
FURHAT (12)
FURHAT (12)

KEAU (20, 863, ERK
CUNTIHE
CLOSE (UNIT \(=20)\)
Bl3 FURIAT (E2a.7) \({ }^{2}\) )

CALL HAYRU(HAP2, NKOWS, NCOLS, NK, VC) NATEP, UMEASP, CONNS(2)


Heavizu.
cuntilue

CUNTINIEL
CUNTINIE
CLOSE CUNIT
GOTV

\(91 \quad\) 1ekrok \(=111\)
\(92 \quad\) GUTV IERKOK \(=12\)
3 GUTU \(\begin{aligned} & \text { GOVO } \\ & \text { IERKOK }\end{aligned}=13\)


- GuTO 1 DNG
TERROK \(=21\)
GUTO 1 UAU
IERKOR \(=22\)
82 IERKOR \(=\)
GUTO 1006
IURKK
\(=23\)
GUTO 1006
I 6 RKOK \(=23\)
ERRKOK \(=23\)
GUTO 1 UnG
GUTO
IERKOR
COHL
COMTIIUE
RETURH
ELD


```

HEAL APE(2), bELI(M),XI(SUA),A(1.CAR7),C(HCAH7)
HLAL SEOUU(SUN)SFEGIUS(SNR)
luTLGER 1 COHUS(2)
cumhon/C/ ICOONDS
scA = =-0.0
cc=1.b
MSTUP=A
KFITI1 EKPIMI \& '1. SCA*(ravEL - b32.b))

```

```

DP=(XPE(2) XPEE(1)
S = (SCALEENP)/FLOAT(M-1)

```

```

xg(J) = x(1)+ FLOAT(J-1)*s

```

```

CN
IF (ICONES(1),EU.1)SELU(J)EEXP(SEOII
SUMI E SUNI PSLOIU(J)
SUMI E SUMI * SLOIU(N)+S.G%,A(nCAP7)) GUTU IN*
conTINUE
CuntinNE

```

```

SLOI(J) =SEUIU(J)/SUHI
NGINE (5,991) ILAIL
ISTGP =1/ m

```
140
    92
    942
wart










cutinul
GuTV 20
CuHTIHUE
CUNTIHUE
X (N. \(=\) KP (HCAPTP)




\begin{tabular}{l} 
cong jille \\
Gote \\
\hline
\end{tabular}

ISTUP \(=1\)
GUTU 1 йue

FOHHATS:
ISTCP \(=2\)
STTUM
ISTLP
RETUH
B;


```

REAL SEOM(SA)
MWTEGER ILSOLSM, SEOP(SAO)
ll
CMAMOH/1/
NCALLE ARHPNCAMTP, KH.CPSYH, M, SEUN, 1STOP
M,
MF
CALL SPISSUC, SEUI, SLPN, MPAK, "1, MVECL, MPAK, NI)
CALL RESUL

```

```

MRETUY/4

```



ISTUP E1 (NPAK.EO, M) THEN

CONTIMUE (MIAN.CT.N) THEN


If
\(n_{2}=A 1+n+1\)

8EOPAK(J)
Cultinue




CuMTINUE:
HETIM
EMO

REAL F

\(5=6\)
no
ive




RETURH
E.AO




 \begin{tabular}{c} 
RLTU \\
R:6 \\
\hline
\end{tabular}


(SAL KP(UCAP7P), MPD

 IHTLGLE ICUMUS(2),1SCALE(2) CHAKACTERR1 2, TYPE, DATE, CONUS

NCAPP = HCAPTP -7


 ChLAU (2H,993) TYPE, WAVEL, DATE, NHFAS, CUNUS
\[
\begin{aligned}
& \text { DG } 10, J=1,{ }^{1 . p r s} \\
& \text { FUAU(2t, } 245)^{\prime} X(j) \text { YS(J) } \\
& \text { FUHIAT(2F7,3) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { FUHIATIRF7.3 } \\
& \text { CUNTIUIL }
\end{aligned}
\]
\[
\begin{aligned}
& \text { MEAU(b. 9YĹ) FNANE } \\
& \text { FURKAT(AIL) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { FURKat(A1b) } \\
& \text { GOTU I }
\end{aligned}
\]
\[
\begin{aligned}
& \text { GoTv } \\
& \text { Cuntide }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Uu 7ny } \\
& \text { xites }
\end{aligned}
\]
\[
=\mathrm{ESS}(J)=\mathrm{FVEC}(J+I P A K)
\] cuntimue cye hors micap
 KINT,YKHOTS, ISTUP.ISCALE
If (ISTUP. ELGO GUTU 22
 Gonhar
GOTG
Cunt numb CUNTILUE
CHITE(5.997)
 YORHATS KEAL (S. 9 (
FURHAT(A1)


- FI,AnE, XRES.KEEi.n)

CuNTIHUE
 RLAL \(^{\text {R }}\left(5,49\right.\) B \(\left.^{\prime}\right) 2\)

CALL PLGTSCIPLOT, X,Y,i:PTS, XCALC, YCALC, NCALC, KINT, YKNOTS, NGAPP. FriAAE, XRES, hes.m

 1PLOTEJ

FHARE,XRFSAKES,M,
twitw


surroutinl plutaciplot, x, y, ipts, xcale, ycalc, mcalc, kint,
- YKMUTS. WCAP,F1LLCC XRES, KES, NKEL
 REAL XRES (4HES): KFES(IIRES), YNHUTS(SM)


NKHUT \(=\) NCAP -
ISPACE
\(=2\)
ISPACE
SIZLFT
\(=2\)
SILLET \(=6\)
ILAG \(=0\)
IRLAG \(\equiv\) g
ISNIT
WKITE(5,993)

deau (s,994) FILEPT
fukhat (au)
Eholf (if

REAL(5,992) BE

IF (IPLOT .EO. 1) THEN
\(\hat{n}=1.5\)
\(x_{L}=15.0\)
\(y_{L}=8.0\)
YL= Bi ( irlut .LO. 2 ) THLM
\(\mathrm{A}=1.5\)
\(\mathrm{~A}=5.0\)
\(\mathrm{e}_{2}=5.0\)
\(x_{L}=15.0\)

A \(=1.5\)
\(B=5.4\)
\(B_{0}=5.4\)
\(x_{2}=24.0\)
\(y_{1}=18.0\)



CONTILVE GIN
IF (IPLUT.EU.1) CALL T4の10
If (IPLUTEO.2) CALL
If (IPLUT.EO.2) CALL
If (IPLUT, EUU.3) ThEN
CALL UNI312
CALDL STARTP(FILEPT)
\({ }_{\text {CALL }}^{\text {El.DIt }}\)
CALL UNLTS(19.a)
CALLL WIHDUW (2)
CALL
CHASIZ(SIZLET, SIZLET)
CALL AXISCA( \(1,10, \times(1), \times(N P T S), 1)\)
CaLL AXIPOS \((1, A, B, X L, 1)\)
CALL \(A X 10 太 A(1,1,1)\)
call axisca(1, 10, 0. U. 2a.a. 2
CALL AXIPUS( \(1, A, h, Y L\),
CALL AXIDKA \((-1,-1,2)\)

 DO \(40 \quad \mathrm{~J}=1\), Whiver


CUMTINUE
DO 50

COHTLBIE
CALL GRASYM(KINT, YKNUT, HKHOT, 7, U)
If ( IFLAG EG. ia ) GOTO 9a
YK \(=1220\)
DO 100 J \(=1, ~ u K u o t ~\)
DO \(180 \mathrm{~J}=1, \quad\) LKKHOT
CALL
CALL MOVTHOXX KIMY(J), 7, 3)
YK \(=X K=0.5\)
If (YK.LT.1.1) \(Y K=1.4\)


\section*{cuntibut} CONTIINUE
CALL \(\operatorname{HOVTUZ}(7.11,13.2\)
CALL CHASTR(1TLECC)
CALL \(A X P U S(1, ~ A, ~ B-3.1, ~ X 1 ., ~ 1) ~\)


 CALL GRASYMG XRES. RES
CALL OEEEHO
IF (IPLUT.EU.3) CALL ENUP 1F (IPLUT.EU.3) CALL ENUP CALL GINELHO
Retuk
E(t)
SPLJNE DATA File
\({ }_{20}^{2636 . S ~(17.08 .84) ~} 3\) zTOK ONiA
-. \(3000000 \mathrm{Et}+1\)
-. \(3000000 \mathrm{E}+01\)
\(0.3000060 \mathrm{E}+01\)
\(0.3000000 \mathrm{E}+01\)
\(0.3000000 \mathrm{~F}+01\)
\(0.3008000 \mathrm{E}+61\)
\(0.460600 \mathrm{H}+81\)
\(8.4606060 \mathrm{t}+01\)
0.6004000 t
\(0.7600060 \mathrm{t}+01\)
\(0.7606000 \mathrm{t}+61\)
\(0.8800000 \mathrm{E}+91\)
\(0.8800000 \mathrm{E}+01\)
\(0.1006000 \mathrm{E}+02\)
\(0.1000000 E+02\)
\(8.1840000 E+02\)
\(0.1140008 F+62\)
\(0.1180 \forall 00 E+02\)
\(0.1180000 E+02\)
\(0.1290000 \mathrm{E}+62\)
\(0.129080 \mathrm{E}+82\)
\(0.145000 \mathrm{E}+0.2\)
\(0.1560068 \mathrm{E}+02\)
\(0.17000006+02\)
\(0.189508 \mathrm{Et}+02\)

0.1895000 E +92
\(0.1895000 E+42\)
0.189500 E +62
\(0.1070988+08\)
\(0.1371844 \mathrm{E}+08\)
\(0.1596415+08\)
0. \(16968111+08\)
\(8.2508675 \mathrm{E}+00\)
\(8.6269897 \mathrm{E}+00\)
\(0.6269897 E+06\)
\(0.28 .51079 E+91\)
\(0.2851879 \mathrm{t}+01\)
\(0.8855422 \mathrm{t}+01\)
\(0.8855422 \mathrm{~L}+01\)
\(0.1424090 t+02\)
\(0.1524090 t+6\)
\(6.1350510 \mathrm{E}+62\)
\(0.1851004 t+01\)
\(0.1013342[+01\)
\(0.3587222 E++0\)
\(0.358722 \mathrm{E}+\)
\(0.230167 \mathrm{~F}-\)
\(0.157898 .51+0\)
0.4174825 E
\(0.4174825 \mathrm{E}-01\)
\(0.931 \omega 2.28 \mathrm{E}-01\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{SOLUTION} & OUTPUT BY & \multicolumn{4}{|l|}{LSQMON} \\
\hline \[
{ }_{3}
\] & \[
\underset{126}{F}
\] & & \[
\begin{gathered}
\text { SUMSO } \\
1.87999 E-02
\end{gathered}
\] & & \[
\begin{gathered}
\text { GIG } \\
4.0 \mathrm{OE}-07
\end{gathered}
\] &  & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(5.06686 \mathrm{E}-01\)}} & & G & \multicolumn{3}{|l|}{4. oe-07 Singular values} \\
\hline & & & 7.2E-07 & & & & \\
\hline -3.05 & E-02 & & -8.6E-07 & & 2. 3E +00 & & \\
\hline 4.02 & E-01 & & 4. 3E-06 & & 2. \(2 \mathrm{E}+100\) & & \\
\hline 5.16 & E-02 & & -2. 0 -0. & & 2. OE +00 & & \\
\hline 5.26 & E-01 & & -1.7E-05 & & \(1.7 \mathrm{E}+00\) & & \\
\hline 6.29 & E-02 & & -5.2E-04 & & 1. SE +00 & & \\
\hline 1.41 & E+00 & & -1.2E-04 & & 1. \(3 \mathrm{E}+00\) & & \\
\hline 2. 22 & \(E+00\) & & -1.1E-04 & & 1.1E+00 & & \\
\hline 1.20 & E+01 & & 7. \(3 \mathrm{E}-05\) & & 9.3E 01 & & \\
\hline 1.87 & E+01 & & 1.3E-05 & & 7.9E-01 & & \\
\hline 7.44 & E +00 & & 6.1E-05 & & 6. \(6 \mathrm{E}-01\) & & \\
\hline -8.78 & E-02 & & 2. \(7 \mathrm{E}-04\) & & 5. 4E-01 & & \\
\hline 9.10 & E-01 & & 3. BE-05 & & 4. 4E-01 & & \\
\hline -4.37 & E-01 & & 1.5E-04 & & 3. SE-01 & & \\
\hline 5.45 & E-01 & & 1. BE-05 & & 2. \(\mathrm{BE}-01\) & & \\
\hline -1.99 & E-01 & & 3. OE-OS & & 2. 3E-01 & & \\
\hline 3.93 & E-01 & & 1. 2E-06 & & 2. OE 01 & & \\
\hline -7.31 & E-02 & & 3. OE-07 & & 9. 4E-02 & & \\
\hline 1.74 & E-01 & & -4. 2E-07 & & 8. BE-O2 & & \\
\hline
\end{tabular}

c Fkice sybabs Fur


 CHARACTER日1 BA CHARACTERFWV

 thticer icunus（3），In（1） COHNUK SEGT，SEOL，LEETT，BASL，IPAK，M，HI HiOhs \(=2\)
ncols \(=5\)
 MC
Cuntimut
10
call stargacfices，leho，h：rums，ncols，hik，ne，mapy） IF（TENU．LO．1）COTO 1 1ロ日，
－CALL KEAOA（FILES，HCAP7I，KI，CT，M，NLAPTE，AE，CL，WAYEL，HCAPYT，KT，
 HKITE（5：991）IERRU
ctu lueav

1coi:0s(2) \(=\)
1F(CUHDB(1).EO. ©SCALEDD) ICCHOS(1) =
IF (CUNUS(2),E0. SCALEDO) ICNOPS(2) =
IF (CGHUS(3) EVOASCALEDO) ICONDSU 3 ) \(=\)


HKItE(5: 994) nutijlue ranc: 2-4bH, try afaine)
Hohmats
GUTO 3
GUTO
Eid
E:D \(1 \%\)
TVAN \(=15\) IVAK + IPAK


        IF (ISTOP,ME, U) TIIE



\(\begin{array}{ll}\text { LJ }=500 \\ \text { LV } & \\ L_{1}=20\end{array}\)
LIME 10


XTOL EXEOLSFESORT, XUZAAT (XTOI.))
siEpHXE 1 varsu.








```

OU 321, J2=1%',

```

```

 LAC(5.1237,F|K=747) 65YH(U)
 COHIT,uc
 GGTV 737,
 FURHAT(: ERKOL I.EADING VALHE, REPLAL INPUT')
 MBhat(% crkN
 COHIINuL
 EI.D 1f (5,990)
    ```

```

 HEALS,y97)MOR:TY
    ```


```

 CALL EGAFCFGMYAR,H,LSLFI, ,LSOHOM, IPMTNT,MAXCAL,ETA,XTOL,
 SIEFMX.ASYN
 H.LW,1FAIL)
 CLOSE(viIT=2b)
    ```

```

 IK (HAIL,BC,1) CUTG 2BUPG:G1,G2,A12,AN,JVAIL
 #NTE(5,TL71)JFALLAN
    ```

```

 CALL LECTUE(0.1,", TUUT)
    ```

```

 &aOLF
 MKITE (S. 332) yOU mAl,T STOH: SYNTH DATA? Y OK I'0)
    ```

```

 cuNTIM!勆
    ```

```

 MEAU(3,H甘2) FILESY(2)
 CALL LSUCKI (HDAK,H,FVEC, PAC,LJ,G)
    ```

```

 MHTE(2N: MUS)
 HM1TE(20.S5)
 KNITE(2U.&R3) (G(J),J=1, 6.)
 FGRHAT(R2G.t)
 MKITE(2U.052)
 FUHHAT(20,886)(FVLC(J),v=1,APGK
 CLOSE (UNITE2W)
 MHITE(5:8#1)
 PLAL(5,082) FILEEY(1)
 CALL CLEAKI(LEF.,NCOLS)
 MEM(1) = FILESY(2)
 HEN(2) = FILESY(2)
    ```



```

 Furmat(A1,Fb.1.1X,A11,12.1x,A1G)
 FVARA(A1U)
 FuMART(E2U.7)
 CLOSE(UNITE2U)
    ```

```

 MEAU(5,UBY)URM
 G1,c2,A12j
 runhar(chi)
    ```

```

 \mathrm{ ruratat(oloodo}
    ```

```

 whit(S,7!2)
    ```

```

 *LAL (S,'BGO)BL
 82019

mitliger icunusais

STEP E UASEFFLOAT(H-1)

XI(14) = KII(1) Bast

IfA1L $=$
al citazor(ncar7t, hit, ct,

CuItimul.

ALL EA2BLF AE. U) GUTO DUM
(IFAlL ${ }^{\text {MRE }}$

if (IFAIL.AE, U) GUTU 1AHA

CALI AKRIACICUKUS, NCAPTI, AI,CI, UAEEE, WAVEL, K, NI, SEUT,IISTOH)
CURTIRUE
It (IISTOH.1F..3) GOTO 300E
GKIUE(5 , 9y1) IFAIL

FSTCP $=1$
GuTutiniel

15 TLP $=2$

390
12010

TSTMP $=3$
GGTP 1 How

IATLGEEK ICUNUS(3)
SCA $\sin -$ -
Sch $=-4$.
sum $=1.0$
$\begin{array}{ll}C C \\ \text { ISTUP } & =1.0\end{array}$

$\mathrm{xI}(\mathrm{J})=\mathrm{K}$
HFAL

IF (1FALL NE, 甘) GuTu gi

SUHI E SUAI + SH:OIII(J)

CUNT 1 lilk
Cuntinlit


```
SEOI(J) ESEO
91 (%)
FUR:AT (",
GuT0 lucug
```



```
992
1404%
MSTUP=2
remur
SURHOUTLHE AHCALC(WAVEL,ARSK,ASYN,GL,G2,A12,AN, JFA1L)
RLAL ASYM(10), G(BH0)
HEAL MAYEL
```



```
Cllatacterz32
MCALC:
```



```
MEAL(2A, 991, EHK=91) JMAX, DURi-
MEALCRA, 99, ERKME
```



```
FURMAT(12,2x,rs.1,2x,12,2x,12,
IN
CuNTIN,1K
    cluse(vir
    #NRTE(5: 9922)
    FUutaT(*):\circEt,
        close(unitzen)
        JHAIL EI
C4. CONTIINEL
If (WAVELL,ME.WAVEL) THEN
```



```
    JFALI. =2
        Gutu zavan
        G1 = Fluat(IG1)
        CiLPERLUAT(IG2)
        AMOPUER i7 UMITTEL
```



```
        chack cuti's
        CALL GCALC(ASYN.|CALC,G)
```



```
        $LMEM.5*(G(1) GCG(mCA
        CONTIMUE,
        AR: % ALPHA*2H.b*SCAL
        MLTUR&
    GGA.DAT
    navel gl giz A1) :1" puml% a
    400.2 17 14 0.433
    014.3 1.5 a5 4.216
    bHy.2 H3 as n.12A
    4 usu.5 as lu3 4.45:37
    5010.4 N3 14 M.luc
    5H5.2 H2 03 H.719
    7:13.2 u3 n5 U.142
    * 420.0 03 n1 n.243
```


cuntimity

31
CALL SP(SLOW,SECI. SLDU.HPAK,"1
Cullo $j=101$ Pa
searmen
curtinut

CuHTTMHE
cuatrime
$=$ IpAr- $+1+1$, midal
stonw (3) $=1.0$
CALL SHFTX(SLRLH, MPAR,ASYM(4). ©ELK

GUTM 10vo

204

EETUKH

If $(G, 1,1,-15, v)_{G}=-15,4$
1
RETURG
EL.U
SUHKOUTINE SHIFTX(SLO,h, SHX, SL,
ISHX EEU(H), SEGM(H), SEOW(1D(C)

cuititue
If (ISHX, EO.B) ZHLN

SLOWITHUE (ISHX.GT.U)
CLSL 1F (ISHX.GT.U) THEN

SEOHINS
CuMTIVE

Culitilife (ISHx.ltow) thel

Stow (u) =stac (J-15ilx

5.

Centrinut
EL.O 15
EL.D 11
CLAKIMUL

Scor (以)
culltate


```
    E= (1.U + USux)
    NO
```



```
Mi.% If
METUR
```


- NCAPTT,KT, CT, COENS, UATE, NHEASY, LEKKUR, MAP1, HAP2, MAP3.
MROLS, HCOLS, NK.INC

Fukiat
COMTIIIL

CAL (24. 863, LRK= 94) C1(J)
CLOSF (UNIT $=24$

CPEl. (lintr $=2$.
CALL MAPRUC MAP2, MRUNS, NCOLS,NR,NC
REAL (20,551) \quad,
REAU (2 OA, B82, ERK=82) MCAP7E
Du 20 J $=1$, $H C A P 7 E$
REAL (2U, צ83, EKR=83) $h E(1)$
CuItinue

COHTINUE
CLOJE (UHIT $\equiv 2010)$

REAU(29, BJ2, ERR=72)UCAPTT
REAU(2), $=1$, NCAPTI

Continuej $=2$. ncal.ti-4
REAV(2n,R CB , EKR=74)CT(J)
CuITINE
GUTO IUNO
Guto 1 NDOU
I \in RKO:
$=11$

IERKOK $=12$
GOTO IVEA
GOTO
TERROE
$=10$
TERRON $=$
GOTO 1006
IERKOK $=14$
IGTO
COTC 10 UG
ILRKOR $=2$

1EKROI: $=22$
GUTO
1LRHOK: $=23$
guto ivau
GUTO $=1$ ORU
IERRKOK $=24$
ICRROK $=31$
LERROR $=3$
GUTO $106{ }^{2}$

GOTO 100 OH
GOTO $\left.\begin{array}{l}\text { IERON } \\ \text { IEROK } \\ \text { GOTO }\end{array}\right] 3$

Goro 10ve
CUHTIHUE
CLOCE (UNIT $=20)$
vetur
eind


```
sunkmutimz ceaic(msyu, NCALC(6), F(sum)
    HEA). ASMH(14)fr(5u*)
    NU 1" J = = , uciALC
    Y(J)=\mp@subsup{X}{}{-3}(J)*X(J)*ASXM(2)*NSYN(2)
    11 (F(J).GT.15.0) F(J) = 15
    M(N)= ASY:(1, )*EXP(-F(J))
If (G(1).G7.15.(1) C(J) = - 15."
cuminue
K\ellTUK
```


(:1,(i2, 127 CHACACCTER\#IU \& EILC(3), MUNIT, FILESY(2), NAME

9502

"
995
9905
 HK1TE $(5 ; 9993)$
FURHAT
HiAL YェAL(h.9995) MANL
Furbaticales
find

 FUPHAT(F5,1,2k6.1,1X,F7.4,1X,13,13,t10.5,1X,3A11,A11,2A11) CLOSE(HiIT 2 2H)
$\underset{\substack{\text { HLTUIGG } \\ \text { E:i, }}}{ }$

Lib, w, bi f TLOEGEH 1m(LIW)

Fill
Suhk

\mathfrak{c}

c "anl. SEGMEMT: FITIT.FUR

* 1hTEGER ", H. ipkint. Maxcal, bo, lv, hiter.

I:TEGER ICUNLS, MCAP7, IUPLSS, IEXIST

extermal resiz lsumul CuRhoi. IMOU. AINT, CURR, Al., Al/4
Chakacterel2 Expt(2)

C FILLS (1) = WaML UF TIA DATA EILE

FLSL
ISWIT2 $=1$
Ewnif
CUNTIbue
inf: $=0$
1RF: $=0$
tCOUNTME
CUITINUE
7.n

C IEWIT2 IS FILE EXISTS SUITCH
15wits $=0$
ISHIT $=0$

CAIL CHOUSEC THOU
call parami imul. H)
:

 GuTu
EHOIF
ELDIF

KEALC(5; 993)

$\operatorname{syn}(1)=y_{0} .5$
Do
$=20011$
continues

99 REAU(5, 995) SYM(S$)$. Furlatice
culitilue

- POXCA
$\sim A x C A L=4$ UN

STFIMx a 1 Dunvin."
LJ $=30$
LY $=10$
Liw $=1$
Liw $=10$
Liw $=1010$

CuHTlly

mRITE 5 . 442,

If (uhoce.oy)
FLSLITE (5, 9992)
 PGAD(5 , y99), Flles(3)
9943 Elicar lifali

IF (INUM.GI.2C) TIFL
 (inton lunus

cirta 5 . 9yn) Itagl

wiste(5, 997)

GUTU INOLL IFASL..NU. 3) THE:

IFITE (5. 996)

feave 5,903) 6n
CONI BNE, EL.O ' THEN

furmaté
$\operatorname{cuTv}_{\text {b.OIF }}{ }^{2}$
Sh.DIF if (itall. Fic. 2) THEN

CuNStivt

Funtiatio un rull

R1001F

4441 *URIIATCE UN YUll
1Les


```
    It ( 15#TI2.FU.b) (i)TO 10ho 
    TE( IEXIST:EEC.1, THEN, MEITES(4)
```



```
        FW,OJF
```



```
    REAl(C 5, ga3) be
```



```
    Mcar74, N4, l4, icumua, zcuuht
    If (1stor.HE,a) guTu las,a
19u%
```



```
    OU 18UH
180.4
    *WTEES. BU4 )
    Fuhfite% 00 Yull ralit to stokN: sulatidite y uk No3
```



```
        Du 240 J = 3, b
```



```
    NC7
bubl
        FURHAT(E2N.7)
        *NOIF
        *KITEG夕, GU6U1,
        HEADC 5, 903, bH
        It(OB,EU.OY:) THE
        icNunt : ICUILIT * I
        gote 7e
        FITRIF
```



```
        c<col
    Suakoutshe pigati imun, i.
    thtegeh imun(2). H
    IV (munn(1).LE.1)) THLN
        Hf (MLD(2).LE.1
        St 1F If (HOU(1), (2).6F.3)
```



```
        It (Inuli(2),L6
        If (IMu0(2).t0.2), t: E
        Mf (1MOD(2).40.4)
        Mf(1)
    RLSt
    EloNIF
    Ml,0
```


 call uiffi 1 . Vals, aint, hevect,
Petruph
flau
Subkoutine valsic thou, M, h, curk, ah, aha, sy, vals, iflac)
REAL CHHK(M), SYi.(1.3, VALS(M), A1.(14)
REAL AKA(3EHAS
BITEGER IMUN(2)
curtithue
Th 1H0 J = = '
It (${ }^{1 H L D}(1)$ Lin 1 ITHEN
 Cali, hoobr ithecaj, Ho Ho clinh. ah, syh, vals. iflag,

| RETUR |
| :---: |
| $k=1,1$ |

- TERTI2(Cut:R(J), SXN(3))

-

3.

:
4

にLturis

EtAL ARR1(II), AKK? (M), AKHUTH: (H)

 cuntil:u
$\underset{\substack{\text { RETUK } \\ \text { Fis }}}{ }$

> subroutine mones imod, M, n, curr, an, syn, vals, iflag) real Curp(h), UaLS(H), SYN(N), AN(M)
> integer imod, M, N, iflais. J

> colse
> ENDIF ${ }^{\text {IFLAG }:-2}$
> RE TURN

FUNCTION TERNI (CUKR, A, B)
REAL CURR, A. B
TERH1 $=$ A*CURK* 1.0 + B*CURR
RETUR
END
FUNCTION TERM2 (curr, \bar{c})
REAL CURR, C
TERM $2=1.0 /(1.0+C * C U R R)$ TERM2
RETURN
EHO
RETD
FUNCTION TERM3(CURR, GAMMA)
EAL CURR. GAMMA
tern3 $=(1.0-$ Gamma*Curr $)$
RETURN
EHD
function termal curr, an, a, b)
FUNCTION TERM4 CURR, AN, A,
REAL CRR, A, B, AN
TERMA $=A$ ACURR* $1.0+$ B*AN)
RETURN
Retury
EMD


```
FUC(TIOL, TERNG(CIN:R, AN, A, P)
```



```
        RETU
```

 FUNCTIDI TERAS CELTA, Ah)

PETURU,
Suhboutine calcze hou, neale, d: syn, xcalc, ycalc, istor,

f.rlege ncalc. . licap7. ICOhns
REAL SYN(C), XCALC(HCALC), YCALC(HCALC)

ISTUP $=0$
XCALC(1)

Sthe $=$ kaigeffluate neale - 1)

Cu'tinule (IMOU(1).EU.2) THLD

It (istor.lie.n) guto inunb

Hetu
Ei,

PLAL K(HCA1.7), C(HCAIT), CURR(II), AN(4)
thitcgel MCAP7. M. IStor, IFAll
$\begin{aligned} \text { İTUP } & =0 \\ & =1.0\end{aligned}$
Du 19 $\mathrm{J}=1 . \mathrm{m}$
If (Cukr(J).LT.k(1) .ot: Curr(J).gT.k(hCap7)) the:h

- ail(J) hot calcilatele)
GuTO ${ }^{14}$

If (ffailane.n) ruen

ISTuP $=$ IFAIL
Guto
GUTO
Fi.DIF
10
1t (ICUHLS.EU.1) AN(J) $=\operatorname{ExP}($ Al. (J) $)$ -

| CONTHEN |
| :--- |
| CETURA |

1uncs

thtlater lpkess, h.e ietup. heapt, tiondis

Character*ie haml, cullis

ISTUP $=$ EU
It (IPkESS.E6.2), IAIIE $=$ ANZ.DAI
if (IDkESS.FJ.S , AILE = ANS.DAT
(1 isw
(TEG Gy
Fukiate un yuil wath ro alid tit lixed ur tpress ? Y or H°) KEAL'(5,992

Furiatic inpui waine of file huldtig an/a fite)
EEAC(5, 994, HA:.F

NKITE 5 . 995 , Iphesis.

- thput mane file huliuing ah/i fit ur mide,

LSTOP $=9{ }^{2} 94$) hahe

E:Cinif

EAU(20, BU1, EKR=RULU) IIPIESS, TURK, EXPT(i), EXPT(2), CUNDS
$1 \mathrm{com}=\mathrm{DS}=\mathrm{c}$

FuFnat $1_{1}, A 4,2 x$, A12, $2 x, A 12,2 x$, 121)
IF (IIPRES.NE. IPIEES) WKITE(5,771)

Fulhat Eza.7)

COHTIL"C
CLOBES U
GUTO
GUTO 100

- ou y mu mart tu enstart this sublioutine ? y un we)
 1 1STUR $=22$

GuTO 1900\%

810. CLOSE: $\mathrm{LH} 1 \mathrm{~T}=20$)

- Du you ualit ru kestary sillruuthes? y ur H°

FOREAT 1° KETUK" 1 STUP $=23^{\circ}$,

WKItE 5 . 3031
FURHATC ERKOK KEADING NCART, RETURII IStop $=24^{\circ}$) TOTOP $=24$
GuTO 1 andev


```
con,
860%
        METUR
```



```
HaTEGER b., HPGLSS. IETON,S
RLAL PURK(3aE), atITT(3CM)
```



```
CHAAACTER&1U Na/H:C,CO
MCl:ARACTER*12 EXPTC
CHAbAcTEM
M,
* (rR=9uav), (RK=GMUN) ipRESS, TURK, EXPT(1), EXPT(2), conds
FURHAT( 12, 99, A4, 2x, A12, 2x, A12, 2x, A14)
MEALC 20, 7
```



```
    FURIAT( 2F7.3,
    CUNTIN0E
    closec unit
    COMTILUE, 993, HaME
```



```
    heal( 5,998)
        FOPI,AT(A1
        M:IME(5.0. 9y4,',
```



```
        *)
        MuTC1
        MSMUP}=11
        MR1TE(5, 996)
        GuT0 loven
        cLOSE( UNIT=2U )
```



```
        M NO YOU HALT, TU BAHPN
        IF ( BA,EU.'Y') THEN
```



```
        coro (%NOLF
        TSTUP = 12,
```



```
        FURIAT(', KET
        GOT0 100日,
        c.0s:( पNTT=2N),
```



```
        MEAU( 5. 90y, YH,
PEAL(5. 90y) BH
TE ( SB.EG.'Y' ) THEN
```



```
        FORIAT(O, 1NPUT I.E.N (
        MREAL(5, 995) I.AIIE
        GUTU 1
        MRITE(55, BUA), MTM ISTOF = 130),
        MRITEC 5, BU4

```

 FOnlarte
 CLOSFG UHIT=2N
 GuTU 1uchy
    ```


```

 ISPFOP=20
 ISTOP = 26 (TO20)
 guto nuvuc
 gOT0 COHTHUE
    ```

```

 CUITIWHE
    ```
,
        NM,
```


THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE
TITLE
A studu of spectral Line intensities and Excitod Atom Populations in a Hollow cathode Discharge.

AUTHOR

INSTITUTION and DATE
C E. Light
.......
North London Polytechnic

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

DX

85359

[^0]: p 28
 p 29
 p 32
 p 36
 p 38
 p 38
 p 39
 p 40
 P 40
 p 40
 p 40
 p 41
 3/B.1 Introduction
 3/B. 2 The Menimenatior
 3/B. 3 Phowdector and Reconding Sywem
 3/B.4 Benc Arrangement of Optical Symem
 3/B.5 Pressure Scanning Fabry - Perot limetrumerer
 3/B. 5 (a) The interferometer
 3/B.5 (b) Adfustment and Finesme
 3/C PHOTOMETRIC MRASUREMIRNTS (PARTICULAR EXPERIMENT DETAILS)
 3/C. 1 Emision Expertments
 3/C. 1 (a) Interferomerer Scins of Emission Line Profiles
 3/C. 1 (b) I/ Menarements
 3/C.2 Abeorpion Bxperiments
 3/C.2 (a) Abrooption Measurements by Fabry - Perox Scens of Probe Beam Specterl Line Profios
 3/C. 2 (b) Memarrements of Total Tranemined Intensity of Probe Beem Spectull Line
 3D RBCORDNG OR VI CHARACIERISTICS
 3/E VISUAL INSPBCTION OF GLOW

 CHAPTER 4
 pesults
 4A PHOTOMETRUC MRASUREMENTS
 4/A. 1 Specterl Lnes Studiod
 4A. 2 Photometic Remalis
 4A.2. (a) Pebry - Peror Scens of Emistion Lines
 4A.2. (b) IA M, maremers
 4A.2. (c) Pubry - Purce Scmaning Abeorpion Meamsements
 4A.2. (d) Total Abocopica Minersemeats
 4/B VACHARACTBRISTICS
 4C SPBCTROCRAPELC EXPREDDIENTS
 4D VISUAL INSPECTION OP CLOW
 CHAPTIRS
 TRIE INEIRUMIATT FUNCTION OF THE FABRY -
 PEROT NIITRHEROMEIER
 SHA ENRODUCITON

[^1]: FIG. 35 VARIATION OF FABRY-PEROT IF WITH ETALON DIAMETER A_{2}, POOR PARALLELISM

[^2]: Hand. C. MM

