

IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

This PDF was created from the British Library's microfilm copy of the original thesis. As such the images are greyscale and no colour was captured.

Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured.

This is the best available copy

COPPER COMPLEXES OF DINUCLEATING OCTA-AZAMACROCYCLIC LIGANDS

A thesis submitted to the

Council for National Academic Awards in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Keith Philip Dancey September 1982

The work described in this thesis was carried out in the

Department of Chemistry, The Polytechnic of North London, and with collaboration from I.C.I. Ltd (Organics Division).

COPPER COMPLEXES OF DINUCLEATING OCTA-AZAMACROCYCLIC LIGANDS

by KEITH PHILIP DANCEY

Abstract

The synthesis of mono and dinucleating ligands and their copper complexes are described. Three types of dinucleating tetraimine macrocycles have been prepared from 4,7-diaza-2,3;8,9-dibenzodecane-1,10-dione by condensation with the appropriate polyamine; I, large-ring octa-aza macrocycles e.g. the 28-membered ring compound 5,6,7,8,15,16,23,24,25,26,33,34dodecahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaazacyclooctacosine and related 30- and 36-membered ring compounds; II, the "fused" bis(tetra-azamacrocycle) 5,6,7,8, 22,23,24,25-octahydrotetrabenzo[f,f',1,1']benzo[1,2-b:4,5-b']bis[1,4,8,11]tetraazacyclotetradecine; III, the "Linked" bis(tetra-azamacrocycle) 5,6,7,8,24,25,26,27-octahydrotetrabenzo[f,f',1,1']dipheny1[3,4-b:3',4'-b']bis[1,4,8,11]tetraazacyclotetradecine. For the type I and III ligands reduction of the imine linkages yielded the related octa-amines. The preparation of copper complexes is described. For many of the neutral copper complexes (formed by deprotonation of anilino nitrogen atoms) a novel synthetic route had to be used to overcome problems associated with the very low solubility of both ligand and complex.

An alternative route was investigated to other "linked" tetra-imines (type III) by reacting two moles of the aminosubstituted macrocycle 17,18,19,20-tetrahydro-9-aminotribenzo-[e,i,m][1,4,8,11]tetra-azacyclotetradecine with one mole of diacyl halide. The most successful example of this type involved oxalyl dichloride. A mixture containing a number of high molecular weight species (including large-ring polyaza macrocycles of type I) was obtained from the reaction of 4,7diaza-2,3;8,9-dibenzodecane-1,10-dione with hydrazine hydrate.

A dinuclear copper complex which was isolated as a diperchlorate salt from the 2:2 reaction of 1,6-diformaldoxime-4-methylphenol with copper(II) perchlorate has been shown to have a pseudo-macrocyclic structure (type IV) by virtue of intramolecular hydrogen bonding.

Single crystal X-ray structure determinations are reported for three biscopper complexes (types I and IV), one monocopper complex, and one metal-free dinucleating ligand (type I). Comparison are made with structures of a number of closely related compounds which have been determined recently at the Polytechnic of North London. In the cationic complexes, isolated as the perchlorate salts, three different types of enviroment have been found for the ClOA groups and these are correlated with infrared spectra.

Magnetic data (obtained at University of North Carolina) are presented which indicate subnormal magnetic moments due to direct and/or superexchange interactions between copper ions in many of the dinuclear complexes.

10.072

D AND NO.

Jun av

Preface

While registered as a candidate for the degree for which submission is made the author has not been a registered candidate for another award of the CNAA or of a University during the research program. The results and conclusions presented in this thesis represent original work by the author unless specific reference is made.

In partial fulfilment of the requirements of the degree the author completed the following courses: a) Biological chemistry of dioxygen; b) Recent advances in inorganic chemistry; c) Advanced structural methods (NMR and X-Ray diffraction).

Acknowledgements

I would like to thank the following people who have given their advice and help over the past three years:

Peter Tasker, my supervisor, for his continuous help, enthusiasm and encouragement.

Mary McPartlin and Kim Henrick for their assistance and patience in the realms of X-ray crystallography.

Ray Price, my industrial supervisor (ICI organics division) for his encouragement and helpful advice, and for providing the analytical services at ICI ltd, (also Sue Owen and other members of ICI research division who helped during my visit).

W.E.Hatfield (University of North Carolina, U.S.A.) for all the magnetic measurements.

Maureen Ashman and the technicians of the computer services, at the Polytecnic of North London.

Mark Kelly, Gerry Newman and Ann Gloag who provided various analytical services during the past three years.

Ann Dell (Imperial College, London) for providing the field desorption mass spectra.

Simon Thorpe (Hatfield Polytechnic) for general analytical services.

Alison for her help in photocopying and reading this thesis. The analytical services at the Polytechnic of North London.

The Science Research Council, for providing the funds to

support this SRC/CASE award.

		Page
	Chapter 1 Introduction	2
1.1	General	2
1.2	Biological Significance	3
1.3	Copper Complexes as Oxidation Catalysts	9
1.4	Copper Complexes as Models for Copper	
	Containing Proteins	12
	References	18
	Chapter 2 Dinucleating ligands	24
2.1.1	Type I Mono-bridged bis-quadridentate systems	25
2.1.2	Type II Multiply-bridged bis-quadridentate	
	systems	27
2.1.3	Type III Fused bis-quadridentate systems	28
2.1.4	Type IV Large ring octadentate systems	29
2.2	Systems for study	30
2.3	Synthesis of the precursor C2-dialdehyde	33
2.4	Preparation of (C2)2-dialcohol	34
	References	40
	<u>Chapter 3 Tetra-asa and octa-asa large</u>	
	ring macrocycles	44
3.1.	1 Introduction: Tetra-asa macrocycles	44
3.1.	2 Introduction: Octa-aza large ring macrocycles	45

INDEX

Page

3.4.1	Preparation of copper complexes of	
	H ₄ cyendimer including the X-ray structure of	
	[Cu ₂ (H4cyendimer)](ClO ₄) ₃	82
3.5.1	Biscopper(I) - carbon monoxide adducts	112
3.6.1	Copper complexes of H ₁₂ cyendimer	113
3.6.2	Copper complexes of large ring macrocycles	
	(30 and 36 membered ring)	114
3.7.1	Magnetic data	117
	References	121
	Chapter 4	126
4.1	Mono- and dinucleating aza-macrocycles	
	containing 1,2-diaminobenzene units	126
4.1.1	Introduction: Mononucleating asa macrocycles	126
4.1.2	Introduction: Dinucleating-aza macrocycles	128
4.2.1	Results and discussion for mononucleating asa	
	macrocycles	129
4.3.1	Results and discussion for dinucleating aza	
	Macrocycles	155
4.4.1	Preparation of copper complexes of the	
	dinucleating asa ligands	167
4.5	Magnetic data for the copper(II) complexes	180
	References	185
	Chapter 5 Linked Macrocycles	188

Page

5.3.1	Preparation of 1,2,4-triaminobenzene	192
5.4.1	Linking reactions	195
5.5	Further reactions with H2cyphNH2	204
5.6.1	Reaction of hydrazine hydrate with C_2 -	
	dialdehyde	206
	References	210
	<u>Chapter 6 Biscopper(II) complexes of a</u>	
	hydrogen bridged molecule	212
6.1	Introduction	212
6.2.1	Preparation and X-ray structural analysis of	
	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	215
6.3	The infrared of coordinated perchlorates	224
	References	230
	Chapter 7 X-ray structure determination	232
Sectio	n <u>Compound</u>	
7.1	$[Cu_2(H_4 cyendimer)](ClO_4)_3$	232
7.2	$[Cu_2(H2cyendimer)(H_2O)(ClO_4)](ClO_4).(.5thf)$	238
7.3	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	242
7.4	H ₁₂ cyendimer	250
7.5	[Cu(cyphX)]	252
Refe	rences	254

Page

Appendix		309
Appendix 1	X-ray crystallographic data	A1
Appendix 2	X-ray structure factors	A 55
Appendix 3	General experimental techniques	A102

Abbreviations

.

R	Angstrom 10 ⁻¹⁰ metre
BM	Bohr Magneton
bpim	4,5-bis[(2-(2-pyridyl)ethylimino)methyl]imidazolate
cm	centimetre
CuR	copper reagent
dma	dimethylacetamide
dmf	dimethylformamide
dmso	dimethylsulphoxide
dpt	diphenyltriazene
en	1,2-diaminoethane
Eims	Emission impact mass spectrometry
EPR	Electron paramagnetic resonance
Et20	Diethylether
Fc	Observed structure factor
Fdms	Field desorption mass spectrometry
Fo	Calculated structure factor
G	Gauss
g	grams
1 _H nmr	Proton nuclear magnetic resonance
im	imidazolate
ĸ	Michaelis constant
M	Moles

nm	nanometres 10 ⁻⁹ metres
0-	ortho
OAC	Acetate
p -	para
Ph	Phenyl
ру	pyridine
R	Residual index
R	Weighted residual index
thf	tetrahydrofuran
$^{\mu}$ eff	Effective magnetic moment
Infrare	d Abbreviations
b	broad
8	strong
m	medium
W	weak
sh	shoulder
<u>l_H</u> nmr	Abbreviations
8	singlet
đ	doublet
t	triplet
m	multiple

-

	Chapter 1 Introduction	Page
1.1	General	2
1.2	Biological Significance	3
1.2.1	Copper Proteins Containing Single or	
	Independent Blue Centres.	3
1.2.2	Multicopper Oxidase	4
1.2.2.1	Laccase	4
1.2.2.2	Ceruloplasmin	5
1.2.2.3	Ascorbate Oxidase	6
1.2.3	Tyrosinase	7
1.2.4	Hemocyanin	7
1.2.5	Superoxide Dismutase	8
1.3	Copper Complexes as Oxidation Catalysts	
1.4	Copper Complexes as Models for Copper	
	Containing Proteins	12
	References	18

÷

Chapter 1

Introduction

1.1 General:

The work decribed in this thesis was carried out in collaboration with ICI Organics Division under a CASE Studentship, and involves the design and synthesis of dinucleating ligands and their copper complexes. Dinuclear complexes have been much studied recently because of their biological significance¹ and/or their potential as oxidation catalysts in the fine chemicals industry.

The background to these two areas is surveyed in section 1.2 and 1.3 below. Synthetic model systems for binuclear copper sites in vivo are considered in section 1.4. The general aims, a description of the systems studied and the layout of the thesis are described in chapter 2.

A feature of interest in such complexes is the possibility of copper to copper interaction (direct or via bridging ligands) as judged by various physical techniques including X-ray structural determination, EPR measurements and magnetic data. The complexes were tested for solution stability which indicates their suitability for testing as oxidation catalysts. The complexes prepared are also discussed where appropriate as possible models for coppercopper interaction in ensymes and proteins.

1.2 Biological Significance.

Three distinct forms of copper found in biological systems can be identified¹:

Type 1 Cu²⁺ (or blue cupric). This is characterised by two unique and apparently inseparable properties: an intense multi-banded absorption envelope in the region of 600 nm and an EPR spectrum having an unusually small hyperfine coupling constant.

Type 2 Cu^{2+} . This form of copper is present in all blue multi-copper oxidases, but is lacking sufficient optical absorption to be observed above that of other copper-chromophores in these molecules.

Type 3 Cu. This form of copper is also found in all multi-copper oxidases and is charaterised by 1) its ability to act as a two electron acceptor/donor system, 2) an absorption band at 330nm, 3) the lack of an EPR spectrum, and 4) its non-paramagnetic nature over a wide range of temperatures. This centre appears to consist of two Cu2+ ions, in close proximity, which are strongly antiferromagnetically coupled.

1.2.1 Copper Proteins Containing Single or Independent Blue Centres.

Certain species of bacteria, non-photosynthetic plant material and chloroplasts have been found to contain relatively low molecular weight proteins having either a single or two identical and independent copper centres.

Examples of these proteins are:

1) Asurins², originally named by Sutherland and

Wilkinson³ in 1963. Proteins of this class which have received most attention were isolated from four bacterial species: psuedomonas aeruginosa, ps. flurescens, ps. denitrificans and bordetella pertussis.

2) Stellacyanin⁴, umecyanin⁵ and mung bean blue protein⁶ all of which are isolated from non-photosynthetic plant tissue.

3) Plastocyanin⁷, found exclusively in chloroplast when its involved in electron transfer from photosystem II to photosystem I.

1.2.2 Multicopper Oxidase

Multi-copper oxidases are enzymes which in addition to a blue centre contains several other coppers per molecule⁶. The different classes of this type of enzyme are laccase, ceruloplasmin and ascorbic acid oxidase, and these enzymes catalyse the general reactions:

 $2AH_2 + O_2 \longrightarrow 2A + 2H_2O \qquad 2 \times 2e^- reduction$ $4A^- + 4H^+ + O_2 \longrightarrow 4A + 2H_2O \qquad 4 \times 1e^- reduction$ $1.2.2.1 \quad Laccase$

Laccases catalyse the oxidation of a variety of materials⁹ including p-diphenols according to the reaction shown in scheme 1.1.

Scheme 1.1

The name laccase was given to the latex of the lac tree 'rhus succeddanea' by G. Bertrand¹⁰ in 1894. Since then many types of laccases have been studied, and will be referred to later on in the text.

In studying proteins, to establish the nature of multicopper sites, model systems are often compared to the proteins. The type of results which are used for comparison are those suggesting protein mediated Cu-Cu interaction where perturbation at one copper site influences the properties of another.

1.2.2.2 Ceruloplasmin

It was observed by Holmberg¹¹ that a particular serum protein fraction which was bluish in colour possessed oxidase activity toward p-phenylene diamine, p-cresol and catechol. The blue protein was purified by Holmberg and Laurell¹² and given the name ceruloplasmin. The exact role that ceruloplasmin plays in mammalian organism is unknown, although it is believed to be required for the efficient incorporation of iron into transferrin¹³, and that it is an

essential component of copper mobilisation¹⁴. The mechanism of the oxidase activity is very complex but some overall

features of the reaction have become established: (a) Types 1 and 3 Cu are involved in the oxidation-reduction cycle and it is possible that other copper ions are likewise involved. (b) The catalytic role is independent of the nature of the substrate. (c) The form of enzyme that can react with O_2 does so with a very high affinity $(K_m O_2 = 4 \times 10^{-6} \text{ m/l})$. (d) The reaction between O_2 and fully reduced enzyme results in formation of the complex composed of the elements of oxygen and enzyme which absorb at 420nm radiation.

1.2.2.3 Ascorbate Oxidase

Ascorbate oxidase is obtained from vegetation such as cucumber¹⁵ (Cucumis salivus) and the courgette¹⁶ (Cucurbita pepo medullosa). The reaction¹⁷ catalysed by ascorbate oxidase is shown in scheme 1.2 for which it shows a strong but not absolute specificity^{17b}.

Scheme 1.2

1.4.5

The characterisation of ascorbate oxidase has not been as thorough as that of ceruloplasmin or the laccases due to the greater difficulty in purifying large enough quantities.

However, recent developments^{15a,18} have allowed measurements which show a similarity of the Cu-binding sites to those of

the other blue multicopper oxidases.

1.2.3 Tyrosinase

Tyrosinase is an enzyme isolable from the common commercial mushroom (Agaricus bisporus)²⁴. The enzyme is an oxygen- and 4 electron-transferring phenol oxidase which catalyses phenol o-hydroxylation and dehydrogenation in plants and animals²⁵. The active site of the enzyme is postulated²⁶ to contain a pair of antiferromagnetically coupled Cu(II) ions, for the following reasons; (a) There is a lack of any EPR absorption^{24c}. (b) The apoensyme can be wholly reconstituted with Cu(II) to an active product without an EPR signal²⁷, and that on reaction with H₂O₂, tyrosinase forms an O₂- and NO- binding compound which has chemical and spectroscopic characteristics similar to those of the bicuproprotein hemocyanin²⁸.

1.2.4 Hemocyanin

1020

(Kowb)

2110

Hemocyanin is a copper-containing dioxygen-binding protein²⁹ found in the plasma of certain types of invertebrate³², cephalopoda (molluscs) and xiphosura, arachnida and crustacea (anthropods). The deoxy form is colourless, but the absorption spectrum of the blue oxy form, which contains the copper-oxygen complex, consists of an intense ($\varepsilon \simeq 10^{+4}$ $M^{-1}cm^{-1}$) band near 340 nm and a weaker band near 570 nm³¹. In the oxy form the oxygen binds as peroxide^{24a} and therefore the coppers are formally copper(II). The lack of an EPR

signal is due to antiferromagnetic coupling between the coppers via an endogenous protein bridge^{28a,27a}.

Recent studies^{22,29c} suggest a dinuclear copper(II) site (fig 1.1) having an endogenous and exogenous bridging ligands which mediate strong antiferromagnetism resulting in no paramagnetic behaviour.

 $X = O_2^{2^-} (\text{oxyhemocyanin}).$ His $X = N_3^-, OAc^- (\text{methemocyanin}).$ His R = ?

Fig 1.1 Structural representation of the oxyhemocyanin active site

1.2.5 Superoxide Dismutase

10/13

nd3

1-14

DEST AT

This protein has been purified from a variety of sources³³, including bovine and human erythrocytes, bovine heart, yeast, escherichia $coli^{34}$, streptococcus mutans, wheat germ, summer squash, garden peas, neurospora crussa and chicken liver. The ensymes obtained from eucaryotic sources were uniformly blue-green and contained copper and zinc. The bacterial superoxide dismutase had a molecular weight of 40000 and was composed of two subunits of identical size, held together by moncovalent forces³⁴.

1.3 Copper Complexes as Oxidation Catalysts

Copper(I) and Copper(II) salts have been widely used as catalysts for a variety of oxidation reactions. This aspect is important commercially in producing low cost materials in an increasingly competitive market. One such reaction is the aerial oxidation of aromatic amines to aso compounds which is catalysed by copper(I) chloride in pyridine (see below).

$$2ArNH_2 + O_2$$
 [Cu₂Cl₂] $Ar-N=N-Ar + 2H_2O$
/pyridine

Terentiev et al³⁵ found that for effective catalysis, pyridine could not be replaced by other solvents such as dioxan, alcohol, dichloromethane or quinoline, and that other copper(I) or copper(II) compounds were inactive. Copper(I) chloride has also been used to catalyse the aerial oxidation of benzoin to benzil and subsequently to benzoic $acid^{36}(scheme 1.3).$

18:0

Scheme 1.3

. .

Aerial oxidation of 1,2-diaminobensene³⁷ and catechol³⁸ to give <u>cis</u>,<u>cis</u>-muconitrile and <u>cis</u>,<u>cis</u>-monomethylmuconoate respectivly are catalysed by copper(I) chloride in pyridine (scheme 1.4). The reaction in each case involves ring fission.

cheme 1 4

Brackmann et al³⁹ have investigated the oxidation of monohydric phenols using molecular oxygen as the oxidant and copper(II) amines as catalysts. These reactions are rapid at room temperature and may be applied to a variety of phenols using a number of different amines as catalysts.

Investigation by Rogic and Demmin⁴⁰ into the nature of the copper species responsible for such ring cleavage reactions have revealed activity from binuclear copper complexes. The "copper reagent" was prepared by action of oxygen with four molar equivalents of copper(I) chloride in a pyridine solution containing five equivalents of methanol, and the active component is thought to be the di- μ -methoxy and hydroxy bridged copper species (scheme 1.5).

Scheme 1.5

The dimeric copper(II) methoxy hydroxy system described by Rogic and Demmin is analogous to the copper containing centres in laccase⁴¹ where two of the four copper(II)centres in the fully oxidised laccase exist as an EPRnondetectable copper(II) pair. The absence of an EPR signal in this system was also attributed to total antiferromagnetic coupling of the unpaired spins on the two adjacent

copper(II) centers. This non-ensymatic reaction sequence for the cleavage of the carbon-carbon bonds in the absence of

molecular oxygen is not evidence that ensymatic reactions proceed by such a reaction but must be considered an alternative to the widely accepted⁴² mechanistic scheme based on ensymatic activation of molecular oxygen. The ability for binuclear copper complexes to act as specific oxidising catalysts, providing low energy routes to produce low cost materials will be of great commercial interest. The activity of catalysts such as 'CuR' may depend on direct or super exchange interactions between the two copper atoms. In order to control the separation and disposition of the two copper centres it is necessary to use relatively rigid multidentate ligands.

<u>1.4 Copper Complexes as Models for Copper Containing</u> Proteins

The information given in the previous section, outlines the physical properties of different types of copper protein. The types of copper site described in 1.2 above have been categorised in an attempt to help define the structure of the copper site.

Many polynuclear copper complexes have been synthesised, (some structually characterised) and then their physical properties compared to those of a variety of proteins, leading to postulations concerning the nature of the copper sites. For example, there is evidence¹⁹ for high potential electron accepting sites in laccases. The reason suggested for this phenomenon is the presence of copper(II)

1.4.1 Bis(1.3.5-triketo)dicopper(II) Complexes Cu2(TKO)2

 $Cu_2(TKO)_2$

Several of these complexes have magnetic and spectral properties²⁰ similar to type 3 coppers in metalloensymes. Fenton and Lintvedt²¹ have investigated the electrochemistry of several of these complexes, and found they exhibit a twoelectron reversible reduction of the Cu(II),Cu(II) complex to the Cu(I),Cu(I) product. Since the redox reactions of type 3 coppers involve a 2-electron transfer, then these compounds are suggested as potential mimics for type 3 coppers in metalloensymes.

Note: While many binuclear copper(II) complexes have been shown to exhibit antiferromagnetism, very few are diamagnetic at room temperature such as $Cu_2(TKO)_2$.

This range of complexes has been studied⁴³ for comparability to the metal centres in biological systems, particularly the copper/heme a₃ site in cytochrome c oxidase⁴⁴. The magnetic data has been recorded, and the magnitude of the coupling constant used for the identification of bridging groups. Because the a₃ site in cytochrome c oxidase shows similar coupling characteristics to those in model systems it was concluded⁴³ that this kind of bridge should be seriously considered as a possibility for the Cu-Cu sites in biological molecules.

1.4.3 Inidazolate-Bridged Copper Complex

It has been shown^{47a} that by varying the pH, the bridge

involving the imidazolate group can be broken. This was attempted 47b for two compounds, Cu_2bpim^{3+} (1.2) and $[(Me_4dien)_2Cu_2(im)(ClO_4)_2]^+$ (1.3). In these complexes the

bridge was stable but a new ligand system was devised leading to further complexes for study (fig 1.2).

Fig 1.2 An imidazolate-bridged dicopper(II) unit

The imidazolate-bridged dicopper(II) ion is stabilised by the macrocycle (fig 1.2), and is suggested 45 to show similar properties to those observed in forms of the bovin erythrocyte superoxide dismutase protein⁴⁶.

Many other examples of complexes synthesised as models for the blue copper site are available⁴².

Binuclear Cu(I) and Cu(II) complexes h synthesised by Karlin⁴⁹ with a bridging pyridazine nucleus, as a model for metalloproteins.

1.4.4 Copper hemocyanin models.

111

2.8

11

The axide complex 1.4, was found^{29c} to be fully diamagnetic at room temperature, which is a rare occurance for copper(II) dimers. This complex was proposed as a model for Cu(II) hemocyanin due to recent chemical and spectroscopic studies^{29c} (section 1.2.4).

1.5 <u>Complexes from the condensation of 2-Hydroxy-3-methyl</u> isonaphthaldehyde with various diamines.

This basic structure (1.5, scheme 1.6) represents one of the most intensely studied binucleating systems⁵⁰. The electrochemical properties of a range of binuclear metal complexes have been investigated by Gagne et al⁴⁹.

The magnetic properties of a wide range of biscopper complexes with monoatomic bridges (scheme 1.6) have been reported⁵¹, whereby the degree of antiferromagnetic coupling is dependent on the Cu-O-Cu angle.

References

- 1. Fee.J.A. Structure and Bonding (Berlin) 1975, 23 pp1-60.
- 2. (a) Verhoeven, W., Takeda, T. In The Johns Hopkins Press, p.159-162 (W.D.McElroy and B.Glass, eds) 1956. (b) Horio, T. J. Biochem. (Tokyo) 1958, 45, 195. (c) Horio, T. J. Biochem. (Tokyo) 1958, 45, 267.
- 3. Sutherland, I.W., Wilkinson, J.F. J. Gen. Microbiology. 1963, 30, 105.
- 4. Omura, T. Biochemistry. 1961, 50, 395.
- 5. Stigbrand, T., Malstrom, B.G., Vanng@rd, T. FEBS Letters. 1971, 12, 260.
- 6. Shici, H., Hackett, D.P. Arch. Biochem. Biophys. 1963, 100, 185.
- 7. (a) Katoh,S. <u>Nature</u> 1960, 186, 533. (b) Gorman, D.S., Levin, R.P. <u>Plant. Physiol.</u> 1963, 41, 1637. (c) Katoh,S., Shiratori,I., Takamiya,S. <u>Biochemistry</u> 1962, 51, 32. (d) Milne,P.R., Wells,J.R.E. <u>J. Biol. Chem.</u> 1970, 245, 1566. (e) Graziani,M.T., Pinazz-Agro,A., Rotilio,G., Barra,D., Mondovi,B. <u>Biochemistry</u> 1974, 13, 804. (f) Blumberg,W.E., Peisach, <u>J. Biochim. Biophys.</u> <u>Acta.</u> 1966, 126, 269.
- 8. Nakamura T., Ogura Y. Biochemistry. 1968 64 267.
- 9. (a) Yakushiji, E. <u>Acta. Phytochem. Japan.</u> 1941, 12, 227.
 (b) Gregg, D.C., Niller, W.H. <u>J. Am. Chem. Soc.</u> 1940, 62, 1374.
 (c) Benfield, G., Bocks, S.M., Bromley, K., Brown, B.R. <u>Phytochemistry</u>, 1964, 3, 79.
 (d) Fahraeus.G.,

Ljunggren,H. <u>Biochim. Biophys. Acta.</u> 1961, 46, 22. (e) Fahraeus.G. <u>Biochim. Biophys. Acta.</u> 1964, 154, 192. (f) Pridham,J.B. (ed) <u>Ensyme Chemistry Of Phenolic</u>

Compounds. New York Macmillan Co. (1963).

- 10. Bertrand, G. Compt. Rend. 118, 1215, (1894).
- 11. Holmberg, C.G. Acta. Physiol. Scand. 1948, 2, 550.
- 12. (a) Holmberg, C.G., Laurell, C.B. <u>Acta. Chem. Scand.</u> 1948, 2, 550. (b) Holmberg, C.G., Laurell, C.B. <u>Acta.</u> <u>Chem. Scand.</u> 1951, 5, 476.
- 13. Osaki, S., Johnson, D.A., Frieden, E. <u>J. Biol. Chem.</u> 1976, 241, 276.
- 14. (a) Shokeir, M.H., Shreffler, D.C. Proc. Natl. Acad. Sci.
 1969, 62, 867. (b) Marceau, N., Aspin, N. <u>Biochim.</u>
 <u>Biophys. Acta.</u> 1973, 293, 338. (c) Marceau, N., Aspin, N.
 <u>Biochim. Biophys. Acta.</u> 1973, 328, 351.
- 15. (a) Nakamura T., Makina, N., Ogura Y. <u>Biochemistry</u>. 1968, 64, 188. (b) Deinum, J., Reinhammer, B., Marchesigi, A. <u>FEBS. Letters.</u> 1974, 42, 241.
- 16. Strothkamp, K.G., Dawson, C.R. <u>Biochemistry.</u> 1974, 13, 434.
- 17. (a) Stark,G.R., Dawson,C.R. In:<u>The Ensymes.</u> P.D.Boyer, H.A.Lardy and K.MybEch, eds.), Vol VIII, p.297. New York: Academic Press 1963. (b) Dawson,C.R. In: <u>"The</u> <u>Biochemistry of Copper"</u> (J.Peisach, P.Aisen and W.E.Blumberg eds.), New York: Academic Press 1966.

18. Lee, M.H., Dawson, C.R. J. Biol. Chem. 1973, 248, 6596.

19. (a) Fee, J.A., Malkin, R., Malstrom, B.G., Vanng Prd, T. J. <u>Biol. Chem.</u> 1969, 244, 2400. (b) Fee, J.A., Malstrom, B.G. <u>Biochim. Biophys. Acta.</u> 1968, 153, 299.

20. (a) Ablov, A.V., Belichuk, N.I., Pereligina, M.S. <u>Russ. J.</u> <u>Inorg. Chem.</u> (Engl Tran.), 1974, 17, 534. (b) Bertrand, J.A., Smith, J.H. Eller, P.G. <u>Inorg. Chem.</u> 1974,

13, 1649. (c) Lintvedt, R.L., Tomlonovic, B., Fenton, D.E., Glick, M.D., <u>Adv. Chem. Ser.</u> 1976 No. 150, 407. (d) Fenton, D.E., Schroeder, R.R., Lintvedt, R.L., <u>J. Am. Chem.</u> <u>Soc.</u> 1978, 100, 1931.

- 21. Lintvedt, R.L., Fenton, D.Earl. J. Am. Chem. Soc. 1978, 100 6367.
- 22. Himmelwright, R.S., Eickman, N.C., LuBien, C.D., Colomon, E.I. J. Am. Chem. Soc. 1980, 102, 5378.
- 23. Hayaishi,O. <u>Molecular Mechanisms of Oxygen Activation.</u> Academic Press, New York, 1974, p.8.
- 24. (a) Bouchilloux,S., McMahill,P., Mason,H.S. J. Biol. <u>Chem.</u> 1963, 238, 1699. (b) Balasingham,K., Ferdinand,W. <u>J. Bio. Chem.</u> 1970, 118 15. (c) Nelson,R., Mason,H.S. <u>Methods Enzymol.</u> 1970, 17 626.

25. Mason, H.S., <u>Annu. Rev. Biochem.</u> 1965, 34 595.

- 26. Makino, N., McMahill, P., Mason, H.S. J. Biol. Chem. 1974, 249, 6062.
- 27. (a) Kertesz, D., Zito, R. <u>Biochim. Biophys. Acta.</u> 1965, 96, 447. (b) McMahill, P., Mason, H.S. <u>The Biochemistry of</u> <u>copper</u> (As ref 17 (b)) p. 369. (c) Kertesz, D., Zito, R., Rotilio, G., Brunori, M., Antonini, E. <u>Biochem. Biophys.</u> <u>Res. Commun.</u> 1972, 49, 1208.
- 28. (a) Jolley, R.L., Jr., Evans, L.H., Nakino, N., Mason, H.S. J. Biol. Chem. 1974, 249, 335. (b) Scoot Utterkamp, A.J.M., Fed. Eur. Biochem. Soc. 1972, 20, 93. (c) Scoot Utterkamp, A.J.M., Mason, H.S. Proc. Mat. Acad. Sci.

1.1

<u>Chem.</u> 1974, 249 6062. (c) McKee,V., Dagdigian,J.V., Bau,R., Reed,C.A. <u>J. Amer. Chem. Soc.</u> 1981, 103, 7001.

- 31. Freedman, T.B., Loehr, J.S., Loehr, T.M. J. Amer. Chem. Soc. 1976, 98, 2809.
- 32. Wood, E.J., Bonaventura, J., <u>Biochem. J.</u> 1981, 196 653.
- 33. Fridovich, I., Acc. Chem. Res. 1972, 5 321.

116

1.15

1.5

1.5

16

.02

- 34. Keele, B.B., Jr., McCord, J.M., Fridovich, I. J. Biol. Chem. 1970, 245 6176.
- 35. (a) Terentiev, A.P. <u>Bull. Soc. Chim.</u> (France) 1924, 35, 1164. (b) Terentiev, A.P., Mogilyanskū. <u>Doklady Akad Nauk</u> (USSR) 1955, 103, 91. (c) Terentiev, A.P., Mogilyanskū. <u>J. Gen. Chem.</u> (USSR) 1958, 28 2002. (d) Terentiev, A.P., Mogilyanskū. <u>J. Gen. Chem.</u> (USSR) 1961, 31 298.

36. Kinoshita, K. Bull. Chem. Soc. Japan. 1959.32 777.

- 37. Takahashi,H., Kajimoto,T., Tsugi,J. Synthetic Communications 1972, 2 181.
- 38. Takahashi, H., Tsugi, J. J. Am. Chem. Soc. 1974, 96 7349.
- 39. Brackmann, W., Havinga, E. <u>Rec. Trav. Chim.</u> 1955, 74 937, 1021, 1070, 1100, 1107.
- 40. Demmin, T.R., Swerdloff, M.D., Rogič, M.M., J. Am. Chem. Soc. 1981, 103, 5795 and ref therin.
- 41. Sugiura, Y., Hirayama, Y. J. Am. Chem. Soc. 1977, 99 1581.
- 42. (a) McArdle, J.V., Coyle, C.L., Gray, H.B., Youeda, G.S., Holwerda, R.A. J. Am. Soc. Chem. 1979, 99, 2483. (b) Patterson, G.S., Holm, R.H. "Bioinorganic Chemistry", 1975, 4, 257.

 Berry, K.J., Black, D.St., Vandersalm, C.H.Bos., Noss, I., Nurray, K.S. <u>Inorg. Chim. Acta.</u> 1980, 46, L21.
 Landrum, J.T., Reed, C.A., Hatano, K., Scheidt, W.R. <u>J. Am.</u>

Chem. Soc. 1978, 100, 3232.

18

110

11

- U -

.14

- 45. Coughlin, P.K., Lippard, S.J., Martin, A.E., Bolkowski, J.E. J. Am. Chem. Soc. 1980, 102, 7616.
- 46. Fridovich, I. Science. 1978, 201, 875.
- 47. (a) Kolks,G., Frihart,C.R., Coughlin,P.K., Lippard,S.J <u>Inorg. Chem.</u> 1981, 20 2933. (b) Coughlin,P.K., Dewan,J.C., Lippard,S.J., Watanabe,E. Lehn,J.M. J. Am. <u>Chem. Soc.</u> 1979, 101, 265.
- 48. Addison, A.W. Inorg. Nucl. Chem. Lett. 1976, 12, 899.
- 49. Gagne, R.R., Koval, C.A., Smith, T.J., Cimolini, M.C. J. Am. Chem. Soc. 1979, 101, 265.
- 50. Groh, S.E., Israel. Journal. of. Chem. 1977, 15, 277.
- 51. Hatfield, W.E. Comments. Inorg. Chem. 1981, 1, 105.

	Chapter 2 Dinucleating ligands	Page	
2.1.1	Type I Mono-bridged bis-quadridentate systems	25	
2.1.2	Type II Multiply-bridged bis-quadridentate		
	systems	27	
2.1.3	Type III Fused bis-quadridentate systems	28	
2.1.4	Type IV Large ring octadentate systems	29	
2.2	Systems for study	30	
2.3	Synthesis of the precursor C2-dialdehyde	33	
2.4	Preparation of $(C_2)_2$ -dialcohol (2.16)	34	
	References	40	

•

1

38. (3

11

Chapter 2

Dinucleating ligands

A large number of dinucleating ligands and their metal complexes have been reported¹ over the past few years. Many such complexes have had their physical properties compared to those of metallo proteins. A comprehensive review¹ of dinucleating ligands appeared in 1977. In this section only those macrocyclic ligands with eight donor atoms are considered. The systems have been grouped into four classes as shown below, depending on how the macrocyclic units are in corporated into the ligand. For two of these classes it is relevent to consider their non-cyclic analogues.

24

- 2

-5

Type I Mono-bridged bis-quadridentate systems

Type II Multiply-bridged bis-quadridentate systems

Type III Fused bis-quadridentate systems Type IV Large ring octadentate systems

Scheme 2.1

2.1.1 Mono-bridged bis-quadridentate systems (type I)

105

- - - - A

.....

1 C V 7

0 1 d

Ligands of this type have a single point of attachment between the two halves of the ligand, and depending on the bridging molety, may exhibit a a degree of flexibility. The dinucleating non-cyclic ligand 2.1 was prepared² from the diamino benzidine precursor, and may show a degree of rotation about the single C-C bond. It has been reported³ that such a molecule will exist in the skew configuration. Other compounds may have longer bridging units which would show much more flexibility.

2.1

The coupling of two macrocyclic ligands gave⁴ the bisNi(II) complex 2.2 (scheme 2.2). The free ligand was not isolated.

Scheme 2.2

Det

17718

0.00

- 11A

0.6

10.0

110

1.11

Other ligands and their copper complexes which fall into this class of bis-quadridentate systems are 2.3^5 , 2.4^6 and 2.5^7 .

The main problem with flexible linking is that the coupling of two macrocyclic ligands involving a single point of attachment on each ligand, may result in an undesired amount of flexibility. This creates problems in estimating the distance between the two coordinated metal atoms, and in solution more than one conformation of the structure may be possible.

2.1.2 Type II Multiply-bridged bis-quadridentate systems

Multiple linking between two macrocycles results in rigid structures, which will hold two metal ions in fixed positions. Many cofacial porphryins fit into this category⁸ (scheme 2.3). Variation of the bridging group can give a range of metal-metal contact distances.

Condensation reactions with 2,2'6,6'-tetra-aminobiphenyl and 2-hydroxy bensaldehyde has given the structure of a open chain binucleating ligand 2.6.

1.12

5.8.

(D) =d3

711606

111 DQ

- 6. R

1925

0.0 CT (2

1041

10.2

2.6

2.1.3 Type III Fused bis-quadridentate systems

These systems have at least two atoms common to the rings of both quadridentate units. They have the advantage over the mono-bridged previous systems that the ligands can be rigid and the bridging between the two metal atoms could consist of a aromatic moiety capable of propagating super exchange interaction.

Rigid systems such as 2.7^2 and 2.8^9 will be planar, and likely to show extensive conjugation between the two halves of the molecule. These systems are unlikely to show direct Cu-Cu interaction due to the large separation (-8 Å) of two copper atoms, unless close intermolecular contacts are made.

2.1.4 Large ring octadentate systems

111-102

-110

12

- C-12

- d

10100480

0.000

18

0.11

1116

1000

1112

Many [2+2] condensations based on the precursor 2,6-diacetyl pyridine to give macrocyclic metal complexes 2.9 have been reported¹⁰. These complexes undergo metal exchange reactions to form various binuclear complexes, sometimes capable of incorporating additional bridging ligands. The free ligands for these systems have not been isolated.

Preliminary reports¹¹ have suggested [2+2] condensation take place between C_2 -dialdehyde (2.10) and various diamines to give large ring macrocycles (2.11 scheme 2.4). No metal complexes have been reported.

Scheme 2.4

4-0

1015

- 1 g

0.0.1 g.

- = 0 P

2.2 Systems for study

The C₂-dialdehyde (2.10) precursor was chosen for study due to the preliminary evidence¹¹ for forming the dinucleating macrocycles 2.8 (type III) and 2.11 (type IV) with various diamino compounds. It was thought likely that these ligands could be used to form biscopper(II) complexes which would show interesting spectral properties. It was also possible to propose a method of linking two preformed macrocycles based on the precursor C₂-dialdehyde (scheme 2.5). The following section describes the layout of this thesis and a brief resume of each chapter.

Scheme 2.5

1.1

Chapter 3 considers ligands of the general type IV, i.e. large ring octadentate systems. These octa-asa ligands are derived from the [2+2] condensations of the type giving 2.11. Related tetra-asa systems (2.12) for the equivalent [1+1] condensation reactions are also considered. The copper complexes of these macrocycles are also discussed in terms of preparation, solution stability and structural points of interest for

31

ray crystallography.

Fused bis- and mono-bridged quadridentate systems of type III and I respectively are considered in chapter 4. These systems are also formed from condensation reactions but require the presence of a catalyst. Emphasis is placed on the difficulty encountered with the preparation of ligands and their copper complexes (due to their low solubility).

The linking of two macrocycles (2.13) by bridging groups which may be varied in length to provide a series of biscopper(II) complexes are considered in chapter 5.

As part of the CASE/SRC award, a ligand H_3DFMP (2.14) was supplied by I.C.I. for investigation of the structural and magnetic properties of the biscopper(II) complex. The copper(II) complex of the hydrogen bridged macrocycle is discussed in chapter 6.

11.2

0

111

01000

1 HR.

1.65

- g g 1920.

112.0

10.545

U1138

Chapter 7 describes how the five structures in this thesis were solved (either by heavy atom solutions from the Patterson synthesis or direct methods).

The experimental section (chapter 8) details the preparative method for each compound, together with full systematic naming.

2.3 Synthesis of the precursor C2-dialdehyde (2.10)

The preparation of C_2 -dialdehyde was originally described¹² by a three step sequence reaction starting with methyl anthranilate (scheme 2.6).

Scheme 2.6

114

- H A

1002

11045

121121

~725E

Black and co-workers¹³ reported an improved synthesis for stage 1, but stage 2 would then require exceptionally large quantities of reducing agent (scheme 2.7).

Scheme 2.7

For economic reasons the original method was used, but changes in solvent (from diethyl ether to thf) were

considered for stages 2 and 3 (scheme 2.6). The reduction of the C_2 -diester in thf gave a good yield of C_2 -dialcohol, but

33

Scheme 2.6

ilack and co-workers¹³ reported up impidied lyningers
for singe 1, but stage 2 would then require exceptionally
large quantities of colucing agent (scheme 2.7).

the manganese dioxide oxidation resulted in an unexpected product which is described in the following section. Preparation of C₂-dialdehyde (2.10) was made by the original method¹² (scheme 2.6) showing reproducible results.

2.4 Preparation of (C2)2-dialcohol (2.16)

When thf was added dropwise to mangenese dioxide (type 'A')¹⁴ under nitrogen, a strongly exothermic reaction was observed. It has been reported¹⁴ that when diethyl ether was added slowly to manganese dioxide, local hot spots developed, and to overcome this the ether was added in one portion to wet all the manganese dioxide. This procedure was not followed for the addition of thf, since a fast addition may have been dangerous, and therefore thf was added slowly under a nitrogen atmosphere until the reaction subsided. Then a solution of C₂-dialcohol in thf was added and the mixture refluxed for a short time. The product extracted from this mixture in good yield ("90%, Scheme 2.8) showed only traces of C₂-dialdehyde (2.10), and spectral evidence indicated the principle product was N,'N-di(obenzylalcohol) piperasine((C₂)₂-dialcohol)(2.16).

Scheme 2.8

10 C

2.98

-11/18

2,123

110 B

203

2.6.1

Sche

3.00

This new dialcohol was identified by elemental

Chemical Shift (ppm)	<u>Integration</u> <u>Ratio</u>	Assignment	<u>Chemical Shift</u> <u>after D20</u> <u>exchange</u> .
2.98 s	8	-#-CH2-	3.00 =
4.57 d	4	-CH2-OH	4.60 s
5.08 t	2	-0 <u>H</u>	
6.9 - 7.4 m	8	Aromatic CH	6.9 - 7.4 m

Table 2.1 ¹H nmr (d_6 -DMSO 60^oC) of (C_2)₂-dialcohol. (s=singlet, d=doublet, t=triplet, m=multiple)

The -OH proton is coupled to the protons of the methylene group, giving the observed n+1 splitting pattern. Because the -OH protons usually exchange rapidly, this effect indicates a degree of intramolecular hydrogen bonding (fig 2.2). On addition of D_2O the doublet at 4.57 ppm collapses to a singlet at 4.6 ppm, while the triplet at 5.08 ppm is lost from the spectrum. This would confirm the previous indication of intramolecular hydrogen bonding, since the -OH protons have been exchanged for deuterium and would not be detected in the ¹H nmr spectrum.

den biek

1.61

0.17

Vici nici

192

~/TITE

The material $(C_2)_2$ -dialcohol (2.16) was identified previously ¹⁵ as a byproduct from a reaction and may have been present as an impurity in the starting material C_2 dialdehyde. Of the few crystals obtained from this synthesis an X-ray structure determination confirmed the formulation, and showed extensive intermolecular* hydrogen bonding

1912

1.114

11.4

1.2.6

12.6

10.12

15.2

1014

いいこめ

U.P.M.

Fig 2.3 Ortep diagrams of $(C_2)_2$ -dialcohol¹⁵ (2.16). * It is unlikely that intermolecular hydrogen bonding will persist in solution.

The $(C_2)_2$ -dialcohol may have arisen as an impurity during the preparation of C_2 -dialdehyde (scheme 2.6) if excess dibromoethane had been used during the lst stage¹⁶. This would lead to a small percentage of doubly bridged diester which would have been reduced at the second stage to $(C_2)_2$ -dialcohol. However, the isolation of $(C_2)_2$ -dialcohol in this work was made with very high yields (-90%), and probably results from a reaction involving thf and C_2 -

Scheme 2.9 Tentative mechanism for the formation of $(C_2)_2^-$ dialcohol (2.16).

Other related doubly bridged dialdehydes¹⁷ have been of no use in the preparation of macrocyclic di-imines (scheme 2.10) since only the [2+1] condensation products were formed.

14

10.98

12835

duri eNco This did/ (C2) pro/

Scheme 2.10

The lack of anilino hydrogens and the mability to form macrocyclic ligands, reflect the importance of intramolecular hydrogen bonding needed to stabilise metal free complexes of this type. When no anilino-hydrogens are present, a theoretical macrocycle would experience lonepair:lone-pair repulsion from the four nitrogen atoms (fig 2.4).

Fig 2.4 Lone-pair:Lone-pair repulsion

1001048

0.6150

0.0

0115

It is believed to be for the previous reasons and the more stable chair conformation of the piperasine bridge, that there are no reports of successful ring closure reactions to give metal free 14, 15 and 16 membered 'N₄' macrocycles, unless there are at least two secondary amine groups present¹⁸. No further investigations were made with $(C_2)_2$ -dialcohol, although a project¹⁹ based on the findings in this section confirmed the results, and went further to prepare the $(C_2)_2$ -dialdehyde. As expected no macrocycles could be prepared.

0.0218

DOTE:

- (7 Q

1.00

1173

0.2/18

References

0.8

10/18

10171

11128-00

OCOTE:

(1,1,2))

1.111

111/24

All logi

1.	(a) Pilkington, N.H., Robson, R. <u>Aust. J. Chem.</u> 1970, 23,
	2225. (b) Groh.S. <u>Israel. J. Chem.</u> 1976, 15, 277.
2.	Hasty.E.F., Colburn.T.L., Hendrickson, D.N. Inorg. Chem.
	1973, 12, 2414.
3	Felthouse, T.R., Duesler, E.N., Christeusen, A.T.
	Hendrickson, D.N. <u>Inorg. Chem.</u> 1979, 18, 245.
4.	Cunningham, J.A., Sievers, R.E. J. Am. Chem. Soc. 1973,
	95, 7183.
5.	Black,D.St.C., Vandersalm.C.H., Wong,L.C.H. Aust. J.
	<u>Chem.</u> 1979, 32, 2303.
6.	Murase, I., Hamada, K., Kida, S. <u>Inorg.</u> Chim. Acta. 1981,
	5, 54, L171.
7.	Henrick, K. Owston, P.G., Peters, R., Dell, A. Inorg. Chim.
	<u>Acta.</u> 1980, 45 , L161.
8.	Collman, J.P., Elliot, C.M., Halbert, T.R., Tovrog, B.S.,
	Proc. Natl. Acad. Sci. USA. 1977, 800 (also see chpt 5).
9.	Fleischer, E.B., Sklar, L., Kendall-Torry, A., Tasker, P.A.,
	Taylor, F.B. <u>Inorg. Nucl. Chem. Lett.</u> 1973, 9, 1061.
10	Drew, M.G.B., Rodgers, A., McCann, M., Nelson, S.M. J. Chem.
	<u>Soc. Chem. Comm.</u> 1978, 415.

11 Peters, R. PhD. thesis. The Polytechnic of North London. 1982.

12 Green, M., Smith, J., Tasker, P.A. <u>Inorg. Chim. Acta.</u> 1971, 5, 17.

13. Black, D.St.C., Bos Vandersalm C.H., Hartshorn, A.J. Aust.

- 14. Harfenist, M., Bavley, A., Lazier, W.A. J. Org. Chem. 1954, 19, 1608.
- 15. Donaldson, P.B., Griggs, C.G., Tasker, P.A. <u>Cryst. Struc.</u> <u>Comm.</u> 1977, 6, 597.
- 16 Wainwright, K.P. <u>Inorg.</u> <u>Chem.</u> 1980, 19, 1396.

. 8-

~ A.

18.

48

0.1

1.1.

12

- 17. Owston, P.G., Peters, R., Ramsammy, E., Tasker, P.A., Trotter, J. J. Chem. Soc. Chem. Comm. 1980, 1218.
- 18. Melson, G.A. in <u>"Coordination</u> <u>Chemistry of Macrocyclic</u> <u>Compounds</u> ed. Melson, G.A. Plenum Press. 1979, chpt 1.
- 19. McPherson, I. Undergraduate project. The Polytechnic of North London. 1982.

Chapter 3 Tetra-aza and octa-aza large	
ring macrocycles	Page
Introduction: Tetra-aza macrocycles	44
Introduction: Octa-aza large ring macrocycles	45
Results and discussion for aliphatic bridged	
macrocycles	48
Preparation of tetra-aza macrocycles	48
Octa-asamacrocycles	48
Preparation of the 28-membered ring compound	
H ₄ cyendimer (3.4)	48
30 and 36 membered ring, H ₄ cyprodimer (3.7)	
and H ₄ cyhexdimer (3.8)	51
Related ligands and the importance of	
intramolecular hydrogen bonding	51
Analysis of physical data	55
Reduction of di- and tetra-imines	58
The crystal structure of H_{12} cyendimer (3.6)	61
Intramolecular hydrogen bonding	62
Conformational variations	67
Copper complexes of aliphatic bridged tetra-	
aza macrocycles	72
Neutral copper(II) complexes	72
Cationic copper(II) complexes	75
	Chapter 3 Tetra-asa and octa-asa large ring macrocycles Introduction: Tetra-asa macrocycles Introduction: Octa-asa large ring macrocycles Results and discussion for aliphatic bridged macrocycles Preparation of tetra-asa macrocycles Octa-asamacrocycles Preparation of the 28-membered ring compound H ₄ cyendimer (3.4) 30 and 36 membered ring, H ₄ cyprodimer (3.7) and H ₄ cyhexdimer (3.8) Related ligands and the importance of intramolecular hydrogen bonding Analysis of physical data Reduction of di- and tetra-imines The crystal structure of H ₁₂ cyendimer (3.6) Intramolecular hydrogen bonding Conformational variations Copper complexes of aliphatic bridged tetra- asa macrocycles Heutral copper(II) complexes

5.1

25. 24. 27. 0 1. 27. 0

0.11

	3.4.1	Preparation of copper complexes of	
		H ₄ cyendimer including the X-ray structure or	
1.1.4		$[Cu_2(H_4 cyendimer)](ClO_4)_3$	82
	3.4.2	Discussion	88
A + E	3.4.3	Biscopper(I) complex	98
210	3.4.4	The Structure of $[Cu_2(H_2cyendimer)(H_2O) -$	
		$(Clo_4)](Clo_4)thf (3.37)$	99
12.8	3.5.1	Biscopper(I) - carbon monoxide adducts	112
- 94 -	3.5.2	Preparation of the biscopper(I) carbon	
5.538		monoxide adduct of the ligand H _A cyendimer	112
	3.6.1	Copper complexes of Hiscrendimer (3.6)	113
1111	3.6.2	Copper complexes of large ring macrocycles	
	5.0.2	(20 and 26 mombered ring)	114
1.2		(SU and SU membered ring)	
	3.6.2.1	Copper(II) complexes of the reduced lightan	116
1.1		H ₁₂ cyprodimer (3.42) and H ₁₂ cyhexdimer (3.43)	112
	3.6.2.2	Copper(II) complexes of the tetraimine	
A11.		ligands H ₄ cyprodimer and H ₄ cyhexdimer	115
b.b.	3.7.1	Magnetic data	117
1.0	3.7.2	Mononuclear copper(II) complexes.	118
5,6	3.7.3	Dinuclear copper complexes	118
21.5		References	121
1.4			
1.6			

Tetra-aza and octa-aza large ring macrocycles

This chapter concerns the large ring macrocycles of the schematic type IV which were described in the preliminary discussion (chapter 2). The related tetra-aza systems have also been studied to allow comparison to be made between the mononucleating and dinucleating ligands.

3.1.1 Introduction: Tetra-aza macrocycles

Aliphatic bridged macrocycles can be prepared by simple imine condensation reactions of C_2 -dialdehyde (3.1) with a diamino compound (scheme 3.1) which do not require the presence of a catalyst. A range of macrocycles have been reported¹ where the bridging portion 'R' can vary in length from ethane to decame* (scheme).

Scheme 3.1

Λ.Ξ

1115

. I. T.

123-8

1.2.18

1.8.6

10.0

 λ_1/L

11.10

10.0

77.E

15.15

* No results were reported for Nonane

3.1.2 Introduction: Octa-aza large ring macrocycles

A very insoluble material which was isolated from the preparation of H_2 cyen (3.2) was originally assigned a polymeric structure².

The 'polymeric material' was shown³ by field desorption mass spectrometry (fdms) to have a relative molecular mass of m/e=584 which is double that of H₂cyen (3.2). On this basis the material was assigned the structure H₄cyendimer (3.4). It was found that after addition of nickel acetate followed by a long period of refluxing in methanol, only the tetra-asa macrocyclic complex [Ni(cyen)] (3.3) was formed² (scheme 3.2).

The structure for the 28-membered ring (3.4) was indirectly confirmed by the X-ray structural analysis³ of an unusual boron adduct (3.5) which was isolated during the attempted reduction of 3.4 with BH_3/thf to give the corresponding octaamine H_{12} cyendimer (3.6) (scheme 3.2).

Selo

1128

0.2.85

110

1.14

1111

Scheme 3.2 Reactions of H_4 cyendimer (3.4).

11.67

- 79

1114

1.16

0.00

1.0.1

100

1.0

10.0

1744

These results gave rise to speculation that the condensation reactions forming the other tetra-aza macrocycles may be accompanied by formation of larger ring analogues. During the course of an investigation⁴ on the preparation of a wide range of tetra-azamacrocycles (scheme 3.1) it appeared that two other octa-aza macrocycles could be formed (scheme 3.3)

Scheme 3.3 H_4 cyprodimer (3.7) and H_4 cyhexdimer (3.8)

- 0 in

1110

100

101

Characterisation of these large-ring tetra-imines (3.7 and 3.8) is particularly difficult due to their low volatility and solubility. Electron impact mass spectrometry (eims) is usually accompanied by extensive fragmentation of the parent ion, sometimes symmetrically giving peaks with maximum m/e values corresponding to the monomer species. Fdms is more successful, and X-ray crystallography has been employed when suitably crystalline samples were available.

3.2 Results and discussion for aliphatic bridged macrocycles

3.2.1 Preparation of tetra-aza macrocycles

The experimental details for the preparation of tetra-aza macrocycles (fig 3.1) are described in section 8. These methods were based on previous results⁵, but not identical as the details of the procedures were not initially available.

Fig 3.1 Tetra-aza macrocycles prepared in this project.

The times necessary for complete reaction were judged by removing aliquots every few hours, and examining the infrared spectrum of the isolated material. The disappearence of the carbonyl stretch at 1660 cm⁻¹ indicated complete conversion of the C₂-dialdehyde (3.1) precursor. A slight excess of diamino compound was added to ensure high yields based on the C₂-dialdehyde (3.1).

3.2.2 Octa-azamacrocycles

0.00

1218

100

10.00

1004

TT THE

3.2.2.1 Preparation of the 28-membered ring compound H₄cyendimer (3.4)

For the dimer 3.4, two preparative methods were

Fig 3.2 Infrared spectra of H_2 cyen (3.2) and H_4 cyendiser (3.4) (prepared as the nujol mull).

86.....

Scheme 3.4 Two methods for the formation of H_4 cyendimer (3.4).

Method 1 involves isolation of the monomer H₂cyen (3.2), followed by conversion to the dimer 3.4. This reaction can be followed by the different infrared spectra of 3.4 and H₂cyen (fig 3.2 facing page). Method 2, an <u>in</u> <u>situ</u> reaction can be followed by removing aliquots every few hours, and comparing their infrared spectra to those from method 1. The reaction path for imine formation from carbonyl and amine groups⁵ (scheme 3.5) is reversible, and conversion of the monomer to the dimer could take place by one or more pathways in scheme 3.6 could also exist with one or more of the imine bonds in the carbinolamine form.

1.5

*13

- - + + D

112.0445

0.03

1305

161

1 (d.

101363

10.00

1 Y D 2 Q

11020

COMPANE

1.5.0

2,2,2

avent

3.2.2.2 30 and 36 membered ring, H₄cyprodimer (3.7) and H₄cyhexdimer (3.8)

The reaction of the 1,6-diaminohexane or 1,3diaminopropan-2-ol with C_2 -dialdehyde (3.1) in methanol (section 8) formed their respective tetra-imine macrocycles directly without the related di-imines being detected. No catalyst was required for either of these reactions. Characterisation was made by elemental analysis and infrared spectra which compared with previously characterised samples⁴. Other diamino compounds were reacted with C_2 dialdehyde and found to form the mononucleating macrocycles (fig 3.1) previously reported by Peters⁴. The macrocyclic tetra-imine H_4 cyendimer (3.4) has been shown to yield the di-imine nickel(II) complex² (3.3, scheme 3.2) on prolonged heating in methanolic nickel(II) acetate. Apart from this result, no reports on the interaction of 3.4 with metal ions have been reported.

3.2.3 Related ligands and the importance of intramolecular hydrogen bonding

Other [2+2] condensations to give large ring macrocycles have been reported, for example the 30-membered tetra-imine ligand⁷ has been obtained from a 'template' reaction as its bilead(II) complex 3.9 (scheme 3.7).

Scheme 3.7

The free ligand of 3.9 has not been isolated, but other metal complexes can be prepared by transmetallation⁶ procedures. This suggests that the lead(II) ion is essential in the ligand formation, and plays a major role in stabilising the macrocycle. A different stabilising influence is present in the macrocycles based on the precursor C₂-dialdehyde (3.1). It has been suggested¹ that the o-iminoanilino units present in the free ligands are stabilised by intramolecular hydrogen bonding (fig 3.3). This intramolecular hydrogen bonding will have the effect of reducing the repulsions between lone-pairs of electrons in the macrocycle cavities. A similar role can be assigned to metal ions in stabilising macrocyclic imines e.g. the Pb²⁺

i.e.i. Ngazh

In a KR

1-000

resib.

100

10102

10.04

710.0

1120

01831

1 Linds

1.0

0 a 10 A

0.07

2264

1.5.8

23

1 UNK

- 1 M R

10.000

Fig 3.3 Intramolecular hydrogen bonding in the o-iminoanilino unit

A precursor (3.10) related to C_2 -dialdehyde (3.1) but without the anilino hydrogens, has been shown¹ to form [2+1] condensation products (3.11, scheme 3.8) when treated with a molar equivalent of a diamino compound. No cyclic monomers equivalent to those shown in scheme 3.1 were obtained using conditions which had been successful in obtaining cyclic diimines from the C₂-dialdehyde (3.1).

In succession of the second se

There are two main reasons why the [2+1] condensation product is preferred in reactions of 3.10.

1). The conformation of the precursor (3.10) will probably be in the staggered conformation, due to the more stable 'chair' arrangement of the piperasine bridge⁸. This gives an extended conformation with the terminal aldehyde functional groups well separated from each other. A higher energy 'boat' form of the piperasine bridge would be required in the cyclic monomer.

2). There would be a very unfavourable interaction in the centre of the ring (fig 3.4) between the lone-pairs on the four nitrogen atoms. The structure determination for two of the [2+1] products (3.11 a and b) shows that they adopt an extended configuration which minimises lone-pair:lone-pair repulsion (fig 3.4).

Fig 3.4 Lone-pair:lone-pair interaction for the piperazine bridged tetra-azamacrocycle

The structures of a number of related macrocyclic di-imines (see 3.2 and 3.12, fig 3.5) have been determined¹, and while the overall configuration of the macrocycles differ considerably, in each case the planarity of the o-iminoanilino units (3.13) are preserved (fig 3.5).

0.12

13.146

1102

IN LODGE

1000

TO A INK

100.0488

12

-010

.12

1 od

Ladge.

10.00

「二四日堂」

二分日度

IN PPE

10.59

1002

10.2

10.000

1002

112

- 102

1.000.2

- 13日朝

0000

-18

3.13

3.12 Fig 3.5 (a) The molecular configurations of the 14 and 15membered macrocyles (3.2 and 3.12). (b) The

Analysis of physical data 3.2.4

o-iminoanilino unit.

In solution the intramolecular hydrogen bonding can sometimes be supported by ¹H nmr spectra. Usually the rate of exchange for anilino hydrogens with the solvent is very fast and no coupling can be observed. However, intramolecular hydrogen bonding reduces the rate of exchange and weak coupling can sometimes be found.

Fig 3.6 Observed ¹H nmr for H_2 cyen (3.2) (d₆-DMSO).

11.9

3.4.6

102

11.14

1103

2000

The coupling of the anilino protons with those protons on the adjacent carbon atom (fig 3.6) should give rise to a doublet at 3.48 ppm, and a triplet for the anilino protons at 10.24 ppm but the weak coupling only causes a broadening of the signal (3.48 ppm). After deterium exchange, the coupling disappears, and the sharpness of the signal (3.48 ppm) increases relative to the rest of the spectrum. No other structural information can be deduced from the ¹H nmr, and as both monomer H₂cyen (3.2) and dimer 3.4 show similar

56
spectra (table 3.1) therefore it is not possible to use ^{1}H nmr to differentiate between the two compounds.

H ₂ cyen (3.2) ppm	H ₄ cyendim ppm	er (3.4)	Assignment
23 ⁰ C	23 ⁰ C	60°C	
3.48 s	3.40 s	3.50 s	С_МН-С <u>Н</u> 2-
3.88 s	3.8 s	3.75 s	C-N-CH2-
10.24 b	10.1 b	9.23 b	- <u>nĦ</u> -
8.38 s	8.50 s	8.43 s	N=CH-
6.45-7.3 m	6.40-7.30 m	6.57-7.30 m	Aromatics -CH

Table 3.1 Comparison of ¹H nmr of H_2 cyen (3.2) and H_4 cyendimer (3.4) (d₆-DMSO). (s=singlet, m=multiple, b=broad).

 H_4 cyendimer (3.4) was very involatile, and gave a low intensity mass spectrum (from eims) which could not be used for comparison with that of the monomer. The eims of H_4 cyprodimer (3.7) contained a molecular ion at m/e = 340 corresponding to a dehydrogenated version of the monomer (3.14). The appearence of the monomer could be due to symmetrical fragmentation and dehydrogenation of the dimer or a small amount of monomer impurity which would be more volatile than 3.7 and give a misleading mass spectrum. However, the high probe temperature required to volatilise the material suggests that this latter possibility is not the case. An eims of H_4 cyhexdimer (3.8) could not be

1.1.23.9

of the contract of the contrac

All three dimers showed infrared spectra which corresponded to samples which had previously³ been characterised by fdms and X-ray crystallography.

3.2.5 Reduction of di- and tetra-imines (scheme 3.9)

Scheme 3.9

A number of literature methods⁹ are available for hydrogenation of imine functions, including H_2/Pt , NaBH₄ or LiAlH₄. The hydride reducing agents have one disadvantage, that the spent reducing agent sometimes contaminates the insoluble product. An improved method³ involves the use of a solution of BH₃ in thf (BH₃/thf) which reduces an imine to a secondary amine (scheme 3.10).

14.

1.6.6

B2024 DDE

1960

93.98

NR/E

10.05

1110

10.00

24111

5 0ff

12

1103

1.3

106.08

0.14

- digit

UAL

2140

0.024

1111

100/18

An intermediate boron adduct 3.5 has be isolated during the reaction of BH_3/thf with H_4 cyendimer (3.4) and structurally characterised⁴. Addition of hydrochloric acid was reported⁶ to hydrolyse the boron adduct 3.5 and liberate the free octa-amine ligand 3.6. Excess hydrochloric acid will produce the hydrochloride salt 3.15 of the octa-amine 3.6, which can be particularly useful if the free polyamine is air sensitive (eg tri and tetraamino bensene are isolated as their hydrochloride salts see chapter 4). The BH_3/thf reduction of a polyimine macrocycle can be monitored by the changing infrared spectra (scheme 3.11).

151

11/15

210

108

1.1.5

o chieft

MALL

2011

lount.

10100

10281

An intermediate boron adduct 3.5 has be isolated during the reaction of BH₃/thf with H₄cyendimer (3.4) and structurally characterised⁴. Addition of hydrochloric acid was reported⁶ to hydrolyse the boron adduct 3.5 and liberate the free octa-amine ligand 3.6. Excess hydrochloric acid will produce the hydrochloride salt 3.15 of the octa-amine 3.6, which can be particularly useful if the free polyamine is air sensitive (eg tri and tetraamino bensene are isolated as their hydrochloride salts see chapter 4). The BH₃/thf reduction of a polyimine macrocycle can be monitored by the

59

changing infrared spectra (scheme 3.11).

T IGHTLY BOUND COPY

The reduced monomers were characterised by eims, elemental analysis, and ¹H nmr. Methods for characterisation of the dimers depended on their solubility and volatility. H_{12} cyendimer (3.6) was characterised by X-ray structural analysis, eims, elemental analysis, infrared and ¹H nmr, whereas the less soluble H_{12} cypro and H_{12} cyhexdimers were identified on the basis of C,H,N analytical data, and comparison of their infrared spectra with those of H_{12} cyendimer (3.6) and "monomer" tetra-aza analogues. A description of the structure of 3.5 determined by X-ray crystallography is presented below.

3.2.6 The crystal structure of H₁₂cyendimer (3.6)

11189

The macrocycle has a centre of symmetry as shown in fig 3.7. No evidence for intermolecular hydrogen bonding or solvates was found from the structure determination. The structure was solved using direct methods as described in section 7.4.

3.2.6.1 Intramolecular hydrogen bonding

As described earlier (section 3.2.4) the stability of the o-iminoanilino units (fig 3.3) present in the polyimine macrocycles is at least partly due to intramolecular hydrogen bonding involving the anilino hydrogen atom (3.16). For the reduced macrocycles a variation may be possible involving the benzylamino hydrogen atom (3.17) (fig 3.8).

3.16

3.17

Fig 3.8 Two types of intramolecular hydrogen bonding.

It was found from the structural analysis of H_{12} cyendimer (3.6) that the intramolecular hydrogen bonding was of the type shown in 3.16. This type was also found⁴ for the reduced monomer H_6 cyen (3.18). The ortep diagrams of these two structures are shown in fig 3.9.

Fig 3.9 Schematic and ortep diagrams of H_6 cyen (3.18) and H_{12} cyendimer (3.6).

The intramolecular hydrogen bonding (3.16) results in the anilino nitrogen atoms (N2) having a more planar enviroment than the benzylamino nitrogen atoms (N1) (table 3.2). The anilino nitrogen atoms will be encouraged to adopt a planar configuration (sum of bond angles approach 360°), therefore adopting an orientation of the lone-pair to provide orbital overlap with the pi orbitals from the phenyl ring (fig 3.10). The anilino nitrogen atoms thus have a higher degree of sp^2 hybridisation than the benzylamino nitrogen atoms. This is shown for both monomer 3.18 and dimer 3.6 in table 3.2. The sums of the bond angles of the

trimethylamine¹⁰ (fig 3.11). One exception to this are the angles at N(lb) in the tetra-aza system 3.18 which are anomalously large, possibly due to the atom N(lb) being involved in intermolecular hydrogen bonding.

Fig 3.10 Pi - Pi overlap of a sp^2 hybridised anilino nitrogen atom with the phenyl ring.

Fig 3.11 The tetrahedral structure of trimethylamine

111.4

0.107.175

11 Sat

CHAR:

	Anilin	o <u>Nitrogen</u> <u>At</u>	:oms (N2)	
	H ₆ cyen (3.18)		H ₁₂ cyend (3.6	imer)
Bond angles/Å	Part A	Part B	Part A	Part B
C1-N2-C2 C1-N2-H C2-N2-H	119.7(6) 110.8(5) 120.1(6)	119.5(5) 107.5(5) 115.6(6)	119.3(9) 108.6(4.8) 113.2(5.0)	123.5(9) 120.4(7.1) 108.8(5.8)
Sum of angles	350.6	342.6	341.1	352.7
	<u>Benzylami</u>	no <u>Nitrogen</u> A	Atoms (N1)	
	H ₆ c (3.	yen 18)	H ₁₂ cyend (3.6	imer)
Bond angles/A	Part A	Part B	Part A	Part B
C8-N1-C9 C8-N1-C2 C8-N1-H	113.2(6) 100.9(5) 99.8(5)	112.7(6) 115.5(5) 111.8(5)	113.6(8) 107.1(5.3) 100.4(5.2)	111.8(8) 112.8(7.0) 98.3(6.9)
Sum of angles	313.9	340.0*	321.1	322.9

Table 3.2 Angles about the nitrogen atoms in the macrocycles 3.6 and 3.18.

* Intermolecular hydrogen bonding causes this anomalous

value (see text).

For the polyimine macrocycles e.g. H_4 cyprodimer (3.7), the anilino nitrogen atoms are very nearly planar (table 3.3). In these systems the sp² hybridisation at the anilino nitrogen atoms allows delocalisation of electrons over the o-imino-anilino portion of the molecule, as represented by the resonance forms shown in fig 3.12. A comparison of bond angles about the anilino nitrogens is made in table 3.3 between H_4 cyprodimer (3.7) and the boron adduct 3.5.

10.5

- . .

Fig 3.12 Resonance forms of H_4 cyprodimer (3.7) contributing to the sp² hybridisation of the anilino nitrogen atoms.

Anilino nitrogen atoms

	Boron add (3.5)	H ₄ cyprodimer (3.7)	
Bond angles/X	Part A	Part B	
Cl-N2-C2 Cl-N2-H(or B) C2-N2-H(or B)	120.7(7) 120.2(8) 118.7(8)	120.3(7) 119.4(7) 120.1(8)	123.2(4) 115.3(4) 121.5(4)
Sum of angles	359.6	359.8	360.0

1000

11.1

111

110123

11.2010

light of the second

0.02

Benzylamino nitrogen atoms

Boron	adduct	(3.	5)
-------	--------	-----	----

Bond angles/X	Part A	Part B	
C8-N1-C9	113.4(7)	113.5(7)	1.149
C8-N1-B	124.5(8)	123.3(8)	
C8-N1-B	120.4(7)	121.3(8)	
Sum of angles	358.3	358.1	

Table 3.3 Angles around the nitrogen atoms in 3.5 and 3.6

3.2.6.2 Conformational variations

The o-aminobenzyl six-membered rings of H_6 cyen (3.18) and H_{12} cyendimer (3.6) are approximately planar (table 3.4). The atomic coordinates of the atoms Nl,N2,C2,C7 and C8 used in the calculation of the plane do not deviate by more than 0.45 Å from the plane. From the data in table 3.4, it can be seen that the deviation of the atoms in part A of 3.18, resemble those deviations in part A of 3.6, and similarly for part B of both ligands. The root mean square deviation for both compounds are 0.28. Given that the o-aminobenzyl fragments are approximately planar the conformation of the molecule H_{12} cyendimer (3.6) will depend on the nature and geometry of the bridges between the o-aminobenzyl units. The two types of bridging units L1 and L2 are shown in fig 3.13.

	H ₁₂ cyendimer (3.6)		H60 (3)	cyen 18)	
<u>Part</u>	Ā	B	<u>A</u>	B	
N1 N2 C2 C7 C8	0.29 -0.22 0.20 0.12 -0.39	-0.33 0.24 -0.24 -0.11 0.45	0.32 -0.24 0.22 0.12 -0.41	-0.31 0.23 -0.20 -0.13 0.42	CB-N1
RMSD		0.28	0	.28	

Table 3.4 Deviation of atoms from their best plane (Å), and the root mean square deviation (RMSD) of the oaminobensyl fragments.

SIde[®]

10 mue

mod

0.000

14-60 1-80

00146

VV.

Fig 3.13 The two types of bridge between the o-aminobenzyl units in H_{12} cyendimer. The torsion angles for the two types of bridge are shown for four related structures in table 3.5.

		Hccyen (3.18)	H ₁₂ cyendimer (3.6)	H ₄ cyendimer (3.4+)	Boron adduct (3.5)
L1	(N2C1C1N2)	62.14	70.66	58.76*	-70.16
L2	(N1C9C9N1)	70.04	59.60	59.76*	171.92

*Average of two values. +Ligand 3.6 of complex $[Cu_2(H_4cyendimer)](ClO_4)_3$ (section 3.4)

Table 3.5 Torsion angles for the Ll and L2 bridges in four related structures.

In each structure the ethane bridge Ll between the anilino nitrogen atoms has a gauche configuration with torsion angles fairly close to the value (60°) expected for the lowest energy form of this configuration. The overall molecular configurations of the dimers (table 3.5) are dictated by the ethane bridges (L2, fig 3.13) between the bensylamino or imino nitrogen atoms (N1). The conformation of the bridge L2 (N1C9C9N1) may allow the molecule to twist

(3.7) was the first dimer (based on the precursor C_2 dialdehyde) structurally determined. The L2 bridges contain three carbon atoms and not two as for the other dimers (table 3.5). It can be seen in fig 3.14 that the ligand H_4 cyprodimer is twisted so that the two halves of the molecule (AB and CD) become very close. The distance between the centroids* of the two sets (AB and CD) of nitrogen atoms (3.20) is 3.44 Å compared with a calculated value (based on flat molecule 3.21) of 7.7 Å.

11

1.0

12.65

1.136

13536

parried.

Fig 3.14 Distance between the two sets of nitrogen atoms in H_A cyprodimer (3.7).

The calculation of the distance between the centroids of two sets of nitrogen atoms were made in the following way.

The coordinates of the centroids were calculated by averaging the x,y and z coordinates for each of the two sets of four nitrogen atoms (when one set was related by symmetry only one needed to be calculated). These coordinates were assigned to 'dummy atoms' and used in a XANADU¹² calculation to retrieve the contact distances between the dummy atoms. If the the same type of molecular configuration is found in the dimers with shorter bridges(L2) than those in H_Acyprodimer, then the centroids

dinuclear copper complex may be forced to adopt a very short copper-copper distance. This was found for a copper complex of H_4 cyendimer (3.4) and is discussed in section 3.4. Reduction of the tetraimine compounds are expected to cause significant changes in the overall molecular configuration due to the tetrahedral disposition of the bonds about the benzylamino nitrogen atoms (table 3.2) as opposed to the planar arrangement found for the benzylimine nitrogen atoms. The benzylamino nitrogen atoms are part of the L2 bridge which may control the conformation of the molecule. In the following discussion the two terms "twisted" and "folded" are defined in fig 3.15.

Fig 3.15 The twisted and folded conformations of the 28 membered ring

The reduction of H_4 cyendimer caused the following changes in molecular configuration:

1). The tetraimine 3.4 is a twisted molecule (structually determined as the biscopper complex section 3.4) with a

10.28

- - - - - CA.

atoms) distance of 3.71 Å.

0.8

0.048

poods

A. 1.

2). Reduction of the free ligand 3.4 with BH_3/thf initially gave a boron adduct found to be partially twisted, with the L2 bridges in the transoid configuration.

3). The boron adduct hydrolysed to yield the octaamine and was shown to give a partially folded conformation as opposed to the twisted analogues. The three ortep diagrams of 3.4, 3.5 and 3.6 are depicted in fig 3.16.

Note: The structure of H₄cyendimer was determined as the biscopper complex 3.36 (section 3.4.1).

3.4

3.6

Fig 3.16 Ortep diagrams of H_4 cyendimer (3.4), the boron adduct (3.5) and H_{12} cyendimer (3.6).

3.5

The close contact distance between the two sets of nitrogen atoms for 3.4 is dependent on the torsion angle of L2 (NlC9C9Nl) being in a gauche configuration as opposed to a transoid arrangement which would extend the two halves of

Fig 3.17 Schematic diagrams of the gauche and transoid¹¹ arrangements of a ethane bridge.

3.3.1 Copper complexes of aliphatic bridged tetra-asa macrocycles

3.3.1.1 Neutral copper(II) complexes

0114

11.1

1 A. 1997

计相关系统

OFFICE

These are formed in reactions which involve the loss of hydrogen atoms from the anilino nitrogen atoms (scheme 3.12).

Scheme 3.12 Preparation of neutral copper(II) complexes (template method).

The template method¹³ (scheme 3.12) involves an <u>in situ</u> reaction of the ligand precursors and copper(II) acetate. A reaction between the preformed ligand and copper(II) acetate did not give good yields or analytically pure samples for the macrocycles with aliphatic bridges between

with different length bridging groups obtained from the template method are recorded in table 3.6.

Copper complex	Bridging group	<u>Yield</u> §	Reaction Time
[Cu(cyen)] (3.22)	-(CH ₂) ₂ -	50	48
[Cu(cypr)] (3.26)	-(CH ₂) ₃ -	53	18
[Cu(cybut)] (3.28)	-(CH ₂) ₄ -	32	18
[Cu(cypen)]	-(CH ₂) ₅ -	0	48
[Cu(cyhex)]	-(CH ₂) ₆ -	0	96

Table 3.6 Template reactions

The reactions were monitored by withdrawing aliquots every few hours and examining the infrared spectra. Loss of the C_2 -dialdehyde (3.1) characteristic absorption frequencies indicated the end of a reaction, and other analyses (C,H,N and Cut and eims) were used to complete the characterisation. The X-ray structure of [Cu(cybut)] (fig 3.18) has been reported¹⁴ as having an approximately planar N₄ coordination sphere¹⁴, with the tetramethylene bridge in a half boat form.

10

Fig 3.18 Ortep diagram of [Cu(cybut)] (3.28).

1132

- 345

1.46.0

T F F AGE

1100.0

----- 1 H

11.041.08

If the bridge is increased to five or more carbon atoms, then the four coordinating nitrogen atoms will be forced away from the approximately planar environment found for [Cu(cybut)] (3.28) and H₂cyen (3.2). The thermodynamic stability of the copper complexes [Cu(cypen)] and [Cu(cyhex)] are probably very low and cannot be easily isolated (table 3.6). No neutral copper(II) complexes have been prepared from the reduced ligand H₆cyen (3.18). The ease in preparing neutral copper(II) complexes from the diimine macrocycles may be due to the stabilisation from resonance forms of the final complex (fig 3.19). The difficulty in preparing the neutral copper(II) complex of the ligand H₆cyen may be due to the lower thermodynamic stability of $[Cu(H_4cyen)]$ (the lack of imine bonds prevents the resonance stabilisation found for [Cu(cyph)]).

3.3.1.2 <u>Cationic copper(II)</u> complexes

The reaction between the preformed ligands and copper(II) perchlorate gave the copper(II) complexes without loss of the hydrogens from the anilino nitrogens (scheme 3.13), which were isolated as their relatively insoluble perchlorate salts. These reactions were fast (approximately 1 min) and only required gentle heating in methanol. Characterisation was made by elemental analysis and infrared ($V ClO_4 = 1100B$). For ligands with bridges higher than four carbon atoms, no solid complexes were isolable. The reduced ligand H₆cyen (3.18) also formed a copper(II) perchlorate complex rapidly. Analytical and spectroscopic data for the monomer ligands and their complexes are given in table 3.7. The preparation of the reduced ligand H_6 cyen could be monitored by the disappearence of the imine absorption band (infrared 1636 cm^{-1}) and the appearence of the NH stretch at 1606 cm^{-1} . The formation of the copper(II) complexes were monitored by withdrawing aliquots from the reaction mixture and observing their infrared spectra for absorption bands characteristic of the precursors.

Scheme 3.13

10.01

10.00

1 F X F L2C

idsd#-

-1 0 MIT

Table 3.7 Analytical and spectroscopic data for the mononucleating ligands and their copper(II)

complexes.

H_2 cyen (3.2) (Calc. for $C_{18}H_{20}N_4$)	C H N Cu
Infrared absorptions cm ⁻¹	3240,3146,3046,3016,2928,1636, 1616,1583,1577,1521,1516,1511, 1416,1401,1372,1332,1328,1202.
[Cu(cyen)] (3.22) (Calc. for $CuC_{18}H_{18}N_4$)	60.14.615.717.0(61.1)(5.1)(15.7)(18.0)
Infrared absorptions cm ⁻¹	3018,2908,2876,2856,2826,2794, 1615,1597,1320,1467,1453,1442, 1060,1032,955,936.
$[Cu(H_2cyen)](ClO_4)_2$ (3.23) (Calc. for CuC ₁₈ H ₂₀ N ₄ Cl ₂ O ₈)	38.0 3.7 10.1 11.6 (39.0) (3.6) (10.1) (11.5)
Infrared absorptions cm ⁻¹	3548,3258,2953,2898,1666,1620, 1602,1578,1494,1460,1412,1303,
Uv/vis (methanol)	220(14028), 270(5550), 446(226).
H_6 cyen (3.18) (Calc. for $C_{18}H_{24}N_4$)	71.9 8.2 19.4 (72.9) (8.2) (18.9)
Infrared absorptions cm ⁻¹	3313,3251,3222,3182,3121,1606, 1582,1518,1502,1399,1334,1320,
Uv/vis (methanol)	220(14028),270(5550),446(226).
$[Cu(H_{6}cyen)](ClO_{4})_{2}$ (3.24) (Calc. for CuC ₁₈ H ₂₄ N ₄ Cl ₂ O ₈)	38.84.49.911.0(38.8)(4.4)(9.9)(11.0)
Infrared absorptions cm ⁻¹	3528,3238,3193,1610,1587,1497, 1465,1369,1220,1188,1170,1090,
Uv/vis (methanol)	995,963. 218(3073),278(1100),310(664), 510(285).
Hacypr (3.25) (Calc. for ClaHaaN4)	74.3 7.5 18.2 (74.5) (7.2) (18.3)
- 17- 66- 9	

1000 1 Die - 10 g 0.0015 0.182 1111 2000 Filmer. 1.1 107 Lage 111.16 2700 -indelse · · bard

107000

subdut.

[Cu(cypr)] (3.26)	62.1	5.0	14.8
(Calc. for $CuC_{19}H_{20}N_4$)	(62.0)	(5.5)	(15.2)
Infrared absorptions cm ⁻¹	3020,16	10,1524	,1510,1478,1432,
	1402,13	92,1362	,1340,1252,1200,
	1165,11	32,1100	,1072,1040,1032,

953,935.

1088,1080,1052,1002,986.

 H_2 cybut (3.27)75.27.117.3(Calc. for $C_{20}H_{24}N_4$)(75.0)(7.5)(17.5)Infrared absorptions cm⁻¹3230,3085,1638,1620,1597,1586,
1532,1345,1288,1213,1280,1162,

1

C 1021

- \ctl

9 (0 ell 5 (a01

Table 3.7	Analytical	and	spectr	oscop	ic	data	for	the	
		mononucleatin	ng	ligands	and	th	eir	copper	r(II)
		complexes.							

1402,1392,1362,1340,1252,1200, 1165,1132,1100,1072,1040,1032, 953,935.

1088,1080,1052,1002,986.

 H_2 cybut (3.27)75.27.117.3(Calc. for $C_{20}H_{24}N_4$)(75.0)(7.5)(17.5)Infrared absorptions cm⁻¹3230,3085,1638,1620,1597,1586,
1532,1345,1288,1213,1280,1162,

Table 3.7 Analytical and spectroscopic data for the mononucleating ligands and their copper(II) complexes.

137

3.3.2 Stability of copper(II) complexes

The objective of preparing the mononuclear copper(II) complexes (table 3.7) was to help define the conditions which would be required for preparation of the more complicated dinuclear copper complexes. The stability of the ligands and their copper(II) complexes must be considered, since long reaction times may induce decomposition. Preliminary experiments involving uv/vis measurements were carried out to test their solution stability over extended periods of time in the presence of copper ions. The following ligands and their copper(II) complexes were studied (fig 3.20).

H,cyen (3.2)

Fig 3.20 Tetra-aza macrocycles which were tested for solution stability.

It was expected that the reduced macrocycles H_6 cyen (3.18) and H_6 cyph (3.30) may be susceptible to oxidation. To

111167

11110

1.66

- A.F

 H_6 cyph were prepared in methanol and periodically examined by uv/vis (table 3.8). These results confirmed that the reduced macrocycles are stable to air in methanol.

Hecyen	nm	Abs	Abs (2 days)	
(3.18)	294	0.94	0.90	H. H. 3.18
	250	1.06	1.02	
<u>H</u> 6 <u>cyph</u> (3.30)				3.30
	208	0.75	0.73	н >=< н
	250	0.38	0.39	
	295	0.10	0.10	

Table 3.8 Uv/vis results for H₆cyen (3.18) and H₆cyph (3.30)

The solution stability of $[Cu(H_6cyph)](ClO_4)_2$ (3.31) was tested in the presence of excess copper(II) perchlorate. The stability of the copper complex was monitored by following the changes in the uv/visible spectra. It was found that at low concentrations of ligand to copper, decomposition or oxidation takes place, as shown by the increasing absorption band at 520 nm (fig 3.21) which is also characteristic of the related imine copper complex [Cu(cyph)]. The oxidation/decomposition was inhibited as the molar ratio of ligand to copper(II) approached 1:1.

2.7(19

L LI FERRIN

1.0

1000

914

13,131

Fig 3.21 The changes in the uv/vis spectum of $[Cu(H_6cyph)](ClO_4)_2$ (3.31) with time

lall.

20

100710-7

ul all

10.00

247

101

1002

1000

ATES.

Cultors

11/04

10024

The cationic copper complex 3.24 of the reduced ligand H_6 cyen (3.18) was stable in a solution of copper(II) perchlorate, and showed no significant change in the uv/vis absorption spectra over 2 days. The neutral and cationic complexes of both of the imine ligands H_2 cyen and H_2 cyph were stable in solution in methanol, whether in the presence of excess copper(II) ions or not. It was found that the addition of a base (sodium methoxide solution) to $[Cu(H_2 cyph)](ClO_4)_2$ (3.32) formed the neutral complex [Cu(cyph)] (3.33, scheme 3.14).

Scheme 3.14

The deprotonation of the cationic complex 3.32 to give the neutral complex 3.33 was observed in solution by uv/vis measurements. The neutral complex could not be protonated by addition of perchloric acid, probably due to the greater thermodynamic stability of [Cu(cyph)] (3.33). For larger quantities of $[Cu(H_2cyph)](ClO_4)_2$ (3.32), conversion to [Cu(cyph)] (3.33) could be effected by addition of the base to a suspension of the perchlorate complex in methanol. This method could provide a novel synthetic route for the preparation of deprotonated species. The conversion of solid $[Cu(H_2cyen)](ClO_4)_2$ (3.23) to [Cu(cyen)] (3.22) did not proceed so readily but required a period at reflux.

Conclusion

The stability of the copper complexes of the mononucleating ligands appear to be good providing they are not left in solution for extended periods of time, and that approximately equimolar amounts of ligand and copper(II) salt are used. The deprotonation of $[Cu(H_2cyen)](ClO_4)_2$ was not found to be effective for the preparation of [Cu(cyen)]

1.80

02.5

due to contamination from the perchlorate complex. The deprotonation of $[Cu(H_2cyph)](ClO_4)_2$ to give the corres-

ponding neutral complex [Cu(cyph)] is discussed in further detail in chapter 4.

3.4.1 Preparation of copper complexes of H4cyendimer (3.4)

The low solubility of H_4 cyendimer (3.4) results in ligand contamination of copper complexes prepared in most solvents. Highly polar solvents such as dmf or dmso which are suitable for dissolution of the ligand resulted in decomposition of the copper complexes as judged by the formation of black solids which could not be characterised. It has been reported¹⁵ that metal ions in complexes can induce ring contraction to accomodate the stereochemical requirements of the metal ion. For example a [2+2] condensation reaction between 2,6-diacetylpyridine with 1,2-diaminobenzene in the presence of certain divalent metal ions (M^{2+} , M = Ca, Sr, Ba and Pb) occurs to accomodate the metal ion (scheme 3.15) No macrocyclic products were isolated when this template reaction was attempted with the perchlorate salt of the transition metals Mn to Zn. However reaction of the barium complex (3.34) with Co(II) was shown¹⁶ by X-ray crystallography to have induced a ring contraction (scheme 3.16). Other metals of the same transition series show similar reactions.

approx ant approx ants =

100.8

11/11

1.6

101.5

0.018-0.005 %

1003

10000

Scheme 3.16

Various solvent systems were used in an attempt to prepare copper(II) complexes of the neutral ligand H_4 cyendimer (3.4) (i.e. without loss of the anilino protons). The first crystalline sample of a copper complex was obtained using a solvent system of thf/CH₃OH which gave translucent green prisms. Elemental analysis data did not correspond to the expected [Cu₂(H₄cyendimer)](ClO₄)₄ (3.35) complex or any other reasonable formulation. A single

(3.36). The formation of a tricationic complex was unexpected. It contains (section 7.1) two copper atoms in close proximity, with a particularly short Cu-Cu bond (2.444(4) Å). The formulation of the electronic structure of this complex presents some interesting problems and is discussed in detail later in this chapter. One assignment gives the copper atoms identical electronic enviroments in a $[Cu_2]^{3+}$ unit and therefore formal oxidation states of 3/2. Since the complex was relatively easily obtained and appears to be stable indefinitely in the solid state, it was of interest to compare the properties with related complexes which would contain the copper in more conventional oxidation states of 2 and 1. The biscopper(II) complex $[Cu_2(H_4cyendimer)](ClO_4)_4$ (3.35) was prepared using a solvent system of chloroform/methanol with the addition of diethyl ether, and characterised by elemental analysis. Attempts to prepare the biscopper(I) complex $[Cu_2(H_4cyendimer)](ClO_4)_2$ were made using tetraacetonitrilecopper(I) perchlorate $[Cu(CH_3CN)_4](ClO_4)$ and H_4 cyendimer (3.4) in the solvent thf. Preliminary results revealed that the thf must be dried (distilled from $LiAlH_4$) and degassed with argon. Preparation of the biscopper(I) complex was hampered by rapid oxidation which gave a green complex (assumed to be a biscopper(II) species) even under an argon atmosphere. The complex formed in this reaction was filtered, and the filtrate left to stand in an open necked vessel. After a few days, some brown-green crystals were

V Proton Rector Rector Record Rec

crystal was examined by X-ray crystallography, and when the structure was solved it became clear the complex was a biscopper(II) with two perchlorates (3.37) and a deprotonated dianionic ligand. The preparation of the compound was improved by excluding the oxygen from the reaction mixture, although yields were still low and not reproducible. In an attempt to isolate a stable biscopper(I) complex, carbon monoxide was diffused through the reaction mixture to convert the reactive species to a carbon monoxide adduct. The $[Cu(CH_3CN)_4](ClO_4)$ was suspended in thf and found to be unreactive towards carbon monoxide. After twenty minutes diffusion of carbon monoxide through the suspension the free ligand was added to give a mole ratio of 1:2 ligand:Cu(I). The solution immediately turned paleyellow green and remained so for 1 h, until filtration and drying gave a pale green compound with the infrared spectra showing a weak absorbance ($V_{max}=2100 \text{ cm}^{-1}$) due to carbon monoxide. Other absorbances demonstrated that a substantial quantity of the unchanged ligand was still present. It was determined experimentally that a mole ratio of 1:4 ligand :Cu(I) gave high yields of a white compound for which the infrared spectra showed no unreacted starting materials, but did show a strong C=O stretch at 2100 cm^{-1} . The complex analysed as a biscopper(I) diperchlorate complex 3.38, with an unknown quantity of carbon monoxide ligand. All the reactions described above for the preparation of biscopper(I) complexes were carried out at room temperature,

11.213

THEFT

10.015

11115.21

- 110T

14110

1.0.215

- A & A

1100

111100

10.6

TO + COM 1

1111

A 6 2 - 1

I SACL

0.00101

Anna San M.

HE LEADERS

izeb bra

1111100

in large and

ICD74 GE

TTRAFFE

COTORY

diperchlorate complex (section 8) similar to the structually characterised diperchlorate 3.37, but with minor differences shown in the infrared.

1721

1.143

1121.14

12495

10365

1005

1/100

11110

1310

See.

0.007

334.08

21812

- Ling

1012 Co.6

111001

OWNER

0.111

10 (J.)MD4

- ini

-na bib

magings.

10000 000

110893

blacopc-

A summary of copper complexes and their ligands are shown in table 3.9 with their analytical data.

Table 3.9 Analytical and spectral data for the dinuclear ligands and their copper(II) complexes

Compound	<u>C7</u>	MZ	HZ	Cul
H ₄ cyendimer (3.4) (Celc. for Coefficient)	73.4 (73.9)	6.9 (6.9)	18.9 (19.2)	
			•••••	
$[Cu_2(H_4 cyendimer)](ClO_4)_4$ (3.35)	39.5	3.7	10.0	
$(Calc. for Cu_2C_{36}H_{40}R_8CI_4O_{16})$	(39.0)	(3.0)	(10.1)	
[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₃ (3.36)	42.2	4.0	10.9	12.3
$(Calc. for Cu_2C_{36}H_{40}N_8C1_3O_{12})$	(42.8)	(4.0)	(10.9)	(12.6)
[Cu ₂ (H ₂ cyendimer)(ClO ₄)(H ₂ O)](ClO ₄) (3.3	37) 48.8	4.6	11.5	
$(Calc.for Cu_2C_{40}H_{48}N_8Cl_2\bar{D}_{10})$	(49.5)	(4.9)	(11.3)	
[Cu ₂ (H ₄ cyendimer)(CO) ₂](C10 ₄) ₂ (3.38)	46.6	4.1	11.2	13.4
(Calc. for $Cu_2C_{38}H_{40}N_8Cl_2O_{12}$)	(47.2)	(4.2)	(11.6)	(13.1)
H ₁₂ cyendimer (3.6)	73.0	8.1	18.9	
(Calc. for C36H48N8	(72.9)	(8.2)	(18.9)	
[Cu ₂ (H ₁₂ cyendimer)](C10 ₄) ₄ (3.39)	37.9	4.3	10.0	11.2
(Calc. for Cu ₂ C ₃₆ H ₄₄ N ₈ Cl ₄ O ₁₆)	(38.7)	(4.3)	(10.0)	(11.4)
H ₄ cyprodimer (3.7)	71.2	6.8	17.9	
(Calc. for C ₃₈ H ₄₄ N ₈ O ₂)	(70.8)	(6.7)	(17.8)	
$[Cu_2(H_4 \text{ cyprodimer})](C10_4)_4 (3.40)$	39.5	3.6	9.8	
(Calc. for Cu ₂ C ₃₈ H ₄₄ N ₈ Cl ₄ O ₁₈)	(39.2)	(3.8)	(9.6)	
H ₄ cyhexdimer (3.8)	75.3	8.1	16.3	
(Calc. for C44H56N8)	(75.8)	(8.1)	(16.8)	
[Cu ₂ (H, cyhexdimer)](C10,), (3.41)	42.3	4.5	8.6	
(Calc. for Cu ₂ C ₄₄ H ₅₆ N ₈ Cl ₄ O ₁₆)	(43.3)	(4.6)	(9.2)	

Compound 74.2 9.5 15.8 H12cyhexdimer (3.43) (15.9) (74.9) (9.2) (Calc. for C44H64N8) 7.3 10.4 54.7 H12 cyhexdimer.8HCl (53.0) (7.2) (11.2) (Calc. for C44H72N8C18) Infrared absorptions cm⁻¹ Description Compound 3240,3163,3088,1633,1626,1606, white needles 3.4 1585, 1582, 1526, 1484, 1469, 1458. 3280, 3200, 3100, 1600, 1605, 1581, green powder 3.35 1499,1324,1238,1220,1204,1100 b. 3578 Ъ, 3258,3058,1617,16001,1576, green crystals 3.36 1426,1407,1365,1248,1075 b. 3500 bw, 1660, 1632, 1601, 1532, brown-green 3.37 1409,1344,1305,1198,1187,1090 b. crystals 3400 Ъ, 3270, 3250, 2088, 1627, 1602, white powder 3.38 1588,1502,1309,1205,1100,970,787,752. 3317, 3271, 3210, 3170, 1605, 1584, clear crystals 3.6 1563,1505,1454,1441,1355,1347. 3560, 3260, 1635, 1620, 1595, 1502, 3.39 light brown 1470,1420,1370,1219,1080 b. powder 3210, 3090, 3025, 1630, 1600, 1578, 3.7 white crystals 1518,1463,1453,1327,1320. 3250 Ъ, 2980,2940,1650,1612, 3.40 dark red 1590,1509,1100 b,935,768. powder 3250, 3175, 1640, 1621, 1595, 1530, 3.8 white needles 1370,1333,1284,1212,1167. 3500 b, 3370, 3180, 1680, 1648, 1640, red powder 3.41 1611,1586,1503,1315,1240,1100 b. 3405, 3340, 1613, 1593, 1525, 1348, 3.43 white powder 1319,1295,1277,1232,1222,1199. Table 3.9 Analytical and spectral data for the dinuclear

CZ

HZ

112

ligands and their copper(II) complexes

山口線竹

-----101 3L857 101101_JU_201 (Ealth - 1167) (mo.)), (d) 10012/01/1491 (GATC ______) - Constants 110 004537 Contra los A STREET out (idal) Cast Astron (Cale), for -Dustery3 TGale, inv - legg(W) = 4631 145 .0180)

3.4.2 DISCUSSION

0,000

4.00

34 - E.

1.0

1400

1112

57.687

The reaction between the ligand H_4 cyendimer (3.4) with copper(II) perchlorate in thf/CH₃OH gave translucent green crystals. Preliminary analysis confirmed the presence of a perchlorate complex ($Vmax = 1100 \text{ cm}^{-1}$). X-ray structural analysis (section 7.1) showed the complex to be biscopper triperchlorate with a short copper-copper bond of 2.444(4) Å(fig 3.22).

Fig 3.22 Schematic and ortep diagram of $[Cu_2(H_4cyen-dimer)]^{3+}$

The twisted conformation of the ligand H_4 cyendimer (section 3.2.6.2) forces the two copper atoms to within bonding distance. The crystals of $[Cu_2H_4cyendimer](ClO_4)_3$ (3.36) are stable when in the solid state, but decomposition occurred when this material was allowed to stand for protracted periods in solution or when recrystallisation was attempted from a recrystallisation was attempted

course of the reaction with copper(II) perchlorate a soluble intermediate was formed, which then slowly deposited crystals of the $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) in ~50% yield. The mother liquor gradually darkens, leaving a black gummy material which could not be characterised. Reaction of the ligand with one molar eqivalent of copper(II) perchlorate resulted in a partial dissolution of the ligand followed by formation of the $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) complex. The nature of the intermediate is unknown, but could be a mono-copper complex in which the conformation of the ligand differs such to enhance the solubility. It is unlikely to be the biscopper(II) complex $[Cu_2(H_4cyen$ dimer)](Clo_4)₄ (3.35) because this was shown to be relatively insoluble (this chapter). A 30-membered Schiff base macrocyclic ligand (fig 3.23) has been reported²⁰ to incorporate one or two copper atoms per ligand. The monocopper(II) complex is believed to have a pseudo-octahedral 'CuN6' structure. This complex can be used to form biscopper(II) complexes on addition of a copper(II) salt. The free ligand has not been isolated, but was prepared as the dilead(II) complex, which can be used in transmetallation reactions to enable other metal ions to be incorporated.

5 0. 01*

14122

12,925

LARK

10.00

11.77

lo d m l

11 × 12 11

131111

1000

1.00156

1110

- 102

111101

10/01

10.

1 1 1 L L

10.01

0.00

00000

1034

01.18

1 007

10.13

1010.55

にていりまし

Fig 3.23 The free ligand of a dilead(II) complex⁷.

The formation of a triperchlorate complex $[Cu_2(H_4cyen$ dimer)](ClO_4)₃ could arise in one of four ways: (i) by the transfer of a single electron to the dicopper(II) centre, (ii) by the loss of one of the anilino protons from the ligand, (iii) by the reduction of both copper atoms to copper(I) accompanied by simultaneous oxidation of the macrocyclic ligand, or (IV) by complexation of a pair of copper(II) ions with a reduced form of the ligand. The second possibility can be excluded on the basis of the structure determination, which shows all four anilinonitrogen atoms have approximate tetrahedral geometry (table 3.13) rather than a trigonal planar arrangement which has been found¹⁴ for the deprotonated anilino-nitrogen atoms in related mononuclear complexes. The structure of the free ligand H_4 cyendimer (3.4) has not been determined but a related macrocycle H_4 cyprodimer (3.7) (this chapter) shows a similarly twisted conformation, stabilised by intramolecular hydrogen bonding involving the anilino protons. This type of stabilisation has been considered to be important in determining the ease of isolation of metal

complexation, these intramolecular hydrogen bonds are broken. The two copper atoms in the complex $[Cu_2(H_4cyen$ $dimer)](ClO_4)_3$ have very similar geometries (table 3.10) and the cation has approximate two fold symmetry about an axis which passes through the midpoint of the copper-copper bond and relates ligand portions A to C and B to D (fig 3.22). The stereoscopic view of the packing diagram depicts the cations and anions in a column arrangement (fig 3.24).

Fig 3.24 Stereoscopic view of $[Cu_2(H_4cyendimer)](ClO_4)_3$

(3.36)

014

14216

-negd

CE YARD

1110002

120100

1012040

11110000

Principal and

110730

10166.4

ort and

にられれ五級型

A Dampid.

lossales.

wiimim.

Intrane.

Brotons.

ogel ed.

complexation, these intramolecular hydrogen bonds are broken. The two copper atoms in the complex $[Cu_2(H_4cyen$ $dimer)](ClO_4)_3$ have very similar geometries (table 3.10) and the cation has approximate two fold symmetry about an axis which passes through the midpoint of the copper-copper bond and relates ligand portions A to C and B to D (fig 3.22). The stereoscopic view of the packing diagram depicts the cations and anions in a column arrangement (fig 3.24).

Fig 3.24 Stereoscopic view of $[Cu_2(H_4cyendimer)](ClO_4)_3$

(3.36)

2/5

0.001

11.73

U (10)

0000012

110100

0.049

1-9694

1002008

0.0228

1.101.4

o'v read

bertelmer.

Daught

intelet.

- I I = J H

0.63.222

Droton!

	Part A	<u>Part</u> D	<u>Part</u> <u>B</u>	<u>Part</u> <u>C</u>
Bondlengths/A				
Cu-N(1)	1.92(2)	1.90(2)	1.91(2)	1.95(2)
Cu-N(2)	2.18(2)	2.20(2)	2.20(2)	2.13(2)
Angles/8				
N(1)-Cu-N(2)	91.5(8)	91.08(7)	93.5(8)	91,9(7)
$N(1)-Cu-N(1)^{a}$	160.1(7)		158.2(7)	
$N(1)-Cu-N(2)^{a}$	107.1(8)	99.2(7)	101.5(8)	104.9(7)
$N(2)-Cu-N(2)^{a}$	83.5(7)		84.5(7)	
$N(1)-Cu-Cu^{D}$	80.8(6)	80.7(5)	78.5(5)	80.8(5)
$N(2)-Cu-Cu^{D}$	144.6(5)	131.9(5)	129.2(5)	146.2(5)

Table 3.10 Geometry about the copper atoms Cu(1) and Cu(2) for complex 3.36. a) denotes an atom in the alternative guarter of the ligand which is coordinated to the same Cu atom. b) denotes the Cu atom in the other half of the complex.

The similarity of the environments of both copper atoms and the short bond between them suggest they should not be assigned the discrete formal oxidation states +1 and +2, but that the single unpaired electron is delocalised over both metal centers, or that the metal centers are identical and that the unpaired electron resides on the ligand. This evidence would suggest this is a 'type 3A' mixed valence compound, where by the two copper atoms are equivalent and indistinguishable¹⁷. A number of copper ensymes contain more than one copper per molecule and in some cases¹⁸, not all the copper can be accounted for by ESR as Cu(II) in the oxidised ensyme. To explain this and other unusual absorption spectra of these ensymes, one of the many suggestions has been a Cu(II)-Cu(I) interaction, categorised as a 'type 3A' mixed valence complex. A dinuclear mixed

bruks dinu: the cs which and in The s

---- 1ab

5.1 014

valence copper acetate complex (fig 3.25) has been

92

proposed¹⁹ as a model for such copper-copper interaction in enzymes, and similarly to $[Cu_2(H_4cyendimer)](ClO_4)_3$ the two copper atoms were indistinguishable and their formal oxidation states indeterminate.

Fig 3.25 Proposed structure for a dinuclear mixed valence acetate complex.

A 30 membered Schiff base macrocyclic ligand (fig 3.23) previously described was reported²⁰ to coordinate two copper atoms, incorporating bridging ligands between them. The variation of the copper-copper distance is dependent on the flexibility of the ligand, which can alter to accomodate Cu-Cu bridging ligands of differing sizes (table 3.11,fig 3.26).

dod (b) dasic: this this dospoint the cop the cop daspoint the cop

Co- N

Angl. OF

「日本の

Fig 3.26 Ortep diagram of a 30 membered Schiff base macrocycle

Table 3.11

OH

The different conformations of the complexes above are achieved by folding of the ligand as opposed to the twisting of the ligand for the complex $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36). An attempt by Nelson²⁰ to produce the mixed valence Cu(I)/Cu(II) complex of the ligand (fig 3.26), resulted in a mixture of the biscopper(I) and biscopper(II) complexes. Mixed valence copper complexes have become more common recently, although few known structures have been described²¹. A short Cu-Cu bond of 2.441(2) Å has been

1/04123 27.8 BAR 11442

12.0

1-171Q

100

1 10AT

12-13

116 116

are almost parallel, but the two sets of nitrogen atoms are twisted markedly (-15°) from the eclipsed configuration, no magnetic data have been reported.

Fig 3.27 Ortep diagram of the structure of $[Cu_2(dpt)_4]$

Many metal-metal distances have been reported²³ for structures related to that of copper(II) acetate monohydrate (table 3.12).

echiovon echiovon echiovon echica elistoca seconal democio

620%

-1.141

-1785

10.5

Compound	Distance	<u>/Å</u>	Compound	Distance /A
Cu. (formate) (NCS) alar	2.716	[Cu ₂	(Decanoate) ₄]	2.63
Cu ₂ (formate) ₄ (urea) ₂]	2.657	[Cu ₂	(aspirinate) ₂]	2.621
(orthorhombic)	2.645	(n	eutron study)	2.614
Cu2(acetate) 4(NCS) 2]2"	2.643	[Cu ₂	(succinate)1]	2.610
$Cu_2(acetate)_4(H_2O)_2J$	2.64	(Cu ₂	(formate) (dx)]	2.59
$Cu_2(acetate)_4(qn)_2]$	2.64	[Cu2	(butyrate) ₄]	2.565
Cu ₂ (acetate) (py) ₂] (monoclinic)		[Cu ₂	(dpt) ₄]	2.441

Table 3.12 Short Cu - Cu distances²³

Many of these complexes have Cu-Cu distances close to the value of 2.56 Å for the pure metal²⁴. Short Cu-Cu distances are indicative of metal-metal bonding. However, large exchange interactions do not always arise from short Cu-Cu distances²⁵, and very few inorganic dinuclear biscopper(II) complexes exhibit complete spin pairing at room temperature. One such compound (others have been reported²⁵) was illustrated by Decourcey et al²⁶, in which the two coppers are separated by 3.05 Å and bridged by the two oxygens (fig 3.28).

Fig 3.28 An outline of the structure of a di-y-alkoxybridged

828 24195 24195

12.1.1.10.446

1.1

nidadi.

atindol (

In these type of complexes it has been found that the degree of coupling increases as the distance between the two coppers increases and the bridge geometry varies, thus indicating the importance of exchange coupling in ligandbridged copper(II) dimers. Even shorter Cu-Cu bonds have been reported 22,27 for tetranuclear cluster complexes of copper(I) (with bridging ligands) showing the copper(I) atoms separated by just 2.38 Å and 2.42 Å, however, these complexes are diamagnetic, and therefore cannot be used to study how exchange interaction depends on geometry. For $[Cu_2(H_4 \text{cyendimer})](ClO_4)_3$ (3.36) the ESR spectrum at the Xband of a powdered sample of a frozen acetonrile solution $(77^{\circ}K)$ exhibited one line at g=2.09 G. This does not unambiguously support the immediate conclusions from the Xray structural study that the copper ions are equivalent and that this is a 'type 3A' mixed valence compound¹⁷. An ESCA spectrum²⁸ provided evidence for the assignment of equal oxidation states to the two copper atoms. All the data did not conclude whether $[Cu_2(H_4cyendimer)](ClO_4)_3$ contained a $[Cu_2]^{4+}$ unit or a $[Cu_2]^{3+}$ unit and a comparison of magnetic data with that of $[Cu_2(H_4 \text{ cyendimer})](ClO_4)_4$ is made in section 3.7.1. The biscopper(II) complex[Cu₂(H₄cyendimer)]- $(ClO_4)_4$ (3.35) was prepared using a different solvent system and was characterised by elemental analysis. If the ligand 3.6 is capable of stabilising a $[Cu_2]^{3+}$ unit, then it may be possible to stabilise a biscopper(I) unit.

ton (100) 100 (100)

1 1247

101/33

16.E 01M

3.4.3 Biscopper(I) complex

Preparation of a biscopper(I) complex was attempted using $[Cu(CH_3CN)_4](ClO_4)$ as the source of copper(I). This copper(I) salt was made by the reduction of $Cu(II)(ClO_4)_2$ -6H₂O with copper bronze in acetonitrile. Preliminary experiments to ascertain the stability of copper(I) compounds of 3.6 revealed that the solvents must be dried and used in an oxygen free atmosphere. The reaction was tested in a variety of solvents, but thf was found to be the most suitable in preventing oxidation of the copper(I) starting material. Without special oxygen free conditions, a green complex separated from solution rapidly. This was characterised as a biscopper(II) complex but was lightly contaminated with the free ligand. The filtrate was left to stand for approximately 5 days, when green-brown crystals of copper complex 3.37 formed. The infrared spectrum showed that the complex contained perchlorate. The dark colour suggested a copper(II) complex, although a biscopper(I) complex has been reported²⁰ where the colour was due to charge transfer. Other possibilities were that the complex was a mononuclear copper complex, or that the "dimeric" octa-aza ligand had reverted to a "monomeric" tetra-aza form (3.2) which gave a mononuclear copper(II) complex. This type of "dimer" to "monomer" conversion has been suggested 2 to account for the reaction when a polymeric material (now thought to be 3.4) was treated with a refluxing solution of nickel(II) acetate, when the tetra-asamacrocyclic complex

11200 1000 Lader 5.1 10 - nund 19960 1000 1203# level. Doubd or 101tt) 1.1.0.0.020 1.917 b madd add in a second 11115188 0.0 300 11(100) in otal No. Init 101011 RAM DOM to al Big stateseq.

compatible with formation of the analogous copper(II) complex [Cu(cyen)] or its related cationic form $[Cu(H_2cyen)](ClO_4)_2$. Consequently an X-ray structure determination was undertaken.

3.4.4 The Structure of $[Cu_2(H_2cvendimer)(H_2O)(Clo_4)] - (Clo_4)$ thf (3.37)

The unit cell had a slightly smaller volume than the triperchlorate $[Cu_2(H_4cyendimer)](ClO_4)_3$, consistent with the presence of only two perchlorates. The formulation as a mononuclear copper(II) complex seemed reasonable, but when the structural analysis was completed a dinuclear copper(II) complex of a dianionic form of the ligand was revealed. The schematic diagrams of $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) and 3.37 are shown in fig 3.29.

Fig 3.29 Schematic diagram of 3.36 and 3.37

The two copper atoms in the diperchlorate 3.37 are bonded to different sets of nitrogen atoms from those in

DOING NO - T11V003 11,213 THTES 1 A.P. 3m 10 0.1 化甘油甘油酸 dayion 1111160 111000 and the second s 0.001040 (7. Multiple) blike 11 100000 110000 0 1.5W 116-1250 112 (6.6) ·=25" 30 2111/1006 Thought . nlckel(

same coordination spheres. The angles around the anilino nitrogen atoms are given in table 3.13. These angles are compatible with deprotonation having occurred at nitrogen atoms N(2b) and N(2c), where the sums of angles are close to 360°. The planar disposition of bonds from these nitrogen atoms is consistent with an sp^2 hybridisation which has been observed²⁰ in other metal complexes containing deprotonated o-aminobenzaldehyde imines. The aniline nitrogen atoms N(2a) and N(2d) have a tetrahedral disposition of bonds, with sums of the C-N-C and C-N-Cu bond angles close to the theoretical value for a sp^3 hybridised atom. A comparison for these data is made with the complex $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) where the anilino nitrogen atoms have retained their protons and have values close to those expected for tetrahedral nitrogen atoms (table 3.13).

 $[Cu_2(H_2cyendimer)(ClO_4)(H_2O)](ClO_4)$ thf (3.37)

	Part A	Part B	Part C	Part D
Cl-N2-C2 Cl-N2-Cu C2-N2-Cu	111.0(9) 109.7(7) 109.5(7)	117.8(10) 116.2(7) 124.2(8)	117.1(11) 116.9(8) 125.6(8)	109.6(10) 108.7(7) 115.4(7)
Total	330.2	358.2	359.6	333.7

 $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36)

	Part A	<u>Part D</u>	Part B	Part C
Cl-N2-C2 Cl-N2-Cu C2-N2-Cu	115.0(18) 115.1(14) 104.2(15)	114.2(19) 106.0(14) 114.8(14)	115.8(19) 102.1(14) 114.4(14)	111.3(17) 105.1(14) 118.8(14)
Total	334.3	335.0	332.3	335.2

Table 3.13 Bond angles about the anilino nitrogen atoms for

0.886

0.00

1001

1010105

王法律

10101

11-3122

- a mbi

P1g 1-24

bonded in

For $[Cu_2(H_4cyendimer)](ClO_4)_3$, the anilino hydrogen atoms could not be located from the difference fourier electron density map. The presence of all four anilino hydrogens was suggested by the the tetrahedral disposition of the other bonded atoms around the nitrogen atoms (see above). In contrast, for 3.37 the two hydrogen atoms attached to the anilino nitrogen atoms N(2a) and N(2d) were located directly from a difference Fourier map due to the better quality of the reflection data (section 7.2). However, no electron density maxima could be detected in the region of the N(2b) and N(2c) atoms again suggesting that these have been deprotonated in the complex 3.37. The chelate rings of B and C (3.44) in 3.37 which have the deprotonated anilino nitrogen atoms, are more planar than a) the chelate rings of A and D, and b) the chelate rings A,B,C, and D in 3.37 which contain deprotonated anilino nitrogen atoms. This is shown in table 3.14 by the root mean square deviation of the plane of the six atoms N2, N1, Cu, C2, C7 and C8 in each unit.

Table 3.14 Root mean square deviation of atoms in the six membered chelate rings A,B,C, and D (see 3.44) in the copper complexes 3.36 and 3.37.

C1-10-10 (1-10-0) (2-10-0)

Intell

12.66

1713Am

IT ADDRESS

1111- 0HE

11036

.0002

11000

-dd ()e

17.5-826.8

103

-___ (ca3)

- Caroda

61-112-02 02-32-02 02-62-02

Motel.

Table 3

Whereas $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) shows similar geometries (table 3.10) around each copper atom, the complex 3.37 has two different copper environments (table 3.15). The most significant difference between the environments of the two copper(II) atoms is the fifth coordination site, which for Cul is a strongly bound water, and Cu2 is a very weakly bonded oxygen of a perchlorate.

	Cul		Cu2	
	Part A	Part B	Part C	Part D
Cu-N1	1.94(1)	1.94(1)	1.93(1)	1.95(2)
Cu-N2	2.10(1)	2.01(1)	1.97(1)	2.06(1)
Angles/A				
N1-Cu-N2	85.2(4)	92.8(4)	93.4(5)	87.0(5)
$Nl-Cu-N(1)^{a}$	84.8(4)		84.0(6)	
$N1-Cu-N(2)^{a}$	174.6(5)	160.2(5)	154.3(5)	175.2(5)
$N2-Cu-N(2)^{a}$	95.6(4)		96.9(4)	
0-Cu	2.36	9(1)	2.6	32(1)
O-Cu-N2	101.2(4)	93.8(4)	91.9(5)	97.97(5)
O-Cu-Nl	91.3(4)	96.1(5)	105.2(6)	84.9(5)

Table 3.15 Geometry about the copper atoms Cu(1) and Cu(2) for complex 3.37. a) denotes an atom in the alternative quarter of the ligand which is coordinated to the same copper atom.

For the complex $[Cu_2(H_4cyendimer)](ClO_4)_3$ (3.36) a pseudo diad relates the ligand portions A to C, and D to B but with 3.37 no such comparison can be made (fig 3.30). The two halves of the complex are not related by any pseudo symmetry, and this is more pronounced because of the different coordination environments of the two copper(II) atoms. Both copper atoms in 3.37 have irregular coordination

10038 TOBLE 1540T - 24 -11.76 VIVE B 1.758-10000 330d CONTRACTOR INCOME. 101093 ----1111400 10100歳 102118 100234 UPDI DAHNE 10.00 1136/1113 DALL?

L.L. BIGHT

arrangement of the four nitrogen atoms and (axial) oxygen of the strongly bound water molecule. Cu2 has¹ irregular coordination geometry, described as inbetween square pyramidal and a trigonal planar arrangement. The four nitrogen atoms experience little repulsion from the very weakly coordinated perchlorate oxygen. The best geometric plane has been calculated through the four nitrogen atoms coordinated to each copper(II) atom, and the displacement of the coordinating atoms from their respective planes given in

Fig 3.30 Ortep diagram of $[Cu_2(H_2cyendimer)(Clo_4)(H_2O)]$ -

 (Clo_4) thf (3.37)

3.17 3.17 bio or p 10x 24 bood

04-01 01-01 M12-04-1 M2-04-1 M2-04-1 02-00 0+00 M+04-11 M+04-11

10.047

Por Periodo (but uith the bio the bio eymantey (difforme

	Cul	<u>Cu2</u>
Cu-O bond length Å	2.369	2.632
Copper displacement from N ₄ plane Å	-0.20	0.18
Oxygen displacement from N_4 plane A	-2.564	2.801
Displacement of nitrogen atoms A		
Nl	0.10	-0.25
N2	-0.11	0.21
Nl	0.11	0.25
N2	-0.10	-0.22

....

1.10

1 Cob

104774

10.00124

0.015940

20125

20.4

1060

11. E. MA

Table 3.16 Displacement of the coordinating atoms from their respective planes.

The overall conformation of the ligand in 3.37 depends on the arrangement adopted by the relatively flexible ethane linkages (ie upon the torsion angles of the C1-C1 and C9-C9 bridges (3.45) because the four chelate rings (3.46) are constrained to be approximately planar (see above).

3.45

3.46

The linking of A-B and C-D is comparable in terms of torsion angles at the C9 bridge. The principle difference between the A-D and B-C halves of the molecule arise from the different torsion angles in the Cl bridge (table 3.17).

0-65

100940

Transis -

- I date

- inadia

- 10 Deé

(1) (1), (2).

a beine i

D Haged

Ll	(N(la)	C(9a)	С(9Ъ)	N(1b))	Torsion angle	-	-44.3
L2	(N(lc)	C(9c)	C(9đ)	N(1d))	Torsion angle	-	-23.8
					Difference	-	-20.5
L3	(N(2b)	C(1b)	C(lc)	N(2c))	Torsion angle	-	104.0
L4	(N(2đ)	C(1d)	C(la)	N(2a))	Torsion angle	-	-52.8
					Difference	•	156.8

Table 3.17 Dihedral angles in $[Cu_2(H_2cyendimer) - (ClO_4)(H_2O)](ClO_4)$ (3.37).

The deprotonation of the anilino nitrogen atoms N(2b) and N(2c) for complex 3.37 is accompanied by a shortening of the aromatic carbon-nitrogen bonds (C(2b)-N(2b) and C(2c)-N(2c)), due to the increased conjugation as a consequence of sp^2 hybridisation. Thus these two C(2)-N(2) bonds in 3.37 have a mean length 1.35 Å compared with 1.44 Å for the other C(2)-N(2) bonds which do not have deprotonated nitrogen atoms (see table 3.18).

<u>Complex</u>	<u>C(2a)-N(2a)</u>	C(2b) - N(2b)	C(2c) - N(2c)	$\underline{C(2d)} - \underline{N(2d)}$
3.37	1.447(18)	1.358(14)	1.351(17)	1.483(31)
3.36	1.484(31)	1.442(28)	1.401(27)	1.399(30)

Table 3.18 Bond lengths for the aromatic carbon-nitrogen atoms in complexes 3.36 and 3.37. (Å).

The different conformation of the 28-membered ligand in 3.37 gives a much greater Cul-Cu2 separation (5.7 Å) than in 3.36 (2.44 Å), and consequently is not expected to show any direct interaction. In the final refinement of this structure, the two atoms C(9c) and C(9d) were found to have a bond length of approximately 1.4 Å. A bond this short suggested that dehydrogenation had occurred. A complex with this formulation (3.37) would be a reasonable product from the reaction of the ligand H_4 cyendimer (3.4) with the biscopper(I) salt and dioxygen (scheme 3.17). The reaction pathways shown in scheme 3.17 involves the formation of a dioxygen adduct of a biscopper(I) complex 3.48, followed by dehydrogenation of the ethane bridge (C(9c)-C(9d)) and semideprotonation of the anilino hydrogens to give the biscopper(II) complex plus two moles of water (one is coordinated to Cul).

3.37

11105

51 (V) 23

11111

The cond of a condition of

The different conformation of the 28-membered ligand in 3.37 gives a much greater Cul-Cu2 separation (5.7 Å) than in 3.36 (2.44 Å), and consequently is not expected to show any direct interaction. In the final refinement of this structure, the two atoms C(9c) and C(9d) were found to have a bond length of approximately 1.4 Å. A bond this short suggested that dehydrogenation had occurred. A complex with this formulation (3.37) would be a reasonable product from the reaction of the ligand H_4 cyendimer (3.4) with the biscopper(I) salt and dioxygen (scheme 3.17). The reaction pathways shown in scheme 3.17 involves the formation of a dioxygen adduct of a biscopper(I) complex 3.48, followed by dehydrogenation of the ethane bridge (C(9c)-C(9d)) and semideprotonation of the anilino hydrogens to give the biscopper(II) complex plus two moles of water (one is coordinated to Cul).

111102

10000

1.15 113

101 Ed

1111152

1111.64

1 1 44

142

11 508

=0.X 30

- 0512

5.000 mm 0.00

is burry and

202 1.04

Milleouri III

11 3002

Table 3.11

TE.C.

121

337

Scheme 3.17

Further examination of the crystallographic data for the complex 3.37 revealed high thermal parameters for both C(9c) and C(9d) atoms. It has been shown²⁹ that high thermal

102 i nevip 14 14.51 100215 10100104 wi foreid a The posts h h Ldd 101.002 binesi ... 1.1017.0g -engriol.b deby droop doigab 1000018 10107062

ethane bridge (fig 3.31), which generates during refinement a short carbon-carbon bond length. In such a situation the four carbon atoms have half occupancy and sometimes it is possible to resolve electron density maps so that the positions of the four atoms can be defined (fig 3.31).

 $O = \frac{1}{2}C$ Actual positions

y < **x**

Fig 3.31 The four carbon atoms (half occupancy) of a disordered etane bridge.

Detailed examination of the Fourier electron difference maps revealed the electron density of the two carbon atoms C(9c) and C(9d) were smeared out in the x-s plane, rather than resolved into separate peaks. In conclusion, from the structural study the presence of a double bond is unlikely but cannot be ruled out. Other physical methods such as infrared could not be interpreted in terms of one double bond, and other methods (nmr spectra and mass spectra) could not be used due to the nature of the complex. For a transient biscopper(I) complex (3.48), the conformation to form a dioxygen adduct would require the two copper(I) atoms to be separated by a distance of 3.5-6 Å³⁰. Several examples of biscopper(I) complexes have been reported recently³⁰ which have been found to react reversibly with dioxygen or carbon monoxide in the solid state (fig 3.32).

141728

SAVIE *

Butther Purther complex

0,

Fig 3.32 The dioxygen adduct of a biscopper(I) complex

A biscopper(I) complex 3.49 of a 30 membered macrocycle has been described³¹ which reacts with dioxygen (scheme 3.18) resulting in the oxidative dehydrogenation of the ligand (secondary amine groups to imines) to regenerate a biscopper(I) complex. The regenerated biscopper(I) complex 3.50 will then repeat the cycle once more, and the resulting complex is thought to have been dehydrogenated in one of the ethane bridges as shown by the appearence of an infrared band at 1642 cm⁻¹. A comparable band (1660 cm⁻¹) is present in 3.37 which suggests that dehydrogenation may have occurred for the bond C(9c)-C(9d).

possible:

10 10 202.

日本に対象

supporterer augus rever bei ser bei serer bei serer beit sere

 $(H_{2}) = (H_{2}) = (H_{$

Scheme 3.18

Karlin et al have reported³² the uptake of dioxygen by a biscopper(I) complex, resulting in hydroxylation of the ligand to produce a phenoxy-bridged biscopper(II) complex (fig 3.33).

A Discoppi basaderi gasconde blacoppin 3,30 vill basd scil basd scil basd scil

1.1 112

A dinuclear copper(II) complex of a 24 membered macrocyclic Schiff's base ligand 3.51 has been reported³³. A structure determination has shown the metal centers to be linked intramolecularly by the imidazolate anion. Each copper is 6 coordinate and is bonded to 3 nitrogen atoms of the macrocycle, and to one nitrogen of the imidazolate. Both copper atoms are also bonded to oxygen atoms of perchlorate and water in axial positions.

Biscopper(II) complex of ligand 3.51

3.51

Ligand 11

Scheme:

From the above results it is likely that the biscopper(I) complex of 3.4 would react readily with dioxygen, and strictly anaerobic conditions would be essential to isolate $[Cu_2(H_4cyendimer)]](ClO_4)_2$. The preparation was attempted under argon using carefully dried solvents, but only a green complex could be isolated, which corresponded to a dinuclear copper(II) complex (compound 3.35). The possibility of introducing a bridging ligand to stabilise the biscopper(I) complex by blocking the approach

the second of the second of the second as a don't a Schiff's base ligand 3.51 has been report STRICLARE determination has shown the metal centers to Linked by the imidandlate anion. Each copper aucamoleculer1 coord nate and is b litrogen aboms of the cycle, and to p in imidate. Both c8805er n 9n lu amos also bonded stoms are per plocate and water in arial positions. 1633

Fig 3.34 Infrared spectrum of $[Cu_2(H_4cyendimer)(CO)_x](Clo_4)_2$ and unreacted ligand $H_4cyendimer$ (see fig 3.2 for infrared spectrum of pure ligand).

1100 cm

Fig 3.35 Infrared spectrum of $[Cu_2(H_4 \text{cyendimer})(CO)_x](Clo_4)_2$

111

literature search, carbon monoxide was considered as an additional ligand to stabilise the Cu(I) center (see below).

3.5.1 Biscopper(I) - carbon monoxide adducts

Many Cu(I) complexes have been prepared which react reversibly and irreversibly with carbon monoxide³⁴. The mode of bonding³⁵ for some complexes have been shown to be terminal, although other types have been suggested, and recently the bridging mode (3.52) has been confirmed.

3.5.2 Preparation of the biscopper(I) carbon monoxide adduct of the ligand H₂cyendimer

The preparation of this compound was attepted by the slow diffusion of carbon monoxide through a suspension of $[Cu(CH_3CN)_4](ClO_4)$ in thf, followed by the addition of H_4 cyendimer to give a mole ratio of 1:2 L:Cu(I). The mixture changed from white to pale yellow, and the infrared spectrum of this material (fig 3.34, facing page) showed it to contain large quantities of unreacted ligand but with a small amount of carbon monoxide adduct ($v_{max} = 2100 \text{ cm}^{-1}$). Other solvents (dmf, dmso, acetonitrile, methanol or nitromethane) showed no improvement, but by using thf with

alb & Schiff detarrol CL COTTA 51003 01595 a moje 10159 1100 cm^{-1} $cyendimer)(CO)_{x}](Clo_{4})_{2}$ dimer (see fig 3.2 for and). I) managements 01800 2018 1003 138 1100 . 0.097 3:351 - Th-

Fig 3.37 EPR of the biscopper(I) complex [Cu₂(H₄cyendimer)- $(CO)_{\chi}$ (ClO₄)₂ after exposure to air for two weeks.

445

isolated of which the infrared spectrum showed a significant uptake of carbon monoxide had taken place (fig 3.35, facing page). Quantitative experiments revealed optimum yields when the mole ratio of L:Cu was at least 1:4. All these experiments with carbon monoxide took place at room temperature, since heating resulted in a loss of carbon monoxide to yield a green (probably Cu(II) complex) compound. Elemental analysis confirmed the formulation of the carbon monoxide adduct as [Cu₂(H₄cyendimer)(CO)_x](ClO₄)₂, but was unable to determine the amount of carbon monoxide in the complex. Attempts to monitor the weight lost due to carbon monoxide when the complex was gently heated was hampered by the complex not being completely dry therefore giving false readings, and because it was difficult to remove all the carbon monoxide from the adduct. The EPR spectrum of the complex was very weak (fig 3.36, facing page) but observable due to Cu(II) impurities. After the complex had been exposed to air for two weeks a signal 100 times as intense was obtained (fig 3.37, facing page). The positions of the central bands are very similar at g= 2.109 and 2.105, and also correspond to that shown by the triperchlorate complex 3.36 at g = 2.09.

3.6.1 Copper complexes of H12cyendimer (3.6)

The ligand H_{12} cyendimer (3.6) showed low solubility in most solvents, but formed a soluble copper(II) perchlorate complex in a mixture of chloroform/methanol. Addition of

for two weeks.

petrol induced crystallisation of $[Cu_2(H_{12}cyendimer)] - (ClO_4)_4$ scheme 3.19.

113

Scheme 3.19

17

1000 30000

101000

The structure of the ligand Hl2cyendimer has been determined (section 7.4) and the distance between the centroids of the two sets of nitrogen atoms calculated at 4.605 Å (section 3.2.6). It is possible that this distance may represent the copper(II)-copper(II) distance in the complex $[Cu_2(H_{12}cyendimer)](ClO_4)_4$, but since the conformation of the ligand may vary, there is no definite way of knowing without an X-ray structure analysis which was not possible to undertake due to the lack of suitable crystals. The magnetic properties of this complex are discussed in section 3.7.

<u>3.6.2 Copper complexes of large ring macrocycles (30 and 36 membered ring).</u>

It was shown (this chapter) that the 28 membered ring H_4 cyendimer (3.4) and H_{12} cyendimer (3.6) were capable of coordinating two copper atoms. The larger ring macrocycles

by increasing the bridging distance between the two N_4 donor sets (fig 3.38).

 $R = -CH_2CHOHCH_2 - (3.7)$ $R = -(CH_2)_6 - (3.8)$

1.20

いいの文書を務け

00152005

Fig 3.38 Schematic diagrams of 30 and 36 membered rings.

<u>3.6.2.1</u> <u>Copper(II)</u> <u>complexes of the reduced liqands</u> <u>H₁₂cyprodimer (3.42) and H₁₂cyhexdimer (3.43)</u>

The very low solubility of the 30- and 36- membered octa-aza macrocycles (3.42 and 3.43) presented problems in forming copper complexes. Soxhlet extraction of the ligand into a solution of copper(II) perchlorate in a highly polar solvent (pyridine or dmf) for protracted periods did not produce a colour change which would have indicated a reaction between the ligand and copper(II) salt. The reduced ligands were not investigated any further for these reasons.

<u>3.6.2.2</u> <u>Copper(II)</u> <u>complexes</u> of the <u>tetraimine</u> liquids <u> H_4 cyprodimer</u> (3.7) and <u> H_4 cyhexdimer</u> (3.8)

These tetraimine ligands showed a greater solubility in most solvents than their reduced analogues. Although a green

attempt to induce precipitation of the copper(II) complex resulted in recovery of the ligand. It has been reported that certain complexes cannot be prepared in the presence of water. It is possible that the water may influence the thermodymamic stability of the copper(II) complex and it therefore becomes necessary to remove all traces of water before the copper complex can be isolated. To overcome these problems two approaches can be made.

1) All solvents and starting materials can be vigourously dried.

2) A dehydrating solvent such as triethylorthoformate³⁶ or 2,2-dimethoxypropane³⁷ must be used.

The latter method was attempted due to the solubility of both the copper(II) perchlorate and the ligand in the triethylorthoformate (teof). Triethylorthoformate will react with water according to the following equation:

 $(C_{2}H_{5}O)_{3}CH + H_{2}O \longrightarrow 2C_{2}H_{5}OH + C_{2}H_{5}OOCH$

0.000

5.5.0012

- - - CT224

216

Both the ligands (3.7 and 3.8) reacted with copper(II) perchlorate in heated triethylorthoformate (200°C) to give high yields of a dinuclear copper(II) complex. The yield was almost 100% based on a formlation as the tetraperchlorate complexes, which was confirmed by elemental analysis (table 3.9). The perchlorate complexes of both ligands were insoluble in most solvents and could not be recrystallised. On heating in dmf, dissociation occurred

copper(II) acetate, or by neutralisation of the perchlorate complexes with a base, as had been found for other systems (section 3.3.2). The magnetic properties are discussed below.

Magnetic data. 3.7.1

The copper(II) ion has one unpaired electron and will thus be expected to give rise to a magnetic moment close to the spin-only value of 1.73 Bohr Magnetons (BM). For biscopper(II) complexes there are at least two types of copper-copper interaction which may occur to give an abnormal magnetic moment.

1) Direct interaction³⁸.

1.1.1.1

100.00

1.13.82

In traighter

both .:

Compounds having this type of interaction have two or more copper(II) ions in close proximity, and a pairing of spins on the copper atoms by direct overlap of the metal orbitals containing the unpaired electrons gives rise to a subnormal magnetic moment.

2) Superexchange interaction 39 .

1000

The copper(II) compounds belonging to this category usually have a larger copper-copper distance than those with direct interaction, and the coupling of the spins takes place using orbitals on one or more atoms in a bridging ligand.

Fig 3.39 Magnetic data for the copper(II) complexes of H_2 cyen and H_6 cyen

Car I and a car in the second s

3.7.2 Mononuclear copper(II) complexes.

In the series of copper(II) complexes discussed in this chapter, the mononuclear complexes will be expected to show normal Curie Weiss behaviour which is dependent on a linear relationship between temperature and the reciprocal of the magnetic susceptibility. Results for the copper(II) complexes of H₂cyen and H₆cyen are given in fig 3.39, facing page. The magnetic moments for these three complexes are close to the expected value of 1.73 BM and they show normal Curie Wiess behaviour (see figure 3.39). Anomalously low values would only be expected if there were short intermolecular contact distances between copper atoms, or superexchange interaction in which a copper atom makes a close contact with a neighbouring ligand atom.

3.7.3 Dinuclear copper complexes.

30

0

40

40

45

ъ

50

Init.

0.0 805

°K 30

111110

50

The dinuclear copper complexes discussed in this chapter are expected to be capable of showing direct copper-copper interactions, because the ligands can constrain the copper atoms to lie very close together. For example, the complex [Cu(H₄cyendimer)](ClO₄)₃ (3.36), the particularly short Cu-Cu distance (2.444 Å) was due to the "twisted" conformation of the ligand (see section 3.2.6) which has also been found³ in the related free ligand H₄cyprodimer (3.7).

The variable temperature magnetic measurements are

compared to the expected value of 1.73 BM for one copper(II) atom per molecule. The slight increase in the magnetic moment as the temperature decreases is suggestive of a triplet ground state molecule resulting from a ferromagnetic interaction between the two copper(II) atoms in the dimer.

The last biscopper(II) complex to be considered in this chapter is $[Cu_2(H_{12}cyendimer)](ClO_4)_4$. The ligand $H_{12}cyendimer$ is more flexible (section 3.2.6) and would be expected to allow greater copper-copper separations than that found in the related complex $[Cu(H_4cyendimer)](ClO_4)_4$ (3.35). As expected, the magnetic data for $[Cu_2(H_{12}cyen$ $dimer)](ClO_4)_4$ does show normal Curie Weiss behaviour and a $\mu \text{ eff}$ of ca. 1.8 BM per copper(II) atom (fig 3.41), thus confirming the absence of direct or superexchange interaction between the copper(II) atoms.

60

36

48

1154

0.010.02

X

References.

132

48.

15

0.0

- Owston, P.G., Peters, R., Tasker, P.A., Trotter, J. J. C. S. 1 Chem. Comm. 1980, 1218.
- 2 Green, M., Smith, J. and Tasker, P.A. Inorg. Chim. Acta. 1971, 5, 17.
- 3 Dancey, K.P., Henrick, K., Judd, P.M., Owston, P.G., Peters,R., Tasker,P.A., Dell,A., Turner,R.W. J. Am. <u>Chem. Soc.</u> 1981, 103, 4952.
- 4 Peters.R. Ph.D. Thesis The Polytechnic of North London 1982.
- 5 Reeves, R.L. in "The Chemistry of the Carbonyl Group" ed. Patai.S. Interscience, London, 1966, p601.
- 6 Nelson, S.M. Pure. App. Chem. 1980, 52, 2461.
- 7 (a) Drew, M.G.B., Rodgers, A., McCann, M., Nelson, S.M. J. <u>Chem. Soc. Chem. Comm.</u> 1978, 415. (b) Drew, M.G.B., Knox, C.V., Nelson, S.M. J. C. S. Dalton. Trans. 1980, 942. (c) Nelson, S.M., McCann, M., Stevenson, C., Drew, M.G.B. J. C. S. Dalton. Trans. 1979, 1477.
- 8 Barton, D.H.R. in "Topics in Stereochemistry" ed. Allinger, N.L., Eliel, E.L. 1971, 6.
- Hendrickson. Cram. Hammond. in <u>"Organic</u> Chemistry" 9 McGraw Hill series. 1970, 3, 468.
- 10 Hendrickson. Cram. Hammond. in <u>"Organic</u> Chemistry" McGraw Hill series. 1970, 3, 59.
- 11 'XANADU' DEC10 program. The Polytecnic of North London.
- 12 Newman, M.S. in "Steric Effects in Organic Chemistry" John Wiley-Sons, London, 1956.

- 14 Losman, D., Englehardt, L.M., Green, M. <u>Inorg. Nucl. Chem.</u> Lett. 1973, 9, 791.
- 15 Drew, M.G., Cabral, J.D.O., Cabral, M., Fernanda, E., Ferida, S., Nelson, S.M. J. Chem. Soc. Chem. Comm. 1979, 22, 1033.
- 16 Nelson, S.M. Esho, F.S., Drew, M.G.B. <u>J. Chem. Soc. Chem.</u> Comm. 1979, 22, 1035.
- 17 Robin, M.B., Day, P. <u>Adv. Inorg. Chem. Radiochem.</u> 1967, 102, 47.
- 18 Beinert, H., Griffiths, D.E., Wharton, D.C., Saus, R.H. J. Biol. Chem. 1962, 237.
- 19 Sigwart, C., Hemmerich, P., Spence, J.T. <u>Inorg.</u> <u>Chem.</u> 1968, 7, 2545.

0.03

TOTAL D.C.

TAHAX! LL

CYAN DE

1.04

L Grant

NHOT.

- 20 Drew, M.G.B., McCann, M., Nelson, S.M. J. Chem. Soc. Dalton. Trans. 1981, 1868 and ref therein.
- 21 (a) Musker.W.K., Olmstead,M.M., Kessler,R.M., Murphey.M.B., Neagley,C.H., Roush,P.B., Hill,N.L., Wolford,T.L., Hope,H., Delker,G., Swanson,K., Gorewith,B.V. J. Am. Chem. Soc. 1980, 102, 1225. (b) Himes,V.L., Mighell,A.D., Siedele,A.R. J. Am. Chem. Soc. 1981, 103, 211.
- 22 Jarvis, J.A., Kilbourne, B.T., Pearce, R., Lappert, M.L. J. Chem. Soc. Chem. Comm. 1973, 475.
- 23 Corbett, M., Hoskins, B.F., McLeod, N.J., O'day, B.P. <u>Aust.</u> J. <u>Chem.</u> 1975, 28, 2377.
- 24 Balchelder, F.W., Raeuchle, R.F. Acta. Cryst. 1954, 7, 464.
- 25 Sadler, P.J. Inorg Perspectives in Biology and Medicine.

- 26 DeCourcy, J.S., Waters, T.N., Curtis, N.F. J. Chem. Soc. Chem. Comm. 1977, 572.
- 27 Guss, J.M., Mason, R., Sotofte, I., Koten, G.V., Noltes, J.G. J. Chem. Soc. Chem. Comm. 1977, 446.

12

101

110.0

100 28

CINE AS

1.11.6

- 1L L.L.

- 28 Dancey, K.P., Tasker, P.A., Price, R., Hatfield, W.E., Brower, D.C. J. Chem. Soc. Chem. Comm. 1980, 1248.
- 29 Griggs, C., Hasan, M., Mathews, R.W., Tasker, P.A. <u>Inorg.</u> <u>Chim. acta.</u> 1977, 25, L29.
- 30 Bulkowski, J.E., Burk, P.L., Ludmann, M.F., Osborn, J.A. J. Chem. Soc. Chem. Comm. 1977, 498.
- 31 Burnett, M.G., McKee, V., Nelson, S.M., Drew, M.G.B. <u>J.</u> <u>Chem. Soc. Chem. Comm.</u> 1980, 829.
- 32 Karlin, D.K., Dahlstrom, P.L., Cozelle, S.N., Sceusey, P.M., Zubieta, S. J. Chem. Soc. Chem. Comm. 1981, 881.
- 33 Drew, M.G.B., Cairns, C., Lavery, A., Nelson, S.M. J. Chem. Soc. Chem. Comm. 1980, 1122.
- 34 Kitagawa, S., Munakala, M. <u>Inorg.</u> Chem. 1981, 20, 2261.
- 35 Pasquali, M., Floriani, C., Gaelani-Manfredotti, A., Guastini, C. J. Am. Chem. Soc. 1981, 103, 185.
- 36 Van Leewen, P.W.N.M., Groeneveld, W.V. <u>Inorg. Nucl. Chem.</u> <u>Lett.</u> 1967, 3, 145.
- 37 Starke, K. J. <u>Inorg. Nucl. Chem. 1959, 11, 77.</u>
- 38 Kato,M., Jonassen,H.B., Panning,J.C. Chem. Rev. 1964, 64, 99.
- <u>39</u> Hatfield.W.E. ACS. Symp. Ser. <u>1974, 5, 108.</u>

	<u>Chapter</u> 4	Page
4.1	Mono- and dinucleating asa-macrocycles	
	containing 1,2-diaminobensene units	126
4.1.1	Introduction: Mononucleating aza macrocycles	126
4.1.2	Introduction: Dinucleating-aza macrocycles	128
4.2.1	Results and discussion for mononucleating aza	
	macrocycles	129
4.2.2	The Chemistry of H ₂ cyph	133
4.2.3	Discussion	134
4.2.4	Other products from the preparation of	
	[Cu(cyph)] (4.9) by method 1	138
4.2.5	Reactivity of the ethane bridge in [Cu(cyph)]	143
4.2.6	Preparation of [Cu(cyphO ₂)]	146
4.2.7	The X-ray Structure of [Cu(cyphX)]	147
4.2.8	A detailed examination of the two structures	
	of [Cu(cyphX)] and [Cu(cyphO ₂)]	151
4.2.9	Further reactions of [Cu(cyph)]	153
4.3.1	Results and discussion for dinucleating aza	
	Macrocycles	155
4.3.2	The reactions of 1,2,4,5-tetraaminobenzene-	
	tetrahydrochloride (TAB.4HCl, 4.31)	156
4.3.3	Attempted Reduction of H ₄ bicyphen	158
4.3.4	The reaction of 1,2,4,5-tetraaminocyclo-	
	hexane (TAC, 4.29)	159

12

- 71

 $\to \sigma - \mathcal{O}$

V: 0.0

1111 72

162

4.3.6	Reduction of H ₄ bicybenz	165
4.4.1	Preparation of copper complexes of the	
	dinucleating aza ligands	167
4.4.2	Preparation of mononuclear copper(II)	
	complexes of H ₄ bicyphen (4.8)	169
4.4.3	Preparation of dinuclear copper(II) complexes	2 - 4
	of H ₄ bicyphen	171
4.4.4	Copper(II) Complexes of H ₄ bicybenz	174
4.4.5	Conclusions concerning the methods of	
	the preparation of copper complexes	176
4.4.6	Properties of the copper(II) complexes of the	
	dinucleating aza ligands	177
4.5	Magnetic data for the copper(II) complexes	180
	References	185
	~	

<u>4.1 Mono- and dinucleating aza-macrocycles</u> containing 1,2diaminobenzene units.

The dinucleating ligands discussed in this chapter correspond to the fused and mono bridged bisquadridentate types III and I respectively (chapter 2).

4.1.1 Introduction: Mononucleating aza macrocycles.

The tetra-asa macrocycles in this section are restricted to those with an aromatic bridging group between the imine nitrogen atoms (scheme 4.1). These ligands can be prepared by condensation of 4.4 and 4.5 in the presence of a catalyst such as sinc(II) acetate or PTSA². Prior to the commencement of this project two free ligands had been reported¹. Scheme 4.1 lists the free ligands independently prepared during this thesis².

1.8

1274

4.1Rl = R2 = H1a4.2 $Rl = R2 = CH_3$ 1b4.3aRl = H, R2 = Cl24.3bRl = H, $R2 = NO_2$ 24.3cRl = H, $R2 = CH_3$ 24.3cRl = H, $R2 = CH_3$ 24.3dRl = H, R2 = COOH2

Scheme 4.1 Tetra-aza macrocycles

Many metal complexes (mainly Cu(II), Co(II) and Ni(II))

n	x	Rl	<u>R2</u>
2	H	H	H
2	NO ₂	Me	H
3	н	Me	Me
3	NO ₂	-C4H	4-
3	NO2	CL	H
	•	NO ₂	H

Scheme 4.2 Template syntheses of macrocyclic metal complexes^{1b}.

A high proportion of all the possible permutations of Ni(II), Co(II) and Cu(II) complexes shown in scheme 4.2 have been prepared by Black and co-workers^{1b}. These in situ reactions have been termed³ 'template reactions' and result in the neutral metal complex 4.6 formed after loss of the anilino protons. The free ligands for the complexes shown in

1100 1

010

- PELLEP

19.03

s werlo &

0.XN

4.1.2 Introduction: Dinucleating-aza macrocycles.

This class of ligand could be prepared from the condensation of the dialdehyde (4.7) with a suitable tetraamino precursor e.g. 1,2,4,5-tetraaminobensene tetrahydrochloride (TAB.4HCl) (4.28) (scheme 4.3).

Scheme 4.3 Reported synthesis of H_4 bicyphen (4.8)

A preliminary communication⁴ reported the synthesis of H_4 bicyphen (4.8). The reaction involved partial (90 %) neutralisation of the TAB.4HCl with sodium methoxide solution followed by condensation with C_2 -dialdehyde (4.7) in refluxing methanol. A yield of 28 % was recorded. Problems with solubility were encountered, and the dinuclear Cu(II) complex was prepared by extraction of the ligand from a Soxhlet thimble by refluxing pyridine from a solution of copper(II) acetate monohydrate (in pyridine).

0.0

A RIGO HILL HEAL O DEAL O LO EDO D ALLIND (

was to involatile to give an eims.

4.2.1 Results and discussion for mononucleating aza macrocycles.

The mononuclear analogue for all the dinucleating ligands considered in this chapter is H_2 cyph (4.1). This ligand was prepared (section 8) along with the copper(II) (neutral 4.9 and dicationic 4.10) complexes (scheme 4.4, table 4.1). The reason for preparing these Cu(II) complexes was to investigate their stability to oxidation before testing them or their biscopper(II) analogues as oxidation catalysts, and to compare their physical and spectral properties with those of the related dinuclear systems. Reduction of the imine links in 4.1 gives the tetra-asa macrocycle 4.11 which contains only secondary type nitrogen atoms 4.11. Table 4.1 contains analytical data for the ligands and their copper complexes, and other closely related compounds which are discussed later in this chapter.

10.010.00

000.78

Nedital Nedital Nedital Alqued () Nelution

was to involatile to give an eims.

4.2.1 Results and discussion for mononucleating aza macrocycles.

The mononuclear analogue for all the dinucleating ligands considered in this chapter is H_2cyph (4.1). This ligand was prepared (section 8) along with the copper(II) (neutral 4.9 and dicationic 4.10) complexes (scheme 4.4, table 4.1). The reason for preparing these Cu(II) complexes was to investigate their stability to oxidation before testing them or their biscopper(II) analogues as oxidation catalysts, and to compare their physical and spectral properties with those of the related dinuclear systems. Reduction of the imine links in 4.1 gives the tetra-aza macrocycle 4.11 which contains only secondary type nitrogen atoms 4.11. Table 4.1 contains analytical data for the ligands and their copper complexes, and other closely related compounds which are discussed later in this chapter.

intervent
i

The second s

Scheme 4.4 Mononucleating ligands and their copper(II)

complexes.

Compound	<u>C</u> 8	Ht	Nt	Cut
$H_2 cyph (4.1)$	77.5	6.0	16.4	
(Calc. for $C_{22}H_{20}N_4$)	(77.6)	(5.9)	(16.5)	
[Cu(Cyph)] (4.9)	66.0	4.5	13.8	15.8
(Calc. for $CuC_{22}H_{18}N_4$)	(65.7)	(4.5)	(13.9)	(15.8)
$[Cu(H_2cyph)](ClO_4)_2$ (4.10)	44.2	3.4	9.6	10.9
(Calc. for $CuC_{22}H_{20}N_4Cl_2O_8$)	(43.8)	(3.3)	(9.3)	(10.5)
$H_6 cyph$ (4.11)	76.6	7.0	16.3	
(Calc. for $C_{22}H_{24}N_4$)	(76.7)	(7.0)	(16.3)	
[Cu(H ₆ cyph)](ClO ₄) ₂ (4.12)	43.4	4.0	9.2	10.4
(Calc. for CuC ₂₂ H ₂₄ N ₄ Cl ₂ O ₈)	(43.5)	(4.0)	(9.2)	(10.5)
$[Cu(H_2cyph)(OMe)_2]$ (4.18)	62.2	4.8	12.1	14.0
(Calc. for $CuC_{24}H_{22}N_4O_2$)	(62.4)	(4.8)	(12.1)	(13.8)
[Cu(cyphX)] (4.28)	60.9	3.4	13.4	
(Calc. for $CuC_{22}H_{24}N_4O_2$)	(61.5)	(3.3)	(13.0)	

Table 4.1 Analytical data for the mononucleating ligands and their copper(II) complexes, found (calculated). The copper(II) perchlorate complex 4.10 of H₂cyph has retained the anilino protons while these have been lost in

Line.

150

1000

11033

10.00

1140

1100

11122

- 5 G R

01084

0.00

224448

112,000

protonation of the ligand. Many chelating ligands which coordinate copper(II) at medium or neutral pH, will on protonation release the copper(II), and recovery of the ligand can be achieved⁵. This is particularly useful for metal ore refining by solvent extraction.

Fig 4.1 Metal extractants⁵ marketed by Acorgee 1td (P50,P17) and Shell Chemical Company (SME 529).

The conversion from the cationic complex $[Cu(H_2cyph)](ClO_4)_2$ (4.10) to the neutral complex [Cu(cyph)] (4.9) by the addition of sodium methoxide solution (scheme 4.5) has been confirmed by solid state infrared spectra and elemental analysis (also see section 3). In contrast, the copper(II) perchlorate complex 4.13 of a 16-membered ligand QH₄ which also contains the o-amino bensylimine unit was reported⁶ to retain the anilino protons on addition of base, and only exchange of anions was effected (scheme 4.6).

Louis Ares

117

1.10.047

Scheme 4.6 Typical anionic exchange reaction.

1.783

11111

10 . 112

10011

OF DEAL

It is surprising that the neutral complex $[Cu(QH_2)]$ (4.14) was not formed by addition of base to the copper(II) perchlorate complex $[Cu(QH4)](ClO_4)_2$, since the ligand QH4 has been independently reported⁷ to give the neutral complex $[Cu(QH_2)]$ (4.14) when treated with copper(II) acetate (scheme 4.7). The deprotonated nature of the latter has recently been confirmed by an X-ray structure determination¹¹ at the Polytechnic of North London.

Scheme 4.7 Preparation of $[Cu(QH_2)]$ (4.14)

4.2.2 The Chemistry of H2cyph (4.1)

101070Q

owned wards

-10 (od)

100092

11101030300

(acing

Two methods have been reported^{1b,8} for preparing the neutral complex [Cu(cyph)] (4.9).

1). Preparation of the ligand H_2cyph (4.1) followed by copper(II) complexation⁸. A mixture of preformed ligand and copper(II) acetate in refluxing methanol or dmf gave [Cu(cyph)] (4.9) (scheme 4.4).

2) Template reaction^{1b}. A mixture of C_2 -dialdehyde (4.7), 1,2-diaminobensene and copper(II) acetate was heated in dmf or refluxing methanol to give the deprotonated copper(II)

complex (scheme 4.2). Higher yields were recorded than method 1. Both methods gave a dark red compound which was

characterised as [Cu(cyph)]. Many closely related compounds have been prepared^{1b} by method 2 (scheme 4.2). Thus in general it appears to be easier to prepare copper(II) complexes (scheme) than their free ligands. No mass spectral data were reported^{1b} for the copper(II) complexes (scheme 4.2) due to their low volatility.

4.2.3 Discussion

A number of unexpected results were obtained when [Cu(cyph)] was prepared according to methods 1 and 2. Method 1

Before recrystallisation, the crude product [Cu(cyph)] was shown by eims to contain trace amounts of oxygenated species (table 4.2). The percentage of these oxygenated species is low as the infrared spectra did not show any absorption ascribable to the carbonyl stretch (-1660 cm^{-1}). The relative abundancies of these species are not necessarily a useful guide to purity since the oxygenated species may be more volatile than [Cu(cyph)] or the ethene analogue [Cu(cyph-2H)] (4.15) (m/e = 399). The eims of a sample recrystallised from dmf showed a parent ion at m/e 399, corresponding to the complex [Cu(cyph-2H)] with a dehydrogenated ethane bridge. The colour of the compound when recrystallised from dmf varies from dark red to black, although no differences can be observed in the infrared or mass spectra to account for this. The uv/vis

784.007 1010000 The File Co 7110000 CODDOT (Cutoyo) I JEBT 15 Lunlb-E.f

willing ad

and hence the variations in colours of the solids were

attributed to the different crystalline forms.

4.15

Table 4.2 Assignment of the three highest m/e peaks in the eims of [Cu(cyph)] (crude product) from method 1.

<u>Method 2</u>

1000

2.2.070.0710

4.69

101101000

mound and

1 mlgm68

1000

dehyderco-

with minds

black, a

Later and the

The <u>in situ</u> reaction of the ligand precursors and copper(II) acetate gave a crude red powder, which showed an identical infra red and uv/vis (solution) spectra to the [Cu(cyph)] from method 1. The eims showed two molecular ions at 401 and 399 suggesting the presence of two types of parent ion (fig 4.2). A sample recrystallised from dmf gave dark red

Fig 4.2 Eims of crude [Cu(cyph)] from method 2

It is possible that dehydrogenation could occur in the mass spectrometer to give 4.15. However, the observation that both 399 and 401 (m/e) peak in the 'crude' [Cu(cyph)] from the <u>in situ</u> preparation shows that it is possible to obtain a molecular ion for [Cu(cyph)] M* = 401. Therefore it is probable that dehydrogenation occurs in the presence of dioxygen to give a more themodynamically stable product. No material isolated from method 1 showed a molecular ion corresponding to [Cu(cyph)]. Only the m/e = 399 peak and traces of oxygenated impurities were observed. Therefore it is reasonable to suggest that the thermodynamic stability of [Cu(cyph)] and the dehydrogenated analogue 4.15 may be very close, but extended periods in solution in the presence of dioxygen (see section 4.2.4) may give the dehydrogenated species. The oxidative dehydrogenation of macrocyclic

- plint

Haibur The in scetari Infra in from motio 139 sugg

co-workers⁹, using a variety of oxidising agents (oxygen, hydrogen peroxide, bromine, iodine, hexa pyridine iron(II) chloride and 2,3-dichloro-5,6-dicyano-p-benzoquinone).

Scheme 4.8 The oxidative dehydrogenation of related tetraaza macrocycles.

The successful incorporation of Cu(II) into the ligand H_2 cyph (4.1) by method 1, contrasts with the situation for the ligand H_2 cyen (4.16). It was shown (section 3.2) that copper incorporation using copper(II) acetate did not readily take place for the aliphatic bridged ligands (e.g. 4.16, method 1, scheme 4.9), whereas the template method (method 2) was effective for both types of ligand (e.g. 4.1 and 4.16, scheme 4.9).

the ministry promotion diveyor dopression to reason lot reason diceryor diceryon

11.17

14.34

111110

in high states

t by a

GYPE B

10111 Adds

*1963

C(berg

A.16, No.

1 6:11MS)

11/1 000

Scheme 4.9 Routes to deprotonated copper(II) complexes of H_2 cyen (4.16) & H_2 cyph (4.1).

* The addition of triethylamine to a mixture of H₂cyen (4.16) and copper(II) acetate in methanol resulted in partial incorporation of copper(II), but low yields and impure samples were obtained.

<u>4.2.4</u> Other products from the preparation of [Cu(cyph)] (4.9) by method 1.

The reaction between H_2 cyph (4.1) and copper(II)

or [Cu(cyph-2H)] (4.15) (with $M^* = 399$) was filtered from the reaction mixture. Secondly, after 20 h an unknown product (gold coloured needles) separated from the filtrate. From the molecular weight ($M^* = 461$, from eims measurements) and elemental analysis results, an empirical formulae of CuC₂₄H₂₂N₄O₂ was calculated. From this information the product with $M^* = 461$ could be formulated in one of several ways (fig 4.3).

Fig 4.3 Three possible formulations, each having the empirical formulae $CuC_{24}H_{22}N_4O_2$.

An accurate mass fragmentation pattern was obtained to help identify the correct assignment (table 4.3).

1 110028

* The --(4.15) ho partie ingure

4.2.4 <u>01</u>

 $C23H_{18}N_4OCu$ 429.0797 (429.0778)

399.0686 C₂₂H₁₆N₄Cu (399.0673)

Table 4.3. Accurate mass interpretation of unknown product. * The molecular ion at 461 could not be detected

4.15

The accurate mass determination was interpreted on the basis of the two structures 4.18 and 4.20. Although a complete fragmentation pattern could be proposed for 4.20, the acetate structure was not confirmed by the infrared spectrum. The alternative structure 4.18 could not be fully interpreted for the accurate mass fragmentation pattern, but other evidence would suggest this possibility cannot be ruled out. The addition of methanol to an imine function has been reported¹⁰ for a 30 membered Schiff's base macrocycle (4.22) mainly on the basis of infrared data. The unknown product cannot be formulated in a corresponding way (4.21) because the infrared spectrum did not show a N-H stretch (ca. 3300 cm⁻¹), and the molecular ion for 4.21 should be M* = 463.

4.21

WICO. WER.

1.1.1.1.1.1

1940

1415.2441

130.005

l. . . midar

Neutral complexes having methoxy substituents¹¹ (e.g. 4.19) could result from the addition of methoxide to a dehydrogenated cationic complex (scheme 4.10). In this scheme there are four possible sites for the attack of the methoxide ion, and therefore several isomers are possible. The formulations 4.18 and 4.19 are the more symmetrical possibilities. The addition of methoxide to the imine carbon creates a chiral centre and therefore each dimethoxide as geometric isomers or adduct could exist in meso or racemic forms (scheme 4.10).

Scheme 4.10 Possible isomers of a dimethoxide adduct.

A cationic tetraimine copper(II) complex (see scheme 4.11) has been shown¹¹ to undergo nucleophilic addition of the methoxide ion to give a neutral complex.

The of IN Ecour Ecour appent appent pactor bac (4.21) strate back

Scheme 4.11 Nucleophilic addition reaction of the methoxide ion to azomethine linkages.

The product (4.18) was not supported by a complete interpretation of the accurate mass fragmentation pattern (table 4.3), but can be related to other findings (section 4.2.5).

4.2.5 Reactivity of the ethane bridge in [Cu(cyph)].

The evidence presented already in the previous section suggests the ethane bridge may be dehydrogenated. Other reactions may occur, e.g. it has been reported¹² that $[Fe(cyph)CH_3CO_2]$ (4.23) when dissolved in dmf deposits crystals of the oxygenated complex 4.28. This was shown by X-ray structural analysis to have undergone oxygenation at the ethane bridge (scheme 4.12).

「あるは御殿」

in the last

Preliminary reports¹² have suggested a similar result for [Cu(cyph)] (scheme 4.13).

Scheme 4.13 Oxygenation of [Cu(cyph)].

The conditions for this oxygenation were reported¹³ tobe 5 days at 100° C in dmf. The reaction mechanism is unknown, but may involve a radical reaction between [Cu(cyph)] and dioxygen (route 1, scheme 4.14). Routes 1 and 2 (scheme 4.14) would both involve the initial reation with dioxygen to give a radical species 4.26, which may be stabilised with a copper(I) analogue 4.27. Route 2 would then explain the formation of a dehydrogenated non-radical species 4.15, corresponding to the compound [Cu(cyph-2H)]. Route 1 depicts a radical reaction to give the dioxoproduct without forming 4.15. Both routes are speculative, although the autooxidation of unsaturated molecules is well established¹⁴.

in to Telmi

二/本 小子公司出生社

A.S.A.

11.11日白田白田

001158401

Muleypyic

the later view

STOCIA (184-W)

winders add

10.5.8

-7) det

- -----

= d.0.1 ----(d)0#[DAT 5 a yroldi (and meda 1 0 0 L 0 0 Q W Mainten Juona Sw. 0.000 eit# THE LEADER

11 -1.34

4.2.6 Preparation of [Cu(cyphO₂)] (4.25)

The preparation of $[Cu(cyphO_2)]$ has been reported using two different routes 12,15 (scheme 4.15).

Scheme 4.15 Two previously reported routes to [Cu(cyph)O2].

The structure of $[Cu(cyphO_2)]$ has been determined⁷ on a crystalline sample from route 1 after recrystallisation from dimethylsulphoxide. It was reported¹³ that the infrared spectra of a sample of $[Cu(cyphO_2)]$ isolated from route 2 corresponded to the infrared spectra of a sample from route 1. When the preparation of $[Cu(cyphO_2)]$ was attempted in this work using the conditions outlined previouly for route 2, a black solid was obtained on each occasion which could not be characterised. A material closely related to $[Cu(cyphO_2)]$ which was initially labelled [Cu(cyphX)] (4.28) was obtained from an attempt to recrystallise [Cu(cyph)]

[Cu(cyph)] was dehydrogenated on recrystallisation (see section 4.2.3). The recrystallisation was attempted from dimethyl acetamide (dma) by dissolving a small sample of [Cu(cyph)] (4.9) at reflux and setting aside at room temperature. After 5 days the dark coloured solution had deposited deep burgandy coloured crystals of [Cu(cyphX)]. The few crystals obtained were compared to a sample of [Cu(cyphO₂)] (from route 1) which were a lighter colour. After a few days the surface of the crystals [Cu(cyphX)] (4.28) showed signs of decomposition. One was examined by Xray crystallograhy (section 4.2.7). The recrystallisation of [Cu(cyph)] was also made using the same conditions as above but with the exclusion of oxygen (nitrogen atmosphere). On these occasions no product was isolable. This evidence did support the proposed radical reaction between dioxygen and [Cu(cyph)] (scheme 4.14).

4.2.7 The X-ray Structure of [Cu(cyphX)] (4.28)

On the few crystals isolated from the method above, an eims and weak infrared spectra were obtained. The eims detected a molecular ion (m/e = 429) corresponding to $[Cu(cyphO_2)]$. The infrared spectrum on such a small sample was difficult to interpret, but did show a carbonyl stretch at 1660 cm⁻¹, and a spectrum similar to that of $[Cu(cyphO_2)]$ (4.25). To confirm this analysis one of the crystals of [Cu(cyphX)] recovered from dma was examined by X-ray crystallography, and a unit cell was calculated and refined

and the second of the second s

10.007

5 ch ==

11.1241.467.

CITY BC61

11111111111

1. 010359428

Minoqiae5560

L. When

a stay sldt

Stald # 48

add 00 000

[Calayoho]))

A second s

than one crystalline form. Table 4.4 compares the preliminary crystallographic data of [Cu(cyphO₂)] and [Cu(cyphX)].

UNIT	<u>CELL</u>	DATA
------	-------------	------

	[Cu(cyphO ₂)]	[Cu(cyphX)]
a /Å	14.920	15.088
Ь /Å	15.918	16.034
c /Å	7.224	7.176
alpha = gamma	90.000 ⁰	90.0000
beta	95.031°	96.615 ⁰
Vol X ³	1709.06	1724.47

Table 4.4 Refined unit cell data for [Cu(cyphO₂)] and [Cu(cyphX)].

The difference between the two sets of cell parameters was significant, and therefore the full structure determination was undertaken to establish the nature of the differences between the two materials. Due to the similarity of the cell parameters for both dioxocompounds (table 4.4), the structure of [Cu(cyphX)] was solved by using the same fractional coordinates of the non-hydrogen atoms (except oxygen) as those found for [Cu(cyphO₂)]. A difference Fourier map revealed the oxygen atoms in very similar positions to those found for [Cu(cyphO₂)]. The molecular configurations were very similar (fig 4.4), but the main difference was that in [Cu(cyphX)] atoms generally showed high thermal parameters, in particular the oxygen atom O(1A)

ten i -Len i -Len i -Len i -Len i -Len -

011084

V JINGLE

1/2/021

Linging 1

100340

C1518

11 10

inchal

vitas and debected (cuplin vas dicijo) (cu(cuplin at 1960 = (cu(cuplin)) (cu(cuplin))

Fig 4.4 Ortep diagram of [Cu(cyphO₂)] (4.25) and [Cu(cyphX)] (4.28) showing thermal ellipsoids at 50 % probability level.

[Cu(cyphX)]

	<u>U11</u>	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>U13</u>	<u>U12</u>
0(1A)	0.120(5)	0.116(5)	0.189(7)	-0.030(5)	-0.004(5)	0.007(4)
O(1B)	0.051(2)	0.061(3)	0.152(5)	-0.004(3)	-0.032(3)	0.011(2)

[Cu(cyphO₂)]

	<u>U11</u>	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>U13</u>	<u>U12</u>
0(1A)	0.039(1)	0.069(1)	0.093(2)	-0.020(1)	-0.017(1)	0.001(1)
O(1B)	0.044(1)	0.053(1)	0.143(2)	-0.009(1)	-0.037(1)	0.012(1)

Table 4.5 Anisotropic thermal parameters for oxygen atoms of the complexes [Cu(cyphO₂)] and [Cu(cyphX)].

The high thermal parameters could be due to:

1) a monooxygenated form of [Cu(cyph)], which showed a statistical disorder of the oxygen site in the ethane

pretting (Cutcy(M)

e // alpha bata val k rabla

115

deturer deturer differen eff the orr the block fraction conficter postiguesel difference high thermal

evidence for the existence of this incompletely oxygenated form (fig 4.5) or incompletely dehydrogenated form (fig 4.6) could be found from infrared or eims spectra.

Fig 4.5 Statistical disorder of a mono-oxygenated ethane bridge in [Cu(cyphX)].

Fig 4.6 A oxo-hydroxy species of [Cu(cyphX)].

A thorough examination of the intermolecular contact distances in the solid state structures revealed some minor differences in the packing arrangement of [Cu(cyphX)]compared with $[Cu(cyphO_2)]$.

LAPS: 6.1 014 I SU TALID. 18110 WED, U. LAIMP 110.01 (61)0 TALLO 4.5 The high th-

a (1) a =

<u>4.2.8 A detailed examination of the two structures of [Cu(cvphX)] and [Cu(cyphO₂)].</u>

The intense colour of the two compounds [Cu(cyphX)] and $[Cu(cyphO_2)]$ will be due to the charge transfer between the copper(II) ion and the coordinated ligand. A close examination of the geometry about the copper atoms in both complexes, revealed a more tetrahedrally distorted arrangement of nitrogen atoms. Fig 4.7 depicts the distortion in milliangstroms from the least squares plane of the four nitrogen atoms.

Fig 4.7 The geometry about the copper atom in the complexes [Cu(cyphX)] and [Cu(cyphO₂)]. Values (in milliangstroms) refer to the separation of the atoms from the best least squares plane of the four coordinating nitrogen atoms.

The intermolecular contact distances of the two structures $[Cu(cyphO_2)]$ and [Cu(cyphX)] showed a number of significant differences. The extent of these differences varied between 0 to 0.43 Å. The differences are too small to be visually observed in the packing diagram, and therefore a

mures hale

人 人名英捷

A thetanoos of differences of differences of the second of

	[Cu(cyphX)] (4.28)	[Cu(cyphO ₂)] (4.25)
C(11A)N(2A)*	5.34	5.14
O(1B)N(1A)*	4.72	4.51
C(2A)N(2B)*	4.42	4.12
C(3A)C(1A)*	5.22	5.02
C(4A)C(1A)*	5.42	5.21
C(5A)C(1A)*	4.87	4.66
C(2B)C(3A)*	5.13	4.71
C(1B)C(11A)*	4.80	4.60
O(1B)C(11A)*	4.79	4.53
O(1B)C(10A)*	4.25	4.04
O(1A)C(11B)*	4.12	3.92
O(1B)C(11B)*	5.42	5.19
*(Symmetry transformation	n 1-x, 1-y, 1-s)	
Table 4.6 Intermole	cular Contact Diet	(8)

The experimental procedure for obtaining crystals of [Cu(cyphX)] was optimised (section 8) and further crystals showing the same intense colour were obtained. One of these was examined by X-ray crystallography and found to have the unit cell parameters previously found for the crystal [Cu(cyphX)] which was used in the structure determination above. The availability of larger quantities of crystals allowed a more intense infrared spectrum to be obtained (section 8). This was compared to the spectrum of $[Cu(cyphO_2)]$ prepared by Peters¹³ and found to be identical. The high thermal parameters of the oxygen atoms O(1A) could be due to a small percentage of hydroxy compound (Fig 4.6) distributed statistically throughout the lattice of $[Cu(cyphO_2)]$. However, the lack of any O-H stretch in the infrared spectra suggests that only a very small percentage of this spectra.

The foier (Culoyind))) alfferences 0 to 0.41 J observed

24.6.

1.1.4

TTYSE H

1111423

100000

119.005

11092.24

in 1 methods.

Jol att

CLAUMERS

4.2.9 Further reactions of [Cu(cyph)].

The formation of $[Cu(cyph)(OMe)_2]$ (section 4.2.4) would suggest that the nucleophilic attack by methoxide has taken place on the imine bonds of a dehydrogenated complex 4.29 (scheme 4.16) This nucleophilic succeptibility of 4.29 has been further confirmed by the oxygenation to give [Cu(cyphX)] (4.28). The preparation of $[Cu(cyph)(OMe)_2]$ (4.18) occurred in a solvent mixture containing methanol. This suggests that other alcohols may give rise to related compounds (scheme 4.16).

Scheme 4.16 Alcohol addition to the azomethine links in the complex 4.29

No addition reactions leading to products analogous $to[Cucyph(OMe)_2)]$ (4.18) were detected when the reaction of H_2cyph with copper(II) acetate was carried out in the presence of ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, or ethan-1,2-diol as prepared by the route described in section 4.2.4. The solvent ethan-1,2-diol was tried in an attempt to form the cyclised product 4.30 (scheme 4.17). This would have confirmed the addition of

(Culeypu) Annwith (Culeypu) Annwith (Culeypu) (Coleypu) (Coleypu)

TASID

(A2)5 (A2)5

1115

1.5192

· 0210

1.111.112

1.1 million

crystals of a dioxocompound were formed. A single crystal was examined by X-ray crystallography for cell parameters, and was found to have a unit cell corresponding to that of the [Cu(cyphO₂)] (4.25) complex. Scheme 4.18 outlines the routes to both crystalline forms of the dioxo complex.

4.30

V.S.A 1000 A thought 22 110 034/g doed. 0.1005/#01 10 18 E.M. AVENUE BIOT - hundigetee

bolcusyp)(()) al bedlypash in al bolts

the LCU F

Nichesu 4

IT.A. nicestal

Conclusion

The solution chemistry of [Cu(cyph)] (4.9) is extensive and has shown many interesting features which were unexpected. The deprotonation of the perchlorate complex $[Cu(H_2cyph)](ClO_4)_2$ to give [Cu(cyph)], leads to a novel synthetic route for the more difficult to prepare neutral biscopper(II) complexes of the bicyclic ligands described later in this chapter. The side reactions found when preparing [Cu(cyph)], or recrystallisation of [Cu(cyph)] from dma has proved that the chemistry is by no means simple, and care must be taken to prevent leaving any copper(II) complexes for extended periods in solution. These unexpected results are not necessarily limited to the copper(II) complexes as other oxygenation reactions have been reported for related Ni(II)¹⁶ and Fe(II)¹² complexes. Under conditions where the copper(II) complexes of this type are to be considered as catalysts for oxidative reactions it is probable that the complex would be first converted to oxygenated or dehydrogenated forms, and it would be necessary that these latter forms should show catalytic activity.

4.3.1 Results and discussion for dinucleating ara Macrocycles

Two tetra-amino compounds are commercially available

organics division, and is not commercially available (table 4.7). The two compounds TAC and TAB.4HCl on reaction (2:1 condensation) with C_2 -dialdehyde could give bicyclic ligands with a "fused" bridge (see type III, section 2) whereas the DAB on condensation with C_2 -dialdehyde would give rise to a linked bicyclic ligand (see type I, section 2).

4.3.2 The reactions of 1,2,4,5-tetraaminobenzenetetrahydrochloride (TAB.4HCl, 4.31).

As discussed earlier (section 4.1.2) a preliminary communication⁴ described the synthesis of H_4 bicyphen (4.8, scheme 4.19) but recorded low yields of 28 %.

- u/Ione5 21-1. To LAN bas 0.0000 172(0):531 Jud. Jaya 11 Rendervald 11 LATAS DIXEGNIE 010010 Copper ci i i Unexpecter. 1.1.1.4400 bes naed Under care 03 MTM

utgAi 4.71. The condensation with a lin 266 or lin (black in lin

Table 4 1

La seneros Destros NH The published method was repeated, but found to give little if any of the product H_4 bicyphen (4.8). The reason was thought to be due to problems associated with the neutralisation of TAB.4HCl (4.31). This step involved the addition of sodium methoxide solution to the TAB.4HCl to partially neutralise (-90 %) the hydrochloride salt and to allow the remaining protons to catalyse the condensation reaction. Unfortunately, once neutralised the TAB is very sensitive to oxygen and forms a mixture of highly coloured products. The reactivity of TAB and other polyamines with various carboxylic acids has been well documented by Marvel¹⁷ (scheme 4.20).

Scheme 4.20 Polymerisation of TAB.

The method for preparation of H_4 bicyphen was improved by an <u>in situ</u> neutralisation of the hydrochloride salt, whereby small aliquots of TAB.4HCl were added to a stirred suspension of C_2 -dialdehyde (4.7) in ethanol (under nitrogen). After each addition a red colour was produced, which was discharged by the dropwise addition of base (sodium methoxide). Refluxing for 20 h followed by

330^oC(d)), but was stable enough for the molecular ion to be detected by eims and fdms (m/e = 602, section 8). The copper complexes of this ligand are discussed in section 4.4.1.

Relatively stable non-cyclic dinucleating ligands have been reported¹⁸ by reaction of TAB or DAB with the ethoxymethylene derivative of acetylacetone (scheme 4.21).

Scheme 4.21 Other reactions with TAB and DAB.

4.3.3 Attempted Reduction of Habicyphen (scheme 4.22).

It was shown earlier in this section that reaction of BH_3/thf with the compound H_2cyph (4.1) gave the reduced tetraamine H6cyph (4.11). One of the main problems when attempting to form copper(II) complexes from the ligand H₄bicyphen was the low solubility of the ligand and the copper complex. By reduction with BH3/thf to give H₁₂bicyphen (4.34), it was hoped to form a more soluble ligand (scheme 4.22).

158

+12326

(1) (14)

172.000

マーマ人も意識

10 1289

-11 Vo21#

101110180

11114998

- - - Drowing

11112104

LP13AH

1 1 1 1 1 1 1 5 4

The motion

Dist Tinte

X . (Ameomatin

DAW SELEW

is spiller

- 7.5 T H

Scheme 4.22 Proposed synthesis of H12bicyphen (4.34).

It was predicted that reduction of H_4 bicyphen (4.8) would give a product as air sensitive as 1,2,4,5-tetraaminobenzene (TAB), and therefore all preparations were attempted in a glove box flushed with nitrogen. A solution of BH_3/thf was added to solid H_4 bicyphen and gently heated. The reaction mixture darkened and thick brown fumes fiercely errupted, depositing a film of dust on the surrounding apparatus. The remaining solution was clear and no product was isolable. A similar observation has been reported¹⁹ for a sodium borohydride reduction in dmf, where a runaway reaction occurred after a temperature dependent induction period of 45 min (90°C) to 45 h (62°C). No further attempts to prepare the reduced ligand H_{12} bicyphen were made on the assumption that the product would be too unstable to handle.

4.3.4 The reaction of 1.2.4.5-tetra-aminocyclohexane (TAC, 4.29).

しいつの自己的 Babooting . **** Ignos 「マガニム日」 ill daad (zodžá

Li unedol

いすすん

150.00

114 121 tite lite/cHE i colmaszioz attomptiog Habinyphen v

A sample of unknown isomeric distribution of the compound

TAC (4.32) was provided by the sponsoring establishment (I.C.I. Organics Division). No reactions were identified

between TAC and C2-dialdehyde either with or without the presence of copper(II) acetate. A variety of solvents (methanol, ethanol, thf and dmf) and catalysts (zinc(II) acetate and PTSA) were used but in each case the precursor C2-dialdehyde was recovered. Attempts to obtain the biscopper(II) complex via a template method also failed, resulting in the recovery of the precursor C_2 -dialdehyde from a highly coloured solution thought to be due to the oxidation of the tetraamine. The reason for TAC failing to react with C2-dialdehyde may be due to the conformation of the amino substituents. It has been shown²⁰ that for the formation of a chelate ring from 1,2-diaminoethane a gauche conformation was the preferred arrangement (see 4.35). 1,2diaminocyclohexane has two geometric isomers cis and trans, and only the trans can give the equivalent to the gauche form of 1,2-diamino ethane when it has the two amino substituents both in equatorial positions (although this would be in equilibrium with the bis axial form fig 4.8). For formation of large rings on condensation with C_2 dialdehyde, models show that similar considerations concerning the isomeric forms of cyclohexane apply. Since TAC has 4 substituent amino groups (two sets of adjacent amino groups), then the amino groups should be in equatorial positions for the [2+1] condensation with C₂-dialdehyde. The TAC used in the above experiment may contain one or more of the many different isomers, but since these isomers are not interconvertible, then unless the four substituents were all

Schen H UV SLNOW 0.1 missed sty a al COLDA 259 Teadtion = Line gard alk 10.267.8208 WER LOCAL NEW o sciber # the solidaes 11 To buissig stedard of Asstangelon (. DANT BOT PALS

a dample of YAC (\$1331 M.C.T. OI

in equatorial positions then the TAC would be unlikely to

160

condense with C_2 -dialdehyde (scheme 4.23).

10 MARG

4.3.5 The reactions of 4.4'-diaminobenzidine (DAB) 4.33.

A template reaction has been reported^{1b} for the Ni(II) complex of 3,3',4,4'-tetra-aminobensophenone with C_2 - and C_3 -dialdehyde (scheme 4.24), although no successful results were reported for any related Cu(II) complexes.

Scheme 4.24 A template reaction with 3,3',4,4'-tetra-aminobenzophenone.

To predict with confidence the distance between two copper atoms in a dinucleating ligand, it is necessary to have a rigid system. The bensidene nucleus provides a longer bridging system than that in the 1,2,4,5-tetraaminobensene, but one which may show a degree of rotation while in the skew configuration²¹. This rotation will have a small effect on the distance between the two copper atoms, which molecular models show will vary between 11.7 Å (coplanar) and 11.4 Å (skew). The reaction between C₂-dialdehyde and

1.0471

.

dilling the second seco

. .). sources

To provide a rigid a bave a rigid a bridging system but one which a set one which abse dista and the dista and

the dinuclear 4.36 or the related mononuclear species) and free ligand H_4 bicybens (4.37) (scheme 4.25). Recrystallisation from pyridine/methanol gave the free ligand as microcrystals. The low solubility and volatility prevented analysis by eims and ¹H nmr, but characterisation was achieved by elemental analysis and infrared data (section 8). The three ligands H_2 cyph, H_4 bicyphen and H_4 bicybens all contain the same component ring system H_2 cyph (4.1), and will be expected to show similar spectral properties. A comparison of the strongest absorptions in their infrared spectra is made in table 4.8 to show the similarity in the absorption pattern. Important features are the presence of the N-H (hydrogen bonded) stretch around 3165 cm⁻¹ and the C=N stretch around 1610 - 1620 cm⁻¹. All these imine compounds are yellow whereas the reduced compounds H_6 cyph (4.11) and H_{12} bicybenz (4.38) are white.

<u>Main infrared^a absorptions/cm⁻¹</u>						
H ₂ cyph (4.1)	H ₄ bicyphen (4.8)	H ₄ bicybens (4.36)				
3170 3086	3170 3095	3165				
3060 3030 2956	3070 3030 2960	3030				
2886 2838 1620	2890 2830 1618	2892 1610				
1601 1576	1598 1572	1595 1574				
1337 1164	1338 1162	1361 1167				

Uv/vis absorptions^b/nm (E)

H ₂ cyph /MeOH	H ₄ bicyphen /dmf	H ₄ bicybenz /CHCl ₃
270(1318)	270(1896)	256(7706)
285(1500)	320(1069)	1. - 1
	435(1974)	400(4155)

Table 4.8 Main infrared and uv/vis (solution) absorption

bands of H_2 cyph, H_4 bicyphen and H_4 bicybenz. ^arecorded in the range 4000 - 600 cm⁻¹,

recorded as the nujol and HCB mull.

^brecorded in the range 260 - 850 nm in the solvents indicated, extinction coefficients in parentheses.

0.0.4

titole as

247 having

under ander Lockbon

Rabler ...

THE LEASE

0.005+11-11-0.000

1 1 1 0 12

7811814

the press

these it

(III. + LINUAGEORE

<u>Ma i</u>	orptions/cm ⁻¹	
H ₂ cyph (4.1)	H ₄ bicyphen (4.8)	H ₄ bicybenz (4.36)
3170	3170	3165
3060	3070 3030	3030
2956 2886	2960 2890	2892
2838 1620	2830 1618	1610
1601 1576	1598 1572	1595 1574
1337 1164	1338 1162	1361 1167

Uv/vis absorptions^b/nm (E)

H ₂ cyph /MeOH	H ₄ bicyphen /dmf	H ₄ bicybens /CHCl ₃
270(1318)	270(1896)	256(7706)
285(1500)	320(1069)	-
	435(1974)	400(4155)

Table 4.8 Main infrared and uv/vis (solution) absorption

bands of H_2 cyph, H_4 bicyphen and H_4 bicybens. ^arecorded in the range 4000 - 600 cm⁻¹, recorded as the nujol and HCB mull.

^brecorded in the range 260 - 850 nm in the solvents indicated, extinction coefficients in parentheses.

0.0458 1 2023 -Li -inganew stisle as 1-100v820 11/100 RAW! Incidenal E_bloy) 111 . (7.43 D/STORES 1111 21862 almiler [the probably ALSE SHOT ()-10101 20000 - Chancesta

H_bicybens (4.37)

Scheme 4.25 Preparation of H_4 bicybenz (4.37).

4.3.6 Reduction of Habicybenz.

Reduction of the imine linkages in H₄bicybenz was accomplished using BH₃/thf with no complications as experienced with H₄bicyphen. The hydrochloride salt of H₁₂bicybenz was prepared by addition of excess hydrochloric acid to the reduced ligand (scheme 4.26), but due to the stability of H₁₂bicybenz in air (4.38) it was found unnecessary to store further samples of the material in this way. Copper(II) complexes of the H₄bicybenz and H₁₂bicybenz ligands are described in section 4.4. This

AM

(L. M

3170 3086 3080

0600

8665

288

1337 1164

TW/VI: sh((-

Name /

270(13310

1.4 sidat

4.9. It can be seen that the principle bands occur in very similar regions. Important features are the large number of bands in the region associated with N-H stretching modes $(3320 - 3380 \text{ cm}^{-1})$ than in the parent imine molecules (see table 4.8). The bands associated with the imine units in H_2 cyph (4.1) etc are not observed in the spectra of the reduced systems H₆cyph (4.11) or H₁₂bicybens (4.38). The compounds H_6 cyph (4.11) and H_{12} bicybenz both show only two bands in their electronic spectra, these in the uv region (see table 4.9). The main chromophore of the imine molecules H₂cyph etc thus apparently depends on delocalised pi orbitals involving the imine links (see table 4.8).

0 n I. Un Zhov, D

4.9.
stmllar ()
stmllar ()
(3320 - 200
stmllo 4.0

5.1 0000 4123

Main in:	frared	<u>Uv/vis</u>	
absorptions ^a .		absorptions	<u>/nm (ε)</u>
H ₆ cyph (4.11)	H ₁₂ bicybenz (4.38)	H ₆ cyph(/CH ₃ OH) (4.11)	H ₁₂ bicybenz/(CHCl ₃) (4.38)
3376 3350 3325	3370 3320	250(2666) 295(2611)	260(2776) 300(2719)
1607 1598	1607		
1584 1516	1585 1516		
1502 1348	1506		
1302	1321 1306		
1274 1252	1259		
	1136		
749	1021		
732	/34		
Table 4	.9 Main infra	ared and uv/vis (solution) absorption
	bands for	H ₆ cyph (4.11) and	H ₁₂ bicybenz (4.38).
	^a recorded :	in the range 4000	- 600 cm^{-1} , recorded
	as the nujo	ol and HCB mull.	

^brecorded in the range 260 - 850 nm in the solvents indicated, extinction coefficients in parentheses.

<u>4.4.1</u> <u>Preparation of copper complexes of the dinucleating</u> asa <u>ligands.</u>

Habicyphen

It was reported that extraction of the free ligand

method ensures total dissolution of the ligand when the complex formation takes place. This method was tried but was unsuccesful for two reasons:

1) The ligand was so insoluble, that even after 30 h very little had been extracted from the thimble.

2) The complex that had formed gave analytical data inconsistent with any expected formulation.

It is probable that long periods of continuous refluxing may result in oxygenation, similar to that found for the mononuclear analogue [Cu(cyph)] (section 4.2). A sample of [Cu₂(bicyphen)] originally prepared by Kendall-Torry was shown by fdms to contain oxygenated species (scheme 4.27). To avoid this possibility a quick reaction was necessary, but one which would ensure no contamination from unreacted ligand. Copper(II) complexes of the dinucleating ligands H_bicyphen and H_bicybenz which were prepared in this project are listed in table 4.10.

Scheme 4.27 Reported oxygenation of [Cu2(bicyphen)] (4.40).

516 2021 EAT. 1302 1274 1252 1022 11233042 AND A ALGAR 0.12 Vin A -1 P 112 I SE

dala faish

ACT DA

603

994 5332

"enoldgrounds

리는 신문

0 H C

TAQUES LAND abaspit are

I antique la participation de la constante de

: BAV 21

<u>C</u> §	NS	HS	Cut
75.2	6.0	18.3	
(75.7)	(5.7)	(18.6)	
67.9	4.6	16.5	9.4
(68.7)	(4.10)	(16.9)	(9.6)
62.1	4.1	15.3	16.8
(62.9)	(4.2)	(15.4)	(17.5)
41.2	3.4	9.9	11.0
(40.5)	(3.0)	(9.9)	(11.3)
77.4	5.4	16.1	
(77.9)	(5.6)	(16.5)	
65.2	3.9	13.6	15.2
(65.9)	(4.3)	(14.0)	(15.8)
44.1	3.0	9.6	10.1
(43.9)	(3.2)	(9.3)	(10.6)
76.2	6.6	16.0	
(76.9)	(6.8)	(16.3)	
44.3	3.5	9.2	
(44.0)	(3.9)	(9.3)	
	$\frac{C3}{75.2}$ (75.7) (75.7) (67.9) (68.7) (62.1) (62.9) (41.2) (40.5) 77.4 (77.9) (65.2) (65.9) (44.1) (43.9) 76.2 (76.9) (44.3) (44.0)	$\begin{array}{cccc} \underline{C8} & \underline{N8} \\ \hline 75.2 & 6.0 \\ (75.7) & (5.7) \\ \hline 67.9 & 4.6 \\ (68.7) & (4.10) \\ \hline 62.1 & 4.1 \\ (62.9) & (4.2) \\ \hline 41.2 & 3.4 \\ (40.5) & (3.0) \\ \hline 77.4 & 5.4 \\ (77.9) & (5.6) \\ \hline 65.2 & 3.9 \\ (65.9) & (4.3) \\ \hline 44.1 & 3.0 \\ (43.9) & (3.2) \\ \hline 76.2 & 6.6 \\ (76.9) & (6.8) \\ \hline 44.3 & 3.5 \\ (44.0) & (3.9) \\ \hline \end{array}$	$\begin{array}{ccccc} \underline{C8} & \underline{N8} & \underline{H8} \\ \hline \\ 75.2 & 6.0 & 18.3 \\ (75.7) & (5.7) & (18.6) \\ \hline \\ 67.9 & 4.6 & 16.5 \\ (68.7) & (4.10) & (16.9) \\ \hline \\ 62.1 & 4.1 & 15.3 \\ (62.9) & (4.2) & (15.4) \\ \hline \\ 41.2 & 3.4 & 9.9 \\ (40.5) & (3.0) & (9.9) \\ \hline \\ 77.4 & 5.4 & 16.1 \\ (77.9) & (5.6) & (16.5) \\ \hline \\ 65.2 & 3.9 & 13.6 \\ (65.9) & (4.3) & (14.0) \\ \hline \\ 44.1 & 3.0 & 9.6 \\ (43.9) & (3.2) & (9.3) \\ \hline \\ 76.2 & 6.6 & 16.0 \\ (76.9) & (6.8) & (16.3) \\ \hline \\ 76.3 & 3.5 & 9.2 \\ (44.0) & (3.9) & (9.3) \\ \hline \end{array}$

Table 4.10 Analytical results for the dinucleating ligands and their copper(II) complexes.

4.4.2 Preparation of mononuclear copper(II) complexes of Habicyphen (4.8).

H₄bicyphen was dissolved in refluxing pyridine, and mixed with a solution of copper(II) acetate (2:1 Cu:Ligand) (in pyridine). The mixture instantly changed colour and precipitation occurred to give deep violet microcrystals with a green sheen. These crystals were characterised by elemental analysis (Cu,C,H and N, see table 4.10) as the

in botters equipline (orre-(41140000 MR cipil ndr 11 d bad alself IdT SE. TOUTALARDONA 1 12 - uninutive Co off 30% sample or TORTY Well Ladina's A.) Vita neckerst frem unreact dinucles () UNI 11 Sevenations

Schene 5.27 Tc

proposed was a mixture of ligand and bisCu(II) complex in a ratio of 1:1. However, this was not the case since the infrared spectra did not indicate the presence of any uncomplexed ligand. The complex [Cu(H2bicyphen)] was too insoluble for fdms and only at approximatly 60°C in pyridine did the complex dissolve to give a weak uv/vis spectrum (section 8). The preparation of the mono copper(II) perchlorate complex was attempted in the same manner using copper(II) perchlorate. To a solution of copper(II) perchlorate in pyridine a one molar equivalent of H_bicyphen was added. No colour change was noted on this addition and it was possible that the copper(II) perchlorate at a 1:1 molar ratio with the ligand in pyridine has an equilibrium in favour of the pyridine complex. Evaporation of this solution and addition of various less polar solvents (methanol, diethylether, petrol or benzene) lead to the recovery of the free ligand H_bicyphen. The addition of base (2 molar equivalents of sodium methoxide solution in methanol) to the mixture of ligand and copper(II) perchlorate in pyridine instantly gave a colour change (to almost black) and precipitation occurred to give the neutral mononuclear copper(II) complex (scheme 4.28).

//initiality (chio, fr) (chi

-0.0000

(Calc, for -(Calc,)), process (Calc, for

(Cales in (Cog(R190)

Table 4.14

Histoyphee 11.

Habics Himd With (in ppriddou Precipication With a green a

Scheme 4.28 Preparation of [Cu(H₂bicyphen)] (4.39).

4.4.3 Preparation of dinuclear copper(II) complexes of H₄bicyphen.

As stated above, direct reaction of the free ligand with copper(II) acetate is not an effective method for preparation of the neutral complex [$Cu_2(bicyphen)$] (4.40). Even in the presence of excess copper(II) acetate, the major product separating from a pyridine solution of the ligand is the mononuclear complex [$Cu(H_2bicyphen)$] (4.39). Continuous refluxing of this mononuclear complex 4.39 with

prégiored -1 1c ottax - un bergeriged theomplete' widu/usel bld mothing Intel Burzhooge parchlorace > 1111100000 parchiorate was added, No. -LINDOG MAN 31 adlar satis all in favour of the anlytion and - Lonadzeel salovery of the 12 molet equ Defchiorace almost black an mononectest root

> excess copper(II) acetate in pyridine did not result in further copper(II) incorporation. Curiously however, when

[Cu(H₂bicyphen)] (4.39) was refluxed with one molar equivalent of copper(II) perchlorate, dissolution of the mononuclear complex occurred, and the neutral dinuclear copper(II) complex [Cu₂(bicyphen)] (4.40) separated (scheme 4.29). In this reaction the pyridine acts as base to deprotonate the biscopper(II) complex.

Scheme 4.29 Summary of preparative routes to dinuclear copper complexes of H₄bicyphen (4.8)

Schema 4,20

A.A.B Property

As stated (emppor(II) () proparation of Even in the pr ligand is the n Continuous refl

(cc(Hgble)
squivalen) 0/
monununlet

f(,29), 11 1
deprotonate

- in co M. H

5 Haind58

11/16

100

The reaction between two moles of copper(II) perchlorate and one mole of ligand in pyridine, gave a brown solution. This colour change indicated that the ligand had reacted with the copper(II) perchlorate to give a soluble complex. Addition of less polar solvents (methanol, diethylether, petroleum ethers or benzene) resulted in precipitation of the copper complex of the ligand. Benzene was found to be the most effective, giving the highest yield of [Cu₂(H₄bicyphen)]- $(ClO_4)_4$ (4.41). In the preparation just described, the brown solution contained a mixture of Cu:ligand in the molar ratio of 2:1. Apparently the addition of bensene produces the conditions needed to shift the equilibrium away from the pyridine soluble complex to give the less soluble biscopper(II) perchlorate complex. The nature of the soluble complex(es) is not clear, the brown solution may contain a number of different species in equilibrium but addition of the benzene precipitates the least soluble component; $[Cu_2(H_4 bicyphen)](ClO_4)_4$ (4.41). Characterisation was made by elemental analysis, infrared spectra and additionally for [Cu2(bicyphen)] fdms was possible (fig 4.9).

Fig 4.9 Fdms of [Cu₂(bicyphen)] (4.40).

The appearence of three molecular ion peaks and

separated by two mass units, characterises a dinuclear Cu(II) complex, since naturally occurring copper is composed

of 63 Cu (69.09%) and 65 Cu (30.91%). The relative abundancies for the three peaks are dependent on the different isotopic combinations of 63 Cu and 65 Cu (table 4.11).

Nature of copper in macrocycle	bis com		isotopi oper(II ex	<u>c</u>)	Relative Calc			Abundancies Found
63 _{Cu} 63 _{Cu}	0.6909	x	69.09		47.7		100.0	100
63 _{Cu} 65 _{Cu}	2(0.6909	x	30.91)		42.7		89.5	75
65 _{Cu} 65 _{Cu}	0.3091	x	30.91		9.5		19.9	30

Table 4.11 Isotopic contributions of copper.

The molecular ion detected at $M^* = 720$ corresponds to a form of the molecule in which both ethane bridges are dehydrogenated (fig 4.9). This is consistent with the data found for the mononuclear analogue [Cu(cyph-2H)] (section 4.2). Unlike [Cu(cyph)], no evidence has been found for oxygenation of the ethane bridge in the samples prepared by the methods outlined above.

4.4.4 Copper(II) Complexes of Habicybens.

The solubility of H_4 bicybens (4.37) is low, but the ligand will dissolve in hot pyridine containing copper(II) perchlorate to form the dinuclear copper(II) complex $[Cu_2(H_4 bicybens)](ClO_4)_4$ (4.43) (scheme 4.30). Deprotonation of the perchlorate complex to give $[Cu_2(bicybens)]$ (4.42) was found under similar conditions to those for the copper(II) complexes of H_4 bicyphen (section 4.4.1).

AUX MEE to stow we spania suales HI (I) I TI GHO inlig soul an tional and arbitrary in salques 11 1011258238 LAURY AND AND A 1473 Holdrelow sienes .for the 1 DTO PERINT where wellbarge - (11) requesting A TRACTOR STREET 12+1115 10 Sertepe the banzace Cug(Habley) by platests yd Ing (Custhinyphan)

to mute the pre-

Scheme 4.30 Preparation of $[Cu_2(H_4bicybenz)](ClO_4)_4$ (4.43).

The intramolecular Cu-Cu distance was calculated from molecular models as approximately 11.4 Å, although some close intermolecular contacts in the solid state have been shown present in other bisCu(II) systems²³ (scheme 4.31).

() snidden 1.4.0092 7.0 · 120% TTTT Driving foord (o) 15.8 11+0+0/20 LINCOM SHE Achel The (1) barght Mitchildre: (might shall and 1 This parents 1 found 1237 imps (III) seque

HOLD IN

I into say

Scheme 4.31

IN LOOP (MIL

IN THE OWNER

0000

Due to the low solubility of the ligand H_{12} bicybenz, the biscopper(II) complex $[Cu_2(H_{12}bicybenz)](ClO_4)_4$ (4.44) was prepared in dmf. The complex 4.44 separated from the solution above after setting aside for 24h, and appeared to be stable in the solid state. The magnetic properties of these copper(II) complexes are discussed in section 4.5.

<u>4.4.5</u> <u>Conclusions concerning the methods of preparation of</u> <u>the copper complexes.</u>

The method of deprotonation of the anilino nitrogen atoms in the perchlorate complexes, leads to a novel synthetic route to the less soluble neutral copper(II) compounds. Attempts to reverse this reaction by the addition of perchloric acid to the neutral copper(II) compound failed

for all those complexes described in this chapter. It has

not been possible to prepare any biscopper(II) complexes via

a template reaction, and this is believed to be due to the rapid oxidation of the tetraamino compounds to give highly coloured polymer type species. This difficulty has not hindered the preparation of the copper(II) complexes since in all cases it was possible to prepare the metal free polyimine ligand which would then incorporate copper(II) atom(s).

<u>4.4.6</u> <u>Properties of the copper(II) complexes of the</u> dinucleating aza ligands.

Some of the physical data is presented in table 4.12 for the copper(II) complexes described in this chapter, and it is interesting to note some similarities between the mononuclear and dinuclear copper(II) complexes. The table is divided into four groups of related compounds, which can be considered in the following ways.

Group 1 contains the neutral complexes.

[Cu(cyph)] (4.9) and [Cu₂(bicybenz)] (4.42) show similar electronic spectral properties because both compounds contain the same chromophore (assuming that there is little or no pi-interaction across the skew linkage of the two macrocyclic units in [Cu₂(bicybenz)] (4.42)). The complex [Cu₂(bicyphen)] (4.40) also shows a similar spectrum, but with the additional band in the visible spectrum at 630 nm possibly due to the extended conjugation through the 'fused' benzene ring. The mononuclear complex [Cu(H₂bicyphen)] (4.39) has a similar uv/vis spectrum to the dimer [Cu₂(H₂bicyphen)] (4.40) for the same reasons as above.

177

1.1.1.1.1

10111-00

1+2+ Hd

120 10055

DIT LAR

hi emate

-1. -172

NOT OFFICIATIVE

111/6 abosogios

(approval)di

<u>Group 2 contains the cationic complexes of the imine</u> ligands.

There are no distinct similarities in this group of cationic complexes, possibly due to the more basic solvents required for the less soluble dinuclear complexes.

Group 3 contains the cationic complexes of the reduced ligands.

The copper(II) complexes of the reduced ligands do not show similar uv/vis spectra, but this could again be due to the different solvents used for the dissolution of the complexes. For example, The complex $[Cu_2(H_{12}bicybenz)](ClO_4)_4$ (4.44) requires dmf, whereas methanol is suitable for $[Cu(H_6cyph)](ClO_4)_2$ (4.12).

Group 4

These complexes do not have suitable dinucleating copper complexes for comparison, but [Cu(cyph(X))] shows a distinctive carbonyl stretch at 1658 cm⁻¹, and a different infrared spectra to that of the parent compound [Cu(cyph)].

hlqir. I will be fire. HIDO: + + 1 1 1 1 1 -1-1-1 log 110026 1.416 dimmin.) d moli 0.1 0 (QQQQ) 1101020285 ion tiel 565/VE 211/000 1 (gauzā 100 129 1231 - incritrals I- GLATODO 10 100 38 allogiost AM [Gistaleya] Mith that Addi. Whatbly due to banzoon ifeo.

	1		
Group 1.	Colour	Infrared	<u>Uv/vis (E)</u>
		<u>cm⁻¹</u>	nm
[Cucyph] (4.9)	black	3074 3024 2936 1616 1588 1573 1501 1481 1237	272(2860) 337(1131) 354(1031) 432(1247) 520(964)
[Cu ₂ (bicybenz)] (4.42)	black	3050 2850 1614 1577 1520 1362 1190 1143 748	270(1958) 328(1246) 440(1079) 520(1001) 600(734)
[Cu(H ₂ bicyphen)] (4.39)	purple	2940 2480 1611 1580 1516 1478 1448 1391	350(492)* 510(526)* 650(240)*
[Cu ₂ (bicyphen)] (4.40)	purple	2940 2480 1611 1580 1516 1478 1448 1391	355(823)* 510(769)* 630(491)*
Group 2			
$[Cu(H_2cyph)](ClO_4)_2$ (4.10)	brown	3500 3176 1627 1598 1571 1482 1100b 765	220(1340) 268(524) 320(411) 390(188)
[Cu ₂ (H ₄ bicybenz)](ClO ₄) ₄ (4.43)	brown	1620 1551 1420 1385 1300 1230 1192 1168 1100b 760 628	270(6019) 308(3760) 330(3700) 440(3310) 470(3310) 520(2295) 650(169)
[Cu ₂ (H ₄ bicyphen)](ClO ₄) ₄ (4.41)	brown	1612 1598 1542 1536 1517 1485 1362 1336 1100b	270(462)* 320(401)* 450(310)* 600(60)*

.

Table 4.12	Infrared	and	uv/v	is data	for	copper(II)
	complexes	of	the	mononuclea	r and	dinuclear

0.915

10.001

1000

018

111E

10/21

guidata

These 5 complete d(size()) intraced

Group 3.	<u>Colour</u>	Infrared	<u>Uv/vis (E)</u>
		<u>cm⁻¹</u>	nm
[Cu(H ₆ cyph)](ClO ₄) ₂ (4.12)	pink	3518 3238 1614 1590 1495 1462 1364 1308 1100b	222(3073) 260(1100) 318(664) 370(285) 520(720) 570(608)
[Cu ₂ (H ₁₂ bicybenz)](ClO ₄) ₄ (4	8.44) brown	3550 3200 1610 1555 1495 1420 1305 1100b 770	268(5005) 320(3337) 400(1902) 440(2369) 464(2402) 526(2169) 646(267)
Group 4			
[Cu(cyphX)] (4.28)	burgandy	1658 1620 1600 1583 1547 1524 1494 1458	270 * 340* 450* 520* 605*
[Cu(cyph(OMe) ₂)] (4.18)	golđ	3103 3076 3026 1606 1580 1521 1460 1392 1373	275(3619) 315(1841) 336(1567) 354(1521) 420(1498) 480(1106) 510(1286)
Table 4.12 Infrared and	uv/vis da	ta for co	opper(II)

complexes of the mononuclear and dinuclear ligands.

* The compound could not be fully dissolved.

4.5 Magnetic data for the copper(II) complexes.

In the previous chapter (section 3.7) abnormally low magnetic moments and non Curie-Weiss behaviour were explained in terms of direct²⁵ and superexchange²⁶ pathways

TADIO (....

111(1)(20)

the twisted conformation of the ligand forcing the two copper atoms into close proximity. The ligand system H_4 bicyphen discussed in this chapter is rigidly planar, and unlikely to show a subnormal magnetic moment due to direct interaction, unless intermolecular contacts are made between two copper(II) atoms. The monocopper complexes [Cu(H₂cyph)]-(ClO₄)₂ and [Cu(H₆cyph)](ClO₄)] show normal Curie Weiss behaviour (fig 4.10, facing page).

The biscopper(II) complexes of H₄bicyphen fall into two groups, cationic and neutral. The neutral biscopper(II) complex was expected to be more likely to show superexchange interaction because there is a fully unsaturated bridging unit between the two copper atoms. A highly delocalised ground state is possible for this molecule, shown schematically by the resonance forms in fig 4.11. Internal redox changes of this type leading to difficulties in formulating the formal oxidation levels of metal ions and ligand donor atoms have been noted previously in the so called "electron-transfer-series-complexes"²⁷. The magnetic data (fig 4.12, facing page 183) confirms the presence of antiferromagnetic coupling, however the monocopper(II) complex [Cu(H₂bicyphen)] also shows a subnormal magnetic moment, and this can only be due to intermolecular exchange between copper(II) atoms. This would suggest for the biscopper(II) systems both types of interaction (intramolecular (via superexchange) or intermolecular (via either direct or superexchange)) may

181

yph)](ClO₄)₂ and

20 30 40 EMP K of bestalgas

the pro-

A GETTER AND

20

EKP K

30

40

LUO TA

contribute to the lower magnetic moment.

Fig 4.11 Resonance forms illustrating the possible delocalised electronic ground state in [Cu₂(bicyphen)].

An antiferromagnetic interaction was reported²⁴ for a biscopper(II) complex $Cu_2A^4(B^3)_2$ (4.45). The intramolecular nature of this superexchange was demonstrated by comparison of physical data to four monomeric copper(II) complexes. The antiferromagnetic exchange interaction in $Cu_2A^4(B^3)_2$ (4.45) was viewed as resulting from "a spin polarisation between the unpaired copper electron and the various nitrogen electrons, a polarisation that is propagated through the benzene moiety to the other copper atom²⁴ (i.e. analogous to the systems described for [Cu₂(bicyphen)] above.

141

115

102702

12.000.000

0.04.020

0.000

计正式的过去式

「東方市「日本

「うられなな利用

1 2300 1 381

5.94

101

marg

Fig 4.12 Magnetic data for the copper(II) complexes of H₄bicyphen

1.62

The cationic complexes cannot utilise the same pathway as $[Cu_2(bicyphen)]$ since the anilino nitrogen atoms retain their protons and delocalised ground states of the type shown in fig 4.11 are not possible. The variable temperature magnetic data confirm the normal Curie Weiss behaviour for $[Cu_2(H_4bicyphen)](ClO_4)_4$ (fig 4.12, facing page).

The biscopper(II) complexes of the ligand H_4 bicybens were not prepared in time for the magnetic measurements to be completed by the submission date of this thesis. However, biscopper(II) complexes based on non-cyclic ligands containing the benzidine nucleus have been reported²⁴. The complex 4.46 did not show exchange interaction, for reasons that "spin polarisation would be attenuated with distance, or perhaps there is little spin polarisation between the two phenyl groups in the biphenyl bridge". But it has subsequently been demonstrated²³ that electrons can exchange between two copper(II) atoms separated by 12 Å via a

183

er(II) complexes of

benzidine moiety. The phenyl rings of the benzidine nucleus are planar with dihedral angles of 13.8 and 22.5° about the Carbon-Carbon bond connecting them for each of the two (fig 4.13)crystallographically independent dimers. This approximately planar configuration would allow the presence of resonance forms (fig 4.14). These would then be capable of contributing to magnetic exchange in a manner analogous to that considered above for the neutral [Cu₂(bicyphen)] complexes (fig 4.11).

Fig 4.13 One of the two crystallographically independent dimers.

Fig 4.14 Resonance forms illustrating the possible electronic ground state for complexes based on the bensidine nucleus.

benzidine moiety. The phenyl rings of the benzidine nucleus are planar with dihedral angles of 13.8 and 22.5° about the Carbon-Carbon bond connecting them for each of the two (fig 4.13) crystallographically independent dimers/. This approximately planar configuration would allow the presence of resonance forms (fig 4.14). These would then be capable of contributing to magnetic exchange in a manner analogous to that considered above for the neutral [Cu₂(bicyphen)] complexes (fig 4.11).

Fig 4.13 One of the two crystallographically independent dimers.

Fig 4.14 Resonance forms illustrating the possible electronic ground state for complexes based on the

100 -07

1 - 11 7 1

il =dd

计非非同志

Servis!

CONC. (1) 1021

00110 L00

5 8.5 s (q # dq

begynneld.

phite/epited

10.8 X010809

tion niga" dada

or partiage the

1 1 1 1 1 1 1 T

References

- 1 (a) Green,M., Smith,J. and Tasker,P.A. <u>Inorg. Chim.</u> <u>Acta.</u> 1971, 5, 17. (b) Black,D.St.C., Vanderzalm,C.H., Wong,L.C.H. <u>Aust. J. Chem.</u> 1979, 32, 2303.
- 2 Peters R. Ph.D Thesis 1982. The Polytechnic of North London.
- (a) Busch, D.H., Thompson, M.C., J. Amer. Chem. Soc. 1964, 86, 3651. (b) Busch, D.H. <u>Rec. Chem. Prog.</u> 1964, 86, 3651. (c) Lindoy, L.F., Bush, D.C. in <u>"Preparative Inorganic Reactions"</u> (W Jolly ed) 6, pl Interscience, NY 1971.
- 4 Fleischer, E.B., Sklar, L., Kendall-Torry, A., Tasker, P.A., Taylor, F.B. <u>Inorg. Nucl. Chem. Lett.</u> 1973, 9, 1061.
- 5 Hughs, M.A. Chem. Ind. London. 1975, 24, 1042.
- 6 Yatsimirski, K.B., Kolchinskii, A.G. <u>Doki.</u> <u>Akad.</u> <u>Nauk.</u> USSR. 1979, 246(4), 895.
- 7 Gozen, S. Unpublished results The Polytechnic of North London. 1980.
- 8 Green, M., Tasker, P.A., Inorg. Chim. Acta. 1971, 5, 65.
- 9 Black, D.St.C., Hartshorn, A.J., Horner, M., Hunnig, S. <u>Aust. J. Chem.</u> 1977, 30, 2493.
- 10 Drew, M.G.B., McCann, M., Nelson, S.M. <u>J. C. S. Dalton.</u> <u>Trans.</u> 1981, 1868.
- 11 Katovic, V., Taylor, L.T., Busch, D.H. <u>Inorg. Chem.</u> 1971, 10, 458.

216 11.11
- 13 Peters, R. Verbal Communication. The Polytechnic of North London. 1980.
- 14 Hay, A.S., Blanchard, H.S. <u>Can. J. Chem.</u> 1965, 43, 1307 and ref therin.
- 15 Black, D.St.C., Vanderzalm, C.H., Hartshorn, A.J. Inorg. Nucl. Chem. Lett. 1976, 12, 657.
- 16 Maslen, E.N., Englehardt, L.M., White, A.H. J. Chem. Soc. Dalt. Trans. 1974, 1799.
- 17 Vogel, H., Marvel, C.S. J. Poly. Sci. 1961, L, 511.
- 18 Groh, S. Israel. J. Chem. 1976, 15, 277 and ref therin.
- 19 Cambrian News, May, 1980, pl.
- 20 Buckinham, D.A., Sargeson, A.M. in <u>"Topics in</u> <u>Stereochemistry"</u> 1971, <u>6</u>, p219. ed. Allinger, N.L., Eliel, E.L. Wiley Interscience, New York.
- 21 Felthouse, T.R., Duesler, E.N., Christeusen, A.T., Hendrickson, D.N. Inorg. Chem. 1978, 17, 2636.
- 22 Hasty, E.F., Wilson, L.J., Hendrickson, D.N. <u>Inorg. Chem.</u> 1978, 17, 1835.
- 23 (a) Felthouse, T.R., Duesler, E.N., Christensen, A.T., Hendrickson, D.N. <u>Inorg. Chem.</u> 1979, 18, 245.
 (b) Felthouse, T.R., Duesler, E.N., Hendrickson, D.N. <u>J.</u> <u>Am. Chem. Soc.</u> 1978, 100, 618.
- 24 Hasty, E.F., Colburn, T.L., Hendrickson, D.N. <u>Inorg. Chem.</u> 1973, 12, 2414.
- 25 Kato, M., Jonassen, H.B., Fanning, J.C. <u>Chem. Rev.</u> 1964, 64 99.
- 26 Hatfield.W.E. ACS Symp. Ser. 1974, 5, 108.

10 01

一日の二丁

L Water.

	Chapter 5 Linked Macrocycles	Page
5.1.1	Introduction	188
5.1.2	Precursors based on C ₂ -dialdehyde (5.3)	189
5.2	Results and Discussion	191
5.3.1	Preparation of 1,2,4-triaminobenzene	192
5.3.2	Reactions of 1,2,4-Triaminobenzene trihydro-	
	chloride with C ₂ -dialdehyde	193
5.4.1	Linking reactions	195
5.4.2	Results for acetyl and benzoyl chloride, and	
	for oxalyl dichloride	196
5.4.3	Reactions of the diacid chlorides with the	
	amino substituted macrocycle H ₂ cyphNH ₂	199
5.5	Further reactions with H_2 cyphNH ₂	204
5.6.1	Reaction of hydrazine hydrate with C ₂ -	
	dialdehyde	206
5.6.2	Attempts to prepare the [3+3] condensation	
	product	207
	References	210

Sie I ferrer a

÷

93 26 Matéri J

- 148. Bl

1.

- 11

CHAPTER 5

Linked Macrocycles

5.1.1 Introduction.

The linking of two macrocycles together with a bridge which could be varied in length and nature would provide an interesting range of binuclear metal complexes. Many examples are available¹ whereby two macrocycles (usually porphyrins) have been linked together by one or more bridging portions (scheme 5.1).

Scheme 5.1 Synthesis of cofacial porphyrins.

Cofacial porphyrins are capable of constraining two metal ions to lie in close proximity, and may posess unusual properties. For example, the dicobalt(II) complex^{1d} of the cofacial diporphryin 5.1 reacts with oxygen to give a

5.1 R = n-hexyl

5.1.2 Precursors based on C2-dialdehyde (5.3).

 H_2 cyph (5.2)

The precursors outlined above (section 5.1) have been linked together using substituent groups (on the porphryins) such as amines or acid chlorides. Related derivatives of H_2 cyph (5.2) which are capable of being linked together have not been reported (see chapter 3). A derivative of this type which could be used in a "linking" reaction would be H_2 cyphNH₂ (5.5, scheme 5.2), which could possibly be prepared by condensation of the C₂-dialdehyde with either

10364

nitrosubstituent (route 1). There was some doubt as to whether the [1+1] condensation of the C_2 -dialdehyde with 1,2,4-triaminobenzene would occur successfully because it has been observed² that a [2+1] condensation product (5.4) was obtained in attempts to prepare the related nitro derivative H₂cyphNO₂ (5.6,scheme 5.3) from condensation with 1,2-diamino-4-nitrobenzene. If a similar [2+1] condensation reaction occurred between 1,2,4-triaminobenzene and the C₂dialdehyde at least six di-imines could result which may be unstable and/or difficult to separate (scheme 5.4). Polymeric materials may separate in addition to the compounds described above (see section 5.4.3).

The (topic) topic) topic) beau int Mg pyphane prepared ()

Scheme 5.3 Preparation of a [2+1] condensation product.

5.2 Results and Discussion.

The reaction between 3-nitro-1,2-diaminobenzene and C_2 dialdehyde (5.3, scheme 5.3) in the presence of sinc(II) acetate was examined, and after 5 days at reflux the [1+1] condensation product H_2 cyphNO₂ (5.6) was isolated. The [2+1] product appeared initially, therefore confirming the

the second se

extended refluxing. At this stage there are two possible routes for attempting to prepare the amino derivative H_2 cyphNH₂ (5.5) (scheme 5.2). Route 2 was chosen, since route 1 would involve difficulties in the selective reduction of a nitro substituent.

5.3.1 Preparation of 1,2,4-triaminobenzene (5.7)

The precursor 1,2-diamino-4-nitrobenzene (a red coloured solid) was commercially available, and had been used in the previously described reaction to give H_2 cyphNO₂ (scheme 5.2). The reduction of the nitro group in 1,2-diamino-4nitrobenzene was achieved by using hydrazine hydrate and the catalyst palladium on carbon. Care was taken as spontaneous ignition occurs when palladium on carbon is added to methanol in the presence of oxygen. The progress of the reduction was monitored by withdrawing a drop of reaction mixture with a capillary pipette, and placing it on a filter paper. When the intense red colour had disappeared all the 1,2-diamino-4-nitrobenzene had been reduced to give a clear supernatent liquid. CAUTION- The filter paper should be soaked in water for 24 h, or else spontaneous combustion will take place when the filter paper dries. Care was taken (see section 8) to avoid adding excess amounts of 1,2diamino-4-nitrobensene or hydrazine hydrate since both these reagents could react with C2-dialdehyde. Methanolic solutions of 1,2,4-triaminobensene were only stable under nitrogen and attempts to isolate the solid were accompanied

1545619

1.412

0.00000

by rapid oxidation to give a mixture of highly coloured products. A preliminary attempt to form the macrocycle

 $H_2cyphNH_2$ (5.5) was made by filtering the reduction solution directly into a suspension of C_2 -dialdehyde in degassed methanol. Rapid oxidation of the 1,2,4-triaminobenzene appeared to take place and only the precursor C_2 -dialdehyde was recovered. On one occasion excess hydrazine hydrate was present in the solution of 1,2,4-triaminobenzene, and other condensation products were isolated (section 5.6). To avoid the problem of the 1,2,4-triaminobenzene oxidising it was converted into a hydrochloride salt by treatment with methanolic hydrochloric acid. The creamy coloured solid which was isolated was characterised as 1,2,4triaminobenzene trihydrochloride (scheme 5.5) and was air stable.

10.00

1.1.1.1.1.1.1

trii ionò III

11.1784

-simcif.

- CONTANT.

100130508

one negotria

- so biger ve

....bJoubort

Scheme 5.5 Preparation of 1,2,4-triaminobenzene trihydrochloride.

5.3.2 <u>Reactions of 1,2,4-Triaminobenzene trihydrochloride</u> with C₂-dialdehvde

To prepare the ligand $H_2 cyphNH_2$ (5.5) a similar procedure to that for the reaction of TAB4HCl (chapter 4) with C₂-dialdehyde was used. However, the mixture of C₂-

ethanol showed no reaction until sinc(II) acetate was added.

The reaction of tetra-aminobensene with C_2 -dialdehyde (chapter 4) only required the presence of acid to catalyse the [2+1] condensation reaction, but this reaction gave rise to a very low soluble product. The addition of a lewis acid catalyst has been found necessary for all the aromatic bridged tetra-aza macrocycles (section 4). After the addition of zinc acetate to the mixture of C_2 -dialdehyde and 1,2,4-triaminobenzene in refluxing methanol a yellow-orange precipitate separated, which was then shown to be the sinc complex [Zn(cyphNH₂)] (5.8) by elemental analysis (Zn,C,H,N), eims $(M^* = 463$, fig 5.1) and infrared spectra. Optimisation of the reaction conditions led to a yield of 92% which was dependent on a reaction time of only one hour in refluxing ethanol. When the reaction time was prolonged the yield decreased (table 5.1). Only when these conditions were established could a high yield of $[2n(H_2cyphNH_2)]$ (5.8) be obtained, despite the many other possibilities shown previously in scheme 5.4. It is likely that the formation of the macrocyclic sinc(II) complex was more stable than any of [2+1] condensation products the

399 5.8

Fig 51 Fine of (In/ounhWH.)] (5.0)

Bge2: difect(i mmther)(i mmther)(i mmther)(i) equality(i) the not mmther)(i) fither)(i) fither)(i) fither)(i) fither)(i)

S.3.3 Strong Cr-diala

Reaction Time h	<u>§ Yield</u>
24	8
6	35
3	45
1	92

Table 5.1 Effect of reaction time on yields of [Zn(cyphNH₂)] (5.8)

The zinc complex 5.8 was unstable, and slowly changed to a dark red coloured product on standing in air. Attempts to recrystallise $[Zn(cyphNH_2)]$ (5.8) from pyridine/methanol resulted in the isolation of the free ligand (-60 % yield) as a bright yellow powder. This compound was air stable and was characterised by infrared spectroscopy, elemental analysis and eims (M* = 355).

5.4.1 Linking reactions.

To examine whether $H_2cyphNH_2$ (5.5) would react with acid chlorides, preliminary experiments were made with acetyl and bensoyl chloride, and with oxalyl dichloride. Two methods were originally considered:

1). The acid chloride (RCOCl) was added to a suspension of H_2 cyphNH₂ in diethyl ether⁴, and an alkaline water phase was added to absorb the liberated hydrogen chloride which occurred on addition of the H_2 cyphNH₂ (eq 5.1). This was not successful due to the low solubility of H_2 cyphNH₂ in diethyl ether.

1117 107 #7.045g1 11-57 485 12147 1 107 /8/14010 a. highped multi NBW 10.0011-00.0023 1140020 10.000 0011-1100 10000 /00 Which have be CARL MADE 11.00.0259 11.63100 #0 ______ NOTIONAL INST 1121 000

a bright yellow powder. This contant A and sins M* = 3551 3300 ro antorides, prediting y 82 1320 BURG 4 (2.3) 1680 experiments et with oxaly - (hods were originally 1620

.....!

The ecté chievide (BCOCI) est bided the endert (cypoNB) in distoyi sibor¹, and he Alberton antiest and added to aparch the Illerated hydrorae objoith (c) constraid on addition of the Upsyphers; inq biliestot econectal due to the iso symbols of H₂cyphere disting ather.

$$H_2 cyphNH_2 + RCOC1 \xrightarrow{+NaOH/H_2O} H_2 cyphNHCOR \dots eq 5.1$$

2). The second method⁵ used the solvent pyridine to act as base and absorb liberated hydrogen chloride (eq 5.2).

$$H_2 cyphNH_2 + RCOC1$$
 /py
-[pyH]C1 $H_2 cyphNHCOR \dots eq 5.2$

5.4.2 Results for acetyl and benzovl chloride, and for oxalyl dichloride

A solution of acid chloride in benzene was added to a solution of $H_2cyphNH_2$ (5.5) in pyridine. The addition of methanol precipitated a yellow powder which had a strong absorbance at ~1670 cm⁻¹ in the infrared spectrum ascribable to the carbonyl group (fig 5.2 facing page, table 5.2). This and elemental analyses confirmed that all three acid chlorides (acetyl, bensoyl and oxalyl) had reacted with $H_2cyphNH_2$ (5.5) (scheme 5.6). The three products were too involatile for a molecular ion to be detected in their electron impact mass spectra. However, for the oxalyl derivative a m/e peak at 528 was detected which may correspond to a fragment (fig 5.3) of the expected linked molecule.

to recrypter

11000.2

0.018WT

The off Strokes Alon Strokes Vesson

1320

The all
 The all
 The second second

Scheme 5.6 Reactions of H_2 cyphNH₂ (5.5) with acid chlorides.

1 iegell

27 1/3 band

111112

bid.s free
pic.s free
pic.s free
A = 1.1
A = 1.1
A = 1.1
A = 1.1
A = 0.1

RNH2	RNHCOCH3	<u>RNHCOPh</u>	RNHCOCONHR	
(5.5)	(5.9)	<u>(5.10)</u>	(5.11)	
3470				
3370	3300 BW	3300 BW	3300 BW	
3240				
3090				
2950				
2880	1668	1668	1680	
1622	1610	1610	1020	
1022	1010	1610	1020	
1590	1585	1592	1505	
1562	1575	1302	1530	
1524 B	1522	1521	1520	
	1505	1497	* / * /	
	1485	1487		
		1415		
1330 B	1322 B	1325 B	1320	
	1275	1281		
	1253	1256	1250	
	1235	1237	1220	
1210	1205	1213 W		
1183	1185	1185	1188	
1165	1163	1163	1166	
1150	1100 B	1100 B	1120	
1100				
1082				
1043		1046 M	1048	
060		1031 M	075	
908		972 B	¥75	
895		955	000	
033		272 .	090	

Table 5.2 Infrared absorption bands in the spectra of the derivatives of H_2 cyphNH₂ (RNH₂). B = broad, W = weak, M = medium intensity bands.

100/00

2.10.19

	<u>C</u>	HS	NS	CL\$	Znt
Triamine.3HCl (5.7) (Calc. for C ₆ H ₁₂ N ₃ Cl ₃)	30.5 (31.0)	5.3 (5.2)	17.7 (18.1)	44.1 (45.7)	
H_2 cyphNH ₂ (5.5) (Calc. for C ₂₂ H ₂₁ N ₅)	74.0 (74.3)	5.8 (6.0)	19.2 (19.7)		
[$Zn(cyphNH_2)$] (5.8) (Calc. for $ZnC_{22}H_{19}N_5$)	63.9 (63.4)	4.6 (4.6)	17.0 (16.8)		14.1 (15.3)
RNHCOCH ₃ .2H ₂ O (5.9)* (Calc. for $C_{24}H_{27}N_5O_3$)	66.1 (66.5)	5.9 (6.2)	16.0 (16.2)		
RNHCOPh.2H ₂ O (5.10)* (Calc. for $C_{29}H_{29}N_5O_3$)	70.9 (70.3)	5.9 (5.9)	13.8 (14.1)		
RNHCOCONHR.H ₂ O (5.11)* (Calc. for $C_{46}H_{42}N_{10}O_2$)	71.8 (72.1)	5.3 (5.5)	18.0 (18.3)		
$(RNH_2)_2CO.2H_2O$ (5.12)* (Calc. for $C_{45}H_{44}N_{10}O_3$)	70.4 (69.9)	5.8 (5.7)	17.9 (18.1)		

Table 5.3 Microanalytical data for the macrocycles derived from 1,2,4-triaminobensene.

*In these amide derivatives the abbreviation RNH_2 refers to the aminosubstituted macrocycle $H_2cyphNH_2$ (5.5)

5.4.3 Reactions of the diacid chlorides with the amino substituted macrocycle H₂cyphNH₂ (5.5)

The reactions of a range of diacid chlorides with H_2 cyphNH₂ (5.5) were considered (scheme 5.7).

Table -

THE

12:41

3112

3379

3110

140 2100 111

0.841

111

1911

211MG 12100

1082

自动化

NAME

Malonyl dichloride Succinyl dichloride Glutaryl dichloride Adipoyl dichloride Sebacoyl dichloride Terephthayl dichloride

Scheme 5.7

R

-(CH2)-

-(CH2)2--(CH2)3-

-(CH2)4-

-(CH2)8-

-C6H4-

11 1.1.4 11,21,048 Thump how 15/31 -011

1651

10.6

ALC: N H

-0007

1421

For each of the reactions between H_2 cyphNH₂ (5.5) and diacid dichloride (except terephthayl dichloride) two products were isolated. One product was insoluble in all the highly polar solvents tried (refluxing pyridine, dmso, dmf, thf) but was only isolated in 3 % yield. In each case both products had relatively similar infrared spectra (fig 5.4). The insoluble products from the different reactions were too involatile to be analysed by fdms and did not correspond to any expected formulation on the basis of elemental

analysis (each product gave different elemental analyses). The second product from each reaction was soluble in

pyridine and was isolated in approximately 60 % yield by the addition of methanol. The infrared spectra of these products showed only minor differences from that of $H_2cyphNH_2$ (5.5) and in all cases eims detected only a molecular ion at m/e = 355 which corresponded to the precursor $H_2cyphNH_2$.

Insoluble product Soluble product 1330 1188 1166 1529 1620

Polessi Polessi Mineta / Disolugii biti buc -/ The incoluci favoimetic ba any expect

(二十四) 加上市地区南非洲

T beiggun will

201

reaction of sebacoyl dichloride with H2cyphNH2

The first insoluble product could be formed for each of the above reactions, and the low solubility would suggest the material was a polymer (scheme 5.8). This polymer formation was one of the many problems anticipated for the preparation of H_2 cyphNH₂ (section 5.1.2), but was overcome by the formation of the macrocyclic zinc complex $[Zn(H_2cyphNH_2)]$. The acidic conditions created with the addition of the acid chloride may be the cause of a transamination reaction⁹.

Scheme 5.8 Possible polymeric formulation.

The second soluble product was considered to be a mixture of mainly $H_2cyphNH_2$ (shown by infrared spectra) and other minor amide compounds, (addition products as shown by a weak carbonyl stretch C=O stretch at ca. 1700 cm⁻¹). Two exceptions to the above results were the reactions involving terephthayl dichloride which did not give an insoluble product, and oxalyl dichloride as discussed earlier. The choice of pyridine as solvent for the reaction

101149

11.421

between H_2 cyphNH₂ (5.5) and the diacidchloride was to absorb the liberated hydrochloride and prevent formation of the

The first insoluble product could be formed for each of the above reactions, and the low solubility would suggest the material was a polymer (scheme 5.8). This polymer formation was one of the many problems anticipated for the preparation of H_2 cyphNH₂ (section 5.1.2), but was overcome by the formation of the macrocyclic zinc complex $[Zn(H_2cyphNH_2)]$. The acidic conditions created with the addition of the acid chloride may be the cause of a transamination reaction⁹.

0.610.84

12.2

217

TOE

Scheme 5.8 Possible polymeric formulation.

The second soluble product was considered to be a mixture of mainly H_2 cyphNH₂ (shown by infrared spectra) and other minor amide compounds, (addition products as shown by a weak carbonyl stretch C=0 stretch at ca. 1700 cm⁻¹). Two exceptions to the above results were the reactions involving terephthayl dichloride which did not give an insoluble product, and oxalyl dichloride as discussed earlier. The choice of pyridine as solvent for the reaction

between H_2 cyphNH₂ (5.5) and the diacidchloride was to absorb the liberated hydrochloride and prevent formation of the

hydrochloride salt of the ligand 5.8. An alternative method for this type of addition has been reported⁴ which involves anhydrous benzene as the solvent media for the formation of aliphatic amides. The anhydrous media prevents formation of the ammonium salt. Ether can be used but was found to give lower yields. A half molar equivalent of diacid dichloride as a solution in benzene was added to a suspension of H_2 cyphNH₂ in benzene. For all the diacid dichlorides a red precipitate instantly formed, which was isolated in high yield (~90 % based on reaction scheme 5.9) as a chloride salt

Scheme 5.9 Preparation of the chloride salt of a dinucleating ligand.

The compounds shown in scheme 5.9 were isolated and found by elemental analysis to contain substantial amounts of chloride, but more importantly they all showed similar infrared spectra. The compounds could not be characterised by elemental analysis due to impurities (shown by infrared

a suntria) = 106JO (二) (二) 等原的 (二) CUTUDER OFT - of yolvingdl tong alduloant to our casiling

461

A 03

1100926

<0 eK7

10203

Wingst assaulted Constantial off

to possibly consist of small amounts of a carbonyl compound) and could not be recrystallised due to their low solubility

in non-basic solvents (thf, $CHCl_3$, CH_3OH). Reaction of these chloride salts with sodium methoxide solution or pyridine gave yellow compounds which showed a similar infrared spectra to the soluble compounds isolated using the method in section 5.4.3.

5.5 Further reactions with H2cyphNH2.

A series of other linking reactions were attempted (table 5.4) using pyridine and thf as the solvent media.

Product

Infrared spectrum indicates unchanged H₂cyphNH₂

CH₃COCH₂COCH₃ HCOHCO ClCOOC₂H₅

Infrared spectrum indicates unchanged H₂cyphNH₂ Infrared spectrum indicates unchanged H₂cyphNH₂ Possible linking reaction see below

Table 5.4 Results for the attempted linking reaction of H_2 cyphNH₂ (5.5)

Apart from ethylchloroformate, the results were negative and only the H_2 cyphNH₂ precursor was recovered from the reaction mixture. For the reaction between H_2 cyphNH₂ and ethylchloroformate a product separated, and the infrared spectrum showed distinct changes from that of H_2 cyphNH₂ (including C=0 stretch of 1720 cm⁻¹). The eims showed a weak

100038

10.0100

1000

1 gite

. . .

111450

11111

114

1071107

frond by 10 of chloric infrared by-

10.17

macrocycle. The product was tooinsoluble to be characterised by 1 H nmr but was confirmed by elemental analysis (scheme 5.10).

Scheme 5.10 Preparation of (H₂cyphNH)₂CO. (5.12).

Conclusion.

This section has described the successful reaction of $H_2cyphNH_2$ (5.5) with acetyl and bensoyl chloride, and with oxalyl dichloride and ethylorthoformate. Preliminary attempts to prepare the copper(II) complexes of these ligands resulted in the products heavily contaminated with unchanged ligand. These problems were experienced in chapter 4 with H_4 bicyphen but were overcome by forming the cationic complex in pyridine. However, preliminary attempts have not

01100210 0111001 01200111

1 1 6 p

「二中口法

A 1918

A L HAVER

Ap migably blm cmaccion webylehlorol c Aperecian anown flactuding c=0 =

shown comparable results and a lack of time has prevented

205

further work in this area.

5.6.1 Reaction of hydrazine hydrate with C2-dialdehyde.

Crystals of a hydrazine derivative were isolated from a reaction between C2-dialdehyde and 1,2,4-triaminobenzene (section 5.3.2) where the 1,2,4-triaminobenzene had been heavily contaminated with hydrazine hydrate. These crystals were analysed by eims which showed a maximum m/e of 264, elemental analysis and infrared (section 8). On the basis of eims, a formulation corresponding to a monomer [1+1] was made. This structure probably results from the fragmentation of a larger molecule since the infrared spectrum showed two strong absorptions (3300 and 3416 cm^{-1}) (fig 5.5) indicative

mass spectrometry which detected two molecular ions (m/e = 528 and 560). One of these molecular ions corresponded to the predicted formulation $C_{32}H_{36}N_{10}$ of a [3+2] condensation product (5.15). This was also confirmed by elemental analysis, which was able to differentiate between [3+2] (5.15) and the other molecular ion (m/e = 528) which corresponded to a [2+2] condensation product (5.14). The product of 5.15.

NH2

H21

5.6.2 Attempts to prepare the [3+3] condensation product 5.16.

R. 1

An attempt was made to form the [3+3] condensation product (5.16) by treating the [3+2] product (5.15) with a further molar quantity of C_2 -dialdehyde (5.3) in refluxing methanol. After 24 h, a yellow crystalline compound was isolated which showed no absorptions in its infrared spectrum characteristic of terminal NH₂ groups which had been found for the [3+2] product (5.15). Field desorption mass spectrometry indicated that the material contained four species (table 5.5). The [3+3] condensation product 5.16 showed the largest molecular ion, but this does not identify the major constituent, since this would depend on the relative volatilities of all the possible species. However, elemental analysis was consistent with the [3+3] product.

<u>m/e</u>	Assignment		
824	[4+3]	5.17	
792	[3+3]	5.16	
560	[3+2]	5.15	
528	[2+2]	5.14	

Table 5.5 Interpretation of the fdms results.

[4+3] 5.17

interior
interio

Fig 5.5 Infrared spectra $(3000-3500 \text{ cm}^{-1})$ for the two compounds 5.15 and 5.16

10

-..

The preparation and reactions of hydrazine ligands have been reported^{7,8} as part of a program of the reactions of coordinated hydrazines (scheme 5.11).

X I MINT

1.3

1611

491

622

1.52.1

Conclusion

From the results described above, it is likely that the products consist of a mixture of species. These mixtures are unlikely to provide any useful dinucleating ligands because the different species may be difficult to separate, and could also be in equilibrium with eachother.

P19

The preid reporter coordinate

References

- 1 (a) Collman.J.P., Elliot.C.M., Halbert.T.R., Tovrog.B.S., <u>Proc. Natl. Acad. Sci. USA.</u> 1977, 74, 18. (b) Chang.C.K. <u>J.C.S. Chem. Comm.</u> 1977, 800. (c) Halada.M.H., Tulinsky.A., Chang,C.K. <u>J. Am. Chem. Soc.</u> 1980, 102, 7115. (d) Collman,J.P., Denisevich.P., Konai.Y., Marrocco.M., Koval.C., Arson.F.C. <u>J. Amer.</u> <u>Chem. Soc.</u> 1980, 102, 6027.
- 2 Gozen, S., Peters, R., Owston, P.G., Tasker, P.A., <u>J. C. S.</u> <u>Chem. Comm.</u> 1980, 1200.
- 3 Peters, R. Ph.D. Thesis. The Polytechnic of North London 1982.
- 4 Buehler, C.A., Pearson, D.E. in <u>"Survey of Organic</u> <u>Synthesis</u> ed. Buehler, C.A., Pearson, D.E. Wiley Interscience. London. 1970.
- 5 Strietweiser, J., Heathcock, C.H. in <u>"Introduction to</u> <u>Organic Chemistry"</u> ed Strietweiser, J., Heathcock, C.H. MacMillan. Pub. Co. New York. 1976.
- 6 Hendrickson, J.B. Cram, D.J., Hammond, G.S. in <u>"Organic</u> <u>Chemistry"</u> ed. Hendrickson, J.B. Cram, D.J., Hammond, G.S. 3rd ed, 1970, 430.
- 7 Donaldson, P.B., Tasker, P.A., Alcock, N.W. J. C. S. <u>Dalton. Trans.</u> 1976, 2262.
- 8 Donaldson, P.B., Tasker, P.A., Haria, P. J. C. S. Dalton. <u>Trans.</u> 1976, 2382.
- 9 Hamilton, G.A. in <u>"Progress in Bioorganic Chemistry"</u> ed.

.

i.

124	Ret
(#)	1
TONLOG	
10 (6)	
Hallwa	
<u>chenz</u>	
1-100	2
Cher -	
a set a set	2
. S. C. I.	
5 U.e. 1	b
SAUFE	
Intere	
Series -	5
Organic	
MacMa .	
Nendrices	9
Chemistr.	
Std ad. 14	
Donaldso	7
Dalton. Trat	
Donaldson, P	8
Trans. 1976	
Hamilton, G.	6

	<u>Chapter</u> <u>6</u> <u>Biscopper(II)</u> <u>complexes</u> <u>of</u> <u>a</u>	
	hydrogen bridged molecule	Page
6.1	Introduction	212
6.2.1	Preparation and X-ray structural analysis of	
	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	215
6.2.2	The X-ray structure of $[Cu_2(H_2DFMP)_2(ClO_4)_2]$ -	
	.2thf (6.4)	216
6.2.3	General	216
6.3	The infrared of coordinated perchlorates	224
	References	230

CHAPTER 6

Biscopper(II) complexes of a hydrogen bridged molecule.

6.1 Introduction.

1.11

1.1.1.6

During a routine solvent extraction process of copper(II) using the ligand 2-formaldoxime-4-nonylphenol (6.1), a very low soluble material was isolated¹. This was shown by elemental analysis to correspond to a neutral bis copper(II) complex $[Cu_2(H_2DFNP)_2]$ (6.2). Subsequent analysis of the ligand 6.1 showed it contained small amounts of 2,6-diformyl-4-nonylphenol (H₃DFNP) (6.1a) which when treated with copper(II) ions gave the very insoluble complex $[Cu_2(H_2DFNP)_2]$ (6.2)

A closely related biscopper(II) complex $[Cu_2(HDFMP)_2]$ (6.4) has been reported² as being practically insoluble in highly basic solvents such as pyridine and dmf, and also

stable to cold concentrated hydrochloric and sulphuric acid or sodium hydroxide solution. The magnetic moment at room

temperature was found to be subnormal (0.59 BM) and the magnetic susceptibility was measured over a large range 77- 300° K. The temperature variation of magnetic susceptibility could be explained on the basis of the Bleaney Bowers equation³. It was also reported² that the mass spectra of $[Cu_2(HDFMP)_2]$ detected molecular ion peaks at 510 and 512, with relative intensities corresponding to to the isotopic ratios for binuclear copper complexes (see section 4.4). On the basis of the molecular formulae obtained from the mass spectra, the molecule was assumed to be deprotonated at two of the oxime hydroxy groups and an intramolecular hydrogen bonded structure (6.4) was proposed. It is improbable that 6.4 contains a symmetrical hydrogen bond as in fig 6.1 (c), but more likely a statistical distribution in the solid state of asymmetrical hydrogen bonds as in (a) and (b).

Fig 6.1 Hydrogen bonding schemes for the oxime groups in 6.4.

The interest in the nature of the hydrogen bonding in $[Cu_2(H_2DFNP)_2]$ (6.2) led us to consider attempting an X-ray structure determination. Also it was of interest to examine

A ploter:

stable to cold .

STATE AND TO BUILDE

the separation and disposition of the two copper atoms in such a complex. The nonyl derivative H_3DFNP (6.1a) was unsuitable for the preparation of a crystalline copper(II)

complex, since the nonyl chain would have given rise to many conformers. A methyl derivative H_3DFMP was used to prepare a biscopper(II) complex and model the hydrogen bonding suggested for the nonyl derivative $[Cu_2(H_2DFNP)_2]$ (6.2). The ligand 1,6-diformaldoxime-4-methylphenol (H_3DFMP) (6.5) was supplied by ICI Ltd Organics Division, and attempts were made to crystallise the bis copper(II) complex. A large number of macrocyclic complexes have been prepared⁴ from the precursor 2,6-diformyl-4-methylphenol (scheme 6.1). The biscopper complexes and a series of heterobinuclear Cu(II)-M(II) complexes have been

nitiand Paint

210-0.19.828

The Internation (7) - (Cartacture (7) - (Cartacture (7) - (7

The complex $[Cu_2(H_2DFMP)_2]$ (6.4) was prepared by addition of copper(II) acetate to a solution of ligand in a range of solvents (thf, dmf, dma and pyridine). In each case only microcrystalline samples of the biscopper(II) complex could be obtained. These crystals were not large enough for X-ray structure determination.

1005

THEFT

111124

and the set

11.00

- 10 H Ga.

The Property lies

6.2.1 Preparation and X-ray structural analysis of $[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$ (6.6)

An attempt was made to prepare the cationic copper(II) complex by the addition of a solution of copper(II) perchlorate to a solution of ligand H_3DFMP (6.5). It has been found (previous chapters 3 and 4) that the perchlorate salt of copper(II) complexes are generally more soluble than neutral analogues. This would enable slow their neutralisation (with a base) of the perchlorate salt to give a crystalline complex of the neutral biscopper(II) complex $[Cu_2(H_2DFMP)_2]$ (6.4). The biscopper(II) complex $[Cu_2(H_2DFMP)_2](ClO_4)_2$ has not been reported, although many related complexes have been studied as part of an investigation into the magneto chemistry of hydroxy bridged binuclear copper(II) compounds⁶. The conditions used previously (see chapters 3 and 4) for the preparation of the copper(II) complexes were not suitable, as the reaction was instantaneous and gave rise to a precipitate which was difficult to purify due to its low solubility. In an attempt

Fig 6.4 Ortep diagram of [Cu₂(H₂DFMP)₂(ClO₄)₂].

temperature. A solution of H_3DFMP (6.5) in thf was cooled with liquid nitrogen until the solution just started to freeze. The addition of a methanolic solution of copper(II) perchlorate gave a translucent green solution, which on warming to room temperature deposited green prisms of a cationic complex $[Cu(H_2DFMP)_2(ClO_4)_2]$, as shown by the strong infrared absorptions ascribable to the perchlorate group at 1100 cm⁻¹. The addition of base to the solution above did not produce the neutral biscopper(II) complex, but induced precipitation of the perchlorate salt. The X-ray structure determination was undertaken to examine the nature of the hydrogen bonding.

<u>6.2.2 The X-ray structure of $[Cu_2(H_2DPMP)_2(Clo_4)_2].2thf</u> (6.6).</u>$

6.2.3 General.

The complex 6.6 consists of an approximately planar $[Cu_2(H_3DFMP)_2]^{2+}$ unit to which there are bonded across the copper atoms two perchlorate groups (see fig 6.4). The structure of the dication unit $[Cu_2(H_2DFMP)_2]^{2+}$ is shown in fig 6.2 and 6.3 (facing page). The Cu_2O_2 bridging unit is planar due to the crystallographic 2 fold axis which passes through the two μ - oxygen atoms O(la) and O(lb).

In addition to the two phenolate bridges, there are symmetry related perchlorato bridges above and below the N2Cu-O2-CuN2 plane (fig 6.4, facing page) which have been

id for many other related perchlorato complexes . The

Fig 6.5 Ortep diagram of [Cu₂(H₂DFMP)₂(ClO₄)₂]
with one oxygen showing a relatively strong bond of 2.51 Å, and the other a much weaker bond of 2.76 Å. A range of bond lengths have been reported for semi-coordinated perchlorate groups in copper(II) complexes showing comparable bond lengths⁷.

Two thf solvate molecules accompany each molecule, but show serious disorder (see section 7.3). Fig 6.5 (facing page) depicts the ortep diagrams, and the stereoscopic views are shown in fig 6.6.

Fig 6.6 Stereoscopic views of the packing arrangement in $[Cu_2(HDFMP)_2(Clo_4)_2].2thf.$ Fig 6.6a omits the thf

10002264 11/21 1 2 -rode 0.0171 5711/11 - if 16 : 1.20 C Like The THICE HILLING fitriicture. the for any interplanar dim through the -(1)hhs dl. stalar grammage To SHOD-SO-025H

1000

sti itiy

220000

10200

In addition to the crystallographic two fold axis which passes through the methyl and phenolate oxygens, the complex is theoretically capable of showing a pseudo mirror plane symmetry which would relate ligand framents A and B (fig 6.7). In practice this mirror plane relationship dose not exist (see fig 6.4). However, chemically equivalent bond lengths and angles in the A and B fragments agree reasonably well (table 6.1). Actual 2-fold

Fig 6.7 The possible and actual symmetry elements in $[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$

11.pMQ1

10.10

AL LOA

1122002

2010

1100.92

1.011

Bond length/Å	Part a	Part b
Cu-N(1) Cu-O(1)	1.945(16) 1.941(10)	1.985(18) 1.965(12)
Bond Angles/Å		
Cu-N(1)-C(1) Cu-N(1)-O(2) O(2)-N(1)-C(1)	129.3(1.4) 115.5(1.1) 115.2(1.6)	127.9(1.6) 120.1(1.3) 111.9(1.8)
Sum of angles about N(1)	<u>360.0</u> °	<u>359.9</u> °
C(3)-O(1)-Cu C(3)-O(1)-Cu Cu-O(1)-Cu	129.5(0.3) 129.5(0.3) 100.9(0.7)	130.4(0.4) 130.4(0.4) 99.2(0.8)
Sum of angles about O(1)	<u>359.9</u> °	<u>360.0</u> °
Table 6.1 Comparison of bo	nd lengths an	d angles in the
chemically equi	valent parts	(a and b) of
[Cu ₂ (H ₃ DFMP) ₂ (ClO ₄)2]	

The non-hydrogen atoms of the dication unit $[Cu_2(H_2DFMP)_2]_2+$ do not form a perfect planar system, this could be due to the steric repulsion of the two oxime oxygen atoms. The deviation from planarity (fig 6.8) allow the oxygen atoms O(2a) and O(2b) to become further apart.

二日な市民新 117.0 THE CONTRACTOR 10110-0100 JOH N

plin at

100012 We

4.5

In support of the electron density maxima near O(2a) and O(2b) as partial occupancy hydrogen atoms, the bond angles about the oxygen atoms in fig 6.9 (c) correspond to sp^2 hybridisation at the oxygen atoms (table 6.2).

Statistically disordered hydrogen bonds (a) and Fig 6.9 (b), plus a schematic diagram (c) of the assignment of half occupancy hydrogen atoms to the electron density maxima found for the complex $[Cu_2(H_2DFMP)_2)(Clo_4)]$ (6.6)

N(la) - O(2a) - HO(a2)120.5(1.4)N(1a) - O(2a) - HO(a1)119.4(1.3)HO(a2) - O(2a) - HO(a1)120.1(1.3) Sum of angles 360.0 N(1b) - O(2b) - HO(b2)129.8(1.6)N(1b) - O(2b) - HO(b1)97.4(1.3)HO(b2) - O(2b) - HO(b1)132.8(1.6) Sum of angles 360.0 Table 6.2 Bond angles about the oxygen atoms O(2a) and

O(2b)

THEL DOOR 1.) # 5.85 510-10 -LonA baa 1111111 (1)0-05 11010-1630 01 10 848 10-1015 100-1010 1117-02 - 30 mpB Table 1 High

1000 -002 (a) non ab CONTR HES 一日の人である中央部 CON (NEND

268

1407

1.408

117

1) The oxygen is sp^2 hybridised (fig 6.10).

The most overlap of the sp^2 hybridised orbitals will occur if Hx forms bond angles of approximately 120° at the oxygen.

Fig 6.10 sp² hybridisation

2) The oxygen is SP³ hybridised.

One lone pair is involved in hydrogen bonding (fig 6.11). The best overlap will occur when Hx forms bond angles of approximately 111°.

Ht

Fig 6.11 SP³ hybridisation

3) Electrostatic hydrogen bond (fig 6.12).

The best overlap will occur when Hx forms bond angles of approximately 124.5°

>H_x-0-

Fig 6.12 Electrostatic hydrogen bond

From the structure determination the sum of the bond angles about the oxygen atoms O(2b) and O(2a) (table 6.3) are shown to difficult to assign a definite type but are

M(1s)-01.

C bas

214

301916

I I TOYN SON

LINA TO MAKE

#(1b)=0(2c -m #(1b)=0(1) #0(b2)=0(1)

iniona 10 ROM .

Canal S.8 wider

31.524*** 254 (111) 254 (111)

1111

PTO 6113 (1 -Precisi 1/)+ Acq246 about ci

N(1a) - O(2a) - HO(a2)120.5(1.4)N(la) - O(2a) - HO(bl)109.9(1.1)HO(a2)-O(2a)-HO(b1)119.1(1.1)349.5 Sum of angles N(1b) - O(2b) - HO(b2)129.8(1.6)N(1b) - O(2b) - HO(al)112.1(1.2)HO(al) - O(2b) - HO(b2)113.5(1.2)355.4 Sum of angles

Table 6.3 Bond angles about the oxygen atoms O(2a) and O(2b)

The separation of 2.99 Å between the two copper atoms is to great to allow a strong Cu-Cu interaction by direct overlap of metal orbitals. Also it has been reported⁸ that for compounds of this type the degree of super exchange interaction is dependent on the angle between the bridging oxygens and the copper atom (fig 6.13).

> Part A Part B Part B Part B

Fig 6.13 Bond angles about the bridging oxygen atoms O(1a)

and O(1b).

 $\frac{C-O/\AA}{Part A} = \frac{Cu-O/\AA}{1.345(27)} = \frac{Cu-O/\AA}{1.941(10)} = \frac{100.9(0.7)}{100.9(0.7)}$ Part B = 1.316(31) = 1.965(12) = 99.2(0.8) Table 6.4 Bond lengths about the bridging oxygen atoms O(1a) and O(1b).

The shorter Cu-O bond in portion A fig 6.13) and other data (table 6.4) would suggest a higher degree of coupling between the oxygen and copper(II) atoms than those in portion B. Therefore, any superexchange interaction that probably occurs for this compound, may be due more to one phenolic bridge than the other. It must be stressed however, that the difference between the bond lengths in part A and B (table 6.4) is not very large in comparison with the errors in their determination. Spin coupling between the two copper(II) atoms may take place using two superexchange pathways⁹ (scheme 6.2).

Scheme 6.2 Spin coupling pathways using d type orbitals.

OUTATE

Mig G.1.8 Dames H

N(15) N(15) 80

10.4 (LATE)

101111

5 2-0 n.L

10100.000

0.044

 $\frac{C-O/\AA}{Cu-O/\AA} = \frac{Cu-O/\AA}{Cu-O-Cu/O}$ Part A 1.345(27) 1.941(10) 100.9(0.7) Part B 1.316(31) 1.965(12) 99.2(0.8) Table 6.4 Bond lengths about the bridging oxygen atoms O(1a) and O(1b).

The shorter Cu-O bond in portion A fig 6.13) and other data (table 6.4) would suggest a higher degree of coupling between the oxygen and copper(II) atoms than those in portion B. Therefore, any superexchange interaction that probably occurs for this compound, may be due more to one phenolic bridge than the other. It must be stressed however, that the difference between the bond lengths in part A and B (table 6.4) is not very large in comparison with the errors in their determination. Spin coupling between the two copper(II) atoms may take place using two superexchange pathways⁹ (scheme 6.2).

Scheme 6.2 Spin coupling pathways using d type orbitals.

BUTTO -

Lo. 10/8

20010

le le see see see see

0- 00-07970

1.128

i hand title bit

Conclusion

The X-ray structure of $[Cu(H_2DFMP)_2(ClO_4)_2]$.2thf has shown the hydrogen bonding of the oxime groups to be asymmtrical as predicted in section 6.1. The preparation of the cationic complex was achieved using a novel synthesis of cooling the solutions before reaction to produce a crystalline complex suitable for X-ray structural determination. This procedure did not prove successful for producing the neutral complex. The lack of time has prevented the magnetic data being available at the conclusion of this project.

6.3 The infrared of coordinated perchlorates.

The difference between ionic and coordinated perchlorate can often be detected in the infrared spectrum¹⁰. The perchlorate ion has a regular tetrahedral structure and belongs to the point group Td, having nine vibrational degrees of freedom distributed between four normal modes of vibration (table 6.5).

Light C.A. addresse

- +1.1mm

the second second

040258

10000

7945

1.001

1011042

110-110-08

Canada

- CTI 1

10.00

- 114

111 2 11 KA

117

Table 6.5 Vibrations of the ClO_4 group as a function of symmetry 10

For ionic perchlorates the characteristic infrared frequencies are:

- 1) A very broad strong band with a poorly defined maximum $(VClo_4 \ ll00 cm^{-1})$
- 2) A medium strong band at 625 cm^{-1}
- 3) A weak absorption at 930 cm^{-1} (this absorption is weakly allowed due to a slight distortion of the ion in a crystal field of lower symmetry than itself).

The degree of splitting of these absorptions will be dependent on the extent and type of coordination of the perchlorate ion. A bidentate bridged ligand shows a greater splitting pattern than a monodentate ligand¹⁰(fig 6.14).

113 Add 113 Add 113 Add 114 Ad

23,6006

Fig 6.14 Different types of perchlorate enviroment.

The effect of coordination of the perchlorate group will bring major differences in the infrared spectra, and additionally minor shifts or splittings may result from a lowering of the site symmetry of the group from coupling of vibrations between perchlorate groups in the same unit cell, or purely from an isotopic effect within the group. In this thesis, three of the five structures discussed contain perchlorate anions, which have different types of environment (table 6.6).

- . . .

a contraction

s.terrol.douwg

Helling collige

0.077

Fig 6.15 The infrared spectra of complexes 1, 2 and 3 in the region of 1100 cm⁻¹.

<u>Complex</u>	5		<u>Section</u>	<u>Perchlorate</u> Type	
[Cu ₂ (H	cyendimer)](C	(7.1)	Ionic		
[Cu ₂ (H ₂	cyendimer)(Cl	(7.2)	One Ionic		
[Cu ₂ (H ₂	DFMP)(C104)2]	(7.3)	One Unidentate Both Bidentate (Bridging)		
Mode ⁸	Complex 1	<u>Complex 2</u>	Compl	<u>ex 3</u>	
	(Ionic)	(Unidentate)	(Biden	tate)	
1	930 w 936 w	932 w	922 930 936	W W	
4	624 s	625 s	625	8	
3	1075 bs	1055 s 1100 bs	1035 1100 1170	8	

Table 6.6 Observed infrared absorptions assigned to the perchlorate group

The main differences occur at 1100 cm⁻¹, which as shown in fig 6.15 (facing page) are strongly split for the bidentate perchlorate. The degree of splitting will increase with the distortion of the tetrahedral arrangement of the perchlorate oxygens, and this will depend on the strength of the Cu-O(ClO₃) bond (fig 6.16).

1.9764

11.9

Lowers Lowers Lowers Lowers Lowers Lowers Lowers

3 1 110841

0.11100005308

1035

lex 3

Fig 6.16 Bonding distance of the $Cu-O(ClO_3)$ in complexes 2 and 3.

The most significant differences in the infrared spectra of the three complexes are at 1100 cm⁻¹, but complex 3 does not show as much splitting of the 1100 cm⁻¹ band as expected due to only half the total amount of perchlorate being coordinated. No splitting was observed for the 4th mode at 625 cm⁻¹ for any of the above complexes, whereas Nelson et al¹¹ have reported a splitting of the 4th mode for the complex $[Cu_2L(NCS)_2](ClO_4)_2$ (fig 6.17). No other infrared data for this complex were reported.

1.5428

I I NIGHT

11.5

stall stall

A DESTRUCTION A

the birth la

he styphetty.

Conclusion

From the infrared data of other cationic complexes presented in this thesis it is proposed that $[Cu_2(H_4 bicybenz)](ClO_4)_4$ has coordinated perchlorates shown by the split infrared band at 1100 cm⁻¹ (fig 6.18). All other perchlorate complexes have shown no appreciable splitting at 1100 cm⁻¹ although the possibility of a mixture of ionic and coordinated perchlorates cannot be excluded.

1118 plf

Apacolas I espectas I band al I politicarias atacolas ato oceaato oceaato ocea-

References

i i i Coang

110210

0. Mi2:01

17 Y.

1.7.0044

11114

11:001110

- 1 I.C.I. Organics Division.
- 2 Okawa, H., Tokii, T., Muto, Y. Kida, S. <u>Bull. Chem. Soc.</u> Japan. 1973, 46, 2464.
- 3 Bleany, B., Bowers, K.D. Proc. Roy. Soc. Ser A. 1952, 214, 451.
- 4 Groh, S. Israel. J. Chem. 1977, 15, 277 and ref therin.
- 5 (a) Gagne, R.R., Henling, L.M., Kistenmacher, T.J. <u>Inorg.</u>
 <u>Chem.</u> 1980, 19, 1226. (b) Lambert, S.L., Spiro, S.L.,
 Gagne, R.R., Hendrickson, D.N. <u>Inorg. Chem.</u> 1982, 21, 68.
- 6 Hatfield, W.E., Comments. Inorg. Chem. 1981, 1, 105.
- 7 Hendrickson, D.N., Haddad, M.S. <u>Inorg. Chem. Acta.</u> 1978,
 28, L121 and ref therin.
- 8 Hodgeson, D.J. <u>Inorg. Chem.</u> 1976, 15, 3174.
- 9 Casetellato, U., Vigato, P.A., Vidali, M. Coord. Chem. Rev. 1977, 23, 31.
- 10 Hathaway, B.J., Underhill, A.E. J. Chem. Soc. 1961, 3091 and references therin.
- 11 Drew, M.G.B., McCann, M., Nelson, S.M. J. C. S. Dalton. Trans. 1981, 1868.

Chapter 7 X-ray structure determination

Section	Compound	Page
7.1	[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₃	232
7.2	$[Cu_2(H2cyendimer)(H_2O)(ClO_4)](ClO_4).(.5thf)$	238
7.3	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	242
7.4	H ₁₂ cyendimer	250
7.5	[Cu(cyphX)]	252
Refere	ences	254

٠

1111030300 - - TALLAS. 111110 2 12) 10 8 241 10 1.446 - 1 AL 1110101-0 3 Service - 1 1004 3.6 N.02114 ling bits Li Deve et Trant

.

CHAPTER 7

X-ray Structure determination

7.1 X-ray structure of [Cu₂(H₄cvendimer)](ClO₄)₃ (7.1)

Crystal Data: $Cu_2C_{36}H_{40}N_8Cl_3O_{12}$ M wt = 1010.2, monoclinic space group Cc, a = 22.577(7), b = 11.016(4), c = 20.909(8) Å. Beta = 118.96°, V = 4550 Å³, Z = 4, T = 22°C, d(calc) = 1.47 g cm⁻³, Crystal Size = 0.13 x 0.26 x 0.32 mm, data = 1815 [I> 3 σ (I)]. Absorption corrections were applied based on a pseudo-ellipsoid model¹.

 $[Cu_2(H_4 cyendimer)](ClO_4)_3$

General systematic absences in the data of the type h + k = 2n + 1 indicated that the lattice was C-face centered. The special absences h01, 1 = 2n + 1 indicated the presence of a C-glide perpendicular to b. This suggested two possible monoclinic space groups Cc or C2/c. The two fold axis for C2/c would not show systematic absences.

A Patterson synthesis was calculated to resolve the ambiguity in the space group, and to determine the position of the copper atom(s). Early attempts at solving the

Patterson were made with the assumption that the compound Was a tetraperchlorate complex $[Cu_2(H_4cyendimer)](ClO_4)_4$,

which requires the unit cell to contain eight copper atoms on the basis of the crystal density being in a reasonable range. For the space group C2/c the eight copper atoms are generated by the symmetry operations shown in table 7.1. For four dinuclear complexes per unit cell this would require the $[Cu_2(H_4cyendimer)]$ unit to lie on a crystallographic symmetry element e.g. the diad as in fig 7.1. Alternatively, the space group Cc contains only four asymmetric units per unit cell (table 7.4) and therefore each asymmetric unit could contain two independent copper atoms in the complex 7.1 (fig 7.2).

Fig 7.1 Schematic diagram of Fig 7.2 Schem the dimer for C2/c space group the dimer for

Fig 7.2 Schematic diagram of the dimer for Cc space group

x y z -x -y -z -x y 0.5 - z x - y 0.5 + zSymmetry related positions (0 0 0 0.5 0.5 0)

Table 7.1 Equivalent positions for the space group C2/c.

A copper atom at the position x y z in the C2/c space

Royana H == H == 1000 1000 1000 1000 1000 1000 Abbary (1)

Z.,

h = 1 = 1 publication 7 the preserve the sec food bluences, A Fatierro

ambiguity in the

and the second second

2 x	2у	22					
-2x	0	0.5 + 2z					
0	2у	0.5					

Table 7.2 The three Cu-Cu vectors for $[Cu_2(H_4cyen-dimer)](ClO_4)_3$ (7.1) in the space group C2/c.

Examination of the first twenty highest peaks in the Patterson map (table 7.3) did not produce a solution based on the above (table 7.2) vectors.

	<u>Height</u>	X/X	<u>Y/B</u>	Z/C
21	999.	0.0	0.000	-0.000
22	999.	0.0	0.000	1.000
23	999.	0.500	0.500	-0.000
24	999.	0.500	0.500	1.000
25	310.	0.000	0.500	0.500
26	310.	0.500	0.0	0.500
27	225.	0.000	0.337	0.500
28	225.	0.500	0.163	0.500
29	128.	0.380	0.086	0.464
210	128.	0.120	0.414	0.536
511	125.	0.120	0.072	0.037
212	125.	0.380	0.428	0.963
213	103.	0.158	0.315	0.876
214	103.	0.342	0.185	0.124
215	102.	-0.000	0.198	0.500
216	102.	0.500	0.302	0.500
217	94.	0.296	0.141	0.259
218	94.	0.204	0.359	0.741
219	79.	0.178	0.442	0.724
20	79.	0.322	0.058	0.276

Table 7.3 Patterson map from the diffraction data of the

complex 7.1.

The above results suggested the dimer 7.1 did not belong to the C2/c space group, and the non-centrosymmetric space group Cc was investigated. The equivalent positions are

- state

0.000

101104

TAXAD BY

1.141

1111244

11114338

1.12214

1.7 pls verified

N.Y.X ---

Stable 7:7 Bound

A 000001 A

x y z x -y 0.5 + z

1.5

X ()-

TO BLOOKT

Contract of the local states of the local stat

1111 CBB

23

40

10

10

110

1.75

13

012

010

610

060

1. T -0.144T

0.01

0.01

15-01

2.5

27

The store reals

Ehs.23/0 space

TOT NAM OF GRATE

sides at swate

Symmetry related positions (0 0 0 0.5 0.5 0)

Table 7.4 Equivalent positions for the space group Cc.

A copper atom Cul at the position x y z would give rise to one strong vector between the symmetry related copper atoms at 0 2y 0. Examination of the Patterson map revealed the peak (Q7) 0.0 0.337 0.5 which could correspond to the vector 0 2y 0.5. This would give a value for the y coordinate of 0.169 for Cul. This solution only supplies the y coordinate of a copper atom, and further vectors need to be sought to find the the coordinates for Cu2. The vectors between the two copper atoms Cul and Cu2 in the asymmetric unit are calculated by subtracting the positions x, y, and z for Cul, away from the two positions of the other Cu2 atom which gave the two

vectors x_1-x_2 y_1-y_2 z_1-z_2 and x_1-x_2 y_1+y_2 0.5+(z_1-z_2). These vectors between the two copper atoms Cul and Cu2 should appear at high intensity in the Patterson map. The length of the first vector will correspond to the Cul-Cu2 contact distance in the dimer $[Cu_2(H_4cyendimer)](ClO_4)_3$ (7.1). From molecular models of the ligand it was found that this distance would be less than 7 Å, but will depend greatly on the conformation of the ligand. The vector which most obviously met the requirements of being less than 7 Å is Qll which was particularly short at approximately 2.9 Å. If vector Qll corresponds to x_1-x_2 , y_1-y_2 , z_1-z_2 , then QlO can be

readily assigned as x_1-x_2 , y_1+y_2 , $0.5+(x_1-x_2)$ having an identical x value (0.120) and a similar height value (128 cf 125). The y coordinates of both copper atoms were evaluated by simultaneous equations giving $y_1 = 0.171$ and $y_2 = 0.243$. In the space group Cc the origin is not fixed in the "a" and "c" directions and therefore x_2 and x_2 were assigned arbitary values, and x_1 and x_1 were calculated using these arbitary values and the vectors Q10 and Q11. The coordinates for Cul and Cu2 are:

Cu2 0 0.243 0.250 Cul 0.12 0.171 0.283

A Fourier electron difference map based on this solution for the two nonequivalent copper atoms showed a recognisable fragment of the expected molecule. The atoms which were located from this map were used for further Fourier maps which located all the non-hydrogen atoms. More than four positions were found for the oxygen atoms about two of the perchlorate anions, and a fine grid difference map was used to resolve the disordered positions. The oxygen atoms were fixed at these sites and assigned a common thermal parameter. The site occupation factors for the disordered oxygens were allowed to refine. In the final cycles of refinement anisotropic thermal parameters were assigned to the two copper atoms and Cl(1) and Cl(3) atoms

hide? 0002 - 10 0 - 0 - 0 000 1.005 00020011009 10100 VIEW LINE 1000 pipipipi pipipi 11 10078 11/2-1/500 - DVJ odf 目前の大力が新 1-1-181+658 5 au 105 C DADUATED Cagtu a construction (bbe ligan. I - lud , A 7 medd and .bangil ent

in sinemusicpen

particularly an

of abacquaryon

where previously higher isotropic thermal parameters were found. Hydrogen atoms were included in fixed positions, "riding" at a fixed distance of 0.95 Å from the carbon

A front of the filt A front of A front of which were then that then that the discretion the discretion the discretion the discretion atoms to which they were attached, having a common isotropic thermal parameter. The hydrogen atoms of the anilino nitrogen atoms were also included in calculated positions at a fixed distance of 0.9 Å, and assigned a common thermal parameter. This resulted in R = 0.0727 and $R_w = 0.0712$. Fig 7.3 depicts the schematic and ortep diagrams of the complex 7.1.

3+

Fig 7.3 Ortep diagram of $[Cu_2(H_4 cyendimer)]^{3+}$

7.2 X-Ray structure of $[Cu_2(H2cyendimer)(H_2O)(ClO_4)] - (ClO_4).0.5thf$

Crystal Data: $Cu_2C_{38}H_{44}N_8Cl_2O_9$ Mwt = 998.9, monoclinic space group Cc, a = 21.963(7), b = 16.326, c = 12.699(4) Å. Beta = 103.73°, V = 4423.3 Å³, Z = 4, T = 22°C, d(calc) = 1.451 g cm⁻³, Crystal Size = 0.36 x 0.43 x 0.35 mm, data = 2835. [$\underline{I} \ge 3\sigma(\underline{I})$]. Absorption corrections were not applied.

= $H_2 O C U C U O C I O_3 (C I O_4)$ $+ R O C U C U O C I O_3 (C I O_4)$ $+ R O C U C U O C I O_3 O C I O_3 O C I O_3 O C I O_4 O C I O_4$

General systematic absences in the data of the type h + k = 2n + 1 indicated the lattice was C-face centered. The special absences h0l, l = 2n + 1 indicated the presence of a C-glide perpendicular to b. This indicated two possible monoclinic space groups Cc or C2/c. The two fold axis for C2/c would not show systematic absences. A Patterson Synthesis was calculated to resolve the ambiguity in the space group, and to determine the position of the copper atom(s). The volume of the unit cell was slightly smaller than that of $[Cu_2(H_4cyendimer)](Cl0_4)_3$ (7.1) (4423.3 cf 4450 Å³) and therefore approximate calculations were made with with the assumption that the compound was a biscopper diperchlorate complex $[Cu_2(H_4cyendimer)](Cl0_4)_2$, which would require eight copper atoms per unit cell. The non-centrosymmetric space group Cc was considered first and

Atona (LaoLTI anilia poulla gourne by 1

1117 C.C.a23

the vectors between two copper atoms Cul and Cu2 in the same asymmetric unit are x_1-x_2 y_1-y_2 s_1-s_2 and x_1-x_2 y_1+y_2 0.5+(s_1-s_2) as calculated in section 7.1.

be k - 2) The special (af a C(0)) af a C(0)) postivic 2 fation for (fation f Examination of the first twenty highest peaks in the Patterson map (table 7.5) produced a solution based on the above vectors.

	HEIGHT	X/A	<u>Y/B</u>	<u>z/c</u>
Q1	1000.	0.0	-0.000	-0.000
Q2	1000.	0.0	-0.000	1.000
Q3	1000.	0.500	0.500	-0.000
Q4	1000.	0.500	0.500	1.000
Q5	185.	0.000	0.279	0.500
Q6	185.	0.500	0.221	0.500
Q7	162.	0.375	0.012	0.421
Q8	162.	0.125	0.488	0.579
Q9	160.	0.123	0.238	0.081
Q10	160.	0.377	0.262	0.918
Q11	100.	0.502	0.418	0.463
Q12	100.	0.002	0.082	0.463
Q13	100.	-0.002	0.082	0.537
Q14	100.	0.498	0.418	0.537
Q15	94.	0.217	0.000	0.081
Q16	94.	0.283	0.500	0.919
Q17	77.	0.451	0.500	0.870
Q18	77.	0.049	-0.000	0.130
Q19	76.	-0.000	0.111	-0.000
Q20	76.	-0.000	0.111	1.000

Table 7.5 Patterson synthesis from the diffraction data

of the complex 7.2

The peak which corresponds to x_1-x_2 y_1-y_2 z_1-z_2 should be less than about 7 Å in length for the same reasons discussed in section 7.1. The highest peak to meet this requirement was Q9 which showed an approximate contact distance between Cul and Cu2 of 4.8 Å. If this vector Q9 corresponded to x_1-x_2 , y_1-y_2 , z_1-z_2 , then Q8 can be readily assigned as x_1-x_2 , y_1+y_2 , 0.5+(z_1-z_2) having a similar x value (0.123 cf 0.125) and height (162 cf 160). The

evaluated in the same way as for the previous complex 7.1, and the coordinates for Cul and Cu2 are:

0.000 0.125 0.250 Cul

0.124 0.363 0.330 Cu2

A Fourier difference map phased on this solution for the two nonequivalent copper atoms showed recognisable fragments of the expected molecule and gave an R factor of The atoms which were located from this map were 0.33. used for further Fourier maps which located all the nonhydrogen atoms plus the anilino hydrogen atoms. The hydrogen atoms attached to the carbon atoms were included in calculated positions, "riding" at a fixed distance of 1.08 Å and assigned a common thermal parameter. One of the two perchlorates was coordinated to Cu2, while the other perchlorate was disordered, and refined as described in section 7.1. In the final cycles of refinement, anisotropic thermal parameters were assigned to the two copper atoms and the following atoms C(9c), C(9d), O(1), Cl(1) and Cl(2) where previously higher isotropic thermal parameters were found. The atoms C(9c) and C(9d) showed disorder, and a fine grid difference map was examined to try to resolve the disordered positions, however, the electron density for these two atoms was smeared in the x-z plane rather than resolved into separate peaks (see chapter 3.4.4 for further details). A tetrahydrofuran (thf) solvate molecule accompanied each dimer molecule, but showed high thermal meters for all the five atoms located from the Fourier

にしたかける一般の意思

-1763

ЛQ

000000

10

Rΰ

0.22

CONTRACTOR OF THE OWNER OW 1111-1 15 ALAUDALD line linematioped station is in the Dirresponded to assigned An A to this of estat

electron difference map. These five atoms were assigned

common isotropic thermal parameters which allowed their

14-101600 1.111.006 100 110 Chianoff # 10 098 1141 1.25.1 1044 10000004 G-1878 Voley ML THE DATE NO.2 perch 10.1 (1.1 (1.1 11111000 Derest _i.e. 845 Ebs | | | IIIIIIIVEIg. EUN/N Dough, The 15 blue mill Simbonalk; these two is out suid. gra stol bayloget 1-1 A Lafaber Inna Latosgeoors

site occupation factors to refine to 0.5, thereby accounting for half a mole of thf per mole of complex 7.2. The final cycles of refinement gave an R = 0.0753 and $R_w = 0.0727$. Fig 7.4 depicts the ortep diagram of the biscopper(II) complex 7.2.

7.3 X-Ray structure of $[Cu_2(H_2DFMP)_2(Clo_4)_2]$.thf (7.3).

Crystal data: $Cu_2C_{26}H_{52}N_8Cl_2O_6$ Mwt = 855.7, monoclinic space group I42d, a = 21.527(3), c = 14.759(8) Å. V = 6839 Å³, Z = 8, T = 22°C, d(calc) = 1.66 g cm⁻³, 1st Crystal Size = 0.3 x 0.3 x 0.24 mm 2nd Crystal Size = 0.3 x 0.3 x 0.16 mm data = 929 and 481 respectively [I> $3\sigma^-$ (I)]. Absorption corrections were not applied.

Two square pyridimal shaped crystals were used for data collection and both were coated in "Araldite Resin"² to prevent loss of the solvate thf. The first crystal was used to collect data within the theta range of $2.5 - 10^{\circ}$ before disintergrating. The second crystal was used to collect data within the theta range $7 - 30^{\circ}$ (an overlap of 3° to allow both sets of data to be scaled and merged). The two data sets were merged through common reflections by linear least squares³ to give 1031 unique reflections (interlayer scale factors of 0.4687 and 2.133) with a merge R factor of 0.0436. From the original 25 refections the diffractometer calculated a orientation matrix and a Dirichlet reduced unit cell. The relationships of the parameters of the cell indicated that a body-centered unit cell with all angles 90° and two of the axis of equal length could be selected. The intensity relationships of a large range or reflections was tested and indicated that

stin atte scores be the biotes

0.90340

1,0131

- - A L.I. 619910 1.128.4 142d, http:// 151 - X A 10015 1010 1249 6 1.0 1.145 300 111 - 120 P30V ALC: NOTED typing of 2644 10 100004 stable regiling a 101.6 03 96 int ant dat - -----I'm Thinlinguit 10 yodani H

disfractumele: Distantion induced Perameters of the the Laue symmetry (table 7.6) corresponded to the tetragonal crystal system.

h	k	1	=	ħ	k	1	=	h	k	ī	=	ħ	k	ī	=	ħ	k	1	=	h	k	1	=	ħ	k	1	-	h	k	ī
k	h	1		k	ħ	1	=	k	h	ī	=	k	ħ	ī	-	k	h	1	-	k	ħ	1	=	k	h	ī	=	k	ħ	ī
T	ab]	le	7	. 6	1	La	ue	81	y mu	net	tr	y i	Eo	r 1	the	B (te	tri	ago	ona	n 1	C	ry	sta	a 1	8)	781	tei	n.	

Systematic absences in the full data set gave rise to two possible space groups, I42d and I41md, both having the same special conditions: $0 \ k \ (k + 1 = 2n)$ and $h \ k \ (1 = 2n \ and \ 2h + 1 = 4n)$.

Number of positions			<u>142d</u>			
	x,	y,	I;	x,	0.5+y,	0.25-z
1.6	x,	Ţ,	z ;	x,	0.5-y,	0.25-z
10	y ,	x,	Z 7	у,	0.5+x,	0.25+z
	У	x,	z ,	y ,	0.5-x,	0.25+z
8	x,	0.25,	0.125;	x,	0.750,	0.125
	0.75,	x,	0.875;	0.25,	x,	0.875
•	Ο,	0,	I ;	0,	0,	Ŧ
0	0,	0.5,	0.25+z;	0,	0.5,	0.25-1

Table 7.7 Eqivalent positions for space groups I42d and I4₁md (continued next page).

			41md		
x,	y,	Z ;	y,	0.5+x,	0.25+z
x ,	Ţ,	z ;	¥,	0.5-x,	0.25+z
x,	y,	Z ;	¥,	0.5+x,	0.25+z
x,	Ţ,	z ;	y,	0.5-x,	0.25+z
0,	y,	z ;	y,	0.5,	0.5+z
0,	-у,	Z;	-у,	0.5,	0.5+z

Symmetry related positions (0 0 0, 0.5 0.5 0.5)

100.0

1011111282

1.1.1.1

0.Zdal

Lincip old

2010-0258

in Twomp

34

T.V mideT

mail.ev3.bd

I Toylar

14 12 -

1101

16

Table 7.7 Eqivalent positions for space groups I42d and I4 $_1$ md

From the expected structure both space groups are possible, one with a two fold axis and the other with a mirror plane (Fig 7.5).

Fig 7.5 Possible symmetry elements for the cation $[Cu_2(H_2DFMP)2]^{2+}$ (7.3).

The space group $I4_1$ md was considered first, and table 7.8 shows the Cu-Cu vectors for the copper atoms in general

Vectors between the copper atoms in general and Table 7.8 special positions

10134

- 1107 2.7 pH 100000

inits meage od? spaws the Co-Co

2x,

	HEIGHT	X/X	<u>Y/B</u>	<u>z/c</u>
21	999.	-0.000	0.000	-0.000
2	219.	0.034	0.500	-0.000
53	213.	0.000	0.465	0.500
54	194.	0.000	0.140	-0.000
5	170.	0.065	0.064	-0.000
6	85.	0.033	0.364	-0.000
	76.	0.061	0.118	-0.000
8	76.	0.120	0.060	-0000
59	74.	0.048	0.000	-0.225
510	74.	0.095	-0.000	0.217
	74.	0.000	0.095	0.217
$\frac{1}{12}$	70	0.029	0.440	-0.000
513	69.	0.000	0.047	0.222
	67	0.090	0.437	-0.000
15	63.	0.061	0.472	0.500
16	63	0.065	0 410	0 500
	56	0 060	0 260	-0.000
	54	0 000	0 31 9	0 500
10	57.	_0.000	-0 000	0.500
122	JZ. 40			0.109

0.77 ml

V 703

10 , 1Y-30

1000

Table 7.

Table 7.9 Patterson synthesis from the diffraction data of the complex 7.3

The Patterson was not readily interpreted, and a further Patterson (table 7.10) was obtained by examining a different part of the unit cell.

The highest 20 peaks from the second Patterson synthesis are tabulated in table 7.10.

00000000000000000000000000000000000000		
00000000000000000000000000000000000000		
000000000000000000000000000000000000000	-40	
000000000000000000000000000000000000000	- 50	
000000000000000000000000000000000000000	1.00	
000000000000000000000000000000000000000	- 25	
10000000000000000000000000000000000000	10	
20000000000000000000000000000000000000	30	
100000000000000000000000000000000000000	: ap	- S
000000000000000000000000000000000000000	10	
110000000000000000000000000000000000000	10	
1100000000	100	
10000000	14.02	
100000	1.10	
10000	193.0	
10	- 41	
10	1.00	
10	120	
10	020	
1.10	10	
	110	

910

40

Table 7.10 Patterson synthesis from the diffraction data of the complex 7.3

<u>Z/C</u>

0.000

0.000

0.000

0.000

0.000

0.000

0.250

0.250

0.250

0.250

0.245

0.245

0.000

0.000

0.250

0.250

0.228

0.224

0.000

0.000

<u>Y/B</u>

-0.000

0.031

0.500

0.064

0.000

0.140

0.202

0.298

0.242

0.258

0.165

0.198

0.025

0.450

0.163

0.337

0.049

0.125

0.186

-0.000

X/X

-0.000

0.500

0.032

0.064

0.140

0.298

0.202

0.257

0.243

0.198

0.165

0.450

0.019

0.337

0.163

0.000

0.047

0.180

0.121

-0.000

HEIGHT

999.

267.

257.

202.

192.

192.

153.

153.

150.

150.

124.

123.

120.

120.

119.

119.

109.

105.

103.

103.

01

Q2

Q3

Q4

Q5 Q6 Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

These results eliminated the space group $I4_1md$ since the vectors shown in table 7.8 could not all be assigned to the above Patterson. The alternative space group I42d was considered, and the vectors between two copper atoms in general positions are shown in table 7.11.

÷.

0.1+±03548 100 P

2x,	2у,	0.
x+y,	х-у,	22.
х-у,	x+y,	22.
2x,	0.5,	22-0.25.
2x,	2y-0.5,	2z-0.25.
(x-y) _#	0.5+(x-y),	0.25.
(x+y),	0.5-(x+y),	0.25

Table 7.11 The vectors between two copper atoms in general position for the space group I42d.

The Patterson synthesis was solved for two copper atoms in general positions by assignment of all the vectors (table 7.12) as follows.

Vectors (table 7.11)			Patterson peak			(Patterson synthesis)	
2x,	2y,	0	Q6	0.033	0.364	-0.000	(1)
x+y,	x-y,	21	011	0.198	0.165	0.245	(2)
х-у,	x+y,	2=	Q12	0.165	0.198	0.245	(2)
2x,	0.5,	2z-0.25	Q3	0.032	0.500	0.000	(2)
0,	2y-0.5,	2z-0.25	Q6	-0.000	0.140	0.000	(2)
(x-y),	0.5+(x-)	y), 0.25	Q15	0.337	0.163	0.250	(2)
(x+y),	0.5-(x+	y), 0.25	Q8	0.202	0.298	0.250	(2)

Table 7.12 Assignment of the Patterson peaks for the space group I42d.

The coordinates of the copper atom are:

Cu 0.517 0.182 0.123

After a series of fourier maps for the above solution a

Aba yasaaaa (...) Baa khoya (...) Baaa khayaa Daga khayaa

100

12

100

01,0AE

fragment of the expected molecule be recognised. The hydrogen atoms were included in calculated positions,

"riding" on at a fixed distance of 1.08 Å from the carbon atoms to which they were attached having a common isotropic thermal parameter. Four sites of low electron density corresponded to the two hydroxyl hydrogens. These were assigned site occupation factors of 0.5 and refined (see chapter 6 for further details). Anisotropic thermal parameters were assigned to the Cu and Cl atoms in the final cycles of refinement. The dimer molecule was found to have one perchlorate (coordinated in a bidentate fashion to the two copper atoms) and one thf solvate per asymmetric unit. A fine grid difference map detected ten areas of high electron density, and these ten positions were assigned common thermal parameters to allow the site occupation factors to refine. These site occupation factors were fixed in the final cycles of refinement and accounted for two moles of thf per mole of complex 7.3. This resulted in R =

the second se

122 1.芝利油 1,2718 125 123 - 11月1 (1) 24 88 = C042 200 101 L22508 2,121 00 121,2 Vectors

7.4 X-ray structure of H12cyendimer

Crystal Data: $C_{36}H_{48}N_8$ Mwt = 592.8, monoclinic space group P21/n, a = 14.603(2), b = 9.846(2), c = 11.462(2) A. Beta = 97.25(2)°, V = 1648 A³, Z = 4, T = 22°C, d(calc) = 1.194 g cm⁻³, Crystal Size = 0.19 x 0.22 x 0.24 mm, data = 3236 [I> 30⁻ (I)]. Absorption corrections were not applied.

From the original 25 reflections the diffractometer calculated a orientation matrix and a Dirichlet reduced unit cell. The relationships of the parameters of the cell confirmed a monoclinic space group. Sytematic absences in a range of the reflection data indicated the space group $P2_1/n$. The structure was solved using the SHELX program by TANGENT multisolution refinement with values of E > 1.3. The starting origin and multisolution phases were selected as in table 7.13.

<u>Origin</u>		<u>n</u>	E	<u>Multisolutions</u> <u>of R</u>			E
8	5	2	3.303	-1	0	5	3.214
1	8	3	3.443	1	0	3	2.992
1	1	9	4.336	0	1	9	2.970

Table 7.13 Origin and multisolution phases.

11011111111 - IT HOUSE LAN LARINGS BOTICS! OF 0.00001000 1 - Canito I FEED ALL AND A \$1.0012 - ID IVAL 7 . 3 1 14 collogie -COMMON STOLLE A COME The state of the T TO PRICE DOW LITED

From the S map with the lowest RA(= 0.103) all the 22 con-hydrogen atoms were found from the bighest 22 peaks. reminney21H fo margain gerro 0.7 pig

From the E map with the lowest RA(= 0.103) all the 22 non-hydrogen atoms were found from the highest 22 peaks. reminney21H fo margain getro 0.7 gif

ø

Isotropic refinement on these 22 atoms gave R = 0.118. The C-H hydrogen atoms were included in calculated positions "riding" on the atoms to which they were bonded at a fixed distance of 0.95 Å. The N-H hydrogen atoms were located from a difference map and included in subsequent refinement. Anisotropic thermal parameters were assigned to the nitrogen atoms, while two different common thermal parameters were assigned to the phenylene and methylene hydrogen atoms. These two parameters were included as free variables in the refinement. This resulted in of R = 0.077 and Rw = 0.0734. Fig 7.9 (facing page) depicts the ortep diagram of H_{12} cyendimer. The stereoscopic view is shown below (fig 7.10).

7.5 X-ray structure of [Cu(cyphX)]Crystal Data: $CuC_{22}H_{18}N_4O_2 M wt =$ 401, monoclinic space group P21/c, a = 15.088(5), b = 16.034(5), c = 7.176(3) Å. Beta = 96.15°, V = 1724 Å³, Z = 4, T = 22°C, d(calc) = 1.55 g cm⁻³, Crystal Size = 0.2 x 0.15 x 0.1 mm data = 2043 Absorption corrections were applied based on a pseudo ellipsoid model¹.

From the original 25 reflections the diffractometer calculated a orientation matrix and a Dirichlet reduced unit cell. The unit cell parameters were similar to those found for a previously characterised compound $[Cu(cyphO_2)]$ (chapter 4). There was however a significant difference, and the full set of diffraction data were collected. The structure was solved using the same x, y and z coordinates of the nonhydrogen atoms found for the compound $[Cu(cyphO_2)]$. Anisotropic thermal parameters were assigned to all the non hydrogen atoms, while the 14 hydrogen atoms were assigned common thermal parameters and refined isotropically. This resulted in R = 0.0428 and Rw = 0.0430. Fig 7.11 depicts the ortep diagram of [Cu(cyphX)] where X = O₂.

References

1111

- 1 Sheldrick, G.M. <u>EMPABS</u> Program for absorbtion corrections. The University of Cambridge. 1976.
- 2 Any resin which does not contract on hardening can be used
- 3 Rae,A.D., Blake,A.B. <u>Acta. Cryst.</u> 1966, 209, 586.
 General reference: Sheldrick,G.M. <u>SHELX Program.</u> The
 University of Cambridge. 1976.

1 (8547)) 1 (44) 1 (

11100

Chapter 8 Experimental section

*

Compound	Page	Reference
H ₂ cyen 8.II	258	1
[Cu(cyen)] 8.IIA	259	
$[Cu(H_2cyen)](ClO_4)_2$ 8.IIB	259	
H ₆ cyen 8.III	260	2
[Cu(H ₆ cyen)](ClO ₄) ₂ 8.IIIB	261	
H ₂ Cyph 8.IV	262	1
[Cu(Cyph)] 8.IVA	263	
$[Cu(H_2Cyph)](ClO_4)_2$ 8. IVB	264	
H ₆ Cyph 8.V	265	
$[Cu(H_6Cyph)](ClO_4)_2$ 8.VB	266	
H ₂ cyphNO ₂ 8.VI	267	
[Cu(cyphNO ₂)] 8.VIA	268	
$[Cu(H_2 cyph NO_2)](ClO_4)_2$ 8.VIB	269	
TAB.3HC1 8.VII	269	
H ₂ cyphNH ₂ 8.VIII	270	
[Cu(H ₂ cyphNH ₂)](ClO ₄) ₂ 8.VIIIB	271	
[Cu(cyphNH ₂)] 8.VIIIA	272	
H ₂ cypr 8.IX	273	2
[Cu(cypr)] 8.IXA	274	
H ₂ cybn 8.X	275	2
[Cu(cybn)] 8.XA	276	

Compound	Page	Reference
H ₄ cyendimer 8.XIII	279	2
[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₃ 8.XIIIB1	280	
[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₄ 8.XIIIB2	281	
$[Cu_2(H_2cyendimer)(ClO_4)(H_2O)](ClO_4)$ 8.XIIIB3	282	
$[Cu_2(H_4cyendimer)(CO)_x](ClO_4)_2$ 8.XIIIB4	283	
H ₁₂ cyendimer 8.XIV	284	2
$[Cu_2(H_{12}cyendimer)](ClO_4)_4$ 8.XIVB.	285	
H ₄ cyhexdimer 8.XV	286	
[Cu ₂ (H ₄ cyhexdimer)](ClO ₄) ₄ 8.XVB	287	
H ₁₂ cyhexdimer 8.XVI	288	
H ₁₂ cyhexdimer8HCl 8.XVIC	289	
H ₄ cyprodimer 8.XVII	290	
[Cu ₂ (H ₄ cyprodimer)](ClO ₄) ₄ 8.XVIIB	291	
H ₁₂ cyprodimer8HCl 8.XVIIC	292	
H ₄ bicyphen 8.XIX	293	3
[Cu(H ₂ bicyphen)] 8.XIXA1	294	
[Cu ₂ (bicyphen)] 8.XIXA2	295	
[Cu ₂ (H ₄ bicyph)](ClO ₄) ₄ 8.XIXB	296	
H ₄ bicybenz (8.XX)	297	
[Cu ₂ (bicybenz)] 8.XXA	298	
[Cu ₂ (H ₄ bicybenz)](ClO ₄) ₄ 8.XXB	299	
H ₁₂ bicybenz 8.XXI	300	
[Cu ₂ (H ₁₂ bicybenz)](ClO ₄) ₄ 8.XXIB	301	
[Cu ₂ (HDFMP) ₂] 8.XXIIA	302	

N/V CONT 199758 22) 1 1977 (p)) 1 11/2/1 () dQ[100(8) B₆Cype (121 691051 Aigya_hn (Co(cyp))#21 111/17_ETEO) 4 2:58C2#AT Breenbards 1 (Calkgeypinn) 100/10200 (001) Status 1.11 Lat. ((seystable Sarrho 0.t 104(cybp) } 8.1%

Chapter 1

Compound

-	-	-	-
D	9	~	•
-		-	-
_	-		_

[3+2] condensation product 8.XXIII	304
[3+3] condensation product 8.XXIV	305
(C ₂) ₂ -dialcohol (8.XXV)	306
General methods for the reaction of cyphNH ₂	
with acid chlorides (see chapter 5)	307
References	308

Compound Hacyendimer (Cu2(HACKer) ICu2(H4C and T [Cu2(B2crend)) $(\operatorname{Cu}_2(\operatorname{H}_4 \exists \forall \in \cap^{\pm}))$ H12Cyendimer Cu2(B120Yea) H_cyhexd.sel [Cu2(Hdcyhet) Bl2cyhexdime: H12cybexdiner' Recyprodimit (cugingevern) H12 TYprodimers Habicyphen 8.4 " ICu(H2bicyphen [Cu2(bicyphen)] 8 [Cu2(B_bicyph)] Cu2 Bableybenz (B.XX) [Cu2(bicybenz)] 8 [Cu2(Babicybenz)) Bizbicybenz 8.XXI [Cu2(B12bicybenz)

7.8.15.16.17.18-Hexahydrodibenzo[e.m][1.4.8.11]tetrassacyclotetradecine.

1,2-Diaminoethane (0.63 g, 10.5 mmol) in chloroform (2 cm³) was added to a refluxing solution of 4,7-diaza-2,3:8,9-dibenzodecane-1,10dione (8.1) (2.68 g, 10 mmol) in chloroform (250 cm³). After refluxing for 24 h the solution was evaporated to 80 cm^3 under reduced pressure at 50°C and addition of ethanol (80 cm^3), followed by cooling, gave 7,8,15,16,17,18-hexahydrodibenzo[e,m][1,4,8,11]tetraazacyclotetradecine (8.II) (2.75 g, 9.4 mmol, 94 % yield) as white crystals from methanol/chloroform (1:1, 80 cm³), mp 130^oC, (found: C, 73.9; H, 6.9; N, 19.2. C₁₈H₂₀N₄ requires C, 73.4; H, 7.0; N, 18.6 %). Electronic Spectrum (methanol) λ_{max} / nm (E): 250 (1935), 294 (428). V_{max} / cm : 3240, 3146, 3046, 3016, 2928, 2918, 2888, 2841, 2834, 1636, 1616, 1583, 1577, 1521, 1516, 1511, 1416, 1401, 1372, 1332, 1328, 1202, 1165, 1158, 1141, 1044, 1032, 920, 915, 754, 742, 703. ¹H nmr Spectrum: Õ/ppm 1.80 bs 2H NH; 3.55 s 4H; 3.88 s 4H; 6.65-7.29 m 8H aryl protons; 8.47 s CH. Mass Spectrum m/e: 292(H⁺ = 42 %), 231(9), 175(25), 174(14), 173(17), 149(29), 147(16), 146(30), 145(36), 133(26), 132(26), 131(66), 118(100), 117(38), 104(27), 99(16), 91(36).

((7,8.16.17-Tetrahydrodibenso[e,m][1,4,8,11]tetraesacyclotetradecinato(2-)N⁶, M⁹, N¹⁵, N¹⁸)copper(II)).

[Cu(cyen)] 8.IIA

1,2-diaminoethane (0.3 g, 5 mmol) was added to a suspension of 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (0.67 g, 2.5 mmol) and copper(II) acetate(0.5 g, 2.5 mmol) in refluxing methanol (100 cm^3). After refluxing for 48 h, cooling and filtering gave a deep brown powder of ((7,8,16,17-tetrahydrodibenzo[<u>e,m</u>][1,4,8,11]tetrazacyclotetradecinato(2-)<u>M⁶, M⁹, M¹⁵, M¹⁸</u>)copper(II)) (8.IIA) (0.44 g, 1.25 mmol, 50 % yield), mp 270°C, (found: Cu, 17.0; C, 60.1; H, 4.6; H, 15.7. CuC₁₈H₁₈N₄ requires: Cu, 18.0; C, 61.1; H, 5.1; N, 15.7 %). V_{max}/cm : 3018, 2908, 2876, 2856, 2826, 2794, 1615, 1597, 1320, 1467, 1453, 1442, 1433, 1060, 1032, 955, 936, 927, 862, 820, 788, 746, 740, 730, 723, 646, 631, 618, 497, 433.

((7,8,15,16,17,18-Hexahydrodibenzo[e,m][1,4,8,11]tetraszacyclotetradecine-N⁶,N⁹,N¹⁵,N¹⁸)copper(II)perchlorate}

 $\underbrace{\left[\begin{array}{c} & & \\ &$

 H_2 cyen (8.II) (0.12 g, 0.4 mmol) was added to a refluxing solution of copper(II) perchlorate (0.185 g, 0.5 mmol) in methanol

Coldina 1997 and a linear life 11 BBR - 0- 20C 7E — (10.31.8.1 CONTRACTOR OF A DESCRIPTION OF A DESCRIP 000000000 -----10.00 1111 10101 1111 23/1 C. museumph In June Lyna 1131311, 1121217 145(0)7. 111

(20 cm³) under nitrogen. After 10 min the solution was cooled to give deep brown crystals of ((7,8,15,16,17,18-bexahydrodibenzo[<u>e,m</u>]-259 $\frac{1}{2}(-2)a$

A. B. S-ARLS

Hannes in mainten

[1,4,8,-11]tetraazacyclotetradecine- M^6 , M^9 , M^{15} , M^{18})copper(II)perchlorate) (8.IIB) (0.12 g, 0.22 mmol, 54 % yield), mp 220°C, (found: C, 38.0; H, 3.7; N, 10.1; Cu, 11.6. CuC₁₈H₂₀N₄Cl₂O₈ requires: C, 39.0; H, 3.6; N, 10.1; Cu, 11.5 %). Electronic Spectrum (methanol) λ_{max}/nm (E)): 220 (14028), 270 (5550), 440 (226). V_{max}/cm : 3548 B, 3258, 3138, 2953, 2898, 2838, 1666, 1652, 1620, 1602, 1578, 1494, 1460, 1412, 1307, 1225, 1090 B, 987, 952, 772, 624.

5.6.7.8.9.10.15.16.17.18-Decahydrodibenzo[e.m.][1.4.8.11]tetraszacyclotetradecine.

Hecyen 8.III

BH₃/thf (250 cm³, 1 mol dm³ solution, 250 mmol) was added under nitrogen to H₂cyen (8.II) (6.4 g, 21.9 mmol). After refluxing for 24 h, distilled water (100 cm³), KCl (5 g), and NaOH solution (2 mol dm⁻³, 40 cm³, 80 mmol) was added. Evaporation of the organic layer to 40 cm³ under reduced pressure at 50°C and addition of methanol (100 cm³) with evaporation to 60 cm³ and addition of petrol (40:60, 100 cm³) gave white crystals of 5,6,7,8,9,10,15,16,17,18decahydrodibenzo[<u>e,m</u>,][1,4,8,11]tetraaracyclotetradecine. (4.1 g, 15.2 mmol, 69% yield), mp 110-112°C, (found: C, 71.9; H, 8.2; H, 19.4. C₁₈H₂₄N₄ requires: C, 72.9; H, 8.2; N, 18.9 %). Electronic Spectrum λ_{max}/nm (£): 250 (1963), 294 (435). V_{max}/cm : 3313, 3251, 3222, 3182, 3121, 3074, 3034, 2944, 2924, 2884, 2864, 2824, 1606, 1582, 1518, 1512, 1502, 1399, 1334, 1330, 1320, 1303, 1272, 1259, 1230,

E1,4,0,-111) ee) (4)(11) 38,07 %) 5,42 %) (19,200 (1907) (1)

S.M.P.A.

(1), π (1), 602. ¹H nmr Spectrum (CDCl₃) δ /ppm: 2.71 s 4H; 3.45 s 4H; 3.81 s 4H; 6.52-7.30 m aryl protons. Mass Spectrum m/e: 296(M*=24%), 236(5), 176(22), 161(10), 149(28), 148(26), 147(31), 132(25), 120(42), 118(46), 106(41), 91(37), 77(11).

<u>{(5,6,7,8,9,10,15,16,17,18-Decahydrodibenzo[e,m][1,4,8,11]tetrazzacyc-</u> lotetradecine-N⁶, N⁹, N¹⁵, N¹⁸)copper(II)}perchlorate.

 H_6 cyen (8.III) (0.12 g, 0.4 mmol) was added to a refluxing solution of copper(II) perchlorate (0.19 g, 0.5 mmol) in methanol (10 cm³) under nitrogen. After 3 min the solution was cooled and filtered to give red-brown crystals of ((5,6,7,8,9,10,15,16,17,18decahydrodibenzo[<u>e,m</u>][1,4,8,11] tetraazacyclotetradecime-<u>M⁶, M⁹, M¹⁵, M¹⁸-</u>)copper(II)}perchlorate (8.IIIB) (0.11 g, 0.2 mmol, 49 X yield), mp 265°C(e), (found: C, 38.8; N, 4.4; N, 9.9; Cu, 11.0. CuC ₁₈H₂₄H₄Cl₂O₈ requires C, 38.7; H, 4.3; N, 10.0; Cu, 11.4 X). Electronic Spectrum (methanol) λ_{max}/nm (ε): 218 (3073), 278 (1100), 310 (664), 510(285). ν_{max}/cm : 3528 b, 3238, 3193, 3123, 3078, 3033, 2968, 2938, 2878, 2788, 1610, 1587, 1497, 1465, 1369, 1220, 1188, 1170, 1090 b, 995, 963, 960, 950, 930, 913, 833, 772, 737, 620, 590.

5,8,7,8,0,0

(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10) (10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)
(11)

602. ¹H nmr Spectrum (CDCl₃) δ /ppm: 2.71 s 4H; 3.45 s 4H; 3.81 s 4H; 6.52-7.30 m aryl protons. Mass Spectrum m/e: 296(M*=24%), 236(5), 176(22), 161(10), 149(28), 148(26), 147(31), 132(25), 120(42), 118(46), 106(41), 91(37), 77(11).

((5,6,7,8,9,10,15,16,17,18-Decahydrodibenzo[e,m][1,4,8,11]tetraszacyclotetradecine-N⁶, M⁹, N¹⁵, N¹⁸)copper(II))perchlorate.

 H_6 cyen (8.III) (0.12 g, 0.4 mmol) was added to a refluxing solution of copper(II) perchlorate (0.19 g, 0.5 mmol) in methanol (10 cm³) under nitrogen. After 3 min the solution was cooled and filtered to give red-brown crystals of {(5,6,7,8,9,10,15,16,17,18decahydrodibenzo[<u>e,m</u>][1,4,8,11]tetraazacyclotetradecine-<u>M⁶, M⁹, M¹⁵, M¹⁸-</u>)copper(II)}perchlorate (8.IIIB) (0.11 g, 0.2 mmol, 49 % yield), mp 265°C(e), (found: C, 38.8; N, 4.4; N, 9.9; Cu, 11.0. CuC ₁₈H₂₄N₄Cl₂O₈ requires C, 38.7; H, 4.3; N, 10.0; Cu, 11.4 %). Electronic Spectrum (methanol) λ_{max}/nm (£): 218 (3073), 278 (1100), 310 (664), 510(285). V_{max}/cm : 3528 b, 3238, 3193, 3123, 3078, 3033, 2968, 2938, 2878, 2788, 1610, 1587, 1497, 1465, 1369, 1220, 1188, 1170, 1090 b, 995, 963, 960, 950, 930, 913, 833, 772, 737, 620, 590.

17,18,19,20-Tetrahydrotribenzo[e,i,m][1,4,8,11]tetraasacyclotetradecine.

4,7-Diaza-2,3:8,9-dibenzodecane-1,10-dione (8.1) (1.0 g, 3.7 mmol), 1,2-diaminobenzene (0.488 g, 4.5 mmol) and zinc(II)acetate was heated in refluxing methanol (200 cm^3) under nitrogen for 18 h. Evaporation to 80 cm^3 under reduced pressure at 60°C and cooling gave 17,18,19,20-tetrahydrotribenzo[e,i,m][1,4,8,11]tetraazacyclotetradecine. (8.IV) (0.78 g, 2.3 mmol, 62 % yield) as fine yellow needles after recrystallisation from chloroform/methanol (60:40 , 50 cm^3), mp 174-176°C, (found: C, 77.5; H, 6.0; N, 16.4. C₂₂H₂₂N₄ requires: C, 77.6; H, 5.9; N, 16.45 %). Electronic Spectrum (methanol) λ_{max}/nm (E): 206 (8182), 214 (7182), 230 (4045), 270 (1318), 285 (1500). V_{max}/cm : 3170, 3086, 3060, 3030, 2956, 2886, 2835, 2830, 1620, 1601, 1576, 1588, 1533, 1483, 1455, 1337, 1320, 1183, 1164, 1154, 742, 713, 600. ¹H nmr Spectrum/ppm : 3.57 t 4H CH₂; 6.57-7.60 m 12H aryl protons; 8.81 s 2H CH; 10.28 bs 2H NH. Mass Spectrum m/e: 340(M*=18 %), 273(12), 231(12), 230(14), 222(6), 221(29), 220(31), 208(8), 207(8), 206(6), 205(12), 192(12), 147(100), 119(38), 118(46), 111(24), 105(28), 104(26), 97(40), 91(44).

6,5-2,7 6,5-2,3 7,1-11,7 1,600

(Lagrand)

1,11,11,11

((18,19-Dihydrotribenzo[e,i,m][1,4,8,11]tetraszacyclotetradecinato(2-)N⁶,N¹¹,N¹⁷,N²⁰)copper(II)).

Method A

 H_2Cyph (8.IV) (0.3 g, 0.88 mmol) was added to a refluxing solution of copper(II) acetate (0.2 g, 1 mmol) in methanol (40 cm³). After 5 min the product was filtered and recrystallised from DMF (20 cm³) to give black needles of ((18,19-dihydrotribenzo[<u>e,i,m</u>][1,4,8,11]tetraaz-acyclotetradecinato(2-)M⁶,M¹¹,M¹⁷,M²⁰)copper(II)) (8.IVA) (0.18 g, 0.44 mmol, 51 % yield), mp 250°C(d), (found: Cu, 15.8; C, 66.0; H, 4.5; N, 13.8. CuC₂₂H₁₈N₄ requires: Cu, 15.8; C, 65.7; H, 4.5; N, 13.9 %). Electronic Spectrum (Chloroform) λ_{max}/nm (E): 272 (2860), 337 (1131), 354 (1031), 432 (1247), 520 (964). V_{max}/cm : 3074, 3024, 2936, 2900, 2862, 1610, 1588, 1573, 1501, 1481, 1448, 1364, 1246, 1237, 1184, 1171, 1158, 1140, 1032, 949. 920, 749, 617, 537, 503.

Method B

1,2-Diaminobenzene (0.54 g 5 mmol) in methanol was added to a refluxing suspension of 4,7-Diaza-2,3:8,9-dibenzodecane-1,10-dione (8.1) (0.67 g, 2.5 mmol) and copper(II) acetate (0.5 g, 2.5 mmol) in methanol (100 cm³). After refluxing for 20 h the mixture was cooled and filtered to give a dark red powder, which on recrystallisation from DHF (50 cm³) gave black needles of ((18,19-Dihydrotribenzo-[a.i.m][1,4,8,11]tetraesacyclotetradecinato(2-)m⁶, m¹¹, m¹⁷, m²⁰)copper-(II)) (8.IVA) (0.9 g, 2.5 mmol, 90 % yield). 263

2. (La Aux

((17,18,19.20-Tetrahydrotribenzo[e,i,m][1,4,8,11]tetraszacyclotetradecine-N⁶,N¹¹,N¹⁷,H²⁰)copper(II))perchlorate.

Method A

 H_2Cyph (8.IV) (0.3 g, 0.88 mmol) was added to a refluxing solution of copper(II) perchlorate (0.37 g, 1 mmol) in methanol (20 cm³) under nitrogen. After 10 min the solution was cooled and filtered to give a brown powder of {(17,18,19,20-tetrahydrotribenzo[e,i,m]-[1,4,8,11]tetraazacyclotetradecine- M^6 , M^{11} , M^{17} , M^{20})copper(II))perchlorate (8.IVB) (0.43 g, 0.71 mmol, 80 X yield), mp 270°C(e), (found: Cu, 10.9; C, 44.2; H, 3.4; N, 3.9. CuC₂₂H₂₀N₄Cl₂O₈ requires: Cu, 10.5; C, 48.8; H, 3.3; N, 9.3 X). Electronic Spectrum (methanol) λ_{max}/nm (ε): 220 (1340), 268 (524), 320 (411), 390 (188). V_{max}/cm : 3500 b, 3176, 1627, 1598, 1571, 1482, 1100 b, 1012, 978, 962, 929, 906, 805, 765, 752, 623, 555.

<u>Method</u> B

A solution of H_2Cyph (8.IV) (0.1 g, 0.29 mmol) in thf (10 cm³) was added to copper(II) perchlorate (0.13 g, 0.35 mmol) dissolved in methanol (20 cm³). The mixture was allowed to stand for two days, and then filtered to give orange/brown crystals of ((17,18,19,20-tetrahyd-

http://www.incomestion.com
fitter.com
f

1.791246

(1111月1日, 8, 4, 11月四, 上月

3 P.O) (AVI.A) LIIA)

rotribenso[$\underline{e}, \underline{i}, \underline{m}$][1,4,8,11]tetraesacyclotetradecine- $\underline{M}^{6}, \underline{M}^{11}, \underline{M}^{17}, \underline{M}^{20}$)copper(II))perchlorate (8.IVB) (0.12 g, 0.2 mmol, 69 X yield), mp 275°C

- Uly Al. Table

Wether is 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 4 (200) 5 (20

it hourself

A solution was midded to experimit methanol (10 pm²), (- (e), (found: Cu, 10.9; C,43.8; H, 3.4; N, 9.29). V max/cm as for "method A" except 1547, 1416, 1215 which are missing.

5,6,11,12,17,18,19,20-Octahydrotribenzo[e,i,m][1,4,8,11]tetraazacyclotetradecine.

 BH_3/thf (350 cm³ of 1 mol dm⁻³ solution, 350 mmol) was added in 20 cm³ portions over a period of 20 min to H_2 cyph (8.W) (6.65 g, 19.6 mmol) under nitrogen. After refluxing for 3 h, distilled water (50 cm³), potassium chloride (3 g), and sodium hydroxide solution (2 mol dm^{-3} , 20 cm³, 40 mmol) was added. Evaporation of the organic layer under reduced pressure at 50° C and addition of methanol (40 cm³) followed by further evaporation and addition of methanol gave a white powder after filtration. Recrystallisation from petrol (40:60)/dichloromethane (100:40 , 100 cm^3) gave white fluffy needles of 5,6,11,12,17,18,19,20-octahydrotribenzo[<u>e,i,m</u>][1,4,8,11]tetraazacyclotetradecine (8.V) (4.3 g, 12.5 mmol, 64 % yield), mp 188-190°C, (found: C, 76.6; H, 7.0; N, 16.25. C₂₂H₂₄N₄ requires: C, 76.7; H, 7.0; N, 16.3 %). Electronic Spectrum (methanol) $\lambda_{max}/nm(\epsilon)$: 208 (4111), 250 (2666), 295 (7611). H¹ nmr Spectrum (chloroform) 0/ppm: 3.28 s 4H CH2; 4.23 d 4H CH2; 4.89 t 2H NH; 5.74 s 2H NH; 6.50-7.22 m 12H aryl protons. V_{max}/cm: 3376, 3350, 3325, 3312, 3046, 2870, 1607, 1598,

1584, 1516, 1502, 1455, 1348, 1302, 1274, 1252, 1244, 1123, 1047, 934, 922, 912, 749, 732. Mass Spectrum m/e: 344(M*=77%), 237(17), 235(18),

(a); (francis

5,4,11,1 secula

225(23), 234(100), 222(61), 209(27), 120(71), 119(68), 118(85), 106(100), 91(73).

((5.6,11,12,17,18,19,20-Octahydrotribenzo[e,i,m][1,4,8,11]tetraesacyclotetradecine-N⁶, N¹¹, N¹⁷, N²⁰)copper(II))perchlorate.

 H_6 Cyph (8. V) (0.3 g, 0.87 mmol) was added to a refluxing solution of copper(II) perchlorate (0.37 g, 1 mmol) in methanol (25 cm³) under nitrogen. The resulting suspension was dissolved by placing the flask in an ultrasonics bath for 1 min, and crystallisation occurred overnight. Filtering under nitrogen gave a deep pink powder of ((5,6,11,12,17,18,19,20-octahydrotribenzo[<u>e,i,m</u>][1,4,8,11]tetraazacyc-lotetradecine-<u>M⁶, M¹¹, M¹⁷, M²⁰)copper(II)</u>perchlorate (8.VB) (0.35 g, 0.58 mmol, 66.3 X yield), mp 240°C(e), (found: Cu, 10.4; C, 43.4; H, 4.1; N, 9.15. CuC₂₂H₂₄N₄Cl₂O₈ requires: Cu, 10.5; C, 43.5; H, 4.0; N, 9.2 X) Electronic Spectrum (methanol) λ_{max}/nm (ε): 222 (3073), 260 (1100), 318 (664), 370 (285), 520 (720), 570 (608). V_{max}/cm : 3518, 3238 b, 3218, 3178, 3075, 3043, 2978, 2958, 2936, 2903, 2864, 1614, 1590, 1495, 1462, 1364, 1308, 1294, 1267, 1225, 1100 b, 1000, 961, 931, 919, 905, 874, 854, 822, 761, 748, 732, 722, 626, 590, 532, 493.

17,18,19,20-Tetrahydro-9-nitrotribenzo[e,i,m][1,4,8,11]tetraszacyclotetradecine.

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (0.68 g, 2.5 mmol), 4-nitro-1,2-diaminobenzene (0.42 g 2.75 mmol) and zinc(II) acetate (1.1 g. 6 mmol) was heated in refluxing methanol (70 cm³) for 5 days. Recrystallisation from chloroform (150 cm³) gave a yellow powder of 17,18,19,20-tetrahydro-9-nitrotribenzo[<u>e,i,m</u>][1,4,8,11]-tetraazacyclotetradecine. (8.VI) (0.8 g, 2 mmol, 80 X yield), mp 200°C, (found: C, 69.1; H, 4.6; N 17.4. $C_{22}H_{19}N_5O_2$ requires C, 68.7; H 4.7; N, 18.2 X). V_{max}/cm : 3490, 3480, 3080, 2970, 2890, 2860, 2820, 1620, 1600, 1574, 1560, 1520, 1510, 1488, 1335, 1300, 1265, 1190, 1162, 1095, 1082, 1048, 980, 955, 930, 900, 825, 750, 470.

(T., (001)491

ALLINE

101117305

Shilling

((17,18,19,20-Tetrahydro-9-nitrotribenso[e,i,m][1,4,8,11]tetraazacyclotetradecinato(2-)-N⁶,N⁹,N¹⁵,N¹⁸)copper(II)).

1,2-Diamino-4-nitrobenzene (0.16 g, 1.05 mmol) in methanol (10 cm³) was added to a suspension of 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (0.27 g, 1 mmol) and in methanol (50 cm³). After refluxing for 18 h under nitrogen the mixture was cooled and filtered to give brown crystals of [(17,18,19,20-tetrahydro-9-nitrotribenzo-[$\underline{e},\underline{i},\underline{m}$][1,4-,8,11]tetraazacyclotetradecinato(2-)- $\underline{M}^{6},\underline{M}^{9},\underline{M}^{15},\underline{M}^{18}$)copper-(II)] (8.VIA) (0.35 g, 0.79 mmol, 79 X yield), mp 214°C(d), (found: C, 57.2; H, 3.5; N, 14.8. CuC₂₂H₁₇N₅O₂ requires: C, 59.1; H, 3.5; N, 15.6 X). V_{max}/cm : 3082, 3028, 2910, 2850, 1620, 1584, 1571, 1522, 1480, 1435, 1390, 1350, 1335, 1286, 1223, 1260, 1200, 1180, 1156, 1091, 1080, 968, 948, 928, 870, 833, 750, 740, 728, 626, 532, 512, 480, 389.

111444 11174-2 11174-2 11174-2 11174-2 11174-1 1117

Contradartate

((17.18.19.20-tetrahydro-9-nitrotribenso[e,i,m][1,4,8,11]tetraazacyc1otetradecine-N⁶,N⁹,N¹⁵,N¹⁸)copper(II))perchlorate.
NO2

 $H_2 cyph NO_2$ (8.VI) (0.2 g, 0.52 mmol) was added to a refluxing solution of copper(II) perchlorate (0.23 g, 0.61 mmol) in methanol (25 cm³) under nitrogen. After 10 min the solution was cooled and filtered to give brown crystals of [(17,18,19,20-tetrahydro-9-nitrotribenso[<u>e,i,m</u>][1,4,8,11]tetraazacyclotetradecine-<u>M⁶, M⁹, M¹⁵, M¹⁸)copper(II)]perchlorate (8.VIB) (0.24 g, 0.39 mmol, 70 % yield), mp >360°C, (found C, 40.7; H, 3.3; N, 10.5. $CuC_{22}H_{19}N_5Cl_2O_{10}$ requires: C, 40.8; H, 3.0; N, 10.8 %). V_{max}/cm : 3350 b, 1610, 1590, 1575, 1480, 1462, 1120 b, 930, 750.</u>

1,2,4-Triaminobenzenetrihydrochloride

Methanol (30 cm³) was added to Pd-C (5 X, 1 g) under nitrogen, followed by 1,2-diamino-4-nitrobensene (2 g, 13 mmol). The solution

was refluxed and the addition of hydrazine hydrate (3 g, 60 mmol) was

made in a dropwise fashion until the yellow coloured solution became

 clear. The mixture was then refluxed for a further 24 h, and then filtered through a celite filter under nitrogen into methanol (50 cm³) containing concentrated hydrochloric acid (20 cm³). Filtering and vacuum drying at 30°C for 10 days gave 1,2,4-triaminobensenetrihydrochloride (8.VII) (2.8 g, 12 mmol, 93 % yield), (found: C, 30.5; H, 5.3; N, 17.7; Cl, 44.1. $C_{6}H_{12}N_{3}CL_{3}$ requires: C, 31.0; H, 5.2; N, 18.1; Cl, 45.7 %).

((17,18,19,20-Tetrahydro-9-aminotribenso[e,i,m][1,4,8,11]tetraasacyclotetradecine

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (4.0 g, 15 mmol) was heated in refluxing ethanol (175 cm³) under nitrogen and TAB3HCL (8.XXI) (4.0 g, 17.2 mmol) was added in twenty approximately equal aliquots over a period of 15 min. After each addition a deep red colour was produced which was discharged in each case by addition of sodium methoxide solution (2.0 mol dm⁻³) until a yellow colouration was produced (total 24 cm³, 48 mmol). Addition of zinc(II) acetate (6.4 g, 35 mmol) followed by refluxing for 1 h and filtering under dry nitrogen gave a orange powder. Recrystallisation from pyridine/methanol (1:8, 360 cm³) gave yellow flakes of ((17,18,19,20-

10 - 0.0000 10 - 0.0000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.000 10 - 0.00000

(a) h=2. (gd baweiin)

tetrahydro-9-aminotribenzo[<u>e,i</u>,<u>m</u>][1,4,8,11]tetraazacyclotetradecine (8.VIII) (3.9 g, 11.0 mmol, 73 % yield), mp 190°C(d), (found: C, 74.0;

> 11,174<u>,(1))</u> (73#34)

iterio-t.i
iterio-t.i
iterio-t.i
iterio-t.i
iterio-terio
iterio-terio
iterio-terio
iterio-terio
iterio-terio
iterio-terio
iterio-terio
iterio-terio-terio
iterio-terio-terio-terio
iterio-terio-terio-terio
iterio-terio-terio-terio
iterio-terio-terio-terio-terio
iterio-t

H, 5.8; N, 19.2. C₂₂H₂₁N₅ requires: C, 74.3; H, 6.0; N, 19.7 %). max²/cm 3470, 3370, 3240, 3090, 2950, 2880, 1622, 1600, 1580, 1524, 1510, 1330, 1100, 1183, 1165, 1150, 1100, 1049, 968, 895, 751. Mass Spectrum m/e: 355(M*=20 %), 340(2), 249(8), 238(18), 237(20), 224(10), 223(12), 221(14), 123(100), 122(100).

((17,18,19,20-tetrahydro-9-aminotribenzo[e,i,m][1,4,8,11]tetraszacyc1otetradecine-N⁶, N⁹, N¹⁵, N¹⁸)copper(II))perchlorate.

 $H_2 cyph NH_2$ (8.VIII) (0.2 g, 0.56 mmol) was added to a refluxing solution of copper(II) perchlorate (0.23 g, 0.61 mmol) in methanol (30 cm³) under nitrogen. After 10 min the solution was cooled and filtered to give brown crystals of [(17,18,19,20-tetrahydro-9-aminotribenzo[e,i,m][1,4,8,11]tetraazacyclotetradecine- M^6 , M^9 , M^{15} , M^{18}) copper(II)]perchlorate (8.VIIIB) (0.22 g, 0.35 mmol, 63 X yield), mp >360°C, (found C, 43.0; H, 3.6; N, 11.0. CuC₂₂H₂₁N₅Cl₂O₈ requires: C, 42.8; H, 5.4; N, 11.3 X). V_{max}/cm : 3380, 1620, 1600, 1575, 1550, 1330, 1275, 1230, 1190, 1170, 1100 b, 975, 930, 770, 629.

<u>((17,18,19,20-Tetrahydro-9-aminotribenzo[e,i,m][1,4,8,11]tetraazacycl-</u> otetradecinato(2-)-N⁶, N⁹, N¹⁵, N¹⁸)copper(II)).

[Cu(cyphNH₂)] 8.VIIIA

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (1.0 g, 3.7 mnol) was heated in refluxing methanol (60 cm³) under nitrogen and TAB3HCL (8.VII) (1.0 g, 4.3 mmol) was added in ten approximately equal aliquots over a period of 10 min. After each addition a deep red colour was produced which was discharged in each case by the dropwise addition of sodium methoxide (2.0 mol dm⁻³) until a yellow/orange colour was produced (total 6 cm³, 12 mmol). Addition of copper(II) acetate (0.8 g, 4.1 mmol) as a solution in methanol (20 cm³) followed by refluxing for 4 h, and filtering the mixture gave dark brown coloured crystals of ((17,18,19,20-tetrahydro-9-aminotribenzo[<u>e,i,m</u>]-[1,4,8,11]tetraazacyclotetradecinato(2-)-<u>M⁶, M⁹, M¹⁵, M¹⁸)copper(II)</u>) (8.VIIIA) (1 g, 2.4 mmol, 65 X yield), mp 225^oC(d), (found: C, 63.2; H, 4.6; N, 16.8. CuC₂₂H₁₉N₅ requires: C, 63.4; H, 4.6; N, 18.8 X). V_{max}/cm : 3460, 3400, 1617, 1580, 1520, 1560, 1330, 1187, 1161, 990, 970, 750.

Aligned and aligned at a sector at a

(17,16,10,70,70-0-12)
genteedentingend

8,9,16,17,18,19-Hexahydro-7H-dibenzo[e,n][1,4,8,12]tetraszacyclopentadecine.

1,3-Diaminopropane (0.4 g, 5.4 mmol) was added to a refluxing solution of 4,7-Diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (1.34 g, 5 mmol) in methanol/chloroform (1:1, 50 cm³). After 72 h of refluxing the solution was evaporated down at 50°C under reduced pressure to 20 cm³ volume. Cooling and filtering gave a white crystalline material of 8,9,16,17,18,19-hexahydro-7<u>H</u>-dibenzo[<u>e,n</u>][1,4,8,12]tetraezacyclopentadecine (8.IX) (0.75 g, 2.45 mmol, 49.0 X yield), mp 175°C, (found: C, 74.3; H, 7.5; N, 18.2. $C_{19}H_{22}N_4$ requires: C, 74.5; H, 7.2; N, 18.3 X). V_{max} /cm: 3208, 3168, 3140, 3088, 3022, 3000, 2922, 2900, 2878, 2840, 2816, 1627, 1594, 1576, 1134, 1064, 1042, 974, 965, 928, 918, 890, 873, 830, 747, 739, 732, 721, 696, 634, 587, 554, 480.

<u>{(8,9,16,17,18,19-Hexahydro-7H-dibenzo[e,n][1,4,8,12]tetraasacyclopen-</u> tadecinato(2-)-N,⁶, N¹⁰, N¹⁶, N¹⁹)copper(II)}.

11. 1.31.01.0.1

1111100

10000

state ladd

100012013848

Interface

14 151 (199)

6, 31, 1

10.00 .0462

[Cu(cypr)] 8.IXA

1,3-Diaminopropane (0.37 g, 5 mmol) in methanol was added to a refluxing suspension of 4,7-diaza-2,3:8,9-dibensodecane-1,10-dione (8.I) (0.67 g, 2.5 mmol) and copper(II) acetate (0.5 g, 5 mmol) in methanol (100 cm³). After refluxing for 18 h, cooling and filtering gave a deep brown powder of $((8,9,16,17,18,19-hexahydro-7H-dibenso[e,-n][1,4,8,12]tetraasacyclopentadecinato(2-)-N,<math>^{6}$,N¹⁰,M¹⁶,M¹⁹)copper(II)) (8.IXA) (0.49 g, 1.33 mmol, 53 X yield), mp 205°C, (found: C, 62.1; H, 5.0; N, 14.8. CuC₁₉H₂₀N₄ requires: C, 62.0; H, 5.5; N, 15.2 X). V_{max} /cm: 3020, 2940, 2920, 2876, 2816, 1610, 1524, 1510, 1478, 1432, 1402, 1392, 1362, 1352, 1340, 1252, 1200, 1165, 1135, 1100, 1072, 1040, 1032, 953, 935, 908, 863, 740, 722, 617, 480, 473, 442, 427.

Luranizahar

7,8,9,10,17,18,19,20-Octahydrodibenzo[e.o][1,4,8,13]tetraasacyclohexadecine.

H2cybn 8.X

1,4-Diaminobutane (0.60 g, 6.8 mmol) in chloroform (25 cm³) was added to a refluxing solution of 4,7-diaza-2,3:8,9-dibenzodecane-1,10dione (8.I) (1.34 g, 5 mmol) in methanol/chloroform (2:1, 150 cm³). After 48 h at reflux the volume was reduced at 50° C and low pressure to approximately 30 cm³. Cooling and filtering gave a white powder of 7,8,9,10,17,18,19,20-octahydrodibenzo[<u>e,o</u>][1,4,8,13]tetraazacyclohexadecine (8.X) (1.3 g, 4 mmol, 80 X yield) (found: C, 75.2; H, 7.1; N, 17.3. C₂₀H₂₄N₄ requires C, 75.0; H, 7.5; N, 17.5 X). V_{max} /cm: 3230 b, 3085, 2950,2820, 1638, 1620, 1597, 1586, 1532, 1447, 1345, 1288, 1213, 1280, 1162, 1088, 1080, 1052, 1002, 986, 973, 927, 920, 838, 745, 734, 658, 644, 614, 581, 550, 510, 480, 431, 431.

<u>((7,8,9,10,18,19-Hexahydrodibenzo[e,o][1,4,8,13]tetraazacyclosexadeci-</u> nato(2-)-N⁶, N¹¹, N¹⁷, M²⁰)copper(II)}.

10,01,01,4,43

- 中ドネタの通道

11 A-0120

Million Milks

1018.03

1.111.14

1.1.12,8,8,8

S.O. Littak

11 - P FVD, 74

ST 1 (144)

14. ALT. /24E

1,2-Diaminobutane (0.25 g, 2.5 mmol) in methanol (50 cm³) was added to a refuxing suspension of 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (0.34 g, 1.25 mmol) and copper(II) acetate (0.25 g, 1.25 mmol) in methanol (50 cm³). After refluxing for 18 h, cooling and filtering gave a dark brown powder of ((7,8,9,10,18,19-hexahydrodibenzo[$\underline{e}, \underline{o}$][1,4,8,13]tetraazacyclosexadecinato(2-)- $\underline{M}^{6}, \underline{M}^{11}, \underline{m}^{17}, \underline{M}^{20}$)copper(-II)) (8.XA) (0.15 g, 0.4 mmol, 32 X yield), mp 250°C, (found: C, 61.7; H, 5.8; N,14.0. CuC₂₀H₂₂N₄ requires: C, 62.9; H, 5.8; N, 14.7 Z). V_{max} /cm 3072, 3027, 2980, 2930, 2890, 2865, 2820, 1604, 1524, 1454, 1440, 1401, 1364, 1350, 1439, 1257, 1214, 1204, 1194, 1172, 1164, 1132, 1094, 1074, 1042, 1035, 1008, 1000, 970, 942, 929, 859, 742, 733, 725, 638, 532, 471, 458, 437.

((18,19-Dioxotribenzeo[e,i,m][1,4,8,11]tetradecinato(2-)-M⁵, M¹¹, N¹⁷, N²⁰-)copper(II).

[Cu(cyphX)] 8.XI

Cucyph (8.IVA) (0.1 g,0.25 mmol) was added to dimethylacetamide (30 cm³) and dissolved by refluxing for 10 sec. Cooling and leaving to stand for 14 days gave burgandy coloured crystals of 18,19-dioxotribenzeo[$\underline{e}, \underline{i}, \underline{m}$][1,4,8,11]tetradecinato(2-) $\underline{M}^5, \underline{M}^{11}, \underline{M}^{17}, \underline{M}^{20}$)copper(II) (8.XI) (0.05 g, 0.12 mmol, 47 X yield), mp 350°C, (found: C, 60.9; H, 3.4; N, 13.4. CuC₂₂H₁₄N₄O₂ requires: C, 61.5; H, 3.28; N, 13.0 X). V_{max}/cm : 1658, 1620, 1600, 1583, 1578, 1547, 1524, 1494, 1458, 1444, 1430, 1412, 1397, 1389, 1369, 1360, 1228, 1245, 1190, 1180, 1168, 1156, 1134, 1055, 1035, 985, 970, 948, 920, 825, 745, 735, 725, 700, 620, 554, 503.

t-(-1)crat

((TT)ingood.

((18,19-Dihydro-18,19-dimethoxytribenso[e,i,m][1,4,8,11]tetrassacyclotetradecinato(2-)-N⁶, N¹¹, N¹⁷, N²⁰)copper(II)).

[(Cucyph(OHe)2)] 8.XII

 H_2 cyph (8.IV) (0.3 g, 0.88 mmol) was added to a refluxing solution of copper(II) acetate (0.2 g, 10 mmol) in thf/methanol (5:1 ,60 cm³). After 1 min the hot mixture was filtered, and recrystallisation of the isolated material from dmf (20 cm³) gave [Cu(cyph)] (8.IVA) (0.18 g, 0.44 mmol 50 X yield). The filtrate on standing for 20 h at room temperature yielded fine gold needles of ((18,19-dihydro-18,19-dimethoxytribenzo[e,i,m][1,4,8,11]tetraazacyclotetradecinato(2-) $-\underline{M}^{6}, \underline{M}^{11}, \underline{M}^{17}, \underline{M}^{20}$)copper(II)) (8.XII) (0.09 g, 0.19 mmol, 22 X yield), mp 200°C(d), (found: Cu, 14.0; C, 62.2, H, 4.8; N, 12.1. CuC₂₂H₂₄N₄O₂ requires: Cu, 13.8; C, 62.4, H, 4.8; N, 12.1 X). Electronic Spectra (chloroform) (\mathcal{E}) λ_{max} /nm: 275 (3619), 315 (1844), 336 (1567), 354 (1521), 420 (1498), 480 (1106), 510 (1286). V_{max} /cm: 3103, 3076, 3026, 2922, 2898, 2872, 2816, 1606, 1580, 1521, 1460, 1392, 1373, 1340, 1189, 1056, 1035, 912, 740, 725, 553. Mass Spectrum m/e: 461(M*), 429, 415, 399.

()usenissbarret

θ₁(φ)
θ₂(φ)
θ₂(φ)
θ₁(φ)
θ₂(φ)
θ₁(φ)
θ₂(φ)
θ₂(φ)
θ₂(φ)
θ₂(φ)
θ₂(φ)
θ₂(φ)
θ₁(φ)
θ₂(φ)

5,6,7,8,15,16,23,24,25,26,33,34-Dodecahydrotetrabenzo[e.m.s.a'][1,4,8-,11,15,18,22,25]octaszacyclooctacosine.

H4cyendimer 8.XIII

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.1) (9.58 g, 35.7 mmol) and 1,2-diaminoethane (2.4 g, 40 mmol) was heated in refluxing methanol (600 cm³) for 5 h. Addition of chloroform (90 cm³) and further refluxing for 18 h gave a white powder on filtration. Recrystallisation from dmf (500 cm³) gave fine white needles of 5,6,7,8,15,16,23,-24,25,26,33,34-dodecahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25-]octaszacyclooctacosine (8.XIII) (8.47 g, 29 mmol, 81 % yield), mp 278°C, (found: C, 73.4; H, 6.9; N, 18.9. C₃₆H₄₀N₄ requires: C, 73.9; H, 6.9; N, 19.2 %). Electronic Spectrum (dmf) λ /nm (ϵ): 272 (2385), 365 (2190). V_{max}/cm : 3240, 3163, 3088, 3054, 3006, 3003, 2963, 2914, 2888, 2848, 2828, 1633, 1626, 1606, 1585, 1582, 1526, 1484, 1469, 1458, 1441, 1332, 1213, 1164, 1151, 1136, 1114, 1012, 964, 743, 617, 594, 549. Mass Spectrum m/e: 584(M^{*}=42 %), 464(16), 421(10), 408(18), 318(25), 305(37), 293(60), 292(88), 291(100), 280(22), 279(100), 234(21), 176(100), 174(31), 159(25), 145(31), 133(48), 132(62), 131(100), 130(64), 118(100), 117(57), 91(34).

<u>((5.6.7.8.15.16.23.24.25.26.33.34-Dodecahydrotribenzo[e.m.s.a'][1.4.-</u> <u>8.11.15.18.22.25]octaazacyclooctacosine-W⁵.W⁸.W¹⁴.W³⁵:W¹⁷.W²³.W²⁶.W³²dicopper)triperchlorate.</u>

[Cu2(H4cyendimer)](C104)3 8.XIIIB1

Copper(II) perchlorate (0.2 g, 0.55 mmol) in methanol (12 cm³) was added to a suspension of H₄cyendimer (8.XIII) (0.1 g, 0.17 mmol) in refluxing THF (60 cm³). After 1 min the translucent green solution was filtered, and left to cool. After 18 h, filtering gave green prisms of ((5,6,7,8,15,16,23,24,25,-26,33,34-dodecahhydrotribenzo[e,m,a,a'][1,4,8,11,15,18,22,25]octaazacyclooctacosine- $\mathbb{H}^5, \mathbb{H}^8, \mathbb{H}^{14}, \mathbb{H}^{35}:\mathbb{H}^{17}$ - $,\mathbb{H}^{23},\mathbb{H}^{26},\mathbb{H}^{32}$)dicopper)triperchlorate (8.XIIIB1) mp 198-200°C, (found: Cu, 12.3; C, 42.2; H, 4.00; N, 10.88. Cu₂C₃₆H₄₀N₈Cl₃O₁₂ requires: Cu, 12.6; C, 42.8; H, 4.0; H, 10.9 X). Electronic Spectrum (CH₃OH/THF 1:5) λ_{max}/nm (\mathcal{E}): 346 (1641), 450 (1978). V_{max}/cm : 3578 b, 3258, 3058, 2943, 2878, 1617, 1600, 1576, 1502, 1426, 1407, 1365, 1248, 1210, 1202, 1164, 1075 b, 970, 930, 902, 882, 864, 790, 760, 624, 381. Crytal density 1.5 gcm⁻³.

10 - HI 100, 8, 8, 8, 8, 8, 8

mart.st. mart.st

4,11,15,34,11,110

Competing was abded in a la refluence 700 mae filteres petade de ((),0,0 (),2,2,1(1,4,0) (),2,2,1(1,4,0) (),2,2,2,0,0) (),0,0 (0) ((5.6.7.8.15.16.23.24.25.26.33.34-Dodecahydrotribenzo[e.m.s.a'][1.4.8.11.15.18.22.25]octaazacyclooctacosine-W⁵.W⁸.W¹⁴.W³⁵:W¹⁷.W²³.W²⁶.W³²)copper(II))tetraperchlorate.

[Cu2(H4cyendimer)](C104)4 8.XIIIB2

 H_4 cyendimer (8.XIIIB2) (0.6 g, 1 mmol) and copper(II) perchlorate (0.9 g, 2.4 mmol) was dissolved in chloroform/methanol (8:3, 220 cm³) at room temperature. Addition of petrol (40:60, 100 cm³) and filtration gave a light green powder of ((5,6,7,8,15,16,23,24,25,26,-33,34-dodecahydrotribenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaazacyclooctacosine- M^5 , M^6 , M^{14} , M^{35} : M^{17} , M^{23} , M^{26} , M^{32}) copper(II)) tetraperchlorate (8.XIIIB2) (0.86 g, 0.78 mmol, 78 X yield). mp 220°C, (found: C, 39.5; H, 3.7; N, 10.0. Cu₂C₃₆H₄₀M₈Cl₄O₁₆ requires: C, 39.0; H, 3.6; N, 10.1 Z). V_{max} /cm: 3280, 3200, 3100, 1640, 1605, 1581, 1499, 1324, 1299, 1238, 1220, 1204, 1100 b, 970, 881, 807, 807, 765, 737, 651, 628, 556.

((6,7,15,16,23,24,25,26,33,34-Decahydrotribenzo[e,m,s,s'][1,4,8,11,15,18.22,25]octassacyclooctacosine-W⁵,W³⁵,W³⁵,W³²,W²⁶:W⁸,W¹⁴,W¹⁷,W²³)dicopper(II))diperchlorate.hydrate.tetrahydrofuran.

[Cu₂(H₂cyendimer)(ClO₄)(H₂O)](ClO₄).0.5thf 8.XIIIB3

 $Cu(CH_3CN)_4(ClO_4)$ (0.55 g, 1.7 mmol) in degassed methanol (10 cm⁻³) was added to a suspension of H₄cyendimer (0.4 g, 0.7 mmol) in thf (50 cm⁻³). The mixture was diffused with nitrogen, and brown-green crystals of ((6,7,15,16,23,24,25,26,33,34-decahydrotribenso[<u>e,m,s,a'</u>]-[1,4,8,11,15,18,22,25]octaasacyclooctacosine-<u>M⁵, M³⁵, M³², M²⁶: M⁸, M¹⁴, M¹⁷-M²³)dicopper(II))diperchlorate.hydrate.tetrahydrofuran (8.XIIIB3) were scraped from the side of the flask (0.9 g, 0.94 mmol, 13 X yield). (found: C, 48.8; H, 4.6; W, 11.5. $Cu_2C_{40}H_{48}H_8Cl_2O_{10}$ requires C, 49.5; H, 4.9; W, 11.3 X). V_{max}/cm : 3500 b, 1660, 1632, 1601, 1532, 1409, 1344, 1305, 1198, 1187, 1090 b.</u>

LINGLAND, C. P.

144121.7.81) 1441.0120.00.00

((5.6.7.8.15.16.23.24.25.26.33.34-Dodecahydrotribenzo[e,m.s.e'][1.4.8.11.15.18.22.25]octaazacyclooctacosinedicopper(I)(carbonmonoxide))diperchlorate.

In an argon atmosphere, H_4 cyendimer (0.25 g, 0.43 mmol) was added to thf (50 cm⁻³) which had been distilled from LiAlH₄. For twenty minutes carbon monoxide was slowly diffused through the above suspension and also during the addition and reaction of Cu(CH₃CN)₄(ClO₄) (0.58 g, 1.8 mmol). After one hour of the diffusion of carbon monoxide at room temperature, filtration and washing with diethyl ether (dried) followed by 20 min suction in the argon/CO atmosphere gave a white powder of ((5,6,7,8,15,16,23,24,25,26,33,34dodecahydrotribenzo[e,m,s,s'][1,4,8,11,15,18,22,25]octaszacyclooctacosinedicopper(I)(carbon monoxide))diperchlorate (8.XIIIB4) (0.37 g, 0.38 mmol, 88 X yield). (found: Cu, 13.4; C, 46.6; H, 4.1; W, 11.2; Cl, 7.2. Cu₂C₃₈H₄₀N₈Cl₂O₁₀ requires: Cu, 13.1; C, 47.2; H, 4.2; H, 11.6; Cl, 7.3 X). V_{max} /cm: 3400 b, 3270, 3250, 2088, 1627, 1602, 1588, 1502, 1309, 1205, 1100, 970, 787, 752.

5,6,7,8,13,14,15,16,17,18,23,24,25,26,31,32,33,34,35,36-Eicosahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaazacyclooctacosine.

 BH_3/thf (35 cm³, 1 mol dm⁻³ solution, 35 mmol) was added in 5 cm³ portions over a 20 min period, under nitrogen to H₄ cyendimer (8.XIII) (0.69 g, 1.16 mmol). After refluxing for 1 h, distilled water (35 cm³) was added, and the mixture evoporated to a volume of 30 cm³ under reduced pressure at 50°C. Filtering and recrystallisation from dmf (20 cm³) gave colourless granular crystals of 5,6,7,8,13,14,15,16,17,18,-23, 24, 25, 26, 31, 32, 33, 34, 35, 36-eicosahydrotetrabenzo[e,m,s,a'][1,4,8,1-1,15,18,22,25]octaazacyclooctacosine (8.XIV) (0.59 g, 0.99 mmol, 86 X yield), mpt 228-230°C, (found: C, 73.0; H, 8.1; M, 18.9. C36H48N8 requires: C, 72.9; H, 8.2; N, 18.9 %). Electronic Spectrum (dmf) λ_{max}/nm (E): 268 (1066), 300 (710). V_{max}/cm 3317, 3271, 3210, 3170, 3108, 3070, 3042, 3018, 2947, 2935, 2905, 2890, 2846, 1605, 1584, 1563, 1505, 1454, 1441, 1355, 1347, 1343, 1326, 1305, 1235, 1228, 1225, 1129, 1113, 1105, 1085, 1042, 1017, 932, 902, 864, 807, 772, 746, 726, 615, 606, 465, 415. Mass Spectrum m/e: 592(M*=55 %), 457(15), 431(15), 426(10), 414(28), 402(12), 342(10), 332(13), 311(18), 309(63), 298(18), 297(72), 296(84), 295(100), 235(49),

((5,6,7,8,15,10)) ((1,15,10,22,10)) ((1,15,10,22,10))

> 225(31), 201(15), 161(57), 149(90), 147(100), 132(97), 132(97), 130(100), 121(67), 120(100), 118(100), 106(99), 91(9), 77(16).

91,01,01,01,01,01,0,00 examination

Line R | Didy and in the test and the 1 1104 BLJ 18 1940 the property whether said stilling becauter - in Line law avail ("as 32,10,05,82,40,81 1.15,10,22,71 ortentil giald), and ribidly V.I. J Lewistreet August 10 (1) 200 111-3164, 3070, 3045 IL-I 13631, 13008, (ASA,) -1111, 1129, 1112, 1111 246, 726, 615, 676, 676 ADTCLDY, ALLCOLL, ALLO 311(18), 309(63), 209(14)

((5,6,7.8,13.14,15,16,17,18,23,24,25,26,31,32,33,34,35,36-Eicosahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaszacyclooctacosine-W⁵,W⁸,-N¹⁴,N³⁵:N¹⁷,H²³,N²⁶,H³²)dicopper(II))perchlorate.

Copper(II) perchlorate (0.15 g, 0.4 mmol) in methanol (15 cm³) was added to a suspension of H₁₂cyendimer (8.XIV) (0.1 g, 0.17 mmol) in chloroform (15 cm³). The mixture was refluxed for 1 min which resulted in a red-brown solution, and addition of petrol (40:60, 40 cm³) induced crystallisation to give a light brown powder after filtration of ((5,6,7,8,13,14,15,16,17,18,23,24,25,26,31,32,33,34,35,-36-eicosahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaazacyclooctacosine- $M^5, M^8, M^{14}, M^{35}: M^{17}, M^{23}, M^{26}, M^{32}$)dicopper(II))perchlorate (8.XIVB) (0.18 g, 0.15 mmol, 89 X yield), mp 220°C(e), (found: Cu, 11.2; C, 37.9; H, 4.3; W, 10.0. Cu₂C₃₆H₄₈M₈Cl₄O₁₆ requires: Cu, 11.4; C, 38.7; H, 4.3; W, 10.0 X). Electronic Spectrum (methanol) λ_{max}/mm (E): 328 (2250), 375 (1618). V_{max}/cm : 3560,3260, 2970, 2900, 1635, 1620, 1595, 1502, 1470, 1420, 1370, 1219, 1080 b, 867, 828, 765, 719, 619.

5,6,7,8,15,16,17,18,19,20,27,28,29,30,37,38,39,40,41,42-Eicosahydrotetrabenzo[e,q,w,i'][1,4,8,15,19,22,26,33]octaszacyclohexatriacontine.

4,7-Diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (1.34 g, 5 mmol) and 1,6-diaminohexane (0.67 g, 5.8 mmol) was heated in refluxing ethanol (100 cm³) under nitrogen for 5 h. Acetic acid (0.003 g, 0.05 mmol) was added and refluxing continued for a further 48 h. Cooling, filtering, and recrystallisation from dichloromethane (40 cm³) gave fine white needles of 5,6,7,8,15,16,17,18,19,20,27,28,29,30,37,38,39,-40,41,42-eicosahydrotetrabenzo[e,q,w,i']{1,4,8,15,19,22,26,33]octaazacyclohexatriacontine (8.XV) (1.42 g, 2.0 mmol, 82 X yield), (found: C, 75.3; H, 8.1; N, 15.8. C₄₄H₅₆N₈ requires: C, 75.8; H, 8.1; N, 16.8 X). V_{max}/cm : 3250, 3175, 3100, 3030, 2938, 2895, 2860, 2840, 1640, 1621, 1595, 1530, 1370, 1333, 1284, 1212, 1167, 1150, 1104, 987, 972, 880, 750, 668, 636, 614, 510, 468.

(5.6.7 Letrabe

<u>{(5,6,7,8,15,16,17,18,19,20,27,28,29,30,37,38,39,40,41,42-Eicosahydro-</u> <u>tetrabenzo[e.q.w.i'][1,4,8,15,19,22,26,33]octaazacyclohexatriacontine-</u> <u>N⁵, N⁸, N¹⁴, H²¹, N²⁷, N³⁰, N³⁶, H⁴³)dicopper(II)perchlorate.</u>

 $R = -(CH_2)_6^{-1}$

[Cu2(H4Cyhexdimer)](C104)4 8.XVB

Copper(II) perchlorate (0.24 g, 0.65 mmol) in TEOF (10 cm³) was added to a refluxing solution of H₄cyhexdimer (8.XV) (0.2 g, 0.28 mmol) in TEOF (50 cm³). Cooling and filtering gave a red powder of 5,6,7,8,15,16,17,18,19,20,27,28,29,30,37,38,39,40,41,42-eicosahydrotetetrabenzo[<u>e,q,w,i'</u>][1,4,8,15,19,22,26,33]octaazacyclohexatriacontine- $N^5, N^8, N^{14}, N^{21}, N^{27}, N^{30}, N^{36}, N^{43}$)dicopper(II)perchlorate (8.XVB) (0.3 g, 0.25 mmol, 88 % yield), (found: C, 42.3; H, 4.5; N, 8.6. Cu₂C₄₄H₅₆N₈-Cl₄O₁₆ requires: C, 43.3; H, 4.6; N, 9.2 %). V_{max} /cm: 3500 b, 3370 b, 3180 b, 2940 b, 2870, 1680, 1648, 1640, 1611, 1586, 1503, 1315, 1240, 1220, 1100 b, 935, 769, 631.

 $\label{eq:started_start} = \frac{1}{2} \frac{\partial_{x_1} \partial_{x_2} \partial_{x_3} \partial_{x_4} \partial_{x_5} \partial_{x_5}$

it is it is

5,6,7,8,13,14,15,16,17,18,19,20,21,22,27,28,29,30,35,36,37,38,39,40,-41,42,43,44-Octacosahydrotetrabenzo[e.q.w.i'][1,4,8,15,19,22,26,33]octaszacyclohexatriacontine.

 $R = -(CH_2)_6^-$

H12Cyhexdimer 8.XVI

BH₃/thf (20 cm³, 1 mol dm⁻³, 0.5 mmol) was added to H₄cyhexdimer (8.XV) (0.35 g, 0.5 mmol) under nitrogen. After refluxing for 18 h, distilled water (1 cm³) was added followed by sodium hydroxide solution (2.5 cm³, 2 mol dm⁻³). The organic layer was separated and mixed with the same amount of alkali solution as previously used, shaken well and then evaporation of the organic phase to 5 cm³ over a period of 7 days at room temperature gave white crystals of 5,6,7,8,-13,14,15,16,17,18,19,20,21,22,27,28,29,30,35,36,37,38,39,40,41,42,43,-44-octacosahydrotetrabenzo[e,q,w,i'][1,4,8,15,19,22,26,33]octaasacyclohexatriacontine. (8.XVI) (0.32 g, 0.46 mmol, 91 % yield), (found: C, 74.2; H, 9.5; N, 15.8. C₄₄H₆₄N₈ requires: C, 74.9; H, 9.2; N, 15.9 %). V_{max}/cm : 3405, 3390, 1613, 1593, 1525, 1348, 1319, 1295, 1277, 1232, 1222, 1199, 1170, 1151, 1077, 1059, 1010, 925, 758, 484.

1. /1, /1, /1, /1, //, // //

Mag/cm(()) = + (0.20) (0.01 +) discilled.ward) molur(dd 12.0 + * molur(dd 12.0 + *) mixed w() / dwyr 80 inted w() / dwyr 80 33,14,15,16,17,17 dd-mumanasydorenni Mag/cwr 3403, 3300,1 3122, 2293, 2170, 1227,1 5,6,7,8.13,14.15.16.17.18,19,20,21,22,27,28,29,30,35,36,37,38,39,40,-41.42,43,44-Octacosahydrotetrabenzo[e,q,w,i'][1,4,8,15,19,22,26,33]octa(asahydrochloride)cyclohexatriacontine.

 BH_3/thf (20 cm³, 1 mol dm⁻³, 0.5 mmol) was added to H_4 cyhexdimer (8.XV) (0.35 g, 0.5 mmol) under nitrogen. After refluxing for 24 h, distilled water (2 cm³) and concentrated hydrochloric acid (15 cm³) was added, and refluxing continued for 3 days. The volume was then reduced to 5 cm³ at 60°C at low pressure, followed by the addition of concentrated hydrochloric acid (10 cm³) and further evaporation to 5 cm³. Filtering and washing with methanol (2 cm³) gave a white powder of 5,6,7,8,13,14,15,16,17,18,19,20,21,22,27,28,29,30,35,36,37,38,39,-40,41,42,43,44-octacosahydrotetrabenso[<u>e,q,w,i'</u>][1,4,8,15,19,22,26,33-]octa(azahydrochloride)cyclohexatriacontine (8.XVIC) (0.32 g, 0.32 mmol, 65 X yield), (found: C, 54.7; H, 7.3; N, 10.4; Cl, 30.1. C₄₄H₇₂N₈Cl₈ requires: C, 53.0; H, 7.2; N, 11.2; Cl, 28.5 X). V_{max}/cm : 3400-2400, 1615, 1594, 1530, 1475, 1450, 1385, 1320, 1288, 1233, 1172, 1120, 1098, 1060, 1011, 968, 925, 800, 755, 615, 498, 472.

<u>5.6.7.8.15.17.24.25.26.27.34.36-Dodecahydro-16.35-dihydroxytetrabenso-</u> [e.n.t.c'][1.4.8.12.16.19.23.27]octassacyclotriscontine.

 $R = -CH_2CHOHCH_2 -$

1,3-Diaminopropan-2-ol (0.48 g, 5.28 mmol) in methanol (20 cm³) was added to a refluxing solution of 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (1.34 g, 5 mmol) in chloroform (50 cm³) under nitrogen. After 25 h, acetic acid (0.003 g, 0.05 mmol) was added, and refluxing continued for 24 h. The solution was cooled and filtered, and the product recrystallised from dichloromethane to give white microcrystals of 5,6,7,8,15,17,24,25,26,27,34,36-dodecahydro-16,35-dihydroxytetrabenzo[e,n,t,c'][1,4,8,12,16,19,23,27]octaazacyclotriacontine (8.XVII) (1.03 g, 1.6 mmol, 64 X yield), (found: C, 71.2; H, 6.8; N, 17.9. $C_{38}H_{44}N_{8}O_2$ requires C, 70.8; H, 6.8; N, 17.8 X). v_{max} 3500, 3210, 3090, 3025, 2923, 2880, 2857, 1630, 1600, 1578, 1518, 1463, 1453, 1327, 1320, 1630, 1600, 1578, 1518, 1463, 1453, 1327, 1320, 1200, 1155, 1135, 1091, 1050, 1042, 1033, 972, 873, 747, 600 cm⁻¹.

1.2-012001001001 1.20-01000 (0.7)11 1.20-01000 (0.7)11 1.20-01000 (0.7)11 1.20-01000 (0.7)10 1.200 peadont (0.7)10 1.200 peadont (0.7)10 1.200 peadont (0.7)10 1.200 peadont (0.7)10 1.200 peacont (0.7)10 1.200 peaco ((5,6,7,8,15,17,24,25,26,27,34,36-Dodecahydro-16,35-dihydroxytetrabenzo[e,n,t,c'][1,4,8,12,16,19,23,27]octaszacyclotriacontine-N⁵, M⁸, M¹⁴,-N³⁷: N¹⁸, N²⁴, M²⁷, N³³)dicopper)perchlorate.

A solution fo copper(II) perchlorate (0.26 g, 0.70 mmol) in triethylorthoformate (5 cm³) was added to a refluxing solution of H_4 cyprodimer (8.XVII) (0.2 g, 0.31 mmol) in triethylorthoformate (240 cm³). Cooling and filtering gave a dark red powder of 5,6,7,8,-15,17,24,25,26,27,34,36-dodecahydro-16,35-dihydroxytetrabenzo-[e,n,t,c'][1,4,8,12,16,19,23,27]octaszacyclotriacontine- $N^5, N^8, N^{14}, N^{37}: N^{18}, N^{24}, N^{27}, N^{33}$ dicopper)perchlorate (8.XVIIB) (0.33 g, 0.28 mmol, 91 X yield), (found: C, 39.5; H, 3.6; N, 9.8. Cu₂C₃₈H₄₄N₈Cl₄O₁₆ requires: C, 39.2; H, 3.8; N, 9.6 X). V_{max} /cm: 3250 b, 2980, 2940, 1650, 1612, 1590, 1500, 1100 b, 935, 768, 705, 630.

<u>5,6,7,8.13,14,15,17,18,19,24,25,26,27,32,33,34,36,37,38-Eicosahydro-</u> <u>16,35-dihydroxytetrabenzo-[e,n,t,c'][1,4,8,12,16,19,23,27]octa(azahy-</u>

drochloride)cyclotriacontine.

 $R = -CH_2CHOHCH_2 -$

 BH_3/thf (20 cm³, 1 mol dm⁻³ solution, 20 mmol) was added in 5 cm³ portions over a 20 min period, under nitrogen to H₄cyprodimer (8.XVII) (0.3 g, 0.48 mmol). After refluxing for 24 h, distilled water (2 cm³) and concentrated hydrochloric acid was added, and refluxing continued for 3 days. The volume was then reduced to 5 cm³ at 60°C under reduced pressure, followed by the further addition of concentrated hydrochloric acid (5 cm³) and evaporation to 5 cm³. Filtering and washing with methanol (5 cm³) gave a white powder of 5,6,7,8,13,14,15,17,18,19,24,25,26,27,32,33,34,36,37,38-eicosahydro-16,35-dihydroxytetrabenzo-[e,n,t,c'][1,4,8,12,16,19,23,27]octa(azahydro-chloride)cyclotriacontine (8.XVIIIC) (0.28 g, 0.30 mmol, 62 X yield). V_{max}/cm : 3400-2400, 1617, 1597, 1537, 1515, 1472, 1386, 1324, 1270, 1154, 1130, 1097, 1084, 1060, 983, 765, 731, 625, 480, 450.

to Manual and a constant of the second secon

bhig/bhi bhig/bhi bhig/bhi bhild bhild bhi der 5 ddyn 700 1000 der 6 mei 3000-2000 blidd, 1100, 1000 1000 1124, 1100, 1000 1000 5,6,7,8,22,23,24,25-Octahydrotetrabenzo[f,f',1,1']benzo[1,2-b:4,5-b']bis[1,4,8,11]tetrassacyclotetradecane.

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (3.2 g, 12.0 mmol) was heated in refluxing ethanol (500 cm³) under nitrogen. 1,2,4,5-tetraaminobenzene tetrahydrochloride (2.0 g, 7 mmol) was added in 15 approximately equal amounts over a period of 30 min. After each addition a deep red colour was produced which was discharged in each case by the dropwise addition of sodium methoxide solution (0.52 mol dm⁻³) until a yellow/orange colour was obtained. (Total 45 cm⁻³, 23.4 mmol). Refluxing was continued for 24 h and the mixture filtered hot. Recrystallisation from pyridine (230 cm³) gave yellow plates of 5,6,7,8,22,23,24,25-octahydrotetrabenzo[$\underline{f},\underline{f}',\underline{1},\underline{1}'$]benzo[$1,2-\underline{b}:4,5-\underline{b}'$]-bis[1,4,8,11]tetraamacyclotetradecane (8.XIX) (2.75 g, 4.57 mmol, 76 X yield), mp 330°C(d), (found: C, 75.2; H, 6.0; N, 18.3. C₃₈H₃₄Ng requires: C, 75.7; H, 5.7; N, 18.6 X). Electronic Spectrum (dmf) λ_{max}/nm (\mathcal{E}): 270 (1896), 320 (1069), 440 (1974). ν_{max}/cm : 3170, 3095, 3070, 3030, 2960, 2890, 2830, 1618, 1598, 1572, 1535, 1522, 1488,

1368, 1338, 1332, 1209, 1162, 1146, 749, 741, 720, 701. Mass Spectrum Field Desorption M^{*}=602.

((6,7,22,23,24,25-Hexahydrotetrabenso[f,f',1,1']benzo[1,2-b:4,5-b'][1,-[1,4,8.11,1',4',8',11']octaszadicyclotetradecinato(2-)-W⁵,W⁸,W¹⁴,W³³)copper(II)).

[Cu(H2bicyphen)] 8.XIXA1

Copper(II) acetate (0.16 g, 0.8 mmol) in pyridine (20 cm³) was

added to a refluxing solution of H₄bicyphen (8.XIX) (0.2 g, 0.33 mmol) in pyridine (150 cm³) under nitrogen. After 10 min the solution was cooled and left for 20 h before filtering to give purple microcrystals with a green sheen of $((6,7,22,23,24,25-hexahydrotetra-benzo[f,f',1,1'-]benzo[1,2b:4,5b'][1,[1,4,8,11,1',4',8',11']octaazadi-cyclotetradecinato(2-)-<math>\underline{M}^5, \underline{M}^8, \underline{M}^{14}, \underline{M}^{33}$)copper(II)) (8.XIXA1) (0.20 g, 0.31 mmol, 95 X yield), mp >360°C, (found: Cu, 9.4; C, 66.7; H, 4.5; N, 16.2. CuC₃₈H₃₂N₈ requires: Cu, 9.6; C, 68.7; H, 4.9; N, 16.9 X). Electonic Spectrum (pyridine 60°C) λ_{max}/nm (ε) 350 (492), 510 (526), 650 (240). V_{max}/cm : 2940, 2860, 1611, 1580, 1516, 1478, 1448, 1391, 1361, 1254, 1220, 1173, 1140, 1035, 956, 944, 847, 835, 741, 629, 617, 585, 556, 545, 496. Laser Raman V_{max}/cm : 1206, 1293, 1373, 1395,

-0-52,45,45,23,25,4,5,4,4,4 (1447793141,4,4,4,1)811

7-11-23-3,8

10.1.27.1.27.1.24.25.25.20.000 11.4.2.41.17.47.1.1.1 11.4.2.41.17.47.1.1.1

((6,7,23,24-Tetrahydrotetrabenzo[f,f',1,1']benzo[1,2-b:4,5-b']bis([1,-4,8,11]tetrazzacyclotetradecinato)(4-)-N⁵,W⁸,N¹⁴,N³³,W¹⁶,N²²,W²⁵,N³¹)copper(II)).

[Cu₂(bicyphen)] 8.XIXA2

A solution of copper(II) perchlorate (0.06 g, 0.15 mmol) in pyridine (10 cm³) was added to a suspension of [Cu(H₂bicyphen)] (8.XIXA1) (0.1 g, 0.15 mmol) in refluxing pyridine. After 24 h the solution was cooled and filtered to give purple microcrystals with a green sheen of ((6,7,23,24-tetrahydrotetrabenzo[$\underline{f},\underline{f}',\underline{1},\underline{1}'$]benzo[1,2b:4,5-b']bis[1,4,8,11]tetraasacyclotetradecinato(4-)- $\underline{M}^5,\underline{M}^6,\underline{M}^{14},\underline{M}^{33},\underline{M}^{16}$, $\underline{M}^{22},\underline{M}^{25},\underline{M}^{31}$)copper(II)) (8.XIXA2) (0.08 g, 0.11 mmol, 74 X yield), mp >360°C, (found: Cu, 16.8; C, 62.1; H, 4.1 W, 15.3. Cu₂C₃₈H₃₀N₈ requires: Cu, 17.5; C, 62.9; H, 4.2; W, 15.4 X). Electronic Spectrum (pyridine) λ_{max}/nm (ε): 355 (823), 510 (769), 630 (491). V_{max}/cm : 2940, 2860, 1611, 1580, 1516, 1478, 1448, 1391, 1361, 1254, 1220, 1173, 1140, 1035, 956, 944, 847, 835, 741, 629, 617, 585, 556, 545, 496. Laser Raman/cm: 1206, 1293, 1373, 1395, 1460, 1561, 1600.

((6,7,23,24-Octahydrotetrabenzo[f,f',1,1']benzo[1,2-b:4,5-b']bis([1,4,8,11]tetraszacyclotetradecine)-N⁵,N⁸,N¹⁴,N³³:N¹⁶,W²²,W²⁵,N³¹)dicopper(II))perchlorate.

Method A

 H_4 bicyphen (8.XIX) (0.1 g, 0.17 mmol) was extracted from a Soxhlet thimble into a refluxing solution of copper(II) perchlorate (0.15 g, 0.39 mmol) over a period of 24 h under nitrogen. Cooling and filtering gave brown crystals of ((6,7,23,24octahydrotetrabenzo[<u>f</u>,<u>f</u>',-<u>1</u>,<u>1</u>']benzo[1,2-<u>b</u>:4,5-<u>b</u>']bis([1,4,8,11]tetraazacyclotetradecine)<u>H⁵, M⁸,-</u> <u>N¹⁴, M³³:N¹⁶, M²², M²⁵, M³¹)dicopper(II)dicopper)perchlorate (8.XIXB)(0.1 g, 0.09 mmol, 52 X yield), mp 200°C(d), (found: Cu, 11.0; C, 41.2; H, 3.4; N, 9.9. Cu₂C₃₈H₃₄N₈Cl₄O₁₆ requires: Cu, 11.3; C, 40.5; H, 3.0; N, 9.9 X). Electronic Spectrum (pyridine)_{max}/nm: 270, 320, 450, 600. $V_{max}/cm: 1612, 1598, 1542, 1536, 1517, 1485, 1362, 1336, 1320, 1314,$ 1218, 1158, 1100 b, 927, 756, 744, 719, 697, 622, 434.</u>

Method B

A solution of copper(II) perchlorate (0.15 g, 0.4 mmol) in

A solution of copperties, percenter of

pyridine (5 cm⁻³) was added to a solution of H₄bicyphen (0.1 g, 0.17

المحمد ع المحمد ع المحمد ع المحمد المحمد المحمد المحمد ال المحمد المحمد المحمد المحمد ال المحمد المحمد المحمد المحمد ال المحمد المحمد المحمد المحمد المحمد ال المحمد المحم المحمد ال

3.21646

mmol) in refluxing pyridine (25 cm⁻³). After 1 h the solution was cooled, and the addition of benzene (25 cm⁻³) gave brown microcrystals of $[Cu_2(H_4bicyph)](ClO_4)_4$ (8.XIXB) (0.15 g, 1.4 mmol, 76 % yield).

5,6,7,8,24,25,26,27-Octahydrotetrabenzo[f,f',1,1']benzidine[3,4-b:3',5'b']bis[1,4,8,11]tetraszacyclotetradecane.

4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (2.2 g, 8.0 mmol), 4,4'-diaminobenzidine (0.86 g, 4 mmol) and zinc(II) acetate (1.76 g, 9.6 mmol) was heated in refluxing methanol (250 cm³) for 48 h. Cooling and filtering, followed by recrystallisation from pyridine/methanol (2:5, 70 cm³) gave yellow crystals of H₄bicyph (8.XX) (2.0 g, 2.95 mmol, 74 X yield). (found: C, 77.4; H, 5.4; H, 16.1. $C_{44}H_{38}N_8$ requires: C, 77.9; H, 5.6; N, 16.5 X). Electronic Spectrum (chloroform) max/nm (£): 256 (7706), 400 (4155). V_{max}/cm : 3170, 3095, 3070, 3030, 2960, 2890, 2830, 1618, 1598, 1572, 1338, 1162.

is is it is a first and first a

A,Feddate=7.557.5 mme13, 4,4*=4)>eiee Chitan, 4,4*=40>eiee be Comting and Fil)= eyekasae/mmitane(11 1 10,333 73.0 a, 2.42 mm A&de CaaRawa restance A&de CaaRawa restance Add restance ((6,7.25,26-Tetrahvdrotetrabenzo[f,f',1,1']benzidine[3,4-b:3,4-b']bis-[1,4.8,11]tetrassacyclotetradecinato)(4-)-w⁵.w⁸.w¹⁴.w³⁷.w¹⁸.w²⁴.w²⁷.w³³)copper(II)).

[Cu2(bicybenz)] 8.XXA

 H_{4} bicybenz (0.4 g, 0.59 mmol) was extracted from a Soxhlet thimble into a refluxing solution of copper(II) acetate (0.28 g, 1.4 mmol) in methanol/thf (4:3 , 70 cm ³) for 48 h. Cooling and filtering gave a black powder of ((6,7,25,26-tetrahydrotetrabenzo[f,f',1,1']benzidine[3,4-b:3,4-b']bis([1,4,8,11]tetraazacyclotetradecinato)(4-)- H^{5} ,- $H^{8}, H^{14}, H^{37}, H^{18}, H^{24}, H^{27}, H^{33}$)copper(II)) (8.XXA) (0.33 g, 0.41 mmol, 69 X yield), (found: Cu, 15.2; C, 65.2; H, 3.9; N, 13.6. $Cu_2C_{44}H_{34}N_8Cl_4O_{16}$ requires: Cu, 15.8; C, 65.9; H, 4.3; N, 14.0 X). Electronic Spectrum (dmf) M_{max}/nm (\mathcal{E}): 270 (1958), 328 (1246), 440 (1079), 520 (1001), 600 (734). V_{max}/cm : 3050, 2850, 1614, 1577, 1520, 1362, 1190, 1143, 748.

((6,7,25,26-Tetrahydrotetrabenzo[f,f',1,1']benzidine[3,4-b:3,4-b']bis-[1,4,8,11]tetraszacyclotetradecine)-W⁵,W⁸,W¹⁴,W³⁷,W¹⁸,W²⁴,W²⁷,W³³)dicopper(II))perchlorate.

A solution of copper(II) perchlorate (0.6 g, 1.6 mmol) in methanol (10 cm⁻³) was added to a warmed solution of H₄bicybenz (0.53 g, 0.73 mmol) in dmf (20 cm⁻³). After 24 h the mixture was filtered to give dark brown micro crystals of ((6,7,25,26-tetrahydrotetrabenso[f,f',1,1']benzidine[3,4-b:3,4-b']bis[1,4,8,11]tetraasacyclotetradecine)- $\underline{H}^{5}, \underline{H}^{8}, \underline{H}^{14}, \underline{H}^{37}, \underline{H}^{18}, \underline{H}^{24}, \underline{H}^{27}, \underline{H}^{33}$)dicopper(II))perchlorate (8.XXB) (0.62 g, 0.5 mmol, 71 X yield), (found: Cu 10.1; C, 44.1; H, 3.0; H, 9.6. Cu₂C₄₄H₃₈N₈Cl₄O₁₆ requires: Cu, 10.6; C, 43.9; H, 3.2; H, 9.3 X). Electronic Spectrum (dmf) \underline{hax} /nm (£): 270 (6019), 308 (3760), 330 (3700), 440 (3310), 470 (3310) 520 (2295), 650 (169). \underline{v}_{max} /cm: 1620, 1551, 1420, 1385, 1300, 1230, 1192, 1168, 1100, 760, 628.

(6.7.25.25.26-Tellelive [];4.4;1[]:etlerele(); g³³)(ouper((11)).

b) anadysžágů
b) anadysžágů
b) anadoze slídnění
b) anadoze slídnění
b) anadoze slídně
b) anadoze slidn

5.6.7.8.13.14.18.19.24.25.26.27.32.33.37.38-Hexadecahydrotetrabenzo[f.f'.1.1']benzidine[3.4-b:3'.5'-b']bis[1.4.8.11]tetraszacyclotetradecane.

H12bicybens 8.XXI

BH₃/thf (40 cm³, 0.2 mol dm⁻³, 8 mmol) was added to H₄bicyph (8.XXV) (0.5 g, 0.74 mmol) under nitrogen. After refluxing for 2 h the solution containing a small amount of dark coloured impurity was filtered and then quenched with thf/water (5:2, 70 cm³). Addition of sodium hydroxide solution (10 cm³, 2 mol dm⁻³, 20 mmol) and sodium chloride (3 g) and evaporation of the organic layer under reduced pressure at 50°C to 20 cm³, followed by addition of a methanolic solution of hydrochloric acid (10:1, 55 cm³) gave a clear solution. Addition of sodium hydroxide solution to approx pH 7 (20 cm³, 2 mol dm⁻³, 40 mmol) gave a white precipitate. Filtering gave a white powder of 5,6,7,8,13,14,18,19,24,25,26,27,32,33,37,38-hexadecahydrotetrabenzo[f,f',1,1']bensidine[3,4-b:3',5'-b']bis[1,4,8,11]tetraexacyclotetradecane (0.4 g, 0.58 mmol, 79 X yield), (found: C, 76.2; H, 6.6; H, 16.0. C44H46H8 requires: C, 76.9; H, 6.8; H, 16.3 X). Electronic Spectrum (chloroform) λ_{max}/nm (£):260 (2776), 300 (2719). V_{max}/cm :

(4,7,25,10-)utyrbyr [7,6,0,11]accr4cutyr store(11))paccr4cutyr

((5.6,7,8.13,14,18,19,24,25,26,27,32,33,37,38-Hexadecahydrotetrabenzo-[f,f',1,1']benzidine[3,4-b:3,4-b']bis[1,4,8,11]tetraazacyclotetradecine)-N⁵, N⁸, N¹⁴, N³⁷, N¹⁸, N²⁴, N²⁷, N³³)dicopper(II))perchlorate.

A solution of copper(II) perchlorate (0.36 g, 0.97 mmol) in methanol (10 cm⁻³) was added to a suspension of H_{12} bicybenz (0.3 g, 0.43 mmol) in heated thf (20 cm⁻³). After 24 h the mixture was filtered to give black micro crystals of ((5,6,7,8,13,14,18,19,24,25,-26,27,32,33,37,38-hexadecahydrobenzo[f,f',1,1']benzidine[3,4-b:3,4-b'-]bis[1,4,8,11]tetraazacyclotetradecine)- M^5 , M^8 , M^{14} , M^{37} , M^{18} , M^{24} , M^{27} , M^{33} -)dicopper(II))perchlorate (8.XXIB) (0.45 g, 0.37 mmol, 86 % yield), (found: C, 44.3; H, 3.5; N, 9.2. $Cu_2C_{44}H_{46}N_8C1_4O_{16}$ requires: C, 44.0; H, 3.9; N, 9.3 %). Electronic Spectrum (dmf) λ_{max} /nm (\mathcal{E}): 268 (5005), 320 (3337), 400 (1902), 440 (2369), 464 (2420) 526 (2169), 646 (267). V_{max} /cm: 3550, 3200, 1610, 1555, 1495, 1420, 1305, 1100, 770.

5,6,7,8,13,16,18,10,...

[Cu2(HDFMP)2] 8.XXIIA

[Cu2(HDFMP)2] 8.XXIIA

A solution of 1,6-diformaldoxime-4-methylphenol (0.1 g, 0.52 mmol) in dmf (50 cm³) was added to a solution of copper(II) acetate (0.24 g, 1.2 mmol) in dmf (25 cm³) which produced a light coloured green powdery suspension. The mixture was filtered and dried to give green microcrystals of $[Cu_2(HDFMP)_2]$ (8.XXIIA) (0.13 g, 0.25 mmol, 97 X yield), (found: C, 41.8; H, 3.4; N, 10.9. $Cu_2C_{18}H_{18}N_4O_6$ requires: C, 42.1; H, 3.5; N, 10.9 X). V_{max}/cm : 3450, 3025, 3005, 2930, 1620, 1600, 1588, 1402, 1350, 1302, 1237, 1190, 1098, 1070, 110, 960, 930, 906, 865, 822, 762, 707, 686, 582, 568, 519, 504, 477, 430.

11.21,21,21,21,3,5,3,2); 10.161,000(12,1,1); 10.161,000(12,1);
10.161,000(12

ALLES LEADERSTRATE

[Cu2(H2DFMP)2(C104)2].2thf 8.XXIIB

[Cu2(H2DFMP)2(C104)2].2thf 8.XXIIB

A solution of 1,6-diformaldoxime-4-methylphenol (0.1 g, 0.52 mmol) in thf (100 cm³) was cooled in liquid nitrogen to a temperature just above the freezing point of the mixture. With fast stirring a solution of copper(II) perchlorate (0.5 g, 1.35 mmol) in methanol (25 cm³) was added which produced a translucent green solution. On warming the mixture to room temperature, green crystals of $[Cu_2(H_2DFHP)_2(ClO_4)_2]$.2thf (8.XXIIB) were deposited (0.09 g, 0.11 mmol, 40 X yield), (found: C, 34.3; H, 3.6; M, 6.6. $Cu_2C_26H_34M_4Cl_2O_{16}$ requires: C, 34.5; H, 4.00; M, 6.5 X). V_{max}/cm : 3260, 1642, 1628, 1612, 1572, 1370, 1350, 1313, 1268, 1243, 1200, 1100 b, 1003, 972, 956, 922, 882, 820, 762, 708, 682, 564, 514.

A aniwithe first weat) is def (50 (6.24 g. f.? neul()) graes pouley servich stern uteroerjete() i glais), (tounk) C. i glais), (tounk) C. i 500, iSBE, iAD; N. TO, Y. VO4, 863, 802, 763, 100 (0)

The [3+2] condensation product (Hydrasine:C2dialdehyde) 8.XXIII

[3+2] product 8.XXIII

Hydrazine hydrate (5 g, 100 mmol) was added to a refluxing suspension of 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (1.5 g, 5.6 mmol). After refluxing for 2 h the solution was cooled and filtered to give the [3+2] product (8.XXIII) (1.43 g, 2.55 mmol, 91 X yield), (found: C, 68.1; H, 6.4; N, 24.5. $C_{32}H_{36}N_{10}$ requires: C, 68.6; H, 6.5; N, 25.0 X). V_{max}/cm : 3416, 3300, 1605, 1530, 1488, 1400, 1343, 1331, 1313, 1234, 1202, 1167, 1141, 1085, 1048, 91, 930, 894, 767.

A multiplier of tells
Martin Karden and tells
Mart Abave the three of tells
Mart Abave the treatment tells
Martin Karden at tells
Martin (1, 40 % 3/46(4), 11 mm)
Martin (1, 50 % 3/46(4), 11 mm)
Martin (1, 50 % 3/46(4), 11 mm)

The [3+3] condensation product (Hydrazine:C2dialdehyde) 8.XXIV

[3+3] product 8.XXIV

The [3+2] product (8.XXIII) (0.2 g, 0.36 mmol) and 4,7-diaza-2,3:8,9-dibenzodecane-1,10-dione (8.I) (0.1 g, 0.37 mmol). was heated in refluxing methanol (70 cm³) for 24 h. After cooling and standing for 3 days the solution was filtered and recrystallised from chloroform/methanol (5:1 , 100 cm³) to give the [3+3] product (8.XXIV) (0.18 g, 0.23 mmol, 64 X yield), (found: C, 72.2; H, 6.2; H, 21.3. $C_{48}H_{48}N_8$ requires: C, 72.7; H, 6.1; N, 21.2 X). V_{max}/cm : 3260, 1620, 1588, 1521, 1320, 1200, 1163, 1141, 1100, 1080, 1048, 928, 914, 863, 701, 686, 652, 597, 577, 541, 462.

Hydramler byfrict Hydramler af \$;?-41144411 5,6 messic Affer fri ((Atases in give fri), 6,51 %; 33.0 %)- Yent 1043; 1331; 33.3 %)- Yent 1043; 1331; 33.3 %)- Yent 1043; 1331; 3313; 3234, 1041

[3+2] southinistic.

N.'N-di(o-benzylalcohol) piperazine (C2)2-dialcohol

(C2)2-dialcohol 8.XXV

Type 'A' MnO₂ (see chapter 2) (400 g) was placed in a flask and flushed with nitrogen for twenty minutes. The MnO₂ was stirred as tetrahydrofuran (thf) (400 cm³) was added slowly. C₂-dialcohol (see chapter 2) (30 g, 110 mmol) was added as a solution in thf (50 cm³), followed by refluxing for 6 h. The product was extracted with hot thf (5 x 200 cm³), and evaporation of the resulting mixture gave white crystals of N,'N-di(o-benzylalcohol) piperazine ((C₂)₂-dialcohol) (8.XXV) (29.5 g, 99 mmol, 90 X yield), (found: C, 72.1; H, 7.3; N, 9.2. C₁₈H₂₂N₂O₂ requires C, 72.5; H, 7.4; N, 9.4 X). ¹H nmr Spectrum δ /ppm: 2.98, s, NCH₂-, 8H; 4.57, d, -CH₂OH, 4H; 5.08, t, -CH, 2H; 6.9-7.4, m, aryl protons, 8H. V_{max}/cm^{-1} : 3300, 3220 b, 1605, 1580, 1500, 1402, 1326, 1292, 1284, 1230, 1222, 1187, 1013. Mass Spectrum m/e: 298(M* = 100X), 163(36), 162(64), 150(51), 149(30), 148(31), 144(40), 136(53), 106(91), 91(35).

30e (3v2) product 1,3v8,9-d(bnuard+code) is sellowing astists for 1 says the soll def 1 says the soll (0.10 %, 0.20 ment, + 1 (0.10 %, 0.00 %, 10 (0.10 %, 0.00 %, 10 (0.10 %, 0.00 %, 10 (0.10 %, 0.00 %, 10 (0.10 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.00 %, 0.00 %, 10 (0.10 %, 0.00 %, 0.

In (gland-a) 22-81,8

OTH OAT ANYT to its industry il) (5 sergeds incodition ad huwelful (5 w 200 km²) 110 /0 10 miningin 79 B (1929-1-1933-0) W.E. 5134225605 TT Distance of the second Table me weeks peak the 298738F = 10011/ 111 U.S. (10)005 (Stabers

General methods for the reaction of H2cyphNH2 (8.VIII) with acid chlorides and dichlorides.

Acetyl chloride (0.045 g, 0.57 mmol) in benzene (1 cm³) was added to a solution of H_2 cyphNH₂ (0.2 g, 0.56 mmol) in pyridine (10 cm³). The solution was filtered to remove any insoluble component (only found for certain acid chlorides, see chapter 5), and to the filtrate was added methanol (~10 cm^3) which gave a yellow precipitate of the product (for the reaction between acetyl chloride and H_2 cyphNH₂ a yield of 48 % was recorded, see chapter 5 for analytical data).

To produce the hydrochloride salt of the product, the solvent

References

- 1 Green, M., Smith, J., Tasker, P.A. <u>Inorg. Chim. Acta.</u> 1971, 5 17.
- 2 Peters, R. Ph.d thesis. The Polytechnic of North London. 1982.
- 3 Original method described by Fleischer, E.B., Sklar, L., Kendall-Torry, A., Tasker, P.A., Taylor, F.B. <u>Inorg.</u> <u>Nucl. Chem. Lett.</u> 1973, 9, 1061.

MeEesubcess

利日日日日日	1
1971, 5	
1111111111111	π.
Londo!	
th Lavidpixe	0
T-IIIDzell	
Negli Then	

Appendix

Appe	ndix 1 X-ray crystallographic data.	
7.1	[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₃	Al
7.2	$[Cu_2(H2cyendimer)(H_2O)(ClO_4)](ClO_4).(.5thf)$	A18
7.3	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	A31
7.4	H ₁₂ cyendimer	A39
7.5	[Cu(cyphX)]	A47

Appe	ndix 2 X-ray structure factors.	
7.1	[Cu ₂ (H ₄ cyendimer)](ClO ₄) ₃	A55
7.2	$[Cu_2(H2cyendimer)(H_2O)(ClO_4)](ClO_4).(.5thf)$	A66
7.3	$[Cu_2(H_2DFMP)_2(ClO_4)_2].2thf$	A81
7.4	H ₁₂ cyendimer	A86
7.5	[Cu(cyphX)]	A91

Ser

in Main

The X-	ray crystall	ographic data	tor [Cu ₂ H ₄ Cy	endimer J(CIU _A)
section	7.1) schemati	C diagram Iacin	E befa.	
TABLE 1	Fractional a	tomic coordinate	and therma	<u>l parameters (</u>
Atom	X	Z	1	<u>Viso or Usq</u>
Cu(1)	0.00000	0.23977(26)	0.25000	0.0521(16)
Cu(2)	0.1145(2)	0.1725(3)	0.2832(2)	0.052(2)
C1(1)	0.1583(4)	0.0932(7)	0.6224(4)	0.087(5)
C1(3)	0.4573(4)	-0.0817(7)	0.8794(4)	0.084(5)
0(11)	0.14178	-0.01857	0.59379	0.1336(60)
0(12)	0.18635	0.17017	0.59429	0.1336(60)
0(13)	0.11094	0.15167	0.64344	0.1336(60)
0(14)	0.21457	0.05146	0.68766	0.1336(60)
0(15)	0.13864	0.90215	0.17750	0.1336(60)
0(16)	0.09869	0.98128	0.05121	0.1336(60)
0(17)	0.18297	1.04202	0.13818	0.1336(60)
0(18)	0.20151	0.96613	0.09900	0.1336(60)
0(31)	0.49306	0.02235	0.91056	0.1336(60)
0(32)	0.42451	-0.15589	0.90865	0.1336(60)
0(33)	0.47273	-0.13512	0.82716	0.1336(60)
0(34)	0.40173	-0.00965	0.84476	0.1336(60)
0(35)	-0.02945	0.67129	0.44980	0.1336(60)
0(36)	0.02587	0.54251	0.43988	0.1336(60)
0(37)	-0.04669	0.44610	0.38109	0.1336(60)
0(38)	-0.10421	0.64864	0.34479	0.1336(60)
0(39)	-0.00396	0.62967	0.39527	0.1336(60)
0(40)	0.02632	0.63861	0.45680	0.1336(60)

7.13

0.10 #1V

ALCONT DAY

0(22)	0.2783(15)	0.2602(29)	0.4966(17)	0.165(11)
0(23)	0.3611(13)	0.3970(24)	0.5579(14)	0.130(8)
0(24)	0.2453(17)	0.4319(28)	0.5276(18)	0.174(11)
N(2c)	0.1815(9)	0.0218(17)	0.3090(10)	0.058(5)
N(1c)	0.1211(8)	0.1689(16)	0.3797(9)	0.040(4)
N(2b)	0.2021(10)	0.2803(17)	0.2974(11)	0.064(6)
N(1b)	0.0727(9)	0.1752(17)	0.1789(9)	0.051(5)
N(1d)	0.0477(9)	0.3866(17)	0.2906(10)	0.051(5)
N(2a)	-0.0744(9)	0.2518(18)	0.2864(10)	0.056(5)
N(1a)	-0.0173(9)	0.0692(17)	0.2301(10)	0.054(5)
N(2d)	-0.0763(9)	0.3368(17)	0.1548(10)	0.054(5)
C(1a)	-0.1389(14)	0.2747(25)	0.2184(15)	0.076(8)
C(2a)	-0.0755(11)	0.1497(21)	0.3297(13)	0.056(6)
C(3a)	-0.0896(14)	0.1720(31)	0.3868(16)	0.091(9)
C(4a)	-0.0945(15)	0.0739(28)	0.4270(18)	0.093(9)
c(5a)	-0.0823(15)	-0.0444(30)	0.4147(18)	0.094(9)
C(6a)	-0.0637(14)	-0.0592(28)	0.3579(15)	0.081(8)
C(7a)	-0.0603(12)	0.0355(22)	0.3199(14)	0.063(7)
C(8a)	-0.0397(14)	-0.0021(28)	0.2619(16)	0.084(8)
C(9a)	0.0032(12)	0.0063(23)	0.1829(13)	0.062(7)
C(9b)	0.0173(12)	0.0916(21)	0.1358(13)	0.058(6)
C(86)	0.0884(11)	0.2508(23)	0.1419(13)	0.060(6)
C(7b)	0.1340(12)	0.3533(22)	0.1663(13)	0.060(7)
C(6b)	0.1281(15)	0.4406(28)	0.1142(17)	0.088(9)
C(5b)	0.1640(16)	0.5399(30)	0.1328(19)	0.097(10)
C(4b)	0.2089(18)	0.5597(32)	0.2015(19)	0.110(11)
C(3b)	0.2244(14)	0.4761(25)	0.2624(16)	0.079(8)

Class.

(16)9 (\$E)Q 10030 (46)9 ((t))13610 17.1 1,72,30 11.40.0-186.20 11/13.8-(11)2 10((d, B-(0110 (1.415.B)

14 19 15 -

0(22)	0.2783(15)	0.2602(29)	0.4966(17)	0.165(11)
0(23)	0.3611(13)	0.3970(24)	0.5579(14)	0.130(8)
0(24)	0.2453(17)	0.4319(28)	0.5276(18)	0.174(11)
N(2c)	0.1815(9)	0.0218(17)	0.3090(10)	0.058(5)
N(lc)	0.1211(8)	0.1689(16)	0.3797(9)	0.040(4)
N(2b)	0.2021(10)	0.2803(17)	0.2974(11)	0.064(6)
N(1b)	0.0727(9)	0.1752(17)	0.1789(9)	0.051(5)
N(1d)	0.0477(9)	0.3866(17)	0.2906(10)	0.051(5)
N(2a)	-0.0744(9)	0.2518(18)	0.2864(10)	0.056(5)
N(1a)	-0.0173(9)	0.0692(17)	0.2301(10)	0.054(5)
N(2d)	-0.0763(9)	0.3368(17)	0.1548(10)	0.054(5)
C(1a)	-0.1389(14)	0.2747(25)	0.2184(15)	0.076(8)
C(2a)	-0.0755(11)	0.1497(21)	0.3297(13)	0.056(6)
C(3a)	-0.0896(14)	0.1720(31)	0.3868(16)	0.091(9)
C(4a)	-0.0945(15)	0.0739(28)	0.4270(18)	0.093(9)
C(5a)	-0.0823(15)	-0.0444(30)	0.4147(18)	0.094(9)
C(6a)	-0.0637(14)	-0.0592(28)	0.3579(15)	0.081(8)
C(7a)	-0.0603(12)	0.0355(22)	0.3199(14)	0.063(7)
C(8a)	-0.0397(14)	-0.0021(28)	0.2619(16)	0.084(8)
C(9a)	0.0032(12)	0.0063(23)	0.1829(13)	0.062(7)
C(9b)	0.0173(12)	0.0916(21)	0.1358(13)	0.058(6)
C(8b)	0.0884(11)	0.2508(23)	0.1419(13)	0.060(6)
C(7b)	0.1340(12)	0.3533(22)	0.1663(13)	0.060(7)
C(6b)	0.1281(15)	0.4406(28)	0.1142(17)	0.088(9)
C(5b)	0.1640(16)	0.5399(30)	0.1328(19)	0.097(10)
C(Ab)	0.2089(18)	0.5597(32)	0.2015(19)	0.110(11)
C(3b)	0.2244(14)	0.4761(25)	0.2624(16)	0.079(8)
0(30)	VI66/		1 1 M 1	

Sinh ye

131 19 -

Libbr -176 Of Oval 1.2).00 11112 0.00 111116 ± 1.000 1 (100 1.0439 00136 10170 311.39 111.10 (10)0 ((0)) 11610 0(30) (al.)o 0(37) (81.)0 1.6703.44-(00.30) 141100.0-(0150 10100.0

C(1c)	0.2494(12)	0.0744(22)	0.3443(14)	0.060(7)
C(2c)	0.1767(11)	-0.0736(21)	0.3505(12)	0.054(6)
C(3c)	0.1911(13)	-0.1887(25)	0.3406(15)	0.078(8)
C(4c)	0.1880(17)	-0.2904(33)	0.3837(19)	0.110(11)
C(5c)	0.1635(16)	-0.2622(32)	0.4304(18)	0.103(10)
C(6c)	0.1539(20)	-0.1476(36)	0.4481(24)	0.132(13)
C(7c)	0,1572(15)	-0.0454(28)	0.4055(17)	0.092(9)
C(8c)	0.1379(13)	0.0721(25)	0.4196(15)	0.078(8)
C(9c)	0.1046(13)	0.2764(21)	0.4090(13)	0.062(7)
C(9d)	0.1006(12)	0.3890(22)	0.3729(13)	0.060(6)
C(8d)	0.0413(12)	0.4873(26)	0.2595(14)	0.064(7)
C(7d)	0.0013(11)	0.5079(23)	0.1794(13)	0.059(7)
C(6d)	0.0159(16)	0.6107(31)	0.1522(18)	0.098(10)
C(5d)	-0.0117(16)	0.6414(32)	0.0778(19)	0.105(11)
C(4d)	-0.0610(18)	0.5561(32)	0.0323(21)	0.115(12)
C(3d)	-0.0834(14)	0.4587(25)	0.0576(16)	0.080(8)
C(2d)	-0.0513(13)	0.4327(23)	0.1308(14)	0.060(7)
C(1d)	-0.1285(13)	0.3718(23)	0.1726(15)	0.072(7)
TABLE 2	Fractional a	tomic coordina	ites for the hyd	drogen atoms
Atom	17 - <u>1</u> 873	z	±	
HN(2c)	0.1684	-0.0168	0.2661	
HN(2b)	0.2183	0.3271	0.3382	
HN(2a)	-0.0645	0.3122	0.3189	
HN(2d)	-0.0939	0.2888	0.1150	
H(1a1)	-0.1535	0.2018	0.1907	
H(1a2)	-0.1724	0.3008	0.2306	

Sec. 1

01221 0(23) (41.10) Gifth Ist III (415) 10 (1338 10.6470 1000 1-138 UADR. 101/0 1.00 (1219) CALC: NO (aZ)0 (14)0 (1830 (=2)0 0.080.0-(4528 (ab)0472-70-1.018.00.0 (10)2 0.0 (4030 ((83)) 0.000.00-0 0.1380.0 (117)0 £dk25 00011264.0 0.1640/16 (46)0 LAI WEARLE (d)]0 (dt)0 1411445518

4 year

	(+115	H(5a)	-0.0857	-0.1109	0.4417
	(11)9	H(6a)	-0.0542	-0.1382	0.3472
	c(30)	H(8a)	-0.0443	-0.0854	0.2486
	(0410	H(9al)	0.0432	-0.0387	0.2125
	(6610)	H(9a2)	-0.0320	-0.0477	0.1523
	1.6836	H(9b1)	-0.0225	0.1376	0.1068
+	0.0198	H(9b2)	0.0288	0.0458	0.1049
	1.4835	H(8b)	0.0663	0.2367	0.0907
	(4.0)))-	H(6b)	0.0973	0.4261	0.0641
	11433	H(5b)	0.1574	0.5985	0.0966
	11613	H(4b)	0.2334	0.6339	0.2127
	6696	H(3b)	0.2576	0.4930	0.3114
	(selt)	H(151)	0.2386	0.1599	0.2536
	/ 10/10	H(162)	0.2947	0.2179	0.3249
	(114)5	- H(lcl)	0.2613	0.0979	0.3927
	04.33	H(1c2)	0.2809	0.0160	0.3456
	(ez)6	H(3c)	0.2037	-0.2042	0.3042
2011	(61)0	H(4c)	0.2020	-0.3701	0.3797
		H(5c)	0.1523	-0.3280	0.4520
Linking.	2 BARAT	H(6c)	0.1452	-0.1345	0.4877
	with.	H(8c)	0.1376	0.0797	0.4647
-01/20	OWNER	H(9cl)	0.1385	0.2845	0.4587
	(48)08	H(9c2)	0.0620	0.2628	0.4065
1000.0-	(st)m	H(9d1)	0.0885	0.4513	0.3960
V010.0-	(bižškie	H(9d2)	0.1437	0.4065	0.3776
ates.a-	(int)# -	H(8d)	0.0641	0.5551	0.2894
4117.00	10+1)0	H(6d)	0.0479	0.6654	0.1869

13 N9

100	(62))).	 H(3d)	-0.120	05 04	103	0.0244		
	1000	 H(1d1)	-0.1151	0.44	50 0	.2001		
	Y ettia	 H(1d2)	-0.16	97 0.1	3848	0.1287		
	114938	 						
	(14010	 TABLE 3	Anisotro	pic therma	1 paramet	ers (12)		
	(Lathr	 Atom	V11	U22	U33	<u>U23</u>	<u>U13</u>	<u>U12</u>
	124036	 <u></u>	_			1.625		
	148,00	 Cu(1)	0.051(1)	0.062(2)	0.043(1)	-0.005(2)	0.026(1)	-0.003(2)
	CHANE.	 Cu(2)	0.051(2)	0.072(2)	0.031(1)	-0.004(2)	0.022(1)	-0.002(2)
	(ablig	 C1(1)	0.112(6)	0.086(5)	0.063(4)	-0.006(4)	0.058(4)	-0.019(5)
	6.64316	 C1(3)	0.086(5)	0.086(5)	0.082(5)	-0.001(4)	0.051(4)	-0.010(4)
	Cate has	TARLE &	Bond les	nethe (Å)				
	COLOR	 TADED 7	2000 10.	agene (av				
	Luis M.	 Cu(1) -(Cu(2) 2	2.444(4)	Cu(1)	-N(1d)	1.0(19)	
	11-134	 Cu(1) -M	(2a) 2.	156(18)	Cu(1)	-N(1a)	1.923(19)	
	(ret)a	 Cu(1) -	N(2d)	2.181(18)	Cu(2)	-W(2c)	2.133(18)	
	140.00	Cu(2) -1	(lc) l.	950(16)	Cu(2)	-W(2Ъ)	2.199(19)	
	ELAN.	 Cu(2) -	W(1b)	1.911(17)	c1(1)	-0(11)	1.340(7)	
	(testi	c1(1) -c	(12) 1.	.351(7)	C1(1)	-0(13)	1.486(8)	
- 21	(90)0	c1(1) -	0(14)	1.417(8)	C1(3)	-0(31)	1.371(7)	
	1.000	C1(3) -((32) 1.	.424(7)	C1(3)	-0(33)	1.425(8)	
	(58)8	C1(3) -	0(34)	1.359(8)	C1(2) -0(21)	1.453(24)	
	(1993)9	C1(2) -((22)	1.35(3)	C1(2)	-0(23)	1.402(24)	
molecing.	(100)	 C1(2) -	0(24)	1.46(3)	¥(2c) -C(1c)	1.46(3)	
	1.194.38	W(2c) -(C(2c)	1.40(3)	H(1c)	-C(8c)	1.29(3)	
TEAL 0	(295)#	W(1c) -	·C(9c)	1.46(3)	W(2b) -C(2b)	1.44(3)	
1789.49	(00)0	W(2b) -	с(1ь)	1.49(3)	H(1b)	-C(9b)	1.46(3)	
25.00.0	(68)8-							

 $\lim_{n\to\infty} \frac{1}{2} \int V_n (x) = \int V_n (x) =$

		1000	N	(2a) -C(2a)	1.45((3) M(1a)	-C(8a)	1.28(3)	
		(orig	N	(1a) -C(9a)	1.45(3) N(2d)	-C(2d)	1.40(3)	
		A THE R	N	(2d) -C(1d)	1.45((3) C(1a)	-C(1d)	1.53(4)	
		129110	c	(2a) -C(3a)	1.400	(4) C(2a)	-C(7a)	1.34(3)	
		2.1642	C	(3a) -C(4a)	1.41((4) C(4a)	-C(5a)	1.38(4)	
			C	(5a) -C(6a)	1.450	(4) C(6a)	-C(7a)	1.34(3)	
		0.9.2.6	c	(7a) -C(8a)	1.55	(4) C(9a)	-C(9b)	1.50(3)	
	11000	Cilles.	c	(8b) -C(7b)	1.440	(3) C(7b)	-C(6b)	1.41(3)	
		(5)00	c	(7b) -C(2b)	1.47	(3) C(6b)	-C(5b)	1.30(4)	
	110.00	(1)25	c	(5b) -C(4b)	1.31	(4) C(4b)	-C(3b)	1.47(4)	
	ora. a	(2)20	c	(3b) -C(2b)	1.37	(3) C(1b)	-C(1c)	1.51(3)	
			c	(2c) -C(3c)	1.35	(3) C(2c)	-C(7c)	1.45(4)	
	1414.4	1.14AT	c	(3c) -C(4c)	1.46	(4) C(4c)	-C(5c)	1.37(4)	
	(1)(0-	(1)w0.	c	(5c) -C(6c)	1.36	(4) C(6c)	-C(7c)	1.46(4)	
	(up in s	(1)45	c	(7c) -C(8c)	1.44	(4) C(9c)	-C(9d)	1.43(3)	
1111	114238-	(1)+0	c	(8d) -C(7d)	1.48	(3) C(7d)	-C(6d)	1.38(4)	
	ALC R	$c_{e}(2)$	c	(7d) -C(2d)	1.40	(3) C(6d)	-C(5d)	1.41(4)	
	(4)))(+	Gu(3)	c	(5d) -C(4d)	1.41	(4) C(4d)	-C(3d)	1.39(4)	
	(cthey	\$1(1)	c	(3d) -C(2d)	1.37	(3)	÷		
	(A130-	(1)10				(8)			
0.00	(55)0-	(12) (2)	1	ABLE 5 BOD	d angles	<u>(-)</u>			
0.000	X+E10-	(6)(0)		(1d) -Cu(1)	-Cu(2)	80.7(5)	M(2a) -0	au(1) -Cu(2)	144.6(5)
	/dole-	(\$)15	н	(2a) -Cu(1)	-W(1d)	99.2(7)	H(1a) -0	u(1) -Cu(2)	80.8(6)
110.61	(+1)0-	(1)10		(1a) -Cu(1)	-W(1d)	160.1(7)	H(1a) -0	u(1) - N(2a)	91.5(8)
11,204,10	(sela-	6-529		I(2d) -Cu(1)	-Cu(2)	131.9(5)	M(2d) -0	u(1) -N(1d)	91.0(8)

H(2d) - Cu(1) - H(2a)

M(2c) -Cu(2) -Cu(1)

83.5(7)

146.2(5)

Vanishing and an an an art

1100444

\$1,104.2

(1,204.) (star (star)

(0430= (a13#

1(2)) -0(1))

W(2b) -Cu(2) -Cu(1) 129.2(5) 91.9(7) W(2b) -Cu(2) -W(1c) 104.9(7) **A6**

H(2d) - Cu(1) - H(1a)

H(1c) -Cu(2) -Cu(1)

107.1(8)

80.8(5)

•

N(1b) -Cu(2) -Cu(1)	78.5(5)	M(1b) -Cu(2) -N(2c)	101.5(8)
N(1b) -Cu(2) -N(1c)	158.2(7)	M(1b) -Cu(2) -M(2b)	93.5(8)
0(22) -C1(2) -O(21)	111(2)	0(23) -C1(2) -O(21)	114(2)
0(23) -C1(2) -O(22)	110(2)	0(24) -C1(2) -O(21)	101(2)
0(24) -C1(2) -O(22)	106(2)	0(24) -C1(2) -O(23)	114(2)
C(1c) - W(2c) - Cu(2)	105(1)	C(2c) -W(2c) -Cu(2)	119(1)
C(2c) -W(2c) -C(1c)	111(2)	C(8c) - H(1c) - Cu(2)	122(2)
C(9c) -W(1c) -Cu(2)	121(1)	C(9c) -N(1c) -C(8c)	117(2)
C(2b) -N(2b) -Cu(2)	114(1)	C(1b) - H(2b) - Cu(2)	102(1)
C(1b) -N(2b) -C(2b)	116(2)	C(9b) -W(1b) -Cu(2)	120(1)
C(8b) -N(1b) -Cu(2)	124(2)	C(8b) -N(1b) -C(9b)	116(2)
C(9d) -N(1d) -Cu(1)	118(1)	C(8d) -W(1d) -Cu(1)	128(2)
C(8d) -W(1d) -C(9d)	113(2)	C(1a) - H(2a) - Cu(1)	104(1)
C(2a) -N(2a) -Cu(1)	115(1)	C(2a) - H(2a) - C(1a)	115(2)
C(8a) -N(1a) -Cu(1)	125(2)	C(9a) - H(1a) - Cu(1)	121(2)
C(9a) -N(1a) -C(8a)	113(2)	C(2d) -W(2d) -Cu(1)	115(1)
C(1d) -W(2d) -Cu(1)	106(1)	C(1d) -W(2d) -C(2d)	114(2)
C(1d) -C(1a) -N(2a)	110(2)	C(3a) - C(2a) - H(2a)	118(2)
C(7a) - C(2a) - W(2a)	123(2)	C(7a) - C(2a) - C(3a)	118(2)
C(4a) -C(3a) -C(2a)	119(3)	C(5a) - C(4a) - C(3a)	122(3)
C(6a) - C(5a) - C(4a)	115(3)	C(7a) -C(6a) -C(5a)	122(3)
C(6a) -C(7a) -C(2a)	123(2)	C(8a) - C(7a) - C(2a)	124(2)
C(8a) -C(7a) -C(6a)	112(2)	C(7a) - C(8a) - W(1a)	126(3)
C(9b) -C(9a) -N(1a)	113(2)	C(9a) -C(9b) -N(1b)	112(2)
С(7b) -С(8b) -Ж(1b)	130(2)	C(6b) -C(7b) -C(8b)	118(2)
C(2b) -C(7b) -C(8b)	124(2)	C(2b) -C(7b) -C(6b)	118(2)
С(5Ъ) -С(6Ъ) -С(7Ъ)	122(3)	C(4b) -C(5b) -C(6b)	120(4)

Hitel - talls =1.10- (hg)ii 06.20- 105.35 white table stine intern Contraction of the et inches and inches 11.15-147,50 1114/17-1116月28 111/1-118.33 1-0.17- (5038) (d(3e)) -114-1 THE OF THE DR (1/10- Child In or IMPO (h4)0- (h630 (NV)2- (NE30

OT (ADB

TABLE 2 Mean 2-1 H(14) -Ou(1) -0 1 H(24) -Ou(1) -1 1 H(14) -Ou(1) -2 11 H(24) -Ou(1) -2 11 H(24) -Ou(1) -0 10 H(24) -Ou(2) -O in first the second

"A7

C(3b) -C(2b) -C(7b)	120(2)	C(1c) -C(1b) -N(2b)	113(2)
C(1b) -C(1c) -N(2c)	109(2)	C(3c) -C(2c) -H(2c)	121(2)
C(7c) -C(2c) -N(2c)	118(2)	C(7c) -C(2c) -C(3c)	121(2)
C(4c) -C(3c) -C(2c)	123(3)	C(5c) - C(4c) - C(3c)	115(3)
C(6c) -C(5c) -C(4c)	125(4)	C(7c) -C(6c) -C(5c)	119(4)
C(6c) -C(7c) -C(2c)	116(3)	C(8c) -C(7c) -C(2c)	126(3)
C(8c) -C(7c) -C(6c)	117(3)	C(7c) -C(8c) -W(1c)	129(3)
C(9d) -C(9c) -N(1c)	116(2)	C(9c) -C(9d) -W(1d)	113(2)
C(7d) -C(8d) -N(1d)	125(2)	C(6d) -C(7d) -C(8d)	117(2)
C(2d) -C(7d) -C(8d)	124(2)	C(2d) -C(7d) -C(6d)	118(2)
C(5d) -C(6d) -C(7d)	126(3)	C(4d) -C(5d) -C(6d)	111(3)
C(3d) -C(4d) -C(5d)	125(4)	C(2d) -C(3d) -C(4d)	119(3)
C(7d) -C(2d) -N(2d)	122(2)	C(3d) -C(2d) -W(2d)	118(2)
C(34) -C(24) -C(74)	119(2)	C(1a) -C(1d) -W(2d)	111(2)

TABLE 6 Intermolecular distances (Å)

1 7 1 marine in

0(15)C1(1)	1.42	2	0.0	1.0 -1.0
0(16)C1(1)	1.66	2	0.0	1.0 -1.0
0(17)C1(1)	1.57	2	0.0	1.0 -1.0
0(18)Cl(1)	1.44	2	0.0	1.0 -1.0
0(15)0(11)	2.20	2	0.0	1.0 -1.0
0(16)0(11)	1.03	2	0.0	1.0 -1.0
0(17)0(11)	.98	2	0.0	1.0 -1.0
0(18)0(11)	1.42	2	0.0	1.0 -1.0
H(9b2)0(11)	2.69	2	0.0	0.0 -1.0
H(8b)0(11)	2.93	2	0.0	0.0 -1.0
0(15)0(12)	2.58	2	0.0	1.0 -1.0

- 1d134
N(16)
(0)/3- C\$\$30
0(23) -01(//
0(1e) -0 icc
c(ac) -0.1-
110-10030
of 24-1 -10-20-1
0.010- 10-10
0.00 - (cdb) - (cf)
- United Chilling
-((-))////e-(18)g
2(24)
g(//- 2sh)g
(\$6), -m(14) - 1 (\$
- 6534- Ch130
inter inter (alla
other - distant
0 (a)
0.64) = (a1)0= (a0)0
G(6a) Horize (aa)
111/0- (a025- (debu
Q(16) = Q(86) = M(10)
(dt)o- (dt)o- (dt)o
0(3b) -0(6b) -0(7b)

di)

-0.U

	1 (S)	
	1 17 12 × 11235	0(
	a()a)	H(
	oteki	0(
	1 (10)25	0(
	0.000	0(
	(±0.25)	0(
	00-10030	HN
		H(
	- 14775	H(
	11070-01830	E(
	internet (artist	H(
	- 1672F	0(
	144.100 14630	0(
		0(
	TANK I LIMAT	
	10.000 × 10.000	
	11.10/19 30(10	
	(1) (5),	
	111211- (01392	
	11 10-11 (8178)	
	11110 (eth)	
	114.10+++ 17530	H H
	(1110 (WI)0	n()
5-1	C+170(\$d970	n()
$(0, \tilde{x})$	CI100 CHINE	R(
2.30	(11)	

0(18)0(12)	1.53	2	0.0	1.0	-1.0
H(5b)0(12)	2.64	2	0.0	1.0	-1.0
0(15)0(13)	.91	2	0.0	1.0	-1.0
0(16)0(13)	2.33	2	0.0	1.0	-1.0
0(17)0(13)	2.72	2	0.0	1.0	-1.0
0(18)0(13)	2.93	2	0.0	1.0	-1.0
HN(2c)0(13)	2.69	2	0.0	0.0	-1.0
H(9a1)0(13)	2.85	2	0.0	0.0	-1.0
H(9b2)0(13)	2.72	2	0.0	0.0	-1.0
H(6d)0(13)	2.86	2	0.0	1.0	-1.0
H(5d)0(13)	2.70	2	0.0	1.0	-1.0
0(15)0(14)	1.70	2	0.0	1.0	-1.0
0(16)0(14)	2.81	2	0.0	1.0	-1.0
0(17)0(14)	1.39	2	0.0	1.0	-1.0
0(18)0(14)	1.74	2	0.0	1.0	-1.0
HN(2c)0(14)	2.36	2	0.0	0.0	-1.0
H(1b1)0(14)	2.63	2	0.0	0.0	-1.0
H(1c2)0(14)	2.99	2	0.0	0.0	-1.0
H(1a2)0(14)	2.78	2	-0.5	0.5	-1.0
N(2c)O(15)	2.77	1	0.0	-1.0	0.0
HN(2c)0(15)	1.86	1	0.0	-1.0	0.0
H(9al)O(15)	2.67	1	0.0	-1.0	0.0
H(9b2)O(15)	2.70	1	0.0	-1.0	0.0
H(3c)0(15)	2.60	1	0.0	-1.0	0.0
H(9b2)0(16)	2.44	1	0.0	-1.0	0.0
H(6c)0(16)	2.66	2	0.0	1.0	0.0
H(8c)0(16)	2.46	2	0.0	1.0	0.0

for the second s

.

Hum(2c)...0(17) 2.92 1 0.0 -1.0 0.0 H(1b1)...0(17) 2.48 1 0.0 -1.0 0.0

.

A9

1 9 ... (61)b (11) --- (ri)a n(17) -----(61)8 (at)ar - (Laf) 2 (T.04)8 1.6038 1. 10111 15計幅 0(12) 10.10 ... Cht (d) 0(17) --- 0) 14 1 1 - 101 - X 8150 -1 -- (#138E 11()()-..(101))) 111/01.11 (Tal.)# (ecimor(Gal))R 10110... (st)# (73)0....(32)00 121/0411(13) (1100... Katila 10130--- (10716 1.11173. (#1)0... (s#)H

H(6c)0(18)	2.76	2	0.0	1.0	0.0
H(8c)0(18)	2.51	2	0.0	1.0	0.0
H(1d2)0(18)	2.81	1	-0.5	-0.5	0.0
0(35)C1(3)	1.67	2	-0.5	0.5	-1.0
0(36)C1(3)	1.51	2	-0.5	0.5	-1.0
0(37)C1(3)	1.50	2	-0.5	0.5	-1.0
0(38)C1(3)	1.42	2	-0.5	0.5	-1.0
0(39)C1(3)	.94	2	-0.5	0.5	-1.0
0(40) c 1(3)	1.73	2	-0.5	0.5	-1.0
H(4d)0(31)	2.74	1	-0.5	0.5	-1.0
0(35)0(31)	2.43	2	-0.5	0.5	-1.0
0(36)0(31)	1.00	2	-0.5	0.5	-1.0
0(37)0(31)	.88	2	-0.5	0.5	-1.0
0(38)0(31)	2.71	2	-0.5	0.5	-1.0
0(39)0(31)	1.71	2	-0.5	0.5	-1.0
0(40)0(31)	1.98	2	-0.5	0.5	-1.0
HN(2a)0(31)	2.50	2	-0.5	0.5	-1.0
H(9c2)0(31)	2.86	2	-0.5	0.5	-1.0
H(9d1)0(31)	2.34	2	-0.5	0.5	-1.0
H(1b2)0(32)	2.68	2	0.0	0.0	-1.0
H(4d)0(32)	2.91	1	-0.5	0.5	-1.0
0(35)0(32)	.99	2	-0.5	0.5	-1.0
0(36)0(32)	2.40	2	-0.5	0.5	-1.0
0(37)0(32)	2.54	2	-0.5	0.5	-1.0
0(38)0(32)	1.17	2	-0.5	0.5	-1.0
0(39)0(32)	1.79	2	-0.5	0.5	-1.0
0(40)0(32)	2.02	2	-0.5	0.5	-1.0

۲

The second second

10.2%

	1 x () 0) ++ (0130	
	11110-c (12)	
	atta - realized	
	C Volas (ALJo	
	ALL DESCRIPTION OF A DE	
	11.50 co. 35136	
	mil 24 1	
	(EAP)#	
	(1.49)8	
	1	
	Con XARDE	
	(11) have (48) 6	
	NUTURE CARDIN	
	0117 0117	
	10110 (8F10	
	111 1 KS 100	
	1777 (1413 B	
	1=1,10+1+(\$21)#	
	(A) Min (A(3a))#	
	1110 (e13%	
	(+(10) ₁₁₊]+2]00	
	12170(18976	
1	171.)0++1(\$39)#	
10.10	(2) 20 (sta)	
14,8	(01)Q (147)B.	
and 1	(at)m1-, (mb)a	

H(6c)0(18)	2.76	2	0.0	1.0	0.0
H(8c)0(18)	2.51	2	0.0	1.0	0.0
H(1d2)0(18)	2.81	1	-0.5	-0.5	0.0
0(35)C1(3)	1.67	2	-0.5	0.5	-1.0
0(36)C1(3)	1.51	2	-0.5	0.5	-1.0
0(37)C1(3)	1.50	2	-0.5	0.5	-1.0
0(38)C1(3)	1.42	2	-0.5	0.5	-1.0
0(39)C1(3)	.94	2	-0.5	0.5	-1.0
0(40)C1(3)	1.73	2	-0.5	0.5	-1.0
H(4d)0(31)	2.74	1	-0.5	0.5	-1.0
0(35)0(31)	2.43	2	-0.5	0.5	-1.0
0(36)0(31)	1.00	2	-0.5	0.5	-1.0
0(37)0(31)	.88	2	-0.5	0.5	-1.0
0(38)0(31)	2.71	2	-0.5	0.5	-1.0
0(39)0(31)	1.71	2	-0.5	0.5	-1.0
0(40)0(31)	1.98	2	-0.5	0.5	-1.0
HN(2a)0(31)	2.50	2	-0.5	0.5	-1.0
H(9c2)0(31)	2.86	2	-0.5	0.5	-1.0
H(9d1)0(31)	2.34	2	-0.5	0.5	-1.0
H(1b2)0(32)	2.68	2	0.0	0.0	-1.0
H(4d)0(32)	2.91	1	-0.5	0.5	-1.0
0(35)0(32)	.99	2	-0.5	0.5	-1.0
0(36)0(32)	2.40	2	-0.5	0.5	-1.0
0(37)0(32)	2.54	2	-0.5	0.5	-1.0
0(38)0(32)	1.17	2	-0.5	0.5	-1.0
0(39)0(32)	1.79	2	-0.5	0.5	-1.0
0(40)0(32)	2.02	2	-0.5	0.5	-1.0

•

	- 5838	
	History Cating	
	141.0(chi)e	
	Ullus Ring	
	(Lalino Téta)	
	1 12 cm I to be	
	(1))0:11 (95)0	
	1919er (etta	
	CLUE - 10430	
	111-301 (AA38	
	10.0011-10230	
	12 million of \$46.30	
	11/10 17630	
	Olena 1850	
	0.10714 19810	
	0	
	10.000 (at 388	
	It Vezz, czeł si	
	1.0256666438	
	$(z_1) : (z_1) = \sqrt{g} d\xi H f$	
	10:00.00	
	9(53) 11102371	
10.1 Q.,	()()()()()()()()()()()()()()()()()()()	
	01373 Sec. (37)	
105	122 10-1+ (3530	
101	(crija (reja)	

0(35)0(33)	2.62	2	-0.5	0.5	-1.0
0(36)0(33)	2.30	2	-0.5	0.5	-1.0
0(37)0(33)	2.51	2	-0.5	0.5	-1.0
0(38)0(33)	1.95	2	-0.5	0.5	-1.0
0(39)0(33)	1.26	2	-0.5	0.5	-1.0
0(40)0(33)	2.37	2	-0.5	0.5	-1.0
H(6a)0(33)	2.65	2	-0.5	-0.5	-1.0
H(8d)0(33)	2.69	2	-0.5	0.5	-1.0
H(1c2)0(34)	2.74	2	0.0	0.0	-1.0
H(4d)0(34)	2.81	1	-0.5	0.5	-1.0
0(35)0(34)	2.66	2	-0.5	0.5	-1.0
0(36)0(34)	2.56	2	-0.5	0.5	-1.0
0(37)0(34)	1.25	2	-0.5	0.5	-1.0
0(38)0(34)	1.54	2	-0.5	0.5	-1.0
0(39)0(34)	2.28	2	-0.5	0.5	-1.0
HN(2a)0(34)	2.45	2	-0.5	0.5	-1.0
H(1d1)0(34)	2.95	2	-0.5	0.5	-1.0
H(5a)O(35)	2.68	1	0.0	-1.0	0.0
H(6a)0(35)	2.86	1	0.0	-1.0	0.0
H(8b)0(35)	2.87	2	0.0	1.0	-1.0
H(6b)O(35)	2.90	2	0.0	1.0	-1.0
H(6b)0(36)	2.33	2	0.0	1.0	-1.0
H(4d)0(37)	2.55	2	0.0	1.0	-1.0
H(6a)0(38)	2.59	1	0.0	-1.0	0.0
C(1b)O(38)	2.98	1	0.5	-0.5	0.0
H(1b2)0(38)	2.25	1	0.5	-0.5	0.0
$H(1c2) \dots O(38)$	2.00	-	0.5	-0.5	0.0
	6.77	•	0.5		

State of the strengt of the state

٠

÷.

•

.

H(8b) ...0(40) 2.84 2 0.0 1.0 -1.0 H(6b) ...0(40) 2.15 2 0.0 1.0 -1.0 $H(4c) \dots O(21)$ 2.55 1 0.0 -1.0 0.0 HN(2d)...0(22) 2.80 2 -0.5 0.5 -1.0 2 -0.5 0.5 -1.0 $H(3d) \dots O(22)$ 2.79 H(1d2)...0(22) 2.90 2 -0.5 0.5 -1.0 HN(2d)...0(23)2 -0.5 0.5 -1.0 2.34 H(9a2)...0(23)2.81 2 -0.5 0.5 -1.0 2 -0.5 0.5 -1.0 H(9b1)...0(23) 2.35 2 0.0 1.0 -1.0 H(5b) ...0(24) 2.98

ALCONOMIC PRODUCT OF ALCONOMICS

TABLE 7 Intramolecular distances (Å)

N(1c)Cu(1)	2.87	N(1b)Cu(1)	2.79
HN(2a)Cu(1)	2.62	HN(2d)Cu(1)	2.64
C(1a)Cu(1)	2.90	C(8a)Cu(1)	2.86
C(9a)Cu(1)	2.95	H(9c2)Cu(1)	2.88
C(9d)Cu(1)	2.97	C(8d)Cu(1)	2.86
C(1d)Cu(1)	2.93	HN(2c)Cu(2)	2.53
HN(2b)Cu(2)	2.67	N(1d)Cu(2)	.2.84
N(1a)Cu(2)	2.86	C(9a)Cu(2)	2.99
H(9a1)Cu(2)	2.81	C(9b)Cu(2)	2.93
C(8b)Cu(2)	2.85	C(1b)Cu(2)	2.90
C(1c)Cu(2)	2.88	C(8c)Cu(2)	2.86
C(9c)Cu(2)	2.97	0(12)0(11)	2.31
0(13)0(11)	2.40	H(6c)0(11)	2.59
H(8c)0(11)	2.87	0(13)0(12)	2.39
0(14)0(12)	2.17	H(8c)0(12)	2.58

	610+++ (0038
	11/ 80- s = 10820
	9-2- KTE30
	(sc)o
	0.501 - 2
	0.0) 1003p
	- (##)B
	(AB)#
	(I=1)0
	0.000
	- (2030
	(ac)q
	01 271
	1.06.10
	0 (0\$)0
	(AC2002
	1 == 10
	CONTRACTOR OF
	1.101.11.(add)#
	C.C.W. C. DRMP
	(a) (i) - (a)
	M. M. Street Cold M.
	LLE COMPANY SERVICE
101	(AC1011 (147))
10.0	(25)(4,44)(25)0
0.2	(01)0(201)W
W.T.	(0C)0+++(252)6

		105 16828
		112 20 *** 10130
		10 10 can 675 hp
		111 10115 (8230
		()) ==== (063u
		1.20000 (0000
		Calding
		OLIGATE TANKS
		W(101- (5st)#
		ALC: SCIENCE
		William (ex)o
		Lat. His 14, 16635
		1 = 10 Cit hi
		100.00111.00030
		3 (m., /ee)a
		1-P STOCKED HE
		1 (C) (51 (L) (D) (D)
		10270 (AEW.
		(CERLINE LAB)H
		(/020.1. 6/828
		LILIOPER (ADD
		(ar)ana Table
	7211	172 10 11 10 101
	CÉGE-	LACTOR LADYS
	(HLC)	(00)01-1 (d1)0
	21.25	(1010(2453)
0.1	19.2	(0c)0(0x10#

H(8b)0(40)	2.84	2	0.0	1.0	-1.0	
H(6b)0(40)	2.15	2	0.0	1.0	-1.0	
H(4c)0(21)	2.55	1	0.0	-1.0	0.0	
HN(2d)0(22)	2.80	2	-0.5	0.5	-1.0	
H(3d)0(22)	2.79	2	-0.5	0.5	-1.0	
H(1d2)0(22)	2.90	2	-0.5	0.5	-1.0	
HN(2d)0(23)	2.34	2	-0.5	0.5	-1.0	
H(9a2)0(23)	2.81	2	-0.5	0.5	-1.0	
H(9b1)0(23)	2.35	2	-0.5	0.5	-1.0	
H(5b)0(24)	2.98	2	0.0	1.0	-1.0	
TABLE 7 Intrem	olecula	r di	stance	<u>(Å)</u>		
N(lc)Cu(l)	2.87		N(1b)	Cu(1)	2.
$m(0_{\tau}) = 0_{\tau}(1)$	2 62		104) <u>Curl</u>	(1)	2

N(lc)Cu(l)	2.87	N(1b)Cu(1)	2.79
HN(2a)Cu(1)	2.62	HN(2d)Cu(1)	2.64
C(1a)Cu(1)	2.90	C(8a)Cu(1)	2.86
C(9a)Cu(1)	2.95	H(9c2)Cu(1)	2.88
C(9d)Cu(1)	2.97	C(8d)Cu(1)	2.86
C(1d)Cu(1)	2.93	HN(2c)Cu(2)	2.53
HN(2b)Cu(2)	2.67	N(1d)Cu(2)	.2.84
N(1a)Cu(2)	2.86	C(9a)Cu(2)	2.99
H(9al)Cu(2)	2.81	C(9b)Cu(2)	2.93
C(8b)Cu(2)	2.85	C(1b)Cu(2)	2.90
C(1c)Cu(2)	2.88	C(8c)Cu(2)	2.86
C(9c)Cu(2)	2.97	0(12)0(11)	2.31
0(13)0(11)	2.40	H(6c)0(11)	2.59
H(8c)0(11)	2.87	0(13)0(12)	2.39
0(14)0(12)	2.17	H(8c)0(12)	2.58

0.6.00 - r (r633 o Gible CITIC (says. -- (61)29 (con (66)) (1513) (14)108 (240)8 11 (13時度) LEE CONTRACTOR TANK LANA 111-- 151M 11)u2...(at)u8 www.c.linkar 10.0-11 (16)2 Diana mila 11107.1007.000 What is faile MARCHINE CLARKER 1) ab... (48)2 (11) ada... (E129 (1) 10+1+ (p#)0 1.1 11110... 16134 10.2 (11)0... (5038. 10/1

0(18)0(15)	2.73	0(32)0(31)	2.49
0(33)0(31)	2.34	0(33)0(32)	2.44
0(34)0(33)	2.28	0(37)0(35)	2.80
0(38)0(36)	2.88	H(9d1)0(36)	2.26
0(38)0(37)	2.51	0(39)0(37)	2.20
0(40)0(37)	2.68	W(2a)0(37)	2.78
HN(2a)0(37)	1.88	H(3a)0(37)	2.51
H(9d1)0(37)	2.91	0(40)0(38)	2.74
H(9d1)0(39)	2.86	0(22)0(21)	2.30
0(23)0(21)	2.40	0(24)0(21)	2.25
HN(2b)0(21)	2.19	H(3b)0(21)	2.55
H(9d2)0(21)	2.56	0(23)0(22)	2.26
0(24)0(22)	2.24	H(1c1)0(22)	2.69
H(9cl)0(22)	2.87	0(24)0(23)	2.40
H(9cl)0(24)	2.68	H(9d2)0(24)	2.87
N(1c)N(2c)	2.94	M(2b)N(2c)	2.91
H(9a1)N(2c)	2.86	C(1b)W(2c)	2.42
H(1b1)N(2c)	2.60	H(lcl)W(2c)	1.99
H(1c2)W(2c)	1.99	C(3c)W(2c)	2.39
H(3c)W(2c)	2.55	C(7c)H(2c)	2.45
C(8c)W(2c)	2.97	W(1b)HN(2c)	2.94
C(1b)HM(2c)	2.75	C(1c)HM(2c)	2.03
C(3c)HM(2c)	2.35	W(1d)W(1c)	3.00
C(7c)W(1c)	2.47	H(8c)W(1c)	1.90
H(9c1)H(1c)	1.97	H(9c2)W(1c)	1.97
C(9d)W(1c)	2.46	H(9d2)H(1c)	2.67
W(1b)W(2b)	3.00	C(7b)W(2b)	2.54

N.

•

A BARRAN AND A REAL STREAM S

	COLUMN THE CARDO	
	12:00 - 12:00	
	110 (mar. 18830	
	Contract (Alterna	
	0430	
	1 (0) - CARPER	
	COLUMN (466) W.	
	- moverie	
	- 20030	
	CL	
	CEA(2)#	
	Constitution	I
	1.1.1.1.1.1.1.0.010	l
	1107 Gilm	l
	A DOCUMENT (GAR) #	
	COLUMN AND AND A STREET	
	3 × 1 10 × 11 (2003)0	
	LADING AN AND	
	(MC201++++ (548)03	
	(active.ac. 5/129	
	(strate, r. 30000	
	(a) m _{17.8} (at)0	
1971	C=12HClay2H	
16.2	Katimies (add	
in 1	Carta - Cartan	

NUT

10.74

,

C(1c)N(2b)	2.50	H(1c1)N(2b)	2.69
H(9d2)N(2b)	2.94	C(3b)HN(2b)	2.33
C(2b)HN(2b)	1.84	C(1b)HN(2b)	2.02
C(1c)HN(2b)	2.86	N(1a)N(1b)	2.96
C(9a)N(1b)	2.46	H(9e1)N(1b)	2.63
H(9b1)N(1b)	1.98	H(9b2)W(1b)	1.98
H(8b)N(1b)	1.90	С(7Ъ)N(1Ъ)	2.49
HN(2a)N(1d)	2.98	N(2d)N(1d)	2.92
C(9c)N(1d)	2.48	H(9c2)N(1d)	2.66
H(9d1)N(1d)	2.06	H(9d2)W(1d)	2.06
H(8d)W(1d)	1.90	C(7d)N(1d)	2.44
N(1a)N(2a)	2.93	N(2d)N(2a)	2.89
H(1a1)N(2a)	2.01	H(1a2)N(2a)	2.01
C(3a)N(2a)	2.45	H(3a)N(2a)	2.61
C(7a)N(2a)	2.46	H(9c2)N(2a)	2.88
C(1d)N(2a)	2.47	H(1d1)N(2a)	2.65
C(1a)HN(2a)	2.00	C(2a)HN(2a)	1.84
C(3a)HN(2a)	2.35	C(1d)HN(2a)	2.76
C(7a)N(1a)	2.52	H(8a)N(1a)	1.91
H(9al)W(1a)	1.97	H(9a2)N(1a)	1.97
C(9b)W(1a)	2.46	H(9b1)W(1a)	2.63
C(1a)N(2d)	2.46	H(1a1)N(2d)	2.66
H(9b1)N(2d)	2.91	C(8d)N(2d)	2.99
C(7d)W(2d)	2.45	C(3d)N(2d)	2.38
H(3d)W(2d)	2.54	H(1d1)W(2d)	1.97
H(1d2)W(2d)	1.98	C(1a)HN(2d)	2.80
C(3d)HW(2d)	2.30	C(1d)HN(2d)	1.95

		11 (W1 + 15110-
		(/C ==(\$50)g
		(a)b
		CONSISTER CARD
		11.77 Theirs
		()()();(((e)))
		······································
		. (at))es
		=(9839
		1) (R ₁₁₂)(34)e
		(/ (MDH
		10 (at)#
		11.01-1110028
		Alternation (alternation)
		41.00 Atta
		2
		6(La) == (A) =
		armer (at)a
		1. P
		1+17871-116608-
		(a) 20 CH010
		C(1A)H(2A)
		(50,70%+++(100)#
	$\equiv r E$	13529
	Abb	(155.JR+++ (4E)#
+ () (k	10.1	(Ad)K(GAL)W

C(1d)H(1a1)	2.04	C(2a)H(1a2)	2.73
C(1d)H(1a2)	2.05	H(3a)C(2a)	2.05
C(4a)C(2a)	2.42	C(5a)C(2a)	2.83
C(6a)C(2a)	2.36	C(8a)C(2a)	2.56
H(9c2)C(2a)	2.99	H(4a)C(3a)	2.04
C(5a)C(3a)	2.44	C(6a)C(3a)	2.75
C(7a)C(3a)	2.36	C(4a)H(3a)	2.06
H(5a)C(4a)	2.05	C(6a)C(4a)	2.39
C(7a)C(4a)	2.73	C(5a)H(4a)	2.02
H(6a)C(5a)	2.08	C(7a)C(5a)	2.43
C(6a)H(5a)	2.12	C(8a)C(6a)	2.40
H(8a)C(6a)	2.54	C(7a)H(6a)	1.98
C(8a)H(6a)	2.47	H(8a)C(7a)	2.16
C(9a)C(8a)	2.28	H(9a1)C(8a)	2.57
H(9a2)C(8a)	2.43	C(9a)H(8a)	2.34
H(9b1)C(9a)	2.02	H(9b2)C(9a)	2.02
C(9b)H(9al)	2.02	C(9b)H(9a2)	2.02
C(8b)C(9b)	2.34	H(8b)C(9b)	2.38
C(8b)H(9b1)	2.56	С(8Ъ)Н(9Ъ2)	2.55
C(6b)C(8b)	2.45	H(6b)C(8b)	2.59
C(2b)C(8b)	2.57	С(7b)H(8b)	2.03
C(6b)H(8b)	2.56	H(6b)C(7b)	2.04
C(5b)C(7b)	2.37	C(4b)C(7b)	2.72
C(3b)C(7b)	2.46	H(5b)C(6b)	1.96
C(4b)C(6b)	2.27	C(3b)C(6b)	2.82
C(2b)C(6b)	2.46	C(5b)H(6b)	1.95
H(4b)C(5b)	1.95	C(3b)C(5b)	2.47

.

· A share and a series of the series of the series of the Ref (Sublimer, V Frank) and American Street, S

2.10

2.00

.

		•	
C(3b)H(4b)	2.09	С(2Ъ)Н(3Ъ)	2.05
C(1b)C(2b)	2.48	H(1b1)C(2b)	2.57
H(1b2)C(2b)	2.78	H(1c1)C(1b)	2.03
H(1c2)C(1b)	2.04	C(1c)H(1b1)	2.02
C(1c)H(1b2)	2.03	C(2c)C(1c)	2.36
C(2c)H(lcl)	2.52	C(7c)H(lcl)	2.95
C(2c)H(1c2)	2.60	C(3c)H(1c2)	3.00
H(3c)C(2c)	1.99	C(4c)C(2c)	2.47
C(5c)C(2c)	2.77	C(6c)C(2c)	2.47
C(8c)C(2c)	2.58	H(4c)C(3c)	2.13
C(5c)C(3c)	2.39	C(6c)C(3c)	2.79
C(7c)C(3c)	2.43	C(4c)H(3c)	2.09
H(5c)C(4c)	1.99	C(6c)C(4c)	2.43
C(7c)C(4c)	2.88	C(5c)H(4c)	2.04
H(6c)C(5c)	2.02	C(7c)C(5c)	2.43
C(6c)H(5c)	1.99	C(8c)C(6c)	2.48
H(8c)C(6c)	2.58	C(7c)H(6c)	2.11
C(8c)H(6c)	2.65	H(8c)C(7c)	2.04
C(9c)C(8c)	2.35	H(9cl)C(8c)	2.48
H(9c2)C(8c)	2.64	C(9c)H(8c)	2.40
H(9d1)C(9c)	1.95	H(9d2)C(9c)	1.95
C(9d)H(9cl)	1.95	C(9d)H(9c2)	1.94
C(8d)C(9d)	2.35	H(8d)C(9d)	2.38
C(8d)H(9d1)	2.55	C(8d)H(9d2)	2.59
C(6d)C(8d)	2.44	H(6d)C(8d)	2.53
C(2d)C(8d)	2.55	C(7d)H(8d)	2.10
C(6d)H(8d)	2.60	H(6d)C(7d)	2.00

And the second second List. (bild sching (mith - Hora (abl5 N. 19-11(2:03) 10/10 (adds atia -The Constant of State (a113) inits. ++++++++ (#12) LINE OF STREET, SAME it is a compared with the second -1. Conc. (1987) -1 mar. (1952) -1 Co., 1983 11.5. 10.22 10.12 0000 14-14-14-14-14 Long Long 17 C. 18 P. -0.7 Tanda - D ... 152 16.2 28.2 1.00 mm

H(5d)C(6d)	2.09	C(4d)C(6d)	2.33	
C(3d)C(6d)	2.73	C(2d)C(6d)	2.39	
C(5d)H(6d)	2.03	H(4d)C(5d)	2.04	
C(3d)C(5d)	2.49	C(2d)C(5d)	2.88	
C(4d)H(5d)	2.10	H(3d)C(4d)	2.05	
C(2d)C(4d)	2.39	C(3d)H(4d)	2.02	-
C(2d)H(3d)	2.02	C(1d)C(2d)	2.39	
H(1d1)C(2d)	2.49	H(1d2)C(2d)	2.70	

	4 58
	13 13 10
Et	

 $[\operatorname{on}_2(\operatorname{H}_2\operatorname{opendenser})(\operatorname{op}_2)(\operatorname{opendenser})] = (\operatorname{opendenser})$

	OWIN CHENN
	Color (dite
	(SELS) (Catton
	Loi D (Saite
	Adding (athe
	J (36)8
	-532 (Sta
	C(8c) C(2c)
	(15e) C(J)
	- C(7c) C(3c)
	H(Se)C(4.
	c(*c)C(+c)
	C(6c)R(Sc
	B(8c) C(6c)
	C(5c) M(5c)
	(s8)D (s8)D.
	B(9e2)C(8e) 2.54
	79.1 (se)s(150)H
	PE. 1 (158)H (68)D
	C(84) C(94) 2.35
	C(84)B(941) 2.55
bð)ġ	C(64) C(86) 2.44
C(7	0(24) C(84) 2.55

+

 $[Cu_2(H_2cyendimer)(H_20)(Cl0_4)](Cl0_4)$ - thf

Contraction of the second second

The X-ray crystallographic data for $[Cu_2H_2cyendimer(H_2O)(ClO_4)]$ -(ClO₄)thf (see section 7.2) schematic diagram facing page.

TABLE 1 Fractional atomic coordinates and thermal parameters (λ^2)

Atom	2	Z	<u>=</u>	<u>Viso</u> or <u>Veq</u>
Cu(1)	0.00000	0.14474(9)	0.25000	0.0444(8)
Cu(2)	0.12483(9)	0.38292(9)	0.33461(17)	0.0517(9)
C(9c)	0.1327(8)	0.5424(11)	0.2533(21)	0.119(16)
C(9d)	0.1643(12)	0.5007(12)	0.1957(21)	0.145(19)
0(1)	-0.0938(5)	0.1178(8)	0.3052(10)	0.100(9)
C1(1)	0.2720(2)	0.4547(3)	0.5106(4)	0.098(3)
C1(2)	-0.0014(2)	0.2286(2)	0.8017(4)	0.078(3)
C(1a)	0.0305(6)	0.2966(7)	0.1515(11)	0.049(3)
N(2a)	-0.0060(4)	0.2723(5)	0.2274(8)	0.042(2)
C(2a)	-0.0716(5)	0.2961(7)	0.1883(10)	0.042(3)
C(3a)	-0.0942(6)	0.3607(8)	0.2372(12)	0.056(3)
C(4a)	-0.1585(7)	0.3883(10)	0.1945(13)	0.073(4)
C(5a)	-0.1941(6)	0.3487(9)	0.1066(12)	0.061(4)
C(6a)	-0.1719(6)	0.2839(9)	0.0609(12)	0.064(4)
C(7a)	-0.1101(5)	0.2543(7)	0.0985(10)	0.043(3)
C(8a)	-0.0903(6)	0.1834(8)	0.0484(12)	0.059(4)
N(1a)	-0.0437(5)	0.1384(6)	0.0986(9)	0.054(3)
C(9a)	-0.0290(6)	0.0648(8)	0.0439(11)	0.059(4)
C(9b)	-0.0183(6)	-0.0025(9)	0.1302(12)	0.068(4)
W(1b)	0.0211(5)	0.0310(6)	0.2322(9)	0.050(3)

C(6b)	0.1395(6)	-0.0492(8)	0.4585(12)	0.060(4)
С(5Ъ)	0.1721(7)	-0.0367(8)	0.5585(12)	0.063(4)
C(4b)	0.1643(7)	0.0324(8)	0.6117(12)	0.064(4)
C(3b)	0.1260(6)	0.0965(7)	0.5622(11)	0.052(3)
C(2b)	0.0912(5)	0.0882(7)	0.4514(10)	0.041(3)
N(2b)	0.0529(4)	0.1494(6)	0.4026(8)	0.042(2)
C(1b)	0.0376(6)	0.2148(7)	0.4716(11)	0.052(3)
C(lc)	0.0878(5)	0.2813(7)	0.5028(10)	0.044(3)
N(2c)	0.0731(4)	0.3586(6)	0.4379(8)	0.048(2)
C(2c)	0.0306(5)	0.4096(7)	0.4640(10)	0.044(3)
C(3c)	-0.0050(6)	0.3866(8)	0.5419(12)	0.062(4)
C(4c)	-0.0526(7)	0.4351(9)	0.5631(13)	0.076(4)
C(5c)	-0.0645(7)	0.5119(10)	0.5106(13)	0.073(4)
C(6c)	-0.0299(7)	0.5362(9)	0.4457(12)	0.066(4)
C(7c)	0.0185(6)	0.4894(8)	0.4197(11)	0.053(3)
C(8c)	0.0514(6)	0.5251(9)	0.3500(12)	0.062(4)
N(1c)	0.0970(5)	0.4954(7)	0.3155(11)	0.067(3)
N(1d)	0.1793(6)	0.4143(8)	0.2404(11)	0.077(4)
C(8d)	0.2273(8)	0.3738(9)	0.2264(14)	0.076(5)
C(7d)	0.2389(6)	0.2900(8)	0.2590(12)	0.058(3)
C(6d)	0.2996(8)	0.2567(10)	0.2608(14)	0.082(5)
C(5d)	0.3133(8)	0.1781(9)	0.2873(14)	0.076(4)
C(4d)	0.2745(7)	0.1271(9)	0.3202(13)	0.069(4)
C(3d)	0.2131(6)	0.1578(8)	0.3200(11)	0.055(3)
C(2d)	0.1972(6)	0.2357(8)	0.2900(11)	0.055(3)
W(2d)	0.1324(4)	0.2644(5)	0.2840(8)	0.044(2)
C(1d)	0.0943(6)	0.2558(8)	0.1714(11)	0.053(3)

74.

The Arren 1011

CALL & TITLET 10.24 11110 (1)-0 (c|l)-10 1 16930 (110) 11110 11112 100 2.4 (94)# 10-00-0-31028 ALC: NO. (145)2((al.)2 $(n\delta)\Omega$ -01.0-(12)0 0.012.08-(4) [0] 101000.00 Catille -----(1872 CONTRACTOR . 18128 Ca829. 16/04201284 (4)(1(0,0-(16633) (412) (0)1110.0

The state of the state of the state

0(13)	0.3093(8)	0.4512(9)	0.4347(14)	0.141(5)
0(14)	0.2342(6)	0.5292(8)	0.5017(12)	0.120(4)
0(21)	0.0460(6)	0.2174(8)	0.7432(11)	0.100
0(22)	-0.0379(7)	0.2991(10)	0.7577(19)	0.100
0(23)	-0.0398(11)	0.1573(12)	0.7925(20)	0.100
0(24)	0.0306(9)	0.2476(13)	0.9090(18)	0.100
0(25)	-0.03580	0.27660	0.86200	0.1000
0(27)	-0.02310	0.16560	0.72580	0.1000
0(28)	0.05080	0.27510	0.76630	0.1000
0(29)	-0.01080	0.15750	0.85410	0.1000
0(30)	0.04280	0.19180	0.90290	0.1000
0(31)	-0.05810	0.23770	0.71030	0.1000
0(32)	-0.03450	0.30290	0.81370	0.1000
0(41)	0.3258(14)	0.2840(18)	0.8735(27)	0.129(10)
C(42)	0.2632(17)	0.2970(23)	0.8190(31)	0.097(11)
C(43)	0.2246(22)	0.2360(28)	0.8477(42)	0.125(15)
C(44)	0.2629(22)	0.2206(27)	0.9656(39)	0.129(15)
C(45)	0.3315(24)	0.2468(33)	0.9751(48)	0.146(17)
HN(2a)	-0.00420	0.30670	0.28320	0.0500
HN(2d)	0.12300	0.22310	0.30220	0.0500
TABLE 2	Fractional at	comic coordina	ites for the hyd	lrogen atoms
Atom	X	Z	±	
H(1a1)	0.0045	0.2811	0.0706	
H(1a2)	0.0373	0.3621	0.1576	
H(3a1)	-0.0646	0.3904	0.3068	

0.2310

0.4393

(411)3 (4430 (42)5 1,42,10 1003 111.35 112.20 114.78 (02)0 5E)3. 1410 0(54) 10032 13530 0.410 1.5530 (61)00 1.000 $(\Delta \phi) Q$ (6570) 1111-00-0 (18) 6.0311.00 (6430) 103110 12470 11814-4 (14)0 1333581-8 (45)5 I ALASET.B. (1023) 141040.0 01110 (1120

11430

1 1 State Wallactores 1"

-0.1772

H(4a1)

	١.	ł.,	i.		ó.
		2		2	
			T,	2	2
		١.			
		μ	ł		

0622.) 12520 14110

112,601 18630

((2))

(41)0.

00016

(1230)

100.36 LAND

16,420

(2:4)3 -15-9 (44)0

(64)0 LAD SHE (3\$2)98

(Infild

(Lail)H

() AD] (T

([så]]#

The contract of the P TABLE 2 8

2100.2

2520.0.

9140.0-

3113.0*

10,10

1.7

H(1b1) H(1b2) H(1c1) H(1c2)H(3cl) H(4c1)H(5cl) H(6cl)

H(8d1)

H(6d1)

H(5d1)

H(4d1)

H(3d1)

H(1d1)

H(1d2)

We are all all all all and a second second

H(8a1)

H(9al)

H(9a2)

H(9b1)

H(9b2)

H(8b1)

H(6b1)

H(5b1)

H(4b1)

H(5b1)

-0.1150

-0.0678

0.0124

0.0058

-0.0626

0.0719

0.1441

0.2053

0.1885

0.1873 0.0309 0.1313 0.2570 0.0934 0.2959 0.0059 0.3296 0.4153 -0.0797 -0.1020 0.5504 -0.0394 0.5959 0.0363 0.5856 H(8cl)

0.2602

0.3350

0.3583

0.2885

0.1792

0.1199

0.0874

0.1221 0.6064 0.1520 0.4289 -0.0055 0.2437

0.4045

0.2956

0.1545

0.0655

0.1181

0.2827

0.1913

0.0485

0.0743

-0.0534

-0.0232

-0.0718

-0.1069

-0.0821

0.0391

0.1673 -0.0331

-0.0224

0.0136

0.1036

0.1432

0.2646

0.4195

0.5985

0.6959

0.5454

0.4901

0.5875

0.5855

0.6190

0.5235

0.4087

0.3207

0.1887

0.2408

0.2812

0.3462

0.3433

0.1172

0.1539

TABLE	3	Anisotropic	thermal	parameters	(¹ 2)
TADLE	3	AUISOLIUPIC	64666		

Atom	<u>U11</u>	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>U13</u>	<u>U12</u>
Cu(1)	0.045(1)	0.046(1)	0.042(1)	0.003(1)	0.007(1)	0.007(1)
Cu(2)	0.050(1)	0.054(1)	0.051(1)	0.010(1)	0.012(1)	0.000(1)
C(9c)	0.086(12)	0.075(12)	0.195(25)	0.061(14)	0.077(15)	0.028(10)
C(9d)	0.191(22)	0.062(11)	0.182(25)	0.046(14)	0.109(21)	0.001(14)
0(1)	0.067(7)	0.139(10)	0.094(9)	0.012(8)	0.027(7)	-0.017(7)
c1(1)	0.082(3)	0.139(4)	0.073(3)	-0.009(3)	0.019(3)	0.037(3)
C1(2)	0.101(3)	0.063(2)	0.069(3)	0.006(2)	0.039(2)	0.011(2)

TABLE 4 Bond lengths (Å)

Cu(1) - M(2a)	2.102(9)	Cu(1) - N(1a)	1.938(11)	
Cu(1) -H(1b)	1.940(10)	Cu(1) -W(2b)	2.010(9)	
Cu(1) -0(1)	2.369(12)	Cu(2) -W(2c)	1.968(12)	
Cu(2) -N(1c)	1.932(12)	Cu(2) -N(1d)	1.951(15)	
Cu(2) -N(2d)	2.059(9)	C(1a) -W(2a)	1.447(18)	
C(1a) -C(1d)	1.519(17)	N(2a) - C(2a)	1.461(14)	
N(2a) -HN(2a)	.899(9)	C(2a) -C(3a)	1.375(19)	
C(2a) -C(7a)	1.421(16)	C(3a) - C(4a)	1.461(19)	
C(4a) -C(5a)	1.363(20)	C(5a) -C(6a)	1.353(21)	
C(6a) -C(7a)	1.412(17)	C(7a) -C(8a)	1.437(19)	
C(8a) -W(1a)	1.298(16)	N(1a) -C(9a)	1.461(18)	
C(9a) -C(9b)	1.530(20)	C(9b) -W(1b)	1.481(17)	
W(1b) -C(8b)	1.264(15)	C(8b) -C(7b)	1.460(17)	
C(7b) -C(6b)	1.418(17)	C(7b) -C(2b)	1.428(17)	
C(6b) -C(5b)	1.317(20)	C(5b) -C(4b)	1.347(21)	

	2.00100
	$\eta(yxz) = \eta(yxz)$
	1.46)().
	500)9
	0.0000
	CLANSE:
	1.06046
	(Lada)g
	0.02.08
	CALCOR:
	110100
	(india)
	(\$44.)B)
	(1=6.18
	(1=+10)
	(lol)n:
	l(lot)
	(1a030
	(1468)38
0.0	(15)36
	104218
	(this)it: "
101110	(166.)8(
0110	(10115
41.600	10110

- -

C(1b) -C(1c)	1.531(16)	C(1c) -N(2c)	1.501(15)	
N(2c) -C(2c)	1.351(16)	C(2c) -C(3c)	1.449(21)	
C(2c) -C(7c)	1.419(18)	C(3c) -C(4c)	1.387(22)	
C(4c) -C(5c)	1.415(22)	C(5c) -C(6c)	1.308(24)	
C(6c) -C(7c)	1.409(21)	C(7c) -C(8c)	1.397(22)	
C(8c) -N(1c)	1.279(20)	W(lc) -C(9c)	1.46(3)	
C(9c) -C(9d)	1.31(4)	C(9d) -N(1d)	1.528(24)	
N(1d) -C(8d)	1.291(22)	C(8d) -C(7d)	1.434(20)	
C(7d) -C(6d)	1.436(22)	C(7d) -C(2d)	1.396(20)	
C(6d) -C(5d)	1.343(22)	C(5d) -C(4d)	1.328(24)	
C(4d) -C(3d)	1.438(21)	C(3d) -C(2d)	1.350(18)	
C(2d) -W(2d)	1.483(16)	N(2d) -C(1d)	1.482(16)	
N(2d) -HN(2d)	.757(9)	C1(1) -O(11)	1.453(16)	
C1(1) -O(12)	1.436(15)	C1(1) -0(13)	1.407(20)	
c1(1) -0(14)	1.463(15)	0(41) -C(42)	1.40(4)	
0(41) -C(45)	1.41(7)	C(42) -C(43)	1.41(6)	
C(43) -C(44)	1.55(6)	C(44) -C(45)	1.54(7)	
TABLE 5 Bond	angles (*)			
H(1a) -Cu(1) -	N(2a) 85.2	(4) N(1b) -Ca	1(1) -N(2a)	160.2(5)
W(1b) -Cu(1) -	N(1a) 84.8	(4) N(2b) -Cu	(1) -N(2a)	95.6(4)
W(2b) -Cu(1) -	W(la) 174.6	(5) N(2b) -Ca	1(1) -W(1b)	92.8(4)
0(1) -Cu(1) -	N(2a) 101.2	(4) O(1) -C	1(1) -W(1a)	91.3(4)

, 主体管理中心,

A C MINAT
masa
(1) (1) un
(\$762
= 47.32
3.8935
(1)0
())re
11 - (07(0-
A MIRAT
1 K17wa
7(m-(f)m)-
1.5.9-X1368
a - (\$)00
() () () () () () () () () () () () () (
N1 0.0 - (65.14
1 sT CH- (s3.30
(at) (at)0+ (ab)0-
(84) -2174)
(1) - (al)#= (a820)
sol to a star to a locate
(44)0-(41)W
(25) -c(as) 1.(11(11))

100191C.A. (48) - 0(36)

93.4(5) H(1c) -Cu(2) -H(2c)M(2d) - Cu(2) - M(2c)84.0(6) H(1d) -Cu(2) -H(1c) M(2d) -Cu(2) -M(1d)M(2d) -Cu(2) -M(1c) 154.3(5)

96.1(5)

O(1) -Cu(1) -W(2b)

H(1d) -Cu(2) -H(2c)

93.8(4)

175.2(5)

96.9(4)

87.0(5)

:

O(1) -Cu(1) -M(1b)

HN(2a)-N(2a) -Cu(1)	121.5(8)	HN(2a)-N(2a) -C(1a)	115.2(9)
HN(2a)-N(2a) -C(2a)	87.5(8)	C(3a) - C(2a) - H(2a)	119(1)
C(7a) -C(2a) -N(2a)	120(1)	C(7a) -C(2a) -C(3a)	121(1)
C(4a) -C(3a) -C(2a)	119(1)	C(5a) - C(4a) - C(3a)	118(1)
C(6a) -C(5a) -C(4a)	122(1)	C(7a) -C(6a) -C(5a)	123(1)
C(6a) -C(7a) -C(2a)	117(1)	C(8a) - C(7a) - C(2a)	124(1)
C(8a) -C(7a) -C(6a)	119(1)	W(1a) - C(8a) - C(7a)	122(1)
C(8a) -N(1a) -Cu(1)	127(1)	C(9a) - W(1a) - Cu(1)	113.7(8)
C(9a) - W(1a) - C(8a)	118(1)	C(9b) -C(9a) -N(1a)	105(1)
N(1b) -C(9b) -C(9a)	109(1)	C(9b) -N(1b) -Cu(1)	110.5(8)
C(8b) -N(1b) -Cu(1)	128.1(9)	C(8b) -N(1b) -C(9b)	121(1)
С(7Ъ) -С(8Ъ) -Ж(1Ъ)	126(1)	C(6b) -C(7b) -C(8b)	115(1)
C(2b) -C(7b) -C(8b)	124(1)	C(2b) -C(7b) -C(6b)	121(1)
C(5b) -C(6b) -C(7b)	121(1)	C(4b) -C(5b) -C(6b)	121(1)
C(3b) -C(4b) -C(5b)	122(1)	C(2b) -C(3b) -C(4b)	120(1)
С(3Ъ) -С(2Ъ) -С(7Ъ)	115(1)	N(2b) -C(2b) -C(7b)	124(1)
N(2b) -C(2b) -C(3b)	120(1)	C(2b) - W(2b) - Cu(1)	124.5(8)
C(1b) -N(2b) -Cu(1)	116.2(7)	C(1b) -W(2b) -C(2b)	118(1)
C(1c) -C(1b) -M(2b)	115(1)	M(2c) - C(1c) - C(1b)	114.0(9)
C(1c) -N(2c) -Cu(2)	116.9(8)	C(2c) -N(2c) -Cu(2)	125.6(8)
C(2c) -W(2c) -C(1c)	117(1)	C(3c) - C(2c) - W(2c)	122(1)
C(7c) -C(2c) -H(2c)	123(1)	C(7c) -C(2c) -C(3c)	115(1)
C(4c) - C(3c) - C(2c)	122(1)	C(5c) - C(4c) - C(3c)	119(2)
C(6c) - C(5c) - C(4c)	120(1)	C(7c) -C(6c) -C(5c)	124(1)
C(6c) - C(7c) - C(2c)	119(1)	C(8c) -C(7c) -C(2c)	124(1)
C(8c) -C(7c) -C(6c)	117(1)	W(1c) -C(8c) -C(7c)	129(1)
C(8c) - H(1c) - Cu(2)	125(1)	C(9c) - W(1c) - Cu(2)	112(1)

- units -1010- (az)m Lat Condition 11/17/1 (1432) 1 ---- (aid)a -104- (alts 1215/ 14939 10000106506 time to the latest 11117-16028 140 104 316 25 11.10-15539 11/10-16036 -100- k Lizz -110-11020 11105-73A)g Lington Don't KIMAT

#(1a) -Di(1) = 0
#(1b) -Di(1) = 0
#(1b) -Di(1) = 0
#(1a) -Di(1) = 0
#(1a)
#(1a) -Di(1) = 0
#(1a)
#(1a) -Di(2) = 0(1a)
#(1a)
#(1a) -Di(2) = 0(1a)

H(24) +O((1) -H(16) 154.7)

A Street Management Proven

C(8d) -N(1d) -Cu(2	126(1)	C(8d) -W(1d) -C(9d)	122(2)
C(7d) -C(8d) -N(1d	1) 123(2)	C(6d) -C(7d) -C(8d)	118(1)
C(2d) -C(7d) -C(8d	1) 127(1)	C(2d) -C(7d) -C(6d)	115(1)
C(5d) -C(6d) -C(7d	1) 121(2)	C(4d) -C(5d) -C(6d)	124(2)
C(3d) -C(4d) -C(5d	1) 117(1)	C(2d) -C(3d) -C(4d)	120(1)
C(3d) -C(2d) -C(7d	1) 122(1)	W(2d) -C(2d) -C(7d)	118(1)
N(2d) -C(2d) -C(3d	1) 119(1)	C(2d) - W(2d) - Cu(2)	115.4(7)
C(1d) -N(2d) -Cu(2) 108.7(7)	C(1d) -W(2d) -C(2d)	110(1)
HN(2d)-N(2d) -Cu(2) 134(1)	HN(2d)-N(2d) -C(2d)	91.9(9)
HN(2d)-N(2d) -C(1	94.5(9)	W(2d) -C(1d) -C(1a)	114(1)
0(12) -C1(1) -O(1)	1) 110.3(9)	0(13) -C1(1) -O(11)	109(1)
0(13) -C1(1) -O(1	2) 110(1)	0(14) -C1(1) -O(11)	106.1(9)
0(14) -C1(1) -O(1	2) 108.4(9)	0(14) -C1(1) -O(13)	113.2(9)

TABLE	6	Intermolecular	distances	<u>(Å)</u>

H(5cl)C(4a)	2.92	2	0.0	1.0	0.0
H(5cl)C(5a)	2.99	2	0.0	1.0	0.0
C(4b)H(5al)	2.75	2	0.5	0.5	0.0
C(3b)H(5al)	2.94	2	0.5	0.5	0.0
C(6d)H(6al)	2.97	2	0.5	0.5	0.0
C(5d)H(6al)	2.94	2	0.5	0.5	0.0
C(4d)H(6al)	2.89	2	0.5	0.5	0.0
C(3d)H(6al)	2.91	2	0.5	0.5	0.0
C(2d) H(6al)	2.97	2	0.5	0.5	0.0
O(11)H(6al)	2.75	2	0.5	0.5	0.0
O(13)H(8a1)	2.52	2	0.5	0.5	0.0
O(13) H(9al)	2.62	2	0.5	0.5	0.0

Shink-Gabler	
11-11-11-COT-(+1.5m	
acket -0(3e)	
Lar to August	
CIT22- Yakip	
(1) Junio- talka	
or control catego	
11111-1+1/w- CaVID	
(iii) = (10) 22 - 2(0) 38	
141 =- 10005	
10-1010-10000	
CONTRACTORNOUS AND	
100 00 10A30~ 000 90	
et line i et inne fuit line	
1 cl. 1 - (xi) 0- (xi) 8	
COMPANY AND A CONTRACT	
scare of the ratio	
(cho- (sthe /shin)	
(x) 10- (at 26- 0at 50	
15200-1020-10000	
(SETS- (SE20- X22))	
DIVAT -QUAY	
(1570- (1100- Chelo-	
nine	
(1) - (NI (R- TAU))	

O(12)H(9b2)	2.97	2	0.5	0.5	0.(D
C(4d)H(5b1)	2.96	2	0.0	0.0	-1.0	0
0(12)H(8d1)	2.85	2	0.0	1.0	0.0	0
0(14)H(8d1)	2.55	2	0.0	1.0	0.	0
0(12)0(1)	2.98	2	0.5	0.5	0.	0
0(41)0(1)	2.68	2	0.5	0.5	0.	0
TABLE 7 Intramo	lecular	di	stance	··· (Å)		
C(1a)Cu(1)	2.93		C(2a)	Cu(1)	2.93
C(8a)Cu(1)	2.91		C(9a)	Cu(1)	2.86
C(9b)Cu(1)	2.82		C(8b)	Cu(1)	2.90
C(2b)Cu(1)	3.00		С(1Ъ)	Cu(1)	2.97
H(1b1)Cu(1)	2.81		H(1d2)	Cu(1)	2.62
HN(2a)Cu(1)	2.68		HN(2d)	Cu(1)	2.92
H(1a2)Cu(2)	2.61		C(lc)	Cu(2)	2.97
H(lcl)Cu(2)	2.83		C(2c)	Cu(2)	2.97
C(8c)Cu(2)	2.86		C(9c)	Cu(2)	2.82
C(9d)Cu(2)	2.88		C(8d)	Cu(2)	2.91
C(1d)Cu(2)	2.90		0(11)	Cu(2)	2.63
HN(2d)Cu(2)	2.64		C(2a)	c(1	a)	2.40
W(2d)C(1a)	2.52		H(1d1)	c(1	a)	2.12
H(1d2)C(1a)	2.12		HN(2a)	c(1	a)	2.00
HN(2d)C(1a)	2.72		N(2a)	H(1	al)	2.06
C(2a)H(1a1)	2.50		C(7a)	H(1	al)	2.66
C(8a)H(1a1)	2.59		H(1a)	H(1	al)	2.62
C(1d)H(1a1)	2.12		H(2a)	H(1	a 2)	2.06
C(2a)H(1a2)	2.73		H(2d)	H(1	a2)	2.81

1 1 the state of a -

-1.14 1 1 \\ND3- (&t)s 1 1 1 V 1 70 - 1 MC 30 110/17-11633 100-110-110 16414-11623 142211 (64)8 (A) UN 10120 in inclusion action Ukrah 155288 I LUAN (ELLA))10- (**61)**8 1112er Julia CONTRACT A SERVER 1010-11(Int)# - いたけい いいりんの 細い 1000min-344度 La / magaine Telelis 1.1 Collins ANN ALL LING RANGE LACKE Low Manes 64430 () () (A) Have th 新聞 (LAS)H ... (hElE 1.5 (2ad) Hora (1238

ENT OF BUILDING AND AND

C(7a)N(2a)	2.49	C(8a) H(2a)	2.95
N(1a)W(2a)	2.74	H(1b1)N(2a)	2.60
N(2d)W(2a)	2.96	C(1d) N(2a)	2.49
H(1d2)W(2a)	2.78	HN(2d)N(2a)	2.88
H(3a1)C(2a)	2.13	C(4a)C(2a)	2.45
C(5a)C(2a)	2.78	C(6a)C(2a)	2.41
C(8a)C(2a)	2.52	N(1a)C(2a)	2.94
HN(2a)C(2a)	1.68	H(4a1)C(3a)	2.22
C(5a)C(3a)	2.43	C(6a)C(3a)	2.77
C(7a)C(3a)	2.44	HN(2a)C(3a)	2.12
C(4a)H(3al)	2.21	C(2c)H(3a1)	2.54
C(3c)H(3al)	2.96	C(6c)H(3al)	2.95
C(7c)H(3al)	2.60	HN(2a)H(3a1)	1.98
H(5a1)C(4a)	2.11	C(6a)C(4a)	2.37
C(7a)C(4a)	2.83	C(5a)H(4a1)	2.13
H(6a1)C(5a)	2.10	C(7a)C(5a)	2.43
C(6a)H(5al)	2.10	C(8a)C(6a)	2.46
H(8a1)C(6a)	2.71	C(7a)H(6a1)	2.15
C(8a)H(6a1)	2.66	H(8a1)C(7a)	2.18
W(1a)C(7a)	2.39	C(9a)C(8a)	2.37
H(9a1)C(8a)	2.47	H(9a2)C(8a)	2.99
H(1a)H(8a1)	2.06	C(9a)H(8a1)	2.54
H(9a1)W(1a)	2.10	H(9a2)H(1a)	2.10
C(9b)W(1e)	2.38	H(9b2)W(1a)	2.75
H(1b)H(1e)	2.61	H(1d2)H(1a)	2.93
H(951)C(9e)	2.15	H(9b2)C(9a)	2.16
H(1b)C(9a)	2.45	C(9b)H(9al)	2.15
	1.00		

18.

1.10/Hore 16422 10(10)11 (\$\$)a 1010--- 36125 TINE I BARAT 11101... (s1)3 13-500 Gib 1 (G - Cirls (horn lexis 100. . . MIN 111Q....(as/itt Hada, (Ind) 1 10 ... Latte - --- (a)10 ITTICH LAND tonn... this 11/00.... (ES30) (all 20... (bill) 14135112 (2013) (AL)S............ Itellicia Gallip (Ind)Have (AND)? 5145 (LillSon (M.B)

14(10)

1.1 1.14 All Contines (add)

	UL761 IN730	
	HETA) +++HETA	
	w(20) 74	4
	lit)W.c. (IBI)W	
	ter 10 e e filal 19	
	0(542)	
	Contract Contract	
	Sec. 9 Stations	
	14 11 (at 15	
	10.7 (w?)s	
	144 W (8435	
	001/Mari (100)@	
	G(9e) (n(tot))	
	artin	
	14470	
	of the other	
	154/R114 (#630	
	Terral (Lat)	
	Dida)	
in.r.	atio tatim	
	11930-, (LAR)R	
+0.3.	COMPRESS CAUSE	
	TAX NUMERAL STATE	
10.5	ALTRACE (MEDE	
14.1	CATORICS, CHISH	
10.05	Lat Shiri-Cheele	
12.5	(10)2 (41)8	

IB:

18

N(1b)H(9b1)	2.10	С(8Ъ)Н(9Ъ1)	2.53
N(1b)H(9b2)	2.11	С(8Ъ)Н(9Ъ2)	2.96
H(861)N(16)	2.00	С(7Ъ)Ж(1Ъ)	2.43
C(2b)W(1b)	2.99	W(2b)W(1b)	2.86
C(6b)C(8b)	2.43	H(6b1)C(8b)	2.61
C(2b)C(8b)	2.55	С(7Ъ)H(8Ъ1)	2.18
C(6b)H(8b1)	2.58	H(6b1)C(7b)	2.17
С(5Ъ)С(7Ъ)	2.38	С(4Ъ)С(7Ъ)	2.74
С(3Ъ)С(7Ъ)	2.42	W(2Ъ)C(7Ъ)	2.46
H(3d1)С(7Ъ)	2.71	H(5b1)C(6b)	2.08
С(4Ъ)С(6Ъ)	2.31	C(3b)C(6b)	2.77
C(2b)C(6b)	2.47	С(5Ъ)Н(6Ъ1)	2.07
H(4b1)C(5b)	2.10	C(3b)C(5b)	2.40
С(2Ъ)С(5Ъ)	2.83	C(4b)H(5b1)	2.10
H(5b1)C(4b)	2.16	C(2b)C(4b)	2.45
C(3b)H(4b1)	2.13	M(2b)C(3b)	2.43
C(1b)C(3b)	2.79	H(1b2)C(3b)	2.53
H(1c1)C(3b)	2.79	C(2b)H(5b1)	2.19
W(2b)H(5b1)	2.67	C(1b)H(5b1)	2.43
C(1c)H(5b1)	2.51	O(21)H(5b1)	2.89
C(1b)C(2b)	2.42	H(1b2)C(2b)	2.56
H(1c1)C(2b)	2.90	H(3d1)C(2b)	2.67
H(1b1)W(2b)	2.06	H(1b2)W(2b)	2.08
C(1c)#(2b)	2.53	H(1c1)W(2b)	2.53
HM(2d)W(2b)	2.53	H(1c1)C(1b)	2.13
H(1c2)C(1b)	2.14	N(2c)C(1b)	2.54
H(3c1)C(1b)	2.56	HN(2a)C(1b)	2.79

N(2c) ... N(1b1) 2.53 C(3c) ... H(1b1) 2.74

(2)

		LALE
		- PERSON LATIN
		OCCUPATION NO.
		17.00 · · · · · (4535
		21
		2(2b)
		-+ (#Rip
		. (#810
		(at)p
		(1162))ji
		erentaria (dellar
		Laters (wesp-
		11 Marco (20638)
		water of the part of the
		00100ccc 00020
		ar.io
		10020(Litt)#
		netari (as)a
18	83	OFFICER 0130
	2	R\$ EN) - J = 100 (100
308	5.1	(5.20, (Lex.)W
	й. I	05 (11++1) E4290
	¥. 3	· 651=2 H(25)
146	1.1	\$\$\$\$\$4)***\$(.25)
14.	£ (4132 (2n19)
16.5	5 1	AL DOLLAR BELD

HN(2a)H(1b1)	2.12	C(1c)H(1b2)	2.13
C(2c)C(1c)	2.43	C(3c)C(1c)	2.80
H(3cl)C(lc)	2.42	HDM(2d)C(1c)	2.99
W(2c)H(1cl)	2.10	W(2d)H(1c1)	2.63
0(11)H(1cl)	3.00	HM(2d)H(1c1)	2.41
N(2c)H(1c2)	2.11	C(2c)H(1c2)	2.60
C(3c)H(1c2)	2.57	C(3c)W(2c)	2.44
H(3cl)W(2c)	2.69	C(7c) H(2c)	2.43
C(8c)W(2c)	2.93	W(1c)W(2c)	2.84
HN(2a)W(2c)	2.42	H(3cl)C(2c)	2.19
C(4c)C(2c)	2.49	C(5c)C(2c)	2.84
C(6c)C(2c)	2.44	C(8c)C(2c)	2.49
W(1c)C(2c)	2.99	HN(2a)C(2c)	2.80
H(4c1)C(3c)	2.15	C(5c)C(3c)	2.41
C(6c)C(3c)	2.73	C(7c)C(3c)	2.42
C(4c)H(3cl)	2.13	O(21)H(3cl)	2.70
H(5cl)C(4c)	2.17	C(6c)C(4c)	2.35
C(7c)C(4c)	2.81	C(5c)H(4cl)	2.17
H(6c1)C(5c)	2.05	C(7c)C(5c)	2.40
C(6c)H(5cl)	2.07	C(8c)C(6c)	2.39
H(8cl)C(6c)	2.52	C(7c)H(6cl)	2.14
C(8c)H(6cl)	2.56	H(8cl)C(7c)	2.11
W(1c)C(7c)	2.41	C(9c)C(8c)	2.41
W(1c)H(8c1)	2.00	C(9c)H(8cl)	2.56
C(9d)W(1c)	2.36	W(1d)W(1c)	2.60
W(1d)C(9c)	2.35	C(8d)C(9d)	2.47
H(841)C(94)	2.65	H(8d1)H(1d)	2.04

 $\{ i, j \}$

	012, (a1)/22
	11/0 (s2)p
	1110 as latera
	11100 to230
	0.00
	1.0
	Line Cubin
	int m (Jachi
	(maile
	P (42) (40)
	Contraction ()
	Land lakes
	1010 (al.)W
	I A D (John)
1	10 (ad)a
1.4	On the links
	11100
	100.000 100.00
	and the of the late
1.2	Line of the last
	And an Armente
	A STATE OF
	Contraction of the
	191 phone (mailed
10.0	LENDALLY DADA
	1.9.2 / 0.1.1 1.0.2.2
(0-2.)	CHEIGTET (CPEI)6

C(6d)C(8d)	2.46	H(6d1)C(8d)	2.66
C(2d)C(8d)	2.53	N(2d)C(8d)	2.97
H(1d1)C(8d)	2.85	C(7d)H(8d1)	2.17
C(6d)H(8d1)	2.65	H(6d1)C(7d)	2.18
C(5d)C(7d)	2.42	C(4d)C(7d)	2.83
C(3d)C(7d)	2.41	N(2d)C(7d)	2.47
H(1d1)C(7d)	2.80	HN(2d)C(7d)	2.94
H(5d1)C(6d)	2.09	C(4d)C(6d)	2.35
C(3d)C(6d)	2.73	C(2d)C(6d)	2.39
C(5d)H(6d1)	2.10	H(4d1)C(5d)	2.10
C(3d)C(5d)	2.36	C(2d)C(5d)	2.73
C(4d)H(5d1)	2.06	H(3d1)C(4d)	2.19
C(2d)C(4d)	2.42	C(3d)H(4d1)	2.20
N(2d)C(3d)	2.45	HN(2d)C(3d)	2.21
C(2d)H(3d1)	2.10	N(2d)H(3d1)	2.64
HN(2d)H(3d1)	2.10	C(1d)C(2d)	2.42
H(1d1)C(2d)	2.55	H(1d2)C(2d)	2.71
HN(2d)C(2d)	1.69	H(1d1)N(2d)	2.09
H(1d2)N(2d)	2.09	HN(2a)C(1d)	2.97
HN(2d)C(1d)	1.72	HN(2d)H(1d1)	2.53
HN(2d)H(1d2)	1.93	0(12)0(11)	2.37
0(13)0(11)	2.32	0(14)0(11)	2.33
0(13)0(12)	2.33	0(14)0(12)	2.35
0(14)0(13)	2.40		

DO1

1405

1 th and all all all and the second second

KIN.

x_{1} x_{2} x_{3} x_{4} x_{4} x_{4} x_{4} x_{1} x_{4} x_{4} x_{4} x_{4} x_{4} x_{4} x_{4} x_{1} x_{1} x_{2} x_{4} x_{4} x_{2} x_{4} x_{4} x_{1} x_{1} x_{1} x_{2} x_{2} x_{4} x_{4} x_{1} x_{1} x_{2} x_{2} x_{2} x_{2} x_{2} x_{1} x_{2} x_{2} x_{2} x_{2} x_{2} x_{2} x_{1} x_{2} x_{2} x_{2} x_{2} x_{2} x_{2} x_{1} x_{2}	Uiso or Ue 0.0624(14 0.073(4) 0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	<u>E</u> 0.12873(21) -0.1008(4) 0.1250 0.1250 0.1378(13) 0.1418(13)	X 0.18051(10) 0.2273(2) 0.2500 0.2500	E 0.51711(11) 0.5144(3) 0.5763(8)	Lton Cu Cl
E Y E Her Cu 0.51711(11) 0.18051(10) 0.12873(21) 0 C1 0.5144(3) 0.2273(2) -0.1008(4) 0 C1 0.5144(3) 0.2273(2) -0.1008(4) 0 C1 0.5763(8) 0.2500 0.1250 0 C(2b) 0.6696(8) 0.1964(8) 0.1378(13) 0 C(2b) 0.6696(8) 0.1956(9) 0.1418(13) 0 C(2b) 0.7697(14) 0.2500 0.1250 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 C(2b) 0.6410(10) 0.1321(10) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(2b) 0.5725(8) 0.10607(8) 0.1250 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1203(17)	<u>Uiso or Ue</u> 0.0624(14 0.073(4) 0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	<pre> E 0.12873(21) -0.1008(4) 0.1250 0.1250 0.1378(13) 0.1418(13) </pre>	¥ 0.18051(10) 0.2273(2) 0.2500 0.2500	¥ 0.51711(11) 0.5144(3) 0.5763(8)	Ltom Cu Cl
Cu 0.51711(11) 0.18051(10) 0.12873(21) C C1 0.5144(3) 0.2273(2) -0.1008(4) C O(1b) 0.5763(8) 0.2500 0.1250 C C(C3b) 0.6374(12) 0.2500 0.1250 C C(2b) 0.66696(8) 0.1964(8) 0.1378(13) C C(4b) 0.7364(9) 0.1956(9) 0.1418(13) C C(5b) 0.7697(14) 0.2500 0.1250 C C(6b) 0.8400(16) 0.2500 0.1250 C C(2b) 0.66410(10) 0.1321(10) 0.1557(13) C C(2b) 0.6410(10) 0.1217(8) 0.1821(10) C C(2b) 0.5725(8) 0.0607(8) 0.1821(10) C D(1a) 0.4597(7) 0.2500 0.1250 C C(2a) 0.3646(8) 0.1944(8) 0.1217(14) C C(1a) 0.3901(8) 0.1332(9) 0.1130(14) C C(4a) 0.2995(9) <t< th=""><th>0.0624(14 0.073(4) 0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)</th><th>0.12873(21) -0.1008(4) 0.1250 0.1250 0.1378(13) 0.1418(13)</th><th>0.18051(10) 0.2273(2) 0.2500 0.2500</th><th>0.51711(11) 0.5144(3) 0.5763(8)</th><th>Cu ;1</th></t<>	0.0624(14 0.073(4) 0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	0.12873(21) -0.1008(4) 0.1250 0.1250 0.1378(13) 0.1418(13)	0.18051(10) 0.2273(2) 0.2500 0.2500	0.51711(11) 0.5144(3) 0.5763(8)	Cu ;1
C1 0.5144(3) 0.2273(2) -0.1008(4) 0 O(1b) 0.5763(8) 0.2500 0.1250 0 (C3b) 0.6374(12) 0.2500 0.1250 0 C(2b) 0.6696(8) 0.1964(8) 0.1378(13) 0 C(4b) 0.7364(9) 0.1956(9) 0.1418(13) 0 C(4b) 0.7697(14) 0.2500 0.1250 0 C(5b) 0.7697(14) 0.2500 0.1250 0 C(6b) 0.8400(16) 0.2500 0.1250 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 M(1b) 0.5858(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500	0.073(4) 0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	-0.1008(4) 0.1250 0.1250 0.1378(13) 0.1418(13)	0.2273(2) 0.2500 0.2500	0.5144(3) 0.5763(8)	21
0(1b) 0.5763(8) 0.2500 0.1250 0 (C3b) 0.6374(12) 0.2500 0.1250 0 C(2b) 0.6696(8) 0.1964(8) 0.1378(13) 0 C(4b) 0.7364(9) 0.1956(9) 0.1418(13) 0 C(4b) 0.7697(14) 0.2500 0.1250 0 C(6b) 0.8400(16) 0.2500 0.1250 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 N(1b) 0.5838(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 D(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0	0.069(5) 0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	0.1250 0.1250 0.1378(13) 0.1418(13)	0.2500 0.2500	0.5763(8)	
(C3b) 0.6374(12) 0.2500 0.1250 0 C(2b) 0.6696(8) 0.1964(8) 0.1378(13) 0 C(4b) 0.7364(9) 0.1956(9) 0.1418(13) 0 C(5b) 0.7697(14) 0.2500 0.1250 0 C(6b) 0.8400(16) 0.2500 0.1250 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 N(1b) 0.5858(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(1a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0	0.054(7) 0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	0.1250 0.1378(13) 0.1418(13)	0.2500		D(1b)
C(2b) 0.6696(8) 0.1964(8) 0.1378(13) 0 C(4b) 0.7364(9) 0.1956(9) 0.1418(13) 0 (C5b) 0.7697(14) 0.2500 0.1250 0 C(6b) 0.8400(16) 0.2500 0.1250 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 N(1b) 0.5858(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1217(14) 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0	0.056(5) 0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	0.1378(13) 0.1418(13)		0.6374(12)	(C3b)
C(4b)0.7364(9)0.1956(9)0.1418(13)0(C5b)0.7697(14)0.25000.12500C(6b)0.8400(16)0.25000.12500C(2b)0.6410(10)0.1321(10)0.1557(13)0N(1b)0.5858(8)0.1217(8)0.1554(10)0D(2b)0.5725(8)0.0607(8)0.1821(10)0D(1a)0.4597(7)0.25000.12500C(3a)0.3973(11)0.25000.12500C(1a)0.3901(8)0.1332(9)0.1130(14)0C(4a)0.2995(9)0.1960(10)0.1203(17)0C(5a)0.2665(14)0.25000.12500C(6a)0.1922(17)0.25000.12500	0.068(6) 0.083(9) 0.110(12) 0.076(7) 0.063(5)	0.1418(13)	0.1964(8)	0.6696(8)	С(2Ъ)
(C5b)0.7697(14)0.25000.12500C(6b)0.8400(16)0.25000.12500C(2b)0.6410(10)0.1321(10)0.1557(13)0N(1b)0.5858(8)0.1217(8)0.1554(10)0D(2b)0.5725(8)0.0607(8)0.1821(10)0D(1a)0.4597(7)0.25000.12500C(3a)0.3973(11)0.25000.12500C(2a)0.3646(8)0.1944(8)0.1217(14)0C(1a)0.3901(8)0.1332(9)0.1130(14)0C(5a)0.2665(14)0.25000.12500C(5a)0.1922(17)0.25000.12500	0.083(9) 0.110(12) 0.076(7) 0.063(5)		0.1956(9)	0.7364(9)	C(4b)
C(6b)0.8400(16)0.25000.12500C(2b)0.6410(10)0.1321(10)0.1557(13)0N(1b)0.5858(8)0.1217(8)0.1554(10)0D(2b)0.5725(8)0.0607(8)0.1821(10)0D(1a)0.4597(7)0.25000.12500C(3a)0.3973(11)0.25000.12500C(2a)0.3646(8)0.1944(8)0.1217(14)0C(1a)0.3901(8)0.1332(9)0.1130(14)0C(4a)0.2995(9)0.1960(10)0.1203(17)0C(5a)0.2665(14)0.25000.12500C(6a)0.1922(17)0.25000.12500	0.110(12) 0.076(7) 0.063(5)	0.1250	0.2500	0.7697(14)	(C5b)
C(2b) 0.6410(10) 0.1321(10) 0.1557(13) 0 N(1b) 0.5858(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1250 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0 C(6a) 0.1922(17) 0.2500 0.1250 0	0.076(7) 0.063(5)	0.1250	0.2500	0.8400(16)	С(6Ъ)
N(1b) 0.5858(8) 0.1217(8) 0.1554(10) 0 D(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 D(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1250 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0 C(6a) 0.1922(17) 0.2500 0.1250 0	0.063(5)	0.1557(13)	0.1321(10)	0.6410(10)	C(2b)
0(2b) 0.5725(8) 0.0607(8) 0.1821(10) 0 0(1a) 0.4597(7) 0.2500 0.1250 0 c(3a) 0.3973(11) 0.2500 0.1250 0 c(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 c(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 c(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 c(5a) 0.2665(14) 0.2500 0.1250 0 c(6a) 0.1922(17) 0.2500 0.1250 0		0.1554(10)	0.1217(8)	0.5858(8)	N(1Ъ)
0(1a) 0.4597(7) 0.2500 0.1250 0 C(3a) 0.3973(11) 0.2500 0.1250 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0 C(6a) 0.1922(17) 0.2500 0.1250 0	0.094(5)	0.1821(10)	0.0607(8)	0.5725(8)	D(2b)
C(3a) 0.3973(11) 0.2500 0.1250 0 C(2a) 0.3646(8) 0.1944(8) 0.1217(14) 0 C(1a) 0.3901(8) 0.1332(9) 0.1130(14) 0 C(4a) 0.2995(9) 0.1960(10) 0.1203(17) 0 C(5a) 0.2665(14) 0.2500 0.1250 0 C(6a) 0.1922(17) 0.2500 0.1250 0	0.051(4)	0.1250	0.2500	0.4597(7)	D(1a)
C(2a) 0.3646(8) 0.1944(8) 0.1217(14) C(1a) 0.3901(8) 0.1332(9) 0.1130(14) C(4a) 0.2995(9) 0.1960(10) 0.1203(17) C(5a) 0.2665(14) 0.2500 0.1250 C(6a) 0.1922(17) 0.2500 0.1250	0.048(6)	0.1250	0.2500	0.3973(11)	C(3a)
C(1a)0.3901(8)0.1332(9)0.1130(14)C(4a)0.2995(9)0.1960(10)0.1203(17)C(5a)0.2665(14)0.25000.1250C(6a)0.1922(17)0.25000.1250	0.056(5)	0.1217(14)	0.1944(8)	0.3646(8)	C(2a)
C(4a)0.2995(9)0.1960(10)0.1203(17)C(5a)0.2665(14)0.25000.1250C(6a)0.1922(17)0.25000.1250	0.062(5)	0.1130(14)	0.1332(9)	0.3901(8)	C(1a)
C(5a)0.2665(14)0.25000.1250C(6a)0.1922(17)0.25000.1250	0.074(6)	0.1203(17)	0.1960(10)	0.2995(9)	C(4a)
C(6a) 0.1922(17) 0.2500 0.1250	0.085(9)	0.1250	0.2500	0.2665(14)	C(5a)
	0.115(13)	0.1250	0.2500	0.1922(17)	C(6a)
W(1a) 0.4485(7) 0.1225(8) 0.1148(13)	0.064(5)	0.1148(13)	0.1225(8)	0.4485(7)	W(1a)
O(2a) 0.4656(7) 0.0598(7) 0.1012(10)	0.090(5)	0.1012(10)	0.0598(7)	0.4656(7)	0(2a)

- (lat)p

0115

(AE)S

()(5)(0

()(4)()

11)1

19230

11110.... (8)/0

11.10. .. (6110

(110--- (A170

028 026 N 1Ъ

1 N1a

0(34) 0.5557	(9) 0.2	261(9)	-0.1769(13) 0.13	0(7)
c(1)	0.3674	(26) -0.0	483(24)	-0.1430(39) 0.10	1(16)
C(2)	0.4061	-0.0	3529	-0.06861	0.15	67(41)
C(3)	0.3304	(58) -0.0	377(55)	-0.1027(83	0.09	2(35)
C(4)	0.3798	(52) 0.0	621(49)	-0.0946(69) 0.10	6(35)
C(5)	0.3300	(39) -0.0	068(37)	-0.1353(57) 0.07	5(24)
C(6)	0.4220	(19) 0.0	179(19)	-0.0318(24) 0.07	4(11)
C(7)	0.3913	(19) 0.0	227(22)	-0.0285(27) 0.08	5(12)
c(8)	0.3895	(18) 0.0	090(21)	-0.1773(24) 0.13	6(14)
c(9)	0.4175	(26) 0.0	493(23)	-0.1088(40) 0.13	4(18)
C(10	0.3665	(19) -0.0	368(18)	-0.0388(27) 0.13	6(13)
HO(b	2) 0.5900	7 0.0	3444	0.23837	0.10	00
HO(2) 0.4454	3 0.0	3271	0.04435	0.10	00
HO(b	0.5405	0.0	4970	0.12800	0.10	00
HO(a	0.5022	9 0.0	3769	0.14746	0.10	00
TABL	<u>E 2</u> Fraction	nel <u>stomic</u>	coordinat	es for the	hydrogen g	atons
Atos		z		1		
H(13	0.76	09 0.1	531	0.1571		
H(16	0.67	22 0.0	938	0.1686		
H(26	0.35	87 0.0	945	0.1046		
B(23	0.27	44 0.1	527	0.1152		
TABL	E 3 Anisotro	opic therme	1 paramet	ers (\$2)		
Atom	<u> </u>	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>V13</u>	<u>U12</u>
Cu	0.059(1)	0.031(1)	0.097(2)	0.000(1)	-0.007(2)	-0.002(1)
C1	0.066(3)	0.073(3)	0.080(4)	-0.002(3)	0.006(3)	-0.001(3)

۶.

CITER WAY I TANK $-z\lambda$ -051 - 10 1 d C (H (10) 12510 1,643,00 (1115) (14)0 (:c)) OFFIC 1(45)0 1 = 1 30 (at 10 - - - 0 1.4530 . (11)0 1.1041.00 (41)5 1000.0 10270 113.0 (10.64) 3.112241.0 GUIDEAL, B (ai)H 1110000.0 (a1)0 (1)1112.0 1 22 30 (4)4422.0 11030

- 5

the second secon

Cu	-0(1b)	1.965(1	2)	Cu	-M(1b)	1.9	85(18)	
Cu	-0(1a)	1.941(]	.0)	Cu	-W(1a)	1.9	45(16)	
Cu	-0(32)	2.508(1	.7)	Cu	-Cu	2.9	994(4)	
0(1Ъ)	-(C3b)	1.32(3	3)	(C3b)	-C(2b)	1.:	359(21)	
С(2Ъ)	-C(4b)	1.44(:	3)	С(2Ъ)	-C(2b)) 1.	.54(3)	
C(4b)	-(C5b)	1.394(2	24)	(C5b)	-C(6b)) 1.	.51(5)	
С(2Ь)	-N(1b)	1.21(3)	C(2b)	-0(2b)) 2	.16(3)	
N(1b)	-0(26)	1.401(24)	0(2Ъ)	-но(Ъ	2) 1.(074(16)	
O(2b)	-HO(b1)	1.081(16)	0(2Ъ)	-HO(a)	1) 1.	671(17)	
0(1a)	-C(3a)	1.34(3)	C(3a)	-C(2a) 1.	389(20)	
C(2a)	-C(1a)	1.43(3)	C(2a)	-C(4a) 1.	402(25)	
C(1a)	-N(1a)	1.279(24)	C(4a)	-C(5a) 1	.37(3)	
C(5a)	-C(6a)	1.60(5)	N(1a)	-0(2a) 1.	414(22)	
0(2a)	-HO(a2)	1.110(15)	0(2a)	-но(р	1) 1.	675(14)	
0(2a)	-HO(al)	1.148(15)	C1	-0(31) 1.	449(17)	
C1	-0(32)	1.423(19)	C1	-0(33) 1.	402(20)	
Cl	-0(34)	1.433(20)	C(1)	-C(2)	1	.41(6)	
но(ъ))-HO(al)	.909((1)					
TABLI	<u>5 Bond</u>	angles	(*)					
W(15)) -Cu	-O(1b)	90.5(7	7)	0(1a)	-Cu	-0(15)	79.9(5)
0(1a) -Cu	-W(1b)	166.1(6	5)	N(1a)	-Cu	-0(1b)	167.9(6)
N(la) -Cu	-W(1b)	100.2(7	7)	H(1a)	-Cu	-0(1a)	90.5(6)
0(32) –Cu	-0(1b)	82.7(4	•)	0(32)	-Cu	-W(1b)	94.8(6)
0(32) -Cu	-0(1a)	93.9(4	6)	0(32)	-Cu	-W(1a)	90.7(7)
Cu	-0(1b)	-Cu	99.2(8)	Cu	-0(1a)	-Cu	100.9(7)
(C3b) -0(1b)	-Cu	130.4(4)	C(2b)	-(C3b)	-0(1b)	121(1)
		4 ·		- 1	0(2))	-C(2h)	-(C3b)	126(2)

	146.00	
	118	
	0.10	
	143	
	1010	
	in 206	
	Chilling.	
	0.60	
	s flace	
	N	
	10126	
	(7.4706)	
	300.00	
	148.08	
	1(22)0	
(11++ DU)	THE 2	
112	mith	
(1)050.0	10	
0.0 XE2840.0	53	

(C5b) -C(4b) -C(2b)	120(2)	C(4b) -(C5b) -C(4b)	118(3)
C(6b) -(C5b) -C(4b)	121(1)	W(1b) -C(2b) -C(2b)	124(2)
O(2b) -C(2b) -C(2b)	160(2)	O(2b) -C(2b) -W(1b)	37(1)
C(2b) -N(1b) -Cu	128(2)	0(2b) -W(1b) -Cu	120(1)
O(2b) -N(1b) -C(2b)	112(2)	W(1b) -O(2b) -C(2b)	31(1)
HO(b2)-O(2b) -C(2b)	106(1)	HO(b2)-O(2b) -W(1b)	130(2)
HO(b1)-O(2b) -C(2b)	117(1)	HO(b1)-O(2b) -H(1b)	97(1)
HO(b1)-O(2b) -HO(b2)	133(2)	HO(a1)-O(2b) -C(2b)	140(1)
HO(a1)-O(2b) -N(1b)	112(1)	HO(a1)-O(2b) -HO(b2)	113(1)
HO(a1)-O(2b) -HO(b1)	29.8(5)	C(3a) - O(1a) - Cu	129.5(3)
C(2a) - C(3a) - O(1a)	120(1)	C(1a) - C(2a) - C(3a)	127(2)
C(4a) -C(2a) -C(3a)	119(2)	C(4a) - C(2a) - C(1a)	114(2)
C(2a) -C(3a) -C(2a)	119(2)	M(1a) - C(1a) - C(2a)	123(2)
C(5a) -C(4a) -C(2a)	123(2)	C(4a) - C(5a) - C(4a)	117(3)
C(6a) - C(5a) - C(4a)	121(1)	C(1a) -M(1a) -Cu	129(1)
0(2a) -N(1a) -Cu	115(1)	O(2a) - H(1a) - C(1a)	115(2)
HO(a2)-O(2a) -N(1a)	120(1)	HO(b1)-O(2a) -H(1a)	110(1)
HO(b1)-O(2a) -HO(a2)	119(1)	HO(a1) - O(2a) - H(1a)	119(1)
HO(a1)-O(2a) -HO(a2)	120(1)	HO(a1)-O(2a) -HO(b1)	31.0(4)
0(32) -C1 -O(31)	110(1)	0(33) -C1 -O(31)	111(1)
0(33) -C1 -O(32)	113(1)	0(34) -C1 -O(31)	107(1)
0(34) -C1 -0(32)	107(1)	0(34) -C1 -O(33)	108(1)
C1 -0(32) -Cu	126(1)		
TABLE 6 Intermolecule	r distances	<u>(Å)</u>	

0.0

0.0

3 0.0 0.0 0.0

0.0

3

1.97

2.99

-0
10
- 20
1.000
+ (1)
44.75
144.6
1.07.04
Gale
10.40 1+010
AL - LECTO
- (a) 10.
14
10.00-10-
decision Lation
1 10475
-D- Galli
111/1- 10-11110
Tel In- wr- (10730-
10+ (d1)0+
-2- (45)0- (452)
en. Christen Canals

102.)

0(1b) ...Cu

(C3b) ...Cu

1 LL (N-1 3 269)	0(31)Cu	2.76	3	0.0	0.0	0.0
(111)- 1dają.	HO(b2)Cu	2.98	6	0.5	0.5	0.5
1.10 - 1.4636	С(2Ъ)С(2Ъ)	2.34	3	0.0	0.0	0.0
3 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	C(4b)C(2b)	2.77	3	0.0	0.0	0.0
111 24656-	(C5b)C(2b)	2.45	3	0.0	0.0	0.0
1 (a 3) (a 3) (a 3)	C(4b)C(4b)	2.39	3	0.0	0.0	0.0
	(C5b)C(4b)	1.39	3	0.0	0.0	0.0
- (1 a) (cit:	C(6b)C(4b)	2.53	3	0.0	0.0	0.0
-(1)-(-)-(1+298-	(C5b)H(13)	2.15	3	0.0	0.0	0.0
5 Sec. 1 24 900	С(6Ъ)Н(13)	2.73	3	0.0	0.0	0.0
0 (S- 146)0	O(33)H(13)	2.43	8	0.5	0.5	-0.5
EXAMPLE (64) (C)	O(31)H(16)	2.60	8	0.5	0.5	-0.5
1.1.1.10- (at 10.	O(33)H(16)	2.71	8	0.5	0.5	-0.5
1.1410- (4630)	0(2a)0(2b)	2.97	2	1.0	0.0	0.0
1110/01-10x010	HO(a2)O(2b)	2.89	2	1.0	0.0	0.0
DC247 -mills c	HO(a1)0(2b)	2.71	2	1.0	0.0	0.0
100/0-110/00	HO(al)O(2b)	2.96	5	0.5	-0.5	0.5
P	HO(b2)O(2b)	2.66	6	0.5	0.5	0.5
1	C(2a)C(2a)	2.40	3	0.0	0.0	0.0
10-10 /2- (2020)	C(4a)C(2a)	2.75	3	0.0	0.0	0.0
	C(5a)C(2a)	2.43	3	0.0	0.0	0.0
UTVE TO- KWEYD	HO(b2)C(1a)	2.88	6	0.5	0.5	0.5
	O(31)H(26)	2.55	4	0.5	-0.5	-0.5
	C(4a)C(4a)	2.33	3	0.0	0.0	0.0
The converses of RUSAT	C(5a)C(4a)	1.37	3	0.0	0.0	0.0
1 10.1 10.11 (0130	C(6a)C(4a)	2.59	3	0.0	0.0	0.0
(10) (10) (10)	C(5a)H(23)	2.11	3	0.0	0.0	0.0

121 19 14

•

BO(b2)R(1a) 2.31 6 0.5 0.5 0.5 0.5 0(2a)0(2a) 2.97 2 1.0 0.0 0.0 BO(a2)0(2a) 2.97 2 1.0 0.0 0.0 BO(b1)0(2a) 2.39 2 1.0 0.0 0.0 BO(b2)0(2a) 2.31 2 1.0 0.0 0.0 BO(b2)0(2a) 2.31 2 1.0 0.0 0.0 BO(b2)0(2a) 2.46 6 0.5 0.5 0.5 BO(b2)0(2a) 2.46 6 0.5 0.5 0.5 BO(b2)0(31) 2.95 8 1.0 0.0 0.0 BO(b1)EO(b2) 2.18 5 0.5 -0.5 0.5 BO(b1)BO(b2) 2.18 5 0.5 -0.5 0.5 BO(b1)BO(b2) 2.18 5 0.5 -0.5 0.5 BO(b1)BO(b2) 2.43 2 1.0 0.0 0.0 BO(a1)BO(b2) 1.43 2 1.0 0.0 0.0 BO(a1)Cu 2.95 C(3a)Cu CU C(1a)Cu 2.95 C(3a)Cu CU BO(2b)Cu 2.95 C(3a)Cu CU C(1a)Cu 2.95 C(3a)CU D(1b) C(1a)C(2b) 2.45 B B(13)C(2b)CU D(1b) C(1a)C(2b) 2.45 B B(13)C(2b)C(2b)C(2b)C(2b)C(4b) C(2b)C(4b)C(4b)C(4b) C(2b								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		944 14630	HO(b2)N(1a)	2.31	6	0.5	0.5	0.5
BO(a2)O(2a) 2.89 2 1.0 0.0 0.0 BO(b2)O(2a) 2.39 2 1.0 0.0 0.0 BO(b2)O(2a) 2.31 2 1.0 0.0 0.0 BO(b2)O(2a) 2.31 2 1.0 0.0 0.0 BO(b2)O(2a) 2.46 6 0.5 0.5 0.5 BO(b2)O(31) 2.95 8 1.0 0.0 0.0 BO(b1)EO(6) 2.89 2 1.0 0.0 0.0 BO(a1)BO(b2) 2.18 5 0.5 -0.5 0.5 HO(b1)BO(a2) 2.18 2 1.0 0.0 0.0 BO(a1)BO(a2) 2.43 2 1.0 0.0 0.0 BO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 BO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 BO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 BO(a1)BO(b2) 1.63 2 1.0 0.0 0.0 BO(a1)BO(b2) 1.63 2 1.0 0.0 0.0 BO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 BO(a1)Cu 2.95 C(3a)Cu Cu C(3b)Cu C(3b)C(3b) C(2b)C(3b) 2.44 (C5b)C(3b) C(2b)C(3b) C(2b)C(3b) 2.45 B(16)C(2b) B(1b)C(2b)C(3b)C(3b) C(2b)C(3b) 2.45 B(16)C(3b) B(1b)C(2b) 2.45 B(16)C(4b) B(1b)C(2b) 2.45 B(16)C(4b) B(1b)C(2b) 2.45 B(16)C(4b) B(1b)C(4b) 2.48 B(1b)C(4b) B(1b)C(4b) 2.48 B(1b)C(4b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b) C(4b)C(4b) 2.48 B(1b)C(4b) C(4b) C(4b) 2.48 B(1b) 2.48 C(4b) C(4b) C(4b) C(4b) C(4b) 2			0(2a)0(2a)	2.97	2	1.0	0.0	0.0
HO(b1)O(2a) 2.39 2 1.0 0.0 0.0 HO(b2)O(2a) 2.31 2 1.0 0.0 0.0 HO(b2)O(2a) 2.31 2 1.0 0.0 0.0 HO(b2)O(2a) 2.46 6 0.5 0.5 0.5 HO(b2)O(31) 2.95 8 1.0 0.0 0.0 HO(b1)EO(6) 2.89 2 1.0 0.0 0.0 HO(a1)HO(b2) 2.18 5 0.5 -0.5 0.5 HO(b1)HO(b2) 2.18 2 1.0 0.0 0.0 HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 HO(a1)Cu 2.95 C(3a)Cu C(3b)Cu 2.95 C(3a)Cu C(1a)Cu 2.95 C(3a)Cu HO(b1)Cu 2.86 C(2b)O(1b) C(2b)Cu 2.93 H(1b)O(1b) C(2b)C(1b) 2.93 H(1b)O(1b) C(2b)C(2b) 2.46 C(2b)O(1b) C(2b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.45 H(16)C(4b) H(1b)C(2b) 2.45 H(16)C(4b) H(1b)C(4b) 2.48 H(1b)C(4b) H		11)0	HO(a2)O(2a)	2.89	2	1.0	0.0	0.0
BO(b2)0(2a) 2.31 2 1.0 0.0 0.0 $BO(b2)0(2a) 2.46 6 0.5 0.5 0.5$ $BO(b2)0(31) 2.95 8 1.0 0.0 0.0$ $BO(a1)BO(b2) 2.18 5 0.5 -0.5 0.5$ $BO(b1)BO(a2) 2.18 5 0.5 -0.5 0.5$ $BO(b1)BO(a2) 2.18 2 1.0 0.0 0.0$ $BO(a1)BO(a2) 2.43 2 1.0 0.0 0.0$ $BO(a1)BO(b1) 2.11 2 1.0 0.0 0.0$ $BO(a1)BO(b2) 1.63 2 1.0 0.0 0.0$ $BO(a1)Cu 2.99 C(2b)Cu$ $C(1a)Cu 2.99 C(2b)Cu$ $BO(b1)Cu 2.86 C(2b)0(1b)$ $C(2b)0(1b) 2.93 M(1b)0(1b)$ $C(2b)0(1b) 2.51 O(32)0(1b)$ $C(2b)0(1b) 2.51 O(32)0(1b)$ $C(4b)(C3b) 2.44 (C5b)(C3b)$ $C(2b)0(2b) 2.43 E(16)0(2b)$ $H(1b)C(2b) 2.43 E(16)0(2b)$ $B(1b)C(2b) 2.43 B(16)0(4b)$		13-7 Kiraba	HO(b1)0(2a)	2.39	2	1.0	0.0	0.0
HO(b2)0(2a) 2.46 6 0.5 0.5 0.5 0.5 HO(b2)0(31) 2.95 8 1.0 0.0 0.0 HO(b1)C(6) 2.89 2 1.0 0.0 0.0 HO(a1)HO(b2) 2.18 5 0.5 -0.5 0.5 HO(b1)HO(b2) 2.18 2 1.0 0.0 0.0 HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0 HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0 HO(a1)HO(b2) 1.63 2 1.0 0.0 HO(b2)Cu 0(2b)Cu 0(2b)C(2b)Cu 0(2b)Cu 0(2b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.45 H(16)C(4b) H(1b)C(4b)C(4b)C(4b)C(4b)C(4b)Cu 0(4b)Cu 0((07.5)	HO(b2)O(2a)	2.31	2	1.0	0.0	0.0
HO(b2)O(31) 2.95 8 1.0 0.0 0.0 HO(b1)C(6) 2.89 2 1.0 0.0 0.0 HO(b1)BO(b2) 2.18 5 0.5 -0.5 0.5 HO(b1)BO(a2) 2.18 2 1.0 0.0 0.0 HO(a1)BO(a2) 2.43 2 1.0 0.0 0.0 HO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 HO(a1)BO(b2) 1.63 2 1.0 0.0 0.0 HO(a1)Cu 2.99 C(2b)Cu C(1a)Cu 2.99 C(2b)Cu C(1a)Cu 2.95 C(3a)Cu HO(b1)Cu 2.86 C(2b)O(1b) C(2b)O(1b) 2.93 H(1b)O(1b) C(2b)O(1b) 2.51 O(32)O(1b) C(4b)(C3b) 2.44 (C5b)(C3b) C(4b)(C3b) 2.44 (C5b)(C3b) C(2b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.43 C(6b)C(4b) H(1b)C(2b) 2.43 H(16)C(4b) H(1b)C(2b) 2.44 H(16)C(4b) H(1b)C(4b) 2.48 H(1c)C(4b) H(1b)C(4b) 2.48 H(1b)C(4b)		20452	HO(b2)O(2a)	2.46	6	0.5	0.5	0.5
$HO(b1)C(6) 2.89 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 2.18 5 0.5 -0.5 0.5 \\ HO(b1)HO(a2) 2.18 2 1.0 0.0 0.0 \\ HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0 \\ HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 \\ HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 \\ \hline TABLE 7 Intramolecular distances (Å) \\ (C3b)Cu 2.99 C(2b)Cu \\ O(2b)Cu 2.95 C(3a)Cu \\ C(1a)Cu 2.95 C(3a)Cu \\ HO(b1)Cu 2.86 C(2b)O(1b) \\ C(2b)O(1b) 2.93 M(1b)O(1b) \\ O(1a)O(1b) 2.51 O(32)O(1b) \\ C(4b)(C3b) 2.44 (C5b)(C3b) \\ C(2b)C(2b) 2.43 H(16)C(2b) \\ H(1b)C(2b) 2.43 H(16)C(2b) \\ H(1b)C(2b) 2.43 H(16)C(4b) \\ C(2b)C(4b) 2.48 H(16)C(4b) \\ C(4b)C(4b) \\ C(4b)C(4b) 2.48 H(16)C(4b) \\ C(4b)C(4b) \\ C(4b)C(4b) 2.48 H(16)C(4b) \\ C(4b)C(4b) \\ C(4b)C(4b) \\ C(4b)C(4b) 2.48 H(16)C(4b$		1111., 10:34	HO(b2)O(31)	2.95	8	1.0	0.0	0.0
$HO(a1)HO(b2) 2.18 5 0.5 -0.5 0.5$ $HO(b1)HO(a2) 2.18 2 1.0 0.0 0.0$ $HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0$ $HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0$ $HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0$ $HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0$ $\frac{TABLE 7 Intramolecular distances (Å)}{(C3b)Cu}$ $(C3b)Cu 2.99 C(2b)Cu$ $O(2b)Cu 2.95 C(3a)Cu$ $C(1a)Cu 2.95 C(3a)Cu$ $HO(b1)Cu 2.86 C(2b)O(1b)$ $C(2b)O(1b) 2.93 H(1b)O(1b)$ $O(1a)O(1b) 2.51 O(32)O(1b)$ $C(2b)(C3b) 2.44 (C5b)C(3b)$ $C(2b)C(2b) 2.43 E(16)C(2b)$ $H(1b)C(2b) 2.43 C(6b)C(2b)$ $H(1b)C(2b) 2.43 E(16)C(2b)$		0.0010	HO(b1)C(6)	2.89	2	1.0	0.0	0.0
$HO(b1)HO(a2) 2.18 2 1.0 0.0 0.0 \\ HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0 \\ HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 \\ HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0 \\ \hline TABLE 7 Intramolecular distances (\frac{1}{2}) (C3b)Cu 2.99 C(2b)Cu 0(2b)Cu 0(2b)Cu 2.95 C(3a)Cu 0(2b)Cu 2.95 C(3a)Cu 0(2b)Cu 2.93 0(2a)Cu HO(b1)Cu 2.86 C(2b)O(1b) C(2b)O(1b) 2.93 H(1b)O(1b) C(2b)O(1b) 2.51 0(32)O(1b) C(2b)O(1b) 2.51 0(32)O(1b) C(2b)(C3b) 2.44 (C5b)(C3b) 2.45 H(13)C(2b) (C5b)C(2b) 2.45 H(15)C(2b) H(1b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.45 H(16)C(2b) H(1b)C(2b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b) 2.48 H(16)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b)C(4b) C(2b) C(2b) 2.48 H(16)C(4b) C(2b) C(2b)C(4b) C(2b) C$		1.0231	HO(a1)HO(b2)	2.18	5	0.5	-0.5	0.5
$HO(a1)HO(a2) 2.43 2 1.0 0.0 0.0$ $HO(a1)HO(b1) 2.11 2 1.0 0.0 0.0$ $HO(a1)HO(b2) 1.63 2 1.0 0.0 0.0$ $\frac{TABLE 7 Intramolecular distances (\frac{1}{2})}{(C3b)Cu}$ $(C3b)Cu 2.99 C(2b)Cu$ $O(2b)Cu 2.95 C(3a)Cu$ $O(2b)Cu 2.93 O(2a)Cu$ $HO(b1)Cu 2.86 C(2b)O(1b)$ $C(2b)O(1b) 2.93 W(1b)O(1b)$ $O(1a)O(1b) 2.51 O(32)O(1b)$ $C(2b)C(2b) 2.44 (C5b)(C3b)$ $C(2b)C(2b) 2.45 H(16)C(2b)$ $H(1b)C(2b) 2.45 H(16)C(2b)$ $H(1b)C(2b) 2.48 H(16)C(4b)$		(40)4	HO(b1)HO(a2)	2.18	2	1.0	0.0	0.0
HO(a1)BO(b1) 2.11 2 1.0 0.0 0.0 $BO(a1)BO(b2)$ 1.63 2 1.0 0.0 0.0 $TABLE$ 7 Intramolecular distances (Å) $(C3b)$ Cu 2.99 $C(2b)$ Cu $0(2b)$ Cu 2.99 $C(2b)$ Cu $0(2b)$ Cu 2.95 $C(3a)$ Cu $C(1a)$ Cu 2.93 $0(2a)$ Cu $HO(b1)Cu$ 2.86 $C(2b)$ $0(1b)$ $C(2b)$ $0(1b)$ 2.93 $H(1b)$ $0(1b)$ $O(1a)$ $0(1b)$ 2.51 $O(32)$ $0(1b)$ $O(1a)$ $0(1b)$ 2.58 $H(13)$ $C(2b)$ $(C2b)$ $C(2b)$ 2.43 $C(6b)$ $C(4b)$ $H(1b)$ $C(2b)$ 2.48 $H(16)$ $C(4b)$		1 11/1/10	HO(a1)HO(a2)	2.43	2	1.0	0.0	0.0
BO(a1)BO(b2) 1.63 2 1.0 0.0 0.0 $TABLE 7 Intremolecular distances (Å)$ $(C3b)Cu 2.99 C(2b)Cu$ $O(2b)Cu 2.95 C(3a)Cu$ $C(1a)Cu 2.93 O(2a)Cu$ $BO(b1)Cu 2.86 C(2b)O(1b)$ $C(2b)O(1b) 2.93 M(1b)O(1b)$ $O(1a)O(1b) 2.51 O(32)O(1b)$ $C(2b)O(1b) 2.51 O(32)O(1b)$ $C(4b)(C3b) 2.44 (C5b)(C3b)$ $C(2b)C(2b) 2.45 B(16)C(2b)$ $M(1b)C(2b) 2.43 C(6b)C(4b)$ $C(2b)C(4b) 2.48 B(16)C(4b)$		1.115.90	HO(a1)HO(b1)	2.11	2	1.0	0.0	0.0
TABLE 7 Intramolecular distances ($\frac{1}{4}$) (C3b)Cu 2.99 C(2b)Cu 0(2b)Cu 2.95 C(3a)Cu 0(2b)Cu 2.93 0(2a)Cu C(1a)Cu 2.86 C(2b)0(1b) C(2b)0(1b) 2.93 M(1b)0(1b) C(2b)0(1b) 2.93 M(1b)0(1b) C(2b)0(1b) 2.93 M(2a)0(1b) C(2b)0(1b) 2.93 M(1b)0(1b) C(2b)0(1b) 2.93 M(1b)0(1b) C(2b)0(1b) 2.93 M(1b)0(1b) C(2b)0(2b) 2.44 (C5b)(C3b) C(2b)C(2b) 2.45 H(16)C(2b) M(1b)C(2b) 2.48 H(16)C(4b)		11010-3400	HO(a1)HO(b2)	1.63	2	1.0	0.0	0.0
TABLE 7Intramolecular distances (Å)(C3b)Cu 2.99 $C(2b)$ Cu $0(2b)$ Cu 2.95 $C(3a)$ Cu $0(2b)$ Cu 2.95 $C(3a)$ Cu $C(1a)$ Cu 2.93 $0(2a)$ Cu $HO(b1)$ Cu 2.86 $C(2b)$ $0(1b)$ $C(2b)$ $0(1b)$ 2.93 $H(1b)$ $0(1b)$ $O(1a)$ $O(1b)$ 2.51 $O(32)$ $O(1b)$ $O(1a)$ $O(1b)$ 2.51 $O(32)$ $O(1b)$ $C(2b)$ $C(2b)$ 2.44 $(C5b)$ $C(2b)$ $C(2b)$ $C(2b)$ 2.45 $H(16)$ $C(2b)$ $H(1b)$ $C(2b)$ 2.43 $C(6b)$ $C(4b)$ $H(1b)$ $C(2b)$ 2.48 $H(16)$ $C(4b)$		0.000		1.11				
(C3b)Cu 2.99 C(2b)Cu 0(2b)Cu 2.95 C(3a)Cu C(1a)Cu 2.93 O(2a)Cu HO(b1)Cu 2.86 C(2b)O(1b) C(2b)O(1b) 2.93 M(1b)O(1b) C(2b)O(1b) 2.93 M(1b)O(1b) O(1a)O(1b) 2.51 O(32)O(1b) C(2b)(C3b) 2.44 (C5b)(C3b) C(2b)(C3b) 2.58 H(13)C(2b) C(2b)C(2b) 2.43 C(6b)C(4b) M(1b)C(2b) 2.43 H(16)C(4b) M(1b)C(4b) 2.48 H(16)C(4b)		54207	TABLE 7 Intranc	lecula	<u>r di</u>	stance	<u>(Å)</u>	
$0(2b) \dots Cu$ 2.95 $C(3a) \dots Cu$ $C(1a) \dots Cu$ 2.93 $0(2a) \dots Cu$ $C(1a) \dots Cu$ 2.93 $0(2a) \dots Cu$ $HO(b1)\dots Cu$ 2.86 $C(2b) \dots 0(1b)$ $C(2b) \dots 0(1b)$ 2.93 $H(1b) \dots 0(1b)$ $C(2b) \dots 0(1b)$ 2.93 $H(1b) \dots 0(1b)$ $C(2b) \dots 0(1b)$ 2.51 $O(32) \dots 0(1b)$ $C(4b) \dots (C3b)$ 2.44 $(C5b) \dots (C3b)$ $C(2b) \dots (C3b)$ 2.44 $(C5b) \dots (C3b)$ $C(2b) \dots (C3b)$ 2.45 $H(16) \dots C(2b)$ $H(1b) \dots C(2b)$ 2.43 $C(6b) \dots C(4b)$ $H(1b) \dots C(2b)$ 2.48 $H(16) \dots C(4b)$		-105 C/m30W	(C3b)Cu	2.99		С(2Ъ)	Cu	
C(1a)Cu 2.93 O(2a)Cu HO(b1)Cu 2.86 C(2b)O(1b) C(2b)O(1b) 2.93 W(1b)O(1b) C(2b)O(1b) 2.93 W(1b)O(1b) C(2b)O(1b) 2.93 W(1b)O(1b) O(1a)O(1b) 2.51 O(32)O(1b) C(4b)(C3b) 2.44 (C5b)(C3b) C(2b)C(2b) 2.45 H(13)C(2b) C(2b)C(2b) 2.43 C(6b)C(4b) W(1b)C(2b) 2.43 C(6b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b)		LINES CARDING	0(2b)Cu	2.95		C(3a)	Cu	
HO(b1)Cu 2.86 $C(2b)O(1b)$ $C(2b)O(1b)$ 2.93 $H(1b)O(1b)$ $O(1a)O(1b)$ 2.93 $H(1b)O(1b)$ $O(1a)O(1b)$ 2.51 $O(32)O(1b)$ $C(4b)(C3b)$ 2.44 $(C5b)(C3b)$ $C(2b)(C3b)$ 2.44 $(C5b)(C3b)$ $C(2b)(C3b)$ 2.58 $H(13)C(2b)$ $H(1b)C(2b)$ 2.45 $H(16)C(2b)$ $H(1b)C(2b)$ 2.43 $C(6b)C(4b)$ $C(2b)C(4b)$ 2.48 $H(16)C(4b)$		-0110	C(1a)Cu	2.93		0(2a)	Cu	~
$C(2b) \dots O(1b)$ $C(2b) \dots O(1b)$ $C(2b) \dots O(1b)$ $O(1a) \dots O(1b)$ 2.93 $W(1b) \dots O(1b)$ $O(1a) \dots O(1b)$ 2.51 $O(32) \dots O(1b)$ $C(4b) \dots (C3b)$ 2.44 $(C5b) \dots (C3b)$ $C(2b) \dots (C3b)$ 2.44 $(C5b) \dots (C3b)$ $C(2b) \dots (C3b)$ 2.58 $H(13) \dots C(2b)$ $(C5b) \dots C(2b)$ 2.45 $H(16) \dots C(2b)$ $W(1b) \dots C(2b)$ 2.43 $C(6b) \dots C(4b)$ $W(1b) \dots C(2b)$ 2.48 $H(16) \dots C(4b)$		In Drive Testin	$BO(b1) \dots Cn$	2.86		C(2b)	0(1	ь)
0(1a)0(1b) 2.51 0(32)0(1b) 0(1a)0(1b) 2.51 0(32)0(1b) 0(4b)(C3b) 2.44 (C5b)(C3b) 0(2b)(C3b) 2.58 H(13)C(2b) 0(1a)0(1b) 2.51 0(32)0(1b) 0(1a)0(1b) 2.51 0(32)0(1b) 0(2b)(C3b) 2.44 (C5b)(C3b) 0(1a)0(1b) 2.58 H(13)C(2b) 0(1a)C(2b) 2.45 H(16)C(2b) 0(1a)C(2b) 2.43 C(6b)C(4b) 0(1a)C(4b) 2.48 H(16)C(4b)		U. 15 (a435	C(2b) = O(1b)	2.93		W(1b)	0(1	ь)
C(4b)(C3b) 2.44 (C5b)(C3b) C(2b)(C3b) 2.58 H(13)C(2b) (C5b)C(2b) 2.45 H(16)C(2b) W(1b)C(2b) 2.43 C(6b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b)		INTERNAL LAKIN	$O(1e) \dots O(1b)$	2.51		0(32)		Р)
C(2b)(C3b) 2.58 H(13)C(2b) C(2b)C(2b) 2.45 H(16)C(2b) M(1b)C(2b) 2.43 C(6b)C(4b) C(2b)C(4b) 2.48 H(16)C(4b)		1.0.10000	C(Ab) = (C3b)	2.44		(C5b)	(C3	ь)
(C1D) (C3D) 2.50 H(15) (C2D) (C5b) C(2b) 2.45 H(16) C(2b) H(1b) C(2b) 2.43 C(6b) C(4b) C(2b) C(4b) 2.48 H(16) C(4b)		LAT N	C(2b) (C3b)	2 58		H(13)	C(2	ь)
(C3B) 1C(2B) 2.43 R(10) 1C(2D) N(1b) C(2b) 2.43 C(6b) C(4b) C(2b) C(4b) 2.48 H(16) C(4b)		(14)7. (14)8		2.JO		H(14)		(b)
m(1D)C(2D) 2.43 C(0D)C(4D) C(2b)C(4b) 2.48 H(16)C(4b)				4.47		a(10)		b)
G(ZD)G(4D) Z.45 H(10)G(4D)		(a))) (a)))		2.43		U(00)		b)
	3.5	TRAJULT LARD	G(2D)G(4D)	4.40		A(10)		2)

11.1

10.6

5

2.89

2.98

2.85

2.32

2.81

2.98

2.85

2.19

2.26

2.53

2.62

2

÷.

O(2b)H(16)	2.27	HO(b2)H(16)	2.41
HO(b2)N(1b)	2.25	HO(b1)W(1b)	1.88
HO(al)N(1b)	2.55	O(2a)O(2b)	2.59
C(2a)O(1a)	2.37	C(1a)O(1a)	2.93
N(1a)O(1a)	2.76	C(1a)C(3a)	2.52
C(4a)C(3a)	2.41	C(5a)C(3a)	2.82
N(1a)C(3a)	2.96	H(26)C(2a)	2.17
H(23)C(2a)	2.14	C(5a)C(2a)	2.43
N(1a)C(2a)	2.38	C(4a)C(1a)	2.37
H(23)C(1e)	2.52	0(2a)C(1a)	2.27
HO(a2)C(1a)	2.67	C(4a)H(26)	2.54
W(1a)H(26)	2.03	O(2a)H(26)	2.42
C(6)H(26)	2.94	C(7)H(26)	2.60
HO(a2)H(26)	2.46	C(6a)C(4a)	2.59
C(5e)H(23)	2.11	C(6a)H(23)	2.75
HO(a2)N(la)	2.20	HO(b1)N(1a)	2.53
HO(a1)N(1a)	2.22	C(6)O(2a)	2.35
C(7)O(2a)	2.62	0(32)0(31)	2.36
0(33)0(31)	2.35	0(34)0(31)	2.32
0(33)0(32)	2.36	0(34)0(32)	2.30
0(34)0(33)	2.29	C(4)C(1)	2.50
C(6)C(1)	2.47	C(7)C(1)	2.34
C(9)C(1)	2.41	HO(a2)C(2)	2.37
C(4)C(3)	2.40	C(6)C(3)	2.53
c(9)c(3)	2.65	C(10)C(4)	2.30
BO(a2)C(4)	2.57	C(6)C(5)	2.56
C(9)C(5)	2.27	C(8)C(6)	2.27

"一" 伊莱 李

- ((e)ne

+210

11500

C.7.1998

5 M 10

1.0.508

1.1+3/08

- X 41730

- Ta./ 10

10708

Constraint Jacks

ULID Street Ball MA

- ((-5).... (a)/25

14703 (4030

(inclusive (alla))

(VI.)... (H1/H

(1410... (25%)

化石油

10/K

A LILAT

12,800

111100

UNITED

0.6.070

(IA)(B)

0(2b) ...8(15) HO(b2) ...8(15) HO(a1) ...8(16) C(2a) ...0(16) C(4a) ...0(16) H(1a) ...0(17) H(1a) ...0(17) H(1a) ...0(17) HO(a2) ...0(16) HO(a2) ...18(25) HO(a2) ...H(25) HO(a2) ...H(25)

HD(a2)... N(18)

BO(al)...S(ls)OH

(as)o... (7)0

(12)0... (22)0

(32) ... (22)

(22) ... (AE)0

(1)0... (0)0

(1)3... (0)3

c(4) ...c(3)

((9) ... (9)0

HO(a2)...C(4)

2.47

2.41

2.40

2.65

2.57

HO(b1)...HO(b2) 1.97 HO(a1)...HO(b2) 2.32 HO(b1)...HO(a2) 2.42 HO(a1)...HO(a2) 1.96

1 Decision of a

or the second second support of the second s

H₁₂ oyendiner

HO(b1)...HO(b2) 1.97 HO(a1)...HO(b2) 2.32 HO(b1)...HO(a2) 2.42 HO(a1)...HO(a2) 1.96

H₁₂cyendimer

The X-ray crystallographic data for H12 cyendimer (see section 7.4) TABLE 1 Fractional atomic coordinates and thermal parameters $(Å^2)$ <u>Uiso or Ueq</u> I 1 Atom x 0.050(6) 0.4464(6) 0.1386(9)-0.2225(8) N(2a) 0.056(7) N(1a) 0.5178(6) 0.1768(9) 0.0208(8) 0.048(6) 0.5746(7) 0.3025(9) 0.2540(7) N(1b) N(2b) 0.4680(7) 0.0898(9) 0.053(7) 0.3516(8) N(2b') -0.0898(9)0.5320(7) -0.3516(8) 0.000 C(1a) 0.1492(10) -0.3334(9) 0.061(3)0.4854(6) 0.048(3) C(2a) 0.3797(7) 0.2333(10) -0.1971(9) C(3a) 0.3295(6) 0.3087(10) 0.060(3) -0.2861(9) C(4a) 0.2652(7) 0.3989(11)0.067(3) -0.2557(10) C(5a) -0.1434(10)0.073(4) 0.2503(7) 0.4167(12) C(6a) 0.2986(7) -0.0530(11) 0.069(3) 0.3417(10) C(7a) 0.3644(6) 0.2493(10) 0.049(3) -0.0798(9) C(8a) 0.0194(9) 0.063(3) 0.4161(7) 0.1695(11) 0.057(3) 0.0415(9) C(9a) 0.5562(6) 0.3168(10)0.053(3) C(9b) 0.3838(10) 0.1528(9) 0.5365(6) 0.3536(10) 0.058(3) C(8b) 0.3637(9) 0.5459(6) C(7b) 0.3305(11) 0.056(3) 0.3681(9)0.4457(7) 0.071(4) C(6b) 0.4378(12) 0.3775(9) 0.3852(7) 0.083(4) C(5b) 0.3849(10)0.2934(8) 0.4144(13) 0.077(4) 0.2897(12) 0.3772(9) C(4b) 0.2587(8) 0.069(3) C(3b) 0.1755(12) 0.3134(7) 0.3647(9) 0.2002(11) 0.3593(9) 0.052(3) C(2b) 0.4074(7)

dimer

A State of All Annual Providence

	255 255
	LAURAT
	mak
	1.00
	1.176
	Takin.
	U AN IN
	46.00
	1.4.835
	Talla
	1.4870
	11035
	(88)Q
Con et	(4735
I STATE A	64630
(U) HELL	4430
0.04416.0	0(2)0

	0	_		
Atom	Ŧ	X	<u>*</u>	
HN(2a)	0.4919(46)	0.1289(75)	-0.1649(62)	0.014(27)
HN(1a)	0.5418(50)	0.1375(73)	0.0829(65)	0.018(28)
HN(1b)	0.6367(68)	0.3135(**)	0.2725(92)	0.096(49)
HN(2b)	0.5151(51)	0.1175(82)	0.3184(70)	0.035(32)
H(1al)	0.4381	0.1305	-0.3961	
H(1a2)	0.5076	0.2390	-0.3412	
H(3a)	0.3396	0.2976	-0.3658	
H(4a)	0.2301	0.4504	-0.3155	
H(5a)	0.2061	0.4816	-0.1254	
H(6a)	0.2868	0.3533	0.0260	
H(8a1)	0.3976	0.0771	0.0116	
H(8a2)	0.4008	0.2044	0.0918	
H(9al)	0.6213	0.3117	0.0435	
H(9a2)	0.5313	0.3720	-0.0227	
H(9b1)	0.4716	0.3910	0.1523	
H(9b2)	0.5632	0.4719	0.1583	
H(8b1)	0.5800	0.3078	0.4280	
H(8b2)	0.5582	0.4483	0.3697	
H(6b)	0.4077	0.5284	0.3787	
H(5b)	0.2541	0.4889	0.3958	
H(4b)	0.1944	0.2779	0.3802	
H(3b)	0.2884	0.0862	0.3602	
H(161)	0.6046	0.0590	-0.2694	
H(152)	0.5934	0.0732	-0.4053	

1 2 Martin Martin

TABLE 3	Anisotro	pic therm	al para	meters (Å ²)	2	
Atom	<u>U11</u>	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>U13</u>	<u>U12</u>
N(2a)	0.059(7)	0.052(7) 0.03	9(6)-0.006	(6)-0.007(6)	-0.007(5)
N(1a)	0.087(8)	0.043(6)	0.038(6	5)-0.004(6)-0.006(6)	0.020(6)
N(1b)	0.054(7)	0.040(6)	0.050	(6) -0.002	(5)-0.001(5)	0.004(5)
N(2b) (.064(7)0	.049(6)0	.046(6)	-0.002(5)	0.009(5)	-0.019(6)
TABLE 4	Bond les	ngths (\mathring{A})				
C(1a) -	N(2a)	1.461(12)	C(1a) -C(1b)	1,496(11)	
N(2a) -H	IN(2a)	.88(6)	N(2a) -C(2a)	1.404(11)	
C(2a) -	C(3a)	1.393(12)	C(2a) -C(7a)	1.399(13)	
C(3a) -C	(4a) 1.	.369(12)	C(44) -C(5a)	1.344(13)	
C(5a) -	C(6a)	1.390(13)	C(6a) -C(7a)	1.386(12)	
C(7a) -C	(8a) 1.	.505(11)	C(84	a) -N(1a)	1.485(11)	
N(1a) -	HN(1a)	.85(7)	N(1a) -C(9a)	1,495(12)	
C(9a) -C	(9Ъ) 1.	.496(12)	C(91) -N(1b)	1.460(11)	
N(15) -	HN(1b)	.91(9)	N(1b) -C(8b)	1.463(12)	
с(8ъ) –с	(7Ъ) 1	.488(12)	C(71) -C(6b)	1.389(13)	
С(7Ъ) -	С(2Ъ)	1.398(13)	c(6b) -C(5b)	1.373(12)	
С(5Ъ) -((4b) 1	.327(14)	C(41) -C(3b)	1.397(13)	
С(ЗЪ) -	C(2b)	1.404(12)	c(2b) -W(2b)	1,411(12)	
M(2b) -	HN(2b)	.87(7)	C(]	b) -N(2b')	1.456(12)	

TABLE 5 Bond angles (*)

'C(1b) -C(1a) -H(2a)	112.0(9)	HN(2a)-W(2a)-C(1a)	109(5)
C(2a) -N(2a) -C(1a)	119.3(9)	C(2a) -N(2a) -HN(2a)	113(5)
C(3a) -C(2a) -N(2a)	121(1)	C(7a) - C(2a) - H(2a)	118.2(9)

	Atom	
	+(1)8	
	140102	
	1494	
	1011	
	141.10	
	14100	
	(AZ.)0	
	14410	
	(42)10	
	(also	
	15400	
	3(1+1))	
	Sister.	
	(a)/it	
	112930	
	11000	
	(inlin	
	(tell)	
	OB/R	
0.1710	(3b)	
WITTER.	(44)0	
ALC: SHE	(44)0	
in the se	HCHIE)	
0.5734	(settin -	

C(7a) - C(6a) - C(5a)	119(1)	C(6a) -C(7a) -C(2a)	119(1)
C(8a) -C(7a) -C(2a)	122.8(9)	C(8a) - C(7a) - C(6a)	118(1)
N(1a) -C(8a) -C(7a)	112.8(9)	HN(1a)-N(1a) -C(8a)	107(5)
C(9a) -N(1a) -C(8a)	113.6(8)	C(9a) -N(1a) -HN(1a)	100(5)
C(9b) -C(9a) -N(1a)	115.7(9)	W(1b) -C(9b) -C(9a)	109.9(8)
HN(1b)-N(1b) -C(9b)	113(7)	C(8b) -W(1b) -C(9b)	111.8(8)
C(8b) -N(1b) -HN(1b)	98(7)	C(7b) -C(8b) -N(1b)	111.5(9)
C(6b) -C(7b) -C(8b)	122(1)	C(2b) -C(7b) -C(8b)	122(1)
C(2b) -C(7b) -C(6b)	117(1)	C(5b) -C(6b) -C(7b)	121(1)
C(4b) -C(5b) -C(6b)	121(1)	C(3b) -C(4b) -C(5b)	122(1)
C(2b) -C(3b) -C(4b)	116(1)	C(3b) -C(2b) -C(7b)	123(1)
N(2b) -C(2b) -C(7b)	117.6(9)	N(2b) -C(2b) -C(3b)	119(1)
HN(2b)-N(2b) -C(2b)	109(6)	N(2b')-C(1b) -C(1a)	113.3(8)

TABLE 6 Intermolecular distances (Å)

「記録の中のの」

N(2b)C(1a)	2.47	-1	1.0	0.0	0.0
HN(2b)C(1e)	2.63	-1	1.0	0.0	0.0
C(2b)H(1a1)	2.87	1	0.0	0.0	1.0
N(2b)H(1al)	2.58	-1	1.0	0.0	0.0
HN(2b)H(1a1)	2.66	-1	1.0	0.0	0.0
HN(2b)N(2a)	2.84	-1	1.0	0.0	0.0
H(9b2)C(3a)	2.95	-1	1.0	1.0	0.0
H(9b2)C(4a)	2.90	-1	1.0	1.0	0.0
HN(1b)C(4a)	2.85	2	0.0	0.0	0.0
H(9b2)C(5a)	2.96	-1	1.0	1.0	0.0
HM(1b)C(5a)	2.90	2	0.0	0.0	0.0
W(1a)H(8a1)	2.83	-1	1.0	0.0	0.0
		-			

		104	LITAT	
		174	=01A	
		11/1-0	inser.	
			1+7.98	
			lat)e.	
			4414	
			CHAR	
			1111	
			048	
			(62.22)	
		11/19-	(aE)0	
		14/01/2	(all)S	
		14830-	51747	
			hithe -	
		1/IE/Q	603	
		11100	G CAL	
		0039-3	(49)5	
		1112-1	1172	
		14110-	00591	
		$(\beta\gamma)\phi \rightarrow ($	air ia	
		12700-0	0.536	+
	a la faire a		I KAT	
600	(+2.1)1-	(at)b- (10015	
-911	3=430-	(atim- (efat	

12

(11) - (11) - (11)

		au/0- (\$5)0	
		c(8a) -C(7a)	100
		Wile) - Cide	100
		c(sa) -RLIO	100
		c(95) -c(5a -5	
		Service of the service of the	1
		6(8b) =#115) - 0	
		18-10- (68)0	
		c(26) - C 26	
		- 07 15- 1 4435	1
		(sc)	
		1 10270	100
		W(2b) -C(2b) -	100
		BN(2E)-N-(2:	100
		TABLE & Interno	
		B(25) () 14	
		BR(2b)(ab)	-
		G(2b)R()=1)	14
		W(2b)H()	
		(1al)H(dS)MB	
	2.84	HW(25)N(2a)	
	39.5	H(952)C(34)	
	2.90	B(9b2)C(4a)	
	23.65	HWE ID C(4a)	
1-	2.96	H(952)C(5a)	
2	2.90	HR(1b)C(5a)	
		(1.0)	
1.7	19:2	TIBDIE TRIM	

N(2b')N(1b)	2.92	-1	1.0	0.0	0.0
N(2b')C(8b)	2.83	-1	1.0	0.0	0.0
N(2b')H(8b1)	2.77	-1	1.0	0.0	0.0
N(2b')C(7b)	2.40	-1	1.0	0.0	0.0
С(1Ъ)С(3Ъ)	2.91	-1	1.0	0.0	0.0
H(1b1)C(3b)	2.88	-1	1.0	0.0	0.0
H(1Ъ2)C(3Ъ)	2.81	-1	1.0	0.0	0.0
N(2Ъ')C(3Ъ)	2.43	-1	1.0	0.0	0.0
С(1Ъ)Н(ЗЪ)	2.59	-1	1.0	0.0	0.0
N(2Ъ')H(3Ъ)	2.64	-1	1.0	0.0	0.0
С(1Ъ)С(2Ъ)	2.53	-1	1.0	0.0	0.0
H(1b1)C(2b)	2.75	-1	1.0	0.0	0.0
H(1b2)C(2b)	2.74	-1	1.0	0.0	0.0
N(2b')C(2b)	1.41	-1	1.0	0.0	0.0
C(1b)N(2b)	1.46	-1	1.0	0.0	0.0
H(1b1)N(2b)	1.98	-1	1.0	0.0	0.0
H(1b2)N(2b)	1.97	-1	1.0	0.0	0.0
C(1b)HN(2b)	2.04	-1	1.0	0.0	0.0
H(1b1)HN(2b)	2.48	-1	1.0	0.0	0.0
N(25')HN(25)	.87	-1	1.0	0.0	0.0
TABLE 7 Intram	olecula	<u>ir di</u>	stance	• <u>(1)</u>	

二 等 常 考 不

HN(2a)C(1a)	1.93	C(2a)C(1a)	2.47
C(3a)C(1a)	2.87	H(3a)C(1a)	2.57
H(1b1)C(1e)	2.01	H(1b2)C(1a)	2.01
W(2b')C(1a)	2.47	H(2a)H(1a1)	1.98
C(2a)H(1a1)	2.73	C(3a)H(1a1)	2.77

C(2a)H(1a2)	2.65	C(3a)H(1a2)	2.84
C(1b)H(1a2)	2.02	C(3a)N(2a)	2.44
H(3a)H(2a)	2.63	C(7a)H(2a)	2.41
C(8a)N(2a)	2.88	H(8a1)N(2a)	2.93
N(1a) N(2a)	2.88	C(1b)W(2a)	2.45
H(1b1)N(2a)	2.56	C(2a)HN(2a)	1.93
C(7a)HN(2a)	2.51	C(8a) HN(2a)	2.54
H(8a1)HN(2a)	2.64	N(1a)HN(2a)	2.17
C(1b)HN(2a)	2.49	H(1b1)HN(2a)	2.26
H(3a)C(2a)	2.05	C(4a)C(2a)	2.37
C(5a)C(2a)	2.74	C(6a)C(2a)	2.40
C(8a)C(2a)	2.55	H(8a1)C(2a)	2.83
H(4a)C(3a)	2.01	C(5a)C(3a)	2.37
C(6a)C(3a)	2.78	C(7a)C(3a)	2.43
C(4a)H(3a)	2.03	H(5a)C(4a)	1.99
C(6a)C(4a)	2.38	C(7a)C(4a)	2.76
C(5a)H(4a)	1.99	H(6a)C(5a)	2.04
C(7a)C(5a)	2.39	C(6a)H(5a)	2.03
C(8a)C(6a)	2.48	H(8a2)C(6a)	2.49
C(7a)H(6a)	2.04	C(8a)H(6a)	2.62
H(8a1)C(7a)	2.02	H(8a2)C(7a)	2.02
H(1a)C(7a)	2.49	H(9a2)C(7a)	2.72
HN(1a)C(8a)	1.91	C(9a)C(8a)	2.49
H(9a2)C(8a)	2.69	H(9b1)C(8a)	2.72
W(1a)H(8a1)	2.00	HN(1a)H(8a1)	2.24
W(1a)H(8a2)	2.00	HN(1a)H(8a2)	2.18
C(9a)H(8a2)	2.65	C(9b) H(8a2)	2.68

1.10

	in music data
	-0.00 -0.00 MIL
	1 (*es in .
	(1.45)db
	- (11)2
	10
	14 11. 115 (C10)
	11.00/06
	- 10 - 1.45 Mg
	(a) (a)
	The CLADW
	11.11111
	(a) ÷ ((7/45)m
	IV IN
	P(1521) - 10
	1.000mil
	TALL 7 DULTS
	Contraction of Manager
	USED STATES AND ADDRESS OF ADDRESS ADD
	tallon, (nE)D
(0.1)	1#120((BI)#
10.2	26119447(1003)6
6Y.78	(Inlini) (atja

.

÷.

N(1b)N(1a)	2.97	C(9a)HN(1a)	1.85	
H(9a1)HN(1a)	2.15	H(9a2)HN(1a)	2.60	
C(9b)HN(1a)	2.56	N(1b)HN(1a)	2.55	
H(9b1)C(9a)	2.02	H(9b2)C(9a)	2.02	
N(1b)C(9a)	2.42	HN(1b)C(9a)	2.76	
C(9b)H(9al)	2.00	W(1b)H(9al)	2.59	
HN(1b)H(9a1)	2.60	C(9b)H(9a2)	2.01	
HN(1b)C(9b)	2.00	C(8b)C(9b)	2.42	
H(8b2)C(9b)	2.55	С(7Ъ)С(9Ъ)	2.99	
N(1b)H(9b1)	1.99	C(8b)H(9b1)	2.55	
С(7Ъ)H(9Ъ1)	2.62	N(1b)H(9b2)	1.99	
HN(1b)H(9b2)	2.22	C(8b)H(9b2)	2.67	
H(851)N(15)	1.99	H(8b2)N(1b)	1.99	
С(7Ъ)W(1Ъ)	2.44	N(2b)N(1b)	2.92	•
HN(2b)N(1b)	2.19	C(8b)HN(1b)	1.83	
H(851)HN(15)	2.06	H(8b2)HN(1b)	2.15	
C(6b)C(8b)	2.51	H(6b)C(8b)	2.67	
C(2b)C(8b)	2.52	N(2b)C(8b)	2.83	
HN(2b)C(8b)	2.41	C(7b)H(8b1)	2.01	
C(2b)H(8b1)	2.76	M(2b)H(8b1)	2.77	
HN(2b)H(8b1)	2.38	C(7b)H(8b2)	2.01	
C(6b)H(8b2)	2.54	H(6b)C(7b)	2.03	
С(5Ъ)С(7Ъ)	2.40	C(4b)C(7b)	2.78	÷.,
С(3Ъ)С(7Ъ)	2.46	W(2b)C(7b)	2.40	
HN(2b)C(7b)	2.43	H(5b)C(6b)	2.02	
C(4b)C(6b)	2.35	C(3b)C(6b)	2.78	
C(2b)C(6b)	2.37	C(5b)H(6b)	2.02	

 \mathbf{h}

×

•

(at)0	
tittia	
(AR)W	
8 (s815	
1+1/0	
0.0008	
0 14730	
7 (in 8 30)	
1	
11 1415	
74418	
1.015	
1.4475	
1.0	
100	
Lac /a	
14110 .	
(4439	
C Lavil 200	
0.0000000 (01)0	
110.12.000.000	
- 0) ((See) R	
(140) T (6170	
Tables Call	
(Crithese Catho	

2 Barris Manager

	N(Ib) N(IA)
	al TMM (Ime)H
	NCID COLDR
	c(9b) (d(9b)
	Latiff (dl) MM
	38)D(41)NH
	H(852)95
	N(1b)8 95)
	c(7b) u 91
	HB(1b) N: 91
	H(Sbi)S(15
	C(2P)
	EN(2b)S(15)
	H(861)HN(16
	(da)0
	C(25)C(85)
	EB(2b)(35)
	G(25)H(851
	AN(25)H(861)
ec.s	€(65)H(352)
Sec.S.	C(5b) C(7b)
84.5	(dt)) (dt))
2.43	(d7)0(d5)88
2,35	(da)0 (da)0
2.37	(6b) (6b)

H(3b)C(4b)	2.06	C(2b)C(4b)	2.38
С(3Ъ)Н(4Ъ)	2.03	N(2b)C(3b)	2.43
С(2Ъ)Н(3Ъ)	2.07	N(2b)H(3b)	2.64
HN(2b)C(2b)	1.88	N(2b')H(1b1)	1.98
N(2b')H(1b2)	1.97	100	ht
		B B A)) or
			e
		1 in/	B
	-1	1.75)r o
	(e)	Sil.	, su a
	1		
			A
		aio .	arto.

[Cu(oyphx)]

2.5	(84)5	G(25)	2,06	(34)0	(dt)
	(00)5 .	MC 2b)	2.03	(dá)8	(36)
2.5	/ of 38	N(25)	2.07	(dE)8	(d\$)
6.1	(1d()#+++	N(25'	88.1	((MC 216-)

[Cu(cyphX)]

A Contraction of the Contraction

Π	he X-ra	y crystallogra	aphic data of [[Cu(cyphX)] (se	e section 7.5)	
I	ABLE 1	Fractional at	tomic coordinat	tes and thermal	peremeters (Å	<u>2)</u>
A	tom		Z		<u>Viso</u> or <u>Veq</u>	
C	u	0.47163(4)	-0.06659(4)	0.17723(9)	0.0417(4)	
N	(2a)	0.5726(3)	-0.0022(3)	0.2858(6)	0.043(3)	
N	(1a)	0.3855(3)	0.0221(3)	0.2047(6)	0.046(3)	
N	(26)	0.5537(3)	-0.1582(3)	0.1543(6)	0.043(3)	
N	(15)	0.3666(3)	-0.1286(3)	0.0733(6)	0.044(3)	
c	(1a)	0.6471(3)	-0.0513(4)	0.3097(9)	0.052(4)	
c	(2a)	0.5735(4)	0.0791(3)	0.3489(7)	0.046(3)	
c	(3a)	0.6518(4)	0.1212(4)	0.4259(9)	0.056(4)	
0	(4=)	0.6499(5)	0.2012(4)	0.4919(9)	0.068(4)	
	(5a)	0.5706(5)	0.2458(4)	0.4873(10)	0.068(4)	
	(6a)	0.4940(4)	0.2095(4)	0.4106(9)	0.061(4)	
	(7a)	0.4922(4)	0.1252(3)	0.3407(8)	0.050(3)	
	(8a)	0.4051(4)	0.0961(4)	0.2713(9)	0.051(3)	
	(9a)	0.2962(4)	-0.0013(4)	0.1398(8)	0.051(3)	
	(10a)	0.2194(5)	0.0484(4)	0.1466(12)	0.081(5)	
	(11a)	0.1392(4)	0.0190(5)	0.0727(14)	0.094(6)	
	с(11ь)	0.1297(4)	-0.0604(5)	-0.0022(12)	0.084(5)	
	C(10b)	0.2025(4)	-0.1109(4)	-0.0068(10)	0.064(4)	
	C(9b)	0.2860(3)	-0.0825(3)	0.0666(8)	0.047(3)	
	C(8b)	0.3660(4)	-0.2057(4)	0.0189(8)	0.048(3)	
	C(7b)	0.4423(4)	-0.2591(3)	0.0181(8)	0.046(3)	
	C(6b)	0.4209(4)	-0.3391(3)	-0.0591(9)	0.058(4)	
	C(5h)	0.4861(5)	-0.3965(4)	-0.0800(10)	0.068(4)	

7605... (dt): 00 Cd83d 14170 (437)07 - () ('(E))

山上をきずます。

9 /N1 = 8 7 6 ,N2 -B Z

01Ъ

:)]

11

C(3b)	0.5969(4)	-0.2985(4)	0.0514(10)	0.062(4)
C(2b)	0.5329(4)	-0.2370(3)	0.0789(8)	0.045(3)
C(1b)	0.6347(4)	-0.1419(3)	0.2517(9)	0.052(4)
0(1a)	0.7195(5)	-0.0349(4)	0.3867(12)	0.144(6)
O(1b)	0.6946(3)	-0.1909(3)	0.3031(8)	0.088(3)
TABLE 2	Fractional a	tonic coordin	ates for the hyd	lrogen atoms
Atom	×	X	<u>.</u>	
H(3a)	0.7151	0.0920	0.4504	
H(4a)	0.7183	0.2269	0.5559	
H(5a)	0.5816	0.3059	0.5244	
H(6a)	0.4198	0.2405	0.4053	
H(8a)	0.3480	0.1407	0.2662	
H(10a)	0.2260	0.1047	0.1817	
H(11a)	0.0793	0.0540	0.0950	
H(11b)	0.0651	-0.0813	-0.0905	
H(10b)	0.1929	-0.1783	-0.0654	
H(8b)	0.3038	-0.2351	-0.0219	
H(6b)	0.3354	-0.3559	-0.1286	
H(5b)	0.4781	-0.4570	-0.1639	
H(4b)	0.6209	-0.4207	-0.0698	
H(3b)	0.6592	-0.2856	0.0758	

•

		The Lett
	- <u>1994</u>	1.15.67
		<u>anth</u>
		10
		(423)
		1 = 1.78
		(ds)w
		(41)8
	32 - 9.0C	(at 10
	118	(az)0
	$= V_{1}/K$	(m6.10)
	119.34.8	(nA)2
		(s2)2
	$(-1)^{-1} = (-1)$	(64)
	(m ₁ .0)	(atto.
		Cel(30
	11.1116.0	(49)0
	2100310	(ant)o
	2466,0	64170
	40003187	000010
	(9)/606/0	261001
	(E)/Hatta	(1011)
	(+)UNE.0	(48)0
15 cft=	0.00250.0	184.90
$(l, \eta) -$	(4)40EA.0	(49)7

No Marine In

Ato		V11	<u>U22</u>	<u>U33</u>	<u>U23</u>	<u>U13</u>	<u>U12</u>
			1000		1.000		
Cu		0.378(3)	0.0399(3)	0.0474(4)	0.0039(4)	0.0027(3)	0.0005(3)
N(:	2 a)	0.038(2)	0.043(3)	0.048(3)	0.001(2)	0.004(2)	-0.002(2)
N ()	1a)	0.042(3)	0.045(3)	0.051(3)	0.008(2)	0.007(2)	0.003(2)
N ()	2Ъ)	0.040(2)	0.041(2)	0.048(3)	0.006(2)	0.004(2)	0.003(2)
N(1 b)	0.037(2)	0.046(3)	0.049(3)	0.011(2)	0.002(2)	0.003(2)
c(1a)	0.029(3)	0.071(4)	0.057(4)	-0.001(3)	-0.003(3)	-0.011(3)
c(2 a)	0.054(3)	0.049(4)	0.035(3)	0.004(3)	0.009(2)	-0.009(3)
c(3a)	0.056(4)	0.057(4)	0.055(4)	0.001(3)	0.007(3)	-0.011(3)
c(4a)	0.077(5)	0.065(4)	0.063(4)	-0.006(4)	0.012(4)	-0.024(4)
C(5a)	0.096(5)	0.045(4)	0.062(4)	-0.005(3)	0.013(4)	-0.018(4)
c((6a)	0.081(4)	0.044(3)	0.057(4)	0.001(3)	0.016(4)	0.002(3)
c((7a)	0.066(4)	0.036(3)	0.047(4)	0.003(3)	0.014(3)	-0.007(3)
c((8a)	0.058(4)	0.043(3)	0.053(4)	0.004(3)	0.009(3)	0.002(3)
C((9a)	0.045(3)	0.051(3)	0.057(4)	0.010(3)	0.004(3)	0.007(3)
c	(10a)	0.060(4)	0.049(4)	0.134(7)	0.005(4)	0.003(4)	0.017(3)
C	(11a)	0.039(4)	0.081(5)	0.161(8)	0.006(6)	-0.004(4)	0.021(4)
C	(11 b)	0.039(3)	0.076(5)	0.136(7)	0.009(5)	-0.013(4)	0.005(4)
C	(10 b)	0.048(3)	0.055(4)	0.088(5)	0.004(4)	-0.009(3)	0.000(3)
C	(9b)	0.039(3)	0.050(4)	0.052(4)	0.013(3)	0.004(3)	0.003(2)
C	(8b)	0.052(3)	0.044(3)	0.047(4)	0.004(3)	0.001(3)	-0.008(3)
C	(7b)	0.046(3)	0.043(3)	0.051(4)	0.002(3)	0.000(3)	0.005(3)
C	(66)	0.069(4)	0.040(3)	0.066(4)	0.001(3)	-0.002(3)	0.001(3)
С	(5b)	0.095(5)	0.043(3)	0.065(4)	-0.008(3)	-0.004(4)	0.013(4)
		0 074/8)	0.052(4)	0.089(5)	-0.016(4)	-0.007(4)	0.022(4)

1.001-0	11630
100.48	Giths
1048	CV110
	(a130
0.004.00	0(310)
	1.116/2
	==1A
	(st)e:
	CycA38
	Latin .
	Ca038
	66839
	(8.0528
14.01.0	GGEER
	(4412)
- e 1 - Q -	1.00138
100.01	641520
	GERTH
	(4638
10.10	54458
No.	0.003#

1 19- 20 10

с(1Ъ) 0.039(3) 0.045(3)	0.072(4) 0.0	01(3) -0.003(3)	0.001(3)
0(1a) 0.120(5) 0.116(5)	0.189(7) -0.0	30(5) -0.004(5)	0.007(4)
0(1b) 0.051(3) 0.061(3)	0.152(5) -0.0	004(3) -0.032(3)	0.011(2)
TABLE 4 Bond 1	engths (1)			
Cu -N(2a)	1.928(4)	Cu -N(1a)	1.952(4)	
Cu -M(2b)	1.940(4)	Cu -M(1b)	1.945(4)	
Cu -C(1a)	2.719(5)	Cu -C(1b)	2.737(5)	
N(2a) -C(1a)	1.368(7)	H(2a) - C(2a)	1.380(7)	
N(1a) -C(8a)	1.301(7)	H(1a) - C(9a)	1.423(7)	
N(2b) -C(2b)	1.397(7)	W(2b) -C(1b)	1.361(7)	
N(1b) -C(9b)	1.419(7)	M(1b) -C(8b)	1.297(7)	
C(1a) -C(1b)	1.516(8)	C(1a) -O(1a)	1.195(9)	
C(2a) -C(3a)	1.416(8)	C(2a) -C(7a)	1.428(8)	
C(3a) -C(4a)	1.368(10)	C(4a) -C(5a)	1.391(10)	
C(5a) -C(6a)	1.353(10)	C(6a) -C(7a)	1.441(8)	
C(7a) -C(8a)	1.428(8)	C(9a) -C(10a)	1.412(9)	
C(9a) -C(9b)	1.406(8)	C(10a)-C(11a)	1.349(10)	
C(11a)-C(11b)	1.382(11)	C(11b)-C(10b)	1.369(9)	
C(10b)-C(9b)	1.385(8)	C(8b) -C(7b)	1.435(8)	
C(7b) -C(6b)	1.419(8)	C(7b) -C(2b)	1.431(8)	
C(6b) -C(5b)	1.369(9)	C(5b) -C(4b)	1.404(10)	
C(4b) -C(3b)	1.372(9)	C(3b) -C(2b)	1.410(8)	
C(1b) -O(1b)	1.223(7)			
TABLE 5 Bond	angles (*)			

0.047(3) 0.041(3) 0.047(3) 0.004(3) 0.004(3) 0.006(3)

	and clease	Antes Pares
		STORY & PART
		100.93
	1.000.0	10
	4.085.0	Cold Ser.
	1.040.0	Get SK
	11.00.0	Col238-
	00.5	3615)
	9.020	Tetla
	11187-16	(e5)9
	610420-0	(al.)0
	1.611(10)(0)	fa#30
	12.0449.00	0(6)2
	coving a	(44)0
	141110.0	(17)0
	()) me(a	(10)0
	17.1040.0	Gel12
1.100	1.1.10.02,10	(40)
460 (4	113,950,00	(#1110)
305-W	(6)18(6.0	cettin.
	10104010-	(+0130
0161.00	TC)W620	L#F20
VARGE	1619569.0	(107
(1)60.0	0,016(2)	(1111)
(i)\$40.0	(4)00.0	\$ 10.70
111,40.0	0,015(5)	(42)0
		a last line .

C(2b)

N(1b) -Cu	-N(1a)	83.6(2)	N(1b) -Cu	-N(2b)	94.6(2)	
C(1a) -Cu	-N(2a)	28.2(2)	C(1a) -Cu	-N(1a)	122.2(2)	
C(1a) -Cu	-N(2b)	59.5(2)	C(1a) -Cu	-W(1b)	153.8(2)	
C(1b) -Cu	-N(2a)	60.4(2)	C(1b) -Cu	-W(1a)	153.6(2)	
C(1b) -Cu	-N(2b)	27.7(2)	C(1b) -Cu	-N(1b)	121.6(2)	
C(1b) -Cu	-C(1a)	32.3(2)	C(1a) -M(2a)	-Cu	110.1(4)	
C(2a) -N(2a)	-Cu	128.0(3)	C(2a) -H(2a)	-C(1a)	121.7(4)	
C(8a) -N(1a)	-Cu	125.1(4)	C(9a) -N(1a)	-Cu	113.0(4)	
C(9a) -N(1a)	-C(8a)	121.8(5)	C(2b) -W(2b)	-Cu	126.9(3)	
C(1b) -N(2b)	-Cu	110.8(3)	C(1b) -N(2b)	-C(2b)	121.4(4)	
C(9b) -N(1b)	-Cu	113.8(3)	C(8b) -W(1b)	-Cu	125.4(4)	
C(8b) -N(1b)	-C(9b)	120.7(4)	N(2a) -C(1a)) -Cu	41.8(2)	
C(1b) -C(1a)	-Cu	74.5(3)	C(1b) -C(1a)) -N(2a)	116.3(5)	
0(1a) -C(1a)) -Cu	169.3(6)	0(1a) -C(1a)) -N(2a)	128.8(6)	
0(1a) -C(1a)) -C(1b)	114.5(6)	C(3a) -C(2a)) -N(2a)	123.8(5)	
C(7a) -C(2a)) -N(2a)	119.9(5)	C(7a) -C(2a)) -C(3a)	116.3(5)	
C(4a) -C(3a)) -C(2a)	122.2(6)	C(5a) -C(4a)) -C(3a)	121.8(6)	
C(6a) -C(5a)) -C(4a)	118.6(6)	C(7a) -C(6a)) -C(5a)	121.8(6)	
C(6a) -C(7a)) -C(2a)	119.3(5)	C(8a) -C(7a)) -C(2a)	126.7(5)	
C(8a) -C(7a)) -C(6a)	114.1(5)	C(7a) -C(8a) -N(1a)	126.0(5)	
C(10a)-C(9a)) -N(1a)	126.1(5)	C(9b) -C(9a) - H(1a)	115.1(5)	
C(9b) -C(9a) -C(10a)	118.7(5)	C(11a)-C(10	a)-C(9a)	119.4(6)	
C(11b)-C(11	a)-C(10a)	121.6(6)	C(10b)-C(11	b)-C(11a)	120.4(6)	
C(9b) -C(10	b)-c(11b)	119.6(6)	C(9a) -C(9b) -N(1b)	114.4(4)	
C(10b)-C(9b) -M(1b)	125.5(5)	C(10b)-C(9b) -C(9a)	120.2(5)	
С(7Ъ) -С(8Ъ) —#(1b)	126.4(5)	С(6Ъ) -С(7Ъ) -C(8b)	113.3(5)	
C(2b) -C(7b) -C(8b)	126.1(5)	С(2Ъ) -С(7Ъ) -C(6b)	120.6(5)	
C(Sh) _C(A)) -(7))	121.1(6)	C(4b) -C(5b) -C(6b)	119.2(6)	

	-0 (m.)p	
	Gel 20	
	06180	
	0 C (41)a	
	Arrive Arrive	
	-) ili- ac	
	(1)()+()at	
	11 - 0400	
	server years	
	0.12-3.4238	
	() (2- (yu))S	
	9(2A) -012A2	
	16,34.) -c1.44.	
	10112-1123	
	second action	
	(dettXae)0	
	(44) (= (415)0	
	\$(10))=C(0)).0	
	(44) - cr(44)	
	11110-114010	
11 Parts	(ac)a= (aa)a	
	(d1.20 + (d1.02))	
oligi	Dist & MINAT	

C(7b) -C(2b) -N(2b)	120.4(5)	C(3b) - C(2b) - N(2b)	124.1(5)
С(3Ъ) -С(2Ъ) -С(7Ъ)	115.5(5)	N(2b) -C(1b) -Cu	41.5(2)
C(1a) -C(1b) -Cu	73.2(3)	C(1a) -C(1b) -W(2b)	113.6(5)
0(1b) -C(1b) -Cu	163.6(5)	O(1b) -C(1b) -N(2b)	128.3(5)
O(1b) -C(1b) -C(1a)	118.0(5)		

TABLE 6 Intermolecular distances (Å)

二丁丁丁丁

H(3b)C(4a)	2.98	2	1.0	-1.0	0.0
H(5a)C(11a)	2.95	-2	1.0	1.0	1.0
H(5b)C(5b)	2.94	-1	1.0	-1.0	0.0
H(10b)C(3b)	2.98	-2	0.0	0.0	0.0
H(6b)O(1a)	2.49	-2	0.0	0.0	0.0
H(6a)0(1b)	2.97	-1	1.0	0.0	1.0
H(10b)O(1b)	2.30	-2	0.0	0.0	0.0
H(8b)O(1b)	2.28	-2	0.0	0.0	0.0
H(6b)O(1b)	2.25	-2	0.0	0.0	0.0

TABLE 7 Intramolecular distances (Å)

C(2a)Cu	2.98	C(8a)Cu	2.90
C(9a)Cu	2.83	C(9b)Cu	2.83
C(8b)Cu	2.90	C(2b)Cu	3.00
W(1a)W(2a)	2.84	N(2b)N(2a)	2.68
C(3a)W(2a)	2.47	C(7a)N(2a)	2.43
C(8a) N(2a)	2.97	C(1b)N(2e)	2.45
O(1a)W(2a)	2.31	H(3a)N(2a)	2.78
N(1b)N(1a)	2.60	C(7a)W(1a)	2.43
C(10a)W(1a)	2.53	C(9b)W(1a)	2.39
H(8a) H(1a)	2.05	H(10a)H(1a)	2.74

	(#£38
	10.2 m (mid)(in-
	100- Kaupa
	~~~ (41)b
	10- Lat)9
	AND THE READ
	-(1)- (al)a
	LITTE CARD
	(a) (a) (a)
	(11)05 (2000)
	1-21(20)
	(11)0- Calja
	0(1a) ~0()»
	1131 - 0130- Lazar
	Lating Value
	10-1-1-1000- Ce010
	citei -citei -
	(H)=-(s()=-(w8));
	DCRR42-D(VAF-N/LA)
	1 e12)0 - ( e730 - C4930
	$\operatorname{Cr}(Th) = \operatorname{Cr}(T(u(-1)))$
	011
// UL	(a) (a) (dP)(d=(d95)(d
$(h_{12})^{2} = 0$	(d())= (d0)0= (d730 -
110.11	(ai)o- certo- certo



C(8b)N(2b)	2.99	C(7b)W(2b)	2.45
C(3b)N(2b)	2.48	O(1b)W(2b)	2.33
H(3b)N(2b)	2.69	C(9a)W(1b)	2.37
C(10b)W(1b)	2.49	С(7Ъ)W(1Ъ)	2.44
H(10b)N(1b)	2.81	H(8b)W(1b)	2.03
C(2a)C(1a)	2.40	C(3a)C(1a)	2.89
O(1b)C(1e)	2.35	H(3a)C(1a)	2.67
C(4a)C(2a)	2.44	C(5a)C(2a)	2.85
C(6a)C(2a)	2.48	C(8a)C(2a)	2.55
0(1a)C(2a)	2.85	H(3a)C(2a)	2.19
C(5a)C(3a)	2.41	C(6a)C(3a)	2.76
C(7a)C(3a)	2.42	0(1a)C(3a)	2.73
H(4a)C(3a)	2.13	C(6a)C(4a)	2.36
C(7a)C(4a)	2.78	H(3a)C(4a)	2.05
H(5a)C(4a)	2.00	C(7a)C(5a)	2.44
H(4a)C(5a)	2.25	H(6a)C(5a)	2.28
C(8a)C(6a)	2.41	H(5a)C(6a)	2.13
H(8a)C(6a)	2.57	H(6a)C(7a)	2.22
H(8a)C(7a)	2.19	C(9a)C(8a)	2.38
C(10a)C(8a)	2.94	H(6a)C(8a)	2.51
H(10a)C(8a)	2.71	C(11a)C(9a)	2.38
C(11b)C(9a)	2.77	C(10b)C(9a)	2.42
H(8a)C(9a)	2.54	H(10a)C(9a)	2.04
C(11b)C(10a)	2.38	C(10b)C(10a)	2.78
C(9b)C(10a)	2.43	H(8a)C(10a)	2.51
H(11a)C(10a)	2.10	C(10b)C(11a)	2.39
C(9b)C(11a)	2.75	H(10a)C(11a)	2.00
B(11b)C(11a)	2.22	C(9b)C(11b)	2.38

11424

11510- 64239 -1 11010- India i) 20- i 4838 11/10-34230 THE R SHEAT 24 Sec. (46)# 1 - C.... (JE18 - 11 Inc. (APP - Sec. 10030 101.101.14 (dB)# ALLA T LITTLE 171.1. (AL)D 1911 ------ (w/) 3164-10.2 90.... (#M)S CAS MARK SALTH 16.5 (all Hirr fail) 10.5 16.5 (at)Keen (at)0 sic island GHW (1.T (al)Wree(mole) 100



	14 million (1881)5	
	hatimaa Kabin	
	(com.,, Large	
	1.12.00+++L00102	
	(dl)HCanage	
	- INA IDARA CENTR	
	· · · · · · · · · · · · · · · · · · ·	
	Facilitation (add)	
	(at 11, (at 12)	
	Intizina fiable	
	acions (adia	
	Cat Mars Cator	
	(if 20 Cashiel	
	DETRI ALLOUND	
	- (uA)D (ath	
	Real	
	1 1 (all): (all):	
	17-11 10070-11 (oS18	
	HERAD	
	ILL CallonCalla	
	17.1 (artis(dirts	
	W.3 (selo] (able	
	40.4 (e01)0	
	14.5 (a01)0 (de)0	
1.63	Witten	
	Ar.s. (-1130 dates	
	THE TREESESS THEY	

C(8b)C(10b)	2.89	H(11b)C(10b)	2.14
H(8b)C(10b)	2.52	С(8Ъ)С(9Ъ)	2.36
H(10b)C(9b)	2.22	H(8b)C(9b)	2.55
С(6Ъ)С(8Ъ)	2.38	С(2Ъ)С(8Ъ)	2.56
H(10b)C(8b)	2.65	H(6b)C(8b)	2.65
С(5Ъ)С(7Ъ)	2.43	С(4Ъ)С(7Ъ)	2.79
С(3Ъ)С(7Ъ)	2.40	H(8Ъ)C(7Ъ)	2.11
H(6Ъ)C(7Ъ)	2.39	C(4b)C(6b)	2.39
С(3Ъ)С(6Ъ)	2.76	C(2b)C(6b)	2.47
H(8b)C(6b)	2.47	H(5b)C(6b)	2.24
С(3Ъ)С(5Ъ)	2.41	С(2Ъ)С(5Ъ)	2.85
H(6b)C(5b)	2.35	H(4b)C(5b)	2.06
C(2b)C(4b)	2.45	H(5b)C(4b)	2.13
H(3b)C(4b)	1.99	С(1Ъ)С(3Ъ)	2.92
0(1b)С( <b>3</b> b)	2.79	H(4b)C(3b)	2.19
С(1Ъ)С(2Ъ)	2.41	O(1b)C(2b)	2.86
H(3b)C(2b)	2.06	0(1a)C(1b)	2.29
H(3b)C(1b)	2.67	0(1b)0(1a)	2.59
H(3a)0(1a)	2.09	H(3b)0(1b)	2.25

.



	(3b) ((3b)
	H(8b) C(10b)
	N(106)C(90)
	(d6b) (d8b)
	H(10b)C(8b
P.S.	c(3b) c(3b)
	(d7)0 (dE)0
	B(66)C(75)
	0(3b) C(6b)
	8(8b) C(6b
+ 4	(3b) C(3b)
	H(6b) ((5b)
	(2b) C(AD)
	(da)5 (dE)#
	0(1b)C(3b)
	c(1b) c(2b)
	B(3b) (dE)
18.5	B(3b) ((1b)
	(a1)0 (aE)H

													1		1.0								_		-		-	_		-	-			-	-		
-	10FC	284	262	244	660	1208	1847	1690	1853	491	116	1428	1084	1399	982	401	872	574	290	353	515	196	1170	1204	1033	1851	2144	1030	1094	2370	1176	1242	474	244	04	282	510
PAG	OLOI	317	265	521	742	1203	1857	1578	1657	966	1046	1700	1055	1299	968	371	844	515	301	385	454	250	1238	1142	1003	1848	2154	924	1116	2441	1247	1229	479	279	398	274	839
	-1	•	•	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	*	12	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	~	2	~	~	2	2	2	2	2	2	2	2	2	~	m (	m
	=	0	2	-17	-15	-	1	7	Ŷ	ę.	m	5	-	•	=	13	15	11	-18	-16	-14	-12	-10	Ŷ	۴	1	7	•	~	4	•	80	14	18	-19	-17	-13
	10FC	432	533	359	343	633	438	400	399	447	637	335	350	372	389	272	623	660	437	444	706	622	272	398	378	268	450	376	483	472	373	427	273	247	223	327	334
	1070	494	508	391	354	642	484	416	437	406	582	325	369	414	383	332	622	646	461	449	999	28	285	416	352	330	498	403	454	442	375	471	357	271	221	317	367
	-1	•	0	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	0
	*	9	9	2	-	-	-	-	-	-	-	-	-	80	80	•	•	•	•	•	80	•	•	•	80	•	•	•	•	•	•	•	•	2	2	Π	Ξ
	Ħ	12	14	-13	ī	7	Ŷ	ĩ	•	S	-	11	13	-14	- <u>1</u> 0	ę	ę	1	7	~	4	•	•	9	14	-13	Ŷ	ñ	7	-	•	s	13	•	2	ŗ	m
	10FC	713	1306	983	313	549	855	442	293	263	361	401	455	454	738	477	694	859	880	672	470	710	404	466	402	378	499	424	567	749	1019	665	441	634	1017	720	540
	1070	869	1334	1011	308	534	788	419	332	238	393	406	447	430	689	490	660	849	820	629	490	650	440	432	379	391	496	510	584	716	1072	609	405	598	1046	671	580
_	-1	•	•	•	0	•	•	0	0	•	0	•	•	0	0	0	•	0	•	•	•	•	0	•	•	•	0	•	•	•	•	•	•	•	•	0	0
1.1	M	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	9	9	9	9	9	9	9	9	9	9	•
FOR	H	2	4	9	80	01	12	14	16	18	-11	-13	7	9	-	Ŷ	ĩ	7	-	•	5	-	•	=	13	17	-14	-12	-10	۴	1	7	•	2	4	9	9
ACTORS	10FC	628	730	1666	1004	1354	544	488	200	362	307	300	1146	872	823	1442	853	902	1448	767	841	1171	300	305	366	344	228	267	284	442	838	542	343	943	1321	101	282
	2	9	82	2	2	52	8	51	5	63	28	63	16	67	81	35	6	86	1	6	86	33	9	03	38	89	220	96	3	118	202	184	332	11	325	10	288
2 M	9	5	5	18	9	13	5	5	5	~	e	3	=	80	80	5		-	1	-	-	=		-		-		-	-	-	_	-	_	-	-	-	_
5D	-1	0	0	0	0	0	0	•	0	•	•	0	0	0	0	0	0	0	0	0	0	•	0	•	•	•	•	•	•	•	•	•	•		0		
ES	M	~	-	2	2	2	2	2	2	3	3	~	~	~	3	3	3	-	-	1	3	3	3	3	~	~	4	4	4	4	4	4	4	4	4	4	4
LATED		-	-	4		10	12	14	16	-15	-13	11-	1	-	Ŷ		7	-	-	5	-	6	11	13	15	19	-22	-18	-16	-14	-12	-10	-	Ŷ	1	7	•
CALCU	10PC	267	424	814	398	895	1083	1085	2447	4250	4244	2412	1192	1077	894	410	800	441	260	366	325	506	514	1336	3056	3083	1361	547	535	305	373	506	499	530	1373	1058	1619
QIV	010	285	104	-	416		1064	142	2115	9479	AAAE	245	1116	400	846	410	175	426	238	416	313	516	543	1238	2808	3087	1247	519	466	323	412	538	513	559	1334	1038	1761
8	1	•									•											•	•	••	•	•	•	•	•	•	•	•	•	0	•	•	•

16 -



1 4	TONG	E A B	Ë,	101	ŝ							
SNE	1080	122	Ş	111								
	.14	- 5.2	-									
	- 14	22										
	1	198	1									
	TOAL	100	1	Ģ								
	1080	10.22	1	1	1							
	-	0.0										
	- 14	10.00										
		2,2,2										
	1010	100	1	1								
	1010		12.02	1010	1							
-	5.	0.0	3									
4	14	$\sim p_{\rm c}$	7									
10		- 90 A	0.	1		1						
WOLDR	1010	10	1001	1004	1000	į	ļ			191		
TORK &	CUIN	100	5113	7015	1222	20	100	ŝ	2	-		
3	4	0.0		0		0						
8	44	12.05	27	10	14	÷	h					
8	1	-7	-		111	1	2	2	Ĩ	1		ŕ
CINOL	10 mil	Not Not	ALL	211d	545	1192	1002	TANK	4320	11/1	12	
THE A	10100	68	1	010	023	1000	TALL	2ML1	1120	Ē,	120	

		CALCUI	VIED	Es	3	TURE	FACTORS	FOR	-	-											PAG	2
-1	1010	10FC	95	×	-	1010	TOPC	H	×	-	1070	1070		*		1070	IOFC	=	*	-1	0401	10FC
-	808	769	Ŷ	5	-	1465	1379	4	•	-	14	753	Ŷ		2	1055	696	•	•	~	933	1136
-	562	522	<b>.</b>	5	-	1072	1047	9	60	-	428	411	ñ	-	2	473	559	-	•	~	807	757
-	228	282	1	5	-	506	517	10	••	-	350	314	-	-	2	881	803	•	m	2	787	820
-	506	696	-	5	-	787	724	12	60	-	301	295	m	-	2	2511	2455	H	e	~	474	460
-	742	151		5	-	1500	1647	Ŷ	•		453	427	5	-	2	1308	1317	13	•	~	262	274
-	3017	2922	5	5	-	924	606	ĩ	0	-	488	428	2	-	2	1264	1225	17	m	~	338	283
-	707	565	2	5	-	521	549	7	•	-	301	294	0	-	2	636	618	-14	4	~	795	195
-	1099	1099	•	5	-	296	318	-	•	-	442	402	11	-	2	414	440	-12	4	~	439	442
-	703	753	11	5	-	666	733	e	0	-	348	229	17	-	2	303	298	9	4	~	289	3
-	3	498	13	5	-	474	488	5	•	-	348	313	-20	2	2	358	321	9	4	~	673	11
-	383	357	15	5	-	379	378	-12	2	-	317	261	-16	2	2	449	412	Ŷ	4	~	1413	1416
-	378	427	-18	9	-	24.0	224	۴	10	-	596	557	-14	2	2	416	430	1	4	~	\$66	067
-	325	379	-10	9	-	248	287	1	10	-	395	320	-12	2	2	753	748	7	4	~	773	189
-	361	Š	7	9	-	405	375	0	10	-	385	392	-10	2	2	1386	1345	•	4	~	325	262
-	391	410	-	9	-	613	595	ĩ	11	-	338	284	<b>6</b> 1	2	2	1447	1477	~	4	~	299	281
-	369	307	•	9	-	403	904	-18	0	2	719	640	۴	2	2	100	1611	4	4	~	430	403
-	332	312	2	9		469	470	-16	0	2	872	726	1	2	2	1072	1080	•	•	~	753	192
-	502	463	4	9	-	432	476	-14	0	2	658	626	7	2	2	2354	2124	9	4	~	869	655
-	793	795	9	•	-	361	340	-12	0	2	1046	1096	0	2	2	474	1529	12	4	~	279	301
-	865	766	-15	-	-	460	353	-10	0	2	1360	1321	2	2	2	629	663	1	4	~	541	F
-	924	543	-13	-	-	34	293	ę	0	2	1439	1332	••	2	N	94.2	933	61-	5	~	323	258
-	1160	1148	-11	-	-	526	438	9	0	2	3357	2976	9	2	2	703	795	7	5	~	391	359
-	1011	1210	-	-	-	555	581	1	0	2	1814	1366	12	2	2	418	370	î	5	~	498	478
-	857	763	r	-	-	956	887	~	0	2	3226	3632	14	2	2	44	506	7	5	~	451	532
-	779	797	-	-	-	536	590	4	0	2	2590	2245	16	2	2	507	470	r	5	~	463	464
-	198	855	7	-	-	37	393		0	2	1918	1913	-17	m	2	437	166	7	5	~	282	268
-	437	426	-	-		53	485	••	0	2	1796	1945	-13	3	2	476	476	7	5	~	868	966
-	8	620	3	~	-	65	663	9	0	2	824	857	-13	m	2	279	286	-	5	~	933	864
-	271	331	5	-	-	67	145	14	0	2	968	1007	-11	m	2	770	808	•	5	~	109	568
-	166	804	1	-	-	514	535	91	0	2	807	878	6-	m	2	1535	1429	•	5	~	548	557
-1	320	319	0	-	-	164	399	81	0	2	369	317	-	m	2	1238	1313	-	5	~	345	340
-	354	355	13	-	-	181	1 517	-11	-	2	439	393	Ŷ	m	2	1177	1187	•	5	~	325	306
-	620	199	97	80	-	28	5 281	-15		2	602	290	ñ	m	2	731	829	5	5	~	345	330
	324	379	1	*		1	440	11-	-	2	898	906	7	m	2	101	960	-14	9	~	230	484
-	914	478	?	*		61	459	5	-	2	872	847	-	ŋ	2	1001	1162	-12	ø	2	541	525
-	618	595	2			45	6 445	1	-	2	1003	1005	m	3	2	959	937	9	•	~	375	320
			1				1															



121	2
181 181 181	I ONO I
in the later of the second	24
	14
10 - 10 - 10 A A	112
524 524 525 525	IOAC
1022 1022 1022	1040
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4
the second secon	*
	11
EEX ALE TSA TSA	TOAC
101 101 101 101 101	10160
the second se	For sea
	2 1
7772200	R LOS
788 113 218 218 208 208 215 215 215 215 215 215 215 215 215 215	JOLC
712 712 7200 7200 7200 7200 7200 7200 72	1030 LINK
	E C
a a so a a a a a a a a a a.	N. IS
· · · · · · · · · · · · · · · · · · ·	GITAJ
721 7035 7035 7035 7035 7035 7035 7035 7035	TONC
1 202 1 202 1 202 1 202 1 202 1 202 1 202 1 202 1 203 1 20 1 203 1 203 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1	OROI J

8	10FC	322	266	234	464	369	418	256	453	280	548	1002	604	1648	532	1586	3559	718	1558	1629	2933	681	1338	603	615	850	608	568	439	644	2108	1203	1287	2353	1302	968	596
PAG	1070	403	262	268	398	330	442	325	529	364	513	950	620	1648	539	1910	3697	550	1971	1264	2799	692	1343	265	539	813	646	557	463	609	1962	1168	1474	2433	1439	861	657
	-1	~	m	3	3	3	~	3	•	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	*	•	•	•	•	•	•	9	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	-	-	-	-	-	-	-	-
	H	12	-13	11-	-	-	5	1	2	-20	-18	-16	-12	-10	۴	۴	1	7	•	~	4	•		9	12	14	16	-13	7	•	7	Ŷ	7	7	-	•	5
	10FC	1267	849	299	360	415	674	315	354	558	255	438	169	728	409	363	332	170	350	589	253	295	948	812	755	635	584	544	427	307	312	245	307	372	310	251	360
	10F0	1186	786	265	317	401	632	308	350	514	244	528	704	710	449	348	310	214	361	618	330	248	907	197	804	534	587	602	440	337	317	298	305	330	385	250	285
	-1	3	m	3	3	3	•	3	•	e	•	m	m	3	3	3	•	3	3	3	3	m	3	~	•	3	3	3	•	•	3	•	3	3	3	•	3
	M	5	5	5	5	5	5	9	9	9	9	•	9	9	9	9	9	9	~	-	-	~	~	-	-	~	-	~	-	~	•	•	•	•	•	80	80
	H	•	5	1	•	=	13	-16	-12	-10	۴	1	7	•	2	9	•	12	-15	-13	11-	î	7	Ŷ	ĩ	-	e	5	=	13	-14	9	9	1	4	9	9
	10FC	918	603	884	1379	415	950	1318	847	965	974	315	459	392	335	634	735	1381	529	1377	665	567	566	353	439	806	436	367	409	508	382	259	1080	1375	696	298	980
	1070	824	609	924	1282	543	1133	1229	933	868	933	317	200	383	352	624	706	1317	568	1439	681	643	868	327	479	772	473	395	466	582	412	293	1142	1325	806	290	968
-	-1	•	3	3	3	•	3	•	~	3	~	3	•	~	•	3	3	3	3	3	3	3	3	•	•	~	3	3	•	•	3	3	•	•	3	3	m
-	M	•	m	3	3	•	3	3	m	•	m	•	•	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5
FOR	Ħ	6	-	Ŷ	ĩ	7	-	•	5	-	•	=	13	15	-20	-14	-10	۴	٩	1	7	•	~	4	80	9	12	16	-15	-13	-	î	7	Ŷ	ĩ	7	-
ACTORS	10FC	481	468	334	657	1137	1900	737	1842	1569	3183	2432	1416	1903	1149	560	675	520	270	471	470	865	729	1048	2347	1962	2669	2679	704	726	1891	464	298	390	768	320	1097
URE	1070	437	496	373	655	1133	1822	710	2084	1665	3121	3200	1657	1692	1125	530	657	200	330	521	486	868	759	1081	2197	2049	2799	2973	116	803	1683	451	345	414	854	352	1038
CL	-1	•	•	~	•	-	3	•	3	-	-	-	-	-	-	•	•	•	•	•	•	•	•	•	-	-	3	3	•	•	-	•	•	•	•	~	3
STR	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	~	2	~	2	~	2	2	2	~	2	~	•	•	-	•
VIED	=	-19	-11	-15	-13	7	ĩ	7	r	ę	7	-	•	•	-	•	15	11	19	-18	-16	-12	-10	ę	Ŷ	1	7	•	2	4	•	•	16	-11	-15	-13	ī
CALCUL	10PC	967	1056	669	415	915	899	772	492	524	363	594	195	286	368	273	382	651	556	548	377	646	392	364	341	261	278	384	575	516	517	435	365	313	209	282	341
W	0101	202	968	638	364	868	188	793	486	259	430	565	231	241	305	282	330	674	574	516	330	647	416	293	323	320	323	357	909	565	474	405	367	358	290	260	381
8	-1	~	~	~	~	~	2	~	~	~	~	~	~	~	~	~	2	2	2	2	2	2	2	2	2	2	~	~	2	2	2	2	2	~	2	2	•



	1	22	BUR	100	335	10hC
			230	368	202	101.0
				19 19	(n) (n)	fa -
		8.8	10.10	10.10	10 GB	M
				7Ę	121	m
	* *		23¢	300	1361	TONG
		BUS .	TOA	242	1186	1010
			1 19	0.00	10	- fm
2012	33	20 B 3	n nu	or or i	N NI	м
		-		9-12	u re	10
94 1-17	110	8161	214	1310	ères ères	10%0
	Bog	16.04	EAZ	002V	826	1040
		1 100 10	n mi y		1.09	÷
		i cà c	i in i	-	19	M.A.
	9-1-1	M. H	75	175	1	H. NOM
1401	1204	1310 Tano	1137	334	184	TOLC
1844	1991	1835	EE11	313	720	1010
1 mi m m	h ch m	10.10	m.n	101.00	179	1 10
	a	jes in	in in		-	N SIG
N (19 10 10 10	77	17	EL-		-19	ALED
587 287 287	492	511	ere	699	196	TOLC
295	842	193	10E	638	106	DANY G
17 19:10:00	10.10	12.10	25 43	19.10	Part	to the

# VED AND CALCULATED STRUCTURE FACTORS FOR 7.1

AND CALCULATI	CALCULATI	ILAIUS	8	ST	RUC	TURE	FAG	ORS PO	~	1.1												PAG	4
10PO 10PC H K L 10PO 10P	0 10PC H K L 10PO 10P	C H K L 10F0 10F	K L 10F0 10F	L 10F0 10F	10F0 10F	0 101		5	=	2	1	2	10FC	=	×	-	010	10FC		*	-1	1070	10FC
664 794 11 3 4 410 45	794 11 3 4 410 45	1 11 3 4 410 45	3 4 410 45	4 410 45	410 45	0 45			•		4	381	422	7	-	5	942	702	•	•	5	613	628
760 703 -16 4 4 473 484	1 703 -16 4 4 473 484	1 -16 4 4 473 484	4 4 4 473 484	4 473 484	473 484	3 484	2	1	~			861	877	7	-	5	5962	2258	=	•	5	735	747
367 380 -14 4 4 405 411	380 -14 4 4 405 411	1 -14 4 4 405 411	4 4 405 411	4 405 411	405 411	5 411	-	T	4		4	707	678	1	-	•	519	697	13	•	5	282	280
604 615 -12 4 4 552 562	615 -12 4 4 552 562	5 -12 4 4 552 562	4 4 552 562	4 552 562	552 562	2 562	2	40				369	393	•	-	5	907	1026	5	m	5	305	378
405 430 -10 4 4 474 444	430 -10 4 4 474 444	0 -10 4 4 474 444	4 4 474 444	4 474 444	474 444	4 444	4	-	•		4	569	566	5	-	5	369	1281	-14	4	5	337	311
449 437 -8 4 4 1168 1159	437 -8 4 4 1168 1159	1 -8 4 4 1168 1159	4 4 1168 1159	4 1168 1159	1168 1159	8 1159		-	~		4	480	476	-	-	5	386	1240	-12	4	5	698	751
447 495 -6 4 4 942 871	495 -6 4 4 942 871	5 -6 4 4 942 871	4 4 942 871	4 942 871	942 871	2 871	=	-	4		4	395	354	•	-	5	465	497	-10	4	5	814	868
718 758 -4 4 4 408 455	1 758 -4 4 4 408 455	3 -4 4 4 408 455	4 4 408 455	4 408 455	408 455	6 455	5	•	-	-	4	410	442	15	-	5	426	390	۴	4	5	889	937
985 1068 -2 4 4 1116 1202	1 1068 -2 4 4 1116 1202	9 -2 4 4 1116 1202	1 4 4 1116 1202	4 1116 1202	1116 1202	6 1202	2	1	•	-	4	487	552	11	-	5	296	348	Ŷ	4	5	1343	1248
1003 1080 0 4 4 1343 1294	1 1080 0 4 4 1343 1294	0 4 4 1343 1294	1 4 4 1343 1294	4 1343 1294	1343 1294	3 1294	1	'	-	-	4	317	312	-16	2	5	619	623	1	4	5	832	833
1796 2053 2 4 4 1360 1370	2053 2 4 4 1360 1370	3 2 4 4 1360 1370	1 4 4 1360 1370	4 1360 1370	1360 1370	0 1370	2		-	-	4	231	239	-14	~	5	350	392	7	4	5	565	617
1700 1606 4 4 4 1413 1381	1606 4 4 4 1413 1381	5 4 4 4 1413 1381	1 4 4 1413 1381	4 1413 1381	1413 1381	3 1381	=		•	-		453	488	-12	2	5	350	384	•	4	5	662	665
1369 1098 6 4 4 500 462	1098 6 4 4 500 462	8 6 4 4 500 462	6 4 4 500 462	4 500 462	500 462	0 462	5	7			4	279	252	9	2	5	523	607	2	4	5	358	382
1578 1873 8 4 4 474 513	1 1873 8 4 4 474 513	3 8 4 4 474 513	1 4 4 474 513	4 474 513	474 513	4 513	3	7	4		4	218	185	7	2	5	447	1663	•	4	5	682	664
722 670 12 4 4 428 424	1 670 12 4 4 428 424	0 12 4 4 428 424	1 4 4 428 424	4 428 424	428 424	8 424	4	1			4	580	596	۴	2	5	486	486	•	4	5	733	171
649 628 -17 5 4 416 325	0 628 -17 5 4 416 325	8 -17 5 4 416 325	1 5 4 416 325	4 416 325	416 325	6 325	2	7			4	442	423	1	2	5	985	960	-11	5	5	330	334
1229 1176 -15 5 4 332 314	0 1176 -15 5 4 332 314	6 -15 5 4 332 314	1 5 4 332 314	4 332 314	332 314	12 314	4		4		4	616	587	•	2	5	1177	1111	-15	5	5	677	704
1020 1149 -13 5 4 369 376	1149 -13 5 4 369 376	9 -13 5 4 369 376	1 5 4 369 376	4 369 376	. 369 376	9 376	. 9	•	~		4	305	307	2	2	5	669	815	-13	5	5	608	875
519 533 -11 5 4 545 640	0 533 -11 5 4 545 640	3 -11 5 4 545 640	1 5 4 545 640	4 545 640	545 640	15 640	9	17	•		4	626	645	4	2	5	343	1324	Ŧ	5	5	358	303
276 301 -7 5 4 290 259	5 301 -7 5 4 290 259	1 -7 5 4 290 259	1 5 4 290 259	4 290 259	290 259	0 259	6		2		4	423	376	9	2	5	629	687	7	5	5	909	570
449 467 -5 5 4 626 646	1 467 -5 5 4 626 646	7 -5 5 4 626 646	5 5 4 626 646	4 626 646	626 646	16 646	9		4		4	458	470	•	2	5	966	1048	7	5	5	1142	1224
336 330 -3 5 4 296 314	1 330 -3 5 4 296 314	0 -3 5 4 296 314	1 5 4 296 314	4 296 314	296 314	16 314	4	-	2		4	262	195	9	2	5	373	355	Ŷ	5	5	860	878
303 319 -1 5 4 668 740	1 319 -1 5 4 668 740	9 -1 5 4 668 740	1 5 4 668 740	4 668 740	1 668 740	140	9	•	-		4	344	318	12	2	5	410	405	7	5	5	363	418
316 349 1 5 4 1177 1212	5 349 1 5 4 1177 1212	9 1 5 4 1177 1212	1 5 4 1177 1212	4 1177 1212	1177 1212	7 1212	2		-		4	367	343	14	~	5	293	292	7	5	5	1072	1041
419 439 3 5 4 361 363	0 439 3 5 4 361 363	9 3 5 4 361 363	1 5 4 361 363	1 4 381 363	381 363	11 363	23	-	-		4	334	304	-11	•	5	373	364	-	5	5	856	865
439 509 5 5 4 423 369	0 509 5 5 4 423 369	9 5 5 4 423 369	5 5 4 423 369	4 423 369	423 369	13 369	6	7	1 0			250	252	-15	•	5	490	531	•	5	5	1229	1161
643 684 7 5 4 723 777	1 664 7 5 4 723 777	4 7 5 4 723 777	1 5 4 723 777	1 4 723 777	117 223 777	111 61	2	7	4 1		4	288	196	-13	•	5	446	448	5	5	5	620	663
1186 1312 9 5 4 308 280	5 1312 9 5 4 308 280	2 9 5 4 308 280	0 5 4 308 280	4 308 280	308 280	18 280	2	7	5 1	-		248	226	î	•	5	1133	1184	2	5	5	290	246
637 614 -16 6 4 480 472	1 614 -16 6 4 480 472	4 -16 6 4 480 472	5 6 4 480 472	4 480 472	480 472	10 472	2	7	-	-	5	397	446	7	•	5	1064	1011	=	5	5	480	420
1099 1043 -14 6 4 1090 1110	1043 -14 6 4 1090 1110	3 -14 6 4 1090 1110	1 6 4 1090 1110	4 1090 1110	1090 1110	0 1110	0	1		-	-	541	514	ŗ	•	5	538	485	9		5	391	396
1168 1267 -12 6 4 565 588	1 1267 -12 6 4 565 588	7 -12 6 4 565 588	6 4 565 588	4 565 588	565 588	5 588		7	-	-	-	101	586	<b>?</b>	•	5	200	1604	1	•	5	111	792
907 856 -10 6 4 613 659	7 856 -10 6 4 613 659	6 -10 6 4 613 659	0 6 4 613 659	4 613 659	613 659	13 659	6	7	-	-	-	453	400	7	-	5	480	435	-2	9	5	469	524
749 687 -8 6 4 725 765	0 687 -8 6 4 725 765	7 -8 6 4 725 765	1 6 4 725 765	4 725 765	725 765	15 765	5	7	-	-	1 5	543	1773	-	•	5	405	378	•		5	317	359
703 680 -6 6 4 759 787	3 680 -6 6 4 759 787	0 -6 6 4 759 787	6 4 759 787	4 759 787	159 787	181 61	5			-	5 1	430	1464	•	•	5	813	772	2	9	5	298	338
406 412 -4 6 4 849 852	5 412 -4 6 4 849 852	2 -4 6 4 849 852	1 6 4 849 852	4 849 852	849 852	9 852	22	1	-	-	5	837	765	s	•	5	741	111	4	•	5	218	173
889 867 -2 6 4 950 965	9 867 -2 6 4 950 965	7 -2 6 4 950 965	1 6 4 950 965	4 950 965	950 965	0 965	5	•	5	-	5 1	439	1294	-	•	5	301	314	•	•	5	430	476

....



						E G R			328	200	100	276	928	TOAC	tre De
								111	200		1.00	1997	613	1080	BWG
						22				19	1		rip.	54	
										17	1	÷.,	m-	- 34	
								1	2	EI	-		2	02	
							1.0.2.2	ine -	1020	Edd.	1230	10000	202	10 kc	
						1 206	ADD T	0 2 5 1	100	21.6	CARD		240	TOŁO	
									~	04	-15	1	S.	Tec.	
										-	2	. 1	-	36	
								R 1	-	1000	1		1	18	
				146	DOCE	0.10	200		20.0	618	811	2.2.6	002	TOAC	
			244		302	NºBO.	20.0	1000	28.0	707	196	101	100	IGEO	
					۰.	. 75	2	1	2	5-	Þ	3	-	Tel:	-
					-			- 1	br 1	tir.	24	9	-	34	2
					22	13	10	- 11	1	tr-	in	9	1		NON
	INCE	1500	1305	512	8.71	1328	and.	NOC	7 × 7	124	ABA	ICA.		TOAC	<b>KVCLOK</b> S
	1461	C VE I		BOA	240	8911	470	328	1.44	A04	272	010		TORO	310
			TP.	2	-	-	-12-	-	- 1	e i	12	2		$\delta e^{i}$	3
				ş	-	-	2-	- 12	- 3		5-	m	-	34	SIR
	•	0	7	1	di 1	00	01-	×12	1		1	11		-	ALED
1606	0.000	0801	1068	128	202	22.4	OEA	510	200	000	263	294		TONC	CATCOL
0053	1000	1003	280	318	223	Pab	202	600	201	122	240	660		IOTO	CUL .
11.0	1.9	-	£	8.	2	2	2	2	-	- 1	1	the state		H.	ART

Mo         Mo<			CALCUI	ATED	STR	DCI	TURE	FACTORS	FOR		23.											PA	GE 5
00       11       0       0       11       7       000       000       11       7       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		2	10FC		*	-	1070	10FC	=	*	5	010	10FC	=	M	-	OFO	10FC	=	×	-	10F0	10FC
301       239       6       6       101       7160       101       7160       101       7160       101       7160       101       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       716       7		-	10	1	•	-	1020	1189	-13	•		308	306	-14	9	•	814	849	7	-	-	1474	1412
07         07         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			046		-	-	1947	1303	7	-		593	568	-12	9	9	657	653	1	-	-	1630	1816
364       14       6       110       117       175       74       6       525       610       11       7       731       117         375       734       -7       1       6       335       105       177       175       74       -5       1       7       314       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       135       117       135       117       135       117       1355       117       1355       117       1355       117       135       117       135       117       135       117       135       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117       1355       117				-	-	-	114	456	1			828	819	10	9	•	262	312	7	-	-	611	735
11       902       -21       1       6       206       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105       105 <td></td> <td></td> <td>654</td> <td>-14</td> <td>• •</td> <td>-</td> <td>419</td> <td>421</td> <td>7</td> <td>•</td> <td></td> <td>775</td> <td>703</td> <td>Ŷ</td> <td>•</td> <td>•</td> <td>1195</td> <td>1174</td> <td>r</td> <td>-</td> <td>-</td> <td>428</td> <td>344</td>			654	-14	• •	-	419	421	7	•		775	703	Ŷ	•	•	1195	1174	r	-	-	428	344
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	-	500	10-	-	-	308	286	1	•	9	749	887	٩	9		1046	1012	ĩ	-	•	1971	1856
716       714       71       6       500       610       1113       -2       6       500       500       1       7       711       117       711       117       711       117       711       117       711       117       711       117       711       117       711       117       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111	100	E	832	17	-	-	423	483		•		1177	1176	1	9	•	525	480	7	-	•	1936	1497
776       764       -7       1       6       505       56       1       6       105       599       0       6       71       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       27       900       900       27       900       27       900       27       900       27       900       27       900       900       7       900       7       900       900       7       900       900       7       900       900	6.00	256	203	1	-		433	200	7	•		1081	1134	ñ	•	•	582	610	7	-	-	1343	1173
373       700       -5       1       6       230       235       56       71       71       71       700       25       1       7       700       5       1       7       700       5       1       7       700       5       1       7       700       5       1       7       700       5       1       7       700       5       1       7       700       27       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7	C . C .	1	764	17	-		580	594	7	1		1055	666	•	•	•	650	658		-	•	371	412
301       305       -3       6       305       339       4       6       218       7       1       7       130       1       7       130       1       7       10       1       7       505       127       505       127       505       127       505       127       505       127       505       127       505       11       1       1       1       7       505       127       505       124       505       121       7       5       131       1       1       7       555       14       455       11       7       5       131       10       1       7       65       131       10       1       7       65       131       10       1       7       65       131       45       5       10       11       7       105       11       7       10       11       7       10       11       7       10       11       7       105       11       7       10       11       7       10       11       7       10       11       7       105       10       10       11       7       105       10       11       7       105       11	1.00	1	200	7	-		2337	2215	-	•		611	698	2	•	•	740	790	5	-	-	950	926
308         224         -1         1         6         135         125         6         337         417         11         6         17         555         137         335         137         345         311         7         345         311         7         555         137         137         135         137         345         311         17         345         311         17         345         311         355         313         315         317         345         317         345         317         345         317         345         317         345         317         345         317         345         317         345         317         345         317         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345         345	1.00	100	285	1	-	-	673	718	-	•	9	305	339	4	9	9	218	234	-	-	-	1290	1277
060       368       1       1       6       617       633       66       12       6       677       677       216       11       7       218       270         279       683       7       1       6       743       753       11       5       633       537       -15       7       6       371       278       531       531       532       532       135       -16       27       238       531       531       532       535       -16       27       238       541       27       238       541       27       535       541       633       531       531       532       335       -16       27       239       541       631       531       531       531       541       631       541       641       7       531       531       541       631       541       641       7       531       531       541       641       541       641       541       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641       641 <t< td=""><td>C. 79</td><td>BUE</td><td>400</td><td>7</td><td>-</td><td></td><td>1395</td><td>1258</td><td>-</td><td>•</td><td></td><td>933</td><td>959</td><td>9</td><td>9</td><td>•</td><td>330</td><td>315</td><td>•</td><td>-</td><td>-</td><td>656</td><td>714</td></t<>	C. 79	BUE	400	7	-		1395	1258	-	•		933	959	9	9	•	330	315	•	-	-	656	714
570       551       5       382       -15       7       6       315       -13       7       6       317       345       351       351       351       351       351       351       351       351       351       351       353       353       353       454       500       315       -13       7       6       317       346       -12       7       353       450       351       571       353       450       353       450       315       -12       7       353       450       361       561       561       661       661       661       661       661       661       661       661       661       661       7       7       501       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661       661<	1.10	200	368		-	-	617	628	•	•		435	466	12	9	9	477	477	=	-	-	218	180
390       456       5       1       6       315       -13       7       6       312       335       -16       7       439       270       239       210       239       210       239       210       239       210       239       210       239       210       231       448       -16       5       506       315       -9       7       6       311       448       -16       7       339       -10       2       7       309       410       331       -12       4       6       506       515       509       11       7       6       211       309       -10       2       7       303       410       301       401       301       401       301       401       301       401       401       601       511       305       -10       7       6       27       303       410       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401       401 <td>6.04</td> <td>20</td> <td></td> <td></td> <td>-</td> <td></td> <td>461</td> <td>512</td> <td>=</td> <td>-</td> <td></td> <td>389</td> <td>382</td> <td>-15</td> <td>-</td> <td>•</td> <td>316</td> <td>291</td> <td>13</td> <td>-</td> <td>-</td> <td>345</td> <td>351</td>	6.04	20			-		461	512	=	-		389	382	-15	-	•	316	291	13	-	-	345	351
279       183       7       1       6       748       766       -16       6       315       -9       7       6       313       -16       2       7       285       210       314       -12       2       7       395       410       335       -16       2       7       395       410       335       -16       2       7       395       410       335       -16       2       7       395       410       335       -16       2       7       395       410       335       410       335       -16       2       7       395       410       335       410       335       -16       2       7       395       410       335       -16       2       7       305       410       335       410       335       410       335       410       335       410       335       410       335       410       435       410       416       415       416       415       416       415       416       415       416       415       416       415       416       415       416       416       415       416       416       416       416       416       416       416	1.00	250	ASA		-	-	543	533	13	-		271	275	-13	-	•	317	329	-18	2	-	439	434
002       551       9       1       6       218       25       -14       4       6       53       -5       7       6       311       433       -12       7       95       410         460       420       -20       2       414       453       -12       4       6       310       244       -12       4       6       310       244       17       6       214       313       7       6       314       313       -10       2       7       1066       103         315       -16       6       512       469       -16       6       512       369       -10       2       7       1066       503       511       503       -4       2       7       1066       503       511       503       -4       2       7       1066       503       511       505       512       505       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513 <td< td=""><td></td><td>220</td><td>183</td><td>-10</td><td>-</td><td></td><td>748</td><td>786</td><td>-16</td><td>4</td><td></td><td>369</td><td>315</td><td>î</td><td>-</td><td>•</td><td>332</td><td>335</td><td>-16</td><td>2</td><td></td><td>288</td><td>270</td></td<>		220	183	-10	-		748	786	-16	4		369	315	î	-	•	332	335	-16	2		288	270
348       258       13       16       310       344       -12       6       310       269       1       7       6       334       321       -8       7       61       633       331       332       -16       2       7       106       613         310       317       -16       5       512       489       -16       6       512       385       -10       8       6       231       332       -4       2       7       60       561         310       317       -12       5       1306       1540       -16       8       6       232       325       -6       2       7       600       561         311       317       -6       2       106       110       2       110       21       105       111       105       106       103       441       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106       106	1.14	203	551		-		218	255	-14	4	9	636	638	Ŷ	-	•	371	448	-12	2	-	395	410
31       51       53       31       53       32       54       57       50       54         31       31       51       31       53       32       54       57       50       51         31       31       51       50       -16       6       512       500       -16       6       512       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       511       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500		34.8	358	-	-		310	344	-12	4	•	310	269	11-	-	•	271	339	9	2	-	1046	1039
335       369       -18       5       435       472       -6       5       32       325       -6       2       7       303       433         291       379       -12       5       500       116       0       4       6       512       305       -10       8       6       214       203       -4       2       7       609       561         301       307       -10       2       6       1500       1540       2       4       6       512       46       533       219       -2       2       7       1212       106       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561       561<	17	Ne So	420	-20	-		414	453	-	4		768	778		-	9	334	321	Ŷ	~	-	671	683
290         286         -16         5         584         652         -2         6         512         305         -10         6         219         -2         2         7         1212         100         561           301         -10         2         6         1099         1160         0         4         116         122         6         1099         1160         0         4         12         7         509         511         12         2         7         1212         1069         511           271         277         -6         5         51         468         21         8         6         21         23         51         7         2         7         534         573           381         -10         6         511         4         6         521         48         7         7         2         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <td< td=""><td></td><td>245</td><td>SKO</td><td>-18</td><td></td><td>-</td><td>435</td><td>472</td><td>9</td><td>4</td><td>9</td><td>512</td><td>489</td><td>-16</td><td>•</td><td>•</td><td>332</td><td>325</td><td>۴</td><td>2</td><td>-</td><td>303</td><td>433</td></td<>		245	SKO	-18		-	435	472	9	4	9	512	489	-16	•	•	332	325	۴	2	-	303	433
381       379       -12       2       1009       1160       0       4       6       106       122       6       1099       1160       0       4       16       122       6       109       1160       2       7       460       431         271       257       -6       2       6       570       984       -6       8       6       451       470       431       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       573       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       574       575       574       575       575       575       575	2.12	-	288	197		0	584	652	?	4		512	385	07-	•	•	214	203	1	2	-	609	561
301       307       -10       2       6       470       984       -6       8       6       451       427       515       0       2       7       460       431         271       257       -6       2       6       437       478       4       6       796       823       -4       8       6       421       427       2       2       7       534       573         303       7       -6       2       6       100       1210       6       46       513       4       8       6       27       47       2       2       7       534       573         500       517       -6       7       6       513       4       8       6       27       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       47       <		18	370	11			1099	1160	•	4		1168	1225	٩	•	•	293	219	7	2	-	1212	1069
271       27       4       4       796       823       -4       6       72       734       573         283       377       -6       6       160       120       6       4       521       488       2       8       6       44       573       4       2       7       60       679       679       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670       670	1.1			19		-	1508	1540	-	4		950	984	Ŷ	•	9	458	515	•	2	-	469	431
377       -6       2       6       160       1210       6       4       5       1       48       5       3       4       5       7       60       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <td< td=""><td>1.1</td><td>225</td><td>156</td><td>19</td><td></td><td></td><td>154</td><td>478</td><td>-</td><td>4</td><td></td><td>796</td><td>823</td><td>1</td><td>•</td><td>9</td><td>421</td><td>427</td><td>9</td><td>2</td><td>-</td><td>534</td><td>573</td></td<>	1.1	225	156	19			154	478	-	4		796	823	1	•	9	421	427	9	2	-	534	573
425       364       -4       513       4       6       395       455       6       2       467       478         560       564       -2       2       6       76       6       6       2       7       47       7       670       630         560       564       -2       6       84       450       6       8       6       217       670       630       637       670       630       637       670       630       637       670       630       637       7       670       630       60       7       670       630       637       670       630       6437       450       6       6       633       731       309       12       27       670       630       630       7       610       630       630       7       610       630       7       610       630       7       610       630       7       610       630       7       610       630       7       610       630       7       610       630       7       610       7       610       630       7       610       630       7       610       630       7       610       <		100	56	•			1160	1210		4		521	488	2	•	•	444	452	4	2	-	618	657
560       564       -2       2       6       791       651       10       4       6       464       450       6       8       6       217       670       650         500       511       0       2       6       116       106       -15       5       387       429       8       8       6       317       309       12       2       7       457       466         500       517       0       5       5       387       429       8       8       6       317       309       12       2       7       457       466         501       212       4       5       6       437       460       5       9       6       235       204       -19       3       7       310       271         506       1072       4       2       6       553       640       450       6       532       407       -410       6       271       310       271       310       271       270       270       270       270       270       270       270       270       270       270       270       270       271       270       271       2		201	204	1			769	630		4		446	513	4	-	9	395	455	9	2	-	487	478
620       617       0       2       6       10       28       6       317       309       12       2       7       437       466         310       285       2       2       6       88       6       317       309       12       2       7       437       466         966       1072       4       2       6       880       837       400       5       9       6       433       378       -21       3       7       432       453         966       1072       4       2       6       537       407       5       9       6       233       204       -19       3<7	00	195		1			701	851	10	4		484	450	•	•	9	262	219	9	2	-	670	630
310       285       2       6       809       623       -13       5       6       403       437       3       9       6       433       378       -21       3       7       432       453         966       1072       4       2       6       850       803       -11       5       6       352       407       -4       10       6       271       270       -15       3       7       310       271         299       1214       6       2       6       553       636       -7       11       6       232       243       -13       7       310       271         291       911       10       2       6       553       636       -7       11       6       332       243       -13       7       310       271         911       313       12       2       6       553       636       -17       11       6       332       243       -13       7       355       794       276       456       456       456       456       456       456       456       456       456       456       456       456       456       456		300	15				1165	1069	-15	-		387	429		•	9	317	309	12	•	-	437	466
968       1072       4       2       6       437       460       5       9       6       235       204       -19       3       7       310       271         299       1214       6       2       6       352       407       -4       10       6       21       370       -15       3       7       354       278         299       1214       6       2       6       932       407       -4       10       6       271       270       -15       3       7       354       278         901       10       2       6       932       407       -5       5       6       533       638       -7       11       6       332       243       -13       7       595       626         371       333       12       2       6       332       343       -13       7       395       342       -11       3       7       595       626         371       333       12       2       6       373       -11       1       7       502       485       -7       3       7       582       794       583       71       733		070	10				88	823	1	-		403	437		•	9	433	378	-21	•	-	432	453
299       1214       6       2       6       1254       -7       5       6       352       407       -4       10       6       271       270       -15       3<7			1077	• •			BSC		17	-	-	437	460	-	•	9	235	204	-19	•	-	310	271
006       2643       8       2       6       553       638       -7       11       6       332       243       -13       7       595       626         977       991       10       2       6       433       434       -3       5       6       352       323       -21       1       7       395       342       -11       3<7			1214				120	1254	17	-		352	407	1	9	9	271	270	-15	•	-	354	278
977       991       10       2       6       433       434       -3       5       6       352       323       -21       1       7       395       342       -11       3       7       1003       1015         371       333       12       2       6       410       416       -19       1       7       502       485       -7       3       7       752       794         371       333       12       2       6       25       5       6       410       416       -19       1       7       502       485       -7       3       7       752       794         066       4334       16       7       5       6       225       219       -17       1       7       630       606       -5       3       7       449       684       684         517       1329       -17       3       6       433       434       9       5       6       303       416       1       7       595       446       -3       3       7       649       684         517       1329       -13       1       7       513       1	• •	ROR	2643			9.0	766	924	5	5		553	638	7	=	•	332	243	7	•	100	565	626
371     333     12     2     6     248     320     5     5     6     410     416     -19     1     7     502     485     -7     3     7     752     794       066     4334     16     2     6     378     378     7     5     5     5     17     1     7     502     485     -7     3     7     752     794       066     4334     16     7     5     6     225     219     -17     1     7     630     606     -5     3     7     282     303       517     1329     -17     3     6     433     434     9     5     6     398     377     -15     1     7     395     446     -3     3     7     649     684       717     16     2     17     17     395     446     -3     3     7     649     684       717     17     17     582     698     -11     3     7     649     684       717     17     17     582     698     -13     3     7     649     684       717     16     16     17     5				9			43	424	7	-	•	352	323	-21	-	-	395	342	Ŧ	•	-	1003	1015
066 4334 16 2 6 378 378 7 5 6 225 219 -17 1 7 630 606 -5 3 7 282 303 517 1329 -17 3 6 433 434 9 5 6 398 377 -15 1 7 395 446 -3 3 7 649 684 312 1329 -17 3 6 433 434 9 5 6 398 377 -15 1 7 395 446 -3 3 7 649 684		12	111	22			246	320		5	-	410	416	61-	-	-	502	485	7	3	-	152	194
517 1329 -17 3 6 433 434 9 5 6 398 377 -15 1 7 395 446 -3 3 7 649 684 712 1329 -17 3 6 433 434 9 5 6 398 377 -15 1 7 395 446 -3 3 7 649 684		1990	4124	12			371	378	DI	5	-	225	219	-17	-	-	630	909	٦	3		282	303
714 777 16 2 6 771 247 -16 6 6 521 533 -13 1 7 582 698 -1 3 7 1421 1436	•						43	424	-	-		398	377	-15	4	-	395	446	ĩ	m	-	5	684
		110	172					19	-16		-	125	533	-13	-	-	582	698	7	3	-	1421	1436



1.2 2 2 Q 0 M	12	N
	0.	1.56-
	0	10k
10	0 El	a.
	tra La	
	2	
1114 1114 1114 1114 1114 1114 1114 111	10160	
11079	1030	
	24	
	24	
1223022	- 12	
1 () I		
	4	
30 S S S S S S S S S S S S S S S S S S S	101	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	
	2	
	54	-
	26	24
	-	34
		50
2128 2012 2015 2015 2015 2015 2015 2015 2015	IGAC	LEOT DA
110 110 110 110 110 110 110 110 110 110	100	
	Z	TU
	-	200
	20	54
	B	1 HER
16% 285 285 285 285 285 285 285 285 285 285	IONC	CVFCA
2011 2012 2012 2012 2012 2012 2012 2012	IOEC	AND
	2 /3	2

# 7.1 FOR STRUCTURE FACTORS CALCULATED 2 2

9

1070 PAGE 1070 **ääääakk**440004e83355465555564464666666455555 10FC 1010 1070 1000 10PC 1070 4445995494947734844477-4629888449944 10PC 1070 ~~~~ -1



### *************

**A60** 

230       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1
11     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1
No.     No.     No.     No.       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1     1       1     1     1
No.
No.     No.       11     60F       11     60F       11     60F       11     60F       11     1       11     1       11     1       11     1       11     1       11     1       11     1       11     1       11     1       12     1       13     1       14     1       14     1       14     1       14     1       14     1       14     1       15     1       16     1       16     1       17     1       18     1       18     1       18     1       18     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       19     1       10     1
100000     1     2     1     2     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td< td=""></td<>
NA     NA       -0     1       -1     2       -3     2       -4     3       -1     3       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1     4       -1 </td
NUMBER     NUMBER     NUMBER     NUMBER     NUMBER       1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1
1010     1010     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101<
101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101     101
1010C B. K. F. 10100 I.
1 0101 1 1 1010 1 1 1010 1 1 1010 1 1 1010 1 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 1010 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100
T 10100 1
A 1010 1
L ON L ON L ON L ON L

8	AB	CALCU	ILATED	ST	RUC	TURE	FACTORS	FOR	1.	_											PAGE	-
-1	1010	1070			Ч	OFO	10FC	<b>1</b>	×	н	1070	IOFC	*	*	ы	0101	1070	=	*	1 10	10	DAG
•	116	954	1	3	0	238	1 196	7	2	0	442	114	7	-	10	564	546	-12	-	0	32	3
	567	454	-18	-	0	316	256	٦	-	0	378	135	5	-	10	933	888	-10	-	0	85	573
	1456	1424	91-	-	0	401	377	m	~	0	490	524	7	-	10	808	818	<b>?</b>	-	0	88	883
	1822	1631	F	-	0	361	430	0	-	0	418	360	-	-	9	601	536	Ŷ	-	0	99	669
	2232	1982	-10	-	0	916	1013	11	~	9	262	305	-	-	10	385	315	1	-	0	18	382
	750	720	7	-	0	603	660	-16	•0	0	298	286	-22	2	9	385	354	0	4	0	1	18
	620	655	Ŷ	-	0	722	751	-14	•0	0	371	305	2-	2	10	338	350	2	-	0	32	628
	2611	1204	7	-	0	620	625	-10	••	9	446	436	87-	2	2	317	346	4	-	0	-	857
	571	636	•	-	0	727	669	0	•	0	350	357	41-	2	10	562	525	10	4	0	10	21
0	395	361	2	4	0	634	595	2	•	0	395	465	-12	2	10	916	1029	-19	5	0	21	135
0	369	361	4	-	0	3	588	4	••	9	379	433	01-	2	10	869	846	-15	5	0	86	
•	271	199	9	-	0	40	416	l	0	0	338	307	7	2	10	1064	1010	-13	5	0	69	333
0	548	3		-	0	357	363	•	0	0	313	267	9	2	10	803	868	Ŷ	S	0	19	-
	332	353	-11	5	0	293	234	•	10	0	381	378	Ť	2	2	646	647	7	5	4 0	19	156
	652	647	-15	5	0	379	372	-22	0	10	543	484	?	~	10	1229	1244	7	S	5	88	298
•	344	352	-13	5	0	77	192 3	-20	0	10	480	484	•	2	10	708	605	7	5	0	01	z
•	305	422	11-	5	6	32:	335	-18	0	10	677	628	4	2	2	698	711	-	5	0	20	513
•	1421	1404	5	5	0	956	988	-16	0	10	296	275	•	2	10	868	903	m	S	0	50	278
•	1038	1108	-	5	6	1317	1 1257	-14	0	2	759	721	61-	m	10	354	412	5	5	5	8	552
•	636	622	5	5	6	57	1 586	-12	0	10	1866	1879	-1-	m	2	453	519	-	2	0	33	202
•	872	828	ņ	5	6	39.	396	-10	0	10	1378	1094	-15	m	10	626	628	-18	9	0	64	382
•	868	812	7	5	0	28	662	7	0	10	854	881	-13	m	10	378	415	-16	9	9	10	556
•	361	466	-	5	0	3	1 796	9	0	2	1238	1299	7	m	10	549	614	-12	9	0	32	1
•	492	458		5	0	74	159	1	0	10	2014	1361	T	m	10	671	673	-10	9	0	10	384
•	296	362	~	5	6	Š	629		0	10	2476	2166	7	m	10	835	848	9	9	0	8	115
•	678	704	-	5	0	27(	5 369	0	0	10	432	340	2	•	10	814	922	۴	9	0	56	113
•	783	783	6	5	0	35	2 362	2	0	10	395	166	7	m	10	686	713	1	9	0	113	359
•	711	731	-16	9	6	25	5 186	4	0	10	687	657	7	m	10	574	503	7	9	0	19	11
•	593	569	-12	9	0	55	2 536	9	•	10	713	712	-	m	10	572	587	•	9	0	-	926
•	1	515	-10	9	6	32(	347	•0	0	10	791	770	•	m	10	461	466	2	9	0	172	878
0	360	040	1	9	9	193	2 386	12	•	10	421	420	•	m	10	325	388	4	9	0	-	63
•	872	741	0	9	0	25	5 287	14	0	10	378	326	-	•	10	449	507	••	9	0	19	516
	835	851	-15	-	0	60	562	-11-	-	10	345	319	•	m	10	290	231	10	9	0	152	220
•	001	693	1	-	0	3	2 553	7	-	10	248	232	-24	-	10	332	317	-15	-	0	63	36
0	555	248	-	-	9	19	808	7	-	10	<b>\$0</b>	412	-18	4	10	373	365	٩	1	0	8	380
• •	868	851	Ŷ	-	. 0	35	378	î	-	2	1125	1148	-14	4	10	492	164	î	1	0	88	240

.....



										322	212	000		915	380		-	
								1.2							0 10		UCR.	
										10	22	00	1	200	10.14		12	
											ò	.0		20	24			
							N B			÷	2	0	1	P.	×			
										1	A1-	-10	100	10	H.			
										12	486	230	1.000	400	1020			
							1 2011	0 M D	1.1.2	120	786	CES	ACON.	020	Iotol			
							2.03	1.7	2	0	89	00	0	0	54			
							1.00	1.87	1.2		~	299	Y	5	м			
						- 33		2-1			1	21-	N1-	4	H			
			1000			NOU	330	201	218	1.1	202	1814	2.0%		1050			
						EE 8	BOF	301	050		RPA	1860	1029		1080			
									0	0.10	59	- 20	05		Dr.	1		
		- 10			1			-			2	0	0		22		1	
							El-	11-	-19		20	æ	R		E.	and and	one bu	
				SUS	914	202	BRE	EEA	303	NAM.	0.00	Jes	300		10140	C. Services	a realized	
	122	202	185	S.A.A	PEA	029	TEC	TAN	SAR	2014	1.40	245	305		1050	T D.OT	100	
		-1	4		1	-	-1	1	-	17	1.5	-	2		-	- interest		
			-1	1	-4	-7	2	-	-	0	- 1	22	2		94	201		
		C	1-9	7	1	7-	11-	1	11-				Per l'		-	inten		
	47.6	620	660	390	EVE	92F	SNP	316	232	NCD .	and a	And .	378		IGEC	Clamor		
	17.5	110	651	50%	ETE .	ESE	DEE	232	239	NAK	and an	AL N	224		10100	B WAR	1-1-2	
	-1	19	1	2	1	2	100	15	100	1	14	ALC: N	12		Es:	- 14	100	

FOR
FACTORS
STRUCTURE
120
CALCULA
R
ARD

8		CALCULA	LED	STR	UCT	URE	ACTORS	FOR	1.1												PAGE	-
-	0101	10FC	æ	M	-1	1070	10FC	=	*	1	OLO	DAOI	æ	M	-1	10FO	10FC	=	×	1	0F0 1	OFC
-	116	954	п	•	•	238	196	7	-	•	442	477	7	-	9	564	546	-12	4	10	592	604
-	567	454	-18	4	•	316	256	-	-	•	378	435	Ŷ	-	2	933	888	-10	4	9	585	573
-	456	1424	-16	4	•	401	377	•	-	•	490	524	ñ	-	10	808	818	Ŷ	4	2	788	883
-	1822	1631	-14	4	•	361	430	•	-	•	418	394	-	-	2	109	536	Ŷ	4	2	660	669
	232	1982	-10	4	•	916	1013	=	-	•	262	305	-	-	2	385	315	1	4	2	381	382
	750	720	ę	4	•	601	660	-16	80	•	298	286	-22	2	2	385	354	•	4	2	474	484
	620	655	Ŷ	4	•	722	151	-14	•	•	371	305	-20	~	2	338	350	2	4	2	632	628
	1195	1204	?	4	•	620	625	-10	•	•	446	436	-18	~	2	317	346	4	4	2	838	857
	571	636	•	4	•	727	669	•	•	•	350	357	-14	~	2	562	525	9	4	2	301	214
	395	361	~	4	•	634	595	2	•	•	395	465	-12	~	2	916	1029	-19	5	2	421	435
	369	381	4	4	•	909	588	4		•	379	433	-10	2	9	869	846	-15	5	2	398	434
	271	199		4	•	406	416	-	•	•	338	307	٣	~	2	1064	1010	-13	5	2	369	333
	548	504		4	•	357	363	•	•	•	313	267	۴	2	9	803	868	î	5	2	467	484
	332	353	-17	5	•	293	234	•	9	•	381	378	1	2	9	646	647	7	5	2	461	456
	652	647	-15	5	•	379	372	-22	0	9	543	484	?	2	9	1229	1244	ĩ	5	2	588	598
	344	352	-13	5	•	776	761	-20	•	2	480	484	•	~	10	708	605	7	5	2	907	944
	305	422	-11-	5	•	325	335	-18	0	2	677	628	4	2	9	698	111	-	5	10	550	513
	1421	1404	1	5	•	959	886	-16	0	9	296	275	•	2	9	868	903	m	5	2	303	278
	1038	1108	7	5	•	1317	1257	-14	0	2	759	721	-19	•	9	354	412	5	5	2	530	552
	636	622	Ŷ	5	•	574	586	-12	•	0	1866	1879	-11	3	9	453	519	-	5	2	235	302
	872	828	-	5	•	395	396	-10	•	9	1378	1094	-15	•	9	626	628	-18	•	2	379	382
	868	812	7	5	•	587	662	9	0	9	854	881	-13	3	9	378	415	-16		2	607	658
	361	466	-	5	•	844	796	9	0	9	1238	1299	17-	•	9	549	614	-12	9	10	592	545
	492	458	•	5	•	748	759	1	0	9	2014	1561	٩	3	9	671	673	-10	•	2	401	384
	296	362	5	5	•	609	629		•	2	2476	2166	-	•	9	835	848	7	•	9	790	775
	678	704	-	5	•	276	369	•	•	2	432	340	r	•	2	814	922	Ŷ	•	9	695	713
	783	783	•	5	•	352	362	~	0	2	395	391	ę	•	2	686	713	1	•	9	313	359
	711	731	-16	9	•	256	186	4	•	2	687	657	7	m	2	574	503	?	•	2	361	414
•	593	569	-12	•	•	552	536	9	•	2	713	712	-	~	2	572	587	•	•	2	854	856
	44	515	-10	9	•	320	347		•	2	161	770	•	~	2	461	466	2	•	9	872	878
•	560	640	1		•	432	386	12	•	2	421	420	5	3	2	325	388	4	•	2	444	497
•	872	741	•	9	•	256	287	14	•	2	378	326	-	•	9	449	507	•	•	10	467	516
	835	851	-15	-	•	607	562	-17	-	2	345	319	•	3	10	290	231	10	•	9	352	350
	630	693	9	-	•	602	553	-13	-	2	248	232	-24	4	9	332	317	-15	~	9	363	364
•	555	548	-	-	•	799	808	-11	-	2	406	412	-18	4	10	373	365	Ŷ	~	2	406	380
	868	851	Ŷ	-	•	350	378	î	-	2	1125	1148	-14	4	2	492	497	Ŷ	~	2	588	540

A Georgeone



# -----

A61

233 233 233 233 233 293	TONC 5 4
1911 1911 1925 292 292	10h0
10010	Eq.
1	м
- 1	-
988 888 888	TORC
104 104 103 103	10140
	Fer .
	54.
* * * * * * * * * * * * * * * * * * *	ш.
101 101 102 102 102 102 102 102 102 102	IOAC
1011 1111 1111 1111 1111 1111 1111 111	1050
	1. et
	24. 14
	1 2005
2013 2013 2013 2013 2013 2013 2013 2013	TONC
ADA ADA ADA ADA ADA ADA ADA ADA ADA ADA	IQLO
	4 2
	4.17
S S S S S S S S S S S S S S S S S S S	IN ISTAL
100 100 100 100 100 100 100 100 100 100	101c
2002 11202 11202 11202 11202 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 12022 1202 1002 1002 100 100	CEAN CO
	and the second

60	10FC	543	260	929	401	344	491	F	656	201	586	338	447	340	441	401	831	1239	447	585	296	192	253	263	308	302	450	451	463	344	331	278	305	471	456	810	876
PAG	IOFO	575	521	1038	418	381	204	726	620	486	615	100	444	383	425	418	113	1299	466	259	244	221	290	231	363	334	480	435	437	348	325	320	330	439	476	768	033
	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	
	M	4	4	4	4	4	5	5	5	5	5	5	5	9					•			•	9	-	-				•		•	•	-	-	-	-	-
	=	7	•	2	4	00	-13	Ŧ	î	7	Ŷ	ŗ	-	-18	-16	-14	-10	Ŷ	1	7	4	•	9	7	-	-10	ę	۴	•	~	٩	7	-23	-21	-19	-15	-12
	10FC	286	461	595	148	369	362	374	428	687	710	521	516	703	717	242	612	537	360	521	837	628	996	982	101	812	590	332	687	312	485	619	355	452	897	775	
	1070	385	444	609	231	352	369	305	423	683	206	486	628	674	810	290	572	486	308	525	824	298	116	968	619	788	604	320	637	350	502	612	381	437	860	670	202
	ч	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	2	12	12	12	12	12	12	12	12	12	12	12	:
	M	-	-	-	-	-	-	2	2	~	2	2	2	2	2	2	2	2	3	3	3	3	3	•	~	•	•	3	•	•	4	4	4	4	4	4	4
	=	Ŷ	ĩ	7	-	m	5	-20	-18	-14	-12	9	۴	1	7	•	4	•	-11	-13	1	9	7	r	ĩ	7	-	•	5	-	-20	-18	-12	97-	۴	۴	
	10FC	566	835	617	400	613	302	374	472	361	384	436	234	334	428	668	402	358	1249	875	1413	618	765	1778	1043	349	887	693	608	424	391	326	333	348	392	371	
	10F0	496	762	674	348	534	310	389	541	383	332	405	274	323	473	698	369	367	1238	942	1439	642	834	1927	1160	383	859	698	576	435	330	330	303	408	373	419	000
_	-1	=	=	=	=	=	=	=	=	=	=	=	=	=	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
	*	~	~	-	-	-	-	-	-	•	-	80	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	0	•	-	-	-	-	•
FOR	=	î	-	Ŷ	7	-	-	97	Ŷ	1	7	•	-15	î	-22	-20	-18	-16	-14	-12	-10	9	Ŷ	1		•	2	4	9	•	12	14	-21	-17	Ŧ	9	•
ACTORS	10FC	1080	713	435	376	529	534	334	1115	588	344	383	431	495	869	1080	512	1161	186	615	434	478	341	394	329	403	1055	1225	496	888	633	625	400	316	295	347	
URE F	1010	966	694	471	344	519	541	358	1151	559	345	363	473	463	862	1177	541	1229	1011	643	344	451	218	410	320	375	1072	1299	460	868	689	617	412	337	231	344	
DCT	-1	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	11	=	=	=	=	=	=	=	=	=	=	=	=	=	=	
STR	M	~	-	-	-	-	-	-	-	-	•	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	9	9	9	9	•
ATED		Ŧ	9	7	r	7	7	-	-	5	6	-16	-14	-12	-10	7	9	1	7	•	2	4	9	-19	-11-	-13	1	-	5	7	-	•	-10	٩	۴	1	•
CALCUI	10FC	445	296	391	257	468	311	376	562	557	487	1114	692	868	452	883	1652	584	686	754	554	359	452	619	202	593	681	706	292	116	858	657	637	660	293	716	
AND	1010	414	295	412	293	466	308	317	230	280	449	1107	650	626	208	1064	1875	548	718	640	526	345	412	678	439	496	664	669	381	633	1107	703	653	111	260	684	
VED	-	9	12	19	2	2	9	2	=	=	=	=	=	=	=	=	1	=	=	=	=	=	=	=	=	=	12	=	=	=	=	=	=	=	11	11	



		ži	ą	25	010	
		12	1028	23.0	C UNIT	il hot
		11	12	민업	-	
	1.00		×	2-2	- 14	
		1	54	27		
		1	core -	1444	TONC	
	100	i i	2	ÊĒ	1080	
			23	32	T.	
		-			14	
		1	Ţ.	77		
	9	2	VI.	100	10%6	
	133	100		AN A	1010	
	1.1		1	15	54	See.
	1	-0	•	10	-10	Se.
	(iir	71	13	17.	*	AOF.
	100	- 22	10	1080	TONG	WILDH
1000	200	20	10	000	10100	-
Costag	2.5	111	1	1	Se.	Dist
	- 17	110	f et	10	54	110
1 =	77	85	7	21.4	-	COTA
SECTOR	CI MA	1	- 280	142	Toka	CWCOM
SEE REE	-	35	The second	A	070	And A

6	10FC	796	874	282	304	924	1/8	419	354	262	368	111	189	426	307	512	273	397	1.2	680	764	564	609	530	377	463	520	438	333	306	248	206	464	301	287	466	312	
PAG	1070	813	907	348	296	416	492	375	350	582	403	490	752	1	361	516	260	418	430	731	801	622	615	552	357	439	430	521	305	298	526	473	398	358	305	469	248	
	-1	5	2	5	15	15	2	15	5	2	5	2	2	2	2	2	5	15	5	2	15	5	3	15	5	15	2	3	2	2	2	15	2	2	2	3	2	
	×	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	m	m	3	m	m	3	3	m	3	4	4	4	4	5	5	5	~	•		-	-	
	22	ŗ	Ĩ	7	-	<b>~</b>	5	-22	-12	-10	9	Ŷ	1	?	0	7	-21	-19	-15	-11	-	5	-	7	5	-14	-12	9	4	-19	-17	-11	9	9	0	-17	-11	
	10PC	326	676	478	289	682	372	555	418	341	228	510	385	389	462	408	418	372	323	221	514	146	532	571	234	326	350	299	329	375	3	00	694	1059	667	322	724	
	1010	282	657	433	3	786	373	545	361	34	274	506	397	350	449	383	440	256	369	256	471	868	364	526	250	317	345	337	296	325	361	395	726	1072	658	*	758	-
	-	1	14	14	14	1	14	1	1	1	1	14	14	14	1	1	14	1	14	14	1	14	-	1	1	14	14	14	14	15	15	15	15	15	15	15	15	I
	*	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	•	•	•	•	9			-	•			•	-	-	-	-	-	-	-	-	
	æ	-12	-10	ę	Ŷ	1	-2		2	9	-17	-11	9	-	5	ĥ	-	-18	-16	-14	-10	-	4	1	<b>n</b>	-10	۴	2	-	-23	-21	-17	-15	-13	11-	9		
	IOPC	1230	898	864	417	761	117	183	346	568	740	240	258	356	284	486	817	458	270	511	888	164	283	376	316	295	634	509	582	472	384	549	420	244	475	616	350	, , ,
	1010	1317	1020	959	5	738	597	800	696	628	622	525	285	486	285	465	806	467	271	526	942	461	276	105	332	250	593	530	260	549	325	596	381	221	446	649	979	1
-	-1	14	14	1	1		1	11	1	1	1	1	14	14	14	1	1	1	1	1	1	1	1	1	1	14	14	14	14	14	14	14	1	1	1	14	41	1
	*	0	• •	• •	• •	<b>, ,</b>	• •	> <				-	-	-	-	-	-	-	-	-	-		-	-	-	-	3	-	-	-	-	-	3	-	-	4	4	t
FOR	-	Ŷ	•	î	• •	• •		2	-21	11	1	1	1	-	•	-14	-12	-10	7	۴	1	î			-17	-15	-13	-11	9	-	5	-	7	1	•	-18	-16	•
AC TORS	IOPC	017	331	718	100		224			ION	553	283	1	452	548	140		361	265	100	412	- 5	465	478	267	342	327	325	289	307	550	567	870	932	1294	397	170	-
URB P	1010	425	-	120	140				613		8 9		378	440	48.8	SOF.	AIA	293	248	456	101		ELY	194	ATC	352	357	327	316	369	549	557	656	977	1465	405	4 78	
5	-1			2 5		25		2:	25		2 5	15		1		1 =	1 =	1			1 =	1:	25	1 =	1=	-	1	1	E			14	1		1	1		
H.	-			• •	• •	• •	* *			-	•			-	-				~		) ~						-	-	-			•		• •			• •	,
ATED		۲	P 1		N 4	• •	•			19	1		1	, 1	•	•	110		19	71		1	19	1	1	1	-	4	?	17	-22	2	-16	-	1	19		>
TIOTTE	OFC	1063		707	1611			22									224		010		376		170	850		A60	617	862	1023	300	237	644	414	470	AIG			2
	010	2201						52							127						100	222		112	203		33	78.8	1046	150	105	AIA	375	654	A18	O V		
2	-1		2:	3	1		2	2		1:	1:		1 -	2 =	1:	25	2:	1 =	25	25		2:	25	25		12	15	-	-		-	-	1			1	-	1

-----OBSER Curtai PERSONAL PROPERTY N **A63** 

						5		3,3	2.2	31	3	3	2	- 9	-
						- 1		- 4	21	19.5	7	ne.	2	101	-
							NA S S	N SUL	224	いちつ	8.29	203	21日	2080	PART
						1	1	10	23	21	14	Phi Prov	12	Sec.	
										-1.1	-	-	Phy	14	
								ù e			ż.	ė,	nje.	10	
												ĺ			
								1 100	192	1000		22	33.6	190	
													2	10	
						13		1987	1.10	1000	101	1993	1983	IGEO	
						12	: 2	12	12	1		ŝ	2	24	
			4			- 6	- 10	- 7-		- 7	e)	2	5+	34	
						i e		1	9	- 9	-	- 10	11	8	
					2010	183	245	101	414	2014	110	205	1230	1050	
	185		1.4		PAL	123	663	BER	YBE	Nec	No.04	Deal	1337	TORG	
					2	2		2	2	1			È.	4	-
					-	- 19	0	0	0	9	1.4	2	0	14	1
			21-	24-	12-	10	0	*	10	1	-	-	ar i	н	S LOK
50	PUNE		223	891	0.84	223	ARA	684	964	378	100	100	010	IGAC	NCLOR
	318	BAR	203	698	214	2722	408	848	RAA	133	140	100	Var	1030	LOBE
	2	j.	10	Ċ	100	100	2	112	12	-	5	11	-	L.	DC.
		- 10	$\sim$	0	176	~	198	12+	2	Þ	-	1		24	1
	ĩ	2	7	P-	11-	-17	01-	4	*	121			1	8	GIN
88.0	301	305	260	423	228	APE	acs	334	1004	Terr	202	1.1.1.2	1063	IOAC	CAFCOL
8.20	272	203	265	808	205	PAP.	302	385	385	10051	308	towo.	Xint	IGED	DAY O
14	-	-	-	-	-	-	10	-	-	24	-		1	and the	00

٠.



# 

A64

								200 40		102	191	175	200	DEC	k	
												-	m	a r	PCR.	
								0.0	2.2	0.0	10	30	02	TOM	E	
							1	1.2	2.2	10	1	2	/14 194	5.		
									- 1-	- 1	• •	-	-	24		
									2 10	1	- 1	7	ni L	12		
								200	XBX	1012	010	282	33.6	OFC		
								0.0	1.2	2	17	1	11	80		
													10	10		
								1		1.2	101	2.4	21	14		
														-		-
									Ĩ	Ĩ	-10		ī			
					COL	283	182	101	TLA.	864	998	0.00	1230	1080		
	281				POE	258	9.62	138	182	020	1030		TIPI	1080		
						÷		È	0.1	21	. 01	1		-	-	
		-			1		0	0	0	0	0	1	ç	24	.7	
				24-	15-	10	ġ,	÷	10	17	0-	1	ar I	-	10 B	
	404		223	168	494	123	200	484	898	178	331	10.00	0.8.0	TOAC	VCLORE	
	375	BAE	203	688	\$12	511	408	RAA	RAA	150	314	100	AGE	1050	ALL E	
	2	2	2	È	2	11	110	12	-	17	-	2.4	1	Le	CDC3	
			~	ė.	ni	ri.	ru	\$>	*	p-	-	1		24	STB	
	ĩ	î	7	?	111	1	10	0	P	11	F	0-		3	<b>GITA</b>	
588	367	302	260	429	228	NPE-	256	att	IGON	1161	363	1033	0000	1010	CVFCUL	
844	212	Car	282	804	245	649	305	2.82	382	1364	308	1040	-	1010	COAL O	
-	-	ris.	cor	in	100	-min	an i	men .	-	m	in	1	1. 3	See.	Ser.	

PAGE 10

	UNA UN	CALCU	LAIEU		3		LAULUNG	L	:													
1	1010	10FC	10	1	7	1010	10FC		*	-1	1010	10FC	æ	×	-	1010	10FC	=	*	LI	010	OFC
-	6576	600	1	-	16	334	294	17-	•	11	494	457	1-1	4	18	358	311	7	5	6	254	303
1	ADA	181	-16		16	521	516	î	3	11	338	248	1	4	81	256	249	7	5	6	403	411
	268	361	- 112	-	16	357	356	-12.5	-	2	440	471	-	4	18	412	431	-24	0	2	305	350
	476	482	197-	4	16	555	567	ĩ	•	17	437	426	۴	4	18	323	341	-16	0	2	354	401
1 =	466	473	9	4	16	397	391	-	-	11	303	328	•	4	18	416	422	-14	0	2	707	139
1 -	453	285	4	-	16	316	392	97-	4	11	543	511	-15	5	18	285	335	9	0	2	325	255
	808	744	1	4	16	397	438	٩	4	1	313	366	-13	5	18	423	408	ę	0	2	344	453
1	1221	1155	?	4	19	550	572	1	4	11	538	543	Ŧ	5	18	308	303	1	0	2	453	469
1 -	1	553	-21	5	16	268	251	-11-	5	11	305	351	-18	9	18	367	409	Ŧ	-	2	316	319
	763	809	-15	5	16	296	258	9	5	11	305	391	-12	9	18	310	339	-16	2	2	369	395
1-		585	19	5	16	317	260	7	5	1	408	393	-10	9	18	416	436	-14	2	2	454	460
	801	806		5	16	323	379	ę	5	1	410	444	?	9	18	256	295	۴	2	2	435	433
H	1186	1041	-18	9	16	437	492	7	5	11	397	423	•	9	18	303	287	1	2	2	487	496
-	112	341	7	9	16	296	260	-10	9	17	241	249	-15	-	19	419	399	2	2	2	254	301
	135	308	4	9	16	341	373	9	-	11	363	427	-13	-	19	555	581	7	3	2	375	397
1-	105 3	430	•••	9	16	410	402	7	-	17	348	367	-	-	19	516	543	r	3	2	480	472
-	5 480	615 5	•		16	262	257	7	-	17	358	376	Ŷ	-	19	476	576	7	3	2	250	242
	82 3	303	-21	-	=	378	416	-22	•	18	492	526	ĩ	-	19	265	282	-12	4	2	293	311
	20	280	17-	-	1	327	363	-20	•	18	313	295	•	-	19	344	350	-13	5	2	265	335
-	99	117 6	-15	-	1	760	143	-16	•	18	813	766	-16	2	19	440	359	7	5	2	303	353
-	6 46	5 481	-13	-	1	579	580	-14	•	18	50	501	-14	2	19	484	443	9		2	430	479
	9 39	380	-11-	-	=	727	665	-12	•	18	161	748	-10	2	19	643	543	ę		2	378	366
	8 28	920	1		=	325	296	-10	•	18	244	251	7	2	19	710	643	1		2	320	370
-	20. 30	456		-	12	114	481	9	0	18	942	857	9	2	19	357	380	7		2	363	317
		K 845		-	=	83	816	1	0	18	579	660	-15	•	19	425	433	-15	-	12	553	551
-	6 43	5 448			12	387	420	2	•	18	439	441	-13	•	19	332	260	r	-	12	538	251
1	15 9	7 480	-	-	1	354	427	î	-	18	282	249	7	3	19	496	478	۴	2	2	398	427
	6 49	4 453	-20	-	1	256	276	-	-	18	317	300	Ŷ	3	19	373	371	-13	3	2	375	329
-	6 58	5 647	-18	-	-	34	315	<b>.</b>	-	18	367	309	-	3	19	265	201	ĩ	~	2	389	353
-	6 32	300	-16		=	346	356	-14	2	18	461	484	-12	4	19	371	305	7	3	51	403	379
-	6 43	424 0	-14		-	428	513	-12	2	18	548	604	۴	4	19	308	345	97	4	51	308	296
-	6 29	8 322	-12	-	=	344	308	ę	2	18	555	503	1	4	19	410	467	-19	5	5	344	310
-	64	3 588			-	44	456	٩	2	18	447	451	-19	5	19	358	381	Ŧ	5	51	371	389
-	6 48	7 459	9		-	32	319	1	2	18	419	452	-17	5	19	288	288	-16	•	53	464	486
1	6 39	5 361	1		-	45	395	5	3	18	387	388	11-	5	19	358	336	-14	0	22	577	519
-	6 45	4 471	4		=	36	384	Ŷ	e	18	425	447	î	5	19	383	379	-12	0	53	453	420
ĺ																						



						1 222	352 5	1 101	1000	184	302 3	10 E04	224 30	202 020	T NOA
						35		20	5	3.1	20	2	2	14	
						Э	0	Ċ	0	2 1	0	n	10	- 34	1
					Ţ		07-	114	-10		40-	T	74		
					101		135	\$35	1 Pres		192	500	311	TOKC	
					205	776	285	010	232	2 2 4 4	254	336	328	20 EO	
								2	10	1	10	22	8	1.00	
								2	Þ	1	2	2	2	24	
		81-			1	1		C.	d	0	0	-10	AT	8.	
			1	1.10		1.1	12	358	926	1141	1 PAC	39'8	TRA	TORC	
				140	07.5	1111	2	200	TER	0.00	222	338	294	1050	
					10	1	1	2	12	1	ł	1	1	14	-
				1.9	1	- 1	2 1	CPR .	171	~	1	2	1	м	-
-	1	0	1	3	2	110	2	-	0			0	11-		1 106
			125	212	0.20	745		307	292	320	200	100	204	20.80	NCLOS
146	1	366	308	220	182	310	195	207	- 222	321	244	INS	396	1010	I DEE
01	1	2	91	2	0.2	12	1	2	2	d'il	0.2	4.5	16	P.	Enc.
			r i	5	5	- 12	1	-	8-	2		- 1	2	M	112
2		THE R	57	2-	1	0-1-		E.	-10	SIL	410	1	-	-	OSTAJ
282	-	KDN.	553	1122	204	CRE	210	29.2	682	361	301	1000	2005	TORC	CATCD
2	1	N.T.	T AL	121	008	52	00		76	108	100	1414	N.F.	DiaD.	CONA

8 11	10FC	307	347	321
PAG	10FO	288	352	290
	1	2	3	3
	×	-	-	-
	Ħ	-13	7	Ŷ
	10FC	286	496	549
	10F0	325	487	567
	ч	53	33	33
	M	~	-	-
	H	î	-11	-15
	10FC	375	387	304
	10FO	373	401	296
-	ч	53	33	22
-	×	2	2	3
FOR	=	-14	۴	-13
ACTORS	10FC	345	317	475
URE	10FO	344	334	463
ICI	-1	3	33	53
STR	×	•	-	2
ATED	Ħ	1	٩	-16
CALCU	10FC	477	457	565
AND	1010	613	432	557
8		-	-	-

.

.

.

States and

*

.



	0		
SECOR	1		
	. H	54	
0.00	0	NC	
2	6	14	
1.2.2	100		
222	1.54		
tion true here:	13		
no ma	35		
10 00 00	10		
2.00	and and a		
	-		
223	3		
14 F 24	0		
	19		
ninin	put.		
- 14 m	34		
	10.		
110	- 200		
1 1			
Edre	B		
N M M	6		
1.1.1.1.1.1	1		
101	10		
13 2- 10	2		
10 10 10	2		
10 10 10	1.0	1.200	
m m m	24	1	
	1		
I II	-	6	
		1	
1 - 10 - 1 - 1	1	10	
212	No.	Se il	
the last last	20	NC	
man	-	-	
0.00	10	10	
	100	E.	
10 10 10	141	2	
Pr Pr Pr	12	西小	
nmo	23	3	
0.00	02	9	
In I I		9	
		5	
no a m	0	5	
200	1	1A	
10 00 00 00 00 00	N.	0	
	8	9	
Popla.	0	Ser.	
	5	9	
17 17 10	54	B. Car	

-
H
PA



**A66** 

191 538 538 643 643	040
202 202 202 202 202 202 202 202 202 202	DAO 1
	440
A STATE CONSERSE	H
	-
1915 1917 1917 1917 1917 1917 1917 1917	TOAC
560 221 220 222 222 222 222 222 222 222 22	IONO
	L
1. 2222222000	м
	-
	IONC
SOOT STREET	9
	10
	F4 15
	MA
Ser son and services	B NOR
1001 1001 1001 1001 1001 1001 1001 100	TOLO
10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.010	TO NO
000000000000	T.
nemmerees	H
10 BON ON CHARGE	Surface and State
1021 1021 1021 2095 2096 2096 2096 2096 2096 2096 2096 2096	104.c
11251 12252 12252 12252 12352 12352 12352 12352 12352 12352 12352 12352 23525 23525 23525 23525 23525 23525 23525 23525 23525 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 25555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 255555 2555555	D Num
	and the second s

2	PC.	313	02	222	683	20	065	23	34	146	133	201	382	321	100	265	376	352	131	264	153	329	342	136	546	520	211	399	283	169	268	244	394	457	200	315	193
GE	1	~		10		-		-	-	4	Ξ	_		-		-	-	-	-		_	-	-	-		-	-	-	-	-	-		•			2	5
H	10FC	29	24	22	22	47	69	78	29	46	117	13	35	361	510	69	40	A	40	24	17	Ř	41	15	21	23	49	42	65	65	55	ž	39	51	55	28	16
	-1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	×	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	2	10	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		61-	11-	-15	-13	Ŧ	ĩ	7	Ŷ	ĩ	7	-	•	5	-	•	=	13	15	11	-20	-16	-14	-12	-10	ę	۴	1	?	•	2	4	9		9	12	18
	OFC	114	526	468	466	1018	197	1529	1388	658	116	557	491	544	387	242	244	303	359	470	744	774	1108	527	1245	1769	606	1090	755	1170	538	412	365	608	301	195	221
	1010	518	442	528	1411	966	874	1479	1354	131	863	536	483	559	346	214	220	299	332	531	800	823	1001	550	1234	1685	937	1017	765	1137	519	422	398	588	318	188	198
	-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•		•	-	-	•	•	•	•	•	•	•	•	•	•	•	•	•
	=	Ŧ	1	7	Ŷ	ĩ	7	-	•	•	-	•	=	13	15	11	19	-18	-16	-14	-10	9	9	1		•	2	4	9	80	9	12	14	16	18	22	-21
	DIO	562	1050	503	785	780	406	392	197	256	507	412	254	608	1205	772	915	885	1995	587	365	1984	1218	944	233	1079	813	594	302	530	313	226	170	340	269	396	795
	1010	524	1005	583	788	794	380	443	202	200	521	356	212	605	1194	760	885	914	1913	657	368	1971	1314	806	300	1034	800	611	285	551	251	243	186	327	266	354	800
~	-1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	×			5	-	5	5	5	5	9	9		9	9	9	9	9	9		9						9	9	9	9	9	9	9	-	-	-	-	-
FOR	=			Ţ	1	19	11	19	21	-22	-20	-18	-16	-14	-12	10	9	9	1	2	0	2	4		•	10	12	14	16	18	20	22	-23	-19	17	-15	-13
ACTORS	10FC	140	263	375	254	274	312	499	530	648	721	975	1252	1278	336	166	968	689	356	288	314	313	256	223	518	602	521	577	243	868	647	802	1477	1887	2004	542	753
URE	1070	35.8	366	300	112	326	300	504	577	651	137	874	1239	1194	388	966	942	720	356	316	333	323	126	244	528	559	537	577	264	857	651	823	1377	1999	2033	514	674
E C	-		•		-	-	-	-	-	-	-		-	-	-	-	-	-	•-	-	-	-	• •	• =	-	-	-	-	-	-	-	-	-	-	-	-	-
STR	*					-	-	4	4	-	4	4	-	-	-	4	-	-	-	-	4	4			-	-	-	5	-	-	-	-	-	-	-	5	•
ATED	=	1	10	2	12	192-	197	17	19	9	4	1	?			4			2	12	1			17	1	17	-15	-13	17	17	7		-	7	-	5	
ALCUL	DAO	503			1	542	000	643	1484	5369	1103	1981	1071	109	428	1064	643	155	11	618	208	-		204	203	948	871	1694	546	2799	935	918	797	737	805	405	167
	OTO	101					1007	159	1500	2416	1188	2056	1407	808	410	1177	SUS	100	123		173	376	196	AKR	693	168	118	1771	600	2959	1011	948	783	651	851	437	326
8	1								-						• -			• •	••	• •	•-		• •	• -	•	-	-	-	-	-	-	-	-		-	-	-
-																										200	1.5	1.5	1.1	2 24	1.12	-	1.1.1.	Sec.			1.5



MD         DOR         H         L         L         DO         DOC         H         L         DO         DO <thdo< th=""> <thdo< th=""> <thdo< th=""></thdo<></thdo<></thdo<>	mo         like         l	No         Dec         R         L   0 n   0 rc	D CALCULA	CALCULA	MLA	IEO	ST	tuc:	LURE	FACTOR	S FOR	1.	2											PAG	3
83         19.         2         18         1         206         254         -1         2         107         101         3         2         54         51           815         19.         -5         1         19         1         205         206         39         -9         3         2         100         107           805         20         -2         1         1         2         12         2         254         501         107           806         305         -2         0         2         1         2         2         255         2         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         1	83         19         2         18         1         206         254         -1         2         1074         1013         -15         3         2         554         511           81         19         5         19         1         202         201         -3         2         1005         1074         1013         -15         3         2         1005         1074         1013         -15         3         2         1005         1074         1013         -15         3         2         1005         1074         1013         -15         2         254         5718         1074         1013         -15         2         12         112         10         2         107         11         12         2         105         1076         107         10         10         101         101         101         101         101         10         2         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D IOPC H K L 10	10FC R K L 10	R L 10	K L 10	1 10	9	2	10FC		*	1	1010	10FC		*	-1	1070	10FC	=	×	-1	10F0	10FC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 11 11 246 3	1 1 1 1 200	Malls In	1 1	-		83	194	2	18	-	206	264	7	-	2	1074	1013	51-	•	2	554	531
82         193         -5         19         1         292         201         -5         1         2         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         1005         <	82         193         -5         19         1         292         281         -5         2         2008         999         -9         3         2         1008         100         2012         2018         100         2012         2018         100         2012         2018         100         2014         100         2         2         100         2014         2015         1         2         101         1         2         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							1=	103	1	2	i H	286	279	Ŷ	-	2	2559	2444	-13	•	2	851	840
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	775       269       -1       1       2       906       999       -9       3       2       100       984         806       319       1       245       450       -1       1       2       366       -5       1       2       366       137       -3       2       450       -99       3       2       290       394       300       -13       2       137       301       312       133       2131       7113       113       1       2       366       517       1       3       2       450       399       3       2       450       391       133       133       133       133       133       134       12       2       351       133       2       137       113       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133       133	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 359 15 13 1		1 1 1 1	1	14		82	193	ï	6	-	292	281	7	-	2	2753	2698	7	•	2	1085	1079
300       284       3       19       1       245       266       1       1       2       1154       1160       -7       3       2       22303       2730       393         300       335       -22       0       236       5       1       2       116       157       -3       2       2913       1378         301       333       -22       0       236       51       1       2       446       517       1       3       2       2913       138         314       204       -16       0       2       103       13       1       2       346       3       3       2       187       136       1867       3       2       2       137       131       131       13       1       2       2       3       2       2       3       3       2       136       366       3       2       2       3       3       2       136       3       2       2       3       3       3       3       3       3       2       136       3       2       2       3       3       3       3       3       3       3       3	00       284       3       19       1       245       266       1       1       2       1154       1160       -7       3       2       29313       27328       1337         00       235       -22       0       3       1       2       366       1       1       2       1137       1138       1237       900       900       10       2       2313       7313       1314       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131<	00       284       5       19       1       245       206       5       1       2       2013       2728       1378         000       284       -20       0       2       734       200       -1       3       2       450       393       2       293       391       3       2       450       391       3       2       450       396       391       3       2       450       396       391       3       2       450       396       391       3       2       450       396       391       3       2       450       396       391       3       2       450       396       3       2       450       396       3       2       450       396       9       3       2       100       136       100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10<	1 12 12 14 1	1 1 1 1	-12 14 1	1	-		275	269	-	19	-	211	229	7	-	2	908	666	٩	-	2	100	986
309       470       -24       0       2       316       304       3       1       2       366       368       -5       3       2       2913       2791       2013       2791       393         307       329       -16       0       2       11       1       2       465       517       1       3       2       450       393         314       304       -16       0       2       111       117       11       1       2       745       819       3       2       857       906         314       304       -16       0       2       113       1       2       521       497       3       2       113       1       2       521       897       106       955       2       105       106       106       11       1       2       11       1       2       113       1       2       521       11       1       2       11       1       2       106       106       106       11       1       2       2       11       3       2       106       106       11       1       2       2       111       3       2	69         50         -24         0         2         316         304         3         1         2         366         -5         3         2         2913         371           07         279         -22         0         2         245         393         393         392         110         173         11         1         2         446         400         -1         3         2         187         193         193         193         11         1         2         143         193         3         2         187         193         193         13         1         2         2         183         193         13         1         2         5         1         2         183         1         2         33         2         183         183         1         2         2         193         183         1         2         2         13         113         1         2         2         106         132         104         1         1         2         2         133         106         132         106         132         106         133         106         132         103         101         103	99       430       -24       0       2       316       304       3       1       2       306       35       2       2913       373       37       306       39       39       39       39       2       450       7       1       2       456       517       1       3       2       450       39       39       2       187       193       193       11       1       2       743       819       3       2       2       257       906       39       3       2       193       193       11       1       2       743       819       3       3       2       193       193       11       1       2       743       813       3       2       100       113       1       2       33       2       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100<	1 10 1- 091 0	140 -10 14 1	- 10 17	14 1	-		00	284	•	19	4	245	266	-	-	2	1154	1140	7	9	2	1228	1378
309       335       -22       0       234       220       5       1       2       1188       1257       -3       2       450       399       392       397       392       897       392       897       392       987       392       987       397       995       996       597       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995       995	99       335       -22       0       2       24       200       5       1       2       1188       1257       -3       2       650       70       99       392       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1137       1136       1137       113       12       2334       3365       3365       3365       3365       3365       3365       3365       3365       3365       3479       3665       3479       3667       3769       3479       3657       3479       365       3462       4470       447       365       3462       4470       445       3657       3465       4457	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 600 -6 14 1	41 9- 609		141	-		389	430	-24	0	2	316	304	•	-	2	3861	3688	Ŷ	3	2	2913	2718
07       279       -20       0       2       475       495       7       1       2       426       517       1       3       2       1137       1139       2       865       517       1       3       2       1137       1139       1       3       2       1137       1139       12       486       517       1       3       2       1137       1139       12       531       319       331       3       2       1005       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1065       1066       113       12       2       234       335       113       12       2       335       113       12       2       335       113       13       2       2       2617       630       113       12       2       335       113       2       2       2       113       12       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	007         279         -20         0         4/5         4/5         7         1         2         426         517         1         3         2         1137         1135           017         232         -18         0         2         465         7         1         2         743         819         3         3         2         1037         1135         113         731         113         2         2         1037         133         2         103         13         2         103         13         2         103         133         2         103         133         2         103         133         2         113         2         113         2         113         2         103         133         2         103         133         2         103         133         2         103         103         103         103         103         2         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103	3 623 -4 14 1	622 -4 14 1	1 1 1	1 1	-		000	335	-22	•	2	234	220	5	-	~	1188	1257	7	3	2	450	399
87       332       -18       0       2       680       707       9       1       2       486       517       1       3       3       2       1837       1827         14       299       -16       0       2       1171       1175       11       1       2       731       731       731       131       11       2       532       552       1897       1827       186       11       2       3       3       3       3       3       2       1809       1853       166       51       2       333       3       3       3       2       1809       1867       600       1453       3       3       3       2       113       1       2       334       335       3       3       3       3       3       3       5       5       3       3       3       5       5       3       3       3       3       3       3       3       5       3       3       5       5       3       3       5       5       3       3       5       3       3       5       5       3       3       5       5       3       3       3	87       332       -18       0       2       660       707       9       1       2       466       517       1       3       3       2       1877       1827         14       295       -16       0       2       1171       1175       11       1       2       731       731       731       731       131       1       2       532       555       15       1       2       334       325       9       3       2       1005       1156       11       2       334       335       11       3       2       1005       1156       11       2       334       335       11       1       2       334       335       11       1       2       334       335       11       1       2       334       336       11       1       2       335       316       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66       66<	87       332       -18       0       2       680       707       9       1       2       466       517       1       3       2       1877       1133         164       2790       -16       0       2       1171       1175       11       1       2       743       819       3       3       2       1005       1046       10       2       1015       101       2       3       3       2       1005       1046       10       2       113       1       2       3       3       2       1005       1046       101       1       2       3       3       2       1005       1046       10       1       2       3       3       11       3       2       1005       1046       101       10       10       10       10       10       10       10       10       10       10       10       10       11       11       3       2       1105       101       100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       100       100       10		201 -2 14 1 -3					10	279	-20	0	2	475	495	-	-	2	424	400	7	•	2	857	906
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 208 0 14 1 2	208 0 14 1 2	0 14 1 2	14 1 2			87	332	-18	0	2	680	707	•	-	2	486	212	-	•	2	1137	1138
64       270       -14       0       2       731       731       13       1       2       521       497       5       3       2       1005       1045         114       304       -10       0       2       1919       1976       17       1       2       334       326       9       3       2       1005       116       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>64         270         -14         0         7         731         731         13         1         2         521         697         5         3         2         100         1156           164         304         -10         0         2         1997         1976         17         1         2         334         326         9         3         2         100         1156           305         254         -10         0         2         1997         11         2         344         375         11         3         2         960         955         2700         1156         505         255         517         510         513         2         245         253         255         253         555         255         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         556         555</td></td<> <td>1 376 9 14 1</td> <td>1 41 0 716</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>200</td> <td>-16</td> <td>•</td> <td>2</td> <td>1171</td> <td>1175</td> <td>11</td> <td>-</td> <td>2</td> <td>743</td> <td>819</td> <td>•</td> <td>•</td> <td>2</td> <td>1879</td> <td>1827</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	64         270         -14         0         7         731         731         13         1         2         521         697         5         3         2         100         1156           164         304         -10         0         2         1997         1976         17         1         2         334         326         9         3         2         100         1156           305         254         -10         0         2         1997         11         2         344         375         11         3         2         960         955         2700         1156         505         255         517         510         513         2         245         253         255         253         555         255         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         556         555	1 376 9 14 1	1 41 0 716						200	-16	•	2	1171	1175	11	-	2	743	819	•	•	2	1879	1827
56 $266$ $-12$ $0$ $2$ $534$ $136$ $9$ $3$ $11$ $3$ $2$ $500$ $945$ $516$ $324$ $-10$ $0$ $2$ $1976$ $17$ $1$ $2$ $373$ $11$ $3$ $2$ $560$ $945$ $510$ $534$ $13$ $3$ $2$ $11$ $3$ $2$ $561$ $600$ $945$ $510$ $534$ $11$ $3$ $2$ $610$ $945$ $510$ $534$ $13$ $3$ $2$ $511$ $520$ $534$ $113$ $32$ $511$ $520$ $520$ $521$ $511$ $520$ $521$ $511$ $520$ $521$ $520$ $521$ $521$ $520$ $521$ $520$ $521$ $520$ $521$ $520$ $521$ $520$ $521$ $520$ $521$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$	56       266       -12       0       2       552       555       15       1       2       373       11       3       2       1200       136         516       254       -10       0       2       1919       1976       17       1       2       373       11       3       2       960       945         516       254       -6       0       2       2148       1878       -16       2       2       333       315       11       3       2       960       945       270         516       473       0       0       2       2148       1878       -16       2       2       245       270       11       3       2       950       315       216       473       206       953       270       205       213       206       953       270       205       2163       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710       710	56 $56$ $-12$ $0$ $532$ $553$ $553$ $515$ $11$ $3$ $2$ $200$ $945$ $516$ $234$ $-10$ $0$ $2$ $1976$ $17$ $1$ $2$ $373$ $11$ $3$ $2$ $600$ $945$ $570$ $534$ $13$ $3$ $2$ $610$ $945$ $570$ $933$ $52$ $540$ $945$ $570$ $950$ $945$ $570$ $950$ $945$ $570$ $940$ $532$ $513$ $513$ $520$ $532$ $513$ $510$ $513$ $500$ $945$ $570$ $510$ $913$ $-10$ $2$ $2366$ $714$ $2$ $234$ $213$ $206$ $945$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$ $570$ $580$		201 A 1A 1			-		19	270	-14		-	731	731	13	-	2	521	497	5	•	2	1085	1046
314       304 $-10$ 0       2       199       1976       17       1       2       373       11       3       2       960       945         326       234 $-6$ 0       2       1497       1419       19       1       2       540       534       13       3       2       617       630         356       234 $-6$ 0       2       2039       2000 $-18$ 2       2       235       2135       213       215       213       215       213       215       213       215       214       2       2       242       275       216       27       235       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215       215	314       304       -10       0       2       1919       1976       17       1       2       379       373       11       3       2       960       945         356       254       -6       0       2       1497       1419       19       1       2       540       534       13       3       2       617       600       945         350       344       -4       0       2       2148       1878       -16       2       2       245       250       153       3       2       617       630       545         356       344       -4       0       2       2165       1315       -10       2       2       33       3       555       355       355       355       355       356       356       375       305       356       375       305       356       375       305       356       326       375       305       355       356       326       326       315       306       326       326       326       326       326       326       326       326       326       326       326       326       326       326       326       326	114       304 $-10$ 0       2       1919       1976       17       1       2       373       11       3       2       960       945         256       254 $-6$ 0       2       1497       1419       19       1       2       540       534       13       3       2       617       630       945         356       254 $-6$ 0       2       2039       3015 $-16$ 2       2       335       315       31       3       2       617       630       945         356       647       0       2       2169       1792 $-2$ 2       345       375       315       315       316       419       32       415       453       355       315       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305		1 1 10 100	1 10 14				20	286	-12	•	-	552	555	51	-	2	334	326	•	•	2	1200	1136
323 $-8$ $0$ $2$ $149$ $14$ $19$ $1$ $2$ $540$ $534$ $13$ $3$ $2$ $617$ $630$ $556$ $344$ $-4$ $0$ $2$ $2148$ $1878$ $-16$ $2$ $2395$ $315$ $-16$ $2$ $2345$ $315$ $312$ $317$ $3$ $2$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $565$ $270$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$ $520$	323       -8       0       2       1497       1419       19       1       2       540       534       13       3       2       617       630         556       344       -4       0       2       2148       1878       -16       2       2       255       256       324       17       3       2       565       270       565       270       555       270       555       270       555       270       555       270       555       270       513       205       375       313       205       375       312       205       375       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305       305 <td>323 $= 6$ $2$ $1497$ $1419$ $19$ $1$ $2$ $545$ $550$ $55$ $517$ $505$ $550$ $344$ $-4$ $0$ $2$ $2149$ $1678$ $-16$ $2$ $2039$ $2000$ $-18$ $2$ $245$ $250$ $55$ $225$ $215$ $2135$ $2135$</td> <td>4 220 -15 15 1</td> <td>1 11 11- 000</td> <td>1 51 51-</td> <td></td> <td>-</td> <td></td> <td></td> <td>304</td> <td>191-</td> <td>0</td> <td>-</td> <td>1919</td> <td>1976</td> <td>17</td> <td>-</td> <td>2</td> <td>379</td> <td>373</td> <td>=</td> <td>3</td> <td>~</td> <td>96</td> <td>945</td>	323 $= 6$ $2$ $1497$ $1419$ $19$ $1$ $2$ $545$ $550$ $55$ $517$ $505$ $550$ $344$ $-4$ $0$ $2$ $2149$ $1678$ $-16$ $2$ $2039$ $2000$ $-18$ $2$ $245$ $250$ $55$ $225$ $215$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$ $2135$	4 220 -15 15 1	1 11 11- 000	1 51 51-		-			304	191-	0	-	1919	1976	17	-	2	379	373	=	3	~	96	945
256         254         -6         0         2         2039         2000         -16         2         2         2         2         3         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	55         54         -6         0         2         200         -16         2         2         25         201         3         2         255         255         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         355         356         355         356         355         356         355         356         356         355         356         355         356         355         356         355         356         355         356         355         356         355         356         351         356         355         356         355         356         355         356         355         356         355         356         355         356         355         356         355         356         355         356         355         356         355         35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 51 61- 972 1	1 51 51 - 972		1 2 2	•		349	323	-	0	2	1497	1419	19	-	2	540	534	13	•	2	617	630
350       344       -4       0       2       2148       1878       -16       2       2       295       324       17       3       2       583       565         466       473       0       0       2       2690       2536       -12       2       2       375       19       3       2       462       479         236       552       2       0       2       2590       2536       -12       2       2       375       19       3       2       462       479         236       592       6       0       2       1557       1104       -6       2       2       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395       346       395	350       344       -4       0       2       2148       1878       -16       2       2       395       315       14       2       2       305       365       555       555       555       555       555       513       206       473       0       0       2       2690       2536       -12       2       2       235       315       2       13       206       479       305       305       316       479       305       305       316       479       305       316       479       305       316       312       2       2       2       315       2       13       206       479       305       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       312       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316       316	350         344         -4         0         2         14         2         2         36         324         17         3         2         583         563           66         473         0         0         2         2469         2365         315         -16         2         2         323         215         1315         -10         2         2         323         213         206         479           238         252         2         0         2         1315         -10         2         2         223         213         206         479           287         282         2         0         2         1315         -10         2         2         223         213         206           287         288         299         10         0         2         1405         142         2         2         233         214         42         253         392         392         393         392         395         392         392         392         395         392         395         392         395         395         392         395         392         395         392         395         395 <td></td> <td>1 11 11- 684</td> <td></td> <td></td> <td></td> <td></td> <td>256</td> <td>254</td> <td>4</td> <td>•</td> <td>2</td> <td>2039</td> <td>2000</td> <td>-18</td> <td>2</td> <td>2</td> <td>245</td> <td>250</td> <td>15</td> <td>•</td> <td>2</td> <td>295</td> <td>270</td>		1 11 11- 684					256	254	4	•	2	2039	2000	-18	2	2	245	250	15	•	2	295	270
662         -2         0         2         3850         3815         -14         2         342         375         19         3         2         462         473           186         473         0         0         2         2690         2536         -12         2         2         2         3         2         462         473           190         191         4         0         2         1257         1315         -10         2         2         2         3         2         2         3         3         2         2         3         3         2         2         3         3         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <th< td=""><td>662         -2         0         2         385         -14         2         342         375         19         3         2         462         473           106         473         0         0         2         2690         2536         -12         2         2         2         3         2         462         473           106         131         -10         2         2         2         2         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3</td><td>688         622         -2         0         2         385         -14         2         342         375         19         3         2         462         473           106         473         0         0         2         2690         2536         -12         2         2         2         3         2         413         206           106         191         4         0         2         1557         1104         -6         2         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3&lt;</td><td>1 21 - 100 0</td><td>1 51 2- 506</td><td>- 12</td><td>1 12</td><td>-</td><td></td><td>350</td><td>1</td><td>1</td><td>•</td><td>-</td><td>2148</td><td>1878</td><td>-16</td><td>2</td><td>2</td><td>296</td><td>324</td><td>11</td><td>•</td><td>2</td><td>583</td><td>565</td></th<>	662         -2         0         2         385         -14         2         342         375         19         3         2         462         473           106         473         0         0         2         2690         2536         -12         2         2         2         3         2         462         473           106         131         -10         2         2         2         2         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	688         622         -2         0         2         385         -14         2         342         375         19         3         2         462         473           106         473         0         0         2         2690         2536         -12         2         2         2         3         2         413         206           106         191         4         0         2         1557         1104         -6         2         2         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3<	1 21 - 100 0	1 51 2- 506	- 12	1 12	-		350	1	1	•	-	2148	1878	-16	2	2	296	324	11	•	2	583	565
66       473       0       0       2       2690       2536       -12       2       2       2       2       2       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 <t< td=""><td>66         473         0         0         2         2690         2536         -12         2         2         2         2         2         2         2         2         2         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <t< td=""><td>66       773       0       0       2       2690       2536       -12       2       2       2       2       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <t< td=""><td>1 22 2 2 2 2 2</td><td>1 21 2- 306</td><td>12</td><td>1 1 1</td><td>-</td><td></td><td>585</td><td>623</td><td></td><td>•</td><td>2</td><td>3850</td><td>3815</td><td>-14</td><td>2</td><td>2</td><td>342</td><td>375</td><td>19</td><td>3</td><td>2</td><td>462</td><td>479</td></t<></td></t<></td></t<>	66         473         0         0         2         2690         2536         -12         2         2         2         2         2         2         2         2         2         3         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <t< td=""><td>66       773       0       0       2       2690       2536       -12       2       2       2       2       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       <t< td=""><td>1 22 2 2 2 2 2</td><td>1 21 2- 306</td><td>12</td><td>1 1 1</td><td>-</td><td></td><td>585</td><td>623</td><td></td><td>•</td><td>2</td><td>3850</td><td>3815</td><td>-14</td><td>2</td><td>2</td><td>342</td><td>375</td><td>19</td><td>3</td><td>2</td><td>462</td><td>479</td></t<></td></t<>	66       773       0       0       2       2690       2536       -12       2       2       2       2       3       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 <t< td=""><td>1 22 2 2 2 2 2</td><td>1 21 2- 306</td><td>12</td><td>1 1 1</td><td>-</td><td></td><td>585</td><td>623</td><td></td><td>•</td><td>2</td><td>3850</td><td>3815</td><td>-14</td><td>2</td><td>2</td><td>342</td><td>375</td><td>19</td><td>3</td><td>2</td><td>462</td><td>479</td></t<>	1 22 2 2 2 2 2	1 21 2- 306	12	1 1 1	-		585	623		•	2	3850	3815	-14	2	2	342	375	19	3	2	462	479
238       552       2       0       188       -20       4       2       395       348         190       191       4       0       2       1257       1104       -6       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       479       2329       -14       4       2       510       513         287       286       6       0       2       1405       1429       -4       2       2       2479       2329       -16       4       2       556       392       396       592       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       396       392       396       346 <td>238       252       2       0       2       257       1315       -10       2       2       720       804       -18       4       2       395       346         287       287       287       104       -8       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       4       2       510       513         281       317       338       8       0       2       1405       1420       -4       2       2       2479       2329       -14       4       2       516       513         281       302       16       0       2       1405       140       -2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101</td> <td>238       252       2       0       2       1257       1315       -10       2       2       770       804       -18       4       2       395       346         287       282       6       0       2       1696       1792       -6       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1405       1429       -4       2       2       2479       2329       -14       4       2       510       513         281       334       10       0       2       805       749       -2       2       2       2       2       2       2       2       2       2       2       310       312       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32<td>276 -315 1</td><td>276 -1 15 -1</td><td>1 2 2</td><td>1 12</td><td>-</td><td></td><td>486</td><td>473</td><td>0</td><td>0</td><td>2</td><td>2690</td><td>2536</td><td>-12</td><td>2</td><td>2</td><td>223</td><td>215</td><td>21</td><td>3</td><td>2</td><td>213</td><td>206</td></td>	238       252       2       0       2       257       1315       -10       2       2       720       804       -18       4       2       395       346         287       287       287       104       -8       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       4       2       510       513         281       317       338       8       0       2       1405       1420       -4       2       2       2479       2329       -14       4       2       516       513         281       302       16       0       2       1405       140       -2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101	238       252       2       0       2       1257       1315       -10       2       2       770       804       -18       4       2       395       346         287       282       6       0       2       1696       1792       -6       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1405       1429       -4       2       2       2479       2329       -14       4       2       510       513         281       334       10       0       2       805       749       -2       2       2       2       2       2       2       2       2       2       2       310       312       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32 <td>276 -315 1</td> <td>276 -1 15 -1</td> <td>1 2 2</td> <td>1 12</td> <td>-</td> <td></td> <td>486</td> <td>473</td> <td>0</td> <td>0</td> <td>2</td> <td>2690</td> <td>2536</td> <td>-12</td> <td>2</td> <td>2</td> <td>223</td> <td>215</td> <td>21</td> <td>3</td> <td>2</td> <td>213</td> <td>206</td>	276 -315 1	276 -1 15 -1	1 2 2	1 12	-		486	473	0	0	2	2690	2536	-12	2	2	223	215	21	3	2	213	206
190       191       4       0       2       1257       1104       -8       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       2479       2329       -14       4       2       356       392         285       299       10       0       2       805       749       -2       2       2       2459       2667       -12       4       2       556       552       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       392       344       2       303       3	190       191       4       0       2       1257       1104       -6       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       2479       2329       -14       4       2       556       392         281       239       12       0       2       805       749       -2       2       255       120       -10       4       2       556       552       392       5519       5516       513       552       522       535       522       392       5519       -12       4       2       528       532       532       532       531       1017       736       535       532       532       532       532       532       532       532       532       532       532       532       532       531       1017       736       535       532       532       532       532       532       532       532       532       532       532       532       532       532       531       544       52       536       531       54	190       191       4       0       2       1557       1104       -6       2       2       720       804       -18       4       2       510       513         287       282       6       0       2       1696       1792       -6       2       2       749       2329       -14       4       2       556       392         281       239       12       0       2       805       749       -2       2       2       2       559       510       -12       4       2       536       592         285       299       12       0       2       805       749       -2       2       2       2       2       529       510       -12       4       2       536       592         285       302       166       170       728       4       2       2       2       2       2       529       501       101       7       7       4       2       1034       1017       7       4       4       2       503       501       7       4       2       1034       1017       7       4       101       7       4       2 </td <td></td> <td>A77 -1 15 1</td> <td> 12</td> <td>1 15 1</td> <td>-</td> <td></td> <td>236</td> <td>1 252</td> <td>2</td> <td>0</td> <td>~</td> <td>1257</td> <td>1315</td> <td>97-</td> <td>2</td> <td>2</td> <td>279</td> <td>188</td> <td>-20</td> <td>4</td> <td>2</td> <td>395</td> <td>348</td>		A77 -1 15 1	12	1 15 1	-		236	1 252	2	0	~	1257	1315	97-	2	2	279	188	-20	4	2	395	348
287       282       6       0       2       1696       1792       -6       2       2       2479       2329       -14       4       2       356       392         317       338       8       0       2       1405       1429       -4       2       2       2428       2267       -12       4       2       556       552         2551       249       10       0       2       801       941       0       2       2       2       2       255       120       -10       4       2       526       522         256       302       16       0       2       120       0       2       801       941       0       2       253       160       16       4       2       104       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       1	287       282       6       0       2       1696       1792       -6       2       2       2479       2329       -14       4       2       356       392         317       338       8       0       2       1405       1429       -4       2       2       2428       5267       -12       4       2       528       522         285       299       112       0       2       801       941       0       2       2       2       2       2       529       520       -12       4       2       528       522         286       302       16       0       2       1941       0       2       1205       2       2       2       2       2       2       104       10       7       7       7       2       2       2       101       4       2       104       101       7       7       101       7       7       101       7       7       101       7       7       101       101       7       104       101       7       104       101       7       104       101       7       104       101       101       101	287       282       6       0       2       1696       1792       -6       2       2       2479       2329       -14       4       2       356       392         251       249       10       0       2       1405       1429       -4       2       2       255       120       -10       4       2       556       552         251       239       12       0       2       801       941       0       2       2       2       2559       5801       -12       4       2       526       552         256       302       16       0       2       171       728       4       2       2       2559       5801       -12       4       2       164       194       10       17       10       17       10       2       1017       10       12       12       12       12       12       12       10       14       10       144       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017       1017	1 465 3 15 1	465 3 15 1	3 15 1	3 15 1	-		190	161 0	4	•	2	1257	1104	9	2	2	720	804	-18	4	2	510	513
317       336       8       0       2       1405       1429       -4       2       2428       2267       -12       4       2       528       535         251       249       10       0       2       805       749       -2       2       255       120       -10       4       2       545       635         286       302       16       0       2       1205       2       2       2       259       2601       -8       4       2       1034       1017         286       302       16       0       2       1222       1205       2       2       2       2599       2619       -4       4       2       1034       1017         286       302       16       0       2       171       728       4       2       2639       2619       -4       2       1034       1017         286       302       16       0       2       261       267       645       04       2       144       79         412       423       261       267       64       0       4       4       2       145       714       714	317       338       8       0       2       1405       1429       -4       2       2       2428       2267       -12       4       2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	317       338       8       0       2       1405       1429       -4       2       2       2428       2267       -12       4       2       5328       532         251       249       10       0       2       805       749       -2       2       255       120       10       4       2       645       655         256       302       16       0       2       171       728       4       2       2559       2801       -8       4       2       1034       1017         256       302       16       0       2       171       728       4       2       2       2       2       2       148       18       4       2       1034       1017         256       302       16       0       2       701       728       4       2       2       148       18       18       104       704         414       435       16       0       2       261       267       6       2       146       0       4       2       145       704       714       704         414       435       19       0       2	5 210 5 15 1	210 5 15 1	1 21 2	1 51 5	-		28	7 282	9	•	2	1696	1792	9	2	2	2479	2329	-14	4	2	356	392
251       249       10       0       2       805       749       -2       2       255       120       -10       4       2       645       635         281       534       14       0       2       129       0       2       891       941       0       2       2       2599       2801       -8       4       2       1034       1017         285       302       16       0       2       171       728       4       2       2       2       2       2       144       4       2       104       1017         286       302       16       0       2       711       728       4       2       2       2       146       16       1       794       1017         216       114       435       16       0       2       714       794       794       794       794       794       794         412       423       126       10       2       2       10       2       2       145       794       794         206       114       +31       2       10       2       2       146       714       794	251       249       10       0       2       805       749       -2       2       255       120       -10       4       2       645       635         286       399       112       0       2       891       941       0       2       2       2599       2801       -8       4       2       1034       1017         286       302       16       0       2       711       728       4       2       2       2       144       4       2       1034       1017         286       302       16       0       2       711       728       4       2       2       2       144       2       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       6       7       7       7	251       249       10       0       2       805       749       -2       2       255       120       -10       4       2       645       635         286       399       112       0       2       891       941       0       2       2       2599       2801       -8       4       2       1034       1017         286       302       16       0       2       1722       1205       2       2       2       2       2       144       2       104       1017         286       302       16       0       2       1222       1205       120       10       2       146       184       2       146       184       2       146       184       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7	1 11 15 1	1 12 1	I II II	1 =	-	ġ.,	16	338	-	•	2	1405	1429	1	2	2	2428	2267	-12	4	2	528	522
285       299       12       0       2       891       941       0       2       2       2559       2801       -6       4       2       1034       1017         481       534       14       0       2       1222       1205       2       2       2       1257       1140       -6       4       2       148       184         256       302       16       0       2       771       728       4       2       2       2       2       144       4       2       925       817         256       302       16       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       -23       1       2       228       126       10       2       2       406       436       0       4       2       714       794         226       243       -23       1       2       212       276       10       2       445       2       446       0       4       2       1496         226       243       455       14	285       299       12       0       2       891       941       0       2       2       2599       2801       -6       4       2       1034       1017         286       302       16       0       2       771       728       4       2       2       2       2       2       2       2       2       2       140       -6       4       2       148       184         256       302       16       0       2       771       728       4       2       2       5       140       -6       4       2       148       184       794         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       795       817         226       243       -21       1       2       212       278       112       2       2       464       0       4       4       2       1496       6       2       4       2       1496       149       6       149       149       149       149       149       149       2       144       2       1455	285       299       12       0       2       891       941       0       2       2599       2801       -6       4       2       1034       1017         256       302       16       0       2       771       728       4       2       2       2       2       2       2       144       4       2       148       184         256       302       16       0       2       771       728       4       2       2       4       4       2       916       184       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       8       2       7       6       2       7       6       7       7       6       7       7       8       7       7       8       7       7       8       7       6       4       2       7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	285 13 15 1	1 11 1	1 1 1	•		35	249	10	0	-	805	749		2	2	255	120	97-	4	2	645	635
481       534       14       0       2       1222       1205       2       2       2       140       -6       4       2       146       18       0         258       302       16       0       2       771       728       4       2       2       6       4       2       146       14       2       925       817         258       302       16       0       2       771       728       4       2       2       6       2       2       66       4       2       746       794         412       435       -18       0       2       261       267       6       2       2       406       436       -2       4       2       794         226       243       -21       1       2       228       126       10       2       2       475       2       4       2       146       0       4       2       1456       1456       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1	401       534       14       0       2       1222       1205       2       2       25639       2619       -6       4       2       146       18         256       302       16       0       2       771       728       4       2       2       4       4       2       925       817         256       302       16       0       2       711       728       4       2       2       4       4       2       925       817         412       423       -23       1       2       266       126       6       2       519       464       0       4       2       714       794         412       423       -23       1       2       228       126       10       2       2       419       6       4       2       714       794         206       114       -2       12       2       114       2       2       4       2       1496       1496         216       114       -2       2       12       14       2       2       4       2       1496       14       2       149       1565       156	481       534       14       0       2       1222       1205       2       2       1257       1140       -6       4       2       148       184         258       302       16       0       2       771       728       4       2       2       5619       -4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       266       273       8       2       519       464       0       4       2       714       794         2266       243       -23       1       2       228       126       10       2       2       4       2       14657       1496         166       114       -2       2       16       16       4       2       1457       1496         166       114       -2       2       2       16       169       4       2       1457       1496         423       455       -17       439 </td <td>1 91 01- 801 91</td> <td>1 91 01- 881</td> <td>-10 16 1</td> <td>1 1 1 0</td> <td>-</td> <td></td> <td>38</td> <td>299</td> <td>12</td> <td>0</td> <td>2</td> <td>891</td> <td>941</td> <td>•</td> <td>2</td> <td>2</td> <td>2599</td> <td>2801</td> <td>ę</td> <td>4</td> <td>2</td> <td>1034</td> <td>1017</td>	1 91 01- 801 91	1 91 01- 881	-10 16 1	1 1 1 0	-		38	299	12	0	2	891	941	•	2	2	2599	2801	ę	4	2	1034	1017
258       302       16       0       771       728       4       2       2639       2619       4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       288       273       8       2       519       464       0       4       2       706       872         226       243       -21       1       2       228       126       10       2       2       475       2       475       2       457       1496         166       114       -21       1       2       228       127       14       2       74       7       475       2       464       0       4       4       2       1496         166       114       2       216       16 <t< td=""><td>256       302       16       0       2       771       728       4       2       2       2619       -4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       14       2       14       2       14       16       17       14       2       14       16       14       2       14       16       14       2       14       16       14       2       14       2       14       16       14       16       14       16       14       2       14       16       14       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16</td><td>258       302       16       0       2       771       728       4       2       2       6       2       2       66       4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       261       267       6       2       519       464       0       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       4       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       4       2       1457       1496         226       2451       14       2       2       2       14       2       2       4       2       1457       1496         226       166       170       16       12       2       2       14       2       2       4       2</td><td>1 91 8- 556 B</td><td></td><td></td><td>8 16 1</td><td>-</td><td>1 3</td><td>84</td><td>534</td><td>14</td><td>•</td><td>2</td><td>1222</td><td>1205</td><td>2</td><td>2</td><td>2</td><td>1257</td><td>1140</td><td>۴</td><td>4</td><td>~</td><td>148</td><td>184</td></t<>	256       302       16       0       2       771       728       4       2       2       2619       -4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       14       2       14       2       14       16       17       14       2       14       16       14       2       14       16       14       2       14       16       14       2       14       2       14       16       14       16       14       16       14       2       14       16       14       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16	258       302       16       0       2       771       728       4       2       2       6       2       2       66       4       4       2       925       817         414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       261       267       6       2       519       464       0       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       4       4       2       714       794         226       243       -23       1       2       228       126       10       2       2       4       2       1457       1496         226       2451       14       2       2       2       14       2       2       4       2       1457       1496         226       166       170       16       12       2       2       14       2       2       4       2	1 91 8- 556 B			8 16 1	-	1 3	84	534	14	•	2	1222	1205	2	2	2	1257	1140	۴	4	~	148	184
414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       288       273       8       2       519       464       0       4       2       908       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       908       872         226       243       -21       1       2       212       278       12       2       2       4       2       464       0       4       2       908       872         166       114       -21       1       2       212       278       12       2       4       2       1456       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565       1565	414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       288       273       8       2       519       464       0       4       2       906       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       906       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1496         226       243       -51       1       2       228       127       14       2       2       4       2       1496         166       114       -21       1       2       228       257       14       2       2       4       2       1496         423       455       14       2       2       265       248       8       4       2       1496       14       2       149	414       435       18       0       2       261       267       6       2       2       406       436       -2       4       2       714       794         412       423       20       0       2       288       273       8       2       5       519       464       0       4       2       908       872         226       243       -21       1       2       228       126       10       2       2       512       475       2       4       2       1465       146       0       4       2       908       872         166       114       -21       1       2       2212       278       12       2       2       4       2       1456       1581       1456       1581       1456       1581       1456       1581       1456       1581       1456       1581       1456       1581       1581       1581       1581       1581       1585       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581       1581		1 91 9- 00	6 16 1	6 16 1		1.2	25	302	16	•	2	111	728	4	2	2	2639	2619	1	4	2	925	817
412       423       20       0       288       273       8       2       519       464       0       4       2       908       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       228       126       10       2       2       512       475       2       4       2       1496         166       114       -21       1       2       212       278       12       2       2       4       4       2       1496         423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       988         344       351       -17       1       2       228       257       14       2       265       248       8       4       2       977       988         344       351       170       16       2       2       265       248       8       4       <	412       423       20       0       2       288       273       8       2       519       464       0       4       2       906       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       228       126       10       2       2       512       475       2       4       2       1496         166       114       -21       1       2       228       257       14       2       2       4       2       1565       1581         423       455       -19       1       2       228       257       14       239       6       4       2       1565       1581         344       351       -17       1       2       228       257       14       239       6       4       2       1565       1581         344       351       -17       1       2       228       257       14       239       248       8       4       2       708 <td>412       423       20       0       288       273       8       2       519       464       0       4       2       906       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       228       126       10       2       2       512       475       2       4       2       1455       1496         166       114       -21       1       2       212       278       12       2       2       471       439       6       4       2       1565       1581         344       351       -17       1       2       228       257       14       2       2       475       6       4       2       1565       1581         344       351       -17       1       2       228       214       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2</td> <td>1 91 - 916 -</td> <td></td> <td> 14 -</td> <td>1 11</td> <td>-</td> <td></td> <td>AI</td> <td>4 435</td> <td>18</td> <td>•</td> <td>2</td> <td>261</td> <td>267</td> <td>9</td> <td>2</td> <td>2</td> <td>406</td> <td>436</td> <td>7</td> <td>4</td> <td>2</td> <td>714</td> <td>194</td>	412       423       20       0       288       273       8       2       519       464       0       4       2       906       872         226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       228       126       10       2       2       512       475       2       4       2       1455       1496         166       114       -21       1       2       212       278       12       2       2       471       439       6       4       2       1565       1581         344       351       -17       1       2       228       257       14       2       2       475       6       4       2       1565       1581         344       351       -17       1       2       228       214       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	1 91 - 916 -		14 -	1 11	-		AI	4 435	18	•	2	261	267	9	2	2	406	436	7	4	2	714	194
226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       212       278       12       2       2       4       4       2       1565       1581         423       455       -19       1       2       228       257       14       2       2       4       4       2       1565       1581         423       455       -19       1       2       228       257       14       2       2       4       4       2       1565       1581         344       351       -17       1       2       286       265       248       8       4       2       708       693         163       170       -15       1       2       166       16       2       265       248       8       4       2       708       693       337         163       170       -13       2       260       521       2       262       327       12       4       2       304       337	226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1496         166       114       -21       1       2       212       278       12       2       2       169       4       4       2       1565       1581         423       455       -19       1       2       228       257       14       2       2       4       4       2       1565       1581         423       455       -17       1       2       228       257       14       2       2       4       4       2       1565       1581         344       351       -17       1       2       288       265       248       8       4       2       706       693         344       351       -17       1       2       286       811       22       2       265       248       8       4       2       706       693         163       170       -15       1       2       805       811       22       2       265       248       8       4	226       243       -23       1       2       228       126       10       2       2       512       475       2       4       2       1457       1456         166       114       -21       1       2       212       278       12       2       2       169       4       4       2       1565       1581         423       455       -19       1       2       228       257       14       2       2       4       4       2       1565       1581         423       455       -19       1       2       288       257       14       2       2       4       4       2       1565       1581         344       351       -17       1       2       187       170       16       2       2       565       248       8       4       2       708       693       377       988         163       170       -15       1       2       180       108       10       4       2       708       693       337         211       246       214       2       2       2       2       2       262       337	1 91 0 100 10	1 91 0 10	1 9 1 9 1	1 1 1	-		1	2 423	20	• •	2	288	273	-	2	2	519	464	•	4	2	8	872
166       114       -21       1       2       212       278       12       2       2       208       169       4       4       2       1565       1561         423       455       -19       1       2       226       257       14       2       2       471       439       6       4       2       977       986         344       351       -17       1       2       226       257       14       2       2       471       439       6       4       2       977       986         344       351       -17       1       2       187       170       16       2       2       265       248       8       4       2       706       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       304       337         163       170       -13       2       660       673       327       12       4       2       304       337         11       2       660       673       327       12       4       2       304       344	166       114       -21       1       2       212       278       12       2       2       208       169       4       4       2       1565       1561         423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       968         344       351       -17       1       2       228       257       14       2       2       48       8       4       2       708       693         344       351       -17       1       2       187       170       16       2       2       265       248       8       4       2       708       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       708       693       337         211       240       -13       1       2       660       673       -223       3       2       262       327       12       4       2       708       593         211       240       -13       2       2	166       114       -21       1       2       212       278       12       2       208       169       4       4       2       1565       1581         423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       988         344       351       -17       1       2       228       257       14       2       2       453       6       4       2       977       986         344       351       -17       1       2       187       170       16       2       2       451       4       2       706       693         344       351       170       -15       1       2       187       170       16       2       2       265       248       8       4       2       706       693       337         211       240       -13       1       2       660       673       -2       262       327       12       4       2       304       337         214       234       -11       1       2       748       111	1 1 2 0 0 0 1	1 91 6 066	1 91 6	1 11 0	-		55	F 243	-23	-	-	228	126	10	2	2	512	475	2	4	2	1457	1496
423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       988         344       351       -17       1       2       187       170       16       2       2       455       248       8       4       2       708       693         163       170       -15       1       2       166       16       2       2       265       248       8       4       2       708       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       304       337         113       1       2       605       811       222       2       188       10       4       2       304       337         113       1       2       605       673       3       2       262       327       12       4       2       434	423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       988         344       351       -17       1       2       187       170       16       2       2       455       248       8       4       2       708       693         344       351       -17       1       2       187       170       16       2       2       265       248       8       4       2       708       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       304       337         211       240       -13       1       2       680       673       -23       3       2       262       327       12       4       2       304       337         211       240       -11       1       2       748       711       -21       3       2       262       333       14       4       2       503       562	423       455       -19       1       2       228       257       14       2       2       471       439       6       4       2       977       988         344       351       -17       1       2       187       170       16       2       2       455       248       8       4       2       708       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       708       693         163       170       -15       1       2       805       811       222       2       188       10       4       2       708       693       337         211       246       -13       1       2       660       673       -23       327       112       4       2       436       347         214       234       -11       1       2       748       748       16       4       2       503       562         214       234       -19       3       2       2       2       2       2       4       2       4       4       2       <	1 91 7 676 77	1 91 7 676	1 1 1 1	1 14 1	• •		14	114	-21	-	-	212	278	12	2	2	208	169	4	4	2	1565	1581
344     351     -17     1     2     187     170     16     2     2     265     248     8     4     2     708     693       163     170     -15     1     2     805     811     22     2     188     188     10     4     2     304     337       11     346     -13     1     2     805     811     222     2     2     188     108     4     2     304     337       11     346     -13     1     2     640     673     -23     3     2     262     327     12     4     2     434	344     351     -17     1     2     167     170     16     2     2     265     248     8     4     2     708     693       163     170     -15     1     2     805     811     22     2     186     186     10     4     2     304     337       211     240     -13     1     2     680     673     -23     3     2     262     327     12     4     2     434       211     240     -11     1     7     748     711     -21     3     2     262     327     12     4     2     434       211     244     711     -21     3     2     262     327     12     4     2     436	344     351     -17     1     2     167     170     16     2     2     265     248     8     4     2     708     693       163     170     -15     1     2     805     811     22     2     188     10     4     2     304     337       211     240     -13     1     2     800     673     -23     3     2     262     327     12     4     2     434       211     240     -13     1     2     680     673     -23     3     2     262     327     12     4     2     434       214     234     -11     1     2     748     711     -21     3     2     266     333     14     4     2     563     562       214     234     -11     1     2     748     711     -21     3     2     266     333     14     4     2     563     562       214     234     -19     3     2     457     448     16     4     2     583     562	1 91 9 05 10	1 91 9 950 1 91 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9				1	2.4	455	101-	-	-	228	257	14	2	2	471	439	•	4	2	577	988
163 170 -15 1 2 805 811 22 2 2 188 188 10 4 2 304 337 211 240 -13 1 2 640 673 -23 3 2 262 327 12 4 2 430 434	163     170     -15     1     2     805     811     22     2     186     10     4     2     304     337       211     240     -13     1     2     680     673     -23     3     2     262     327     12     4     2     434       211     240     -13     1     2     680     673     -23     3     2     262     327     12     4     2     434       214     244     711     -21     3     2     286     333     14     4     2     563     562	163     170     -15     1     2     805     811     22     2     166     168     10     4     2     304     337       211     240     -13     1     2     680     673     -23     3     2     262     327     12     4     2     434       214     234     -11     1     2     748     711     -21     3     2     266     333     14     4     2     563     562       214     234     -11     1     2     748     711     -21     3     2     266     333     14     4     2     563     562       211     244     711     -21     3     2     266     333     14     4     2     583     562       211     244     10     3     2     -19     3     2     456     391     391					• •		12	1 361	11	-		187	170	16	2	2	265	248		4	2	208	693
211 240 -13 1 2 680 673 -23 3 2 262 327 12 4 2 430 434	211 240 -13 1 2 680 673 -23 3 2 262 327 12 4 2 430 434 314 334 -11 1 2 748 711 -21 3 2 286 333 14 4 2 583 562	211 240 -13 1 2 680 673 -23 3 2 262 327 12 4 2 430 434 214 234 -11 1 2 748 711 -21 3 2 286 333 14 4 2 583 562 371 344 -0 1 2 319 325 -19 3 2 457 448 16 4 2 243 291	1 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 212 0 10 1			-	1.3	14	170	1	-	-	805	811	22	2	2	188	188	9	4	2	304	337
	214 224 -11 1 2 748 711 -21 3 2 286 333 14 4 2 583 562	214 234 -11 1 2 748 711 -21 3 2 286 333 14 4 2 583 562 271 246 -0 1 2 310 325 -19 3 2 457 448 16 4 2 243 291	1 01 0 00 00 10 1		1 9 9		14	1.3	10	1 240	-13	-	-	680	673	-23	9	2	262	327	12	4	2	430	434

							SEE .	120	690	02A	685	525	202	E IE	TOAC	2
							242	1000	697	924	225	352	202	202	1080	SVG
							-		1.9	pri-	100	17	-	- 2.4	5.0	
			10			10			15	rio.	10	à	10	10	- 34	
			1				ĩ	7	1	11-	21-	21-	-11-	-19	В	
					34	628	1388	1250	101	1018	1466	830	336	PTA	TOAC	
							1324	PTA1	ATR	4 PP	1161	928	244	218	1040	
							-			hire .			ber.	10	5	
							-	7.	-7 -	7	4	1	1	-7	- 54	
					21	04.1	- 1		I.	F.	ŝ' i	7	0	II-	H	
1 2 0 1			100		100	355	107	20.2	A STA	0.84	285	503	1050	562	TOAC	
					102	200	Cine	2000	DEC	107	Barr.	289	1082	250	7080	
							- 14	- 14		1	- 1			-	4	12
					2.0		w /1	* 0	e (	N K	* (	4.1	54.1	9	24	17
			0			17		11	10	2.0	2.4	- 23	0		В	8 100S
196	1218	1305	1	12.1	040	0110	Tid.A	222	NAN N	torne -	SAC	202	E APA	DAC	TOAC	NCLOS
1.00	12 400	1524	214	101	100	THE	NOC	300	35.6	EV2	ant.	2002	220	262	IONO	LOKT A
				1	-	e (m)	17	17	2	-	. 1	. *		7	4	the
			2	3	- 12	- 32	- 10	зÞ	-	1	5 6	P P	1.0	Ϋ.	hd .	3.1
	0	17	2-	91	1	- 10	-15	1	50	IN.	Ta	NA.	C.E.	W.C.	H	LATED
	(0)	1041	1381	1183	2309	1/484	243	1090	893	DEV	Edip	004	AUK .	200	TOAC	CVPTCA
	628	TRAT	20.30	1198	SULLO	1200	623	Tool	825	12YJ	Neo	004	INTE .		10+0	DINK D
		14	104	-	-	-	-	-	-	-	-	-	1		Fre	NN



		100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th>NU         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</th> <th></th> <th></th> <th></th> <th>NN         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1</th>	NU         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1				NN         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1 (1)         1
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1<td>N         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td><td>No.         Table         T</td><td></td><td></td><td></td><td></td></td>	1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>N         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td>No.         Table         T</td> <td></td> <td></td> <td></td> <td></td>	N         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	No.         Table         T				
		100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100       100     100     100     100     100     100     100	100         700         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<td></td><td></td><td>No.         No.         No.</td></td>	100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td>No.         No.         No.</td>			No.
100     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700       101     700	110         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00           101         7.00 <td>100         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101</td> <td>100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<td></td><td></td><td></td><td>No.         No.         No.</td></td>	100         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         100           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101           101         101	100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td></td> <td>No.         No.         No.</td>				No.
		1000     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10           10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td>1000         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<td></td><td></td><td></td><td>100     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10    &lt;</td></td>	1000         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td></td> <td>100     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10    &lt;</td>				100     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10    <
			1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1 <td></td> <td></td> <td></td> <td></td>				
		1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1 <td>1     4.0     5.0     1     1.0     1.0       1     4.0     5.0     1.0     1.0     1.0       1     4.0     5.0     2.0     1.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     2.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     1.0     1.0     1.0</td> <td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1<td>1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td><td></td><td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1</td></td>	1     4.0     5.0     1     1.0     1.0       1     4.0     5.0     1.0     1.0     1.0       1     4.0     5.0     2.0     1.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     2.0     1.0       1     1.0     2.0     2.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     2.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     2.0     1.0     1.0     1.0       1     1.0     1.0     1.0     1.0	1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td></td> <td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1</td>	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1
		<pre>     the root of the root</pre>	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1				
		The root of the ro	1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1           1         1         1         1         1				
			1000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
k			1 1110 1110 1 2 2220 1000 1 2 2220 1000 1 2 2220 1000 1 2 1000 1000	1 1000 1000 1000 1000 1000 1000 1000 1	1 1 1000 1000 1000 1000 1000 1000 1000	1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1</td>	1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1
	TONNY I		2 2220 1000 2 2220 1000 2 2220 1000 2 2220 1000 2 2220 1000 2 2220 1000 2 2000 1000 2 2000 1000 2 2000 1000	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11100 1000 1000 100 100 100 100 100 100

4
H
PA

2			MICOL		E	5		FACTOR	S FOR	-	N												•
	T 101	2	IOPC	-	*	-1	1010	10FC		M	-	1070	10FC	-	*	-1	1010	1010		*	Ч	1070	10FC
	8	-	196	10	•	~	011	141	14	•0	~	557	260	12	9	2	439	428	-19	13	2	215	174
		:=	226	2	-		253	258	16	•	2	244	260	14	9	~	525	521	1	2	2	246	233
			176	9		-	257	215	22	••	~	215	225	9	2	~	188	161	-13	2	2	219	200
		1	575	12-	-	-	246	260	-21	•	2	211	133	18	9	~	161	184	7	2	•	271	225
			203	17	-		10	904	-19	•		321	303	2	2	2	240	227	۴	2	2	391	<b>4</b> 03
		1		7	-		492	474	-17	•	2	230	247	-15	=	2	223	223	7	2	2	210	178
	2 2	2	280	1	-	-	51	448	-15	•	2	291	314	Ŧ	=	2	811	806	7	2	2	481	486
	2			7	-	~	840	855	-13	•	2	577	3	٩	=	2	611	633	7	2	2	898	850
		20	205	-	-	N	1177	1184	-11	9	2	743	766	-	=	~	475	469	-	2	2	483	422
-		1	787	1	-		786	1 766	91	•	2	446	496	٣	=	2	645	645	~	2	2	455	471
		38	646	7	-		1177	1112	-	0	2	555	542	ĩ	=	2	470	438	-	2	2	324	328
	1	2	242	-	-		1091	1120	5	0	2	680	752	7	=	2	400	400	•	2	N	303	319
	2 11	3	5111	-	-		1268	1192	-	0	2	435	481	-	=	2	651	629	13	2	2	331	300
		33	730		-		651	633	7	0	2	674	650		=	2	623	582	15	2	2	320	333
		-	ETE		-		360	334	-	0	N	645	716	5	=	2	438	439	11	2	2	298	266
		3	1167	0	-		48.	474	-	0	2	483	483		=	2	227	232	-14	1	2	312	337
		18	362	Ξ	-		585	581	5	0	2	550	555	•	=	2	188	178	-12	1	2	434	444
		22	115	EL	-	2	611	543	1	0	2	708	681	1	=	2	605	109	9	1	2	231	206
			ASA	-	-		326	370	•	0	2	358	360	13	=	~	289	310	7	1	~	384	401
		-	627	12	-		4	104	11	0	2	426	94	15	=	2	278	251	۴	1	2	271	555
		1	-	18	-		22	1 271	13	0	N	240	247	19	=	2	188	213	1	1	2	643	602
		5			-		35	5 352	15	0	N	302	289	-16	12	~	237	257	7	1	•	269	275
		8	410	-16	-	-	24	254	-20	10	N	206	227	1-14	12	~	240	301	•	1	2	357	319
		-	210		-		202	458	-14	10	N	246	241	-12	12	•	318	325	~	1	~	268	276
	••	1	2	17	-		Ř	415	-12	2		245	. 238	-10	12	2	386	299	4	1	•	340	366
			239	17	-		92	5 983	-10	10	N	777	108	7	12	2	403	413		1	2	249	293
-		02	246	-	-	N	16	4 906	7	10	2	577	605	۴	12	2	358	455	9	1	•	448	446
		G	261	4	-	-	22	8 246	4	9	2	937	126	1	12	2	321	321	12	1	•	281	294
		50	708	1	-		46	5 459	1	10	~	535	576	1	12	~	386	426	16	1	2	220	199
		2	1037	1	-		100	0 1112		10	~	577	566	•	12	~	186	117	7	2	~	182	182
-			639	0	-		162	2 1624	0	10	~	308	306	4	12	~	336	369	ĩ	15	N	224	234
-			212	N	-	N	73	1 722	2	10	N	800	805		12	~	279	281	•	15	2	176	201
-	9		642	-	-		36	8 396	4	10	2	888	630		12	~	427	424	9	16	2	343	395
-	2	11	243	9	-	~	82	151 6	•	2	2	437	420	9	12	2	338	298	1	16	2	424	426
	2	191	424	•0	*	-	62	3 645	80	10	2	456	486	12	12	2	246	229	7	16	N	311	310
	2	171	776	12	•	~	23	6 267	2	10	2	674	676	41	12	2	251	246	~	16	N	33/	348



				-	2		38	2	3	15	2	8	25	3	3		
							2	1	3		2.1	2	N	-	TOI	24	
					C.B.A.		78A	310	791	112	17.0	21.0	540	312	10FO	1.84	
					a)		-1	и		6	2.1	12	-	17	T.e		
							2	1	C	10	33	2	2	1	-		
					-	7			19-	11-	1	i.	217	-19	20		
	R. H		2		0.2.0	17.5	806	2223	125	100	121	101	251	828	DEC		
120				2.1.2	2	612	811	222	300	191	100	1 8 8	2222	434	1080		
							2	iŋ.	69	ų	R	2 1	10	H.	L.		
					23		-	-	01	10	2	2.1	3	2	-		
0		1		u -	t i	0	7	1	0%	00	10		11	15	H		
	2.82		0.40		1.1.0	EN#	715	742	203	132	523	1000	240	560	IONC.		
	DEA			1. PA	1 1 1		100	DE C	353	211	C1S	1	AAt	221	1050		
		17		i.V	n P	2.1	13	a i	2	10	2	1	2	10	64	15	
			15	1		1	¢ 7	o /	Q.	9	-	9	6	00	ы	-	
					1				-19	17-	22	10	1	14	H	NON	
	11.50	1115	0.01	1184	000	0.40	N N N	144	AU0	260	512	- 230	0.00	TAL	TORC	VOLOSE	
	10.41	TTTT	188	TILL	0440	200	TANK	1000	DVA	2418	1528-	SCN.		023	1050	URE 1	
	2	1	17	24	4	K	( be	1.1	9.1	4	12	2	0	٩.	4	DC	
-		-	-1		-	-	1 -	1-	1	1	01	9	1	×	16	ALE	
7.1	-	ī	7	2	7	1	-12		-	10.0	18	15	-	2	120	ALLE	
1134	CAR.	ANS &	187	108	CAN	50.0	201	100	200	-	ITE	350	AAT.	MAN	TOLC	CNFCD	
11 60	553	Rea	765	305	505	58.8	240	524	1000	Nan I	ALC .	1ES	THE	ino	1050	CINK C	
-18	9.5	7	10	10	14	67	1.87	M		4.1	1	11	P	s .	4	A.R.I	

Obse Jore         IK L 1070 JORe         JUL         JUL <thjul< th="">         JUL         JUL</thjul<>			CALCU	LATED	S	SOC	LURE	FACTORS	LOR	-	~											PAG	5	
		1070	10FC	-	*	-1	1010	10FC	=	-		010	10FC	=	*	-1	1010	10FC		*	-	OLO	10FC	
		285	303	-	~	~	840	883	11	•	•	208	196	15	5	•	362	307	•	~	•	288	580	
		188	203	-12	-	-	794	838	-18	4	-	250	246	17	-	-	376	345	1	-	•	313	318	
No         No<		195	176	19	-	1	419	448	1	4	-	206	211	21	-	3	276	257	13	-	•	805	746	
		301	330	7	-	-	2108	2017	-12	4	-	343	257	-22	•	•	275	305	15	-	•	272	241	
316         316         4         7         50         325         -16         6         326         236         330         340         330         340         330         340         330         340         330         340         330         340         330         340         330         340         330         340         330         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         350         340         340		195	161	9	-	1	2211	2218	19	4	-	1377	1304	-20	9	•	376	383	-20	•	•	161	250	
200         273         272         3142         303         44         303         321         44         403         321         332         423         333         423         333         433         433         433         433         433         433         433         433         44         333         44         533         44         333         44         533         44         533         44         533         44         533         44         533         44         533         543         44         533         544         533         544         533         544         533         544         533         544         533         544         533         544         533         544         534         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         544         <		314	SAS	1	-	-	645	713	7	4	-	765	825	-16	9	•	242	284	87-	•	•	249	303	
289         289         0         2         3         106         105         4         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         3         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106         106 <t< td=""><td></td><td>286</td><td>275</td><td>-</td><td>-</td><td>-</td><td>1422</td><td>1393</td><td>9</td><td>4</td><td>-</td><td>485</td><td>521</td><td>-14</td><td>9</td><td>•</td><td>874</td><td>868</td><td>-16</td><td>•</td><td>•</td><td>438</td><td>432</td><td></td></t<>		286	275	-	-	-	1422	1393	9	4	-	485	521	-14	9	•	874	868	-16	•	•	438	432	
311         340         2         4         371         339         -10         6         3         352         35         -12         6         3         571         600         501         50         -12         6         3         571         500           210         150         125         1030         1395         1351         1321         132         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         900         90		229	228	0	-	-	1062	1055	1	4	-	806	823	-12	9	•	725	722	-14	-	•	308	288	
210         150         4         2         2         3         3         3         3         4         6         1         4         3         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601         601		351	348	2	2	-	1434	1486	7	4	-	371	339	97-	9	•	617	635	-12		•	571	809	
200         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201 <td></td> <td>210</td> <td>150</td> <td>-</td> <td>-</td> <td>-</td> <td>1999</td> <td>1939</td> <td>•</td> <td>4</td> <td>-</td> <td>281</td> <td>248</td> <td>9</td> <td>9</td> <td>•</td> <td>342</td> <td>336</td> <td>-10</td> <td></td> <td>•</td> <td>169</td> <td>682</td> <td></td>		210	150	-	-	-	1999	1939	•	4	-	281	248	9	9	•	342	336	-10		•	169	682	
No.         T/2         6         7/2         66         -5         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         6         1/2         7/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2		233	183		-	-	403	399	2	4	-	383	337	۴	9	•	1451	1521	ę	-	•	948	950	
412         433         10         2         3         333         333         334         64         7         560         -2         6         1172         -4         8         3         1100         1005           145         643         134         64         3         714         643         743         666         3         1002         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054         1054<	-	304	272	-	10	-	725	658	4	4	-	645	684	1	9	•	1080	1071	۴		•	594	165	
65         628         12         2         600         642         6         4         7         16         5         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th< td=""><td>100</td><td>412</td><td>435</td><td>10</td><td>-</td><td>-</td><td>1325</td><td>1324</td><td>9</td><td>4</td><td>-</td><td>743</td><td>660</td><td>-2-</td><td>9</td><td>•</td><td>187</td><td>172</td><td>1</td><td>•</td><td>•</td><td>1120</td><td>1068</td><td></td></th<>	100	412	435	10	-	-	1325	1324	9	4	-	743	660	-2-	9	•	187	172	1	•	•	1120	1068	
476         422         14         2         324         339         10         4         3         335         4         6         3         336         7         6         3         336         15         357         357         357         357         357         356         4         6         3         330         176         2         8         3         155         155         156         4         6         3         302         1276         2         8         3         155         157         57         375         575         575         575         576         576         56         6         6         3         505         576         56         56         57         575         516         575         517         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576         576 <th< td=""><td>-</td><td>685</td><td>628</td><td>12</td><td>2</td><td>-</td><td>600</td><td>642</td><td>-</td><td>4</td><td>-</td><td>714</td><td>658</td><td>•</td><td>9</td><td>•</td><td>1057</td><td>1054</td><td>7</td><td>•</td><td>-</td><td>1074</td><td>1065</td><td></td></th<>	-	685	628	12	2	-	600	642	-	4	-	714	658	•	9	•	1057	1054	7	•	-	1074	1065	
Si6         Sy1         I6         2         Sy1         Sy2		476	422	14	2	-	324	339	9	4	-	135	229	~	9	•	1497	1482	•	•	•	965	696	
1302       1301       18       2       5       4       4       3       175       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       577       576       576       576       576       576       576       576       576       576       576       576       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       556       566       567       556	-	516	547	16	2	3	527	492	12	4	~	313	356	4	9	•	1302	1276	~	-	•	115	175	
1051       156       -25       3       246       246       246       246       246       245       31045       1065       3766       3766       3765       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356       356	-	1302	1291	18	2	~	454	439	16	4	•	226	228	9	9	•	902	820	4	•	•	577	574	
1245       115       -19       3       426       420       -23       5       185       193       10       63       647       6       63       647       6       8       355       526       526       526       526       526       526       526       526       526       526       526       526       526       12       6       3       760       769       10       8       3       645       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531       531<	-	1651	1584	-25	9	•	248	218	18	4	~	174	182	••	9	•	788	784	•		3	1045	1062	
91         802         -17         3         546         526         12         6         760         760         10         8         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561		1245	1155	-19	•	9	426	420	-23	5	•	185	193	9	•	•	663	647	•		•	525	510	
651         688         -15         3         264         366         16         5         507         522         12         8         565         645         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         665         757           2206         279         -11         3         566         489         -10         7         3         219         37         93         707         339           2206         279         -1         3         2406         489         -10         7         3         219         37         93         707         73           200         210         210         210         210         109         73         110         73         110         73         706         73         707         70         706 <td< td=""><td>-</td><td>931</td><td>802</td><td>-17</td><td>•</td><td>9</td><td>410</td><td>414</td><td>-19</td><td>5</td><td>~</td><td>556</td><td>526</td><td>12</td><td>9</td><td>•</td><td>760</td><td>769</td><td>9</td><td>•</td><td>•</td><td>261</td><td>531</td><td></td></td<>	-	931	802	-17	•	9	410	414	-19	5	~	556	526	12	9	•	760	769	9	•	•	261	531	
2679       2324       -13       3       151       171       -15       5       4,31       4,38       16       5       16       256       14       8       3       17       77         634       613       -11       3       697       773       -13       5       3       466       489       -19       7       3       311       283       16       8       3       279       329         2216       2173       -9       3       5       3       166       489       -19       7       3       311       283       16       3       279       329         720       717       -3       3       9       160       -15       3       1405       193       11       7       3       276       73       76       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750       750	-	651	688	-15		9	264	203	-1-	5	•	284	346	16	9	•	507	522	12	•	•	645	699	
634       613       -11       3       697       773       -13       5       466       489       -19       7       3       11       83       16       8       3       279       329         22166       2173       -9       3       1228       1259       -17       7       3       216       779       3       780       779       377       397       100       397       100       397       100       397       100       397       391       716       73       714       675       -11       9       3       760       733         720       717       -3       3       937       1045       -5       3       1022       879       -11       7       3       211       7       3       211       7       3       211       7       3       211       7       3       211       7       3       211       7       3       111       7       3       212       150       713       760       753       760       753       760       753       760       753       760       753       760       753       760       750       760       753       760<	-	2679	2324	-13	-	-	151	111	-15	5	-	431	438	18	9	•	169	256	14	•	•	817	757	
2216       2173       -9       3       623       718       -11       5       3       1228       1259       -17       7       3       215       200       -13       9       3       400       397         1165       1060       -5       3       594       602       -7       5       3       1479       1503       -13       7       3       714       675       -11       9       3       760       753         720       717       -3       3       937       1045       -5       3       1045       1383       -11       7       3       628       664       -9       9       3       760       753         250       717       -3       3       937       1045       1383       -11       7       3       528       651       73       3       760       733       760       733       760       733       760       733       760       733       760       733       760       731       760       761       770       3       555       561       733       760       733       760       770       760       771       773       565       581	-	634	613	11-	-	-	697	173	-13	5	•	466	489	61-	-	•	311	283	16		•	279	329	
1028       1795       -7       3       488       491       -9       5       1479       1503       -15       7       3       746       750       753         720       717       -5       3       937       1045       -5       5       3       1022       879       -11       7       5       3       760       753       760       753         720       717       -5       3       937       1045       -5       5       3       1074       1099       -11       7       3       577       591       780       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783       783	-	2216	2173	1	-	-	623	718	7	5	•	1228	1259	-11-	-	•	215	200	-13	•	•	400	397	
1165       1060       -5       3       594       602       -7       5       3       1022       879       -13       7       3       664       -9       3       623       783       712         720       717       -3       3       937       1045       -5       5       3       1405       1383       -11       7       3       507       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591       591	-	1828	1795	-	-	-	488	491	7	5	•	1479	1503	-15	-	•	714	675	7	•	•	760	753	
720       717       -3       3       937       1045       -5       5       3       1405       1383       -11       7       3       5       5       7       5       5       5       3       104       1383       -11       7       3       5       5       3       1045       1383       -11       7       3       5       3       1046       1099       -9       7       3       547       498       -5       9       3       304       330         697       677       3       3       5       3       1342       1373       -7       7       3       547       498       -5       9       3       304       330         697       677       3       3       5       3       1342       1373       -7       7       3       561       771       3       304       330         212       174       5       3       274       258       -5       7       3       561       713       -1       9       3       306       326       306       326       306       326       306       326       306       326       306       326	-	1165	1 1060	5	•	9	594	602	7	5	-	1022	879	-13	-	•	628	664	7	•	•	823	785	
260       279       -1       3       2410       2396       -3       5       1074       1099       -9       7       3       547       498       -5       9       3       304       330         1194       1184       -1       3       737       832       -1       5       3       1342       1373       -7       7       3       565       581       -3       9       3       788       771         697       677       3       3       565       571       1       5       551       733       -1       9       3       788       771         212       174       5       3       1574       258       -5       7       3       561       733       -1       9       3       786       771         212       174       5       3       159       333       -1       7       3       194       212       1       9       3       680       735         212       216       11       3       221       246       459       419       -1       9       3       680       735         211       210       231	-	720	117	-3	-	-	937	1045	•	5	•	1405	1383	7	-	•	420	431	7	•	•	577	165	
1194       1184       1       3       737       832       -1       5       3       1342       1373       -7       7       3       565       581       -3       9       3       786       771         697       677       3       3       555       51       1       5       3       274       258       -5       7       3       561       733       -1       9       3       906       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916       916 <td< td=""><td>-</td><td>260</td><td>279</td><td>7</td><td>•</td><td>9</td><td>2410</td><td>2398</td><td>7</td><td>5</td><td>•</td><td>1074</td><td>1099</td><td>1</td><td>-</td><td>•</td><td>547</td><td>498</td><td>Ŷ</td><td>•</td><td>•</td><td>304</td><td>330</td><td></td></td<>	-	260	279	7	•	9	2410	2398	7	5	•	1074	1099	1	-	•	547	498	Ŷ	•	•	304	330	
697       677       3       3       566       557       1       5       3       274       286       -5       7       3       651       733       -1       9       3       906       916         212       174       5       3       1502       1575       3       5       3       232       333       -3       7       3       194       212       1       9       3       306       326         212       174       5       3       937       912       5       5       3       305       326       326       327       1       7       3       459       419       3       306       326         2212       112       2       3       306       337       -1       7       3       459       419       3       306       326         2212       246       9       3       360       337       -1       7       3       459       419       3       366       706       706       706       706       70       70       70       670       70       70       70       70       70       70       70       70       71	-	1194	1184	1-1	-	-	737	832	7	5	•	1342	1373	-	-	•	565	581	7	•	•	788	111	
212       174       5       3       1502       1575       3       5       3       233       -3       7       3       194       212       1       9       3       06       326         226       192       7       3       937       912       5       5       3       369       337       -1       7       3       459       419       3       5       3       660       735         221       246       9       3       9       369       337       -1       7       3       459       419       3       5       3       680       735         231       246       9       3       9       3       170       3       221       264       5       9       3       680       735         231       246       11       3       3       1000       1036       1       7       3       251       264       5       9       3       851       821       821       821       821       821       821       821       821       821       821       821       821       821       821       821       821       821       201	-	691	677		-	-	566	557	-	5	•	274	258	•	-	•	651	733	7	•	•	908	916	
226       192       7       3       937       -1       7       3       459       419       -3       9       3       680       735         231       248       9       3       998       934       7       5       3       1000       1036       1       7       3       459       419       -3       9       3       680       735         231       248       9       3       7       3       459       419       -3       9       3       680       735         192       216       11       3       3       1000       1036       1       7       3       221       264       5       9       3       681       677         281       276       13       3       71       779       3       720       699       3       720       699         281       236       13       3       746       530       5       7       3       657       901       9       3       344       344         264       13       3       3       5       3       546       530       5       7       3       501       9 </td <td>-</td> <td>212</td> <td>174</td> <td>5</td> <td>-</td> <td>3</td> <td>1502</td> <td>1575</td> <td>•</td> <td>5</td> <td>•</td> <td>232</td> <td>333</td> <td>7</td> <td>-</td> <td>•</td> <td>194</td> <td>212</td> <td>-</td> <td>•</td> <td>•</td> <td>306</td> <td>326</td> <td></td>	-	212	174	5	-	3	1502	1575	•	5	•	232	333	7	-	•	194	212	-	•	•	306	326	
231       246       9       3       906       934       7       5       3       1000       1036       1       7       3       221       264       5       9       3       851       821       821         192       216       11       3       3       246       296       9       5       3       811       779       3       7       3       857       788       7       9       3       720       699         281       236       11       5       3       846       530       5       7       3       857       901       9       3       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       344       34	-	228	1 192	1	-	2	937	912	5	5	•	369	337	7	-	•	459	419		•	•	680	735	
192       216       11       3       3       1       3       1       3       1       3       1       3       3       10       3       1       3       3       1       3       3       12       3       1       3       3       12       3       1       3       1       3       1       3       3       12       3       12       3       11       5       3       5       5       1       3       5       1       3       1       3       3       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3       4       3 <t< td=""><td>-</td><td>231</td><td>248</td><td>•</td><td>9</td><td>3</td><td>806</td><td>934</td><td>-</td><td>5</td><td>•</td><td>1000</td><td>1036</td><td>-</td><td>-</td><td>•</td><td>221</td><td>264</td><td>•</td><td>•</td><td>•</td><td>851</td><td>827</td><td></td></t<>	-	231	248	•	9	3	806	934	-	5	•	1000	1036	-	-	•	221	264	•	•	•	851	827	
261         236         13         3         310         305         11         5         3         5         7         3         857         901         9         3         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344         344<	-	192	216	H	•	~	246	296	•	5	-	811	977	•	-	•	857	788	-	•	•	720	669	
1040 1003 15 3 3 312 302 13 5 3 714 700 7 7 3 295 319 11 9 3 153 188	1	281	238	13	-	-	310	305	=	5	•	546	530	5	~	•	857	106	•	•	•	344	344	
	1	1040	1003	151	1	3	312	302	1	5	3	714	200	-	~	•	295	319	=	•	m	153	188	



					100	211	254	2012	17.0	2002	TAT	740	2100	280	0.800	Pa Pa
						308	BEA	Sea	1941	107	315	208	212	882	T NAV	BACE
					17		179	m		.,	~	-	-	-	1 10	
						70	23	00	0	0 -	-	-1	-	-		19
			ę.		21-	AI -	21-	81-	-20	1 1	2	EI	11	10	-	
4						107	898	284	28.2		305	227	CAR	202	pase	
						132	ATB	242	SAP	1	280	11.6	are	393	1050	
							199.	9	m	1	2	3	10	-	14	
							e,	d/	2	9	1	14	PR-	in .	M	
					0.1	1	M	di l	- 30	22-	5.5	10	TA.	25	H	
			1		110	100	162	815	130%	155		110	346	196	10160	
	100			100	175	ROA	284	294	13311	CIPE	2002	206	220	208	F040	
				1.7	1	77	5 1		(9)	17	1.0	6.3	1	10	.tw	1
	1		1		2.1	- 1	2	2	ħ	-	1	-	-	2	24	-1-
		1		1	7.5	2 1	M A	i i	01-	11-	-14	1.1	111	IX	-	3 FOR
	0.28	342	193A	Tenad	2002	CRCL	D G G T	P.I.C.	2018	5013	0.90	0.11	8424	883	IOEG	IVC.LOB
1261	152	EDA	1344	10.20	TOON	22.02	Color.	1000	1100	2108	dra.	124	ADV	RAN	TORD	1 3300
		1	0	0	1 19	in	1	11		-	10	. 0	1.1	4	64	The second
	17	11	м	H	P	1.69	1		-	14	-	-		2	×	223
10	00	0	P	19	0	155	-		-		-10	NA-		41-	8	UNIN
655	212	282	120	BAE	528	212	2942	125	101	330	ING	SUS	E AN	-	1080	enco
122	SOL	EES	210	162	259	586	376	Tab	100	Titop .	192	TRI	LOY		10 HO	0 1000
-	15	10	100	10	14	100	-	30	64	4	10	20	4	1 5	-	- EF

.

	ONA C	CALCU	ATED	ST	RUC	TURE	FACTO	RS FOR	-	~											PAG	9	
-	1010	10PC	=	*	-	101	0 10FC	H	M	-	1070	10FC	æ	M	1	OFO	10FC	H	×	1	OFO	IOFC	
-	222	200	- 1	:		46	8 462	1	15	9	173	193	16	•	4	541	527	•	2	4	851	878	
	212	196	1	12		36	6 384		12	-	396	403	18	•	4	165	194	9	2	4	440	393	
	228	201	1	12		17	9 404	п	15	9	263	268	20	•	4	231	174	12	~	4	434	408	
	467	470	1	1		41	6 409	-14	16		177	136	22	•	4	414	431	50	2	4	196	162	
	201	231	-	2	-	28	4 257	-12	16		256	231	-21	-	4	268	251	-23	m	4	256	195	
	317	268	-	2		22	4 221	-10	16	9	356	372	-19	-	4	206	221	-21	3	4	324	342	
	462	193	16	5		38	8 383	-	16	9	318	347	17-	-	4	588	605	67	•	4	220	182	
	588		-	12		28	0 264	1	16	9	366	367	-15	-	4	456	506	7	•	4	176	223	
	520	1 515	9	1	-	8	4 342	-	16	9	423	446	-13	-	4	557	536	-15	•	4	851	840	
	303	320	1	5		31	5 356	0	16	9	269	224	7	-	4	522	522	7	•	4	395	439	
	AIA I	NON O	-14	12		28	2 302	41-	16	-	324	311	ĩ	-	4	674	713	7	•	4	880	952	
	429	505	17	=	-	26	2 279	9	16	9	430	424	7	-	4	1776	1747	Ŷ	•	4	357	376	
	449	107	19	=		35	6 376	80	16	-	223	223	Ŷ	-	4	1045	1087	7	•	4	1239	1212	
	306	198		=		24	7 209	12	16	•	183	206	ĩ	-	4	988	956	r	•	4	645	655	
	375	354		-		33	8 329	0	18	-	290	229	7	-	4	851	768	ĩ	•	4	617	620	
	55	243	-	=	-	22	6 197	-26	0	4	339	298	-	-	4	177	769	7	•	4	685	706	
	1 27.0	-		-		1	6 170	-24	0	4	224	285	•	-	4	2439	2395	-	•	4	1017	1069	
	116 6	220	0	1	-	31	2 339	-22	0	4	241	221	5	-	4	407	422	•	•	4	1160	1226	
	27.0	286	I	-	-	29	6 266	-20	0	4	460	502	1	-	4	210	243	•	~	4	553	550	
	3 196	218	13	-	-	21	6 261	-18	•	4	720	790	•	-	4	1062	1037	-	•	4	1177	1202	
	151 5	316	-12	12		33	0 297	-16	0	4	691	678	11	-	4	456	480	•	•	4	783	820	
	2002	284	-10	12		1	175	-14	0	4	153	108	13	-	4	255	242	=	•	4	680	634	
	3 746	1 768	1	12		3 24	6 232	-12	0	4	1000	1001	15	-	4	444	425	13	•	4	216	248	
	811	154	-	1		16	161 191	-10	•	4	1001	1144	11	-	4	224	215	2	•	4	307	283	
	3 351	313	-	1		36	2 393	9	•	4	1177	1214	-20	2	4	342	317	11	-	4	462	425	
	3 27	303	4	1		3 28	14 324	9	•	4	1120	1176	-16	2	4	640	656	19	•	4	259	269	
	3 300	366	-15	-		3 25	4 249	4	•	4	1051	1287	-14	2	4	169	218	-20	4	4	11	484	
	3 600	675	-13	-		3 28	14 280		•	4	499	552	-12	2	4	475	524	-18	-	4	530	464	
	3 39	376	17-	=		11 6	16 187	•	0	4	2953	3074	1-10	2	4	885	106	-16	-	4	249	207	
	3 200	0 202	1	-	-	1 16	52 220	2	•	4	811	694	*	2	4	168	926	-14	4	4	260	555	
	3 40	3 386	-	-	-	33	0 317	4	0	4	3027	2999	۴	2	4	1485	1418	-12	4	4	1325	1371	
	34	5 309	5	-	-	4 6	27 480	9	•	4	1691	1649	1	2	4	196	184	-10	4	4	1599	1585	
	3 21	7 205	T	-	-	3 30	908 308	8	0	4	1160	1206	?	2	4	588	618	•	4	4	1268	1148	
	3 26	5 249	7	=	-	3 21	17 266	10	0	4	336	298	•	2	4	131	111	۴	4	4	954	66	
	3 15	9 179	4	=	-	3	12 373	12	•	4	1097	1121	2	~	4	931	1045	7	4	4	1245	1173	
	3 44	4 465	-	=	-	3	10 334	14	•	4	1205	1176	4	2	4	508	563	•	4	4	617	577	


					100	2010		19.00	122	203	7.7	220	245	1.400	12.50	318	200	100	Parts of	NING		-		
					194		2000	2017	928	56.5		107	515	in the second	BULK	EIE	20.0		Token	NO-DA		THAT		
									m		1	73	in	Ŕ	2	17	-	•	-	4				
							2		20	G	. 4	20	-	-	-	-	-			é				
						21-	1		2	-19	1	100-	1	1.1	1	11	R	-		-			5-1-1-1-4	
									898	384	Core.	28.4	302	102	100	342	301		TASP	in and				
									878	242	2110	2400	310	210	1111	STE	202		TONIO	-				
							1	5 (	2	100	C	a.)	100	1	2.1	1	173		. 84	ł,				
									2	9	9	1	ġ,	0	17	1	Č.		34	ij				
						01-	11-1			-10	- 30	2	100-	12	1	1.1	25		N	1				
						934	823	1.2	6.9	832	1 2004	1000	TPE	112	willow.	ake	196		10160					
						171	908	103	A IS N	207	1311	1.1	39.5	20.6	N. Car	2002	308		1080					
					6.1	-		1	•	(ra	1	1	7.	~			17		· fa			1		
							Þ	12	6	2	\$	1	-	2	4	-	-		-		3			
			2			1	2	-0		7	-10	10.0	P	-14	-10	10	11		m		2 KON			
	0.20	1.2.2	382	18.24	A desire	2841	1022	CRET		21/3	2518	TANA	1017	844	0.00	000	188		JOBG.		NUC LON			
SEL	100	100	602	1 diad	10.24	AFAT	1023	1053	100	PAG	2211	C1/10	BULL A	PT0	PES		88.0		TOMOT		Linke. 1			
			~	Ċ	i r		ĊN.	1	1	1	(the	0		2	*	1	*		54		Lines.			
			1	1ª	4		h	М			r	*	2.3	4	5.7		4		14		213			
10	0			9		*	0	1	1	P	07	07	-	-10	-15	in and	A		10 A		LAIRB			
0.22	315		181	120	The	242	258	572	Same	1.44	Idi	1220	-	1000	EDS	and -	500		TOLC		CWPCD			
100	306		243	210	1222	1000	070	380	22.0	100	102	301	No.	106	138	203	NO.		DROI		N YAD			
-12	P	1	ń	14	-			-	V		1	n		-	17	4	3		-		No.			

9	2	28	93	80	62	92	42	82	23	5	39	25	16	12	22	20	90	69	26	20	03	120	34	48	83	125	693	184	104	501	222	371	282	148	066	13
GE	9	80	9	4	-	-	-	-	~	-	4	5	-	1		-	-	1 10	11	-	1	~	-	-	-	~	-	_	-	•	-	2 1	-	8 1		
V	1070	851	44	434	196	256	324	220	176	851	395	88	351	1239	3	19	68	101	1160	55	117	78.	680	21(	30	46	25	4	23	24	56	132	159	126	32	
	-1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	•
	×	2	2	2	2	m	•	•	•	•	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	~	•	4	4	4	4	4	4	4	4	
	=	•	9	12	20	-23	-21	-19	-11	-15	-13	Ŧ	ĩ	7	r	ĩ	7	-	•	5	-	•	=	13	15	11	19	-20	-18	-16	-14	-12	-10	9	۴	
	OFC	527	194	174	431	251	221	605	506	536	522	713	1747	1087	956	768	769	2395	422	243	1037	480	242	425	215	317	656	218	524	106	926	1418	184	618	111	
	010	541	165	231	414	268	206	588	456	557	522	674	1776	1045	988	851	111	24.39	407	210	1062	456	255	444	224	342	640	169	475	885	891	1485	196	588	731	
	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	•
	*	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	~	2	2	2	2	2	~	~	
	=	16	18	20	22	-21	61-	17-	-15	-13	Ŧ	î	-	7	7	7	-	-	-	-	•	II	13	15	11	-20	-16	-14	-12	-10	9	9	1	-	•	
	OFC	193	403	268	136	231	372	347	367	446	224	311	424	223	206	229	298	285	221	502	190	678	108	1001	1144	1214	1176	1287	552	3074	694	2999	1649	1206	308	223
	010 1	173	396	263	111	256	356	318	366	423	269	324	430	223	183	290	330	400	146	460	720	691	153	1000	1001	1177	1120	1051	499	2953	811	3027	1691	1160	326	
	-	•	-	-	-	-		-	-	-	-	-					•	4	-	-	-	-	-	-	4	4	4	4	4	4	4	4	4	4	-	\$
7.2	*	-	-	-				-				-				-										0	•	•	•			• •	•		•	
FOR	=	-1		-	14	-1-	19	9	1	1		-	-				- 26		1	18	1	191-	-14	17	191-	9	9	1	?			-	-			
CTORS	OFC	462	284	ADA	AD0	250	100	283	496	242	356		370	376		320	107	120	330	386	196	207	175	232	101	393	326	540	280	187	000		ARD	BOR		
RE FI	010	AKA	366	2	416	100	400	388	-		315		107	356		328		227		306	316	-		346	153	362	284	456	284	121	163	330	104	and a		
E	1													••	••		••	••	••	••															•	-
IRU	*													22	2:	2 2	2:	2:	2:	2:	25	1:	1:	11	11	11	11	. =	1:	1:	1:	12	1:	12	::	
LEO S	=			1	19					•	22	::	::	-		1	2.	<b>,</b> ,		• :	::	19		21	11		• •	-	25		19	11		2.1	••	
ALCULA	OFC	-			107	2.0	1070	122										2			007	017	190	107		5				210		202				1076
e	2	-	2	1	9 5		= =	-	2 9	2	22	3 :	2 2	5	-	5;	1	2	5		22		2	070						3						
N N	101				33		N		•	~	•	•••	• •	4.																						
VEI	-	•				•		•		•••		~	~						-																	
SE	M	•				2 :	2:	3:	2:	2:	2:	2 :	2:	2:	23	2:				=														-		
6	-		-	-	-			N	2	P ·	P.	7 '		D	2	0		2						T	1	1				-	-	14		-	•	-



## 

A71

															1					
					5															
							Ē,		22	in the	C.W.L	100	2	A08	SAS	818		UMC.	0	
						ł,	ŝ	1	22	2	8	1 2	17	1	0	12	-		Nor	
	1	-					8		12	1	- 94	1	- 1	2	-	-		200		100
							r 1		27	2	9	1	× 3	2	-	24	. 1	-		
					1		a c	1	99	~	0	1.00	5.5	n.	10	12		4		
							2.2	-	1	127	122-	202	2.7	2	102	a:				
					1	1 0		. /			-									
					i i		ŶĨ	3.5	8	12	12	0.0	1.1	24	Jul	25	TOX .	NIN'S		
							1000	1			268	0.10	15.0	1.2.1	201	Epe	000	-		
										5-	-	-			2	-	1 7.0	-		
											-			3.	0	0				
												24		5	000	-				
						1	1	1		E	1	54	. 24		-	10				
						2	1	1		1	5	2	8		-	23	-			
								1	8.1	10	10	-	8	1	6	-	TAN			
				125	200	623	100	212	1000	125	Carlos I	113	COS		406	ETI	1040			
					/75		17	r	1.7	9	rn.	(1)	. 19	1 2	-	en 1	-		1.9	
					2	2	2	2	į į	2		2	2	1	z	1	M		-	
		i de			0	ñ	P	Ŷ	1027	10	12	11-	D.	1	9	1	8		ROK	
																			8.8	
	9.7E	525		200	325	SPE	287	28.3	122	100	583	eos-	NDA	1000	ABC	263	10%0		NGED	
1	350	292	1	020	iii ii	200	380	385	102		280	916	619	000		460	050		18	
				4		-	110	-				-	100			-	L J		UTU	
		4			145	-	10	10			-	12	10			-	-54		UNET	
	5 0		-		-	1 0	1	1 0	1 1	- 3	1	T	1 4	14 10	-	7 0	-		2 2	
		1	1	4	10m	T		-	-			T	1	-	-	-	1		ST M	
	16	66	00	0	20	22	17	EE	20	1	10	30	IO	an	100	00	211		(LCCE	
	10	2	-				14	2	~		4		-				110		2 0	
	100	024	0.7.0		303	250	888	294	ATE		ine	192	258	XIX	-	340	TON		WW	
	-1	m			-	15	m	-	-	10		-	-	-		12	-		NED I	

.

	ED AN	OALCU	LATED	ES	RUC	TURE	FACTORS	FOR	-	2											PAG	8 7
-	L 10FG	0 10FC	-	M	-	1070	10PC	=	M	-1	1070	10FC	=	×	-	1010	10FC	=	M	-	1070	10FC
11.1	4 62 B	775	5	•	4	296	271	?	•	4	743	721	•	9	4	583	601	•	13	4	196	164
-	112	1 1 2 43		-	4	268	188	0	-	4	531	515	91	2	4	397	438	5	13	4	462	565
	4 167	1111			-	743	740	2	-	4	376	413	18	9	4	221	195	-	13	4	342	337
10	53.4	127 5	4		-	248	241	4	•	4	731	741	-15	=	4	258	275	=	13	4	228	220
-	1010	218			4	240	251			4	817	827	-13	=	4	348	325	13	13	4	287	288
1.10	4 794		-		-	674	678	0	-	4	432	434	17-	=	4	297	314	15	13	4	344	321
1	112 4	366	10		-	492	431	12	80	4	490	551	î	=	4	243	260	-16	1	4	230	257
-	46 4	235	12		-	191	185	14		4	617	599	7	=	4	273	264	-14	14	4	271	244
1100	4 22	4 216	16			316	282	50	•	4	291	232	r	=	4	640	622	-12	14	4	277	268
0.00	12 4	6 160	18	9	4	282	344	-15	•	4	352	363	ĩ	=	4	312	299	۴	14	4	242	155
	4 101	8 208	-23	-	4	222	195	-13	•	4	547	597	7	=	4	419	437	1	14	4	271	291
	4 23	001 0	61-	-	4	245	202	17-	•	4	431	425	-	=	4	436	378	•	14	4	352	388
	1	100 8	17	-	-	588	573	1	•	4	611	589		=	4	605	609	2	14	4	464	518
	1	220 A	-15	-	-	600	106	7		4	503	449	5	=	4	515	510	4	14	4	220	171
	46 4	6 220	1	-	4	394	375	5	•	4	415	418	-	=	4	411	436	•	14	4	274	205
	A 15	4 93	17	-	-	383	368		•	4	611	678	6	=	4	674	680	•	14	4	442	506
	1 30	7 463	19	-	-	891	863	7	•	4	445	463	=	=	4	435	479	91	1	4	291	282
	4 45	022 2		-		916	867	-		4	163	247	-18	12	4	235	209	-	12	4	298	277
	4 74	8 780	1	-	4	925	1053	•	•	4	583	615	-12	12	4	246	269	r	2	4	250	222
	4 57	7 652		-	4	340	346	5	•	4	834	824	7	12	4	344	353	۴	16	4	226	213
	A 56	4 578	7	-	-	492	2 517	-	•	4	281	259	9	12	4	366	424	•	16	4	254	289
	A 62	8 624		-	-	379	432	•	•	4	179	192	1	12	4	448	458	2	16	4	247	243
	4 122	8 1300		-	4	569	575	H	•	4	256	325		12	4	394	384	7	1	4	281	290
	4 116	0 1209		-	-	259	281	13	•	4	500	492	•	12	4	219	202	٩	11	4	223	243
	4 70	8 639	-	-	-	874	1 822	-16	10	4	404	392	2	12	4	317	272	r	1	4	247	243
	4 23	3 187		-	-	623	638	-14	10	4	640	646	4	12	4	264	258	7	17	4	328	372
	4 23	5 236	11	-	-	4 674	690	-12	10	4	445	455	9	12	4	211	217	7	17	4	228	275
	4	4 350	13	-	-	33	324	-10	10	4	339	370	-19	13	4	263	235	•	17	4	216	225
	4 27	9 260	15	-	-	18.	3 176	9	10	4	960	924	-11	13	4	251	274	•	17	4	417	416
	4 48	17 459	-18		-	1 25	309	9	10	4	906	908	17-	13	4	342	437	-	17	4	315	234
	4 55	3 562	-16		-	1 54	464	1	10	4	331	396	î	13	4	429	444	7	18	4	258	225
	4 33	8 332	-12	8	-	4 496	8 528	?	9	4	188	222	7	13	4	367	302	•	18	4	295	203
	4 31	5 352	-10		-	4 81	1 769	•	10	4	496	481	5	13	4	229	286	-21	-	5	284	241
	4 58	13 628	19		-	48	521	2	9	4	628	627	-	13	4	611	551	-19	-	5	367	340
	4	2 406	1			41	387	4	9	4	009	604	7	13	4	499	466	-11	-	5	507	495
	44 44	474	1		_	680	691	9	2	4	219	263	1	13	4	291	254	-15	-	5	175	255
				,					1	į.												



A TRANSPORT	
	T C C
	4
	1016
	9
	F.
	M
	-
No. 199	Ienc
	0401
	E4 47
	14 M
CCSFEBAAAA	H NOR
	TONO
and	1010
	r .
	N II
200022222=+++=#	dista.)
Para para para para para para para para	1045 Cerros
	7050
	FA 193



## -----

A73

1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1								
			100	11	18	100	0.00	-
		1		21	1	12.2	into.	Con a
			10.6	6.9	÷.	-	-	
				14	i.e			
01       010       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1				27	ę	CQ.	4	
		13			g	101	1040	
11       101       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1				2,5	2	100	(inter)	
11       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1				1.4	ir.	-	-	
				1	1	÷÷	14	
		10.0	1	i F	÷,	25		
		11		13	140	10	1996	
			163	1	31	100	1040	
		1.41		1.10	PC I	1.75	34	51
		-		-	11	100	8	4
		-75	177	5	1	-112	*	1
			10.0	i Dea	1	100	10440	No.
	131	100	100	1020	212	1.6	TONN	Î
	172		14.17	-	1.74	n.	4	II.
	1000		1973	-	1.0	10	м	110
THE REAL PROPERTY OF THE REAL		177	77	7	19	11	*	OPTIN
SERGERERERE S	100		inter over	111	1124	1110	1010	SWTCH.
· · · · · · · · · · · · · · · · · · ·	100	1111	1221	S	1120	HIGH	Display.	URA I

100       100       101       11       6       11       6       11       6       11       1       11       1       11       1       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		1000       000       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th></th> <th>DIAND</th> <th>CALCULA</th> <th>8</th> <th>HIS STR</th> <th>UCT D</th> <th>URE</th> <th>ACTORS</th> <th>FOR</th> <th>1.</th> <th>2</th> <th></th>		DIAND	CALCULA	8	HIS STR	UCT D	URE	ACTORS	FOR	1.	2										
800       642       115       643       555       -1       6125       535       621       115       643       652       623       621       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       623       6				1010	1070		-	-1	1010	10FC			-	1010	10PC		*	-	1010	10PC			-1
				505	645	-	5	-	495	556	7	-		1217	1256	•	•		1194	1193	ĩ	•	9
	385       375       416       5       285       375       11       6       305       11       5       305       11       5       305       11       5       305       305       11       1       6       405       505       305       11       1       6       405       505       305       11       1       6       405       505       305       11       1       6       405       505       305       11       1       6       405       505       305       11       1       6       405       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505       505 <td></td> <td></td> <td>200</td> <td>362</td> <td></td> <td>15</td> <td>5</td> <td>328</td> <td>366</td> <td>-</td> <td>-</td> <td></td> <td>1445</td> <td>1415</td> <td>n</td> <td>•</td> <td>•</td> <td>645</td> <td>621</td> <td>7</td> <td>-</td> <td>9</td>			200	362		15	5	328	366	-	-		1445	1415	n	•	•	645	621	7	-	9
311       4       16       2       1       1       6       00       9       3       6       01       9       00       9       6       00       9       3       6       01       9       00       9       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	313       311       416       5       215       160       7       1       600       9       5       601       7         316       317       416       5       322       315       15       1       6       55       525       235       15       1       5       525       235       15       1       5       525       235       15       1       5       525       235       15       1       5       525       235       15       1       5       525       235       15       1       5       525       235       15       1       5       525       535       15       1       5       535       55       535       55       535       55       535       55       535       55       535       55       55       535       55       55       535       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>5</td> <td>5</td> <td>283</td> <td>282</td> <td>•</td> <td>-</td> <td>•</td> <td>434</td> <td>465</td> <td>-</td> <td>•</td> <td>•</td> <td>743</td> <td>789</td> <td>-</td> <td>•</td> <td>9</td>					•	5	5	283	282	•	-	•	434	465	-	•	•	743	789	-	•	9
256       256       5       70       266       9       1       6       20       356       11       1       6       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       450       <				332	312	1	16	5	215	160	-	-	•	940	800	•	-	•	863	168	•	•	9
367       377       4.16       5       325       317       11.1       6       375       11.1       6       375       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       436       446       436       436       446       446       436       436       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446       446<				256	229	2	16	5	270	268	•	-	•	320	336	=	m	•	448	120	-	-	9
333       511       5       234       16       5       254       16       1       1       6       235       236       17       1       6       235       236       15       1       1       6       235       236       15       1       1       6       235       236       15       1       1       6       235       236       16       0       5       20       235       16       2       6       15       151       11       11       15       235       236       16       0       5       20       16       0       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16 </td <td>311       410       5       26       21       6       22       40       22       26       23       26       11       6       22       26       23       26       23       26       23       26       23       26       23       26       23       26       23       26       23       26       11       1       25       23       26       11       1       1       1       1       1       26       23       26       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<!--</td--><td></td><td></td><td>3</td><td>357</td><td>-</td><td>16</td><td>5</td><td>382</td><td>357</td><td>H</td><td>-</td><td>•</td><td>379</td><td>372</td><td>15</td><td>m</td><td>•</td><td>432</td><td>26</td><td>•</td><td>•</td><td>9</td></td>	311       410       5       26       21       6       22       40       22       26       23       26       11       6       22       26       23       26       23       26       23       26       23       26       23       26       23       26       23       26       23       26       11       1       25       23       26       11       1       1       1       1       1       26       23       26       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td></td> <td></td> <td>3</td> <td>357</td> <td>-</td> <td>16</td> <td>5</td> <td>382</td> <td>357</td> <td>H</td> <td>-</td> <td>•</td> <td>379</td> <td>372</td> <td>15</td> <td>m</td> <td>•</td> <td>432</td> <td>26</td> <td>•</td> <td>•</td> <td>9</td>			3	357	-	16	5	382	357	H	-	•	379	372	15	m	•	432	26	•	•	9
333       411       416       5       244       16       17       16       26       333       336       -16       5       338       336       -16       5       338       336       -16       5       338       336       -16       5       338       336       -16       5       338       336       -16       6       507       488       -16       2       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       336       -16       6       338       338       -16       16       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10		333       44       5       24       10       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       24       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td></td><td>24</td><td>203</td><td>-</td><td>16</td><td>5</td><td>262</td><td>275</td><td>15</td><td>-</td><td>•</td><td>239</td><td>268</td><td>17</td><td>3</td><td>•</td><td>262</td><td>288</td><td>=</td><td>5</td><td>9</td></td<>		24	203	-	16	5	262	275	15	-	•	239	268	17	3	•	262	288	=	5	9
332       333       333       -10       5       333       335       -10       5       533       530       535       535       535       535       535       535       535       535       535       535       535       535       535       535       535       535       545       535       545       535       545       535       545       535       545       535       545       535       545       535       545       535       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545       545 </td <td>733       736       74       75       735       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       746       736       746       736       746       736       746       736       746       746       736       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746</td> <td>532       532       530       532       540       532       530       532       530       533       530       533       530       533       530       533       530       533       530       533       530       533       530       533       546       533       530       546       533       546       533       546       533       546       533       546       533       546       633       546       646       633       546       646       633       546       646       633       546       646       633       546       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       6</td> <td></td> <td></td> <td>IEV I</td> <td>1</td> <td>18</td> <td>-</td> <td>244</td> <td>168</td> <td>17</td> <td>-</td> <td>•</td> <td>282</td> <td>260</td> <td>-22</td> <td>4</td> <td>•</td> <td>316</td> <td>1</td> <td>E</td> <td>•</td> <td>9</td>	733       736       74       75       735       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       736       746       736       746       736       746       736       746       736       746       746       736       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746       746	532       532       530       532       540       532       530       532       530       533       530       533       530       533       530       533       530       533       530       533       530       533       530       533       546       533       530       546       533       546       533       546       533       546       533       546       533       546       633       546       646       633       546       646       633       546       646       633       546       646       633       546       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       636       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       646       6			IEV I	1	18	-	244	168	17	-	•	282	260	-22	4	•	316	1	E	•	9
231       232       -16       5       33       406       -16       6       15       33       -16       6       15       33       -16       6       15       33       -16       6       15       33       -16       6       15       15       -16       6       15       15       -16       6       15       15       -16       6       15       15       -16       6       15       15       16       6       15       15       16       6       15       15       16       6       15       15       16       6       15       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16	738       738       74       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <td>231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       2</td> <td></td> <td>55</td> <td>498</td> <td>1</td> <td>-</td> <td>-</td> <td>200</td> <td>202</td> <td>877</td> <td>2</td> <td>•</td> <td>339</td> <td>376</td> <td>-20</td> <td>4</td> <td>•</td> <td>538</td> <td>520</td> <td>5</td> <td>5</td> <td>6</td>	231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       2		55	498	1	-	-	200	202	877	2	•	339	376	-20	4	•	538	520	5	5	6
232       232       -14       0       507       48       -12       0       507       48       -12       0       507       48       -11       0       601       611       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111       111	233       236       -16       6       633       56       -16       6       6       16       6       16       6       16       6       16       6       16       6       16       6       16       6       16       6       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16 <td>388       386       -16       6       398       366       -16       6       998       258       -16       6       998       258       -16       6       998       258       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       998       958       -16       6       998       958       -16       998       998       -16       998       998       -16       998       -16       998       998       -16       998       998       -16       998       -16       998       998       -16       998       998       -16       998       998       -16       998       998       998       -16       998       998       998       -16       10       10       10       10       10</td> <td>-</td> <td>A Go</td> <td>479</td> <td>181</td> <td>0</td> <td></td> <td>009</td> <td>545</td> <td>-16</td> <td>2</td> <td>•</td> <td>338</td> <td>408</td> <td>-18</td> <td>4</td> <td>•</td> <td>354</td> <td>339</td> <td>2</td> <td>•</td> <td>9</td>	388       386       -16       6       398       366       -16       6       998       258       -16       6       998       258       -16       6       998       258       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       6       998       958       -16       998       958       -16       6       998       958       -16       998       998       -16       998       998       -16       998       -16       998       998       -16       998       998       -16       998       -16       998       998       -16       998       998       -16       998       998       -16       998       998       998       -16       998       998       998       -16       10       10       10       10       10	-	A Go	479	181	0		009	545	-16	2	•	338	408	-18	4	•	354	339	2	•	9
388       586       -16       0       507       516       -10       2       6       407       441       -10       6       6111       1107       -112       6       114       714       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751       751				20	228		0		405	367	1	2		354	363	-16	4	•	199	228	97-	•	9
200       110       0       500       316       -4       2       6       300       311       -1       0       6       714       731       -1         200       111       0       6       301       316       -4       2       6       300       311       -4       6       714       731       -1         211       100       6       501       316       -4       2       6       300       311       -4       6       714       731       -1         211       302       -4       0       6       146       141       -0       6       714       731       -1       0       6       714       731       -1       0       6       714       731       -1       0       6       714       731       -1       0       6       714       731       -1       0       714       731       -1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	78.       70.       10.       600       500       500       500       500       500       500       500       500       714       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       711       7	28.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1		33		-16	0		507	488	-12	~		176	151	-14	4	•	914	8	11-	•	ø
271       200       14       -10       6       714       710       6       714       711       711         271       202       -10       6       428       421       -1       6       505       361       41       -10       6       718       731         271       202       -6       0       6       428       421       -1       2       6       350       381       -6       6       708       785       382       -4       6       1060       1133       -4       6       708       785       382       -4       6       1060       1133       -4       6       708       785       382       -4       6       106       1133       -4       6       708       785       382       -4       6       708       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785       785 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td>5 270</td> <td></td> <td>0</td> <td></td> <td>651</td> <td>612</td> <td>-10</td> <td>2</td> <td>•</td> <td>335</td> <td>446</td> <td>-12</td> <td>4</td> <td>•</td> <td>1171</td> <td>1187</td> <td>-12</td> <td>•</td> <td>G</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5 270		0		651	612	-10	2	•	335	446	-12	4	•	1171	1187	-12	•	G
219       114       -10       0       6       428       421       +       2       5       30       341       -6       4       6       708       745       -6       4       6       708       745       -6       4       6       708       745       -6       4       6       708       745       -6       4       6       708       745       -6       6       708       745       -6       4       6       708       745       -6       4       6       708       745       -6       4       6       708       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -6       768       745       -745       745       -745       745       -745       745       -745       745       745       745       745       745       745       745       745       745       745       745       745       745       745       745       745       745<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	3 195	-12	0		507	516	7	2	•	487	111	97-	4	•	714	751	9	•	9
219       17       -0       4.28       4.21       -4       2       6       303       -5       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       -4       6       708       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75	211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       2			2	11	19	0	9	35	955	Ŷ	~	•	350	361	9	4	•	362	362	T	•	e
271       302       -6       6       1468       14.13       -2       2       6       25       322       -4       6       1060       1133       -4       6       1060       1133       -4       6       1060       1133       -4       6       1060       1133       -4       6       1060       1133       -4       6       1060       1133       -5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	713       72       6       146       113       -       -       6       146       113       -       -       -       6       146       113       -       -       -       6       146       113       -       -       -       6       146       113       -       -       -       6       146       113       -       -       -       6       146       113       -       -       -       6       137       353       -       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       -       -       6       137       353       353       147 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>-</td> <td>21</td> <td>137</td> <td>9</td> <td>0</td> <td>•</td> <td>428</td> <td>421</td> <td>1</td> <td>~</td> <td>•</td> <td>360</td> <td>343</td> <td>Y</td> <td>4</td> <td>•</td> <td>208</td> <td>745</td> <td>Ŷ</td> <td></td> <td>6</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	21	137	9	0	•	428	421	1	~	•	360	343	Y	4	•	208	745	Ŷ		6
231       232       24       0       1491       1425       0       2       6       533       53       2       4       6       378       353       0       4       6       531       503       2       4       6       378       353       0       0       4       6       371       353       0       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       0       4       6       373       503       10       11       10       11       2       6       11       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11	211       225       24       0       1401       142       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>100</td><td>27</td><td>7 302</td><td>9</td><td>0</td><td>•</td><td>1468</td><td>1413</td><td>~</td><td>2</td><td>•</td><td>325</td><td>322</td><td>1</td><td>4</td><td>•</td><td>1040</td><td>1133</td><td>1</td><td></td><td>9</td></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	27	7 302	9	0	•	1468	1413	~	2	•	325	322	1	4	•	1040	1133	1		9
212       303       -2       0       1/34       1846       2       2       6       31       503       0       4       6       7/8       363         223       236       -       0       6       965       940       4       2       6       1/3       363       0       4       6       7/16       363       303       0       4       6       7/16       1/3       1/2       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4       1/4 <td< td=""><td>212       23       24       6       174       146       2       6       174       146       2       6       174       146       2       6       174       146       2       6       105       1028       25       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</td><td></td><td>-</td><td>25</td><td>1 252</td><td>1</td><td>0</td><td>•</td><td>1491</td><td>1425</td><td>•</td><td>~</td><td>•</td><td>628</td><td>653</td><td>7</td><td>4</td><td>•</td><td>524</td><td>22</td><td>7</td><td></td><td>9</td></td<>	212       23       24       6       174       146       2       6       174       146       2       6       174       146       2       6       174       146       2       6       105       1028       25       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		-	25	1 252	1	0	•	1491	1425	•	~	•	628	653	7	4	•	524	22	7		9
223       239       0       6       555       546       4       6       1051       1028       2         223       237       236       5       6       555       546       14       2       6       1051       1028       2         223       237       236       5       6       706       746       55       644       52       6       711       656       6       6       6       706       716       656       6       6       706       711       656       6       6       705       512       6       711       556       613       6       6       705       522       6       711       556       613       6       6       705       523       50       52       52       516       705       512       51       525       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516       516 <td< td=""><td>223       239       0       0       6       55       60       6       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100</td><td>223       234       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td<> <td></td> <td>21</td> <td>2 303</td> <td>-2</td> <td>0</td> <td>9</td> <td>1794</td> <td>1846</td> <td>2</td> <td>2</td> <td>•</td> <td>531</td> <td>203</td> <td>•</td> <td>4</td> <td>•</td> <td>378</td> <td>363</td> <td>•</td> <td></td> <td>0</td>	223       239       0       0       6       55       60       6       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100	223       234       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		21	2 303	-2	0	9	1794	1846	2	2	•	531	203	•	4	•	378	363	•		0
252       274       2       0       1100       1151       6       2       6       367       379       6       6       711       856       6         252       252       250       10       16       171       15       6       6       70       526       611       00       526       611       00       526       611       500       526       611       500       526       526       511       570       10       4       6       701       556       611       50       527       12       4       6       701       500       520       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500       500 <t< td=""><td>222       274       2       0       100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>-</td><td>22</td><td>3 239</td><td>0</td><td>•</td><td>9</td><td>965</td><td>36</td><td>4</td><td>~</td><td>•</td><td>552</td><td>614</td><td>2</td><td>4</td><td>•</td><td>1051</td><td>1028</td><td>~</td><td>•</td><td>0</td></t<></td></t<>	222       274       2       0       100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>-</td><td>22</td><td>3 239</td><td>0</td><td>•</td><td>9</td><td>965</td><td>36</td><td>4</td><td>~</td><td>•</td><td>552</td><td>614</td><td>2</td><td>4</td><td>•</td><td>1051</td><td>1028</td><td>~</td><td>•</td><td>0</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	22	3 239	0	•	9	965	36	4	~	•	552	614	2	4	•	1051	1028	~	•	0
231       232       231       237       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		231       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       232       233       232       233       232       233       233       233       233       233       233       233       233       233       233       233       233       233       2	10	25	2 274	2	0	9	1160	1151	•	~	•	24	210	4	4	•	171	856	4		•
233       231       231       232       231       232       236       10       6       556       613         233       236       11       0       6       971       906       -25       11       257       12       6       691       566       613         235       236       11       0       6       971       906       -25       3       6       236       11       257       12       6       611       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       613       566       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510 <td>233       231       53       54       54       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       &lt;</td> <td></td> <td></td> <td>22</td> <td>3 226</td> <td>4</td> <td>0</td> <td>•</td> <td>706</td> <td>748</td> <td>•0</td> <td>~</td> <td>•</td> <td>367</td> <td>379</td> <td>••</td> <td>4</td> <td>•</td> <td>61</td> <td>22</td> <td>•</td> <td></td> <td>9</td>	233       231       53       54       54       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       55       <			22	3 226	4	0	•	706	748	•0	~	•	367	379	••	4	•	61	22	•		9
225       226       10       6       44       53       14       2       311       257       12       6       61       564       53         225       226       11       0       6       324       367       -23       1       4       6       23       50       23       1       4       6       23       20         229       197       16       22       3       6       326       316       16       4       6       23       20       23       1       4       6       23       20       23       316       16       1       6       23       23       317       -17       3       6       326       316       16       4       6       23       23       20       23       23       20       11       1       6       23       23       11       31       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23       23 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>23</td> <td>1 287</td> <td>9</td> <td>0</td> <td>•</td> <td>1451</td> <td>1413</td> <td>12</td> <td>2</td> <td>•</td> <td>437</td> <td>402</td> <td>9</td> <td>4</td> <td>•</td> <td>556</td> <td>613</td> <td>•</td> <td></td> <td></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		23	1 287	9	0	•	1451	1413	12	2	•	437	402	9	4	•	556	613	•		
231       302       14       0       23       36       32       36       32       36       32       36       32       36       32       36       32       36       32       37       23       37       23       37       4       4       50       23       37         239       197       16       32       37       -17       3       6       32       37       -17       3       6       32       37       -17       3       6       32       31       23       37       -17       3       6       32       31       4       6       23       23       37       -17       3       6       32       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31 </td <td>231       302       11       0       -23       30       14       0       23       30         231       302       14       0       32       30       14       0       23       30         231       302       14       0       6       32       30       14       0       23       30         231       302       14       0       6       32       31       14       0       23       30       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       14       0       14       14       0       14       14       0       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>22</td><td>9 230</td><td>2</td><td>0</td><td>9</td><td>494</td><td>523</td><td>1</td><td>2</td><td>•</td><td>311</td><td>257</td><td>12</td><td>+</td><td>•</td><td>161</td><td>205</td><td>9</td><td></td><td>•</td></t<></td>	231       302       11       0       -23       30       14       0       23       30         231       302       14       0       32       30       14       0       23       30         231       302       14       0       6       32       30       14       0       23       30         231       302       14       0       6       32       31       14       0       23       30       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       0       14       14       0       14       14       0       14       14       0       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td></td><td>22</td><td>9 230</td><td>2</td><td>0</td><td>9</td><td>494</td><td>523</td><td>1</td><td>2</td><td>•</td><td>311</td><td>257</td><td>12</td><td>+</td><td>•</td><td>161</td><td>205</td><td>9</td><td></td><td>•</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22	9 230	2	0	9	494	523	1	2	•	311	257	12	+	•	161	205	9		•
251       302       14       0       324       367       -23       3       326       316       18       6       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281       281		251       300       14       0       324       300       14       0       324       300         251       100       11       0       0       324       301       14       0       81       80         251       110       10       110       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10		22	5 216	12	0	9	116	806	-25	•	•	238	192	1	4	•	229	209	12		
239       197       16       221       221       221       221       221       221       221       221       221       223       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       231       232       231       232       231       231       231       231       231       231       231       231       231       231       231       231       232       232       232       232       232       232       232       232       232       233       233       231       23	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25	1 302	14	0	9	324	367	-23	•	•	326	316	18	4	•	281	287	-23	-	
213       169       200       521       -13       5       500       521       -13       5       6       306       270       270         209       261       -21       1       6       194       246       -13       5       6       306       270       270         201       310       -17       1       6       194       246       -13       5       6       306       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270       270<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		23	197	18	0	•	231	227	-17	•		570	165	20	4	•	251	239	1	-	•
289       261       -21       6       194       246       -13       6       416       455       -22       5       6       255       220       -11         281       310       -17       1       6       358       -11       3       6       255       220       17       5       6       551       644       -15         281       281       -15       1       6       556       596       -9       3       6       257       226       -15       5       6       593       308       -11       3       6       55       6       51       644       -15         261       257       -13       6       805       825       -13       5       6       593       308       -14       5       6       51       644       -15         201       201       505       800       -5       3       6       605       855       -13       5       6       50       308       -14       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 </td <td>289       261       -21       1       6       416       455       -22       5       6       25       220       210       -11       1       5       6       25       220       210       -11       3       6       33       23       -12       5       6       25       220       210       -11       5       6       55       230       230       -12       5       6       55       5       6       55       230       230       -12       5       6       55       230       230       -12       5       6       55       6       55       5       6       55       5       6       55       5       6       55       230       300       -12       1       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       5       6       5       6       5       6       5       6       5       6       5       5       5       5       5       5       5       5       5       5</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>21</td> <td>3 169</td> <td>2</td> <td>0</td> <td>9</td> <td>439</td> <td>377</td> <td>-15</td> <td>•</td> <td>•</td> <td>8</td> <td>521</td> <td>-23</td> <td>5</td> <td>•</td> <td>30</td> <td>270</td> <td>-1-</td> <td>-</td> <td></td>	289       261       -21       1       6       416       455       -22       5       6       25       220       210       -11       1       5       6       25       220       210       -11       3       6       33       23       -12       5       6       25       220       210       -11       5       6       55       230       230       -12       5       6       55       5       6       55       230       230       -12       5       6       55       230       230       -12       5       6       55       6       55       5       6       55       5       6       55       5       6       55       230       300       -12       1       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       55       5       6       5       6       5       6       5       6       5       6       5       6       5       5       5       5       5       5       5       5       5       5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21	3 169	2	0	9	439	377	-15	•	•	8	521	-23	5	•	30	270	-1-	-	
319       310       -17       1       6       304       358       -11       3       6       257       226       -17       5       6       551       644       -11         201       310       -17       1       6       569       596       -9       3       6       383       426       -15       5       6       393       396       -11         261       257       -13       1       6       393       393       -7       3       6       805       825       -13       5       6       393       396       -11         261       257       -13       1       6       393       -7       3       6       805       825       -13       5       6       393       396       -11         275       206       -9       1       6       931       908       -13       5       6       369       343       -1       5       5       393       396       -11       5       5       303       396       -11       5       5       393       396       -11       5       5       303       396       -11       5       5       5	319       310       -17       1       6       304       358       -11       5       255       256       -17       5       6       551       641       -17         201       201       -15       1       6       569       596       -15       5       6       393       396       -11       5       6       393       396       -11       5       6       393       396       -11       5       6       393       396       -11       5       6       393       396       -11       5       6       393       396       -11       5       5       393       396       -11       5       5       393       396       -11       5       5       393       396       -11       5       5       393       396       -11       5       5       393       396       -11       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	319       310       -17       1       6       304       38       -11       3       6       551       641       -13       5       6       511       5       6       511       5       6       511       5       6       511       5       6       51       641       -13       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       6       51       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7<		28	9 261	-21	-	9	194	246	-13	•	9	416	155	-21	5	•	255	220	5	-	
282       285       -15       1       6       566       -9       5       383       426       -15       5       6       393       396       -11         261       257       -13       1       6       379       393       -7       5       6       393       396       -11         399       308       -9       1       6       379       393       -7       5       6       393       396       -11         399       308       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       303       343       -7         225       208       -7       1       6       931       906       -3       5       6       70       363       343       -7         207       287       -5       1       6       930       -11       5       6       369       343       -7         207       287       -5       1       5       6       303       306       -1       5       5       720       73       5       6       70       73         208	262       263       -15       1       6       569       596       -9       3       426       -15       5       6       393       396       -11       7         261       257       -13       1       6       379       393       -7       3       6       805       825       -13       5       6       393       396       -11       7         299       306       -9       1       6       925       880       -5       3       6       805       825       -11       5       6       393       396       -11       5       6       393       343       -1       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7<	262       263       596       -9       5       303       426       -15       5       5       303       306       -11       7         261       257       -13       1       6       303       303       -13       5       6       303       306       -11       5       5       303       306       -11       5       6       303       306       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       6       303       303       -11       5       5       5       5       11       1       5       5       5       11       1       1       1       1       1       1       1       1       1		16	310	-11-	-	9	305	358	-11-	•		257	226	-17	5	•	651	ł	-13	-	•
261       257       -13       1       6       379       393       -7       3       6       805       825       -13       5       6       319       -9         399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       363       343       -7         225       206       -7       1       6       931       908       -3       3       6       400       366       -9       5       6       343       -7         225       206       -7       1       6       931       908       -3       3       6       400       366       -9       5       6       794       816       -5         307       287       -5       1       6       300       300       -1       3       6       815       -7       5       6       70       79       5       -1       1       5       5       5       5       1       5       5       5       1       1       5       5       5       5       1       1       5       5       5       5	261       257       -13       1       6       379       393       -7       3       6       805       825       -13       5       6       20       319       -9       7         399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       369       343       -7       7         225       206       -7       1       6       931       906       -3       5       6       605       369       343       -7       7         225       206       -7       1       6       931       906       -3       5       6       76       369       343       -7       7         207       287       -5       1       6       931       906       -1       3       5       6       79       816       -5       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       <	261       257       -13       1       6       805       825       -13       5       800       319       -9       1         399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       363       343       -7       7       7         399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       363       343       -7       7         225       206       -7       1       6       931       908       -3       5       6       700       363       343       -7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7		2	2 285	-15	-	9	569	596	61	•	•	383	426	-15	5	•	393	398	Ŧ	-	•
399       308       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       343       -7         225       208       -7       1       6       931       906       -3       3       6       400       368       -9       5       6       794       816       -5         307       287       -5       1       6       309       300       -1       3       6       400       368       -9       5       6       794       816       -5         307       287       -5       1       6       300       300       -1       3       6       851       815       -7       5       6       794       816       -5         471       404       -5       1       6       783       761       1       3       6       657       720       -5       6       720       759       -1       1       4       4       4       1       1       1       3       6       5       7       5       6       720       759       1       1       1       1       1       5	399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       363       343       -7       7         225       208       -7       1       6       931       906       -3       3       6       400       368       -9       5       6       74       816       -5       7         207       287       -5       1       6       309       300       -1       3       6       400       368       -9       5       6       74       816       -5       7         307       287       -5       1       6       300       300       -1       3       6       815       615       -7       5       6       70       59       -1       7         471       494       -3       1       6       720       -5       5       6       70       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7	399       306       -9       1       6       925       880       -5       3       6       605       595       -11       5       6       363       -7       7         225       208       -7       1       6       931       906       -3       3       6       400       368       -9       5       6       746       816       -5       7         207       287       -5       1       6       931       908       -1       3       6       400       368       -9       5       6       794       816       -5       7         307       287       -5       1       6       930       300       -1       3       6       815       -7       5       6       730       759       -1       7         471       494       -3       1       6       730       720       -5       5       6       212       220       71       7		26	1 257	-13	-	9	379	393	-	•	•	805	825	-13	5	•	290	319	9	-	•
225       208       -7       1       6       931       908       -3       3       6       400       368       -9       5       6       794       816       -5         307       287       -5       1       6       300       300       -1       3       6       851       815       -7       5       6       729       -1         307       287       -5       1       6       309       300       -1       3       6       851       815       -7       5       6       720       759       -1         471       494       -3       1       6       783       761       1       3       6       657       720       -5       5       6       212       220       1	225       206       -7       1       6       931       908       -3       3       6       400       368       -9       5       6       794       816       -5       7         307       287       -5       1       6       309       300       -1       3       6       851       815       -7       5       6       720       759       -1       7         307       287       -5       1       6       300       300       -1       3       6       851       815       -7       5       6       720       759       -1       7         471       494       -3       1       6       783       761       1       3       6       657       720       -5       5       6       212       220       1       7         471       494       -3       1       6       730       720       -5       5       6       210       1       7       7       7       7       6       1       7       7       6       7       7       7       7       7       7       7       7       7       7       7       7	225       206       -7       1       6       931       908       -3       3       6       400       368       -9       5       6       794       816       -5       7         307       287       -5       1       6       309       300       -1       3       6       851       815       -7       5       6       720       759       -1       7         471       494       -3       1       6       730       306       -1       3       6       657       720       -5       6       720       759       -1       7         471       494       -3       1       6       783       761       1       3       6       657       720       -5       5       6       212       220       1       7			908	î	-	•	925	880	5	•		605	265	7	5	•	369	343	7	-	-
307 287 -5 1 6 309 300 -1 3 6 851 815 -7 5 6 720 759 -1 471 404 -3 1 6 783 761 1 3 6 657 720 -5 5 6 212 220 1	307       287       -5       1       6       300       -1       3       6       851       815       -7       5       6       759       -1       7         471       494       -3       1       6       783       761       1       3       6       857       720       -5       5       6       212       220       1       7	307       287       -5       1       6       300       -1       3       6       851       815       -7       5       6       759       -1       7         471       494       -3       1       6       783       761       1       3       6       657       720       -5       5       6       212       220       1       7		22	5 208	1	-	9	931	908	-	•		8	368	9	5	•	35	816	Ŷ	-	
× 471 404 -3 1 6 783 761 1 3 6 657 720 -5 5 6 212 220 1	471 494 -3 1 6 783 761 1 3 6 657 720 -5 5 6 212 220 1 7	471 494 -3 1 6 783 761 1 3 6 657 720 -5 5 6 212 220 1 7		8	7 287	ĩ	-	9	309	300	7	•	9	851	815	7	5		720	159	7	-	•
				4	1 494	T	-	9	783	192	-	•	•	657	720	Ŷ	5	•	212	220	-	-	•



PAGE 9

10FO 10FC

9	EC.	12	110	Ne.	1	121	103	2.62	346	RAF								
14	10	F	100		1	9												
DAT	1040	1.69	She .	105	201	000	198	222	706	125	2.1					12		
•	4	104	a,	0	9	a,	à	Ġ¢	2è		1							
	h	n.	Ġł.	۰,	1	n	Ċ9	n,	×									
	-	6-	-		-	ra.	-1	9	-		1							
	10102	EPII	103	and a	103	168	05A	APR A	10.0	100								
	IOB0	11399	PAR -	Name.	EBE	263	12.2.2	100.1	224	100		124	No Fr					
	64	4	23	.0	0	02	2	¥ 3	1		9				2.3			
	N	-	5 1	1	-	-	•	7.7	- 1							1		
	R	ra .	4.9	0	-	0	1			11	22-	-20	8	-				
	TORC	aser	TYSAG	1072	663	200	New New	2000	216	XPS	520	3776		1000		124		
	1080	Vici	1223	CAPT	APA.	ChA B	New Color	unc.	212	SCA	282	320	300	100.0		3		
17	-	k.	- 0	4	34	1	1.0	10	đ	4		2						
A	24		-	-	-	-	1	-	20	*-*	iner.							
NOR 2	MA IN		I'm.	· Er			1100		11	22	17	in the second se			-14	51		
NOTONS	TOLIC	-	220	366	200	and .	1000	509	TRE.	275	168	10.7	- 11-2	CAC	301			
33307	IDEO		684	328	200	1000	513	510	385	202	241	2000	100	008	0.000	YD?	621	
DU	Ref. C		14	151	1	1	~	ni	Ċ.	rii.	ŝ.	1	- *	9	the state	÷.	¢,	
TTE	м		10	in it		2	12.20	10	24	2	202	2 1	2	0	9	0		
DETAI	-			-	1	- P	P	11	-	5	ĥ	5 1	1	- 20	81-	91-	E.	
- No vote	Totec		Sed	343	- Nor	030	212	559	394	200	DP A	100	1940	\$13	242	200	0.80	-
The	10100	1	603	804	1530	302	335	206	1240	1.0	202	000	200	040	233	880	202	1
	le i		ni.	41	1	eu	é	CH.	-		43	1.18	-	es	ni i	12.)	-	

9	DIC	944	662	372	339	219	215	611	321	269	255	543	249	155	250	202	193	394	334	394	185	177	262	325	104	755	269	076	763	614	521	807	408	344	323	216	145
AGE	0 1	9	9	-	5		0	-	-	0	-	5	9	-	-	0			5		5	0	-		-	-	9	5 1			-	-	4		2	=	-
	101	39	8	41	37	22	20	48	34	52	23	3	52	40	25	55	45	38	34	41	23	19	28	27	37	1	28	108	18	3	51	8	42	36	31	22	00
	-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
	*	•	•	3	•	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
		5	-	H	13	-22	-18	-14	-12	-10	Ŷ	۴	1	-	•	2	4		9	12	18	-23	-21	61-	-13	7	7	Ŷ	-	7		•	5	12-	6	Ŧ	
	240	301	214	243	275	311	86	406	689	207	262	619	1089	535	648	1567	1043	629	992	734	548	514	465	210	272	295	371	219	301	519	642	469	742	762	743	734	603
	1010	226	205	249	310	302	188	403	668	259	229	680	1034	535	657	1508	1011	634	982	714	545	518	462	226	327	309	367	216	271	547	617	473	788	111	169	765	
	-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
	*	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	•	•	•	•	•	•	-	~	•	•	~	•	•
	=	13	15	-	61	-24	-20	118	-16	-14	-12	-10	9	Ŷ	1	-	•	2		-	9	14	16	18	-21	61-	-11	-15	-13	Ŧ	•	7	5		7	-	•
	DIOL	367	372	209	343	305	447	358	332	211	254	335	421	226	231	177	253	303	313	363	442	338	542	471	727	767	404	1164	1160	1133	389	621	732	111	265	510	
	1070	375	319	199	368	326	419	330	284	247	283	315	394	276	238	207	291	328	288	351	417	294	588	422	765	714	402	1148	1102	1114	411	617	737	657	267	514	
2	-	9							9	9	9	9									-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
-	*	13	5	E	13	13	13	13	14	14	14	14	14	14	14	16	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	•
FOR	=	Ŧ	9	7	-	7	-	-	-	9	1	-	0	-	-	9	7	5	1	-	-21	1		1	-13	=	1	-	5	"	7	1	-	-	-	0	
ACTORS	10FC	225	199	240	487	265	433	258	340	289	617	765	602	311	512	306	233	334	278	337	425	210	100	426	305	281	232	277	209	203	100	190	317	202	238	229	
URE	1010	184	ASA	543	408	284	417	336	317	299	697	754	247	310	200	309	261	346	226	337	372	200	170	412	236	266	236	214	184	556	358	200	250	216	264	212	
DCT	-																								-					-		9 0				9	•
STR	*			. 9	2	2	2	2	2	2	2	2	2	2	1	2	=	=	1	1	=	1	1	12		1	12	5	12	12	12	12	-	12	12	12	
VIED	-	•	-	-	-16		19	. 7	4	1	î			• •				17	19		"	7			-	1	-14	4	4	•			-			12	
ALCUL	OFC	183	41.9	1	ADS	203	325	333		265	358		467	222	1012	009	203	196	533			-		356	10	010	287	518	574	230	376	117	144		827	544	
	010		109	202		101	332	-	100	150	1	104	483	335	109	199	3	170	VON		331	100	-	218	196	194	206	YON	-	874	100	668	180	414	805	490	
8	-																																				•

A STATE OF A DESCRIPTION OF A DESCRIPTIO



								331	818	67.5	212	219	666		S.P.P	503	040		1080	01 3
	1774			8	J.F.F.	1	NY A	101	TRA	CINC.	1000	238	SAS		CH3	306	390	-	1080	ISVC
						Ÿ		-1	-1	1	7.4	-	-	1	4	-	12	-	. fil	25-1
					2	- 10	1	5	5-	10	• •	2 ²	~	1	2	10	-	1	-	
								27.	AL-	-19	1.0	100	Ē	-	1.1	-	~		10	
				619	TAK	YUN		100	20%	88	2.20	417	542	24.2	5.45	Als	301		TORC	
					334	3.5.4	in the second	20	EOA.	198	AVE	d'una	01P	No.2	D.XP	202	330		TONO	
					-		1 -	1	-1	-	-	٩.	-1	4	4.	-	4		the state	
					7			7.3		17	¥	÷	e	-	1	R	-		-	
		- 65 -		3	2	AL-	101		30	- 20	101	144	1	11		14Y	13		-	
					277	21.1	324		and a	TAA	202	1000	20.4	508		140	363		IONC.	
		ADE	211.		FRO	TAS	XGre	1000	4-411	ALA.	33.0	1	PAR-	133	1000	-110	312		1050	
		2				è	G	1	5	e,	4	-	y'	2		9	a/		50	10
			2	1	2	È	2	1	3	1	2	1	1	Ċ	5	-	12		άť.	~
			100		ŕ	ĩ	- CF	0	W I	1	il a	5	-	100	-		11-			R BOIL
1110	100	603	200	12.0	111	280	340	200	1004	133	382	401	100	042	447	144	334		1040.	NCLOB
350	1	2	124	0.01	THE R	page	TEE	000	N N N	NTA.	284	400	CONA.	27.4	100p	100	1/8/1		1080	AMR 1
			4	.0	4.4	52	¢,	0	1	ÿ.	0	0	1	8	6	- 4	ÿ		É.	1003
	2	2	202	21	1	10	2	10	12	2	0	TO	1	01	-	1	9		54	BAB
5			a	1	1	1	Ŷ	9	100	27	M-	~10	-	RT	TT.		0	2	at .	CITA
232	100	1	EI3	520	192	100	331	355	200	1995	203	100	100	Nov.	240	000	-		10401	CWEGON
202	0.8%		P.S.Y	2000	100	041	1001	328	202		101	312	100	Abs	691	000			IOND.	AND.
-1							1						-		-		1	1		

ME	DIA C	CALCU	ILATED	ELS	DO	LURE	FACTORS	FOR	-	2											PAG	II S
-	1010	10FC		*	-1	10FG	0 10PC			-1	1010	10FC	×	M	-	10FO	10FC	=	M	-1	OFO	IOFC
-	211	214	7	•	-	256	5 260	-15	=	-	282	290	0	16	-	283	276	13	-	•	419	379
-	478	530	0	-	-	43	6 438	-13	=	-	253	217	-24	16	-	219	232	15	-	•	350	310
-	355	328	2	•	-	154	1 753	7	=	-	219	234	-22	•	•	444	436	-18	2	80	244	296
-	192	282	4	•	-	54	1 523	9	=	-	253	253	-20	0	•	462	416	97-	2	80	191	140
-	366	371	91-		-	29	3 302	7	=	-	172	162	-16	•	•	215	146	47	2	•	270	249
-	546	531	9		-	290	0 262	ĩ	H	-	253	264	-14	•	•	216	289	-12	2		283	186
-	788	853	12		-	23	9 248	7	=	-	550	587	-12	•	•	634	650	10	•	80	232	233
-	472	504	-21	•	-	250	3 276	-13	=	-	317	306	97-	•	•	561	483	ę	2		158	186
-	267	247	-13	•	-	24	5 235	•	1	-	215	238	٩	•	•	708	678	9	2		312	263
-	845	829	17-	•	-	28	3 289		=	-	359	386	۴	•	•	628	685	1	2	•	319	303
-	925	886	1	•	-	22	2 234	•	=	-	224	268	1	•	•	1291	1335	7	2	•	909	617
-	611	598	7	•	-	42	1 439	-16	12	-	246	177	ñ	•		634	601	•	2		278	247
-	311	299	Ŷ	•	-	51	5 525	-14	12	-	299	324	•	•	•	311	331	2	2		200	263
-	187	256	Ţ	•	-	861	8 854	-12	12	-	394	472	0	•	•	351	445	9	2	•	212	186
-	376	415	7	•	-	65	1 663	-10	12	-	206	204	4	•	•	966	156	-19	•	•	319	319
-	354	393	-	•	-	70	8 751	Ŷ	12	-	325	329	•	•	•	170	212	-17	•	•	521	185
-	211	254	9	•	-	99	3 693	۴	12	-	600	678	8	•	•	298	317	-15	•	•	246	592
-	346	311	~	•	-	36	2 358	1	12	-	435	462	9	•	•	540	511	-13	•		218	111
-	37.5	376		•	-	21	8 272	7	12	-	309	266	12	•	•	308	320	7	•		400	376
-	20	553	H	•	-	20	6 258	•	12	-	224	190	14	•	•	288	220	9	•		374	397
-	480	470	13	•	-	19	8 206	2	12	-	459	443	18	•	•	238	291	7	•	•	657	645
-	294	1 265	-18	10	-	21(	0 124	4	12	-	340	360	-19	-	•	267	236	r	•	•	238	242
-	454	479	-16	10	-	25	4 278	9	12	-	283	244	-1-	-	•	344	316	7	•		408	468
-	36	5 296	-14	9	-	21	5 110	12	12	-	222	250	-15	-	•	318	294	7	•		547	533
-	46	438	-12	9	-	21	2 224	7	13	-	214	197	-13	-	•	211	282	11-	•		348	336
-	54	1 521	-10	9	-	31	1 298	7	13	-	303	252	7	-	•	411	455		•		285	283
-	261	1 277	9	10	-	41	2 373	1	13	-	195	182	9	-	•	640	605	•	•	•	343	321
-	30	1 277	9	9	-	18	0 193	-10	14	-	212	174	7	-	•	327	299	-	•		395	431
-	44	5 449	1	9	-	32	5 345	2	14	-	247	186	Ŷ	-	•	259	312	•	•	•	331	321
-	25	1 223	-	9	-	49	9 462	9	14	-	204	153	ĩ	-	•	1194	1194	13	•		308	293
2	26	5 305	•	10	-	42	5 434	=	15	-	228	220	7	-	•	1005	988	15	•		326	40
-	320	0 261	4	9	-	22	7 216	9	15	-	380	354	-	-	•	355	361	11	•		207	214
1	26	0 215	9	9	-	39	0 446	7	15	-	282	231	•	-	•	188	181	-22	4	•	301	338
-	40	3 401	8	9	-	28	9 335	T	15	-	422	370	5	-		605	628	-20	4	80	350	376
-	20	8 142	9	9	-	22	3 202	-	15	-	225	229	-	-	•	457	475	-16	4	80	231	231
-	47	7 448	-17	=	-	27	7 288	-	12	-	246	227	•	-	•	270	278	-14	4	80	202	479



						1														
						-	292		202	1000	2.44	Sta	Take	1979	500	24.0	210	OTE		TOINC .
		1.000	312				212	120	323	102	10.0	07%	121	1.0.1	Sug	NCE	10.0	619		1050
						2	50	ije.	19	0	R. 1	jų	.0	p.	- np	9		-	1	ģ
			e,			1		ιģ	М		1.1	4	×	ŧ j	17	÷		-		
	53								-10	- 18	1	1	-110	-	1120	1		13	-	
								1.81	620	Yoy	1000	244	010	1111	420	1233	1	276	Name of	THROP.
			2	TART		1000		195	120	025		9	200	and a	120242	518	1	28.9	No. of Lot	NUMO
			si)	-	à				0.0			ņ	1	1	ni,	-1	1	1		*
	4	2.1					1	2	0	æ		2	0		P	2	100	2	-	i
-	4				107		-	0	127	AL-	- 10	1	-30		-24	0			- 10	*
			0.2.2	508	000		1000	ADF	182	220	1.02	74.5	\$23	Nom.	100	273	Nam.	000	There	A SAME
				1000	100	\$15	1.4.5	i.	022	523	19.92		223	123	010	Ees	Nor	285	Tassia	HAM NO R
				-1			-	1	-	2	2	t.)	-1	4	4.	-	-		1	R
	K	÷			i,		3	-		12	12	1	2	12	1	-	1.1		14	-
	-110			-	-	1	1.00		ī	7	7	1	9	22.00		100	CL-	-	35	1000
967	529	42.0		K	580	202	21.0	1	8.00	262	305	141	653	123		RE A	Spin	-	TONC	
9.68	216	120		252	583	340	002	10.00	0.50	230	293	No.	ANA.	Poch.	in the second	4.95	530		1080	
	-1	2	e	7	-1	1	2		e.	-	-	1	1	-	4	1	0	-	+	
3		N	1	Ø,	10	0	19	1.4	10		-	-	10	13	1		0	1	M	
	7	-	1	Ŷ	Ţ	17	15-	1	2	10	9	1	1	-		2	17		10	
41.4	29.9	298	1000	0.4.0	628	1.4C	204		BK G	182	317	Mar	ene	328	2000	630	200		TONC	
1.00	HE	1.1.0	1000	200	223	261	27.4	AGO	0.1	AV.	366	Alak.	100	322	NUD.	27.4	2111 ···		10EO	
3	-1	1		4.	1	-1	-		i.		-		4.5	~	1	4.	-		5	

10FC PAGE 12 1070 1 10PC 1070 Ŧ 10PC 1070 -1 7.2 2 FOR STRUCTURE FACTORS 10FC 1070 3 oueedijiiiiuuuuuuuuuuuuuuuuuuuuuuuuuuu CALCULATED 10PC 1070 VED -



				540		1117	625	(A-A-A)	929	Delo	1.1.1	202	212	213	1.44	230	382		10EG		112		
			102	21.5		242	243	230	080	0.00	2.20	41.0	301	0000		263	300		DED.		B-WGI		
			9			9,7	0	Ŕ	10	1	1,1	9	10	1	2.1	ġ	19		14				
					. 17	8 X	9	~	17	in.	2 11	16	in	P	1	-	-		14				
			20			7 1		ĩ	7	7	1	7	1	11-		177-	-19		-				
			1910			241	1.00	376	692	344	10.0	10.0	269	380	1000	277	100		1040				
			1.53	100	020	100	1.1	110	128	394	202		201	33.5	- and	21/2	202		IDNO				
	1	đ	Ę.	10	-2			0	10	10	1	2	10	-10	1	0	ini.	. 1	4				
			÷			1			-	-	*	•	4	-	-	1	ē.,		4				
Ċ		5.4	-		7	7	-	1	1	1	12-	1	NI I	111-	121-	20	ES-	-					
1000	1.61		100	349.6	612	101	1.00.1	10.0	200	2005	0.20	1	P.014	222	402	-	878		FUNC				
205				110	191		10	0.00	208	079	490	100	197	214	12.2.0		CIRO.	- and	TREAT	N. S.C.			
					00	0	- 0	b (	25	œ	(1)	4	6	60	0	1	57	6		1	ě.		
1	2	5	2 ]	2	2	2	01	2.1	9	0	19	-	2	Ø.	-	1			4	1	1		
				-10	10/1	91-	+10	5 7	ę.	-7	-			1	En	1	-	1. 10		o the	ana o		
1141	1002	0.51		126	996	984	C115	1.20	996	555	123	012		323	200	- and		TORC		SOP ENE	there will be		
	0.17	Cland		203	808	122	BEE	1002	230	DRC	219	213	1000	468	184	-	141	TORED		CORCE-			
		0	0	E -	90	æ	08	0	÷ į	50	60.	0	-	-	-	4	6	-		COL.			
			9	4	4	4	-1	-	4.	4	-	4	19	5	61	4		34	6.0	and			
	7	5	1	2	7	111-	21-	-10	144	111	-19			-	1	10				DULEUN			
111	200	PES	0.00	242	320	294	192	1083	14.4	100	Par	2005	TEMA	1 0000	242	SCC		TOLC		CWINT	- INTE		
in a	1012	Elle	020	0.00	106	SH2	212	1040	1940	0.10	TRA	868	25/22	SPOR	382	COC	110	10101		CHART OF	Contraction of the		
	10	ch	0	6.0	10.1	-	-	.00	5.0	4.4	dil.	-	10	0 0	87	es		64		R			

(YED AND CALCULATED STRUCTURE FACTORS FOR 7.2

	240	413	166	157	178	336	206	385	275	343	267	352	304	346	236	406	213	339	507	513	387	618	206	348	265	617	417	281	278	314	320	280	282	237	259	219	384
	010	418	219	220	196	299	251	394	252	371	327	313	337	322	213	401	190	334	532	464	364	628	551	406	227	645	391	310	331	311	280	231	231	260	311	232	349
	1	9	9	0	9	9	9	9	9	9	9	9	9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	*	5	5	5	5	9	9	9				9				-	-	-	-	-	-	-	-	-	-	-	-		•		•		-	•	•	•	5
	=	-	-	13	-20	-12	97-	ę	Ŷ	1	7	2	4		9		-15	-13	Ŧ	7	7	Ŷ	7	7	•	-		-16	-14	7	۴	7	•	9	-15	-13	T
	OFC	384	196	177	228	285	268	308	437	437	406	387	220	268	252	230	450	667	476	166	731	614	461	227	763	859	327	447	499	233	221	468	223	357	422	236	232
	010	382	186	193	254	270	244	290	432	408	445	399	188	333	276	223	475	674	461	387	754	657	466	245	765	168	345	491	488	219	253	484	218	338	371	200	212
	3	2	2	9	9	9	2	2	2	2	2	10	2	2	10	2	2	10	9	10	10	10	2	2	2	2	9	10	9	2	2	2	2	9	9	2	2
	×	2	~	~	-	-	-	-	-	-	-	-	-	-	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5
	H	0	-13	-12	-19	-17	-13	Ŧ	1		7	-		H	-13	-22	-16	-14	-12	19	9	4	1		0	- 2	4		10	61-	17	9	7	7	Ŷ	T	e
	OFC	243	218	257	235	249	261	298	360	248	294	209	542	568	762	473	579	715	244	208	127	202	268	329	528	255	494	374	333	306	338	365	327	291	389	308	198
	1010	311	248	273	239	264	264	333	351	294	284	234	203	493	137	473	230	169	186	206	213		338	111	513	194	506	391	320	306	278	354	295	186	393	280	187
	-	•					1	19	19	12	12	12	2	12	2	2	19	12	2	22	19	2	22	22	2	22	19	2	19	19	101	19	01	101	2	2	2
	M	1		1	1	1	-		• •		• •		• •		• •	• •	• •		• •	• •			10	-	100	10	-	13	-	2	1	12	1	2	-	2	~
	=	٩	4		4	1	10	18		-16	1	19	19	19	• •	1	-		1		14		17	1	17	:7	"		7	200		-25	-	-12	4	1	7
	OFC	180	173	305	202	VBV	250	225		304	333		107	100	210	513	386			2.2	100		122		200	410	287	288	35	YDO	476	340	156	327	215	243	290
	040	146	112						306	250	ASE			354			1004					200			196	100	286	244	226	424	474	294	150	308	OEC	274	307
	-															-							-								• •						
	*												-	2 5	2 5	2	25	2 5	2 5	2 5	2 5	2:	11	1:	1:	12	1	11	::	12	12	12	12	12	: :	12	13
MIEU		5	19	11	1	2 1	2-	1	••		•	•:	19	2	2	24	11	11	2	-	* *	•	7	F	11	27	7 4			1	•	1	-		- 30	0	ŗ
TANA	OFC	-	122	100			100	701			100	147	193		200	017			279	162	127			220	210	007	110			144		252			02.0	244	452
	010	1	11	22	200		3	DIZ	8	100		5	812		977		977	017	23	324	112	432	965	-								11			-	264	1
2	1	1																	-						-												
	1		10. 8	1	1	-	-	at a	100	10	-	-	1.1	1	5.7		1	-	-	-	1.		10	1	2.0												

PAGE 13



			1																																		
E 14	10FC	468	275	489	275	283	385	369	301	351	280	196	283	292	362	331	248	214	220	293	188	200	279	275	242	241	345	338	161	241	186	248	320	303	142	283	228
PAG	1070	408	312	523	309	302	380	404	312	356	278	198	292	274	362	358	264	222	243	268	212	243	262	277	243	280	354	371	193	231	251	272	249	323	206	282	251
	-1	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
	M	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	•	•	•	•	•	•	•	•	-	-	-	-	-	-	-	-	-	•	80	80
	=	-14	ę	9	1	7	•	2	9		-13	1	7	r	7	•	5	-14	۴	1	?	•	2	4	•	-13	7	٩	5	2	7	7	•	5	-16	ę	7
	OFC	320	310	280	327	417	282	249	421	433	208	281	342	229	197	318	230	289	264	332	282	364	213	279	307	289	289	194	355	309	196	161	351	354	200	221	450
	OLO	319	328	239	270	391	302	292	412	463	207	263	318	258	265	346	247	292	248	330	250	338	228	272	285	307	298	240	414	362	219	215	384	365	206	216	440
	1	~	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	12	2	2	2	2	12	12	12	12	12	12	2	12	12	12	12	12	12
	×	•	0	0	0	•	•	•	•	•	•	•	•	•	-	-	-	-	-	-	-	-	2	~	•	•	•	•	•	•	•	~	•	•	•	4	4
	=	-18	-16	-12	-10	9	۴	1	7	•	4	9	•	10	-15	-13	7	Ŷ	ŗ	-	•	5	-14	1	-15	-13	7	-	r	ŗ	7	-	m	5	-	-18	-16
	OPC	239	301	602	285	229	337	188	227	214	225	234	220	332	276	255	216	257	299	207	382	278	186	228	210	223	195	259	206	339	195	261	379	344	202	243	171
	1010	280	231	628	259	231	337	202	212	193	263	294	228	300	312	272	242	253	250	256	379	303	246	240	227	235	218	251	268	338	237	308	434	330	210	232	202
~	-1	=	1	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	Ξ	Ξ
	M	9				-	-	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•	2	10	9	9	9	=	=	=	=	12	12	12	12	12	13
FOR	=	?	4	4		-15	7	7	-		5	9	?	0	2	9	-15	-13	-	7	-	•	-12	-10	1	-	4	-13	ĩ	"	7	97-	-	٩	•	2	-
ACTORS	10FC	336	515	463	186	247	272	262	276	382	373	257	208	218	321	365	307	520	201	244	239	255	300	226	337	195	296	321	406	259	243	335	232	280	402	349	494
URE F	1010	302	527	430	239	239	277	281	252	336	393	228	251	238	347	388	350	542	207	295	218	274	265	189	299	230	238	301	403	323	251	366	292	254	356	361	412
DCT	-1	=	=	=	=	=	=	=	=	=	-	=	1	=	=	=	=	=	=	=	=	=	=	11	=	=	=	=	=	=	=	=	=	=	Ξ	Ξ	Ξ
STR	*	~	-		-	-	-	•	-	•	-	-	-	4	4	4	4	4	4	4	4	-	5	5	5	5	5	5	5	5	5	5	9	.9	9	9	9
ATED	=	~	-	-	2	12	17	-13	7	7	-	-	-	-16	-14	97-	9	9	1		60	-11-	-15	-13	17	-	5	7	-	•	1	•	-18	-12	-10	9	1
CALCU	10FC	409	266		313	226	375	348	248	233	119	235	199	265	239	233	331	342	485	406	428	601	225	291	353	489	288	320	277	317	446	532	399	228	333	595	544
8	010	-	180	348	315	262	402	372	267	230	187	274	275	241	286	208	442	342	476	403	454	663	261	302	307	493	280	290	300	348	475	561	453	207	316	009	530
	-	9	12	1 5	22	2	12	2	2	2	2	2	2	2	2	2	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	II	=	=	=	Ξ

1		
ALL SECTION	LOAC	EI 2
12996	Q	MG
CONTRACTOR CONTRACTOR	101	-
000000000000000000000000000000000000000	4	
	56	
AFRONSPAT.		
1 1 1 1 miles and the		
2822 2822 2822 2822 2822 2822 2823 2823	LOAC	
1111 1111 1111 1111 1111 1111 1111 1111 1111	090	
22222222222222	fra.	
	36	
	-	
EAS BAS BAS BAS	TOAC	
LIE AGE AGE AGE AGE	1060	
	Fe	10
-000000000	24	-
	39	MCI 2
101 101 101 101 101 101 101 101 101 101	1080	NGLOW
Les Ads Els Bes Bes Bes Bes	1080	K SNO
	5	DC1
	M	813
HALDWARD LEAD	-	a
		AT
2222 1187 1187 1187 1187 1187 1187 1187	IOMC	CAFC
71/4 5710 5210 7210 721 2227 2327 2327 2527 2523 2005 2523 2005 2523 2005 2523	010	SA .
	4	CINE I
		and the second second



and the second se

				-				-								
E 10	TOAC	884	275	ARG	0000	212	N9.7		20.4	301		185				
PAG	1010	808	SIE	63.3	2000	2014	302	380	9.99	375	320	558				
	ta.	2	12	2	3	Ľ	12	12	10	N.	2	2				
	-	*	6	þ	. 3	-	Þ	ų,	2÷	15						
	M	AL-		ř		0-	10	0			(28	E1-				
	LOKO	320	SIL	1980	NON Y	337	117	583	540	124	233	208				
	1080	319	378	0.80	1000	210	191	303	392	1014	100	501.	CAT.	101		
	£.,.	12	2		1	12	12	121	2	2	17	17		1	4	
	м	0		2.4	c	0	0	ò	Ċ,		¢.	ð.		1		
	00	-18	21-	01-	21-	0/-	Ŷ	9-	P	1	2	'n.				
	IOEC	239	100	100	200	285	000	222	100	222	1			N.Y.		
	1040	280		No.X	039	1995	162	TEF	202	222	10.7	2.4		2962	156	
57	5a	-	1.0	1	11		-	1	-	-			1			
*	24	Pr.	1	9	0	62	9	4.	4		4 -	1-				
F ADS	82	1		10	A	er.	1	7	7	-	n ,				1	
NCTOR	TOAC	338	. 966	515	Edd	186	FAR	222	is and	27.0	0.00	1000	i i	125	209	
TOKE	10100	202	202	331	DEA	230	950	VER	100	0.00	224	202	220	528	125	
sne	Tre	-	14	11			-		1	1	1		10	1		
3	36	*		-	n	à.	• •	-	• 1	13	17	. 1	17	193	m	
UNTED	R		N	*	4	00		22		1.1	- 7	7		0	-	
CATCL	FORG		EUA	366	ADP	11.5	100	200	220	140	Can.	CRN	213	225	Fee	
CAN O	1080		\$0A	182	RAF	128	1.2.5	202	Cute	244	Tax	STO	181	274	444	
a let	5.	1	0	0	8	5 1	50	10	10	10	-15	10	0	ds.	3	

A Decision in

	C	00000000000	
1 1	101	28 2 19 3 2 3 2 5 5 2 3 1	
PAG	1010	275 239 340 333 334 334 207 233 207 233 233 233 233 233 233 233	
	1	4444444444	
	×	~~~~~	
	×	~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	10FC	174 206 251 258 258 258 205 205 204 227 206 206 206 206 206	
	10FO	212 288 239 239 259 259 264 259 259 259 259 259 259 259 259 259 259	
	-	********	
	×	~~~~~~	
	=		
	10FC	225 242 201 201 205 205 205 205 205 205 205 205 205 205	
	1070	248 224 225 225 225 225 225 225 225 225 225	
3	-1	22222222222222	
1.	M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
FOR	H		ł.
ACTORS	10FC	251 287 287 287 287 287 287 287 287 287 287	1
URE	1070	277 242 343 343 343 343 292 204 204 204 204 204 204 205 205 205 205 205 205 205 205 205 205	1
UCT	-1		1
STR	M		•
ATED	æ	-4944444555	-
CALCUL	10PC	263 263 273 263 263 263 263 263 263 263 263 263 26	222
	1010	222 228 228 228 228 228 228 228 228 228	234
VED	-	2222222222222	12
SER	*		
8	-	404-4025421	•••

N 999999110 Litentiant 题

OB BEN

A80

•

								1998					-	-		
							34	133	50	22	100	0.0	121	IE	TOKC	21 2
					D.C.	10	CEF	1000	Otto	330	14.2	1000	000	275	1010	AWC
						6	2	14	1	p.r	102	5	21	14	4	
							2			2	-	2.1	19.1	-	54	
								7		-10	-		5	-	10	
					100	140	124	174	203	3.28	XOL	1000	202	120	1080	
					2.4.4			New York	100	225	NCX	1000	1000	24.0	1010	
					1			11	5	2	11	1	2.0	÷.	4	
								5 8	2	9	3	1	7.0		10	
						2 4		2.8	51	Î	An		-172	-		
	1.0.1			YBY	XVD	PTP.	2002	200	200	201	816	Nox	252	-	10.65	
		100	1221	12.5	XUX	212	1002	1962	1000	34.6	534	25.6	Seg		10100	
			2		10	12			1	1	2	E	EI		4	80
				-			1	• /	1	1	2	5	- m		M	-1
			21-	0.1	1	1	1	No.		0		1	I.v.		-	S AOF
	512	317.0	194	1.80	610	308	310	196	2945	0.00	181	287	1251		10 MC	NCIOS
	202	590	518	204	NEA	360	227	SQE	CHE	1000	040	DEE	272		1050	E SHU
	11	Ċ	2	ġ	Ľ.	1	C	2	10	2.6	14	10	23		F.	EDC3
		~	m	115	11	12	57	10	10	1.2	9	52	144		M	3
	7	-	21-	TE-	-	12	5	Der .	0-			A1+	-			TALED
7 2 9	599	COL	112	331	233	37.0	CPI	312	203	201		283	331		IONC	CVFCU
1.1	262	ARC	33.0	310	122	300	212	BSE	085	200		- HAR	525		1010	CINA I

2	TED AN	CALCUI	ATED	LS	RUC	TURE	FA.	CTORS P	ŏ	1.3	_											PAG	8 1
	L 10FG	) 10FC	-	×	-	101	1 0	DFC	-	-	-	OLO	OFC	Ħ	×	-	1010	IOFC	=	M	-	1070	10FC
	A 1.00			1	1	2	-	100		2		352	164	-	80	-	1773	1707	4	5	-	677	604
-		1 202		1:		5	1 5	178	-	15		130	720	~	0	-	1685	1668	80	5	-	616	671
1	TOT D	1013		35		0	1 -	112		12		459	302	4		-	769	767	12	15	-	619	738
-	LYC D	1111		12			1 5	135	-	12	0	488	480	9	•	-	1135	972	14	2	-	364	438
2	100 0			1 -		1.6		681	=	5	•	506	547		•	-	699	750	-	16	-	1934	1599
-				12			1 9	264	12	12	0	313	288	-	2	-	302	550	3	16	-	850	716
-		141		12		1	5	285		10		695	792	-	10	-	930	834	5	16	-	361	501
-	TCT D	1441					2 5	840	4	12		518	562	5	2	-	1736	1564	=	16	-	539	466
1		1001	• •				14	761	-	10		387	377	-	2	-	1436	1453	15	16	-	620	610
in	107 0	7107 0		12			2 -	210	-	10		619	650	•	10	-	611	581	0	17	-	585	556
-							: :	VOV		15		330	285	0	1	-	682	161	4	17	-	305	265
1		2122 1		4 :		* *	2 8	207		35		316	281		=	-	335	386	9	17	-	448	398
en		1101 6	1.					107		15	•	202	242	4	=	-	449	475	10	11	-	335	268
-		1721 1						114		15	•	380	408	-	12	-	674	101	14	17	-	396	422
-	591 0	D001 1						114		12		453	460	9	=	-	484	435	-	18	-	703	735
-		7/1 0				1 1	: :	703	> <	12	• •	505	304	-	12	-	1055	1058	9	18	-	541	405
-	192 0	CC77 1	1.				12	356	-	40		115	380	-	12	-	1011	1034	1	18	-	558	617
	761 0	1001		1				. 919		36		422	350	5	12	-	813	917	5	18	-	320	319
			-				: 2	376		8	-	388	401	-	12	-	820	861	2	19	-	445	376
		0071 0	1				55	123		1 ~	-	2007	2444	•	12	-	106	827	9	19	-	307	267
		4007 C					:=	202			-	1216	1264	I	12	-	298	285	80	19	-	396	343
		076 0					: :	237		4	-	820	732	2	13	-	586	600	2	19	-	443	480
				1			32	116		4	-	2330	2173	4	13	-	516	511	14	19	-	365	316
		010 7						667		-	-	1341	1153	9	13	-	755	699	-	20	-	540	561
		AT7 0					12	375		5	-	2747	2780		13	-	604	583		2	-	635	634
		1641 4	30				15	785	4	5	-	1253	1227	9	13	-	974	851	5	2	-	386	358
		287 2	11	-		0	2	703	-	9	-	1626	1572	12	13	-	469	489	-	20	-	326	459
				-			3	576	-		-	1245	1195	-	14	-	1773	1788	•	2	-	434	450
		275	-	1		-	54	452	-	9	-	2432	2175	9	14	-	1128	1117	=	20	-	247	216
-							5	512		-	-	1736	1741	5	14	-	930	889	15	20	-	345	226
-		202 0		10		0		887	2	-	-	703	738	2	14	-	1297	1228	•	21	-	274	196
			-			-	9	744	4	-	-	1011	1035	6	14	-	740	782	4	21	-	385	304
		211					50	678	9	-	-	2300	2264	=	14	-	505	428	9	21	-	318	374
				10				588	-	-	-	2234	2215	13	14	-	486	475	80	2	-	682	627
		110 U					5	336		-	-	1993	2094	0	15	-	401	340	2	21	-	409	362
		N8 350	•				12	422	5	•	-	2681	2646	7	15	-	496	535	12	21	-	517	517
	;				•	,		!	1														



			-	7			90.0	201	111		200	0.29	1	開たフ	173	100	098		1	
														1				*	8	
						2			9		103	10 E	10	100	010	611	TAND		ANY.	
								-	-	•	-	1	1	-	-	m	5			
							2		1	53	2	3	1	1	2	12	24	1		
							11		-		-	101	-	-	-	-	R	The second		
						2		i.		15	e.	12	-		29.	2	4			
1							1	99	1		1.	4	9	1	1	170	ION			
							JETT.		305	100	0.22	1132	N03	1111	1 684	ETTI	IOED			
									1-1	-	•	-	*			-	-			
					1	2.3	2	2	10	Ż	5	rio.	/9		0	05	.54			
2		2				1.		-	34.9	1		a/	-		-	4	R			
							2	12	88	10		g.	120		2.5	-	3			
1				10		1	9a	4	22	ñ	1	5	25	R	2	De I	IOI			
			130	019	100	10.0		100	Ele	200		1992	622	130		343	TONO			
						1	2	-	9	0	1.2		0	0	2.5	0	56	-	-	
			-	17	2	1	11	3	12	17	3	2	3	15	13	7	34		7	
		a (		00	12		- 1	2.	2	2	1	1	9	N. C	1		-	and a		
1933	.0.5			113	101	Dea	102.4	1444	261	1981	1242	29.96	1111	7110	122		JOAC	NT VIE		
800	374		7.42	1 Að	619	107		1100	280	1282	56.12	1111	1040	CTT1	1945	- AL	1010	CICD 3	1	
		1		0	0	c		3-1	-	0	9		9	P	-	2	4	2002		
	P	1	1	ž	2	2	1	1		1	0		12	23	22	1	14	2.7.6		
	10	10	0	er.	10-	н	-		11	0	*	1	-	-	22	-	H	USED		
					-	-						1						UL	The second	
1.351	1013	7512		909	2013	1981	T the l	1.1.1.1		TTAI	ONEE	2444	610	E Seg	0205		TOPO	CAL	No. of Contraction	
231	509	ice		996	312	TE?	OLC.	20	575	TRA	110	NOW	400	315	182		OTO	14 KD		
0	0	0		0	0	1	たの	1.00	* *	0	E 0	1.0	3 1	0	0 0	-	8.6	(ED		

## 7.3 ND CALCULATED STRUCTURE FACTORS FOR

TOPC	1118	1259	656	481	569	205	200	329	697	340	747	495	1440	600	654	119	384	482	354	642	384	292	392	229	425	587	565	276	402	282	302	409	280	325	462	484
1010	1223	1201	673	410	533	320	544	398	689	261	740	426	1597	675	615	418	357	488	284	618	463	374	395	311	368	651	515	281	289	319	300	438	322	339	372	349
-	•	•	e	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	9	•	3
×	1	14	14	14	14	12	15	15	12	15	12	15	16	16	16	91	16	91	16	16	11	-	11	-	-	18	18	18	18	18	19	19	19	2	2	2
	5	K	•	H	13	2	4	9		9	12	14	I	•	5	117	•	H	13	15	0	2	9	9	14	12.2	147 1	•	13	17	2	8	14	31.2	•	-
OFC	819	927	697	708	1559	262	503	668	129	714	012	254	580	370	690	560	528	574	363	725	523	244	274	156	104	979	844	350	670	522	111	532	198	612	439	1133
2	5	8	2	9	0	3 1	-	2	2	9	-	6	5	31	9	9	=		9	33	8	2	4	4	23	-	2	2	-	2	-	5	2	6	6	8
101	8	186	5	1	263	133	3	6	106	74	6	28	55	144	102	5	4	9	4	70	4	32	36	100	10	6	8	26	9	5		2	8	62	150	113
-		•	•	9	•	•	9	9	•	•	•	•	e	•	•	•	•	•	e	•			•	•	•				•	•	•	-	•		•	3
×	2	M		8	8	•	6	•	•	•	•	9	9	9	9	9	=	=	=	=	=	=	12	12	12	12	12	12	13	13	13	13	13	13	14	14
-	4	9	C.	9	5	0	0	2	4	9	8	B		5	0	•	•	2	4	9	80	9	0		5	M	•	=	2	3	9	8	2	12	01	e
10FC	444	481	375	307	619	744	538	396	333	565	388	384	276	279	569	445	406	600	428	313	566	434	2072	1883	1007	1380	586	675	663	385	1062	916	880	1388	1172	975
2	16	8	33	53	99	8	83	23	66	66	176	8	38	911	11	22	118	910	36	32	12	101	124	94	92	68	42	56	619	84	121	80		21	911	5
9		00	1	-			R	1				-	-	101	1	-	101		-				11	1	1	1	-	0	-	-	=	-	-	1	1	-
1		~	3	9	3	-	5	-		-	-	-	-	-		1	-	-	14	-	-		1				-	-	5	5	5	5	5		1	-
24	16	-	1	I	I	11	H	81	19	19	19	119	19	515	20	1 20	2	2	2	5	2 2	2	12	1	25	12	10	2.2	52	22	2.2	23	26	32	24	~
	13	-	-	95	15	13	1	-11	10	-	-	1	-	I	15	-	0		=	3.0	100		Ch	11	1	1.5	0		-	-40	-	10	0	1		
OFC	643	686	446	208	1015	1024	686	283	551	1047	1007	228	812	810	604	546	1826	320	1051	1137	1738	1353	1142	1046	493	514	291	629	1081	629	619	1383	2203	1047	789	401
OLO	618	040	510	228	1026	1165	674	274	552	1092	923	312	813	864	555	544	1927	278	1018	1106	1604	1333	1209	974	453	387	302	614	1055	509	695	1421	2535	1187	703	385
-	~	2	2	2	2	2	-	2	2	2	2	2	2	2	2	2	2	2	-	2	2	2	2	2	~	2	~	2	2	2	~	~	2	~	2	2
*	9	2	=	=	=	=	=	=	12	12	12	12	12	13	13	1	13	13	13	13	14	1	14	4	14	14	14	15	15	15	15	15	16	16	16	16
	-		4.1	3	8	101		H	0	2	4	9		6 1		•	-	•	H	13	0		4	9		91	12	1.	S	•	II	2	0	2	4	•
IOPC	487	510	506	512	367	419	289	384	249	233	798	1991	397	1185	3083	4029	368	478	1431	851	1597	2328	593	478	2282	1408	513	1541	3037	115	619	2412	271	1500	16	410
1010	389	416	469	492	325	366	271	336	338	382	813	2286	360	1231	3231	4249	344	457	1524	784	1604	2308	167	407	2344	1414	490	1765	3201	319	740	2513	392	1494	223	502
1	100	-	-	-	10	1	[a]	10	-	R	~	2	0	2	-	-	-	2		2	6	1	-	6	-	6	-	-	-	2	-	-	. 62	5	2	~
			1 section		P. Land		and the second	-	10.00	1	1000				1.00				-			-	-		-					-	0	-	-		0	0

2 PAGE

## H MAGGANNOGAN 10 8 HUSHOMMSHONN B

## 

A82

## 

**ISBO** 

=

								134	206	1000		127	0.93	100	APA.	1520	1112		TOAG	-	
						0.00	100	2.615	200	280	ij	14.4	DEA	110		201	353		180	Avel	
						-		-			.,				1	1 6	2 1		T I		
							1	2	Ċ	2	3	1	21	-		2	z		4		
					2				2-	iei	- 5	2	1	1	ų	-	-	-	-		
					2110				202	1303	20.02	A 10 10	208	0.9.7	N.N.W.	1033	819	Tokin	IMPA		
					299.0	1095	100.00	3	197	1 1233	VIC OX		110	210	A MUNO	1 10 10 10	82.0	TO KO	THE R		
									2	-	r	•	17	-			-	F	-		
						0			Ċ,	-		1.1	08	-		•	4	2	6		
						1	-	1	2	1	0	1	1	17	-	ė.	5	-	1		
		2100			24.4	337	092	1	10.00	207	616	1	TIM	CTE	140-1		444	TOKC			
	1		0.10	5		202	453	100	0.2.0	080	000	194	6.50	EEA	OWE		102	1010			
							113	2	2.9	ri,	*1	1	2	12	M	1.1	9	-			
						10	M	-	1	4	4	í		11	N.		2	M		-	
			1					14	13	1	1	1	¥.1	-	1	-		-		NOR	
		200	1001	TDav			SI .	000	1000	Nebr	2012	- KND	DOM:	299	0.83	1000	2.1.4	1080		ACTORS	
1.4.1		111	029	TGAN		6113	ATT	010	Contra la	144	1036	XXD		410	10401	ara	1	1080		ABOR N	
	9.1	1	21	11	• •	ą,	1	**		-	ń	M		÷,	-	-		1		inca	
	33		2	12	1	2)	2	11	12	-	1	11		1	01	TA		30		TR	
			22	17	1	2.	17	10	-	2.1	-	0		-	-	10	1	······································		UNTED	
140	ų	10.07	340	233	No.	91.0	ANE	SRà	010	21.4	TAK-	213	Sono.	NUN	910	180	~	TORC		CALCO	
200	N.P.G.D.	1000	E 18	283	200	1000	310	33.1	and .	100	132	1932	w CO W	120	ALE	2813	12.20	10100		CINA .	
-		-	-	-	-		-	-	-		-		-		-	-		Sa.		VEN	

3	TCU	ATED	S	SUC	TURE	FACTORS	FOR		•											PAGE	•
10PC H			*	-	1070	10FC	-	×	-	1070	10FC		-	1	2	OFC	-	*	L 101	2	PPC -
412 7			•	4	1238	1298	12	16	4	319	257	-	2	5 22	98	8063	3 1	2	5	4	38
318 2	0		2	4	536	524	T	17	4	857	848	0		5 17	44	1137	51	2	5	58	35
342	4		2	4	620	616		11	4	337	330	3		5 14	20	484	71	2	4	23	=
482 6	9		2	-	1004	1007	•	11	4	336	174	3 10		5	20	116	1 6	2	8	58	88
322 8	-		2	4	305	276	15	11	4	486	496	3 10		5 10	H	1068	0	•	3	19	23
400 10	10		9	-	316	299	•	18	4	412	368	0	-	5 16	61	1557	2 1	•	2 6	2	90
414 1	-		1	4	415	396	2	18	4	522	484	8	-	5 16	48	1736	4 1	-	3	8	22
410 3			1	4	371	324	4	18	4	283	210	4	5	5	03	733	6 1	•	2	1	133
388 5			1	-	619	539	•	18	4	294	229	4.10		5	335	922	8 1	•	2	6	42
400	-		1	4	161	801		19	4	703	630			5	121	511	101	•	5 7	52	90
103 9	•		=	-	473	496	•	19	4	610	567	•		5 14	128	1287	4.3	. 4	2 17	58 16	12
380	0		12	-	264	407	-	19	4	320	215	•	-	5 23	4	2359	3 1	4	2 2	91	69
302	4		12	-	740	718	•	19	4	369	452	2	-	5	330	386	51	4	5 6	39	21
5492 6	9		12	4	552	909	-	19	4	357	377	4	-	5	30	906	11	4	5 3	3	03
1600 10	10	-	12	-	251	340	15	19	4	451	442		-	5 11	165	1097	9 1	4	5	23	03
3246 1	100		13	4	1275	1202	•	20	4	506	512	1 IS		5 1	582	1649	11	4	3	4	33
2786		-	13	-	1033	1010	2	20	4	509	536	•		5	19	1015	13 1	4	3	02	38
1638		10	13	4	938	894	4	20	4	508	555	•		5 16	848	1588	4	•	3	20	23
1877		-	13	4	388	410	•	20	4	497	525	-		5	335	838	8	-	2	2	63
532		9	13	4	1113	1122	9	20	4	298	271	•	•	5	389	443	12 1	5	*	28	31
840 1	-	-	13	-	330	233	12	20	4	333	217	2	•	5 11	8	1671	14 1	•	5 3	9	98
1151	14	0	14	4	923	972	-	21	4	626	623	4		5	524	561	-		5 124	12 13	60
770		N	14	-	806	879	•	31	4	248	219		•	-	164	775	31		2	8	34
1174		4	14	4	762	153	=	21	4	344	385		•	5 10	111	1066			3	05	31
2065		9	14	-	434	459	13	21	4	385	468	11	•	5	338	943	13 1		5 3	3	302
624		60	14	-	276	452	15	21	4	344	208	31	•	5	360	412	12 1		5	2	352
814 1	-	0	14	-	312	306	•	22	4	336	334	5 1	•	5	565	652	14 1	-	5	5	212
1346		-	15	4	1341	1287	2	22	4	600	159	11		5 1	162	1220			2	22	565
410	12	3	15	-	503	1 407	4	22	4	395	481	9 1	•	-	371	325	31		5 6	52	563
1559	1	P	15	4	602	498	9	22	4	355	261	0 1	-	-	174	930	5 1		5 2	5	20
1174		0	15	-	307	351		22	4	543	532	2 1	-	•	353	359	15 1		5	36	267
591 1	-	9	15	-	669	141	•	23	4	347	358	141	-	-	320	198	0		4	38	52
1355		0	16	-	1 1209	1160	•	24	4	386	331	61	-	-	240	640	9	•	5	10	161
962	-	3	16	-	565	184	4	24	4	328	252	8	-	-	284	294	1		5	2	20
722	-	-	16	4	320	332	9	54	4	410	363	101	-	5	120	482	9	0	5	36	2
237 8	œ		16		315	326	0	-	5	4542	4747	1 1	2	5 1	267	1274	2	0	2	67	339

A STATE OF A DESCRIPTION OF A DESCRIPTIO



				1																	
							100	1002	200	202	202	0.23	122	020	ress.	0.24	SIL		ONG	40	
						000	003		NAZ	350		140	NH0	673	CONT.	- ANA	858		Own I	AVCE	
								-	e	m	e		2	~			0	-			
							1	2	24	0	2	5 2	-	2			24	1			
		2				0	1.0		p-	51	0	1	-	10	-		n.	-			
						13.5.8	0.4.4	0.08	102	1303	PECS.	1000	por	697	TASL	1	810	-	Inste		
		1.11			1970	TODS	14.4	1000	24.2	1333	5970	140	112	210	1808	110	870	which.	T-DECH		
								1.1	2	m	r		•	m	.0	1.5	-	16			
			į.		-04		1.3	2.1	٥.	çî,	-	0	ę.,	20	-	1	1		4		
					ð	-	×	5 6	2	-1	.0	R		-	0			-	No.		
328					283	233	Del.		3	AAT	629	IDE	No.	SEC.	184	and a	101	TOAD			
	130	2000	21.00			500	0.2.0	200	6.0.2	033	999	28.2	1111	N33	300	122	P.00	TOBO			
				3. 1	2	115	М	14	2.1	10	n	N	1.4	2	19				1	-	
		2			2	10	31	12	1	7	11	F	į,	2	1	2	1	M	4	2	
				5	4	200	00	1	1	13	7	0	1.5	-	10	0		-		S LON	
1111	112	ALIN	1001		CART	221	283	080		1054	2101	308	the state of the s	22.2	989	CRO		1040		ACLOUT	
	112	315	2473	1111	1043	222	475	0.7.0	1111	1162	1036	338	WAR	NYS	1040	pro.		TOBO		CUNE 3	
		irs.	ż	. 1	2	**	21	n	1	2	22	10	4	2.1	1	M		L		203	
		12	1	1	1	12	17	1	3	-		11		-	2	101		M		TR	
			32	. 8	9.,	9	1	10	1	2	-	P	-	3	CR.	A		8		ALED	
1011	202	1991	Jae	14.4.1	202	2710	384	583	1000	ALO	301	215	200	1211	210	184	1000	TONC		CANCENT	
	GAE	1280	813	20%	0.00	333	336	221	11.5	100	33.2	TPA	402	1.1	ALA	SBE		1080		CINA I	
	12	12	17		-	-	-	-	-	N. N	-	-	-		-	-		1.0		AFT	

**ISGO** 

5	10FC	638	235	413	788	423	909	422	533	345	206	1672	699	621	703	602	335	338	359	563	531	286	1209	534	231	302	352	272	665	563	264	267	452	497	290	571	339
PAG	1010	574	228	423	828	376	670	348	574	299	762	1758	716	639	740	553	314	302	356	505	458	316	1245	538	305	360	363	349	525	662	267	336	438	479	574	536	367
	-1	5	5	5	5	5	ņ	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	•	5	5	5	5	5	5	5	5	5	5	5
	*	12	12	12	12	2	2	13	13	13	13	14	14	14	14	14	14	14	13	15	2	15	16	16	16	16	16	11	18	18	18	18	19	19	8	20	20
	=	•	5	-	•	•	2	4	•		10	-	•	•	-	•	=	13	4	•	12	14	-	•	=	13	15	14	1	•	•	15	•	9	-	•	5
	10FC	2308	1737	1484	917	1068	1557	1736	733	922	511	1287	2359	386	906	1097	1649	1015	1588	838	443	1671	561	775	1066	943	412	652	1220	325	930	359	798	640	294	482	1274
	1070	2286	1744	1450	850	1011	1619	1648	703	835	557	1428	2344	330	930	1165	1582	967	1648	835	389	1700	524	161	1077	938	360	695	1231	371	974	353	820	640	284	459	1267
	-1	•	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	*	2	-	-	4	4	5	5	5	9	9	9	-	-	-	-	•	•	•	•	•	•	•	•	•	2	9	2	9	9	=	=	=	=	=	=	12
	=		•	2	-	•	•	2	4	-	•	5	•	~	4	•	-	•	5	-	•	2	4			-	•	5	-	•	•	~	4	•		9	-
	IOFC	257	848	330	174	496	368	484	210	229	630	567	215	452	377	442	512	536	555	525	271	217	623	219	385	468	208	334	651	481	261	532	358	331	252	363	4747
	1010	319	857	337	336	486	412	522	283	294	703	610	320	369	357	451	206	509	508	497	298	333	626	248	344	385	344	336	009	395	355	543	347	386	328	410	4542
•	-	4	4	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5
	-	9	12	1	-	-	8	18	18	8	19	19	19	19	19	19	20	50	2	20	2	20	2	5	2	21	21	22	22	32	22	22	23	5	24	24	-
FOR		12	1		•	15	•	~	4		-	•	-	•	11	15	•	~	4		10	12	-	•	=	13	15	•	2	4	9	-	•	•	4	9	0
ACTORS	10FC	1298	524	616	1007	276	299	396	324	539	801	496	407	718	606	340	1202	1010	894	410	1122	233	972	879	753	459	452	306	1287	407	498	351	747	1160	481	332	326
URE	1010	1238	125	000	1004	305	316	415	371	619	161	473	264	740	552	251	1275	1033	938	388	1113	330	923	908	762	434	276	312	1341	503	602	307	695	1209	565	320	315
C	-1	-	-	-	-	-	-	-	-	-	4	-	4	-	-	-	-	-	4	4	4	4	-	-	4	4	4	4	-	4	-	4	4	4	4	4	4
STR	-	•	-	2 -	2	19	19	=	=	=	12	=	12	12	12	12	12	1	1	13	13	-	1	1	1	1	14	14	12	12	12	12	12	19	16	19	14
8	-	-	•		-	•	2	-			-	•		-	•	2	-		-	-	•	=	•		-		-	9							~	4	•
CALCULA	10PC	412		545	-	303		414	410	388	909	103	380	302	5492	1600	3246	2786	1638	1877	532	840	111	770	1176	2065	624	814	1346	410	1550	1174	105	1355	962	722	126
	2		1	2		16			19	1	10	53	3	16.R	631		18	-	223	378	102	13	200	120	121	220	619	242	109	270	126	39	828	245	033	703	190
-	2	-													16	1		10	-	-			5		-				-		-	-		-	4 1	4	
RVI	-																										-										

## .96 -ORANGOOMAAAA 商:

2280

## 

A83

							à	÷.	-	e.	÷			-0	
								8	ř,	7	F	f	12	100	
									110	No.	122	100	21.6	103401	No.
								•	÷	ę	ri,	ē	(Tr	14	
								1	à		2	ė	11	- 14	
								1	5		R	ň	-	-	
									Ę	111	10.1	1021	anex.	10kg	
						1			1	1	11.41	1111	ARCE	COMP.	
									1	-	-	1	-	1.	
									ŝ	1	1	-	14	14	
								1	1	-	1	0	-	ä	
			3		100	100	100	1	1	1		NUN.	221	CTHOIL.	
				1	1	3	1	ļ	ļ	110	1	1	25a	100m	
							1	7	1	- 1	1			- 61	1
		1			ŝ		2	ŝ	ŝ	t é	ŝ	à	2	.8	3
				2	1		-0	3		P	•	-	2		NDC
		1111	3	10	131	101	209	100	TOON	010	1	-	1748	1040	No.4
	M	2	197	1	122	111	316	202	1006	010		1	12	June.	and
			×		5	7	ř	÷	5	. 9	. 3	-	-	<u>B</u> .	-
		÷	ŝ	÷	ź	ż	2	2	2	9	18	2	-0	×	1
			ł		11	9	01	-	0				18	-H	Inte
8	in a	101	į	ž	ana.	111	1001	12	182	2012	311	13	111	THE	Capture
ŝ		100	d.	a.	010	240	in the	127	2252	SIE	ant		124	I Daug	R
	2	1	-	-	-	-	-	-		-	-		-	4	18

**DESER** 

	-	-				-					-			-				-		-	-	-					-	-	-	-		-	1				
4	10FC	467	290	421	330	248	385	285	265	90	295	255	246	4575	1005	1403	143	1023	69	573	253	1098	208	53	1272	302	215	111	252	670	99	469	983	537	2	668	232
PAG	1070	166	325	376	319	280	423	31	323	292	325	298	314	4058	952	1179	480	916	703	203	529	1121	263	218	1333	350	273	1033	269	740	575	456	974	573	467	864	294
	-1	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60	60	-	-	-	80	-	•0	-	•0	•0	•0	•0	•0		-	•	••
	*	16	16	16	1	11	9		8	20	2	1	23	•	~	~	•	4	4	4	5			9		-	-	-				-		•	•	•	2
	Ħ	1	13	15	•	12	-	-	13	3	-	4	9	0	0	2	-	0	2	4	m	0	2	4	•	-	•	5	•	~	4	•		-	•	-	•
	1070	437	768	323	597	749	869	25	357	301	526	212	272	789	650	676	686	232	370	169	324	494	417	1109	675	796	796	562	294	434	495	308	484	370	854	449	497
	1070	443	813	267	674	740	850	519	385	320	536	281	30	813	652	104	637	262	462	219	296	463	357	1223	681	886	161	610	347	439	481	325	479	319	886	476	497
	-1	-	~	~	~	~	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	0	0	9	2	2	2	2	=	11	=	=	12	12	12	12	12	12	13	13	13	13	13	14	14	11	14	14	14	15	13	5	5	15	16	91	16
	=	9	-	-	-	5	-	0	2	4	•	00	-	•	5	-	0	11	2	•	•0	10	12	-	•	5	~	0	13	4	•0	9	12	14	1	•	5
	10FC	515	593	366	476	8	289	162	415	516	217	906	326	414	294	272	264	423	1963	873	1122	274	379	405	1444	1147	1044	861	721	809	692	1357	101	362	1812	1088	784
	1010	583	565	401	473	201	329	305	1	480	328	320	359	404	281	331	333	470	1890	894	974	265	147	494	1363	1194	1055	857	762	541	613	1370	762	357	1780	1070	798
-	-1	9	•	•	9	•	•	•				9	•			•			-	-	-	~	-	~	-	-	~	-	-	-	-	-	-	-	-	~	~
-	*	9	9	9	-	-	9	8		0	8	20	21	21	21	22	22	55	-	~	-	4	4	-	-		9	9	-	-	-	-	-	8	-	-	•
HO.	-	2	4	9	-	13	0	2	-	•	4	-	-	0	11	0	2	0	0	-	0	-	-	2	4	-	•	5	0	2	4	9	-	•	-	-	4
CTORS	ONC	213	299	420	728	455	432	535	059	525	425	653	299	533	292	327	T	727	423	522	268	455	603	630	186	13	689	573	406	297	347	204	631	495	405	874	320
RE FA	010	223 1	298	202	230	490	429	205	026 1	561	406	675	562	557	321	288	526	209	184	470	282 ]	363	510	536	018	040	740	246	377	328	363	397	209	451	489	857	110
E	3	1							19												9			9	9	9	9		9	9						9	
2	-							-	-						-					-	-	-	-	-	4	-	4	-	4	4	4	-	-	-	-	5	
0	-		-				-	-	-				2		9					-				-	0	2	4				2	-	-		12	5	
ATTA:	-										1						-						-	-						-	-				-	-	
CALCU	lorc	-	240	202		202	422	596	1	103	10	-	222	312	795	1277	995	6IET	712	476	569	859	1236	619	1717	1386	884	OTE	2122	1353	710	1326	2223	909	666	1450	404
	OLO	11	316	595	194	1	100		124	-					872	3275	516	1000	673	107	-	716	1187	806	1729	1414	576	277	2124	1385	655	1289	2220	612	-	1428	151
8	-						-					-													-			-	-	-				-	6	9 40	

## H. RESIDENCE FRE - waenggannes

(79)

215 **A84** 

	100	382	2300 2300 2300	ono one
12 - 9	o were re	1 2 19	0000	I I
	14.3.5	122	E SE	PUNC DING
				1 4
	938		11000	U LL
		-1 500	n or nem .	
		2.0	0-100-	
		0.99	102 Sta	CONC.
		2.8	23228	4 4
		(%) ( <b>3</b> 8	1030	IOI
				9 F4
		01	001	2 22
	- 1- 11	10 -11	1 m = 20	-
1288	122	12 18 1	3338	2
		- 01 /	v e m na n	01
1911 1911 1921 1921	AAC DBA	202	101	IONO
WREN	6 9 W	0.019		54 m.
17738	222	2 2 2	11228	68 M
_ = = = m	200	hat	HANK	H N
210 210 229	222	222 4.35	SUL SUL SUL	IDNO.
1200	828	2.00		0 4
1480	101	NA N	123	10)
1 2 2 A B	000	2 0 0		L B
1212	1221	-	010	a H
- PHO	- 10 21	um i	0000	10
				E
232	603 603	122	181 580 388 388	10MC
384 582 582	2882	284	202 302 312	COLOT

10FC 1070 1 00040100400040 04444000444**0000000000000** H 10FC 1070 1 1070 1070 9999999999999999999999 1 .. ~ FOR H STRUCTURE PACTORS 10PC 20 2222-266 CALCULATED 10FC QIN

PAGE



ANTEREST ANTE
111122222226
STREEPEND W
A MARKERS AND A
HELLER BERE B
A CONTRACTOR N
TRASSERSE 1
INTERCORTERS
States and an a g
STATESTER N.
Addatessiage 5
TITALSOUPPERS L
HISSAGABARE H
AFAREFORTARS &
TELEVISION DESIGNATION IN THE

-

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	CALCU	ATED	STR	D	URE 7	ACTORS	No.	7.4												PAGI	-
913       91       91       168       101       125       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101	-	OLO	10FC	202	M	-1	1010	10FC	×	M	-	1010	10PC	<b>521</b>	M	H.	010	10FC	Ħ	*	1	010	DAO
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	607	-	1	0	18	189	•	0	-	168	181	12	7		208	-202	10	4	-	157	187
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•		• •	276	-272	-10	-	-	86	97	-15	•	-	101	ŝ	1	4	-	114	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			200-		•		157	179	1	-	-	164	-163	-13	•	-	8	ŝ	97	5	-	110	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-204		-	0	151	-184	7	-	-	565	-593	-11	•	-	157	-179	ĩ	5	-	142	164
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		• •	12	62	9	-	-	245	-253	ę	•	-	IH	-128	ę	5	-	153	170
068 100       17       60       71       100       204       5       1       200       204       5       1       100       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       1011 <td></td> <td>85</td> <td>105</td> <td>2=</td> <td></td> <td>• •</td> <td>. 2</td> <td>12</td> <td>1</td> <td>. –</td> <td>-</td> <td>644</td> <td>158</td> <td>7</td> <td>•</td> <td>-</td> <td>212</td> <td>206</td> <td>Ŷ</td> <td>5</td> <td>-</td> <td>153</td> <td>132</td>		85	105	2=		• •	. 2	12	1	. –	-	644	158	7	•	-	212	206	Ŷ	5	-	153	132
584       -54       7       1       -5       1       285       -5       1       1       285       -5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td></td><td></td><td></td><td>::</td><td></td><td>• •</td><td>78</td><td>. 5</td><td>1</td><td>-</td><td>-</td><td>369</td><td>-396</td><td>Ŷ</td><td>•</td><td>-</td><td>72</td><td>63</td><td>1</td><td>5</td><td>-</td><td>195</td><td>203</td></t<>				::		• •	78	. 5	1	-	-	369	-396	Ŷ	•	-	72	63	1	5	-	195	203
3994.       1       5       103       12       -5       1       100       -105       1       5       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 <td></td> <td></td> <td></td> <td>12</td> <td>14</td> <td>0</td> <td></td> <td>27</td> <td>7</td> <td></td> <td>-</td> <td>289</td> <td>294</td> <td>Ŷ</td> <td>-</td> <td>-</td> <td>347</td> <td>328</td> <td>7</td> <td>5</td> <td></td> <td>188</td> <td>170</td>				12	14	0		27	7		-	289	294	Ŷ	-	-	347	328	7	5		188	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1-		• •	103	82	7	-	-	240	-269	1	•	-	277	-285	7	5	-	87	5
199<-198		Ķ 8	103		•	• •	101	101	7	-	-	222	226	7	•	-	297	-280	•	5	-	180	174
72       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       75       112       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121       121					•	) C	020	-229	. 0		-	2	-11	7	-	-	150	153		5	-	109	Ş
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-165		<b>, ,</b>	• •	6	3	•		-	423	4	•	1	-	8	-82	~	5	-	345	310
97 - 100       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10		3 :		) 0		• •		190	-	-	-	236	233	-	•	-	169	171	4	5	-4	121	133
109-1145       0       0       144       156       5       1       218       203       4       3       1       40       9       5       1       212       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       223       224       203       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233       233 <t< td=""><td>&gt; 0</td><td></td><td>28</td><td></td><td>•</td><td>• •</td><td>-</td><td>179</td><td></td><td></td><td>-</td><td>335</td><td>330</td><td>2</td><td>-</td><td>-</td><td>585</td><td>-586</td><td>ŝ</td><td>5</td><td>-</td><td>131</td><td>115</td></t<>	> 0		28		•	• •	-	179			-	335	330	2	-	-	585	-586	ŝ	5	-	131	115
0       111       112       128       5       1       11       105       5       1       203       -203         0       127       -106       113       130       7       1       111       128       5       1       172       -166       10       5       1       172       -166       10       5       1       172       -166       10       5       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       172       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       173       -166       1       176       -166       1       176       -166       1       173       106       1       176       1136       11136       1131	5 6	1100	3411	e c	•	<b>• •</b>		156			-	218	203	4	•	-	148	143	•	•	-	83	<b>Å</b>
257 - 57       5       0       117       100       7       1       11       76       0       17       -16       172       -16       1       172       -16       1       172       -16       1       172       -16       1       172       -16       1       172       -16       1       172       -16       1       172       -16       1       172       -16       1       16       -140       10       173       -3       6       1       164       -140       10       173       -3       6       1       164       -140       10       173       -3       6       1       164       -140       10       173       -3       6       1       166       113       100       173       -3       6       1       166       173       -3       6       1       166       173       -3       6       1       166       166       173       -3       6       1       166       173       -3       6       1       166       167       196       173       -4       1       106       173       -13       106       173       106       173       106       173					• •	0	260	260		-	-	112	128	•	•	-	11	ş	9	5	-	203	-229
0       1234-123       7       6       193       8       1       7       100       73       27       -5       1       164       -140         0       117       309       8       6       123       144       -8       1       13       1       106       123       -4       6       1       56       -164       -140         0       116       -123       10       6       73       39       -7       2       1       17       -16       1       56       -16       1       56       -16       1       56       -16       1       56       -16       1       56       -16       1       17       -16       1       176       -16       1       176       -16       1       56       -16       1       176       -16       1       176       -16       1       176       -16       1       176       -16       1       176       -16       1       176       -16       1       176       -16       1       176       -16       1       176       117       117       117       118       117       117       118       117       117       118		575	-267			0	EII	130	-	-	-	18	-78	9	m	-	83	87	Ŷ	•		172	-169
317       309       8       0       234       -29       -10       -12       1       106       125       -4       6       1       99       -50       -22         316       -325       10       6       75       39       -7       2       1       137       124       13       1       100       173       -36       1       205       -46       1       106       173       -36       1       205       -46       1       106       173       -36       1       205       -46       1       106       173       -36       1       106       159       -46       1       106       173       -36       1       106       173       -36       1       106       105       -46       1       106       105       -46       1       106       107       -0       105       106       107       -0       105       106       107       -0       106       107       -0       1       106       107       -0       107       108       106       107       -0       106       107       108       106       107       108       107       108       106       107		1224	-1243			0	197	183	0	-	-	76	100	2	m	-	273	277	Ŷ	•	-	164	140
280       29       9       0       123       14       -6       1       75       -66       10       3       1       100       173       -3       6       1       250       -221         7       65       6       7       3       -7       2       1       3       1       100       177       -2       6       1       176       -166         7       65       10       7       0       92       -77       -4       2       1       3       1       100       177       -2       6       1       156       -157       -157       -157       -15       6       1       156       -157       -157       -15       5       5       5       -15       6       1       156       -157       -157       -157       -157       -157       -157       -157       -157       159       -157       159       -157       159       -157       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156 <td></td> <td></td> <td></td> <td></td> <td>• •0</td> <td>0</td> <td>254</td> <td>-249</td> <td>-13</td> <td>~</td> <td>-</td> <td>110</td> <td>-82</td> <td>•</td> <td>3</td> <td>-</td> <td>106</td> <td>125</td> <td>1</td> <td>•</td> <td>-</td> <td>86</td> <td>ş</td>					• •0	0	254	-249	-13	~	-	110	-82	•	3	-	106	125	1	•	-	86	ş
316       -225       10       6       73       39       -7       2       1       37       12       4       1       0       -47       -2       6       1       76       -137         7       6       10       7       9       -77       -4       2       1       27       -223       -12       4       1       10       -84       1       6       1       139       -143         7       6       151       -105       -5       4       1       104       87       6       1       139       -143         7       0       95       -53       -1       2       1       286       565       -6       4       1       104       87       7       6       1       139       -156       1       139       -156       1       139       -156       1       139       -156       1       136       139       156       151       139       156       113       139       156       113       139       156       111       112       122       139       141       136       139       156       139       16       139       16       139	> <		8		• •	• •	123	144	7	2	-	75	<b>89</b> -	9	•	-	180	173	7	•	-	205	221
0       0       0       0       -11       -11       -11       -04       1       6       1       159       -143         7       0       10       7       0       92       -77       -4       2       1       283       -10       4       1       167       147       7       6       1       215       -137         0       137       -152       13       7       0       95       -53       -3       2       1       711       711       7       6       1       256       229       151       -137       7       6       6       1       151       -137         0       10       7       0       93       -52       1       748       75       -5       4       1       161       167       167       17       159       159       156       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151		316	-325	101		0	52	39	7	~	-	137	124	13	m	-	140	-147	?	•	-	176	-168
7       5       10       1       104       6       6       1       151       -137         0       17       -152       13       7       95       -53       -3       2       1       76       565       -6       4       1       167       167       7       6       1       256       229         203       192       0       80       123       -10       1       167       167       7       6       1       256       229       156       129       156       129       156       129       156       129       156       129       156       129       156       129       156       121       171       11       14       167       167       7       6       1       156       129       156       129       156       129       156       129       156       129       156       129       156       129       156       121       121       121       171       121       121       121       121       121       121       121       131       116       171       156       117       117       121       121       121       121       121 <t< td=""><td>&gt; 0</td><td></td><td></td><td></td><td>•</td><td>• •</td><td>106</td><td>-115</td><td>1</td><td>2</td><td>-</td><td>207</td><td>-223</td><td>-12</td><td>4</td><td>-</td><td>110</td><td>ş</td><td>-</td><td>•</td><td>-</td><td>159</td><td>143</td></t<>	> 0				•	• •	106	-115	1	2	-	207	-223	-12	4	-	110	ş	-	•	-	159	143
137 -152       13       7       0       95       -53       -3       2       1       56       6       1       167       147       7       6       256       229       156       229       156       229       156       229       156       226       256       156       161       167       147       7       6       1       256       229       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       156       157       157       153       15       166       171       112       121       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211       211<	> <	57	39		• •	• •		-1-	1	2	-	289	-283	-10	4	-	3	87	•	•	-	151	-137
203       192       0       0       151       -165       -2       2       7       18       767       -5       4       1       113       117       115       -4       7       1       96       -117         0       0       86       0       87       125       -1       2       1       111       114       -155       -3       7       1       96       -117       112       212       212       125       -1       2       1       111       116       -5       4       1       111       -5       1       112       212       21       111       111       155       -3       7       1       96       -117       112       21       21       21       111       112       21       21       111       112       21       21       111       112       21       111       112       21       111       112       111       125       21       111       125       21       111       125       111       125       111       126       125       125       125       125       125       125       125       125       125       125       125       125	> 0		-15		•	• •	:5	-53	1	•	-	576	565	۴	4	-	167	147	- <b>7</b>	•	-	256	229
6       -50       3       6       6       0       89       125       -1       2       1       1       1       4       1       11       -155       -3       7       1       96       -117         0       263       263       8       0       84       75       0       2       1       48       523       -2       7       1       172       212       212       1       4       1       71       65       7       1       172       212       2       1       14       166       167       2       7       1       111       125       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	> 0		102			0	151	-185	?	2	-	748	767	r	-	-	413	397	1	~	-	159	156
0       266       26       0       84       75       0       2       1       46       52       -1       4       1       76       -17       2       7       1       172       213         0       263       263       8       0       89       6       1       2       1       4       1       7       6       7       1       113       125       125       2       7       1       11       125       125       1       1       165       1       7       1       11       125       1       131       125       1       1       1       65       1       7       1       11       125       1       1       1       165       1       1       1       151       125       1       11       1       1       1       1       165       1       165       1       143       1       126       1       143       1       165       1       143       1       165       1       1       1       165       1       1       1       1       1       1       1       1       1       1       1       1       1       1	) C		5			0	89	125	7	2	-	711	111	1	4	-	H	-155	7	~	-	86	-117
263       263       6       0       09       64       1       2       1       1       1       65       1       7       1       11       125         0       66       -55       9       0       87       12       2       2       1       14       7       6       1       1       156       -134         0       216       229       -11       0       1       106       107       3       2       1       1147       0       4       1       168       -169       4       7       1       1126       -134         0       216       229       -9       0       1       106       107       3       2       1       1136       112       5       7       1       136       -136         0       211       59       1       106       107       3       2       4       1       168       -136       12       133       136       136       136       136       136       136       136       136       136       136       10       136       136       136       136       100       107       106       100       106<			288			0	3	75	0	2	-	488	523	-2	4	-	267	-272	7	~	-	172	212
66       -55       9       9       6       7       12       2       1       134       147       0       4       1       66       7       1       61       -126       5       7       1       156       -134         0       216       229       -11       0       1       106       107       3       2       1       11       67       1       143       -136         0       151       159       -9       0       1       213       -251       4       2       4       1       146       -112       5       7       1       156       -134         0       151       159       -9       0       1       213       -251       4       2       4       1       146       -112       5       7       1       143       -136       -134         0       151       159       -00       1       238       -259       5       4       1       116       1       10       1       106       100       106       100       100       100       100       100       100       100       100       100       100       100	) C	26.2	EYC I	1		0	68	3	-	2	-	244	251	7	4	-	H	65	-	-	-	131	125
0       216       229       -11       0       106       107       3       2       1       11       -7       1       5       7       1       156       -136         0       151       159       -9       0       1       213       -251       4       2       1       126       112       6       7       1       143       -136         0       151       159       -9       0       1       213       -251       4       2       1       126       112       6       7       1       143       -136         0       151       159       -9       0       1       236       259       5       2       1       107       100       99       100         0       621       -644       -7       0       1       236       5       4       1       487       470       9       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 <td>&gt; &lt;</td> <td></td> <td></td> <td></td> <td>0</td> <td>• •</td> <td>87</td> <td>12</td> <td>2</td> <td>2</td> <td>-</td> <td>1134</td> <td>1147</td> <td>•</td> <td>4</td> <td>-</td> <td>156</td> <td>-169</td> <td>4</td> <td>~</td> <td>-</td> <td>800</td> <td>-128</td>	> <				0	• •	87	12	2	2	-	1134	1147	•	4	-	156	-169	4	~	-	800	-128
0       151       159       -9       0       1       213       -251       4       2       1       165       200       3       4       1       126       112       6       7       1       433       -138         0       621       -644       -7       0       1       238       -259       5       2       1       107       74       4       4       1       457       -470       9       7       1       99       100         0       427       418       -5       0       1       160       -155       6       2       1       273       -262       5       4       1       457       470       9       7       1       99       100         0       427       418       -5       0       1       160       -155       6       2       1       71       -63       6       4       1       458       255       -1       8       1       107       -100         0       387       -392       -30       1       77       93       8       1       108       107       -100         0       441       435	0	116	220	1	0	• -	106	107	9	~	-	711	-674	2	4	-	3	-11	n	~	-	156	134
0       621       -644       -7       0       1       236       -259       5       2       1       107       74       4       1       447       470       9       7       1       99       100         0       427       418       -5       0       1       160       -155       6       2       1       273       -262       5       4       1       321       -325       -2       8       1       85       95         0       427       418       -5       0       1       160       -155       6       2       1       273       -262       5       4       1       321       -325       -2       8       1       107       -100         0       387<-392	0	151	159	ĩ	0	-	213	-251	4	2	-	185	200	m	-	-	126	112	•	~	-	143	-138
0       427       418       -5       0       156       -155       6       2       1       273       -262       5       4       1       321       -325       -2       8       1       85       95         0       367       -392       -3       0       1       266       -266       7       2       1       71       -63       6       4       1       248       225       -1       8       1       107       -100         0       367       -392       -3       0       1       77       93       8       2       1       262       -259       7       4       1       169       -164       0       8       1       106       100         0       441       435       3       0       1       77       93       8       2       1       262       -259       7       4       1       169       -164       0       8       1       108       100         0       441       435       3       0       1       238       257       100       2       238       1       236       1       107       100		109		1	0	-	238	-259	~	~	-	107	74	4	4	-	487	120	•	~		8	01
0     387     -392     -3     0     1     266     -266     7     2     1     71     -63     6     4     1     248     225     -1     8     1     107     -100       0     441     435     3     0     1     77     93     8     2     1     262     -259     7     4     1     169     -164     0     8     1     108     100       0     441     435     3     0     1     77     93     8     2     1     262     -259     7     4     1     169     -164     0     8     1     108     100       0     441     435     3     0     1     77     93     8     2     1     236     100     100     100       0     441     5     0     1     238     257     10     2     1     132     -158     8     4     1     138     -125     3     8     1     197     186	0	167	418		0	• –	160	-155		~	-	273	-262	5	4	-	321	-325	7	••	-	85	6
0 441 435 3 0 1 77 93 8 2 1 262 -259 7 4 1 169 -164 0 8 1 108 100 0 415 -508 5 0 1 238 257 10 2 1 132 -158 8 4 1 138 -125 3 8 1 197 186	) 0	38	-392	1	0	-	266	-266	1	2	-	11	-63	v	4	-	248	225	7	•••	-	107	81-
n kis -50k 5 0 1 238 257 10 2 1 132 -158 8 4 1 138 -125 3 8 1 197 186	C	AA1	435		0	l	11	93	60	~	-	262	-259	2	4	-	169	-164	0	80	-	108	001
	) C	19	- 598		• •	• •••	238	257	10	~	-	132	-158	60	4	-	1.38	-125	e	60		197	186

1 м. Sec -----.

**X86** 

			194	MOL	183	0.kG	-
	12.	22	122	011	121	E OH	AVCE
			-	-		1.10	
			N 75	-		-	
						122	
				1	n. 344	-	
			n -10	2.0	· 10 -	0	
		ř.	77	7 7	02-	10P	
	12	513	121	86	208	1010	
			in pro-		-	Tes /	
		10	0. yrs	m m	1.99	Ma	
			-	22	123	80	
				1 2			
5.50	100	824-	-193	191-	181	TOAC	
	985	PAA	265	104	108	1010	
$= -\gamma$		per la	- 200	- 14	jean,	4-	
		- 1 m	-		0	54	ALC: TO
	79	19	7	197		m	8
-555 10W 70W	01-	-10	184-	-515	189	TOAC	vetoss
47 103 103	17	11	121	276	Tal	1010	1 10
	00	0 0	0.5	0.0	0	fa:	R. Same
tion in the	2.2	> +	2.3		2	10	3
DOM	22	10	10 0	-	~	-	2
· 2 0 *		0.0	20	V 455	1	4	Taal
	1001	PT-	02-	N.S.	99	101	10
123	284	169	101	369	932	0101	2
0000	00	0.0	-		0	Res .	H 44/5 6

# 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

## PAGE 2

IOFC	-103	-182	107	-208	52	129	229	271	-323	-170	8	-171	-125	-132	-190	-234	-164	-123	95	191	132	258	237	-158	-225	68	109	87	202	98	199	88	-146	-310	-151	-215
1010	113	180	66	188	72	121	236	254	320	175	62	172	122	134	153	229	169	107	95	181	139	245	243	144	224	93	110	104	190	100	169	81	169	302	157	218
-1	~	•	•	m	~	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	~	3	m
*	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5
=	10	9	ĩ	ę	7	7	7	-	2	m	4	•	-		10	=	ę	۴	Ŷ	7	7	•	-	2	4	5	•	•	9	9-	1	9	7	7	•	4
DIC	118	-688	1959	-274	459	326	160	-196	-62	18-	-76	83	410	096	341	103	335	244	428	112	123	-164	144	-126	-95	148	19	-63	-190	144	280	-215	013176	190	229	-155
OLO	137	675 -	-6681	264	462	308	164	189	76	88	18	11	406	941	349	66	315	226	429	124	122	156	136	96	121	150	73	80	185	139	272	235	134	174	219	168
-1	~	•	•	•	•	~	~	•	~	•	•	•	•	•	•	~	-	•	•	•	•	•	-	•	•	•	•	•	•	~	•	•	•	•	3	~
*	•	•	•	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	~	~	~	2
	7	7	-	•	5	-	•	Ŷ	ę	7	Ŷ	Ŷ	-1	7	•	-	2	1	4	5	•	-		13	15	7	ę	1		7	-	~	•	4	5	•
OFC	227	136	108	131	144	20	137	157	-94	302	130	-95	143	14107	-48	356	-75	108	171	142	149	139	89	126	123	115	-157	121	207	-132	154	198	-123	-51	-136	96-
0F0 1	207	93 -	92 -	121	129	86	124	153 -	86	304 -	136	78	128 -	140	89	309	101	101	178	146	172	152 -	102	111	66	104 -	174 -	115 -	203	144	165	224	134	66	135	110
-	~	~	~	~	2	-	~	~	2	2	-	-	2	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	~	2	2	~	•	~
*	4	4	5	5	5	-	5	5	5	-	5	-	5	-	-	-									-	-	-			-	•	•	•	9	•	C
-	9	01	1	ĩ	9	7	<b>?</b>	1		7	•	-	5		-		7	17		-	4	-		10		•	•	1	7	2	7	-	4	<b>n</b>	-	"
OFC	-185	164	188	-121	65	207	-299	62	-	115	-66	112	112	137	-310	205	14	-161	223	15-	169	137	5	115	18	-118	-233	213	III	110	127	84	-135	-400	116	- 218
1010	192 -	150	159	107 -	99	219	297	63		131	15	127	113	155	9	298		151	222	3	171	140	78	126	88	101	215	218	412	133	119	83	139	385	119	24.2
-1	~	-	-	-	-	-	-	-	-	-		-	-							-	-	-	-	-	-	2	2	-	-	-	2	2	2	-	2	•
-	~		-	-	-	-	-	-	-	-											-			•	4	4	4	4	4	4	4	4	4	4	4	4
	1	• •	17	•			4	-		-		-	17	1	•	1	1	1	'7		4		.=	Ę	19	17	4	1	"	1	7	•	-	-	4	
OFC	180	225	102	104	78	156	406	203	153	556	150	320	115	106	120	245		201	1	-265	103	424	1044	-223	195	385	111-	-356	160	-100	-124	-157	-351	133	-169	140
010	140		106 -	103 -	101	253		202	100	556	1-921	326	101	1	22	320	255	38	2	283	376	And		218	189	387	128	996	173	174	119	154	359	E	169	120
	1	1		1.0	10																									-	-	-		-	-	

A87

	0 10P
	TOP
والما منا منا من من من	° 4
	· M
01	2 24
101- 101- 1028 1288 1288 1288	IOAC
1802	1010
	£4
	M SO.
	a
100 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	TONG
120 120 120 120 120 120 120 120 120 120	1080
in in in in in in in ing an	L- 10-
THE REAL PROPERTY OF THE PARTY	= 7
	B M
1112 -96 -173 -188 -188 -188 -188 -188 -188 -188 -18	TORC
121 121 121 121 123 123 123 123 123 123	TOLO
	4 000
****	S.L
- Causweekehe	I ALE
-1120 -120 -120 -100 -100 -100 -100 -100	TOLC
2556 2556 2556 2556 1005 1005 1005 1005 1005 1005	0100 VIND

8	3	CALCU	LATED	ES	LOCI	LURE	FACTORS	FOR	1.												PAG	8	
-	0101	10PC	=	*	-1	10FG	0 10FC	=	-	-1	1010	10FC	=	×	-1	1070	10FC	Ħ	M	-1	1070	10FC	
-	56	-104	ĩ	-	4	114	104	•	~	4	410	393	•	9	4	127	-128	7	2	s	81	-19	
-	178	158	7	-	4	102	100	4	•	4	180	160	ĩ	-	4	163	-172	۴	2	5	157	-147	
-	118	-106	0	-	4	156	9 -175	•	•	4	131	-163	7	-	4	183	-179	1	~	5	321	-322	
-	206	-227	T	-	4	397	1 -375	H	•	4	175	-147	7	-	4	134	-140	7	~	5	240	234	
-	209	-195	-2	-	4	58	9 -574	12	•	4	112	8-	0	-	4	8	-	7	2	5	238	-238	
-		-106	•	-	4	191	1 -187	-12	4	4	100	-105	-	-	4	111	11	7	2	5	359	348	
-	16	-115	4	-	4	8	3 -58	۴	4	4	104	118	•	-	4	103	109	•	2	5	245	-237	
-	141	-127	9	-	4	169	-171- 0	Ŷ	4	4	180	-186	7	•	4	92	-103	7	2	5	162	-154	
-	1	7		-	4	470	5 -55	1	4	4	140	150	Ŷ	•	4	66	88-	•	2	5	8	86	
-	124	-150	61-	-	4	29	0 273	7	4	4	194	-192	1	•	4	97	6-	4	2	5	18	-52	
-	146	-145	-13	~	4	15	4 -138	-	4	4	149	-141	2	•	4	131	125	2	2	5	96	-106	
-	83	81	Ŧ	2	4	12	7 -126	2	4	4	133	135	4	•	4	143	131	-12	•	5	119	-116	
-	111	-136	1	2	4	10	9 -116	•	4	4	275	273	-	•	5	101	126	7	•	5	101	86	
	120	141	7	-	4	30	0 -288	-	4	4	193	197	Ŷ	•	5	130	-128	-10	•	5	119	-122	
-	127	130	4	-	4	12	0 -105		4	4	104	-119	ĩ	•	5	421	415	7	•	5	165	175	
-	86	-36	7	-	4	20	7 204	H	4	4	140	-139	7	•	5	1097-	1075	Ŷ	•	5	147	-154	
-	283	285	-	2	4	35	7 -364	1	5	4	86	88-	-	•	5	127	125	1	•	5	189	181	
-	103	101	7	-	4	37	1 374	-	-	4	66	-92	•	0	5	192	183	ĩ	•	5	74	19	
-	128	118	-10	2	4	30	2 -303		5	4	113	-108	5	•	5	264	257	7	•	5	209	-199	
-	8	-42	-	~	4	18	4 187	9	5	4	83	-93	7	•	5	209	234	•	•	5	231	-221	
-	115	74	2	2	4	11	4 -110	r	•	4	126	-110	•	•	5	144	-147	7	•	5	295	-286	
-	3	-	-	-	4	18	6 -193	-	-	4	8	66-	-13	-	5	100	26	~	•	5	136	-127	
-	86	20	9	2	4	15	9 168	?	•	4	208	205	-12	-	5	86	20	•	•	5	210	-212	
-	104	106		2	4	15	3 158	7	5	4	197	205	Ŷ	-	5	133	181	9	•	5	87	-53	
-	93	-112		2	4	18	6 178	0.1-	5	4	100	86	9	-	5	191	174	-	•	•	125	101	
-	5	2	•	2	4	10	5 113		5	4	201	-176	1	-	5	221	230	1	4	5	120	-147	
-	657	-645	IIa	2	4	11	5 124	*	5	4	92	-62	7	-	5	315	324	9	4	5	35	115	
-	730	-714	7	-	4	6	6 -85	10	5	4	95	-110	-	-	5	277	-255	1	4	5	171	-157	
-	104	86	01-	-	4	12	111- L	9	9	4	66	115	9	-	5	101	114	ĩ	4	5	92	-92	
-	159	163	1	-	4	16	5 -183	7	9	4	52	- 80	4	-	•	212	-203	7	4	5	152	148	
-	2 93	-112	1		4	24	8 -257	9	9	4	16	84	5	-	5	216	-228	7	4	5	118	141	
4	95	66-	7		4	27	3 259	5	9	4	115	125	9	-	5	119	-112	7	4	5	113	112	
4	88	59	7	-	4		2 -67	?	9	4	87	-125	11-	-	5	190	176	•	4	5	175	-179	
4	289	292	7	3	4	13	4 -147	•	9	4	186	207		-	5	172	-166	•	4	5	147	125	
4	215	209	1	3	4	34	9 344	-	9	4	137	-153	•	-	5	93	107	4	4	5	269	290	
4	140	144	2	e	4	16	1 161	e	9	4	124	-119	-12	2	5	8	78	•	4	5	192	191	



141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	350
Sec. 232.0	20 I
	10
	4
	M
111111	H
-1102 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202 -1202	IOLC
101 110 110 110 110 110 110 110 110 110	0701
	Fre
201000000000000	M
a cut the contained	8
101- 102- 102- 102- 102- 102- 102- 102-	IONC
1140 1173 1173 1180 1180 1180 1180 1180 1180 1180 118	1010
	64 - go
	M et
	I POS
111- 121- 121- 121- 121- 121- 121- 121-	NC TON
100 1127 1127 1127 1127 1127 1128 1128 1128	DHE 3
	TOU T
12 12 12 12 12 12 12 12 12 12 12 12 12 1	4 512
	VIED
-120 -120 -120 -120 -120 -120 -120 -120	CVTCDT
111 171 171 171 171 171 171 171 171 171	

4	10FC	-105	121	132	66-	87	105	-191	-153	96	73	-206	-116	-106	96-	106	127	-149	119	41	11	-83	122	154	-92	-75	49	-123	-241	157	-117	152	261	271	392	152
PAG	1070	92	122	147	108	86	106	206	138	92	67	166	66	115	66	112	136	142	116	83	96	93	115	150	66	8	86	156	215	86	100	160	278	272	391	166
	-1	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•		-	•		-	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	-	~	~	~	~	2	•	•	•	•	4	4	4	4	4	5	5	9	9	•	-	-	-		•	•	•	•	•	•	-	-	-	-	-	-
		Ŷ	Ŷ	7	4	9	Ŧ	ĩ	7	5	1	7	•	5	-	1	?	1	?	•	Ŷ	1	7	7	7	ę	7	-	•	5	۴	?	7	•	-	2
	10FC	-33	151	118	137	-137	8	-107	-184	66-	107	-92	12-	122	166	-73	==	159	115	184	211	147	-63	130	96-	-154	-101	27	89	178	100	345	-271	99	-175	-148
	1070	87	128	138	148	139	92	18	157	8	92	78	80	96	129	84	8	171	103	151	194	154	81	133	110	153	126	5	*	158	121	355	254	113	197	165
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	•	•	80	•
	*	~	2	2	2	2	~	2	•	•	•	•	~	3	4	4	4	4	5	5	5	5	5	5	9	9	•	-	-	•	•	•	•	-	-	-
	-	01-	ę	Ŷ	Ŷ	0	-	2	7	1	7	-	4	-	7	9	Ŷ	2	1	Ŷ	1	-	-	4	9	7	1	-10	•	1	7	•	•	-10	7	•
	10FC	167	68-	-163	83	149	-132	38	111	96	-110	-154	185	-172	16-	105	139	19	-82	-239	-161	249	442	-92	61	-134	-94	37	-51	-55	-176	-167	-206	-179	168	260
	1010	169	87	156	92	133	110	1	110	8	120	180	180	165	100	130	128	106	86	201	134	259	443	101	96	93	88	96	8	74	157	182	232	170	185	238
4	-	•	•	•	•	•		•		•		9	9		•	9	9	9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	5	•	•	•	•	•	•	-	-	-	-	•	80	•	•	0	•	0	•	0	•	-	-	-	-	-	-	-	-	-	-	-	-
FOR	-	7	7	-	-10	4	Ŷ	1	•	•	7		7	•	7	?	•	1	-13	Ŧ	7	7	-	5	-14	7	ĩ	9	۴	ŗ	1	-	7	•	1	•
ACTORS	10FC	-128	186	135	110	16-	-276	-63	-327	442	224	-207	165	146	133	-136	89	-187	11	-92	215	-217	69	114	135	102	186	-	99	-149	-93	152	-130	-149	-165	16-
1	2	86	73	22	9	22	88	78	32	58	10	68	16	30	15	12	88	00	83	01	53	92	03	30	36	90	11	6	86	115	93	37	44	43	83	90
E	9	-	-	-	-				-	-	-	-	-	_	-	-				_		-			_	_	_			-					-	
ROC	14	9	9	9	9	9	9		9	9	9	9	9		9	•	9					-		-	-	-	-		•							
S	10	-	-	-	-	1	20	1.10	1.0	-	~	~	~	~	~	~	~	-	~	-	-	-	-	-	-	-	-	4	-	4	4	-	4	-	4	4
ILATED		ĩ	9	-	9	7	1	7	7	•	11-	-10	î	-	ŗ	1	•		~	-10	7	7	<b>•</b>	7	-	7	1		-10	T	1	ï	7		~	Ξ
CALCU	TOPC	164	101-	-118	-167	-280	121	124	125	189	-115	-141	126	-138	117	58	138	156	137	80	131	-123	66	-117	-101	-104	-146	109	101	355	278	280	529	122	81	-124
-	1010	130	80	96	160	265	101	125	118	194	112	93	113	119	130	92	116	166	121	104	135	66	96	132	66	6	113	121	82	362	262	267	543	107	106	103
8	-1	-	-	-	-		-	-	-	5	5	5	5	5	5	5	5	5	5	5	-	5	-	5	-	5			9	9	9				9	9

.



N. C. C. C. C. C. C. S.		
10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10 10-12 10 10-12 10 10-10 10-12 10 10-12 10 10-12 10 10-12 10 10-12 10 10-12 10 10-12 10 10-12 10 10 10 10 10 10 10 10 10 10 10 10 10	Piller-	-
1225 1006 1006 1225 1225 1225 1225 1225 1225 1225 122	0.0	EVG
		14
		1
The share share		
101- 101- 101- 101- 101- 101-	IOBC	
AL AL AL AL AL AL AL AL AL AL AL AL AL A	1010	
1 Internet	54	
	34	
	10	
tal and	10 MC	
180 1710 1710 1710 1710 1710 1720 1720 172	1010	
	t.	-
	м	4
	H	E kolt
-128 186 186 186 186 186 186 186 186 186 18	TONC	PACTOR
1116 1184 201 201 201 201 201 201 201 201 201 201	IOLO	CABRE
	£4	CUC
12 12 12 to be be be be be be be	ы	SEE
? = = = = = = = = = = = = = = = = = = =	1	LATED
151 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712 -1712	TORC.	<b>CVT</b> CD
1118 1118 1118 1118 1118 1118 1118 111	1010	COMPA O
THE PARTY PARTY PARTY PARTY PARTY	Ten .	MA YES

# TED AND CALCULATED STRUCTURE FACTORS FOR 7.4

5	10FC	-103	-120	75	-81	-67		-106	92	
PAG	1070	103	119	107	96	16	92	123	66	
	-	9	=	=	=	=	=	12	12	
	*	4	•	-	-	~	~	-	~	
	=	•	-	7	2	Ŷ	-	~	7	
	10FC	103	-101	-111	21	119	130	-113	58	
	1070	117	8	124	\$	8	127	107	86	
	-1	9	9	9	2	9	9	9	9	
	M	-	2	2	2	~	•	•	4	
	æ	4	7	۴	-	•	7	-	~	
	10PC	-98	8	158	8	16-	-207	-110	-158	81
	1000	107	114	144	86	103	218	153	114	102
4	-1	•	2	2	2	2	2	2	2	9
-	M	~	•	•	•	•	•	•	•	-
FOR	=	-	Ŷ	۴	1	?	•	~	4	2
ACTORS	10FC	-123	III	-51	86	11	-160	5	65	16-
URE	1070	114	93	83	101	101	162	67	107	111
L'S	-1	•	•	•	•	•	•	•	•	•
<b>N</b> ES	M	•	4	4	4	5	5	5	5	•
ATED	-	4	7	4	9	7	7	7	-	1
CALCUL	10FC	-120	16-	119	-117	141	56	116	-207	-178
AN	1010	140	86	124	104	136	8	106	175	186
8	-1					•				

TENPELOD S

,



401-102 102 102 102 103 103 103 103	P.C.
100 100 100 100 100 100 100 100 100 100	NOR 1
	10
	-
Перенини	M
a state that the state of the s	R.
101- 101- 101- 101- 101- 101- 101- 101-	TOEC
44 45 45 45 45 45 45 45 45 45 45 45 45 4	10100
	64 ·
1	tu -
-1115 -127 -127 -127 -127 -127 -127 -127 -127	IOAC
180 1700 1700 1700 1700 1700 1700 1700 1	TORO
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L.
ANADOOOOOAAA	N T
	H BOR S
1125 1125 1261 1261 1261 1262 1262 1262	TOAC
1116 1116 1116 1116 1116 1116 1116 111	TOED 1
	4 10
17 32 32 and not not not bee pay her has bee	ars.
1250111000	RALED B
101-1122 1122 1122 1122 1122 1122 1122 1	TOLC
1112 1112 1112 1112 1112 1112 1112 111	ONO.
	4

ED AND CALCULATED STRUCTURE FACTORS FOR 7.4

5

PAGE

10FC	-103	-120	75	18	-67	•	-106	92	
OFO	103	119	107	96	16	92	123	66	
1	9	=	=	=	=	=	2	2	
M	4	-	2	Ξ	2	2	Ξ	2	
	•	-	7	~	r	-	2	7	
10FC	103	-101	-	21	119	130	-113	28	
1070	111	96	124	54	8	127	101	86	
-1	2	2	2	2	2	2	2	2	
M	-	2	~	~	2	•	~	4	
=	4	ī	Ŷ	-	•	7	-	2	
10PC	86-	8	158	ŝ	16-	-207	-110	-158	81
1070	107	114	144	86	103	218	153	114	102
-1	•	2	2	2	2	2	9	2	2
M	~	•	•	•	•	•	•	•	-
æ	7	Ŷ	۴	1	?	•	2	4	2
10FC	-123	111	-51	86	11	-160	10	65	16-
1070	114	93	83	107	101	162	57	107	117
-1	•	•	•	•	•	•	•	•	•
*	•	4	4	4	5	5	5	•	•
-	4	7	4	9	۴	7	7	-	î
1010	-120	16-	119	-117	141	35	116	-207	-178
1010	140	86	124	104	136	8	106	175	186
-1	•	•	•	•	•	•	•	•	•

.

106 18- 150 150 150 150 150 150 150 150 150 150	08.0	m
OMMONION	1	2
1001	1040	2
ST. ST.	54	
	h	
- n n n m mm	-	
A LOUIS	IDEC	
81799994	0	
o 21 o e ett e E	TOP	
101101	-	
1- 10 10 10 10 10 10 10 10	187	
" - m m m m m m m	-	
	a.	
THE PART	ION	
100 S 10	8	
pri sea tra 15 km han pak bis	93 26	
51000000000000000000000000000000000000	54	
-00000004	10	-
124044497	8	EC.B.
		19
-91 -91 -91 -91 -91 -91 -91 -91 -91 -91	Disc	OTO
	1	P.A.
LILL COLLOI COLO	1	and the second
	1	5
NAMADER	1	Gitt
-	-	6
TTTTTTT		and the second s
842222488	3	CC
THE STREET	10	20
240000000000	8	E Store
for the first line first line for	2	The state of the s

TED AND CALCULATED STRUCTURE FACTORS FOR 7.5

8 1	10FC	155	290	151	-83	254	-223	211	-201	-255	-181	-303	-238	-286	-172	-355	101	-306	114	-165	156	177	175	200	144	388	-154	279	-397	119	120	16	-150	-104	-400	-195	68
PAG	1010	154	283	133	125	260	211	205	205	247	187	298	220	307	169	348	86	311	63	142	151	162	154	237	137	334	148	298	396	125	114	104	166	116	407	187	94
	-1	•	•	•	0	•	•	•	0	0	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0
	×	I	=	=	12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	14	14	14	14	14	14	14	14	14	15	13	15
	Ħ	10	12	14	-	2	3	4	5	9	-	-	•	=	13	-	2	•	4	5	•	-		10	12	•	-	2	•	4	•	•	•	12	-	•	4
	10FC	142	237	234	96	253	156	533	245	343	305	301	-133	317	-111	113	-174	-139	-137	-96	-356	-269	-191	425	-341	-373	268	-317	130	-140	76	108	221	123	465	562	406
	1000	134	229	230	129	257	153	534	259	377	296	304	120	334	121	101	168	159	117	103	359	244	193	428	340	395	265	304	119	144	88	8	231	125	461	593	409
	-1	•	0	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
	×	•	•	80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	9	2	9	9	9	9	0	9	9	0	0	0	-	-	-	-	-	-
	m	13	14	16	18	-	~	•	4	5	9	•	•	9	=	12	13	15	0	-	2		4	5	-	•	101	=	12 1	13	141	-	2 1	3 1	4	6 1	7 1
	10FC	498	-795	236	-219	226	8	356	20	196	124	230	176	224	618	257	656	-182	593	ş	134	-74	-57	-129	-121	-116	-241	-227	-329	-695	-274	-254	-501	-299	-106	-83	130
	1070	523	792	257	241	191	83	366	11	191	121	203	197	218	633	274	640	146	592	8	140	102	83	III	135	109	222	210	296	139	226	253	484	296	100	95	128
5	-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
-	×	•	9	9	9	9	9	9	9	•	9	9		•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•		•			••	•	80
FOR	Ħ	•	4	5	9	-	•	•	9	=	12	13	14	16	-	~	•	4	•	•	-	•	•	12	13	14	15	17	•	-	~	•	4	•	•	•	12
ACTORS	10FC	137	1002	656	-655	-72	-580	-233	-393	-278	136	ş	-156	560	1071	-252	954	-141	345	409	165	104	-283	400	-691	-214	1055	240	-359	-283	-98	-174	-187	-103	-769	-378	-836
URE	1010	168	1016-	719	650	89	569	210	419	262	155	*	171	513	1108	251	1016	155	338	435	140	82	307	424	669	270	1115-	239	34	267	8	193	199	127	759	429	851
100	-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
ES	*	•	•	•	•	•	•	•	•	•	•	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	-	5	5	5	-	5	5	•	•	•
LATED		•	9	-	•	•	9	=	12	14	15	•	2	•	5	•	-	•	•	=	13	-	~	•	4	~	9	-	•	2	=	12	15	11	•	-	2
CALCU	10FC	16-	252	17-	-448	120	-166	-237	-195	-230	-224	-528	-140	-340	-160	226	108	178	-103	151	194	-224	312	364	374	268	393	302	-230		111	-151	2	2	170	-469	-362
	1010	92	267	8	473	140	185	223	227	259	255	238	133	364	179	233	107	185	8	172	202	249	323	328	358	273	398	162	212	106	129	166	133	52	166	526	347
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

4001408004000011114070040001110068-004 -

A91

1040 1950 -AVGE 64 TIL STATES 244 ON STATES AND A STATES 122 1086 IONO 00000000000000 Top: 14 CTON: TNNEDOR 2007 TORC 1010 Ter: (Shi 4 2 1 2 2 0 0 0 0 0 0 0 0 0 0 24 2121200040000 RON 10. SWCLONS TORC 1010 SIEDGIDHE 000000000000000 14 > > 10 m m m m m m m m m m 36 CAPCALVLED 調 -1100 -100 -10160 AND 1080 -

ED AND CALCULATED STRUCTURE FACTORS FOR 7.5

2

PAGE

	10FC	-249	280	-453	489	-907	110	-603	383	-680	-297	-558	-166	451	-489	-409	-427	108	-200	191	-229	199	99	209	168	-142	-103	-174	-233	-307	103	-228	-181	602	-155	324	453
	2	528	273	185	919	943	105	527	393	200	308	219	165	1	149	146	149	90	172	175	540	212	92	222	123	158	103	506	226	916	=	212	176	243	160	301	449
	L L	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	~	5	5	5	5	5	5	5	5	5	•	-	5	-	•	-	•	•	-	•	-	5	5	5									9		•	9
	=	Ŷ	9	7	q	Ŷ	1	7	7	7	•	Ŧ	~	•	4	5	•	-	•	•	9	=	12	15	11	-18	-16	57	-13	7	97	7	7	۴	Ŷ	4	7
	10FC	343	269	326	317	704	250	233	224	184	-196	-213	-127	496	1142	-499	875	886	425	365	194	674	66	597	99	-303	-74	-135	213	-279	-222	209	124	197	131	198	74
	0101	371	267	303	297	619	268	211	232	148	191	240	102	495	1154	526	871	897	472	332	184	669	119	613	18	320	68	I	228	295	216	217	127	214	142	198	11
	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	×	•	3	•	3	3	•	•	•	•	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5
	-	•	•	•	9	=	12	13	15	17	-18	-16	-12	۴	۴	r	1	?	7	•	-	~	•	4	-	10	=	12	13	14	16	-11	-16	-15	-14	-12	-10
	IOPC	-286	530	755	912	-336	303	-666	286	-755	347	450	-57	-374	-513	-616	-367	-190	-137	-141	154	173	74	-2-	-323	-146	-527	-155	-854	-521	202	-924	843	451	-263	-109	-355
	010	293	511	198	910	378	327	849	321	118	336	486	86	356	486	612	377	201	III	127	162	177	108	103	332	158	530	151	858	534	181	116	943	447	239	142	363
	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	*	~	~	2	~	2	2	2	2	~	2	~	2	~	2	~	2	2	~	~	•	•	•	•	•	•	•	•	•	•	•	•	•	3	•	•	m
i.	=	ĩ	?	7	•	-	~	•	4	5	9	-11		•	10	H	12	14	16	18	-19	-17	-14	-12	•	9	7	9	•	-	-	7	•	4	e	4	5
	DAC	249	-967	609-	-319	86-	-191	-310	466	462	-219	-628	448	-221	-249	584	-353	596	165	604	219	496	463	142	86	155	-106	-136	208	-204	376	18	268	294	479	-222	463
	0101	267	976	611	319	15	156	311	454	468	319	588	518	213	319	919	400	586	189	608	223	503	429	137	101	161	123	155	232	210	384	100	251	297	488	265	460
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	-	2	2	2	2	~	~	2	2
	-	-13	-12	-10	7	-	4	7	1	7	7	7	•	-	2	-	-	9	-	-18	6	10	-	12	13	11	-20	-18	-13	-12	-	-10	7	7	Ŷ	ŗ	1
	IOPC	-259	-148	324	196	110	153	150	129	-121	16-	-169	-112	-116	-121	-146	81	123	135	117	-121	238	550	804	634	251	607	-870	-815	-577	1017	-277	-219	-521	-512	16	-217
	010	271	148	323	206	105	155	145	144	108	110	159	EII	117	125	141	3	118	142	133	121	224	579	805	666	315	602	884	298	149	1056-	236	134	533	497	92	226
-	-			-		-		-	-	-	-	-		-	-		-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

1

N92

195- 195- 195- 195- 195- 195- 195- 195-	20%C	- 10
105 105 105 105 105 105 105 105 105 105	OBO	INC
the second secon	54	
	34	
	-	
100 100 100 100 100 100 100 100 100 100	1080	
Tres and	1010	
	Sec.	
מין אין בין ביץ אין אין אין אין יין יין יין אין אין אין	-54	
	-	
100 - 100 -	TOLE	
231 231 231 231 231 231 231 231 231 231	UND A	
the second secon	54	~
	м	-
0	-	10 R
-110 -110 -110 -110 -110 -110 -110 -110	FORC	WCIOES
212 213 214 214 215 214 215 215 215 215 215 215 215 215 215 215	1010	No.
the sea per	-	2
in in in in for he for he he he he he he	24	H
	M	9
-112 -173 -173 -173 -173 -173 -173 -173 -173	TONC	CATCAL
1112 2011 2011 2011 2011 2011 2011 2011	010	-

2	8	CALCUI	ATED	ES	RUC	TURE	FACTORS	FOR	-	-											PAGE	e 1	
-	1010	1010	-	*	-	1010	10FC	-	*	-	1010	10FC	=	*	1 1	010	OFC		×	-	1010	OFC	
-	110	-123	7	•	-	226	-191	4	•	-	290	-587	7	=	-	619	658	-	5	-	290	288	
		804	19	-	-	404	-397			-	136	126	2	=	-	136 -	135	~	13	-	118	130	
			17	-	-	362	-367			-	360	-397	7	=	-	619	169	•	13	-	350	321	
	178	170	4	-	-	III	-107	-	•	-	105	-105	-	=	-	208	494	•	2	-	142	164	
	679	45A	"		-	416	-394		•	-	374	-369		=	-	258	257	•	13	-	158 -	154	
	1042	1001	1		-	323	-308	•	•	-	8	-87	5	=	-	229	235	9	13	-	143	136	
	200		1	-	-	170	182	12	•	-	159	-189	-	=	-	127	108	1	13	-	152 -	151	
1	EII	-126			-	165	154	13		-	175	-145	•	=	-	8	-74	-13	1	-	147	157	
-	116	226	-	-	-	6.6	12	15	•	-	133	-168	H	Ξ	-	148	-148	7	14	-	241	230	
	148	-175		-	-	532	555	118	2	-	110	93	13	=	-	189	-206	î	14	-	182	199	
	1=	-120	-	-		613	638	1	2	-	176	-151	15	=	-	135	-173	7	14	-	309	295	
• •	181			0	1	221	-186	19	2	-	140	-127	F	2	-	149	141	۴	1	-	156 -	134	
•	152	-167		-	-	411	445	1	2	-	212	-209	9	12	-	251	-259	1	14	-	161 -	-168	
1	163	155	-	-		102	-119	-	2	-	237	-225	4	2	-	267	-253	7	14	-	218 -	-209	
	205	203		-	-	430	413	7	9	-	185	-209	7	2	-	392	-383	•	14	-	148 -	-123	
	106	-108	Her	-	-	206	216	9	2	-	548	-544	7	2	-	164	-184	-	14	-	128 -	115	
•	248	55	1		-	144	130	1	2	-	150	-147	?	12	-	415	-381	•	14	-	84	9	
	383	358	13	-	-	116	106	1	2	-	346	-348	7	12	-	11	5	4	14	-	285	301	
-	426	438	-14		-	150	162		9	-	181	172	•	12	-	201	-519	•	14	-	265 -	-265	
-	375	374	-13		-	124	-110	7	9	-	334	-350	1	12	-	179	-174	-	14	-	233 -	-250	
-	350	-320	-12		-	137	112	7	9	-	232	215	2	12	-	454	-43	•	14	-	207 -	-213	
-	156	358	17		-	17	172	•	9	-	567	-552	4	12	-	110	-124	7	1	-	129 -	-136	
-	100	-	19-		-	22	2 198	-	9	-	169	156	•	2	-	226	-219	7	3	-	162 -	181-	
-	426	-422	1	•		16	2 189	2	9	-	484	-478	9	12	-	192	195	97-	2	-	251 -	-230	
-	164	-178	7		-	29	3 289	•	9	-	231	223	12	12	-	205	237	9	2	-	208	-209	
-	453	-421	-		12	25	5 231	4	9	-	298	-308	14	12	-	159	188	۴	2	-	235	-227	
-	104	-507	4		0	201	4 219	•	9	-	324	343	-12	13	-	144	-149	•	2	-	137	135	
-	88	19			0	40	418	101	9	-	212	213	-10	13	-	161	-163	•	15	-	131	109	
-	400	-002	1		-	160	148	10	9	-	121	100	ĩ	13	-	212	243	4	2	-	175	159	
1	205	-164	1		-	28	2 281	I	9	-	115	18	7	13	-	86	96-		15	-	268	277	
10	AAA	649			6	46	5 443	12	9	-	234	221	7	13	-	173	178	•	2	-	278	276	
-	127		7		10	314	4 288	14	9	-	170	200	۴	13	-	62	-50	9	2	-	172	169	
1	478	-	0	-	1.87	36	0 -367	Ŷ	11	-	137	144	1	13	-	263	240	7	16	7	166	144	
-	260	-270	0		-	12	9 140	1	H	-	292	279	ĩ	13	-	213	208	Ŷ	9	-	190	178	
	193	-197	. ~			4	3 -425	ŗ	1	-	310	320	7	13	-	339	346	7	16	-	184	161	
-	234	-220	1 0	. 0	-	14	6 136	1	=	-	160	148	•	13	-	236	217	Ŷ	16	-	103	102	
					l																		

A S S S S S S S S S S S S S S S S S S S	588 1040
SAL SAL SAL SAL SAL SAL SAL SAL	590 10140
in in in in in in it	- 4
STREESED MAMMA	n M
108 108 108 108 108 108 108	TONC
808 808 808 808 808 808 808 808 808 808	TOKO
the second	- 4
The second secon	
	• •
126- 126- 126- 126- 126- 126- 126- 126-	TONG
1122 1122 1122 1122 1122 1122 1122 112	TORO
and the second s	En mi
	M et
	N N
101- 101- 101- 101- 101- 101- 101- 101-	TORC
1117 1122 1122 1122 1122 1122 1121 1122 1121 1122 1121 1122 1121 1121 1122 1121 1	Third
to be be the left to be the left has been been been	a a
	20 2
100000777777777	antv.
-1223 -1228 -1228 -1228 -1228 -1228 -1228 -1228 -1228	road evrca
RELE RELE RELE RELE RELE RELE RELE RELE	OLOI .

.

2	TCOL	8	LIS	nct	URE	ACTORS	No.	7.5	2.1						3					PAG	4
IOFC H		-	-	-	1010	10FC	=	*	11	010	IOFC	=	*	1	010	10FC	=	*	1	010	010
T III	T	~	•	~	1108-	1183	12	-	2	- 511	124	11	•	~	122	-128	-	4	~	- 989	-758
III	3	0	•	~	371	358	13	-	~	136 -	-163	-12	•	2	243	-223	~	4	~	241	210
113		~	•	~	294	247	5	-	2	201	-193	97	•	2	161	-183	•	4	2	248	579
-109		4	•	~	706	-630	1	-	2	127 -	-150	î	•	2	114	104	4	4	~	133	102
-160			•	~	232	209	-13	~	2	294	276	7	•	2	319	-309	•	4	2	622 -	604
-234			•	~	236	245	-12	2	~	173 -	-180	7	•	2	634	619	•	4	~	222	210
-211	-	2	•	~	288	306	7	~	2	270	253	9	•	2	379	-361	-		~	416	421
-176		12	•	~	189	187	9-	2	2	170 -	-160	2	•	2	362	373	•	4	~	32	-92
8-		1	•	~	261	251	ĩ	~	2	150	171	1	•	2	74	-39	•	4	2	363	104
5		16	•	~	211	235	ę	~	2	170 -	-197	7	•	2	194	189	9	4	~	236 -	-241
- 411-		6	-	~	119	-118	7	~	2	233	213	7	•	~	578	556	=	4	~	148	112
- 113 -		15	-	~	140	149	۴	2	2	- 814	-403	•	•	2	420	351	11	4	~	110	100
- 139 -		1	-	~	158	-154	r	2	2	295	313		•	2	1	-95	19	4	~	131	116
- 141-		13	-	2	100	-85	1	~	2	- 164	-410	2	•	2	999	690	-18	5	~	164	135
-120		-12	-	~	349	-345	7	~	2	159	-737	•	3	2	183	-174	-16	•	~	173 -	-187
110		Ę	-	~	325	333	?	~	2 1	491-1	1527	4	•	2	617	639	-14	•	~	- 112	276
134		9	-	~	231	-260	7	~	2 2	533-	2514	•	•	2	584	-533	-12	•	~	225	-234
150		î	-	~	406	411	•	~	2 1	412-1	1359	•	•	2	802	758	-10	•	~	325 -	306
66		7	-	~	III	103	-	~	2	114	463	-	•	2	185	146	ĩ	•	~	369	376
155		7	-	~	358	401	~	~	2	303	-279	•	•	~	210	213	ę	•	~	239 -	529
133		9	-	~	83	89	•	~	2	534	-539	•	•	2	124	-131	7	•	~	625 -	119
139		5	-	~	191	193	4	~	~	532	510	9	•	2	88	86	۴	•	~	104	-96
114		7	-	~	608	563	•	2	2 1	023	156-	-	•	2	278	-290	r	•	~	- 115	503
-118		?	-	~	1590	1616		~	~	989	614	14	•	2	151	-127	1	•	~	306	291
-178		7	-	~	2672	2692	-	~	~	516	114	-1-	4	~	206	192	7	5	~	182	489
-132		•	-	~	963	858	-	~	2	230	241	-15	4	2	237	225	?	•	2	549	520
*		-	-	~	280	221	•	~	2	190	-188	-13	4	~	305	295	7	•	~	11	-163
143		2	-	~	82	111	9	~	~	348	329	7	4	2	255	258	•	•	~	243	236
125			-	2	58	-21	=	~	2	87	72	1	4	2	272	260	-	•	2	469	447
110		4	-	~	412	372	12	2	2	143	186	۴	4	~	279	251	~	•	~	838	862
189		5	-	~	466	-467	13	~	2	189	-202	7	4	2	490	521	•	•	~	175 -	200
-80		•	-	~	412	399	1	~	2	182	140	۴	4	2	110	-104	4	•	~	609	613
-368		-	-	~	331	-313	16	2	2	110	125	r	4	2	228	-235	•	•	~	103	94
-316		•	-	2	123	117	11	2	~	\$	113	ĩ	4	2	131	-195	•	5	2	273	281
-577		•	-	2	367	-347	-18	•	2	166	-147	7	4	2	408	365	80	5	2	268	273
-305		=	-	2	344	-361	-16	•	2	175 -	-117	7	4	2	414	-470	•	5	2	317	310

-13 1 5 11.0 -11.8 -1 5 1 12 0 5 511 532 -8 5 5 1 12 0 5 511 532 -112 5 5 1 12 0 5 581 322 -13 5 5 1 10 0 5 582 306 -111 5 5 1 10 0 5 588 306 -111 5 5 1 10 0 5 538 306 -111 5 5 1 11 5 1183 12 13 15 1 5 1 1 5 331 328 13 1 5 5 1 5 0 3 13 13 1 5 5 1 5 0 3 13 13 1 5 5 1 5 0 3 100 <td< th=""><th></th><th></th><th>THE TAY IN THE TAY INTENT.</th><th>TO THE A DE TOT TOT TOT TOT TOT TOT</th><th>The rev of 5 10 -10 0 7 5 40 -4</th><th>V- 17 2 4 8 112 141 2 7 7 141 8 4 2 73 - VI2</th><th>124 - 354 5 4 7 186 - 386 5 8 4 5 4 5 4 5 4 5 4 5 4 5 4 5 1</th><th>110 - 101 - 7 7 646 610 6 4 2 222 210</th><th>104 - 10 - 10 - 109 5 4 2 522 - 504</th><th>193 TICU -0 3 5 119 10P 9 9 5 123 103</th><th>172- 842 2 4 2 E81- 181 2 2 01- 189- 100</th><th>THE INE S & S BOST EAS S E SIL PALLARS</th><th>114 126 -16 3 2 122 -128 1 6 2 686 -758</th><th>040 105C H K T 10K0 105C H K T 1010 1010</th><th></th></td<>			THE TAY IN THE TAY INTENT.	TO THE A DE TOT TOT TOT TOT TOT TOT	The rev of 5 10 -10 0 7 5 40 -4	V- 17 2 4 8 112 141 2 7 7 141 8 4 2 73 - VI2	124 - 354 5 4 7 186 - 386 5 8 4 5 4 5 4 5 4 5 4 5 4 5 4 5 1	110 - 101 - 7 7 646 610 6 4 2 222 210	104 - 10 - 10 - 109 5 4 2 522 - 504	193 TICU -0 3 5 119 10P 9 9 5 123 103	172- 842 2 4 2 E81- 181 2 2 01- 189- 100	THE INE S & S BOST EAS S E SIL PALLARS	114 126 -16 3 2 122 -128 1 6 2 686 -758	040 105C H K T 10K0 105C H K T 1010 1010	
-1/2 1 5 17/2 1 1 1 1 1 1 5 11/3 1 5 11/3 -1 1 1 5 11/3 1 5 11/3 -1 1 1 5 11/3 1 5 11/3 1 1/2 0 5 5/1 5/2 1 1/2 0 5 1/3 1/3 1 1/2 0 5 5/1 5/2 1 1/2 0 5 5/1 5/2 1 1/2 0 5 5/1 5/2 1 1/2 0 5 5/2 -1/3 1 1/2 0 5 5/2 1/2 1 1/2 1/2 3/1 3/2 1/1 1 1/2 1/2 1/2 1/2 1/1 1 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1		1		1.20		. v.	5. p 5. p	1 0		14				1 4 3	2
2 -12 1 5 11.6 -118 1 1 5 11.6 -118 1 1 5 511 532 1 1 5 511 532 1 1 5 511 532 1 10 5 511 532 1 10 5 513 532 1 10 5 533 508 1 10 5 538 508 1 10 5 538 508 1 10 5 538 508 1 10 5 538 508 1 10 5 538 508 1 10 5 538 508 1 -5 0 5 538 508 1 -5 0 5 538 508 1 -5 0 5 588 588 1 -5 0 5 588 588 1 -5 0 5 588 588 1 -5 0 5 588 588 1 -5		7	de 1	19-1	-10	1.1.1	NI-	-	14		22	24	-	H	a kor
L LA L LA	Ral Da	14 -118	11 525	01 32I	781 98	300 300	CAS de	35 203	00 - 020	201 201	10 1X	00-1103	1100 V 100	BO. TORC	BOTSAN 3
	-	5	10	14	14	51	11	14	1	117	1 40	AL N		11 10	DCIDS
			6	0	0	0	0	0	0	0	0	0		ы	SLE
	21-	1-19	10	14	12 B	101 E	8	0 0	4	17	0 1	54 L		10 II	TATALO

ED AND CALCULATED STRUCTURE FACTORS FOR

8	-	CALCU	ATED	STR	DCT	URE	ACTORS	FOR	1.5												PAGE	s
1	010	10FC			-1	1070	10FC			1	OLO	10FC	=	*	-	010	10FC	#	*	-1	1010	OFC
~	381	365	T		-	223	-238	٩	•	~	184	-176	10	9	•	174	111-	-12	13	~	170	161
	127	66	0	0	-	454	-417	9		2	142	128	12	9	~	145	-196	۴	13	2	169 -	155
	100	117	-162	-	-	208	220	7		-	552	-522	14	2	•	106	-8-	7	13	2	150	158
	119	-122	-15	-	-	119	-138	Ŷ	•	~	459	-492	-18	=	~	104	88	r	13	2	129	141
	110	102	-14	-	-	347	339	1	•	-	185	199	14	=	2	174	184	1	13	-	146	138
	191	173	53-	-	-	270	284	7	•	2	216	-230	-12	=	•	302	293	7	13	~	141	159
-	170	155	-12	-	-	267	251		•	~	117	93	Ŧ	=	•	102	96	ï	13	•	- 611	139
10	101	87	-110	-	-	279	294	7	•	2	288	-303	01-	=	•	355	348	7	13	-	153	187
	158	175	-11	-		195	214	•	•	-	393	-346	9	Ξ	2	352	370	•	13	•	305 -	300
10	123	141	F	-	1	294	293	-	-	2	245	-252	7	=	2	8	5	-	13	~	203	187
	174	167	17	-	-	214	235	•	-	2	367	-382	1	=	2	278	-267	~	13	2	367 -	385
	520	526	-12	-	-	130	122	4	•		414	-398	7	=	-	172	-185	4	13	-	336 -	348
	288	259	19	-		199	194	•	•	2	204	185	001-	=	2	427	401	•	13	•	217 -	195
	215	187	1	-	-	321	291		•	2	199	-185	2	=	2	505	-509		13	2	334 -	343
	152	176	1	-		588	581			2	232	242	4	=	2	337	-326	-	13	2	- 911	110
-	629	643	1	-	-	5722	86	9	•	~	147	121-	-0-	=	2	150	-184	H	13	•	152 -	152
-	375	-383	1	-	-	673	670	M	•	-	280	304	9	=	2	8	-78	-	14	2	117	112
-	514	164		•		398	387	13	•	2	180	225	-	=	-	163	-153	۴	14	2	252 -	232
-	229	-196	7	-	-	359	367	15	•	-	148	171		=	•	212	-214	1	14	~	332 -	324
2	627	-653	0	-	-	460	453	-11	2	2	110	-102		=	2	136	108	7	14	~	- 166	338
-	342	-304	2		2	288	257	-15	2	~	175	-170	9	=	~	182	-189	7	14	2	135	142
10	569	-575	0	-	2	230	244	-14	2	2	100	2.67	-13	12	-	233	-240	0	14	2	218 -	223
	128	-115	-		-	123	107	-13	9	-	183	-184	7	12	2	222	-216		1	2	96	8
-	272	-257		-	-	236	233	7	2	-	199	-195	7	12	2	227	-209	5	1	2	181	187
-	174	-173	90		-	216	-232	î	9	-	196	-207	۴	12	-	193	-206	901-	1	-	148	165
-	119	6-	121		-	187	191	7	9	~	400	386	7	12	~	IN	86	-8-	14	2	97	135
-	181	-180	851	•	-	521	-521	7	2	2	257	-249	7	12	-	255	267	•	4	-	207	210
2	203	-199	149	•	-	263	252	۴	9	2	244	245	100	12	-	179	-166	9	1	2	179-2	191
-	3148	-169	10		-	344	-347	1	9	2	225	220	111	12	~	488	473	12	1	~	66	105
-	134	-142	-112		-	310	-301	7	9	2	121	131		12	~	359	401	9	12	2	156	138
-	177	-184	-114		-	193	-209	•	9	2	164	172	144	12	2	130	123	7	5	2	157	169
~	223	-247	-115		2	93	11	0	9	2	413	433	-113	12	2	369	381	Ŷ	2	2	247	264
~	556	-541	- 16		0	131	-136	•	9	~	535	542	9	12	~	164	167	7	2	~	321	315
2	119	-714	-16	•	-	108	103	•	9	2	180	161		12	2	171	174	7	2	2	229	258
2	586	-564	-13	•	2	88	16-	9	9	2	294	309	80	12	2	83	ş	-	15	2	169 -	164
2	329	309	-10	•	2	8	80	•	2	2	138	145	-14	13	2	117	109	Ŷ	16	2	145 -	146

Ser	1060
1300 1300 1300 1300 1300 1300 1300 1300	10101 6901
en en en en en en en en pa pa pa pa	Fi
	M
-0-7777777 #	a.
A DE LA DE L	TOLC
101 101 101 101 101 101 101 101 101 101	1010
100 64 64 64 64 64 64 64 64 64 64 64 66	4
1001	M.
A A A A A A A A A A A A A A A A A A A	H
-136 -138 -138 -138 -138 -138 -138 -138 -138	TONC
100 100 100 100 100 100 100 100 100 100	10140
10 10 11 10 10 10 10 10 10 10 10 10 10 1	L. IN
	M in
	- N
Res Res Res Res Res Res Res Res Res Res	TOLC
Part Part Part Part Part Part Part Part	1010
	-
	M
-64444444444444	UNIV.
TAL SAL	TONC
New	TONO

CALCULATED STRUCTURE PACTORS FOR é

8		G	LCULATED	S	RUC	TURE	FACTORS	FOR	-												PAGE	•
	1010	10	2	-	1	1070	10FC		-	3	010	10FC		-	-	0101	10FC	=	-	-	1070	DAO
1.000	234	2	35 15	•	•	190	-209	Ŷ	~	-	639	-673	5	-	-	366	-336	ę	5	~	112	18
1.00	287	-2	99 17	0	•	193	-206	5	2	-	312	339	9	•	•	148	-129	-	5	•	185	605
5.600	258	-2	65 -16	1 3	•	139	115	7	~	•	365	378	-	-	3	331	-358	9	5	-	28	11
1.50	107	1	27 -15	1	•	149	132	?	~	•	201	-220		•	•	III	-127	Ŷ	5	-	431	453
1.24	93	-	80 -14	1 0	9	342	346	7	~	•	584	551	6	•	-	658	-626	1	5	•	18	126
1. 100	142	1	36 -13	-	•	292	304	•	~	•	92	67	10	-	-	366	-347	7	5	-	474	490
1.62	86	I	05 -12	-	9	324	310	4	~	•	427	458	H	•	•	234	-234	-	5	3	118	82
5.20	137	1	11- 51	1 5	3	220	248	~	~	•	218	230	12	•	•	123	\$	-	5	•	169 -	154
1 200	129	T	36 -10	-	9	146	139	•	~	•	186	173	13	-	-	220	-221	2	5	-	408	415
44	212	-	6- 62	-	9	129	107	4	~	•	86	-94	15	3	-	131	-142	•	5	-	- 96	111
2.20	107	-	- 52	-	9	339	353	5	~	•	286	299	-15	4	-	113	20	4	5	-	378	363
100	206	3	07 -6	-	9	193	-176	9	2	-	161	209	-12	4	•	181	-183	5	5	-	336 -	340
1387	160	7	5	-	•	239	252	5	~	•	206	219	-10	4	-	319	-306	9	5	-	215	192
.03	167	7	29 4	-	•	412	-438		2	•	362	354	7	4	•	452	-456	-	5	-	346 -	348
123	129	7	-	-		242	247	•	2	•	181	183	7	4	-	161	157	•	5	-	422 -	402
130	137	7	35 -2	-	9	573	-577	10	2	•	395	414	9	4	•	462	-429	10	5	-	259 -	280
1.27	131	-	1- 81	1 3		156	175	12	2	•	225	231	1	4	-	368	-397	H	5	•	144 -	178
27	164	1	88	1 3	9	485	-469	13	2	•	224	-190	7	4	•	503	-535	13	5	-	175 -	154
1. 27	185	1	59 2	-	3	585	119-	14	2	•	146	146	7	4	-	3	86	15	5	-	- 76	100
127	129	1	86 4	-	9	636	-622	-13	•	•	219	205	•	4	-	140	135	-17		-	195	188
1.5	2	T	82 5	-	9	82	72	-12	•		212	224	2	4	-	140	127	-15		-	166	169
1.27	112	T	05	-	9	153	-139	7	-	•	236	235		4	-	96	-101	-14		-	92	68-
150	215		10 1	-	•	102	-102	7	-	-	393	405	4	4	-	398	386	-13		-	160	169
323	630	9	33 8	1 3	•	78	-87	9	•	•	192	-165	•	4	-	194	-205	-11		•	8	63
350	295		92 92	1 1	•	163	-158	7	•	•	611	727	9	4	-	342	343	-10	9	-	234 -	222
200	73	1	99 12	-	9	113	88	ę	•	-	484	-448		4	•	507	520	-		-	325 -	334
100	179	1	88 13	-	•	125	-140	Ŷ	•	•	457	454	6	4	-	251	260	9	9	-	389 -	390
100	137	1	41 14	-	•	170	194	1	•	•	373	-407	10	4	•	619	633	Ŷ		-	192 -	205
15	225	3	18 16	-	•	235	224	7	•	•	658	672	11	4	-	185	189	1		•	195 -	176
1000	533	5	13 -14	2	9	151	-130	-	-		388	421	12	4	-	174	182	7		-	197 -	207
22	329	3	60 -13	2		364	-376	7	•	•	151	137	14	4	-	135	114	7	9	-	468 -	461
37	772	1	71 -12	2	9	288	-293	•	•	•	188	-203	-14	5	•	170	-171	7	9	•	241 -	268
-	752	1	23 -11	2	9	167	-183	4	•	•	346	318	-13	5	-	132	122	•		-	314 -	309
14	373		80 -10	2	•	307	-317	2	•	•	212	-221	-12	5	•	107	-100	-	9	•	431 -	431
-	118	1	9	2	3	412	-366	•	•	•	87	-84	-11	5	3	239	222	e	9	•	536 -	555
-	95	T	86 -7	2	e	246	231	4	•	•	207	-180	î	5	•	304	336	4	9	•	94	131

4

A96

				1 BI			1	1.0	1	0.64	1223	100	19.19	34	200	105		OAC.	1	i.	
		1	2	348		0.08	100	0.41	111	91.4	18	10.00	7.57.1	187	281	115		(DEU)	2.664.0	-	
					114				1	7	M	-	1	5	e	n					
									1	-14	0	ē	ù i	÷.	ė	in					
							-	- 2		nų. L	p-	1		2	7	8-		-			
						125-	20	-2.20	1802 -	TAF	-038	127-	1	14018	-123	-338	- ver	IUDM			
	1					150	CALL	A The	200	22.7	629	122	100	441	178	306	TARA	Maint			
									e e	9	~	m	ė	4.4	1	ei	6				
						-9		18	6. (1	9	ÈŊ	15		à.j	1	m.		6			
					2	11		1	101	2	0	6	1.2	5.3	a	R.	1				
NºE -			1 2 2			143		85A	VC		192	-330	310	1000	330	-673	TONG				12.12
	100		100			12.0	219	TEA	22	1	482	201	202		212	659	TORD				
	2							~1	11	. /	4	14	in.	ł	5	-	- 5	1	-		
			- F	1.1		0	и	10	ы		4	22	in		-	'n	-		7		
		9		17	5× 1		12	11-4	0	1	1	14	E-	-	1	-			E NON		
	392	-158	202	1.61	1911	1.40	845	010	SOF	- State	22.20	1.13	132	-200	300	-900	IONG.		NOLOES		
414		193	323	122	077	201	220	324	292	2440	E AP	PAT	1236	2.82	1000	100.	1050		CONSC!		
	m			1		- 1	riș.	m	19	1	-	-	ñ	P		4	14		sneu		
		-	-	17	1.5	-)	4	-	in	-	9	7	-	C	1	5	14		11		
	1	2	7	1	101-	2.1	1	121	-13	-10	1.1	-14	-16	YY			M		DET AL		
	-100	201	1225	TAM	1200		116	102	136	100	1.1.8.6	194	-302	PRS-	100-		IOBC		CUTCON		
	26	200	101	515	121	1164	100	08	1242	12.00	- NA	TOT	258	281	1240		050		CINI A		

OBSER

-	OFC	139	138	190	146	111	101	162	171	166	101	99	121	119	110	130	145	112	122	103	136	*	-98	130	129	222	395	247	350	225	F	139	471	90	559	369	257
PAGE	10	1 9	2	5 -	- 22	1 2	2	2	8	1 82	=	8	8	12 -	12 -	- 61	1 9	- 42	13 -	15 -	2	60	15	- 98	2	1	16	5	69	02	23	36	24 -	29-1	86	85 -	50
	101	3	a	-	-	Ħ	=	a	2	=	=	H	=	3	=	3	3	-	-	-	-	F	-	-	-	2	ñ	ñ	ñ	3		-	4	9	ŝ	ē	2
	-	9	•	•	e		•	e	•	•	e		•				•	•	•	•				•	4	4	4	4	4	4	4	4	4	4	4	4	4
	*	15	15	5	15	16	16	16	16	16	16	16	11	11	17	11	11	18	18	18	18	19	19	19	•	•	•	•	•	-	•	•	•	2	•	-	•
		•	9	4	9	Ŷ	Ŷ	ĩ	7	~	~	80	Ŷ	•	4	5	-	7	Ŷ	1	•	7	1	-	-16	-14	-12	7	٦	٣	7	7	~	4	•	80	9
	10FC	101	-144	-143	-198	155	-184	-249	-127	-213	-154	-184	-218	-178	-276	-153	-241	133	-140	154	118	-124	155	119	119	181	227	146	279	186	131	162	193	-126	137	-176	-223
	1070	100	129	166	205	156	184	258	133	204	148	196	206	172	284	142	259	114	125	161	138	125	159	118	124	189	228	153	293	173	128	162	193	138	139	176	217
	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	e	m
	M	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	14	14	14	14	14	14	14	14	14	14	14	4	14	15	15	15
	æ	5	9	8	9	-12	ĩ	7	۴	٣	1	ĩ	7	7	•	2	4	5		-	•	-13	9-	7	9	Ŷ	7	7	7	•	-		•		-14	1	7
	10FC	228	-298	-319	-243	-136	-143	-135	-128	-214	-228	-204	-74	-239	-336	-243	-348	18-	154	302	229	-127	211	257	163	100	267	324	190	16	272	230	179	101	170	179	-215
	1010	230	290	311	254	137	125	115	114	205	214	232	123	235	324	236	342	93	172	273	241	132	224	262	146	109	255	334	183	111	286	208	183	123	164	164	201
5	-	•	-	-	-	-	-	-	-	•	•	•	•	•	-	•	•	•	-	•	-	-	-	-	•	•	•	•	•	•	•	•	•	•	e	3	e
	-	9	2	2	9	10	9	2	9	10	9	10	11	11	=	-	=	11	=	=	=	=	=	=	11	12	12	12	12	12	12	12	12	12	12	12	12
FOR	=	9	7	-	•	4	•		-	•	10	12	-13	11-	1		9	7	•	•	-		•	=	13	-12	01-	7	9	s	1	?	7	•	-	9	4
ACTORS	10FC	-849	-130	-266	-160	-176	-150	132	117	-124	-106	-133	-136	-106	-167	-310	-290	345	-237	454	-184	419	415	412	228	141	162	183	135	140	254	278	118	130	143	196	-295
	1010	818	140	263	164	168	152	123	104	102	119	139	126	109	175	321	303	358	232	439	174	422	391	412	210	152	129	200	119	148	238	300	106	131	151	216	311
UCT	-	•			-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	•	•	-	•	-	-	-	-	•	3	3
STR		•				-	-		-																		•	•	•	10	2	2	9	2	9	2	2
ATED	-	•	4	-		-	-	13	19	-16	-14	-12	7	97-	19	7		1	7	1	7			-		-	•	H	13	-12	19-	7	1	9	5	1	ñ
CALCUL	IOFC	YOC-	100	-282	243	-128	102	-206	-172	1	149	194	317		100	362	633	198	909	318	-218	151	-162	1	137	159	96	56	83	69	-267	-124	109	451	120	-511	-590
-	ONO	101	-	267	245	141	110	214	170	3	143	178	327	432	116	354	630	1116	630	314	218	170	133	122	1	160	115	108	87	8	246	152	128	439	113	202	009
8	-																								-	-	-	-	-	-	-	-	-	-	-	3	3

A97

101 101 101 101 101 101 101 101 101 101	1050
1111 100 100 100 100 100 100 100 100 10	1080
1	54 C
A CONTRACTOR CONTRACTOR	M
	22
AAL- BRI- BRI- BRI- BRI- BRI- BRI- BRI- BRI	TOLC
100 100 100 100 100 100 100	10100
www.www.www.www.ww	4
100000000000000000000000000000000000000	¥
174747952000	=
1228 1228 1228 1228 1228 1228 1228 1228	10kC
2011 2012 2012 2012 2012 2012 2012 2012	1010
	5 m
11122222222222	MA
ALLESS ANANALA	H (1)
-100 -100 -100 -100 -100 -100 -100 -100	TORC
1100 1100 1128 1128 1128 1128 1128 1128	1080
	L BOS
	N SIL
STRAGGAAAAA	CRIMI B
-118 -138 -138 -138 -138 -138 -138 -138	TOKE
COE COE COE COE COE COE COE COE COE COE	1010

																		;																				
	-	10FC	ş	175	-100	427	297	315	193	141	127	112	125	210	-140	348	176	282	133	245	302	218	-183	282	-142	-140	-127	-231	-248	-136	-126	-95	-102	-151	-174	-240	98-	
	PAGE	010	85	161	68	403	310	316	197	121	129	109	119	199	125	352	184	268	143	251	278	235	197	265	160	127	131	198	250	H	113	10	113	137	171	220	93	
Othere III L Lore L Lore <thl lore<="" th=""> <thl lore<="" th=""> <thl lo<="" td=""><td></td><td>3</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td></td><td>4</td><td>4</td><td>4</td><td></td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>•</td></thl></thl></thl>		3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		4	4	4		4	4	4	4	4	4	4	4	4	4	4	•
200 1000 1000 1 4 1000 1000 1 4 1000 1000 1 4 1000		× _	••	80			-	-	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	2	2	2	
One II L Ion Ion <td></td> <td>•</td> <td>7</td> <td>•</td> <td>-10</td> <td>2</td> <td>4</td> <td>•</td> <td>-</td> <td>91</td> <td>12</td> <td>-15</td> <td>-13</td> <td>Ŧ</td> <td>97-</td> <td>ĩ</td> <td>7</td> <td>Ŷ</td> <td>r</td> <td>1</td> <td>7</td> <td>•</td> <td>7</td> <td>- 3</td> <td>•</td> <td>4</td> <td>•</td> <td></td> <td>•</td> <td>=</td> <td>12</td> <td>13</td> <td>14</td> <td>9</td> <td>۴</td> <td>7</td> <td>Ŷ</td> <td></td>		•	7	•	-10	2	4	•	-	91	12	-15	-13	Ŧ	97-	ĩ	7	Ŷ	r	1	7	•	7	- 3	•	4	•		•	=	12	13	14	9	۴	7	Ŷ	
298 - 274 5 2 1 19 100 <t< td=""><td></td><td>SPC SPC</td><td>174</td><td>167</td><td>939</td><td>66</td><td>184</td><td>304</td><td>116</td><td>347</td><td>-92</td><td>211</td><td>200</td><td>-76</td><td>163</td><td>105</td><td>147</td><td>187</td><td>124</td><td>437</td><td>418</td><td>316</td><td>140</td><td>83</td><td>231</td><td>111</td><td>426</td><td>244</td><td>429</td><td>351</td><td>142</td><td>111</td><td>119</td><td>153</td><td>232</td><td>466</td><td>404</td><td></td></t<>		SPC SPC	174	167	939	66	184	304	116	347	-92	211	200	-76	163	105	147	187	124	437	418	316	140	83	231	111	426	244	429	351	142	111	119	153	232	466	404	
298 - 274 5 2 4 19 185 -1 4 611 91 -3 6 4 298 - 274 5 2 4 19 185 -1 4 611 91 -3 6 4 10 286 - 274 5 2 4 19 185 -1 4 611 91 -3 6 4 10 286 - 274 13 2 4 13 -1 4 611 91 -3 6 4 10 -3 6 4 10 -3 6 4 10 -3 6 4 10 -3 6 4 10 -3 6 4 10 -4 4 10 -4 4 10 -3 6 4 10 -4 4 10 -4 4 10 -4 4 10 -4 4 10 -4 10 -4 10 -4 10 -4 10 -4 10 -4 10 -4 10		N N		9		9	5		1	9	4		0	4	6	1 1	-	=	9	9	8	33	1	86	2	35 -	23 -	33 -	23	12	5	22	3	13-	4	89	- 11	
1000 1000 1010 <th< td=""><td></td><td>10</td><td>16</td><td>16</td><td>33</td><td>3</td><td>16</td><td>28</td><td>1</td><td>3</td><td>-</td><td>5</td><td>2</td><td>H</td><td>H</td><td>ä</td><td>=</td><td>=</td><td>1</td><td>4</td><td>ñ</td><td>ē</td><td>R</td><td>2</td><td>2</td><td>-</td><td>4</td><td>2</td><td>4</td><td>e</td><td>-</td><td>-</td><td>-</td><td>-</td><td>2</td><td>4</td><td>e</td><td></td></th<>		10	16	16	33	3	16	28	1	3	-	5	2	H	H	ä	=	=	1	4	ñ	ē	R	2	2	-	4	2	4	e	-	-	-	-	2	4	e	
1000 1000 <th< td=""><td></td><td>-</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>*</td><td>4</td><td>-</td><td></td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>-</td><td>4</td><td>4</td><td>1</td><td>4</td><td>4</td><td>'</td></th<>		-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	*	4	-		4	4	4	4	4	4	-	4	4	1	4	4	'
200 10000 1000 1000		M	9	9	9	9	9		9	9	9	9	9	9	9	9	-	R	-	-	P	P	-	-	-	-	-	F	-	M	5	F	-	-	-			•
2000 1000 <th< td=""><td></td><td></td><td>ĩ</td><td>-</td><td>5</td><td>2</td><td></td><td>1</td><td>-</td><td>9</td><td>-</td><td></td><td>9</td><td>=</td><td>12</td><td>13</td><td>-13</td><td>Ŧ</td><td>97</td><td>ĩ</td><td>1</td><td>î</td><td>1</td><td>ĩ</td><td>-6</td><td>-</td><td>E</td><td>5</td><td>1-</td><td></td><td>9</td><td>=</td><td>-14</td><td>-12</td><td>7</td><td>٣</td><td>Ÿ</td><td>'</td></th<>			ĩ	-	5	2		1	-	9	-		9	=	12	13	-13	Ŧ	97	ĩ	1	î	1	ĩ	-6	-	E	5	1-		9	=	-14	-12	7	٣	Ÿ	'
1000 1000		OFC	591	113	484	218	244	-167	-185	92	230	-141	-309	205	-308	251	-111-	-299	611-	-268	-151	-116	-156	-147	-109	126	145	154	-112	-127	-139	-295	-120	-386	611	-213	285	
1000 1000		20	611	122	472	212	223	135	181	125	212	135	311	218	288	232	199	296	143	262	139	108	155	146	129	115	174	133	125	123	135	285	110	367	8	206	205	
1000 1000 <th< td=""><td></td><td>1</td><td>4</td><td>-</td><td>4</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>)</td></th<>		1	4	-	4	-	-	-	-	-	-	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4)
IOP IOP IR LIOP IOP IR <thl< td=""><td>2</td><td>×.</td><td>4</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>5</td><td>5</td><td>5</td><td>5</td><td>-</td><td>5</td><td>5</td><td>5</td><td>-</td><td>5</td><td>5</td><td>5</td><td>5</td><td></td><td>9</td><td></td><td>9</td><td>9</td><td></td><td></td><td></td><td>4</td><td></td></thl<>	2	×.	4	-	-	-	-	-	-	-		-	-	-	-	5	5	5	5	-	5	5	5	-	5	5	5	5		9		9	9				4	
1000 1000 1000 1000 1000 1000 1000 298 -214 5 2 4 113 -124 298 -216 5 2 4 113 -124 298 -216 5 2 4 113 -124 298 -216 5 2 4 113 -124 295 -215 1 13 2 4 114 110 103 113 2 4 114 -114 111 113 2 4 114 -114 14 111 113 2 4 114 -114 14 111 113 2 4 114 -114 14 111 113 2 4 114 -114 14 111 113 2 4 114 -114 14 111 113 114 3 4 114 -114 111 113 114 3 4 104 -126 111 113 114 3 114 114 114 111 113 114 114 <		=	7	-	-			2	2	1	19	1	7	r	1	ĩ	7	7	•	2	4	•	9	-	•	9	12	14	-	-14	-12	97-	ĩ	7	7	۴	"	
1000 1000	1085	2	8	36	13	5		42		35	85	1	35	83		123	22	131	126	359	212	250	165	138	85	179	\$	166	151	101	143	128	106	188	116	482	200	
1000 1000 1000 1000 1000 296 -274 5 -2 5 -2 296 -274 5 -2 5 -2 17 296 -274 5 -2 5 2 17 17 291 -255 -6 -2 5 2 17 17 291 -174 -16 -17 -17 -17 17 17 291 -176 -17 -17 -17 -17 17 17 291 -176 -17 -17 -17 -17 17 17 17 291 -17 -17 -17 -17 17 17 17 17 291 -17 -17 -17 17 17 17 17 17 17 291 -17 -17 -17 17 17 17 17 17 291 -17 -17 17 17 17 17 17 17 17 17	SAC.	9		1	1	1	1	1	1	1	1	1	Ţ	1	1	T	1-5	T	-	1		1	-	-	1	-	~	9	-	-	-	-	-	-	-			
1000 1000	11.4	IOFO	179		36		52		F	1	-		104	26	18	67	142	39	16	R	20	28	15	13	-	20	-	115	15	12	11	I	12	19	E	42		
	RU	-	4	-	1.4	-	-	-	1	-	-	-	-	-	-	4	4	4	4	4	4	-	-	4	4	-	4	-	4		-		4	4	4	4	4	ļ
	120-61		•				• •							-	-	-	•	-	•	-	•	-	-	-	-	-	-	-	•	-	101	-	161	-	4	4	4	
	77.0 5	-	•				- 5	25	24	19		1	19	4	1	7	2	7	5	2	-	4			-	0	9	14	-16	18		17	-15	5	9	ĩ		•
	I CELTA	OFC	444	225	036	202	007			174	-	18	Ice		268	376	427	356	580	275	222	129	86	-159	104	225	108	-	111	322	708	366	185	-359	297	101-	YOY	
	12 12	2		2.5			5 :		8 :	2 2		3 5	22	1		1	25	99	- 16	- 19	-	- 95	10	5	28	-	12	9	E	-	ar.	80	26	133	714	1	1	
	V S	9	AU.	-										2	2				-		1	2			2	-	-		1	-		-		-		4	-	

URE FAC	URE FAC
-	H JI
53 -3	153 -3
85 -1	85 -1
98 1	-98 1
77 3	177 3
82 7	182 7
6 60	6 601
52 11	152 11
43 13	143 13
73 15	173 15
41 -14	241 -14
42 -10	142 -10
6- 04	140 -9
47 -8	147 -8
42 -7	142 -7
9- 00	100 -6
13 4	213 -4
52 -3	152 , -3
07 -2	107 -2
96	0 96-
85 1	185 1
43	143
12 3	112 3
13 4	113 4
31 5	131 5
24	124
24 8	124 8
60 10	160 10
26 11	126 11
25 12	125 12
09 14	109 14
28 -16	128 -16
23 -14	123 -14
31 -13	131 -13
125 -12	225 -13
43 -10	71 /11
60	443 -10

		ŝ	1	28	12	00	a	30	1 PC	(0)
				0		T		1	10	-
	121	「市」	318	310	COA	08	191	32	IQAO	PAG
		87	2-	104	9è	5	ġ.	q.	ter .	
	24		99	67	Ġ)	-	08	00	50	
	DI	00	čie	2	11	-	0	17		
100-		-110	2014	184	00	328	1.61	1.1.0	IGEC	
		医器	368	182	100	328	166	163	IONO	
	P		ţ,	ţ.	÷	5	2	10	4	
a)		ē,	9	Q,	9	e.	ø	a,	34	
	01	61	2	in .	19	1	AN T	7	-	
	12	PV.	2	22	00		-		4	
4	i.a	110	A N	20	12	BA-	100	2	105	
212	132	183	122	CXX.	222	274	135	613	10100	
51	6	p-	-	\$>	÷	ġ.	-	÷	For	~
÷.		ş.,	91	÷.	-	÷	-	6	M	
2	14-	Ċ,	ĝ	~	-	-	0	-	100	SIGN 2
164	EIL	-100	1110	-148	-101-	tag-	-110	182	1064	AVCTOR
	TIL	129	FALL	201	-98	1245	ELE	1110	IONO	2.807
ġ.		1	-	10-	2	21	5-	Þ	10	196
		1-1	11	ьż	14	19	17	15	34	113
	-18	Ci.	21	01	10	-	67	-		DETAJ
124	477-	100	1023	Two.	-356	-264	1999-	1275-	ICHC	CALCO
180	126	120	123	114	No.	285	103	2008	1080	UNA C

When the second second and the second s

.

E 10	10FC	ş	-59	-92	-156	-146	-140	-195	-433	-315	-313	-170	-124	130	215	119	141	122	149	278	119	445	523	339	190	148	65	192	-130	141	-257	132	-221	-102	-183	-202	-130
PAG	010	121	86	87	149	132	153	207	401	295	324	174	119	154	224	146	125	113	147	286	123	436	487	338	169	141	82	183	129	140	269	124	175	115	189	187	108
	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	•	•	•	•	•	•	•	•	•	•	•	9	•		•
	*	•	•	•	•	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	•	5	-	5	•	5	5	5	5	5	5	5	5	5	•		•
			-	-	12	1	î	-	r	1	ĩ	?	7	•	L	1	13	-10	9	9	5	1	7	-	T	0	10-	•	4	-	9	L		2	ĩ	7'	î
	OFC	100	176	163	56	-128	136	-188	139	-246	-387	143	-163	-183	-137	-127	-166	138	-213	102	-188	171	-121	186	253	125	263	144	104	73	128	115	134	135	263	318	-116
	010	103	178	144	101	140	130	185	119	253	396	455	160	195	133	137	155	119	234	119	180	154	133	204	262	129	255	148	119	101	118	123	142	148	262	325	86
	3	•													•						•	9			9	•	9	9	9	•	9	•	9	•	•	•	9
		-			-		-	-	-	5	5	5	-	-	-	-	2	2	2	2	2	-	-	-	2	2	2	2	2	2	2	•	•	•	•	•	3
	-	-	1	9	-	1	1	-	1	1	in	-	-44	5	-	-	-	9	r	1		-	-	0	2	•	4	\$	9	•	11	-12	-10	ę	9	1	7
	1070	164		136	781-	150	-	187	202	168	115	110	135	112	113	-150	-135	-141	-164	-187	-168	-115	161	172	196	-106	-142	-137	101	-192	-249	153	86	351	459	269	151
	1010	140		100	100			100	103	191	122	15	100	=		138	148	160	174	101	167	140	1	1	200	123	139	142	110	203	261	125	123	357	457	268	125
-	-		•	-	-															-					5	-	5					9	9	9	9	9	9
-	-		::	::	1	1:	1:	::	1:	10	::		1:	12	:=	12	15	11	11		1	11	: :	15	15	14	16	14			-	0			•	0	0
POR			-			2	•	••	-			-	19	1	1			1	1	1	17	1	1	1		-143	-14c	1	-24	-10	1	4	-		2	4	4
CTORS	OFC	-	R :			201		101			101	121		851-		196	144	144	1 2	146	1 28			128	176	114		416	202	147	145	120	183	-12	-206	-260	-186
IRE PA	010	-			2	29				177				222							1001	2:	1	143			206	200		32	Ine	182	100	165	100	268	169
ES	-		•	•	••	••	~	•	•	•	•	•	••	•	•	•	•	•	•	•	•	••	•	•		-			•								
Ĩ	-																		-	2:	2:	2 :	2:	3 5	25	2 5	25	2:	2:	25	2:	12	1	15	:=	:=	:=
	Ba			=	-	7	7'	1	1	1			NUN		•	-	• •	2:	1.		2.	° '	7	7 -	1 4	-	• •	10		Da		27		100	• -		
CALCULA	IOPC		225	258	262	-201	112	192-	222	-232	9	*	01Z-	-211	-12	-312		-	-120	-335	092-	086-	-271	61	007-	-332				200				000		147	
	010		230	244	272	170	125	259	232	214	142	115	195	206	239	324	201	11	112	310	467	380	262	4	202		201	2:	13	113		667		916		20	
8	1		5	5	5	5	5	5	5	-	-	-	-	n	-	-	-	-	5	n	-	-	-	-	••	••	•	•	••	~	••	•	••	~ "	•	~~	•••

	-18.	17 88-1	-169	1691	80-	215	205	186	TOLC	10
	202	80	TEI	340	102	210	163	186	1050	AVC
			24	ri i	19	i'le	ru.	PH.	4	
	5	÷.	ъ×	ţ,	94	*	2	*	h¢	
4	0	1	17	Ť	1	00	-10	S.I.s.	24	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.10	EEX-	201-	28	ERS-	101	-522	175	TOLC	
273			128	08	292	4P	280	538	TONO	
	14	2	17H	Ċ4	79	14	ni.	en.	54	
	R.		1-2	12	19	12	19	22	- 26	
	h-1	1	2	2	7	9-	7-		10	
120	593	121	521	212	-351	-118	-526	TEd-	TOAC	
122	122	284	108	2007	276	110	525	LEA	1040	
		Γ¥.	rii.	Г¥.	104	P4	in .	ni.	4	14
	0	0	0	0	0	0	0	0	34	-
1.6	13	11	10	ł	-	I	1-	R	8	BOL 5
-143	EMI-	-123	001-	193	111	28-	28	123	TOMC	AVCIOU
1.43	RE1	120	98	DTI	125	101	100	194	ONOL	INC
-		ų,	2	*	*	-	-	-	Fe	200
		Ŀ	24	1	19	2	M	12	×	31
-1	12	-	7	9	-	-	41-	-	-	IVLED
101	d.A.I	SAL	122	154	-129	1 dE-	120-	-521	TOMC	CALCU
100	133	TTR	112	198	108	326	428	EAS	1010	Carly C

I The second strangers and presented as a submitted as a submitted as a submitted as a submitted as a submitted

E	Alle	CALCUI	ATEO	Es	LOC1	URE	FAG	TORS	FOR	1.	-											PAG	10
1	0101	1070	Ba	*	1	101	0 10	PPC		-	1	010	1070		-	3	010	10FC		*	3	010	IOFC
		1		1	-	-				:		140	144	-		•	103	100	9	•		121	-92
5	230	225	•		-	2			100	::	•			1			178	176	64-	•		8	-59
5	244	258	=	0	-		-	211		::			136	-	-		144	163	•	•	•	81	-92
5	272	262	13	•	5	12	5		7:	1:	•		701	•	-		101	6	12	•		149	-156
5	170	-207	-13	•	5		5	102	2	1	•	5		1			140	-128	Ŧ	4		132	-146
5	3125	115	-10	•	5	2	0	6	7	1	•	1		1	•		2	136	7	4		153	-140
5	259	-261	-	•	5	16	-	121		1	•		-	1			Sel .	-188	-	4		207	-195
5	232	225	1	•	5	16	-	156	2	1	•••	102	101	1	•			130	5	4		401	-433
5	214	-232		•	~	22	-	213		1	••		107	17	1		253	-246	1	4		295	-315
5	142	1 125	•	0	59	22	-	223	•	12	~		201	1	•			-387	1	4		324	-313
-	3115	96-	63	6	5	20	2	161		12	~	122	1	1	•			244	1	-		174	-170
5	195	-210	12		0	52	-	275	7	13	5	16	21	•••	1				17	-		119	-124
5	206	1-211	-103		5	23	1 9	232	1	E	•	109	6		••			-183		4		154	130
5	239	-233	Ser	5	-	1 16	1	-158	-	2	-		112	••	••			137		4		224	215
-	324	-312	Lan	5	5		- 92	-153	9	2	-	=	113	-	- 1			101		-		146	119
	100	1-14		5	-	1 1	33	126	3	13	5	138	-120	7		•		121	::	-		195	141
	11	86- 1	2	5	-	1 5	2	166	S	13	5	148	-135	1		•						15	122
1	-	0 -126	12	1.1	-	1 5	66	144	-	14	5	160	-141	î	2	•		2	2.	••			140
100		- 113	-12	H	6	-	35	-158	5	14	5	174	-164	r	2	•	234	-213	•	•		100	
		A - 266	-10		-	1 5	15	-146	-3	14	5	191	-187	1	2	•	611	102	•	•	•	007	
		200		1	-	-	2	138	7	14	5	167	-168	-	2	•	180	-188	r	•	•	12	
			-			-	-	116	- 2	14	•	140	-115		2	9	154	171	1	-	•	97	-
	2:	117- 7	1.00						4	5	-	156	161	7	2	9	133	-121	7	5	•	487	523
10							::	128		1=		101	172	01-	32	9	204	186	7	5	•	338	339
	20	-200						24	1	12		200	196	2	25	•	262	253	7	5	•	169	190
20	5	-332	9.10				2 4	114		14		123	-106		-	9	129	125	•	5	•	141	148
1. 1.		241 Z	1				3		-	16	5	139	-142	4	2	9	255	263	-	•	•	82	65
9.4	1						2 4	116		1		142	-137	5	2	9	146	144	•	5	•	183	192
R. N	EI .	138 138	Roll			~			-			110	101	9	2	9	119	104	4	5	•	129	-130
10 · ·	11	R/1 E						147	1	-	14	203	-192		2	9	101	13	•	5	•	140	141
0	2 14	90 138					10				2	196	-249	II	2	9	118	1 128	9	5	•	269	-257
15-1	2 23	D92 64				~						125	153	-12	-	9	12	1115	-	5	9	124	132
	5	16- 60	7				10		1			123	8	-10		9	142	134		5	9	175	-221
	-	10 430				~	10	173				357	351	7	-	9	14	3 135	10	5	9	115	-102
	2	107 7.										457	459	9		9	26	263	ĩ	•	•	189	-183
	5	167 10				~	-	096-				268	269	1	-	9	32	5 318	7	•	9	187	-202
	~	181 M		2	==	~	39	-186				125	151	7	~	9	8	5 -116	r	•	9	168	-138

		081-	380	80	CIN	202	186	FOLC	10
	28	VE I	199	103	210	103	186	090	EVCI
	de.	έü.	ru.	ń.	(%a	rie.	in .	4	
	62	ţ.	2	2	-	Þ	-	14	
0	1	10	٩	n'	200	-10	121-	201	
	665-	241-	20	-263	101	-521	27/2	IOPC	
		1.28	0.9	265	gup.	580	228	1010	
		í9	ñŧ	ri.	r.	ing.	én l	64	
64	in,	10	11	12	20	11	10	м	
h	ĩ	7	2	7	2	7	0°	10	
20.8	142	112	213	-351	-118	-526	180-	TONC	
534	1982	8.0.1	124	376	130	252	ICA	IOPO	
	ca	17	Ċ4	194	ri.	in,	14	54	14
0	9	á	0	0	0	0	0	м	-
2	12	10	-1	-	-	1	en .	30	TOR
EM1-	-125	-108	195	TTT.	-98	82	123	1010	EVCLOSE
132	120	98	7.10	115	HOI	100	104	1030	1088
	ų.	Þ	2	P	-			E.	enc.
2	2	-	11	M	21	P.I.	12	м	31
15	14	-	0-	8-	10-	-14	in i	H	VIED
144	195	123	134	-129	-361	120-	-521	IOAG	CATCOL
102	ALL.	272	198	168	ARE	92.0	243	010	OWA

2222 2222	የጉጥና		5 6	
	NNNNNNMMMMMMM4444449000	044024444444444444444444444444444444444		

					321	200	192	200	-85).ac	2	
					1	1	Ĵ		0	IC	GE	
					10	101	8	- al	15	IOPC	P.A.	
				÷	a,	ŝ.	91	9	4	t.e		
		Ţ		p.	2-	r.	100	1	-	- 54		
		ĩ		-0	17-	12	8	400-	Gr.	н		
	-300	130	-188	1.10	-158	32	103	130	100	TONC		
		110	193	130	190	101	1998	1148	103	IGNO		
			ġ,	¢,	Q,	~	-	0	01	4		
) - ×	ļ	i-mi	(internet)	-	-	-	-	-	24		
	T	5-	(°	ř	?	3	8		21-	B.		
111	1.98	202	781	100	-120	A81-	-130	-128	-164	IOMC		
1000	20	143	201	20	201	201	131	199	691	1040		
		19	Ċ4	ni.	14	9	14	n	(N)	See.	~	
1	1	1	1	iri Re	12	22	11	11	-	34	-	
	4	Ð-	12	1	84	-10	21-		-	B	S LOB	
101-	-353	E15-	-120	121-	-41	103	IM-	-113	-96	TOAC	PACTOR	
DINE	538	221	88E	1.63	100	CIT.	152	ALL.	801	1040	LINK	
1	n	Ċ4	<i>th</i>	14	n	n	14	-	ine.	4	KBC.	
	/0	10	19	19	19	10	02	-	-	24	2.2	
-	0	12	10-1-1	7	-10	-13	13	11	6	H	LVLED	
2.0%	152	-535	552	-591	112	-501	565	528	552	1010	CALCU	
11.	242	234	222	528	152	310	272	200	330	1010	D VMD	

the second second second second

- Jacob Parks

Appendix 3 General experimental techniques

The infrared spectra was recorded on a Pye Unicam SP2000 spectrometer, in the range 4000-626 cm⁻¹. Nujol and hexachlorobutadiene mulls were made of the compounds and were supported between potassium bromide discs. The spectra were calibrated against the 1603 cm⁻¹ band of polystyrene.

Mass spectra were obtained from MS9 and MS4 spectrometers. Field desorption mass spectra were obtained on a KRATOS MS50 spectrometer operated at 8-kv accelerating voltage with a potential difference of 10 kv between the emitter and extractor plate.

¹H nmr spectra were recorded on a Perkin Elmer R12B and a Bruker WP80.

Uv/vis spectra were recorded using a Pye Unicam SP1800 spectrometer.

X-ray crystallographic data were collected on a Philips PW1100 diffractometer with $Mo-K_{CC}$ radiation.

the second second

1-25

1.222888

- 12月月日本時

000000

11 Sc 14 1

1 DOMESTICA

1101201 007 SP2000 spoct herachlorobythat WEEd supports were children the 10 2964 SDeck room Les . ON A KRATOF NO. Wilcage With emitter and THE RM a Bruker would UV/VI

17835500120808

X-II COLL - of 1.15 001119 Isolation of a Stable Binuclear Copper Complex Containing a Copper-Copper Bonded Unit. X-Ray Structure Determination of {(7,8,15,16,17,18,25,26,33,-34,35,36-Dodecahydrotetrabenzo[e,m,s,a'][1,4,8,11,15,18,22,25]octaazacyclo-octacosine)dicopper} Triperchlorate

> By KRITH P. DANCEY and PETER A. TASKER* (Department of Chemistry, The Polytechnic of North London, Hollowsy, London N7 8DB)

RAYMOND PRICE (I.C.I. Organics Division, Hexagon House, Blackley, Manchester M9 3DA)

and WILLIAM E. HATFIELD* and DOUGLAS C. BROWER Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514)

her also (410). Broomer Segment Courds Courds Singer Courses and The provide some determined of the country descent of the second of the and the second of the state of and the write of out the strong Transaction of the of the strong of

e and the second s and the state of the second the second second with a stand of the second s a start and the second for a second start of the second start of t increasing and provide the second of the branched increased of the best of the second second A server and the server of the

the providence would be provided the second the second

Autation of a Stable Hispelaar Cooper Complex Contained p Competition Dominal Units. N-Ray Simultane Decomptonition of 07,5,51 to 27, 56,25, 25,016 retroit V2,0, 81, 77, 8, 8, 7 [2 a.v. also reader mutual exclass both 45, 61, 61 attentity approximation of contemporary approximation of the second seco

> in the start start and a Conservery (Conservery, a by Filly web w.

A LART LA MARAN a share a star and share and share and share a star and share and share a star and share a star a star a star a and a second sec with the state of the state of

Isolation of a Stable Binuclear Copper Complex Containing a Copper-Copper Bonded Unit. X-Ray Structure Determination of {(7,8,15,16,17,18,25,26,33,-34,35,36-Dodecahydrotetrabenzo[e,m,s,e'][1,4,8,11,15,18,22,25]octaazacyclo-octacosine)dicopper} Triperchlorate

> By KRITE P. DANCEY and PETER A. TASKER* (Department of Chemistry, The Polytechnic of North London, Hollowsy, London N7 8DB)

RAYMOND PRICE (I.C.I. Organics Division, Hanagon House, Blachley, Manchester M9 3DA)

and WILLIAM E. HATFIELD* and DOUGLAS C. BROWER (Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514)

Summery The X-ray crystal structure of the title octa- A HUMBER of disucleating ligands have been used1.5 asamacrocycle with a 39-membered ring shows that it is recently to bring two copper atoms into close proximity. Type 3 Coppers' in the Ca bond multi-copper oxidases.⁸ These copper sites are charac-terized⁶ by an ability to act as two-electron acceptor-donor systems and contain two Ca⁵⁵ ions which are strongly of frozen antiferromagnetically coupled. In most of these model systems the two copper atoms are separated by bridges

J.C.S. C

containin preparatio cu-Cu bo

100 and r 20-5-1 2001

LinaY

1.820

Sec.

FOR TAX !!

SIM 1

3. 1 Sere

1004

and a

XW to

125

Treatme

(1)4 in te copper(II) tion of (1 deposited The prese could hav electron t the anilin co-ordinat the reduc oxidation pair of co possibility determina atoms ha rather the found^e fo neutral g A ma method (yielded magnetis

1248

capable of incorporating a symmetrical copper-copper bonded unit which contains a short Ca-Cu bond [3-445(4) Å]; the compound is paramagnetic with $\mu_{eff} = 1.67 \mu_0$ at 300 K, exhibiting a single line at g = 3.60 in the X-band e.s.r. spectra of solid samples or of frozen acetonitrile solutions (77 K).

The tw symmetry point of to C and

J.C.S. CHEM. COMM., 1980

Bonation of a Stable Bonded Units. T-Ny 36,15,26-Dedecate of the

the street of Chicago and

Containing a Copper-Copper of {(7,8,15,16,17,18,25,26,33,l,4,8,11,15,18,22,25]octariperchlorate

TASKER*

n, Hollowsy, London N7 8DB)

, Manchester M9 3DA)

s C. BROWER spel Hill, North Caroline 27514)

of dinucleating ligands have been used^{1,4} bring two copper atoms into close proximity, ing models for the 'Type 3 Coppers' in the r oxidases.⁸ These copper sites are characan ability to act as two-electron acceptor-denor i contain two Ca²⁺ fees which are strongly metically coupled. In most of these model two copper atoms are separated by bridges

J.C.S. CHEM. COMM., 1980

containing one¹ or more³ atoms. We report here the preparation of a dinuclear complex which contains a direct Cu-Cu bond.

1

(K) (0.1,1)

Treatment of a suspension of the octa-azamacrocycle (1)⁴ in tetrahydrofuran with a methanolic solution of copper(II) perchlorate resulted in almost complete dissolution of (1). After filtration, the green solution slowly deposited green prisms of the title complex, $[Cu_{e}(1)](ClO_{e})_{e}$. The presence of a tricationic complex was unexpected and could have arisen either (i) by the transfer of a single electron to the dicopper centre, (ii) by the loss of one of the anilino-protons from the ligand (a common form of co-ordination for related tetra-asamacrocycles),⁵ (iii) by the reduction of the copper ions and simultaneous monooxidation of the macrocyclic ligand, or (iv) from a bonded pair of copper(11) ions with a reduced ligand. The second possibility can be excluded on the basis of an X-ray structure determination which shows that all four anilino-nitrogen atoms have approximately tetrahedral geometry (Figure), rather than a trigonal planar arrangement which has been found⁴ for the deprotonated anilino-nitrogen atoms in the neutral complexes (2).

A magnetic-moment determination by the Faraday method on a solid sample at room temperature (300 K) yielded = $1.87 \mu_B$, thus confirming the expected paramagnetism of the $[Cu_0(1)]^{0+}$ formulation. The two copper atoms have very similar co-ordination geometries (Table) and the cation has approximate 2-fold symmetry about an axis which passes through the midpoint of the Cu-Cu bond and relates the ligand portion A to C and B to D (see the Figure). The similarity of the

nd-lengths/Å Cu_N(1) Cu_N(2)	1-95(2) 2-18(2)	1-00(2) 2-20(2)	1-91(2) 2-19(3)	1-97(2) 2-16(2)
N(1)-Cu-N(2)	91-8(9)	92-5(7)	93-7(9)	92.2(8)
N(1)-Cu-N(2)*	106-1(7)	96-3(9)	101-2(9)	105-0(8)
N(3)-Cu-N(3)* N(1)-Cu-Cu*	83-5(8) 81-0(6)	80-6(7)	78-7(7)	80-5(6)
N(2)-Cu-Cu*	144-0(5)	131-8(7)	129-0(5)	146-4(6)

^a Denotes an atom in the alternative quarter of the ligand which is co-ordinated to the same Cu atom. ^b Denotes the Cu atom in the other half of the complex.

environments of Cu(1) and Cu(2) and the short bond [2.445(4) Å] between them suggest that the copper atoms should not be assigned the discrete formal oxidation states +1 and +2, but that the single unpaired electron is delocalised over both metal centres, or that the metal centres are identical and the unpaired electron resides on the ligand.

The e.s.r. spectra, at the X-band, of a powdered sample or of a frozen acetonitrile solution (77 K) exhibited one line at g = 2.09 with a peak line width of 30-90 G. These data do not unambiguously support the immediate conclusions from the X-ray structural study that the copper ions are equivalent and that this is a 'type 3A' mixed-valence compound." The single line could arise from exchangenarrowing between sites with life-times which are very short on the e.s.r. time-scale or from inherently narrow lines arising from isotropic, nuclear, hyperfine couplingconstants of the order of 40×10^{-4} cm⁻¹, as estimated from the line width. Such small coupling-constants are known for the 'blue' copper proteins' as well as a variety of typical co-ordination compounds of copper(II).* It is well established that a 4s and 4p orbital admixture in the ground state leads to small, hyperfine coupling-constants and single line e.s.r. spectra. The magnetic susceptibility and e.s.r. data clearly indicate that the formulation of the compound as [Cu,L](ClO,) is correct and the X-ray

Martin B. P. M. and

STREET, Reserved Channel, The

I.C.S. CHEM. COMM., 1980

structural results are most readily interpreted in terms of a copper-copper bond since the Cu-Cu distance is very short¹⁰ for a dinuclear complex and compares with values found in other metal-metal bonded systems.

An E.S.C.A. spectrum was obtained with a PHI 548 spectrometer using a magnesium anode and a precision energy analyser. A single copper *Pays line at 935-6 eV and a 'Pyr-'Pyr separation of 20-3 eV are compelling pieces of evidence for the assignment of equal oxidation states to the two copper ions.

The compound undergoes reduction rapidly in a variety of solvents including tetrahydrofuran-methanol solutions, but is relatively stable in acetonitrile, thus permitting a range of electrochemical and optical studies on a new chemical system.

Crystal data: [Cu₀(1)](ClO₄)₀, C₁₀H₄₀Cl₂Cu₀N₆O₁₀, M = 1010-2, monoclinic, space group Ce, a = 22-577(7), b = 11-016(4), c = 20.909(8) Å, $\beta = 118.96(2)^{\circ}$, U = 4550.0, $Z = 4, \theta$ -range 3-35°, R = 0.080 for 1815 data with $I/\sigma(I) > 3-0$ obtained on a Philips PW1100 diffractometer with Mo-K, radiation (two of the perchlorate ions show extensive disorder).t

We thank the S.R.C. for a studentship (to K. P. D.) and for diffractometer equipment and computing facilities. This work was supported in part by the Office of Naval Research.

(Received, 18th September 1980; Com. 1028.)

† The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

¹D. Earl Fenton and R. L. Lintvodt, J. Am. Chem. Soc., 1978, 100, 6367; A. W. Addison, Isorg. Nucl. Chem. Lett., 1976, 12, 809; David E. Fenton, N. Bresciani-Pahor, M. Calligaris, G. Nardin, and L. Randaccio, J. Chem. Soc., Chem. Commun., 1979, 39; R. R. Gagné and C. L. Spiro, J. Am. Chem. Soc., 1980, 192, 1443. ^{*}K. D. Karlin, D. M. Feller, and L. T. Dipierro, 1979, April ACS Meeting, Hawaii, INOR 205; Chi-Lin O'Young, J. C. Dewan, ^{*}K. D. Karlin, D. M. Feller, and L. T. Dipierro, 1979, April ACS Meeting, Hawaii, INOR 205; Chi-Lin O'Young, J. C. Dewan, ^{*}K. D. Karlin, D. M. Feller, and L. T. Dipierro, 1979, April ACS Meeting, Hawaii, INOR 205; Chi-Lin O'Young, J. C. Dewan, H. R. Lilienthal, and S. J. Lippard, J. Am. Chem. Soc., 1976, 1996, 7291; M. G. B. Drew, M. McCann, and S. M. Nelson, J. Chem. Soc., Chem. Commun., 1979, 481. ^{*}J. A. Fea, Struct. Bonding (Berlin), 1975, 23, 1. ^{*}P. G. Owston, R. Peters, and P. A. Tasker, unpublished work. ^{*}D. St. C. Black, C. H. Bos Vanderzalm, and L. C. H. Wong, Aust. J. Chem., 1979, 32, 2203. ^{*}D. St. C. Black, C. H. Bos Vanderzalm, and L. C. H. Wong, Nucl. Chem. Lett., 1973, 9, 791; K. Henrick and P. A. Tasker, Inorg. Chim. ^{*}D. Losman, L. M. Englehardt, and M. Green, Inorg. Nucl. Chem. Lett., 1973, 9, 791; K. Henrick and P. A. Tasker, Inorg. Chim. Acts, in the press.

Acte, in the press.
*M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247.
*J. R. Wasson, H. W. Richardson, and W. E. Hatfield, Z. Naturforsch., Teil B, 1977, 32, 551.
*J. R. Wasson, H. W. Richardson, and W. E. Hatfield, Z. Naturforsch., Teil B, 1977, 32, 551.
*A. J. Freeman and R. E. Watson, 'Magnetism,' Vol. 11A, eds. G. T. Rado and H. Suhl, Academic Press, New York, 1965, p. 67 fl;
*A. J. Freeman and R. E. Watson, 'Magnetism,' Vol. 11A, eds. G. T. Rado and H. Suhl, Academic Press, New York, 1965, p. 67 fl;
*A. J. Freeman and R. E. Watson, 'Magnetism,' Vol. 11A, eds. G. T. Rado and H. Suhl, Academic Press, New York, 1965, p. 67 fl;
*M. Sharnoff, J. Chem. Phys., 1963, 43, 3383; K. J. Stanley and K. W. H. Stevens, Proc. Phys. Soc., London, 1963, 79, 73.
M. Sharnoff, J. Chem. Phys., 1963, 43, 3383; K. J. Stanley and K. W. H. Stevens, 1975, 26, 2377.

0011-002

longed has be optimally arithmetical and all anothe first interaction O AD ADMINIST CONTRACTOR STATES AND ADDRESS OF A DESCRIPTION OF A DESCRIPT reductors and in this little init of person

have have set from High test (Epc) by Mappenning could supply all table treasure music aspectar the postaries - the second second to the second sec to design in Assagers, planta, and

station harrestatic to be taken where man emission and the score time administration general, is he are ment? So the odd to influe and have been been and been and and a second pull design a disconfiguration part and Manufacture. Solved possibles problems problems coverype in the property off that yield bearings and not more property many balant of equily and of their section are a first state optaring and any Mark managements through the second party with the period of the second the second strain and A requery discovering the the transfer, consists of the adde of the sector of the sector of the line of the line of the sector o 1275.04 1.24

Training of a suspension of the otherspectrum by in months exciting a dire mainly been in the - make an Appane Separate in Nertanov standorm (complete the of (1) give strength the group anythe figures - THE ADDRESS OF ATTACKNESS STORE OF ADDRESS ADDRE 111 years doors your losse The Toppend of Street, and most anything of the PERSONAL PROPERTY AND AND ADDRESS OF ment reconstitutes lies and pepper set is includes an weighter of the maximum bigged, or difference whither prinches the part of the instant selfs and instantions of the principality with this will be that would be that a same

a sublance burner, build, and minerary country burners and a sublance burners in the same good and the the second second

10000 The là Gran Election i while c OT THE OWNER 0-11 title 43.754 1223 410 1'004 Contract of the ALC: N 113.41 Desire Litz-Available in 14.6 23-10 Add to Dele-Trainit 18-1 A Taille Driznia diplace, India Print and in the

amount 1

Dougt T-...... 862 V

1000

166200 2482 NTY - 100

1250

J.C.S. CHEM. COMM., 1980

l data: [Cu_n(1)](ClO_n), C_mH_{an}Cl₂Cu_nN_nO_n, M = monoclinic, space group Cc, a = 22.577(7), 5 -), c = 20.909(8) Å, $\beta = 118.96(2)^{\circ}$, U = 4550.0. θ -range 3-35°, R = 0.060 for 1815 data with 3-0 obtained on a Philips PW1100 diffractometer K, radiation (two of the perchlorate ions show e disorder).

ank the S.R.C. for a studentship (to K. P. D.) and ractometer equipment and computing facilities. rk was supported in part by the Office of Naval

(Received, 18th September 1980; Com. 1028.)

Director of the Cambridge Crystallographic Data Centre, my request should be accompanied by the full literature

A. W. Addison, Inorg. Nucl. Chem. Lett., 1976, 12, 000; daccio, J. Chem. Soc., Chem. Commun., 1979, 39; R. R.

ng, Hawaii, INOR 205; Chi-Lin O'Young, J. C. Dewan, I. G. B. Drew, M. McCann, and S. M. Nelson, J. Chem.

em., 1979, 32, 2203. 973, 9, 791; K. Henrick and P. A. Taaker, Inorg. Chim.

eil B, 1977, 32, 551. and H. Suhl, Academic Press, New York, 1966, p. 67 fi; evens, Proc. Phys. Soc., London, 1963, 79, 73. m., 1975, 28, 2377.

> The supervision of the supervisi tion A life insulations in his ments of destinant stantificant interaction and all in Ann attached 1211/21/10 AGAD FRANCE SINGLE MICHAEL 10 TTTP: US SIG X BINNIE ALT al to file and a second stands and allowed the applications from the device of 11 1-27 of potitive such mobile ministerers " for and "report off he assessed and to drogs ally provide the method of both the products in the second second In this I wild no 2xioning of any with Marby and the field should also be seen as the second (pair) (C dat/ later were speak and out or a catalog damaged a mask solders County her the starting the set Vorth Carclains STallandington houses

> Chinese press and the split providence shall be And appropriate to all the local design of the local division of t - Marine Property and the second - " The second second here and a second

- And the second state of the second states of the

the masses and manage

in the local distance in the Wager Incoments

treat of a set of the set of the set of the set of the

strangement start do to and so they want they are with the second discovery of the second second second here as which of the many second Arms 19 a. H. Vartheasting projected. Include 201, All-Marty A VALUE AND A V in the start of the local part of the state Philipping and an in the second second

many of part the transmission of Taylord Physics, 201 and and or training these designed in the second s the drive the only offering process. These reserves, it on and preventing the plan size of the line parts one dimension of

A Long to serve and a server and a server and a server and a server a ser Considered the root part Family 11. The same part of

a searching country is have all presently arrange that "the --- One property sectors and a work if your disease on the

is the test buries of the minimum. Thick its contractorism in

IN THE OWNERS IN A 181 WORK IN A DOUBLE OF THE OWNER.

the second the second of the pay there are not made and 1.44 A., it also has (igned processory in fragel" in a data

"service on the service of the second service and the second seco IN concerning balance has suffra property difference to the QU in

the second second second second second second send with ing the income of Finishiry and Microsoft / And A By the office line assessment or an end of the second or announce of provides the and the provide the providence of the

on Sources provide a star for the second star in the second second second A The full-spectral sequence sectors rise (8, 6), as if the

No. 1, shows that preside private radiance in

Service of all all provides and a service of the se

and the second of the factor of A to a which we have

20 g are ', at the hart of half out', hard means and he parties of the state of the second second second second All and the providence of the second second

1111, 41, 5444-7518.

Dinucleating Octaaza Macrocyclic Ligands from Simple **Imine Condensations**

Keith P. Dancey, Kim Henrick, Patricia M. Judd, Philip G. Owston, Roger Peters, and Peter A. Tasker*

Department of Chemistry, The Polytechnic of North London Holloway, London N7 8DB, United Kingdom

Anne Dell

Department of Biochemistry, Imperial College London SW7 2AY, United Kingdom

Ralph W. Turner

I.C.I. Pharmaceuticals Division Macclesfield, Cheshire SK10 4TG, United Kingdom Received February 19, 1981

Macrocyclic ligands which are capable of incorporating two metal ions' offer the possibility of studying unusual electronic and chemical properties which depend upon proximity of two metal centers. An advantage of macrocyclic systems for this type of investigation is that variation of ring size or other geometric constraints should allow the separation and disposition of the two metal ions to be controlled in a systematic manner. In this paper we describe a series of such ligands which have been obtained in high yields from simple imine condensation reactions and have been characterized by field desorption mass spectrometry and X-ray structure determination.

We have reported² that under appropriate conditions the dialdehyde 1a can be condensed with a range of diamines 2 to give tetrazza macrocycles 3 with a wide range of ring sizes. These reactions proceed without addition of "metal-ion templates",3 provided that reaction conditions and solvents are selected which allow the free ligands to separate from solution before they can undergo conversion to species which are less soluble or thermodynamically more stable. It was noted,² for example, that on prolonged heating in methanol, 3a is converted to a species of higher relative molecular mass (m_r) . We have now characterized a number of the higher m, materials obtained from condensations under conditions defined in Scheme I and shown them to be an

(1) (a) Groh, S. E. Isr. J. Chem. 1976, 15, 227-307. (b) Fenton, D. E.; Lintvedt, R. L. J. Am. Chem. Sor. 1978, 100, 6367-6372. (c) Fenton, D. E.; Bresciani-Pahor, N.; Calligaria, M.; Nardin, G.; Randaccio, L. J. Chem. Soc., Chem. Commun. 1979, 39-40. (d) Gogné, R. R.; Henling, L. M.; Kiston-macher, T. J. Inorg. Chem. 1968, 19, 1226-1231. (c) Burnett, M. G.; McKen, V.; Nelson, S. M.; Drew, M. G. B. J. Chem. Soc., Chem. Commun. 1990, 829-831. (f) Kahn, O.; Morgentern-Badaran, L: Andiere, I. P. Laha, I. M.; Sullivan, S. A. J. Am. Chem. Soc. 1900, 102, 5936-5938. (g) Coughlin, P. K.; Lippard, S. J.; Martin, A. E.; Bulkowski, J. E. J. Am. Chem. Soc. 1900, 102, 7616-7617.

(2) Owsten, P. G.; Peters, R.; Ramsanney, E.; Tasker, P. A.; Tretter, J. J. Chem. Soc., Chem. Commun 1990, 1218-1220.
(3) (a) Melson., G. A. "Co-ordination Chemistry of Macrosyelic Compounds"; Plenom Press: New York, 1979; Chanter 2. (b) Green, M.; Smith, J.; Tasker, P. A. Inc.g. Chim. Acta 1971, 5, 17-24. (c) Elack, D. St. C.; Bos Vanderzahn, C. H.; Wong, L. C. H. Aust. J. Chem. 1979, 32, 2303-2311 and references therein.

© 1981 American Chemical Society

Communications to the Editor

104

112

Figure 1. Tetraimine Sb, showing the disorder of the hydroxyl groups about the 2-fold axis which passes through carbon atoms C(10). Another crystallographic C_2 axis passes through the midpoints of the C(1)-C(1)bonds. Shaded C and H atoms are in the half of the molecule nearer the viewer.

interesting new class of potentially octadentate macrocycles 5.

These high m, compounds, which were obtained (see Scheme I) from reactions of the diamines 2a-c, are relatively insoluble and involatile, and cryoscopic methods and electron-impact mass spectrometry could not be used to determine their relative molecular masses. However, the samples showed simple field desorption (FD) mass spectra,⁴ giving molecular ions compatible with the [2 + 2] condensation products:⁵ Sa, m/e 584; Sb, m/e 645 (M + 1)+; Sc, m/e 697 (M - 1)*. No fragmentation products were observed in the range m/e 400-800.

FDMS also proved useful in identifying compounds which were present when mixtures of products were obtained from similar condensation reactions. For example, a mixture (ca. 1:4) of the diimine 4 and the tetraimine 6 $[m/e 307 (M + 1)^+$ and m/e 613(M + 1)⁺, respectively] was obtained from the condensation of the trimethylene-bridged dialdehyde 1b and 1,2-diaminoethane (1:1.1, 4 h in 15-cm³ refluxing CHCl₃). These substrates have been used previously,⁶ but under conditions of high dilution, to prepare the diimine 4.

An X-ray structure determination? confirmed the presence of a 30-membered ring in 5b (see Figure 1). The inner great ring has a configuration which effectively creates two "N4" donor sets (from the o-iminoanilino units of a with d and b with c, see Figure 1), in the two halves of the molecule. Such an arrangement would cause close approximation of two metal ions in a dinculcar complex, because the centroids of the two donor sets are separated by only 3.44 A. A similar ligand geometry is found⁶ in a dicopper

(4) Spectra were obtained on a KRATOS MS50 spectrometer, operated (4) Spectra were obtained on a KRA105 MS30 spectrometer, operates at 8-kV accelerating voltage and with a potential difference of 10 kV between the emitter and extractor plate. Spectra, recorded on oscillogram paper, were calibrated with the El spectrum of Fomblin oil (Henning, J.; Le*, H. Vacuum 1977, 27, 171-175). High-temperature activated emitters were loaded by forcing into either a solution (Se and 4/6) or a suspension (Sa.h.Sa) in CH₂Cl₂. Emitter heating currents in the range 15-21 mA were required to desorb these

(5) The hydrogenetic octanza macrocycle (8, $R = (CH_3)_3$, n = 2) and a related N.O." system (with phenomo groups replacing the anilino units: Lindoy, L. F. et al., unpublished results) were also identified by FDMS measurements [m/e 592 (M)* and 597 (M + 1)*, respectively]. (6) Black, D. St. C.; Hartshorn, A. J.; Herner, M.; Hunig, S. Aust. J.

Chem. 1977, 30, 2493-2514.

J. Am. Chem. Soc., Vol. 103, No. 16, 1981 4953

Figure 2. The 20-membered B-N heterocycle 7.

complex of the smaller ring 5a in which the two copper ions are forced to adopt a very short Cu-Cu bond [2.445 (5) Å].

A crystallographic 2-fold axis passes through the carbon atoms having the hydroxyl substituents, and the oxygen atoms are statistically disordered with half-occupancies of the sites shown in Figure 1. Consequently, the structure determination does not allow a distinction to be made between meso and racemic isomeric forms for **5b**.

We conclude that ease of isolation of the metal-free macrocycles 5 is dependent on the presence of strong intramolecular hydrogen bonding in the o-iminoanilino units. The geometry of the o-imincanilino unit in Sb is very similar to that found² in the related tetraaza macrocycles 3. Reactions of 2,6-diacetylpyridine with certain diamines have also been observed' to give large ring ligands by [2 + 2] condensations,²⁶ but for these systems the new chelate rings are of the α -diimine type and do not have the facility to form intromolecular H bonds. In these cases the free ligands have not been isolated, but an extensive range of mono- and binuclear complexes have been prepared' by carrying out transmetalation reactions on complexes prepared in the presence of certain metal ion templates.

The 28-membered ring structure for 5a was indirectly confirmed by x-ray structure analysis¹⁰ of an unusual borane adduct (7) which was obtained as an intermediate in the reduction with borane/THF to give the corresponding octaamine 8. Crystals of 7 which

separated from a suspension of Sa in borane/THF gave a sharp infrared absorption band s! 2510 cm⁻¹, a region in wheih B-H stretching modes are known to occur. They were found to be surprisingly stable to hydrolysis, and X-ray diffraction data were

(8) Dancey, K. P.; Tasker, P. A.; Price, R.; Hatfield, W. E.; Bromer, D.

C. J. Chem. Soc., Chem. Commun. 1900, 1248-1250. (9) (a) Drew, M. G. B.; Knon, C. C.; Nelson, S. M. J. Chem. Soc., Dalton Trans. 1900, 942-948. (b) Drew, M. G. B.; McFall, S. G.; Nelson, S. M.;

(7) Crystal data for Sb: 7,8,9,16,17,18,19,26,27,28,35,36,37,38-tetradecahydro-8,27-dihydronytetrabenz[e,A,e^{-1} -1,4,8,12,16,19,23,27-octaa-M, 644.5; orthorhombic: space group Fddd; a = 33.076 (3), b = 17.459 (2), c = 11.757 (3) Å; U = 6789.3 Å³; Z = 8, D = 1.26 cm (100 Ke) = 0.45 cm⁻¹; 2047 intensities were recorded on a "billing PW1100 four-circle diffractometer, and merged to give 701 unique observed reflection $\{F > 6\sigma(F)\}$. The residuals are R = 0.060 and R = 0.069. The structure was solved by direct methods and refined by the full-metrix lenst-squares method.

Waters, C. P. J. Chem. Rez., Synap. 1979, 16-17. (c) Drew, M. G. B.; McCann, M.; J. Chem. Soc., Chem. Commun., 1979, 481-482. (10) Crystal data for 7: C₃₀H₄₀B₄N₅: M, 632.1, orthorhombic; space group Pren; a = 20.162 (2), b = 10.543 (2), c = 16.469 (2) Å; U = 3501.4 Å³; Z = 4.20 g cm⁻¹; a(Mo Ka) = 0.39 cm⁻¹; 3469 intensities were recorded on a Philips PW1:00 four-circle diffractometer and merged to give 1099 unique observed reflections [F > Sr(F)]. The residuals are R = 0.044, $R_{\odot} = \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^{\infty}$

Communications to the Editor

. . . .

Figure 1. Tetraimine 5b, showing the disorder of the hydroxyl groups about the 2-fold axis which passes through carbon atoms C(10). Another crystallographic C_2 axis passes through the midpoints of the C(1)-C(1)bonds. Shaded C and H atoms are in the half of the molecule nearer the

interesting new class of potentially octadentate macrocycles 5. These high m, compounds, which were obtained (see Scheme I) from reactions of the diamines 2a-c, are relatively insoluble and involatile, and cryoscopic methods and electron-impact mass spectrometry could not be used to determine their relative molocular masses. However, the samples showed simple field desorption (FD) mass spectra,⁴ giving molecular ions compatible with the [2 + 2] condensation products:⁵ Sa, m/e S84; Sb, m/e 645 (M + 1)*; 5c, m/e 697 (M - 1)*. No fragmentation products were observed in the range m/e 400-800.

FDMS also proved useful in identifying compounds which were present when mixtures of products were obtained from similar condensation reactions. For example, a mixture (ca. 1:4) of the diimine 4 and the tetraimine 6 $[m/e 307 (M + 1)^+$ and m/e 613 $(M + 1)^+$, respectively] was obtained from the condensation of the trimethylene-bridged dialdehyde 1b and 1,2-diaminoethane (1:1.1, 4 h in 15-cm³ refluxing CHCl₃). These substrates have been used previously,⁶ but under conditions of high dilution, to prepare the diimine 4.

An X-ray structure determination' confirmed the presence of a 30-membered ring in 5b (see Figure 1). The inner great ring has a configuration which effectively creates two "N4" donor sets (from the o-iminoanilino units of a with d and b with c, see Figure 1), in the two halves of the molecule. Such an arrangement would cause close approximation of two metal ions in a dinculear complex, because the centroids of the two donor sets are separated by only 3.44 Å. A similar ligand geometry is found⁶ in a dicopper

(4) Spectra were obtained on a KRATOS MS50 spectrometer, operated (4) Spectra were obtained on a KIKA105 MIS30 spectromater, operates at 5-kV accelerating voltage and with a potential difference of 10 kV between the emitter and extractor plate. Spectra, recorded on oscillogram paper, were collicrated with the EI spectrum of Fomblin oil (Henning, J.; La**, H. Vacuum 1977, 27, 171-175). High-temperature activated emitters were loaded by Spping into either a solution (Se and 4/6) or a suspanits (Sa,h.Sa) in CH₂Cl₂. Emitter beating currents in the range 15-21 mA were required to desorb these

(3) The hydrogenated octaaza macrocycle (8, R = $(CH_2)_2$, n = 2) and a related "N₂O₄" system (with phenone groups replacing the anilino units: Lindoy, L. F. et al., unpublished results) were also identified by FDMS measurements [m/s 592 (M)* and 597 (M + 1)*, respectively]. (6) Black, D. St. C. Hartshorn, A. J.; Herner, M.; Hunig, S. Aust. J. Cham. 1977, 40, 2493-2514

J. Am. Chem. Soc., Vol. 103, No. 16, 1981 4953

Figure 2. The 20-membered B-N heterocycle 7.

complex of the smaller ring 5a in which the two copper ions are forced to adopt a very short Cu-Cu bond [2.445 (5) Å].

A crystallographic 2-fold axis passes through the carbon atoms having the hydroxyl substituents, and the oxygen atoms are statistically disordered with half-occupancies of the sites shown in Figure 1. Consequently, the structure determination does not allow a distinction to be made between meso and racemic isomeric forms for 5b.

We conclude that ease of isolation of the metal-free macrocycles 5 is dependent on the presence of strong intramolecular hydrogen bonding in the o-iminoanilino units. The geometry of the o-imincanilino unit in Sb is very similar to that found² in the related tetraaza macrocycles 3. Reactions of 2,6-diacetylpyridine with certain diamines have also been observed" to give large ring ligands by [2 + 2] condensations,²⁴ but for these systems the new chelate rings are of the α -diimine type and do not have the facility to form intramolecular H bonds. In these cases the free ligands have not been isolated, but an extensive range of mono- and binuclear complexes have been prepared" by carrying out transmetalation reactions on complexes prepared in the presence of certain metal ion templates.

The 28-membered ring structure for 5a was indirectly confirmed by x-ray structure analysis¹⁰ of an unusual borane adduct (7) which was obtained as an intermediate in the reduction with borane/THF to give the corresponding octaamine 8. Crystals of 7 which

separated from a suspension of 5a in borane/THF gave a sharp infrared absorption band st 2510 cm⁻¹, a region in which B-H stretching modes are known to occur. They were found to be surprisingly stable to hydrolysis, and X-ray diffraction data were

(8) Dancey, K. P.; Tasker, P. A.; Price, R.; Hatfield, W. E.; Bromer, D. C. J. Chem. Soc., Chem. Commun. 1980, 1248-1250. (9) (a) Drew, M. G. B.; Knon, C. C.; Nelson, S. M. J. Chem. Soc., Dalson

(6) Black, D. St. C.; Hartshorn, A. J.; Horner, M.; Hunig, S. Aust, J. Chem. 1977, 30, 2493-2514. (7) Crystal data for Sb: 7,8,9,16,17,18,19,26,27,28,35,36,37,38-intradocallydro-3,27-dihydronytetrabenz[c.a.t.c²]-1,4,8,12,16,19,23,27-octaa-meyelestriconine; C.₂H_{al}N₂O₂; M, 644.3; orthorhombic: space group Fddd; a = 33,076 (3), b = 17,459 (2), c = 11.757 (3) Å; U = 6789,3 Å²; Z = 8, D₂ = 1,26 g cm⁻², μ (Mo Ka) = 0.45 cm⁻²; 2047 intensities were recorded on a Philips PW1100 four-circle diffractometer, and merged to give 701 unique observed reflections [F > 6 σ (F)]. The residuals are R = 0.060 and R₂ = $\sum u^{1/2} \Delta / \sum u^{1/2} F_{2} = 0.069$. The structure was solved by direct methods and refined by the full-matrix least-squares method.

Tranz. 1990, 942–948. (b) Drew, M. G. B.; McFall, S. G.; Nelson, S. M.; Water, C. P. J. Chem. Rev. Synap. 1979, 16–17. (c) Drew, M. G. B.; McCann, M.; J. Chem. Soc., Chem. Commun., 1979, 481–482. (10) Crystal data for 7: C. H., B, N; M, 632.1, orthorhombic: space group from = 20.162 (2), b = 10.543 (2), c = 16.469 (2) Å; U = 3501.4 Å³, Z

The set of the set of

Communications to the Editor

C. 100, 111, 100

THE R. LEWIS

- 1 press

/Any Dille

1. 1. 1. 1. 1. 1. 1. 1.

Figure 1. Tetraimine 5b, showing the disorder of the hydroxyl groups about the 2-fold axis which passes through carbon atoms C(10). Another crystallographic C_2 axis passes through the midpoints of the C(1)-C(1)bonds. Shaded C and H atoms are in the half of the molecule nearer the viewer.

interesting new class of potentially octadentate macrocycles 5. These high m, compounds, which were obtained (see Scheme I) from reactions of the diamines 2a-e, are relatively insoluble and involatile, and cryoscopic methods and electron-impact mass spectrometry could not be used to determine their relative molecular masses. However, the samples showed simple field desorption (FD) mass spectra,⁴ giving molecular ions compatible with the [2 + 2] condensation products:⁵ Sa, m/e S84; Sb, m/e 645 (M + 1)*; 5c, m/e 697 (M - 1)*. No fragmentation products were observed in the range m/e 400-800.

FDMS also proved useful in identifying compounds which were present when mixtures of products were obtained from similar condensation reactions. For example, a mixture (ca. 1:4) of the diimine 4 and the tetraimine 6 $[m/e 307 (M + 1)^+$ and m/e 613 $(M + 1)^+$, respectively] was obtained from the condensation of the trimethylene-bridged dialdehyde 1b and 1,2-diaminoethane (1:1.1, 4 h in 15-cm³ refluxing CHCl₃). These substrates have been used previously,⁶ but under conditions of high dilution, to prepare the diimine 4.

An X-ray structure determination⁷ confirmed the presence of a 30-membered ring in 5b (see Figure 1). The inner great ring has a configuration which effectively creates two "N4" donor sets (from the o-iminoanilino units of a with d and b with c, see Figure 1), in the two halves of the molecule. Such an arrangement would cause close approximation of two metal ions in a dinculcar complex, because the centroids of the two donor sets are separated by only 3.44 Å. A similar ligand geometry is found⁶ in a dicopper

(5) The hydrogeneted ectasza macrocycle (8, R = (CH₃)₃, n = 2) and a related 1.0, system (with phenozo groups replacing the anilino units: Lindoy, L. F. et al., unpublished results) were also identified by PDMS measurements [m/e 592 (M)^{*} and 597 (M + 1)^{*}, respectively]. (6) Black, D. St. C.; Hartshorn, A. J.; Herner, M.; Hunig, S. Aust. J.

Chem. 1977, 30, 2493-2514.

J. Am. Chem. Soc., Vol. 103, No. 16, 1981 4953

Figure 2. The 20-membered B-N heterocycle 7.

complex of the smaller ring 5a in which the two copper ions are forced to adopt a very short Cu-Cu bond [2.445 (5) A].

A crystallographic 2-fold axis passes through the carbon atoms having the hydroxyl substituents, and the oxygen atoms are statistically disordered with half-occupancies of the sites shown in Figure 1. Consequently, the structure determination does not allow a distinction to be made between meso and racymic isomeric forms for 5b.

We conclude that ease of isolation of the metal-free macrocycles 5 is dependent on the presence of strong intramolecular hydrogen bonding in the o-iminoanilino units. The geometry of the o-imincanilino unit in 5b is very similar to that found² in the related tetraaza macrocycles 3. Reactions of 2,6-diacetylpyridine with certain diamines have also been observed⁹ to give large ring ligands by [2 + 2] condensations,^{3a} but for these systems the new chelate rings are of the α -dimine type and do not have the facility to form intramolecular H bonds. In these cases the free ligands have not been isolated, but an extensive range of mono- and binuclear complexes have been prepared⁹ by carrying out transmetalation reactions on complexes prepared in the presence of certain metal ion templates.

The 28-membered ring structure for 5a was indirectly confirmed by x-ray structure analysis¹⁰ of an unusual borane adduct (7) which was obtained as an intermediate in the reduction with borane/THF to give the corresponding octaamine 8. Crystals of 7 which

separated from a suspension of Sa in borane/THF gave a sharp infrared absorption band st 2510 cm⁻¹, a region in wheih B-H stretching modes are known to occur. They were found to be surprisingly stable to hydrolysis, and X-ray diffraction data were

(7) Crystal data for Sb: 7,8,9,16,17,18,19,26,27,28,35,36,37,38-(7) Crystal data for Sb: 7,8,9,16,17,18,19,26,27,28,35,36,37,38-tetradocallydro-8,27-dihydroxytetrabenz[*e.n.t.c*]-1,4,8,12,16,19,23,27-octan-mecyclotriconine: $C_{20}H_{el}N_{2}O_{2}$: *M*, 644.8; orthorhombic: space group *Fddd*; *e* = 33.076 (3), *b* = 17.459 (2), *c* = 11.757 (3) Å; *U* = 6789.3 Å³; *Z* = 8, D_{0} = 1.26 g cm⁻³, μ (Me K.e) = 0.45 cm⁻¹; 2047 intensities were recorded on a Philips PW1100 four-circle diffractometer, and merged to give 701 unique observed reflections [*F* > 6*o*(*F*)]. The residuals are *R* = 0.060 and *R₀* = $\sum w^{1/2} \Delta / \sum w^{1/2} F_{0} = 0.069$. The structure was solved by direct methods and refined by the full-matrix less-squares method.

(8) Dancey, K. P.; Tasker, P. A.; Price, R.; Hatfield, W. E.; Bromer, D. C. J. Chem. Soc., Chem. Commun. 1990, 1248-1250. (9) (a) Drew, M. G. B.; Knon, C. C.; Nelson, S. M. J. Chem. Soc., Dalton Trans. 1990, 942-948. (b) Drew, M. G. B.; McFall, S. G.; Nelson, S. M.; Waters, C. P. J. Chem. Res., Symap. 1979, 16-17. (c) Drew, M. G. B.; McCasan, M.; J. Chem. Soc., Chem. Commun., 1979, 481-482. (10) Crystal data for 7: C., H., B., N.; M., 632.1. orthorhombic; space group Prem; a = 20.162 (2). b = 10.543 (2). c = 16.6469 (2) A; U = 3501.4 A², Z = 4; D₄ = 1.20 g cm⁻²; a(Mo Ke) = 0.39 cm⁻²; 3469 intensities were recorded on a Philips PW1100 four-circle diffractometer and merged to give 1099 uninus abserved reflections [F > So(F)]. The residuals are R = C.044, R_{-} = 0.096. The structure was solved by direct methods and reflect by the full-matrix least squares method.

⁽⁴⁾ Spectra were obtained on a KRATOS MS50 spectrometer, operated at 8-kV accelerating voltage and with a potential difference of 10 kV between the emitter and extractor plate. Soectra, recorded on oscillogram paper, were calibrated with the El spectrum of Fomblin oil (Henning, J.; L.**, H. Vacuum 1977, 27, 171-175). High-temperature activated emitters were loaded by dipping into either a solution (Se and 4/6) or a suspension (Sa.b.Sa) in CH Cl-Emitter beating currents in the range 15-21 mA were required to desorb these

Scheme I

⁶ Reaction conditions are (A) 1a (2 mmol) + 2 (2.2 mmol) in MeOH (40-50 cm³) refluxed 6 h and a further 24 h after addition of CHCl₃ (5 cm³); (B) 3 heated 24 h in refluxing MeOH containing acetic acid (1 mol %); (C) 1a (10 mmol) + 2c (11.5 mmol) in EtOH (50 cm³) refluxed for 1.5 h, filtered, and set aside for 12 h.

collected without special precautions to protect the crystals from atmospheric moisture. Structure determination showed this material to be tetrabenz[a, c, u]-1.5.8.12.15.19.22.26-octaaza-29,30,31,32-tetraborapentacyclo[1^{1,5},1^{8,12},1^{15,19},1^{22,20}]dotriacontane in which a B-H unit has been incorporated between each pair of o-iminoanilino nitrogen to give the unusual 20-membered B-N heterocycle shown in Figure 2. The two halves of the molecule are related by a crystallographic 2-fold axis perpendicular to the best plane through the inner great ring.

The isolation of the potentially octadentate macrocycles 5 and 8 presents the interesting possibility of preparing a series of dinuclear complexes in which the separation and disposition of the two metal ions is controlled by ring sizes and other geometric constraints in the ligands.

Acknowledgment. We thank the Science Researc's Council (U.K.) for studentships (to R.P., P.M.J., and K.P.D.) and diffractometer equipment and computing facilities. P.A.T. thanks the Regents of the University of California for support during a period of leave spent at the Irvine Campus.

A state of the second s

(1) Some Alight response of the second se

PD0425 alor proved model in density where the proved model is also information matrices. The restore matrix & and the nervices of (matrix 4 + 1)², respectively) are one of the transmitted plane for fight mode of the information of the transford model (matrix model provided) model (matrix model provided) and (matrix model provided) and (matrix model provided) and (matrix model provided) and (matrix).

A property to a second second

[15] Barden and Andreas and Solid A. 1997. A second state of the second state of th

(1) The bask operation transmission of the second system of the secon

Supplementary Material Available: Fractional coordinates, thermal parameters, bond-distances, bond angles and observed and calculated structure factors for compounds 56 and 7 (7 pages). Ordering information is given on any current masthead page.

T IGHTLY BOUND COPY

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

