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Abstract 

We use quantum probability (QP) theory to investigate individual differences in causal 

reasoning. By analyzing data sets from Rehder (2014) on comparative judgments, and from 

Rehder & Waldmann (2016) on absolute judgments, we show that a QP model can both account 

for individual differences in causal judgments, and why these judgments sometimes violate the 

properties of causal Bayes nets. We implement this and previously proposed models of causal 

reasoning (including classical probability models) within the same hierarchical Bayesian 

inferential framework to provide a detailed comparison between these models, including 

computing Bayes factors. Analysis of the inferred parameters of the QP model illustrates how 

these can be interpreted in terms of putative cognitive mechanisms of causal reasoning. 

Additionally, we implement a latent classification mechanism that identifies subcategories of 

reasoners based on properties of the inferred cognitive process, rather than post hoc clustering. 

The QP model also provides a parsimonious explanation for aggregate behavior, which 

alternatively can only be explained by a mixture of multiple existing models. Investigating 

individual differences through the lens of a QP model reveals simple but strong alternatives to 

existing explanations for the dichotomies often observed in how people make causal inferences. 

These alternative explanations arise from the cognitive interpretation of the parameters and 

structure of the quantum probability model. 

 
Keywords: individual differences; causal reasoning; quantum probability; causal graphical 
models; Bayesian inference 
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1. Introduction1 

Our ability for causal reasoning is arguably fundamental for many of the achievements 

that we consider uniquely human, science and engineering for example, as well as being an 

integral aspect of competence in many aspects of day-to-day life. Our causal reasoning ability 

demonstrates a staggering scope of applicability, from extremely simple situations (e.g., if the 

switch is turned off, the appliance will stop working) to extremely complex ones (e.g., the impact 

of fiscal policy changes on economic climate), involving different numbers of implicated 

variables, different structural relationships between the variables, and differences in the certainty 

of the information available for a causal reasoning problem. Moreover, there is evidence that 

reasoning ability may vary depending on whether judgments are being made from experience, 

statistically described contingencies, or linguistic narratives and descriptions (Shanks, 1991).  

These observations perhaps paint a grim picture regarding the possibility of a general 

model of human causal reasoning, yet psychologists have been intensely engaged with this 

endeavor. Several influential models have been proposed, including ΔP (Jenkins & Ward, 1965) 

and power PC theory (Cheng, 1997), but important shortcomings (e.g. inability to account for a 

large range of experimental data, including among others, asymmetries between diagnostic and 

predictive inferences, the influence of uncertainty in diagnostic judgments, etc.) have been 

identified for such traditional approaches (Sloman & Fernbach, 2011; Trueblood & Busemeyer, 

2012; Lober and Shanks, 2000; White, 2005; Fernbach, Darlow, & Sloman, 2010). Currently, 

                                                 
1 Key Abbreviations used: quantum probability (QP), classical probability (CP), common cause network (CC), 
chain network (CH), common effect network (CE), causal graphical models (CGMs), conjunctive model (CONJ), 
associative random Markov field model (ASSC), specific shared disabler based model (DISAB), deviance 
information criterion (DIC). 
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one of the predominant modeling approaches for causal reasoning uses Causal Graphical Models 

(CGMs; e.g. Tenenbaum, Griffiths, and Kemp, 2006; Griffiths and Tenenbaum, 2009; Fernbach 

and Sloman, 2009; Goodman, Ullman, and Tenenbaum, 2011; Kemp, Goodman, and 

Tenenbaum, 2010; Pearl, 2014), which are a graphical way to represent causal relations based on 

Bayes nets (Kim & Pearl, 1983; Pearl, 1988). In a CGM, variables are represented by nodes 

where the links between nodes and the direction of such links represent causal relationships, with 

the originating node called a parent and the end node a child. The rules of classical probability 

(CP) theory are employed to relate probabilities between nodes in parent – child relationships. 

CGMs also assume the Markov property, whose intuitive meaning is that the conditional 

probabilities for a node depend only on its parents. More formally, the Markov property states 

that any node in a CGM is conditionally independent of its non-effects, given its direct causes 

(Russell & Norvig, 2003). The role of the Markov property is that it greatly simplifies 

conditional probability computations, especially in complex causal structures, in which the range 

of dependencies, left unchecked, can quickly become intractable.  

CGMs have been a key development in the study of causal reasoning (Griffiths et al., 

2010; Oaksford & Chater, 2009). In work separate to cognitive psychology, CGMs are often 

researched and employed in industry applications relating to complex reasoning situations (e.g. 

Cowell et al., 1999). They benefit from excellent descriptive success (Tenenbaum, Griffiths, and 

Kemp, 2006; Griffiths and Tenenbaum, 2009; Goodman, Ullman, and Tenenbaum, 2011; Kemp, 

Goodman, and Tenenbaum, 2010), and allow a clear statement of the principles that guide 

human causal reasoning competence.  

The motivation for the present work is the increasing evidence that, while the descriptive 

performance of CGMs is excellent in many cases of human causal reasoning, there are consistent 
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violations of CGM principles as well. For example, there have been reports of violations of the 

Markov condition (Rottman & Hastie, 2014; Park & Sloman, 2013; Rehder, 2014; Fernbach & 

Sloman, 2009; Waldmann, Cheng, Hagmayer, & Blaisdell, 2008; Hagmayer & Waldmann, 2002; 

Rehder & Waldmann, 2016), as well as reports of findings that are inconsistent with the CP 

principles that CGMs adhere to, notably selectively neglecting alternate causes in predictive (but 

not diagnostic) judgments (Fernbach, Darlow, & Sloman, 2010), and failure to discount based on 

the presence of alternative causes (Rehder, 2014; Rehder & Waldmann, 2016). To illustrate, 

consider an individual reasoning about a friend’s recent weight loss. Anti-discounting occurs 

when the individual thinks that it is more likely the friend improved their diet after learning that 

their friend lost weight and started exercising as compared to only learning about weight loss 

(assuming diet and exercise are independent). Mathematically, the probability of improved diet is 

higher when only weight loss is known since also knowing about a new exercise regime explains 

the weight loss. In this simple example, the individual is reasoning associatively about diet and 

exercise rather than reasoning according to the rules of probability theory. 

How are we to approach the dual challenges of consistency between human behavior and 

CGM principles in many cases (not to mention the normative justification for CGMs, that is, the 

fact that CGMs represent causal relationships using Bayes’ calculus and thus respect classical 

probabilistic norms, Kim & Pearl, 1983; Pearl, 1988) and the increasing evidence that, at least in 

some cases, naïve observers reason in a way that conflicts with CGM prescription? We clearly 

do not want to abandon CGMs entirely, but it is equally clear that human causal reasoning must 

reflect a combination of CGM principles and principles based on alternative mechanisms. Such 

alternative mechanisms could be non-normative modifications of CGMs, where deviation of 

reasoning from the normative process is explained by way of “cognitive shortcuts,” such as the 
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strategic decision to neglect alternatives (Fernbach and Rehder, 2013), augmenting CGMs with 

additional hidden variables not part of the actual experimental situation (hidden mediators, 

disablers, enablers or causes, e.g. Rehder, 2014), or deviations from CP calculations (e.g., 

computing conditional probabilities as conjunctive probabilities or ignoring causal direction in 

conditionalization, Rehder, 2014).  

 Rehder (2014) provided an extensive investigation of causal reasoning, in relation to 

CGMs and three alternative non-normative reasoning strategies. To illustrate these strategies, we 

employ one of the examples originally used by Rehder (2014), where three events – high or low 

retirement savings, high or low trade deficits, and high or low interest rates – are causally linked 

in different ways. The first non-normative strategy is the Conjunctive Model (CONJ) and its 

characteristic is that conditional probabilities are evaluated conjunctively. For example, the 

probability of high retirement savings given low trade deficits would be instead evaluated as a 

joint probability, the probability of high retirement savings and low trade deficits. Note that, 

while there is evidence for a CONJ strategy in Rehder (2014), the model is clearly ad hoc. For 

example, in other probabilistic judgment scenarios (e.g., the conjunction fallacy), the opposite is 

sometimes assumed, that is, that the evaluation of conjunctive probabilities is computed as a 

function of conditional probabilities (Tenenbaum & Griffiths, 2001). The second strategy is the 

Specific Shared Disabler Model (DISAB). Per DISAB, a hidden disabling mechanism assumes 

an additional variable imagined by participants that probabilistically influences one or more of 

the existing causal mechanisms. For example, a participant might envisage an additional variable 

(not part of the experimental scenario), foreign exchange rates, which might probabilistically 

moderate the causal relationship between interest rates and trade deficits. Again, while there is 

evidence for a DISAB strategy in terms of its descriptive success, the choice of structure for the 
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hidden variable remains ad hoc. The third strategy is the Associative Model (ASSC), which 

posits an associative Markov random field. This essentially assumes an associative 

(correlational) relationship between the variables of interest, without allowing for any specific 

direction of causality.  

 Successful description of the aggregate causal reasoning data across Rehder’s (2014) four 

experiments required a model that was a weighted linear combination of all four strategies (a 

normative CGM strategy and the three non-normative ones). Each of these models had between 

three to five free parameters, with an additional three free parameters for the mixture weighting 

of these models. So, Rehder (2014) can be taken as one of the most specific demonstrations that 

human causal reasoning embodies both a normative and a non-normative influence. Further, this 

mixture model accounted for results primarily at an aggregate level. The primary purpose of 

Rehder (2014) was to test for violations of the Markov principle and, based on a cluster analysis, 

identified two groups of participants, causal and associative (non-causal) reasoners. The latter 

group committed a higher number of Markov violations and exhibited greater anti-discounting 

behavior. The application of Rehder’s (2014) analyses to the subgroups revealed a range of 

strategies for both subgroups, but with the expected biases towards the normative strategy 

(average weight of 0.59) for causal reasoners and the associative strategy (average weights of 

0.67) for associative reasoners. Note, the associate strategy (ASSC) specifically refers to a lack 

of causal direction, but Rehder (2014) labelled associative reasoners as participants that mostly 

violated the classical CGM model (and whose behavior may be explained by one or more of the 

ASSC, CONJ, or DISAB models), but did not necessarily employ the ASSC strategy or display a 

complete insensitivity to causal direction. In our analysis, we continue to refer to associative 
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reasoners in this latter broader sense, as non-causal reasoners, whose behavior cannot be 

described by the classical CGM model.  

 For researchers interested in the principles underlying human causal reasoning, Rehder’s 

(2014) analysis is groundbreaking, but it also raises three important questions. First, does the 

observed multiplicity of strategies primarily concern a within-participant description level or a 

between participants one? In other words, is it the case that different participants predominantly 

adopt a single strategy (so that averaged results require a model based on all four strategies) or is 

it the case that for each participant there are varying influences from all strategies? Rehder’s 

classification of participants into associative and causal reasoners is suggestive, but ideally an 

individual differences analysis would be informed by parameters of the underlying cognitive 

process or processes and reveal directly the extent to which the postulated strategies are 

represented across most participants or few participants. Second, some of the non-normative 

strategies are ad hoc and have primarily descriptive value. Is it possible to propose a formalism 

that will encompass as special cases of its application both the normative and non-normative 

strategies? That is, can individual behavior patterns that have been conceptualized as involving 

qualitatively different causal models be accommodated through alterations of continuous 

parameters within a single framework, rather than as a mixture of ad hoc strategies? Third, does 

an application of a formal model for normative violations in causal reasoning enable predictions 

about new effects or insights in causal reasoning?   

Making progress with these three questions leads to the two objectives of the present 

paper. First, we implement the relevant models as Bayesian Hierarchical models, so that model 

parameters are given hierarchical priors with hyper-parameters that allow us to systematically 

capture putative individual differences. The Bayesian models allow us to infer the posterior 
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distribution of the model parameters that best describe the observed data. This allows us to 

construct a posterior predictive distribution, which is the probability distribution over all possible 

data points given the posterior distribution of the parameters inferred, having seen the actual 

observed data. This is essential to understand exactly whether the diversity in causal reasoning 

strategies is within or between participants. Second, we examine a new model of causal 

reasoning based on quantum probability (QP) theory and use a Bayesian Hierarchical approach 

to explore whether the latent classification of individuals based on QP parameters (Lee & Webb, 

2005) is consistent with the distinction between causal and associative reasoners that Rehder 

(2014) proposed. How important is this (intuitive) distinction in describing the data? A more 

rigorous individual differences approach may also allow novel perspectives in causal reasoning, 

as indeed Stanovich and West (2000) argued regarding the rationality debate.  

Bayesian hierarchical models allow us to characterize any underlying cognitive model 

(both based on classical probability as well as QP models) in terms of basic parameters at an 

individual level, which are themselves specified as being generated by another process 

characterized by hyper-parameters. This allows capturing the nature of individual differences in 

behavior in a systematic and structured manner, providing simultaneous posterior distributions 

on individual and population level parameters. This approach can be used to specify multiple 

psychological processes (within a cognitive model) and perform a latent clustering of individuals 

depending on which process is the most likely to generate individual behavior. Finally, the 

approach can also be used to define a mixture model of different cognitive models, and provide a 

direct comparison between such models that may differ in terms of their underlying assumptions, 

including comparing classical probability and QP models within the same hierarchical 
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framework. A detailed perspective on the use of hierarchical Bayesian models for cognitive 

modeling can be obtained from Lee (2011). 

A Bayesian hierarchical approach to individual differences carries a high computational 

burden, especially where multiple models are involved. This restricts the range of datasets that 

can be considered, compared to aggregate-level analyses. We chose to focus on two datasets, 

Rehder (2014) and Rehder and Waldmann (2016). Rehder’s (2014) focus was exactly to test for 

violations of the Markov principle, which is consistent with one present objective, i.e., the 

(more) formal description of non-normative influences in causal reasoning (with QP; see 

shortly). Moreover, even though Rehder’s (2014) main objective was not individual differences, 

his selection of inference problems led to evidence for three distinct non-normative strategies 

and corresponding evidence for individual differences. Thus, in seeking to understand individual 

differences using the present Bayesian Hierarchical approach, his dataset is highly suitable. 

Finally, the dataset was carefully constructed (315 participants, four well-controlled experiments 

manipulating content of the inference problem and causal structure, including common cause, 

chain, and common effect). Rehder (2014) tested for relative judgments between scenarios, that 

is, what combination of events under a causal network were more likely. To test the 

generalizability of our approach, we also examine a dataset from Rehder and Waldmann (2016), 

which uses absolute probability judgments rather than relative judgments.  

The second objective of the paper is to explore whether the range of specific strategies, 

including the normative one that Rehder (2014) proposed, could be subsumed within a single 

formal model. We propose a model based on the principles of quantum probability, by which we 

mean the rules for how to compute probabilities, from quantum mechanics, without any of the 

physics. QP can lead to cognitive models very similar in nature to those using CP: in both cases, 
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the objective is a top-down or function first (Griffiths et al., 2010) description of cognition, 

emphasizing the computational principles that guide behavior (cf. Marr, 1982), but with limited 

process assumptions. QP is basically a framework for probabilistic inference alternative to CP. 

There is a motivation to consider QP for cognitive modeling, instead of CP, exactly for situations 

where human behavior appears at odds with the prescription from CP. In recent years, QP 

models of cognition have been successfully applied to various domains, including among others, 

decision-making (Pothos & Busemeyer, 2009), perception (Atmanspacher & Filk, 2010), 

probability judgments (Busemeyer, Wang, Pothos, & Trueblood, 2015; Trueblood & Busemeyer, 

2011), similarity (Pothos, Busemeyer, & Trueblood, 2013; Pothos & Trueblood, 2015) memory 

(Brainerd et al., 2013), and conceptual categorization and knowledge formation (Aerts, Sozzo, & 

Veloz, 2016; Sozzo, 2015). Apart from understanding behavior that demonstrates violations of 

CP, such models have also been used to formalize cognitive notions such as psychological 

uncertainty, non-decomposability of cognition, a two layered structure of human reasoning 

including classical logical and quantum emergent processes, order effects and sensitivity to 

measurements (for overviews see Aerts, Broekaert, Gabora, & Sozzo, 2013; Aerts, Gabora, & 

Sozzo, 2013; Busemeyer & Bruza, 2012; Pothos & Busemeyer, 2013; Wang, Busemeyer, 

Atmanspacher & Pothos, 2013).  

An interesting feature of QP is that representations can be compatible or incompatible 

(these are technical terms in QP). When representations are compatible, QP predictions are 

consistent with CP ones. By contrast, with incompatible representations we obtain many non-

classical features in the computation of probabilities, for example, violations of the law of total 

probability. Psychologically, incompatibility means that the order in which events are processed 

critically affects behavior (thinking about one thing first influences how you think about the next 
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thing), similar to priming effects. When a situation involves multiple events, some events can be 

compatible and others can be incompatible. This results in a mixture of both "quantum-like" and 

"classical-like" properties. In typical causal reasoning situations, there are often several variables 

(causes/ effects) and so a hierarchy of causal reasoning models can be specified, from fully 

classical to fully quantum, depending on how many variables are pairwise incompatible 

(Trueblood, Yearsley, & Pothos, 2017).  

Presently, we focus on the ‘most quantum’ possible QP model of causal reasoning, which 

treats all variables as incompatible.  As will be discussed in the Quantum Probability Model 

section, the assumption of full incompatibility leads to an overall two-dimensional space, with all 

questions represented as rays. Because this model uses the lowest possible dimensional space 

(i.e., events in the experiments are binary and must be minimally represented using two 

dimensions), it offers a very simple account of the data.  It is pertinent to focus on this simple QP 

approach, exactly because Rehder (2014) focused on inferences with a high expectation of non-

classicality. If a simple QP model can account for the Rehder (2014) and Rehder & Waldmann 

(2016) results, this would be an important demonstration of the relevance of quantum principles 

in causal reasoning and, moreover, the (relative) mathematical simplicity of the model will 

facilitate the in-depth individual differences analyses. Note, we use exactly the same QP causal 

reasoning model for all of Rehder’s (2014) experiments and for both comparative (Rehder, 2014) 

and absolute (Rehder & Waldmann, 2016) judgments. 

In sum, Rehder (2014) proposed three heuristic strategies that would complement the 

normative CP one. Can Rehder’s (2014) heuristic strategies be subsumed within a unified, 

(more) formal description within a simple QP model? At the level of individual differences, what 

are the properties of any classification based on latent (model) parameters and how consistent is 
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this with the associative vs. normative distinction Rehder (2014) reported? And finally does the 

simple QP model reveal new insights/ effects about causal reasoning? Finally, we note that the 

simplest, ‘most quantum’ QP model we will shortly present is unlikely to be a general model of 

causal reasoning – a more general approach is presented in Trueblood et al. (2017), though the 

additional complexity of this more general approach makes it unsuitable for an in-depth 

individual differences analyses. The motivation for employing such a model presently goes hand 

in hand with the specific focus of Rehder (2014) and Rehder & Waldmann (2016) on non-

classicality in causal reasoning.  

 

2. Description of Experiments and Results 

We briefly describe the experiments and results from Rehder (2014) and Rehder & 

Waldmann (2016). 

2.1. Comparative judgments (dataset 1, Rehder, 2014): 

Task 

In Rehder (2014), participants were taught one of the three causal network structures 

(common cause, chain or common effect) encompassing a set of relationships between three 

binary variables as shown in Figure 1. The causal networks were instantiated in either a domain-

general (abstract) or domain-specific (economics, sociology, or meteorology) environment. 

Causal relationships between variables were described to the participants as independent causal 

processes. For example, in the economics domain, the variables were interest rates, trade deficits, 

and retirement savings, each of which could be large (high) or small (low); a relationship could 

take the form: low interest rates cause small trade deficits. The causal relationships taught to the 

participants were specified in a single sense, so that if a high (low) value of a cause facilitated 
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the presence of an effect, the low (high) value did not have the opposite effect (e.g. if low 

interest rates caused small trade deficits, high interest rates were causally unrelated to trade 

deficits). An example of a common effect structure  is with interest rates and trade deficits both 

exerting a causal influence on retirement savings. Participants in this example were told that low 

interest rates cause high retirement savings and small trade deficits also cause high retirement 

savings. Each relationship was supported by a brief justification of how such a causal mechanism 

might work. For instance, the justification for low interest rates causing high retirement savings 

was given as “Low interest rates stimulate economic growth, leading to greater prosperity 

overall, and allowing more money to be saved for retirement in particular”. Participants were 

then asked to make comparative judgments. On each trial, they were presented with two different 

situations (a situation is a particular combination of values for each node) in the causal structure, 

and asked to judge in which of these two situations was the target variable more likely to have a 

specific value (e.g., to have a low value). In the above example of the common effect structure, 

the two situations could be one where trade deficits were small and retirement savings were high, 

and the second could be one where trade deficits were unknown and retirement savings were 

high. The participants would then be asked to judge under which of these situations was a low 

value of interest rates more likely, that is, a comparative judgment. In this situation, participants 

should normatively believe that interest rates are more likely to be low in the second situation 

where trade deficits are unknown, rather than the first where a known alternative cause (low 

trade deficits) for the observed effect (high retirement savings) already exists. 
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Fig. 1. Three types of causal network structures tested (adapted from Rehder, 2014). The circular nodes represent 
variables and the arrows depict the causal relationships. 

 

Design 

Rehder (2014) examined people’s decisions in eight network states (situations A to H; 

see Table 1) that arise when evaluating the state of an unknown target variable considering all 

possible values of the remaining two variables (denoted X and Z), namely ‘0’ (representing a 

state value that indicates the absence of a cause or effect), ‘1’ (representing a state value that 

causally influences or is influenced), or ‘?’ (representing an unknown value). For example, in the 

domain of economics if low interest rates caused small trade deficits, low interest rates and small 

trade deficits were coded as ‘1’ and higher interest rates and high trade deficits as ‘0’. Note that 

the eight network states are not all possible combinations (3 possible states and 3 variables gives 

27 possible network states). Of these, 3 include states where both the remaining variables are 

unknown, and were excluded. Of the remaining 24 states, 16 states were tested, however given 

the symmetry of the common cause and common effect structures, the inference for the two 

effects or two causes is similar (as was shown empirically), and the 16 different network states 

were collapsed to 8 unique states. The remaining 8 network states were not tested since they 
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were not expected to provide any insight as to whether normative CGM rules were being 

violated or whether discounting behavior was being exhibited.  

Participants were asked to compare the states A vs B, B vs C, D vs E, F vs G and G vs H, 

and indicate which of the two situations made the target variable (Y) more likely, or whether the 

variable was equally likely across the two situations. For our analyses, we combined the data 

from four experiments in Rehder (2014) (i.e., Experiments 2, 3, 4A and 4B). The different 

experiments tested different conditions, such as controlling for abstract versus concrete domains, 

specifying probabilistic causal relationships versus control conditions where no information on 

the strength of the causal links was provided and controlling for the base rate of questions where 

the two situations were equally likely. The analysis in the original paper suggested no significant 

differences based on these manipulations. Across these four experiments, there were 315 

participants (105 per causal structure). Each participant made twenty such comparative 

judgments, with the causal structure (common cause, chain, common effect) and domain of 

variables (economics, sociology, meteorology, and an abstract domain in one condition) as 

between-subject conditions.   

Normative expectations 

Table 1 shows the normative predictions for each possible pair of situations based on a 

causal Bayes net model of the inference problem (see Rehder, 2014 for a detailed analysis of the 

normative predictions). Two key properties on which these predictions are based are the causal 

Markov property (also referred to as the parent-child property) and discounting in the common 

effect structure. To illustrate the Markov property, consider a common cause network where low 

interest rates cause both small trade deficits and high retirement savings. The causal Markov 

condition implies that if the value of interest rates is known, knowledge of trade deficits does not 
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provide any additional information towards the value of retirement savings, and vice versa. All 

information regarding the effect is captured in the node representing the common cause and the 

causal link between the two, if the value of the cause is known.   

Table 1. Enumeration of the eight different situations in dataset 1 (A to H) for the common cause, chain and 
common effect networks, and data set 2 (A to E, I to K) for the common cause and common effect networks. 
Participants were required to make inferences about the ‘target’ variable, given the states (0, 1 or unknown=?) of the 
remaining two variables. The normative relative predictions for situations A to H based on the causal Markov 
condition of causal graphical models and discounting in the case of common effect structures yield the predictions 
below (adapted from Rehder, 2014; Rehder & Waldmann, 2016). Situation J was tested twice, with each of the two 
causes (effects) set to 1 separately. 
 
    Situation under which target is more likely 
Situation X Z Y Common cause 

 

Chain 

 

Common effect 

 

A 1 1 target 
A=B=C A=B=C C > B > A B ? 1 target 

C 0 1 target 
D 1 ? target D >> E D >> E D = E E 0 ? target 
F 1 0 target 

F=G=H F=G=H F=G=H G ? 0 target 
H 0 0 target 
I 1 target 1 

I > J > K n/a I > J > K J1 
J2 

1 target 0 
0 target 1 

K 0 target 0 
 

In a common effect structure, discounting refers to the phenomenon that the presence of a 

cause is deemed less likely when an alternate cause is present, than when no alternate cause is 

present. Take the example of low interest rates and small trade deficits both causing high 

retirement savings.  Suppose that retirement savings are high. What can we say about the value 

of trade deficits? If we also know that interest rates are low, then the high retirement savings are 

plausibly a result of this cause, which makes the presence of small trade deficits redundant. That 

is, the presence of one cause is sufficient to explain the effect, making the alternate cause 
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redundant. Discounting refers to this latter inference, and is normatively expected behavior in a 

common effect structure. 

Results 

Rehder (2014) found that a significant number of participants violated one or both 

properties (causal Markov condition and discounting). About 23% of the 315 participants 

exhibited some form of reasoning that deviated from the predictions of CGMs, in particular, 

demonstrating a lack of sensitivity to causal direction (the associative reasoners). Insensitivity to 

causal direction can result in behavior that appears to ignore conditional independence as 

stipulated by the causal Markov property and exhibit anti-discounting behavior (i.e. judging the 

target cause as highly probable based on the presence of an alternative cause, which is opposite 

to normative expectation). But Rehder (2014) also identified several participants whose behavior 

more closely resembled the predictions of CGMs (the causal reasoners). Note, the participants 

labelled as associative and causal reasoners in Rehder (2014) both displayed multiple influences 

in their behavior. Figure 2 shows the normative (CGM) predictions and the actual observed 

aggregated mean choice responses for participants classified as causal and associative reasoners 

separately. The deviations from normative predictions for associative reasoners across all three 

networks are significant. Note that all behavioral patterns captured as associative reasoners, as 

well as the patterns observed under common effect structure for the cluster labeled causal 

reasoners required ad hoc explanations beyond the normative CGM model. 
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Fig. 2. Mean choice proportions for comparative judgments (AB represents the probability of selecting A vs B). The 
gray bars show the normative (rational) predictions derived from classical Bayes net principles including the causal 
Markov condition, and incorporating discounting into the inference for the common effect structure, as reported in 
Rehder (2014). The line plots show the actual observed aggregated choice responses for participants classified as 
causal and associative reasoners. The error bars represent a length of two standard deviations, centered on the mean 
(all adapted from Rehder, 2014).  
 

 
 
Fig. 3. Mean ratings for absolute judgments. The gray bars show the normative (rational) predictions derived from 
classical Bayes net principles, as reported in Rehder & Waldmann (2016). The line plots show the mean observed 
absolute probability judgments. The error bars represent a length of two standard deviations, centered on the mean 
(all adapted from Rehder & Waldmann, 2016). 
 
 
2.2. Absolute judgments (dataset 2, Rehder & Waldmann, 2016): 

Task 

In Rehder and Waldmann (2016), participants were taught either the common cause or 

the common effect network, similar to Rehder (2014). This study used the same materials, but 

instead of asking for comparison between scenarios, participants provided the absolute 

probability (between 0 and 1) of a target variable taking a particular value, for a set of 8 different 
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situations. The first 5 situations A to E are identical to the previous experiment (see Table 1). 

The remaining 3 situations (I to K), were different. In these 3 situations, inference needed to be 

made on the cause in the common cause and the effect in the common effect network, 

represented by the target variable Z in both cases. Each network type was taught to 48 

participants. 

 

Results 

Figure 3 summarizes the results. These results correspond to the description-only 

condition (as opposed to learning from experience) reported in Rehder & Waldmann (2016). For 

the common cause network (left panel in figure 3), the normative responses reflect the principle 

of independence for situations A, B, and C when the value of the common cause is known. The 

moderate downward trend of A-B-C in the observed judgments reflect violations of the principle 

of independence. The downward trend of D-E and I-J-K in the common cause network reflect 

normative non-independence between the two effects given that the value of the cause variable is 

unknown or to be inferred. For the common effect network, the normative increasing slope for 

A-B-C reflects the effect of ‘explaining away’, in the presence of alternate causes. The normative 

equivalence of D-E reflects the independence of the two causes in the absence of any knowledge 

about the effect. The normative downward trend of I-J-K reflects non-independence while 

inferring the value of the effect. The deviations between normative and observed patterns, such 

as the downward trend in A-B-C in the common cause network, the indifference between A-B in 

the common effect network and the difference in D-E in the common effect network have 

typically been explained using heuristic explanations. 
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3. Quantum Probability Model 

3.1. General specification 

The overarching objective of having a QP model for causal reasoning is as a formalism 

that will enable the recovery of both normative (CGM) and non-normative (predominantly 

associative, but also consistent with the other non-normative strategies discussed in Rehder, 

2014) influences in participants’ performance in the two datasets. 

The starting point of a QP model is an assumption of incompatibility, in the present case 

concerning the mental representations for the three binary variables X, Y, Z, which correspond to 

a causal reasoning situation (Trueblood & Pothos, 2014; Trueblood et al., 2017). If the X, Y 

variables are incompatible, then the joint event X&Y does not exist and cannot be assigned a 

probability. Instead, we have to evaluate the sequential probabilities for X & then Y (i.e., p(X & 

then Y). This is an appropriate definition for a conjunction for incompatible questions, because it 

decomposes to the product of a marginal and conditional probability, just like the classical case). 

The sequential processing of incompatible variables can naturally give rise to order effects in 

quantum models. 

QP theory can be considered a geometric approach to probability where events are 

defined as subspaces within a vector space (technically a Hilbert space). If we consider the 

simplest possible representation for incompatible questions, as rays (one dimensional subspaces), 

then incompatibility means that the rays for the two questions are not orthogonal. We make the 

additional assumption that the rays corresponding to all the questions in one of Rehder’s (2014) 

causal reasoning scenarios are coplanar. As noted, this is the simplest possible QP causal 

reasoning model (all variables incompatible, corresponding to rays, and coplanar). It is unlikely 
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that this ‘most quantum’ model will be supported in general, but its use here is the most direct 

test of the hypothesis that quantum principles are relevant in causal reasoning, at least in some 

cases (see also Trueblood & Pothos, 2014; Trueblood et al., 2017), and also the model’s relative 

simplicity facilitates the individual differences comparison. We illustrate the mechanics of the 

model through Figure 4. The numbered operations in the figure are referred to using square 

brackets (e.g. [1]). 

The two dimensions for each basis ({x1, x0}, {y1, y0}, {z1, z0}) represent the two values 

for each binary variable X, Y, and Z (see Figure 4a). Since the causal structures are specified in a 

single sense (that is, only one value affects the system causally), the values are encoded such that 

the subscript 1 always indicates the value that is causally linked (e.g. if low interest rates cause 

high deficits, low interest rates and high trade deficits are encoded as x1 and y1 respectively; high 

interest rates and low trade deficits, which do not influence or experience causal influence, are 

encoded as x0  and y0). One of the variables (in this case, Y) is represented by the standard basis 

for the 2-dimensional real space (i.e., orthonormal vectors pointing in the direction of the axes of 

the Cartesian coordinate system), and the basis vectors for X and Z are determined by rotating 

the standard basis by θX and θZ respectively. Mathematically, the three bases associated with the 

three variables are related by rotation matrices Rx for variable X and Rz for variable Z, so that the 

corresponding basis sets are {Rx y1, Rx y0} for X and {Rz y1, Rz y0} for Z. These vectors and 

matrices are given by:   

y1 = �10�           (1) 

y0 = �01�          (2) 

Rx = �𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑋𝑋) −𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝑋𝑋)
𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝑋𝑋) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑋𝑋) �        (3) 
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Rz = �𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑍𝑍) −𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝑍𝑍)
𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝑍𝑍) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑍𝑍) �        (4) 

The degree of rotation between the different subspaces determines the conditional and 

conjunctive probability relationships between the corresponding variables, that is p(yi | xi), p(xi | 

yi), p(yi,xi) and p(xi,yi) are all dependent on and can be calculated using θX. The three bases are 

thus related by rotations characterized by the two parameters θX and θZ.  

In QP theory, the state of the system is represented by a state vector ψ. For the empirical 

situations of interest, this state vector represents the mental state of an individual prior to 

engaging with a causal reasoning problem. The state vector ψ has unit length to maintain 

probabilities between 0 and 1 (the circles in Figure 4 are unit circles). The probability of a certain 

variable taking a value (e.g. p(y1)) can be obtained by projecting the state vector (see black 

dotted line [1] in Figure 4b) onto the basis vector of interest and taking the squared value of the 

length of the resulting projection (see black bar [2] in Figure 4b). So, the angle between the state 

vector and a basis vector determines an individual’s belief in that variable. 

In mathematical terms, the probability of p(y1) is given by Born’s rule: 

p(y1) = || My1 ψ ||2         (5) 

where My1 is the projection matrix that projects the state vector ψ unto the y1 subspace (in our 

case, this is the y1 basis vector). In this case, projection matrices are given by e.g. 𝑀𝑀𝑦𝑦1 = 𝑦𝑦1 𝑦𝑦1𝑇𝑇 

Conjunctive probabilities (e.g., p(y1&x1) in Figure 4c) are assessed by making successive 

projections from the belief vector to x1 [1] and then to y1 [2]. The final probability p(y1&x1) is 

then calculated by taking the squared length of the final projection (thick black bar [3]). Note 

that in this case, the first projection was made onto x1 and subsequently onto y1. However, the 

conjunctive probabilities can also be calculated in the reverse order, that is, by first projecting 
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onto y1 and then onto x1. This would have resulted in a different probability calculation. Unlike 

classical probability, this model thus differentiates between the operations p(y1&x1) and 

p(x1&y1), depending on the order of processing the variables. Psychologically, this approach thus 

predicts order effects in information processing.  

 

 
 
Fig. 4. Details of the QP model. Figure (a) shows the three sets of basis vectors {x0,x1}, {y0,y1}, and {z0,z1}. The 
three bases are related by rotations characterized by the parameters θX and θZ. It also shows the state vector (ψ), 
which is fixed in our modelling (at 45°relative to the horizontal); (b) shows the probability calculation of a single 
variable; (c) shows conjunctive probability calculations; (d) and (e) show conditional probability calculations; (f) 
shows conjunctive-conditional probability calculations. The circled numbers show the sequence of operations in 
each case. All operations start either from the state vector, or in case of conditional probabilities, from the basis 
vector of the conditional variable. The thick black bar represents amplitude, and the probability is obtained by 
squaring the amplitude. The circle shown is a unit circle. 

 

To calculate conditional probabilities (e.g. p(y1|x1) in Figure 4d), we first assume that the 

mental state ψ is set to x1, that is, the mental state is set to the (assumed) known information x1. 

Then, we project from this new belief state x1 onto the basis vector y1 (operation [1]), and the 

resulting squared amplitude (operation [2]) gives the final conditional probability p(y1|x1). Figure 
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4e shows the similar conditional calculations for p(z1|y1). Finally, Figure 4f shows the 

calculations for p(y1&x1|z1). Here we start by assuming that the new belief state is z1, then 

project onto the first conjunctive variable (x1, [1]), and then onto the second (y1, [2]). The 

squared length of this final projection [3] gives the required probability. Unlike for CP theory, 

changing the order of the conjunctive operation (i.e., p(x1&y1|z1)) would again change the 

result2.  

 A basic aspect of all QP models is that a smaller angle of rotation between vectors 

results in a larger conditional probability, for example, p(y1|z1) > p(y1|x1) if θZ < θX. Also, a 

general QP prediction is that the order of conjunctive processing matters, that is, p(x1 & y1) ≠ 

p(y1 & x1), unless in the special case where x1 & y1 are equidistant from the current belief state. 

In addition, this simple, ‘most quantum’ model makes two specific predictions, that do not 

necessarily hold for more general QP models.  

First, when probabilities are conditioned on more than one variable, the order of 

processing of these given variables is important, since the calculations in the two-dimensional 

model make all but the last conditional variable redundant. This is the memoryless property. A 

consequence of this property is order (recency) effects of information processing, for instance, 

p(y1|x1,z0) = p(y1|z0) and p(y1|z0,x1) = p(y1|x1) when x1 is processed first in the former and last in 

the latter. Note that p(y1|x1,z0) indicates that x1 is processed first and then z0. Thus the 

probabilities p(y1|x1,z0) and p(y1|z0,x1), which would be identical in classical probability, can be 

different in the two-dimensional QP model.  

                                                 
2 Examples of some of these calculations are provided in the online supplementary material A 
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Second, in the two dimensional coplanar QP model  p(y1|z1) = p(z1|y1). This property is 

known as reciprocity and can be considered an expression of associative thinking in a causal 

reasoning problem. Both the memoryless property and reciprocity represent predictions of new 

effects in causal reasoning, from the two dimensional, coplanar QP model, but are not valid in 

more general QP models, e.g., if variables are represented with higher dimensionality subspaces 

or positive valued operator measures (POVMs) are employed instead of projections (POVMs 

capture the situation where measurements are subject to error, and this is covered in greater 

detail in the discussion section; see Trueblood et al., 2017).  It is clearly the case that these two 

properties are not general properties of causal inference, but are there some circumstances where 

human behavior reflects the memoryless and reciprocity properties? If yes, this would further 

inform our understanding of non-normative behavior in causal reasoning. To foreshadow our 

results, we show that in the simple causal structures examined in this paper, the QP models with 

these properties provide a better overall representation of human behavior, and especially so in 

participants that show any form of deviation from the normative CGM approach. That is, we find 

some evidence of the memoryless property and reciprocity in human causal reasoning under the 

paradigms examined in this paper. 

 

3.2. Specification of the QP model for the current datasets 

In the QP model, the judgments of individuals depend on individual level rotation 

parameters θX and θZ, and the projection ordering parameters. We will show that this unified 

account provides better overall fits, to individual response patterns than the collection of classical 

models proposed by Rehder (2014). Thus, what appears to be qualitatively different behavior 

(classified as different heuristic strategies) under the classical framework, may in fact be thought 
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of as parametric variations of a single QP approach.  For both datasets, the model first 

determines the absolute probability computation for each individual situation (A-H for the first 

set, and A-E, I-K for the second). Table 2 lists the conditional and conjunctive probability 

calculations used to infer the absolute probabilities for each of these situations. We distinguish 

two types of inference situations depending on the number of known variables. The basic 

principle remains consistent – that all variables, known and unknown, are evaluated, known 

variables are evaluated before unknown variables, and when more than one known variable is 

present, individual differences may exist in the order of processing these variables. Finally, when 

more than one variable is unknown, the target variable, that is the one about which participants 

are asked to make an inference, is the one processed last.  

 

Absolute judgments with a single known variable: 

In situations B, D, E and G, inference on Y is made with only one of the other two 

variables (either X or Z) being known and the other being unknown. Here there is flexibility 

regarding how exactly to compute the probability of y1, depending on whether it is assumed that 

the participant completely ignores the variable that is unknown or not. We therefore suggest that 

participants compute the probability of y1 as p(y1 & Unknown = 1 | Known) + p(y1 & Unknown 

= 0 | Known)3. Recall that conjunctions in QP theory are sequential, and order matters. The 

specific computations for each of the corresponding situations are detailed in Table 2. The 

probabilities can be calculated for a given set of values of the rotation parameters for X and Z 

(relative to the standard basis Y). Individual differences between participants can arise due to 

                                                 
3 This is just the law of total probability in CP, or QP with the additive interference term set to 0. 
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differences in the rotation parameters across individuals. The cognitive interpretation of the 

rotation parameters and the underlying individual differences are elaborated in later sections. 
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Table 2. Probability calculation under the different scenarios specified in the 2-dimensional QP model. Individual 
differences in probability estimates can be captured by different rotation parameters, as well as the differences in 
projection orders in situations with 2 known variables. 
 

Situation X Z Y # Known 
Variables Probability Specification Individual Differences 

A 1 1 target 2 p(y1 | x1, z1) or p(y1 | z1, x1) 
Projection order;  
Rotation parameters 

B ? 1 target 1 p(y1 & x1 | z1) + p(y1 & x0 | z1) Rotation parameters 

C 0 1 target 2 p(y1 | x0, z1) or p(y1 | z1, x0) 
Projection order;  
Rotation parameters 

D 1 ? target 1 p(y1 & z1 | x1) + p(y1 & z0 | x1) Rotation parameters 

E 0 ? target 1 p(y1 & z1 | x0) + p(y1 & z0 | x0) Rotation parameters 

F 1 0 target 2 p(y1 | x1, z0) or p(y1 | z0, x1) 
Projection order;  
Rotation parameters 

G ? 0 target 1 p(y1 & x1 | z0) + p(y1 & x0 | z0) Rotation parameters 

H 0 0 target 2 p(y1 | x0, z0) or p(y1 | z0, x0) 
Projection order;  
Rotation parameters 

I  1 target 1 2 p(z1 | x1, y1) or p(z1 | y1, x1) 
Projection order;  
Rotation parameters 

JX 1 target 0 2 p(z1 | x1, y0) or p(z1 | y0, x1) 
Projection order;  
Rotation parameters 

JY 0 target 1 2 p(z1 | y1, x0) or p(z1 | x0, y1) 
Projection order;  
Rotation parameters 

J  target  2 

J0 = [p(z1 | y1, x0) + p(z1 | x1, y0)] / 2 
or 

J1 = [p(z1 | x0, y1) + p(z1 | y0, x1)] / 2 
 

Projection order;  
Rotation parameters 

K 0 target 0 2 p(z1 | x0, y0) or p(z1 | y0, x0) 
Projection order;  
Rotation parameters 

     NB. Later on, we use a compact notation for situations e.g. A(X1Z1).   

Absolute judgments with two known variables: 

In situations A, C, F, and H, inference on Y is made conditional on the values of both X 

and Z. In this case, there is no reason to expect that information about X is processed before or 

after information about Z, in evaluating conjunctions, so processing order is a free parameter 

(i.e., a binary switch that governs the order of processing). Table 2 shows two possible 

calculations for this situation, each defining a different order of processing these known 

variables. This allows the model to infer the most likely order representation for each participant. 
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So, for these situations, individual differences can arise both from differences in the rotation 

parameters and differences in the order of processing the known variables. Similarly, for 

situations I, J, and K, information about X and Y may be processed in either order to make 

inferences about Z, and can be a free parameter. The two situations JX and JY are not necessarily 

symmetric under QP (they may be symmetric if the angle between X-Z and Y-Z is the same), 

and hence the calculations are performed separately. The average judgment for situation J 

reported in Rehder & Waldmann (2016) is matched to the average of JX and JY (see Table 2 for 

details) The projection order for situation J depends on whether the variables with cause (effect) 

present or absent are considered. 

 

Comparative judgments:  

The calculations above yield the desired absolute probabilities for the different situations. 

This is sufficient for the second data set which captures absolute judgments of probability. For 

the first dataset, it is necessary to compare probabilities for two situations, denoted S1 and S2, 

where S1 and S2 ϵ {A, B, C, D, E, F, G, H}. In such cases the probabilities p(y1 | S1) and p(y1 | 

S2) are calculated separately, as in Table 2. The final choice proportions between the two are 

computed based on a softmax decision rule (commonly used to model choice, Daw, O'doherty, 

Dayan, Seymour, & Dolan, 2006), also utilized by Rehder (2014), so that the probability for 

selecting S1 versus S2 is given by  

𝑝𝑝(𝑆𝑆1 𝑣𝑣𝑐𝑐 𝑆𝑆2) =
𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑦𝑦1 | 𝑆𝑆1)�

∑ �𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑦𝑦1 | 𝑠𝑠)��𝑠𝑠=𝑆𝑆1, 𝑆𝑆2

                            (6) 

This choice proportion is calculated for each of the five problem pairs {AB, BC, DE, FG, GH} 

covered in experiment 1.  
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3.3. Hierarchical Bayesian implementation of the naïve (no clusters) QP model (QPN) 

We implement the QP model described above using Markov chain Monte Carlo (MCMC) 

sampling in JAGS4. The validity of the inferred parameters is assessed using the 𝑅𝑅� statistic 

(Gelman & Rubin, 1992), which measures the between-chain to within-chain variance. Figure 5 

shows the graphical model implementation of the basic QP model. The model requires inference 

on the rotation parameters (θX and θZ), and the projection orders for the situations where there 

are two known variables (i.e., situations A, C, F and H) for each participant. We propose a 

hierarchical Bayesian model, which allows us to account for individual differences 

systematically. The first QP model we implement is a naïve model that assumes no clustering of 

participants.  

Parameters θZ and θX represent the rotation of the Z and X bases from the standard Y 

basis. Since participants are taught positive causal relationships, the angle between bases of 

causal parent-child relationships are restricted so that the probability of an effect in the absence 

of a cause is not judged more likely than the probability of an effect in the presence of the same 

cause. This restriction is thus placed on θZ and on the difference abs(θX - θZ), since these 

represent the direct parent-child relationships between Z and Y, and between Z and X, in all 

three network structures. Thus, when θZ <  45°, p(y1|z1) > p(y0|z1) and p(y1|z1) > p(y1|z0). 

Parameters for all participants are drawn from a single hierarchical distribution in the naïve 

model. Subscript ‘i’ refers to individuals. For situations A, C, F and H there are two possible 

projection orders (see Table 2). The priors in the baseline model are uninformative, and the 

model places an equal prior weight on each projection order for each situation.  

                                                 
4 Code and documentation for a basic implementation of the QP model is included in the online 

supplementary material B. 
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The set of priors used is summarized below, using JAGS notation. 

μZ ~ N(0,1)   μD ~ N(0,1)   

σZ ~ Uniform (0.001,4) σD ~ Uniform (0.001,4)  

θZ,i ~ N (μZ , σZ) T(0, 45°)  θD,i ~ N (μD , σD) T(-θZ,i, 45°) 

θX,i = θZ,i  + θD,i  

The parameters μZ and μD are the group-level means for the rotation of the Z basis and the 

difference (D) in the rotation of the Z and X basis, respectively. The parameters σZ and σD are 

the group-level standard deviations.  

 

Fig. 5. Expanded graphical model for the naïve QP model (QPN). Circular nodes represent continuous variables, 
square nodes represent discrete variables, the connecting structures represent the dependencies between variables, 
and the plates represent repetitions over individuals and problem types. Observed variables are indicated by shaded 
nodes and unobserved variables by unshaded ones. Finally, probabilistic nodes are indicated by a single border and 
deterministic nodes with a double border. The situations A to H are represented by V, and the two situations being 
compared for a question are indicated by V1 and V2. The projection order for any situation V is given by αV, which 
takes on a binary value.  
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Overall, the priors and the structure of the model are identical for all three network 

structures, CC, CH, and CE. The priors and models used are also identical for both datasets, 

except for the softmax rule to calculate relative choice proportions, which is required for the first 

dataset. Thus, differences in inference arising from differences in causal structure are captured 

completely by the inferred values for the rotation and projection order parameters. 

To formulate the specific causal networks investigated, we set the basis for Y (all 

inference by participants is made on the variable Y) as the standard basis, and two free 

parameters denote rotations for the basis vectors of X and Z in the 2-dimensional space. 

Rotations are restricted to the first quadrant, to reduce identifiability issues (for example, a 

rotation from y1 of 30° and 330° would result in an identical projection onto y1). As noted, the 

location of the state vector is assumed fixed at a neutral position of 45° to the standard basis (y0-

y1). But, since all inferences are conditional on at least one of the two variables X and Z, the 

position of the state vector becomes redundant for the presently relevant probability calculations 

(because of the memoryless property of the model).5 

The rotation parameters linking the X and Z variables with the Y variable are constrained 

to be same for all situations A-H in the first dataset and A-E, I-K in the second. This implies that 

an individual has the same causal representation under all situations, which means that X, Y, Z 

are incompatible relative to each other in the same way, in different situations. But, we assume 

that processing order can vary between situations. This can be intuitively understood via an 

example – let X have the same known value in two situations which differ only in terms of 

                                                 
5 In situations where the initial state vector has an influence on final probabilities, the location of the state vector 

could be treated as a free parameter and the QP approach cannot be restricted to the simplest possible one. 
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whether Z has a causal influence (value 1) or is unknown. The value of Z, and whether this value 

is in fact known or not, can be envisaged to play a role in whether an individual first processes X 

or Z.  

 

3.4. Hierarchical Bayesian implementation of the latent clustered QP model (QPC) 

We implemented a latent clustering of participants within the QP model, by leveraging 

the natural structural differences in the projection orders that arise in the QP model. We 

augmented the naïve QP model with a latent mixture parameter that provides a classification of 

individuals into multiple clusters. Our latent classification strategy is based on the following 

assumptions, that can in theory be applied to any causal network. 

(1) Each cluster has its own hierarchical parent distribution for all parameters, thus allowing for 

systematic differences in combinations of rotation and projection order parameters. The 

priors on the hierarchical distribution for the rotation parameters are identical and relatively 

uninformed for all groups. Thus, no strong a priori assumptions are made. 

(2) Clusters are identified by combinations of projection orders in situations where more than 

one variable is known, at least one of these variables is known to influence or be influenced 

in a causal relationship with the variable to be inferred, and the two variables are not 

interchangeable. The key assumption here is that the order of processing variables plays an 

important role in individual differences. The discrete nature of possible projection order 

combinations provides a natural way to segregate behavior. 

(3) By implementing this clustering within a Bayesian inference framework, we can obtain the 

likelihood of each participant belonging to each cluster, implemented by classifying each 

participant into the modal cluster identified for that participant.  
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A latent classification parameter (γ) is used to build a mixture model that classifies everyone 

into one of the clusters6. For the first dataset (comparative judgments), there are 3 situations, A, 

C, and F, each with two possible projection orders, that qualify as unique combinations of 

projection orders. This results in 8 possible clusters. For the second dataset (absolute judgments), 

there are 3 situations, A, C, and J, each with two possible projection orders, also leading to 8 

possible clusters. Since the clusters are dependent on the projection orders, the optimal number 

of clusters are automatically chosen by the Bayesian inference mechanism. Foreshadowing 

results, for the first dataset, the modeling approach results in participants inferred to be 

distributed across all 8 possible clusters, although a majority (76, 78 and 72 of 105 participants in 

CC, CH and CE structures respectively) of the participants are inferred to be in 3 of these 8 

clusters. For the second dataset, the modeling results indicate participants to be distributed across 

7 out of the 8 maximum possible clusters in the CC and CE structures respectively, although a 

majority (37 and 42 of 48 in CC and CE structures respectively) of the participants are inferred 

to be in only 3 of these clusters. 

 

4. Specification of heuristic and weighted mixture models based on Rehder (2014) 

Along with the QP model described in the previous section, we also implemented the models 

described in Rehder (2014) within a hierarchical Bayesian framework. Rehder (2014) reported 

that all four strategies (the normative CGM and the non-normative CONJ, DISAB, and ASSC) 

together could account for participants’ behavior. As the present focus is individual differences, 

we are interested in the extent to which the principles embodied in each strategy are uniformly 

                                                 
6 Details in online supplementary material C 
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represented across participants or whether it is the case that different participants focus on 

different strategies. We thus implement each of the four strategies as separate models within a 

Bayesian hierarchical framework, as well as a combined weighted mixture model (WTM) that 

assumes a mixture of the four strategies for everyone (i.e. within-participant mixture)7. For the 

WTM model, the final probability is calculated as a weighted mixture of the 4 strategies, with the 

weights as free parameters at an individual level. For example, if 𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑇𝑇𝑊𝑊 denotes the relative 

probability of selecting F (e.g. 0.75 implies selecting F rather than G 75% of the time) under the 

weighted model, this is calculated as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑇𝑇𝑊𝑊 = 𝑤𝑤𝐶𝐶𝐶𝐶𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑊𝑊 + 𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤𝐴𝐴𝑆𝑆𝑆𝑆𝐶𝐶  𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝑆𝑆𝑆𝑆𝐶𝐶

+ 𝑤𝑤𝐷𝐷𝐷𝐷𝑆𝑆𝐴𝐴𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝑆𝑆𝐴𝐴𝐷𝐷                           (9) 

The same choice rule for comparing situations is used in all of the models.  

 

5. Applying the models to comparative judgments (dataset 1) 

The comparative mean choice proportions for five types of problems aggregated over 4 

trials for each type of question i.e. (20 questions per participant) x 105 participants for each of 

the three network structures x 3 different network structures (common cause, chain, common 

effect) were used to fit each of the seven models (CGM, CONJ, ASSC, DISAB, WTM, QPN, 

and QPC) and generate posterior parameter and posterior predictive distributions.  

5.1. Model comparison 

Figure 6 shows a comparison of the actual behavior and mean posterior predictive values 

based on the WTM, naïve QP, and clustered QP models. The comparison is separated based on 

                                                 
7 The detailed specification of these 4 heuristic models is included in the online supplementary material D. 
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the grouping of causal and non-causal reasoners reported in Rehder (2014). The relatively 

superior fits of the QP models for the non-causal reasoners can be seen, across all three network 

structures. The performance of the individual clusters identified by the QPC model is reviewed 

in greater detail in subsequent sections. 

 

 

 

 
Fig. 6. Comparative judgments (dataset 1): Mean posterior predictive based on the naïve QP (QPN), clustered QP 
(QPC), and WTM models compared to actual behavior. The gray bars represent the mean actual behavior of the 
causal and non-causal participants as identified in Rehder (2014). 
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Model fit is compared using deviance information criteria (DIC), which is a hierarchical 

modeling generalization of the AIC and BIC, and considers both model fit and complexity for 

comparing models 8. A lower DIC value is considered better. DIC is computed as the sum of 

DBAR (fit of the model to the data) and PD (effective number of parameters of the model). 

Model fit is also assessed by comparing the correlation, bias, and RMSE of the posterior 

predictive vs actual observations (Table 3). Table 3 summarizes performance of the six models 

across the three structures. The clustered QPC model shows the lowest (best) DIC measure 

across all comparisons, with the slightly higher penalty for complexity (reflected in the higher 

PD value, which measures the effective number of parameters) being more than compensated for 

by the superior fit (reflected in the significantly lower DBAR values). The QPC model shows the 

highest correlation and lowest RMSE of the posterior predictive vs the actual data across all 

network structures. It also has lower bias (average error between observed data and expected 

predictions of the model) than most of the models across all networks9. Note, the superiority of 

QPC relative to QPN supports the hypothesis of individual differences in causal reasoning 

performance, as Rehder (2014) originally suggested.  

The individual classical probability or heuristic based models struggle to demonstrate a 

good fit across all the three network structures, especially in the common effect structure. The 

CGM, ASSC and DISAB models can show an adequate fit at the aggregate level for the causal 

reasoners, but not for the non-causal reasoners10. The effectiveness of these models is improved 

using the weighted (WTM) model11. Even the WTM model however cannot match the 

                                                 
8 DIC was calculated using the JAGS DIC package. 
9 See online supplementary material E for a split of the correlation, bias and RMSE by type of reasoner 
10 See online supplementary material F for details of the model fits segregated by type of reasoner 
11 See online supplementary material G for details of the inferred strategy weights for the WTM model 
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performance of the QP models for all three structures. Interestingly, the clustered QPC model 

shows lower model complexity, measured by the effective number of parameters (PD), than the 

naïve QPN model, and at a comparable level to the WTM model. 

 
Table 3. Model Comparison. DIC is the deviance information criteria and measures the fit (DBAR) and complexity 
(PD; measures the effective number of parameters) of the models, DIC = PD + DBAR. Lower values of DIC, DBAR 
and PD are desirable. The QP model has the lowest values for all 3 network structures. The correlation, bias and 
RMSE are measured between the mean of the posterior predictive values generated by the model and the actual data. 
Higher correlation, lower bias and RMSE are desirable. Numbers in bold indicate the best model per that criterion. 
 

Common Cause 
Model DIC PD DBAR Correlation Bias RMSE 

CGM 1975 53 1922 0.57 -0.074 0.192 
CONJ 2957 58 2899 0.35 -0.103 0.281 
ASS 1796 77 1719 0.71 -0.007 0.153 
DISAB 1809 114 1695 0.73 -0.025 0.150 
WTM 1830 89 1741 0.72 -0.015 0.152 
QP (naïve) 1595 111 1484 0.92 -0.017 0.091 
QP (clustered) 1432 88 1344 0.94 -0.014 0.077 

Chain 
Model DIC PD DBAR Correlation Bias RMSE 

CGM 2024 47 1977 0.58 -0.095 0.207 
CONJ 2523 72 2451 0.38 -0.036 0.242 
ASS 1772 79 1692 0.70 -0.023 0.159 
DISAB 1866 76 1790 0.69 0.012 0.165 
WTM 1800 88 1712 0.71 -0.022 0.157 
QP (naïve) 1608 131 1477 0.86 -0.034 0.118 
QP (clustered) 1383 70 1313 0.93 -0.022 0.087 

Common Effect 
Model DIC PD DBAR Correlation Bias RMSE 

CGM 2501 87 2415 0.43 -0.042 0.246 
CONJ 2551 77 2474 0.49 -0.003 0.251 
ASS 2443 69 2374 0.59 0.069 0.242 
DISAB 2456 82 2374 0.46 -0.021 0.238 
WTM 2159 82 2078 0.78 0.017 0.194 
QP (naïve) 1725 109 1616 0.92 0.01 0.112 
QP (clustered) 1627 90 1537 0.92 0.003 0.109 
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5.2. Individual level comparison of QP and WTM models using Bayes Factors  

The data was used to fit the QPC and WTM model within a single Bayesian inference 

framework, which allows us to calculate the pairwise Bayes Factors using the product space 

method (Lodewyckx, Kim, Lee, Tuerlinckx, Kuppens, & Wagenmakers, 2011). A Bayes Factor 

comparison (ratio of likelihoods of the observed data given each model) considers model fit and 

complexity and measures the relative evidence for one model over another. A Bayes factor (BF) 

of one indicates equal evidence for both models under consideration. Only BFs that are larger 

than 10 (or smaller than 10-1) are considered strong, and those that are larger than 100 (or smaller 

than 100-1) are considered decisive (Jeffreys, 1961). We measure the pairwise Bayes factor12 at 

an individual level for each participant. Figure 7 shows the individual level log Bayes factors 

(LBF) in favor of the QPC model versus WTM. 73 of the 315 participants had strong (LBF > 

log(10)) or decisive evidence (LBF > log(100)) in favor of the QPC model, and 33 in favor of the 

WTM model.  

 

Fig. 7. Individual differences model comparison: Pairwise log Bayes factors (LBF) by individual. Black bars 
represent non-causal reasoners and gray bars causal reasoners (based on Rehder’s, 2014, classification). Log Bayes 
factors are plotted in favor of the QPC model vs WTM model, so that positive values are in favor of QPC and 
negative values are in favor of WTM. The plots show regions of strong (LBF > log(10) in favor of either model) and 
decisive (LBF > log(100) in favor of either model) evidence based on LBF. 
 

                                                 
12 Details of the methodology and pseudopriors used are provided in the online supplement K. 
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We examined whether there are data patterns that the QPC model can account for but the 

WTM model cannot (and vice versa), using the 73 and 33 participants for which the LBF 

strongly favors one of the two models. Figure 8 highlights the mean posterior predictive values 

from the two models compared to the actuals, for these participants. Points along the diagonal 

reflect most accurate model behavior. The top panel shows that the WTM model sometimes 

finds it hard to account for judgments which the QPC model describes reasonably well for the 73 

participants. The bottom panel shows that for the 33 participants where the LBF strongly favors 

the WTM model, the WTM model does not generally provide superior fits compared to the QPC 

model. 

 

 

Fig. 8. Mean posterior predictive vs actuals for participants where BFQP vs WTM > 10 (top panel, 73 participants) and 
BFWTM vs QP > 10 (bottom panel, 33 participants). This figure shows all question types combined (comparisons AB, 
BC, DE, FG, and GH) for the three network structures. The model posterior predictive values are similar in the 
bottom panel. On the other hand, the top panel shows that the WTM model struggles to fit behavior for participants 
where the QPC model shows superior BF. This is especially true for extreme values of comparative judgments that 
the QPC model can account for, but the WTM model does not.  
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5.3. Clustering for comparative judgments 

The clustered QPC model groups participants probabilistically into clusters based on the 

preferred projection orders. The clustering emerges as a natural property of the QPC model, with 

the only prior attribution being differences in projection orders. By examining the resulting 

clusters and inferred rotation parameters for each, we can attribute interpretable behavioral 

characterizations to each cluster. By grouping participants based on the modal cluster, we 

identify multiple behavioral patterns that show nuanced differences compared to a broad 

classification into just causal versus non-causal reasoners. Table 4 show the latent QPC based 

clustering of participants for each of the three networks. The rows show the 8 clusters and the 

behavioral characterization for each. Participants in each cluster may show some variation of 

rotation parameters within the cluster, however the variation between clusters is significantly 

higher than within cluster. The columns show the mean value of the X and Z rotation parameters 

in each cluster. The rotations do not reveal the direction of causality but the strength of the 

bidirectional association between the variables, with a lower rotation implying higher associative 

strength. A rotation of less than 45° indicates a positive association, and more than 45° indicates 

a negative association between the target variable Y and the relevant variable X or Z 

(independence between 2 variables is characterized by an angle of 45°). The rotation parameters 

along with the distinct behavioral patterns and projection orders highlight how the different 

clusters plausibly reflect distinct behaviors13. The remaining columns show the number of 

participants out of 105 in each network that are classified into each cluster. The columns CR and 

NR show participants classified as causal and non-causal respectively by Rehder (2014).   

                                                 
13 See online supplement H for the joint posterior density of the rotation parameters for each cluster. 
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Table 4. Clustering under the QPC model. Note that since clustering takes place within a probabilistic inference 
framework, the grouping is reported based on the cluster that was the modal cluster for each participant. 
 

Common Cause network Mean inferred 
rotation (degrees) 4 

Latent 
Classification 5, 6 

Cluster 1,2 Conflict Symmetry X Z  CR NR total 
 (focused variable3)        
1. AZ1-CZ1-FZ0 Immediate No 0.3 24.4  31 1 32 
2. AZ1-CZ1-FX1 Present No 44.1 42.4  12 - 12 
3. AZ1-CX0-FZ0 Absent No 9.6 27.5  6 2 8 
4. AZ1-CX0-FX1 Distant No 31.0 10.6  1 5 6 
5. AX1-CZ1-FZ0 Immediate Yes 16.1 17.4  31 1 32 
6. AX1-CZ1-FX1 Present Yes 37.8 38.5  - 2 2 
7. AX1-CX0-FZ0 Absent Yes 4.8 16.3  - 7 7 
8. AX1-CX0-FX1 Distant Yes 31.5 21.6  1 5 6 
Chain network   
Cluster Conflict Compression X Z  CR NR total 
1. AZ1-CZ1-FZ0 Immediate No 0.3 17.9  24 - 24 
2. AZ1-CZ1-FX1 Present No 41.5 40.2  7 - 7 
3. AZ1-CX0-FZ0 Absent No 31.7 30.8  12 1 13 
4. AZ1-CX0-FX1 Distant No 24.8 1.5  - 9 9 
5. AX1-CZ1-FZ0 Immediate Yes 10.2 11.5  33 8 41 
6. AX1-CZ1-FX1 Present Yes 25.7 31.0  - 2 2 
7. AX1-CX0-FZ0 Absent Yes 29.3 17.6  3 1 4 
8. AX1-CX0-FX1 Distant Yes 25.3 13.4  - 5 5 
Common Effect network   
Cluster Conflict Discounting X Z  CR NR total 
1. AZ1-CZ1-FZ0 Immediate Ignore alternate cause 42.7 43.8  41 3 44 

2. AZ1-CZ1-FX1 Distant Ignore alternate cause 
(monotonicity violated) 63.7 43.5  8 - 8 

3. AZ1-CX0-FZ0 Immediate Anti-discounting 
(monotonicity violated) 18.8 24.9  4 8 12 

4. AZ1-CX0-FX1 Distant Anti-discounting 40.1 29.0  - 7 7 

5. AX1-CZ1-FZ0 Immediate Anti-discounting 
(weak positive product synergy) 36.7 36.3  3 5 8 

6. AX1-CZ1-FX1 Distant Discounting 
(strong negative product synergy) 61.2 39.0  7 - 7 

7. AX1-CX0-FZ0 Immediate Anti-explaining away 
(weak positive product synergy) 38.8 34.7  2 1 3 

8. AX1-CX0-FX1 Distant Explaining away 
(strong negative product synergy)  68.4 44.0  16 - 16 

Notes: 
1. Clustering is based on the preferred projection orders, i.e. whether final projection is on Z or X 
2. Projection order: for each situation, we show where the final projection is made from, e.g. for AZ1 the final projection 

is made from Z1 for situation A.  Recall, for Rehder’s (2014) dataset, inference is always made on variable Y. For all 
networks, immediately related variables are ones that are in a direct child or parent relationship (e.g., in the CC 
network Z-X and Z-Y), otherwise they are distant. For all three networks Z is the immediately related variable and X 
the distant variable. For the CC network the common cause is Z and the effects X, Y. For the CH network the effect is 
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Y and X, Z are causes. For the CE network, the common effect is Z. The target cause is the one about which reasoners 
have to make an inference (Y), the alternate cause (X) is the other one.  

3. The focused variable is the one from which the last projection is made. 
4. Mean rotation parameters (degrees) are the inferred means for the clusters, but note that there exist individual 

differences within clusters as well (see online supplement H for details of the cluster level distributions) 
5. Latent classification shows the number of participants classified based on the modal cluster 
6. CR (causal) and NR (non-causal) participants as identified by post hoc clustering in Rehder (2014) 

 

Behavior in each cluster (a latent group identified by the QP model) can be characterized 

by considering what happens in each situation (i.e., a particular combination of X, Z, e.g., 

C(Z1X0)). An empirical effect relevant for all networks is conflict. Conflict situations are those 

where a causal relationship appears to be violated, that is, an effect is absent even in the presence 

of its cause, or an effect is present even when none of its causes are present. Plausible heuristics 

that people may use to respond to such situations include focusing on the variable that is present 

(i.e., the projection order for situation S would be e.g. SX1 or SZ1, so that the last projection is 

from X1 or Z1), on the variable that is absent (i.e., the projection order for situation S would be 

e.g. SX0 or SZ0, so that the last projection is from X0 or Z0), on the variable that is immediately 

related (Z; note this is normative for CC and CH networks), or on the variable that is distant (X).  

For clusters in the common cause network, situations C(Z1X0) and F(Z0X1) represent 

conflict. Another relevant effect is symmetry, in situation A(Z1X1), whereby reasoners make 

inferences on the effect Y, based on an assumption of association/ equivalence between the 

effects sharing the cause (symmetry is a subset of non-independence). For example, in situation 

A, if the cause X has value 1, then by symmetry, cause Y is also 1. 

Regarding the chain network, C(Z1X0) and F(Z0X1) are conflict situations. Situation 

A(Z1X1) potentially reflects a compression effect, whereby inference at one end of the chain is 

based on the other end of the chain, ignoring intermediate nodes. For example, in situation A, if 

the cause X has value 1, then by compression, effect Y is also 1. 
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In the common effect network, only situation F(Z0X1) represents conflict. In situations 

A(Z1X1) and C(Z1X0) the common effect (Z) is present and there is a question of the association 

between the X, Y causes. Positive (the two causes enhance each other), negative (the two causes 

undermine each other), zero, or ambiguous (it is not known to the reasoner whether the causes 

enhance or undermine each other) product synergy can exist between causes (Wellman & 

Henrion, 1993; Druzdzel & Henrion, 1993). Product synergy captures the sign of conditional 

dependence between the two causes. Negative synergy is related to the effects of discounting and 

explaining away, whereas positive synergy is related to anti-discounting. Explaining away is 

defined as when the probability of the target cause being present is strictly reduced, as the 

alternate cause goes from being absent to ambiguous to present (Rehder & Waldmann, 2016), 

and is normative. Explaining away is a strong form of discounting. Negative product synergy 

may not necessarily result in the conditions for explaining away, but still lead to discounting, 

specifically active discounting (no distinction between the alternate cause being absent or 

ambiguous, but lower probability of target cause when the alternate cause is present) and passive 

discounting (no distinction between the alternate cause being present or ambiguous, but higher 

probability of target cause when the alternate cause is absent).  

Detecting conflict and symmetry effects depends only on projection order parameters, but 

for explaining away or types of discounting in the CE network, one also has to consider QP 

rotation parameters. For inferences based on the last projection being from the alternate cause X, 

θX > 45° reflects explaining away, based on presence or absence of this alternate cause. θX < 45° 

indicates that reasoners correlate alternate causes, so this corresponds to anti-explaining away. 

For inferences based on the last projection being from common effect Z, this corresponds to 

ignoring the alternate cause altogether. A further distinction is relevant in situations A and C in 
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the CE network, for which active discounting (or anti-discounting) occurs when the alternate 

cause is considered in situation A but not in C, and passive discounting (or anti-discounting) 

occurs when the alternate cause is considered in situation C but not in A. Here it is both θZ and 

(θX - θZ) that determine whether we have discounting or anti-discounting. In some such cases, 

there may be only partial evidence for such effects.  

For the CE network, also relevant is the possibility of ambiguous product synergy, where 

the nature of relationship between causes is unknown (Wellman & Henrion, 1993). If the value 

of the alternate cause is unknown, reasoners may have difficulty thinking of how the two causes 

are related. So, we may have scenarios where the probability of the target cause is judged to be 

especially high or low when the alternate cause is unknown (situation B) compared to when it is 

known (situations A and C), violating the monotonicity of probability of target cause conditional 

on the probability of alternate cause. Specifically, we could have probability of A vs B > 0.5 and 

probability of B vs C < 0.5 (i.e. probability of B is low), or probability of A vs B < 0.5 and 

probability of B vs C > 0.5 (i.e. probability of B is high). This behavior indicates discounting in 

one comparison and anti-discounting in the other. Note, it would be difficult to explain such 

behavior classically, but in the QP model, when the value of the alternate cause (X) is unknown, 

the probability calculations for situation B (see Table 2) make it possible to violate monotonicity.  

So far we focused on situations A, C, F, since these guide the clusters. Additionally, for 

all three networks, we can interpret judgments in situations D, E, where Z is unknown, using θZ. 

When θZ is small, the judged relative probability of D vs E is very sensitive to θX, whereas as θZ 

approaches 45°, situations D and E are judged as almost equally likely, regardless of θX. 

Intuitively, clusters with high values for θZ imply that individuals treat X and Y as relatively 

independent.  
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Armed with the precise characterization of each cluster from the QP model parameters 

(projection order and rotation angles), we can look at the clusters identified by the Bayesian 

latent classification and explore individual differences. We start with normative behavior. 

Aspects of normative behavior (such as independence) are reflected in most clusters, but purely 

normative clusters are relatively rare. For both the CC and CH networks, only cluster 1 is 

normative. Normative behavior in the CC network requires no symmetry and resolution of 

conflict situations using the immediate variable (as in cluster 1), and in the CH structure requires 

no compression and resolution of conflict situations under the immediate variable (again as in 

cluster 1). These conditions essentially imply that the final projections should not be from the 

distant variable X when both variables are known. 

In the CE network, normative behavior depends on both projection order and rotation 

parameters, and in fact, none of the clusters are completely normative across the requirements 

from both the Markov condition and discounting. A completely normative cluster in the CE 

network would have projection orders as in cluster 7 (AX1-CX0-FZ0), required for the Markov 

condition, and rotation parameters as in cluster 8, θX>450 for discounting or explaining away. 

Projection orders different from cluster 7 violate the Markov condition by ignoring the alternate 

cause when the effect is present or by considering the alternate cause when the effect is absent. 

On the other hand, θX<450 implies a positive synergy between the alternate and target cause, and 

thus results in behavior that is opposite to discounting or explaining away.    

One way to characterize the degree of normativity of a cluster is to calculate the 

difference (RMSE) between the mean proportions for participants in the cluster, and the 

predictions from the normative CGM network (as reported in Rehder, 2014). These RMSE 

values are calculated for each cluster, and also summarized across groups of clusters. These 
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groups are based on how participants in a cluster handle conflict, as well as symmetry (in CC), 

compression (in CH), and discounting (in CE). These grouped RMSE values are shown in table 

514. Higher RMSE indicates greater deviation from normative behavior. 

Table 5. RMSE shows the difference between mean proportions for participants in each cluster (based on modal 
cluster) and the normative predictions of the CGM model (Rehder, 2014). Lower values of RMSE closer to zero 
indicate normative-like behavior, and higher values indicate greater deviation from normative behavior. The RMSE 
values are based on a comparison of all 5 comparative probability judgments for each network structure. The 
clusters are grouped based on conflict and symmetry behavior for common cause, conflict and compression behavior 
for chain, and conflict and discounting behavior for common effect structures. Value in bold indicate large 
differences between groups. 
 

Common Cause  Clusters RMSE versus Normative #Participants 

Conflict 

Immediate 1,5 0.13 64 
Present 2,6 0.24 14 
Absent 3,7 0.32 15 
Distant 4,8 0.37 12 

Symmetry 
No 1,2,3,4 0.22 58 
Yes 5,6,7,8 0.22 47 

Chain  Clusters RMSE versus Normative #Participants 

Conflict 

Immediate 1,5 0.14 65 
Present 2,6 0.22 9 
Absent 3,7 0.27 17 
Distant 4,8 0.38 14 

Compression 
No 1,2,3,4 0.22 53 
Yes 5,6,7,8 0.22 52 

Common Effect  Clusters RMSE versus Normative #Participants 

Conflict 
Immediate 1,3,5,7 0.38 67 
Distant 2,4,6,8 0.39 38 

Discounting 
Ignore alternate cause 1,2 0.32 52 
Anti-discounting 3,4,5,7 0.53 30 
Discounting 6,8 0.30 23 

 

For the CC network, conflict seems to play a large role in influencing normative 

behavior, with an RMSE of 0.13 for immediate, 0.24 for present, 0.32 for absent, and 0.37 for 

                                                 
14 See online supplement I for RMSE by individual cluster, to see how the different clusters represent 

different aspects of normative versus non-normative behavior. 
 



Individual differences in Causal Reasoning 
 
 

49 

distant resolutions of conflict situations. Presence (mean RMSE 0.22) or absence (mean RMSE 

0.22) of symmetry does not seem to be a significant factor regarding variability in normative 

behavior. The CH network shows similar trends, with an RMSE of 0.14 for immediate, 0.22 for 

present, 0.27 for absent, and 0.38 for distant resolutions of conflict situations. Presence (mean 

RMSE 0.22) or absence (mean RMSE 0.22) of compression similarly does not seem to be a 

significant factor. For the CE network, conflict does not appear to make normative behavior 

more or less likely. The mean RMSE is similar for clusters where discounting is demonstrated 

(mean 0.30) and where the alternate cause is ignored (mean 0.32), but much higher (i.e. greater 

deviation from normative) when anti-discounting behavior is demonstrated, with a mean RMSE 

of 0.53, as is expected. 

We now proceed to consider individual differences more generally. For the CC network, 

most participants were assigned to clusters 1 & 5. For both clusters, final projection is from the 

immediate variable Z, not the distant variable X, under both conflict situations C and F. 

Behaviorally, this suggests that reasoners are taking into account exclusively or primarily just the 

immediate variable, which is normative, since the causes are independent. Indeed, 64 out of 82 

causal reasoners from Rehder (2014) are clustered in clusters 1 & 5. However, 12 out of 82 of 

Rehder’s (2014) causal reasoning are in cluster 2, where the final projection is from the present 

(=1) variable under both conflict situations C, F, which is normative only for situation C but not 

F. In the latter case, this possibly indicates matching behavior (Evans & Lynch, 1973) or some 

other attentional bias. Rehder’s (2014) non-causal reasoners are 10/23 in clusters 4 & 8 and 9/23 

in clusters 3 & 7. The latent clustering indicates a diversity of ways in which non-normative 

behavior can arise, mostly in terms of which variable is focused on and whether symmetry is 

adhered to (non-normative) or not. For example, for conflict situations C, F, there is evidence for 
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a bias to focus both on the distant variable (clusters 4 & 8) and the absent one (clusters 3 & 7). 

Overall, of the 105 participants, 47 were clustered in groups that showed symmetry under 

situation A, whereas the remaining 58 did not.  

For the CH network, the latent clustering again reveals a large number of participants in 

clusters 1 & 5, for which the final projection is from the immediate variable Z, not the distant 

one X, in both conflict situations C, F (which is normative, because of independence). Of 

Rehder’s (2014) causal reasoners, 57/79 are in clusters 1 & 5. The non-normative participants are 

again distributed in several smaller clusters, showing a variety of behavioral patterns. For 

example, clusters 4 & 8, representing 14/26 of Rehder’s (2014) non-causal reasoners, reflect last 

projection from the distant variable in conflict situations C, F, violating the Markov condition. 

There was a large percentage of compression instances (52/105).   

For the CE network, as above, final projection from the immediate variable Z, rather than 

the distant one X, is the normative behavior in conflict situation F and 50/81 out of Rehder’s 

(2014) causal reasoners are in corresponding clusters. However, equally 17/24 of non-causal 

reasoners were also included in such clusters. Unlike for the CC and CH networks, together with 

the conflict situation we have to consider (normative) discounting behavior (determined from the 

rotation parameters) before a response pattern is considered as normative. So, in clusters 3, 4, 5, 

and 7 there is evidence for anti-discounting and account for 21/24 of non-causal reasoners from 

Rehder (2014). In clusters 6, 8 parameter analysis reveals mostly discounting behavior and 23/81 

causal reasoners from Rehder (2014) are in these clusters. However, 49/81 of Rehder’s (2014) 

causal reasoners were also in clusters 1, 2, which show no discounting (the alternate cause is 

basically ignored, when its presence should inform the inference from the target cause). No 

discounting is not normative, so this is a situation where the present approach deviates from 
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Rehder’s (2014) classification in a substantial way. Analogously, 41 of Rehder’s (2014) causal 

participants were assigned in cluster 1, but again in that cluster there is clear evidence for non-

normative behavior (the alternate cause is ignored, so no discounting).  

Interestingly, θZ values are relatively higher for the CE network (mean 37°) compared to 

the CC (mean 24°) and CH (mean 17°), implying that the primitive probabilistic association 

between cause and effect is affected by the network structure. These values imply that the 

average conditional probability of an effect given the cause, independent of other variables, 

would be approximately 0.65 in the CE, but closer to 0.9 in the CH and 0.83 in the CC network. 

Figure 9 shows the mean actual behavior, and posterior predictive based on the QPC and WTM 

models for participants in each of the 8 clusters inferred from the QPC model, for the three 

network structures. The merit of the QPC model is evident in, for instance, groups 4, 6, and 7 

(about 14% of participants) in the common cause and chain networks, and groups 2, 4, and 8 

(about 30% of participants) in the common effect structure, where the WTM finds it difficult to 

account for these behavioral data. In most of the remaining clusters, the QPC model is still 

slightly better, or comparable, to the WTM model. Overall, a merit of the QPC approach is that it 

enables a precise characterization of behavior in each cluster. First, we can trace the exact way in 

which violations of normative prescription arise. For example, the link between potential conflict 

and non-normative behavior is a novel inference from the QP model that is not apparent from the 

WTM or any of the underlying heuristic models. Second, the QP model distinguishes between 

ignoring alternate causes, discounting, and anti-discounting, and between active and passive 

drivers of discounting or anti-discounting. Clusters also reflect differences in responding to 

uncertainty, attenuating network structures through mechanisms such as compression and 

symmetry, and primitive strength of probabilistic cause-effect associations.  
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Fig. 9. Comparative judgments (dataset 1): Mean posterior predictive based on the QPC and WTM models 
compared to the mean actual behavior (gray bars). The data is shown separately for each cluster identified by the 
QPC model. The plot titles show the number of participants in each cluster (based on modal cluster values). 
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All these factors are employed to understand heterogeneity amongst participants. This 

behavioral characterization is conducted using clusters which are inferred without the application 

of any specific prior knowledge15.  

 
6. Applying the models to absolute judgments (dataset 2) 

6.1. Model comparison 

Figure 10 shows the mean actual (from Rehder & Waldmann, 2016) and mean posterior 

predictive absolute judgments based on the WTM, QPN, and QPC models. Table 6 compares the 

models using DIC, correlation, bias, and RMSE. The posterior predictive generated by the QPN, 

QPC, and WTM models are highly similar. The WTM model has better DIC, correlation and 

error metrics for the common cause network, whereas the QPC model has better DIC, 

correlation, bias and RMSE metrics for the common effect network. Even though the differences 

are not as pronounced as in the first dataset, the main question presently is whether the simple 2-

dimensional QP model can generate plausible absolute probability judgments in a variety of 

situations: the QPN model is comparable to the WTM for absolute judgments.  

 

Fig. 10. Absolute judgments (dataset 2): Mean posterior predictive based on QPN, QPC, and WTM models 
compared to the mean actual behavior (gray bars).  

                                                 
15 Since the QPC model predictions are based on comparative judgments, a satisfactory plausibility check 

involves examination of the intermediate absolute probability judgments inferred by the model. This is presented in 
the online supplement J. 
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Table 6. Model Comparison. DIC is the deviance information criterion and measures the fit (DBAR) and 
complexity (PD; measures the effective number of parameters) of the models; DIC = PD + DBAR. Lower values of 
DIC, DBAR and PD are desirable. The correlation, bias and RMSE are measured between the mean of the posterior 
predictive values generated by the model and the actual data. Higher correlation, lower bias and RMSE are 
desirable. Numbers in bold indicate the best model per that criterion. 
 

Common Cause 
Model DIC PD DBAR Correlation Bias RMSE 

WTM -417 104 -520 0.97 -0.03 0.07 
QPN (naïve) -260 87 -347 0.95 -0.04 0.09 
QPC (clustered) -319 49 -368 0.96 -0.04 0.09 

Common Effect 
Model DIC PD DBAR Correlation Bias RMSE 

WTM -270 68 -339 0.96 -0.05 0.08 
QPN (naïve) -325 108 -432 0.96 -0.04 0.07 
QPC (clustered) -427 63 -490 0.97 -0.03 0.06 

 
Table 7. Clustering under the QPC model. Since clustering takes place within a probabilistic inference framework, 
the grouping is reported based on the cluster that was the modal cluster for each participant. Latent classification 
shows the number of participants classified based on the modal cluster. See the Table 4 caption for terminology.  

Common Cause network Mean inferred rotation 
(degrees) 

Latent 
Classification 

Cluster Conflict-J Conflict-C Symmetry X Z total 
1. AZ1-CZ1-J0 Absent Immediate No 14.4 14.0 6 
2. AZ1-CX0-J0 Absent Distant No 32.1 16.2 3 
3. AX1-CZ1-J0 Absent Immediate Yes 7.4 19.7 11 
4. AX1-CX0-J0 Absent Distant Yes 21.2 17.5 1 
5. AZ1-CZ1-J1 Present Immediate No 14.3 12.1 9 
6. AZ1-CX0-J1 Present Distant No 36.8 17.3 1 
7. AX1-CZ1-J1 Present Immediate Yes 5.5 21.5 17 
8. AX1-CX0-J1 Present Distant Yes 23.0 20.1 - 

Common Effect network Mean inferred rotation 
(degrees) 

Latent 
Classification 

Cluster Conflict-J Discounting X Z total 

1. AZ1-CZ1-J0 Absent Ignore alternate cause 
(monotonicity violation) 47.1 27.4 1 

2. AZ1-CX0-J0 Absent Anti-discounting 43.1 13.2 1 
3. AX1-CZ1-J0 Absent Anti-discounting 19.1 34.9 1 
4. AX1-CX0-J0 Absent Anti-explaining away 31.2 23.0 - 
5. AZ1-CZ1-J1 Present Ignore alternate cause 22.1 22.0 11 

6. AZ1-CX0-J1 Present Anti-discounting 
(monotonicity violation) 44.7 35.8 3 

7. AX1-CZ1-J1 Present Discounting 41.2 0.3 23 

8. AX1-CX0-J1 Present Focus on alternate cause 
(but zero product synergy) 43.8 16.7 8 
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6.2. Clustering for absolute judgments 

Table 7 shows the modal clustering of participants into one of the 8 natural clusters. 

Figure 11 compares the actual and posterior predictive absolute judgments16. An important 

addition to this dataset is situation J, where one of the effects (causes) in the common cause 

(common effect) network is 0 and the other is 1, and inference needs to be made on the common 

cause (common effect). Since both known variables are immediately related to the variable on 

which inference is being made, the conflict situation J can be resolved by either selecting the 

variable that is present (1) or absent (0). The projection orders in the QP models thus either select 

the variable that is 0 (J0) or 1 (J1) to make the final projection (Table 2). Since the networks were 

taught to participants based on the influence of cause present variables, under the QP model, 

projection order J1 comes closest to normative behavior.  

We rely on the same principles as in section 5.3 to characterize the clusters, in terms of 

the various effects of conflict, symmetry, discounting, etc.. In the CC network, for conflict 

situation C, 43/48 participants are clustered under groups where focus is on the variable in an 

immediate relationship with the target variable (normative). Regarding conflict situation J, 

evidence for normative behavior is more mixed, with 27 out of 48 participants clustered under 

groups where focus is on the present (clusters 5-8) vs absent (clusters 1-4) variable. In clusters 5-

8 the probability of J is higher than 0.5 and in clusters 1-4 lower than 0.5. Therefore, 

interestingly, focus on the present vs. absent variable and the corresponding change in normative 

status appears to impact the perception of probability for the situation.  

                                                 
16 The online supplement L compares the joint posterior density of the rotation parameters, by cluster. 
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In the common effect network, 45 out of 48 participants are clustered under groups where 

conflict in situation J is resolved based on the present (clusters 5-8) vs absent (clusters 1-4) 

variable. Overall, most of the participants here are in clusters 5, 7, or 8 and, even though the 

focus on the present cause in J is normative, in some of these clusters there is no evidence of 

discounting (in situations A, B, C), which is not normative. In cluster 5 participants ignore the 

alternate cause (i.e., no discounting), demonstrating higher absolute probabilities in situations A, 

B, and C. Participants in cluster 8 focus on the alternate cause X, but the inferred rotation 

parameters (θX very close to 45°) show that there is almost no product synergy. Hence the 

presence, absence, or ambiguity of the alternate cause X seem to provide almost no information 

to participants about Y, resulting in absolute judgments of probability close to 0.5 for Y 

conditional on X1 or X0, in situations A, B, and C. That is, focus on X does not appear to 

translate into discounting.  

However, in cluster 7, there is mixed evidence for discounting. In situation C, the low 

value of θZ (mean 0.3°)  leads to a high inferred probability of the target cause (p(Y | Z1) is very 

high), i.e. we observe discounting relative to situation B. Under situation A though, inference is 

made based on a relatively uninformative alternate cause (mean θX = 41.2°), so there is no drop 

in probability in situation A compared to B (i.e., no discounting). The non-normative responses 

(a small minority) to situation J in clusters 1-4 cannot be effectively captured by the WTM 

model, but are well characterized by the QPC model. 
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Fig. 11. Absolute judgments (dataset 2): Mean posterior predictive based on the QPC and WTM models compared 
to the mean actual behavior (gray bars). The data is shown separately for each cluster identified by the QPC model. 
The plot titles show the number of participants in each cluster (based on modal cluster values). 
 

7. General Discussion 

Evidence of non-classicality in causal reasoning has been abundant, but a rigorous 

formalization of non-classical principles, to complement normative ones, has been elusive. An 

important step in that direction was Rehder’s (2014) proposal of three heuristic strategies, 
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intended to complement normative principles. Because of a track record of applications of QP 

into decision situations that conflict with classical normative prescription, we were interested in 

whether a QP model could be proposed for causal reasoning, that would encompass some or all 

of the heuristic strategies Rehder (2014) proposed. We outlined the ‘most quantum’ possible QP 

model, based on the simplest possible representations (coplanar rays) for the relevant variables, 

to account for the data in Rehder (2014) and Rehder and Waldmann (2016). Rehder (2014) 

developed his empirical tests specifically to test violations of classicality so we reasoned that, if 

such a ‘most quantum’ QP model were to have a chance, these would be suitable datasets to test 

it on.  

The advantages of this approach are that this simple QP model enables a clear expression 

of quantum principles potentially applicable in causal reasoning and corresponding performance 

predictions at the individual participant level not apparent in existing models of causal reasoning. 

For instance, the QP model allows inferences on mental processing order of causal variables and 

indeed on which variables are utilized or not. Moreover, regarding individual differences, Rehder 

(2014) already reports many interesting insights. We aimed for a more detailed analysis, guided 

by latent classification of the QP parameters. This allowed identification of several determinants 

of individual differences, including conflict situations in all networks, symmetry in CC networks, 

compression in CH networks, and a range of discounting, anti-discounting and intermediate 

behaviors in CE networks.  

Overall, this paper provides one of the most detailed individual differences analyses in 

causal reasoning, as implemented within a hierarchical Bayesian framework (cf. Busemeyer, 

Wang, & Shiffrin 2015), and involving classical (normative) influences, heuristic models, and 

the novel framework for non-classical behavior, QP. The analyses encompassed individual 
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differences in both Rehder’s (2014) extensive data set, involving 315 participants, multiple 

causal structures, and manipulating content, as well as for a second dataset measuring absolute 

probability judgments (Rehder & Waldmann, 2016), involving 48 participants. For these 

particular datasets, the QP model could account parsimoniously for behavior. In the following 

sections, we discuss applicability, scope, strengths and weaknesses of the QP approach to 

investigating individual differences in causal reasoning. 

 

7.1. Complexity and parsimony of QP models 

A concern of QP models is whether they introduce too much complexity. Presently, the 

same QP model was used for all three network structures and for absolute and comparative 

judgments of probability, without strong informative priors. Moreover, at an individual level the 

QP model has two rotation parameters, a latent class parameter, and a projection order 

parameter. A complete weighted mixture of strategies model (WTM) as proposed by Rehder 

(2014) involves 17 parameters (4 mixture weights, 3 CGM, 3 CONJ, 2 ASSC, and 5 DISAB 

parameters).  

We have explored the questions of fit and complexity in multiple technical ways. The QP 

model showed categorically better model fits. Across the three network structures, the posterior 

predictive of the QPC model shows a correlation with the actual data ranging from 0.92 to 0.94, 

whereas the classical probability and heuristic models showed correlations ranging from 0.35 to 

0.78, for the first dataset using relative probability judgments. A Bayes factor comparison with 

the WTM model showed that for 66% of the participants, the Bayes factor did not exceed 10 

(representing strong evidence) in favor of either model.  Of the remaining 34% participants, 23% 

showed a BF greater than 10 in favor of the QPC model and less than 11% showed a BF greater 
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than 10 in favor of the WTM model. The Bayes Factor comparison considers model complexity 

and fit, and demonstrates that any complexity introduced by the QPC is justified by fit quality 

and posterior predictive generated (cf. Busemeyer, Wang, & Shiffrin, 2015). The DIC 

comparison between models shows that the complexity of the QPC model is comparable to that 

of the WTM model, but the QPC model provides a better fit in most cases. In comparison to 

Rehder’s (2014) models, the QPC model does not show higher RMSE due to overfitting, which 

is typical of overly complex models. Notwithstanding these technical points, the conceptual 

advantage of QPC is that, compared to a combination of four different strategies, QPC applies a 

single set of principles to all three network structures, and can account for individual differences 

across both types of reasoners Rehder (2014) postulated, based on differences in model 

parameters. Specifically, individual behavior patterns that have been conceptualized as involving 

qualitatively different causal models can instead be accommodated through alterations of 

continuous parameters within a single framework. Also, the latent classification emerges from 

the natural structure of the 2-dimensional QP model.  

To show that the QPC model is identifiable, we conducted a parameter recovery exercise. 

The correlation between simulated and recovered data is 0.96, and between simulated and 

recovered parameters is 0.94 and 0.93 for the rotation parameters for X and Z respectively. 

Further details of the parameters and data recovery are included in the online supplement M. We 

also generated data using the WTM model and attempted to recover this using the QPC model. 

The recovery of WTM simulated data by QPC is reasonable (correlation 0.81), but not as robust 

as the fit of human data by the QPC model (correlation 0.93), demonstrating that the improved fit 

of the QPC model is not because it is significantly more flexible. There are clearly some data 
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configurations that the WTM model produces that the QPC model finds difficult to recover. 

Details can be found in supplement N. 

 

7.2. Extensions of the QP model 

The QP model explored in this paper was restricted to a two-dimensional model, which is 

the simplest possible QP model for the relevant causal structures. Such a low dimensionality 

approach requires that the three variables under consideration (X, Y, and Z) are incompatible and 

so should be evaluated sequentially. This model and the underlying assumptions are adequate for 

Rehder’s (2014) and Rehder and Waldmann’s (2016) datasets, including aspects of normative 

behavior (Section 3.3). However, it seems clear that individuals can produce normative behavior 

under a wider range of inference problems, that is, they form compatible (i.e., classical) 

representations of events in some situations. For example, classical probability models provide 

good accounts of causal reasoning when individuals learn causal relationships through 

observation or have access to statistical information (e.g., contingency tables; e.g., Cheng, 1997). 

Thus, a general theory of causal reasoning must be able to account for both Bayesian and non-

Bayesian influences.  

 In the present paper, we focus on the question of whether there are causal reasoning 

situations when the simplest, ‘most quantum’ possible model can provide an adequate account of 

behavior. An advantage of the present approach is that it provides an arguably purer test to the 

hypothesis that incompatibility can have an explanatory role in causal reasoning. The two-

dimensional model discussed in this paper can be considered ‘fully’ quantum since all variables 

are incompatible. For the type of problems explored in this paper, models with more compatible 

events would either be 4 dimensional, which assumes that two of the three variables may be 



Individual differences in Causal Reasoning 
 
 

62 

jointly evaluated, or 8 dimensional, which assumes all variables can be evaluated jointly. All 

models can also be elaborated through the application of POVMs, which retain the 

incompatibility assumption, but represent a situation no longer constrained by reciprocity. 

However, adopting the simplest possible QP model, as we did, has conceptual and technical 

advantages regarding the individual differences and model comparison analyses with the 

heuristic proposals reported in Rehder (2014). 

 Recently, Trueblood et al. (2017) proposed a general framework for human inference 

(including causal inference) using QP theory. Their approach presents a hierarchy of mental 

representations, from ‘fully’ quantum to ‘fully’ classical, that could be adopted in different 

situations. In this hierarchy of models, moving from the lowest level to the highest involves 

changing assumptions about compatibility (i.e., how joint events are represented). Models with 

more incompatible events have lower dimensionality than models with more compatible events. 

Thus, levels in this hierarchy correspond to probabilistic models of different dimensionality with 

the highest dimensional model being ‘fully’ classical and the lowest dimensional model being 

‘fully’ quantum. Because transitions within the hierarchy involve changing assumptions about 

compatibility, there is a transparent, detailed way for how the different models in the hierarchy 

are linked. In particular, Trueblood et al. (2017) showed that as participants gained familiarity 

with a causal reasoning task, there was a shift in the best fit model from quantum to classical. 

These results suggest that when people have more experience in a reasoning task their mental 

representations become more normative in nature. 
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7.3. Concluding Comments 

We have considered the cases of two datasets, specifically constructed to explore non-

classical influences in causal reasoning, where individual differences are apparent and the 

presence of both causal and associative (or other sub-groups) of reasoners exist. In these two 

cases, a simple QP model provides a parsimonious and comprehensive account of the different 

types of behaviors, only with a change in parameter values. By implementing a classical 

probability model, a quantum probability model, and several heuristic models within a common 

hierarchical Bayesian framework that allows evaluation of individual differences and exhaustive 

model comparisons, we were able to provide detailed conclusions regarding the relevance of 

quantum principles in causal reasoning and a range of effects which can be used to characterize 

non-normative causal judgments.  
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A. Examples of QP calculations 

See attached excel sheet VAL.xlsx 

 

B. Code and documentation for a basic implementation of the QP model 

See attached txt file QPN.txt 

 

C. Hierarchical Bayesian implementation of the clustered quantum 
probability (QPC) model 

Based on the cluster definition assumptions, reasoning in each of the three networks in the first dataset can be 
classified into 8 possible clusters, depending on the combination of projection orders for the situations A, C and F.  
These clusters are shown in Table C1.  
 
The latent classification prior for each individual γi is given a uniform categorical prior over these 8 clusters. The 
clusters are defined top-down (as in a latent class analysis), in terms of the distribution over projection orders. 
Hence, each individual is classified into the cluster whose projection orders provide the highest likelihood of 
generating the behavior observed for that individual. 
 

Table C1. 8 possible clusters in the first dataset based on combinations of projection orders for the situations A, C, 
and F.  

 Preferred projection orders 
Cluster A C F 

1 AZ CZ FZ 
2 AZ CZ FX 
3 AZ CX FZ 
4 AZ CX FX 
5 AX CZ FZ 
6 AX CZ FX 
7 AX CX FZ 
8 AX CX FX 
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D. Hierarchical Bayesian specification of CGM, CONJ, DISAB, ASSC models  

Rehder (2014) reported that all four strategies (the normative GCM one and the non-normative CONJ, DISAB, and 
ASSC ones) together could account for participants’ behavior. As the present focus is individual differences, we are 
interested in the extent to which the principles embodied in each strategy are uniformly represented across 
participants or whether it is the case that different participants focus on different strategies. We thus implement each 
of the four strategies as separate models, as well as a combined weighted mixture model that assumes a mixture of 
the four strategies for everyone (i.e. within-participants mixture). 

Normative Causal Graphical Model [CGM] 

Figure D1 shows the normative CGM for the common cause, chain and common effect network structures. The 
normative CGM defines the joint and conditional probability of the variables as in a causal Bayes net. The model 
has the following free parameters:  

c = prior probability of the primary (independent) cause(s), 0 ≤ 𝒄𝒄 ≤ 1 

m = strength of the individual causal links from cause to effect, 0 ≤ 𝒎𝒎 ≤ 1 

b = strength of an alternate cause B of the effect(s), 0 ≤ 𝒃𝒃 ≤ 0.25  

 

 

Fig. D1. Causal network structure defined by the normative causal graphical model (CGM). The arrows show the 
direction of causality. Dotted lines and nodes represent variables that were not part of the experimental setup taught 
to participants but are auxiliary variables assumed by the model to be part of the participants’ mental construction of 
the causal system. (adapted from Rehder, 2014) 

A value of 0.5 for c would imply a neutral view, that is, an equal probability of the presence or absence of the 
primary causes. A non-neutral view would be a biased view where reasoners may hold a bias towards the primary 
causes being present or absent (although there is no information in the experiments to suggest that any primary 
cause is more likely to be present or absent across trials). A neutral view is unbiased as it suggests that participants 
do not bring to the task any a priori assumptions about the presence of a primary cause, independent of the 
information provided in the experiments. A value of 1 for m would imply a deterministic causal relationship (i.e. the 
presence of a cause necessitates the presence of the effect), whereas any value less than one makes it a probabilistic 
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causal link. Note that alternate cause (B) is not part of the learned causal structure. It is an auxiliary variable, 
assumed to be constructed by the participants on the assumption that the link from the primary cause to the effects 
may not be deterministically necessary, that is, there may be alternate causes that influence the effects. Since this is 
not part of the actual structure taught to the participants, the parameter space in our implementation is restricted to 
smaller values (like the values tested by Rehder 2014).  

We adapt this model for implementation within a Bayesian inference framework. A condensed version of the 
graphical model for the common cause CGM is shown in Figure D2. For the sake of exposition, a fully expanded 
version of the model is shown and described in Figure D3. The probabilities of y1 between two situations are 
translated into a relative probability using the softmax rule. For example, when comparing situations F and G, pFG 
denotes the relative probability of selecting F (e.g. 0.75 implies selecting F rather than G 75% of the time). This is 
calculated as 

𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑒𝑒
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝)

𝜏𝜏

𝑒𝑒
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝)

𝜏𝜏 + 𝑒𝑒
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝐶𝐶)

𝜏𝜏

 (7) 

and the same expression is used for the QP model. Finally, the actual choice score, i.e. the proportion of N 
questions of type FG where F was selected over G is modeled using a stochastic process Binomial (2N, pFG) / 2N.  

In Figure D2, the probabilities of states A to H are represented as pV1 and pV2 (e.g. for the problem type AB, pV1 
is the probability of state A and pV2 is the probability of state B), repeated over the t=1:5 different problem types (in 
this experiment, there are five different problem types, AB, BC, DE, FG and GH). pV represents the respective 
relative probabilities {pAB, pBC, pDE, pFG, pGH}. The detailed calculations for pV1t and pV2 t are represented 
simply as pV1t = CGM (ci, mi, bi, V1t) and pV2t = CGM (ci, mi, bi, V2t). The following hierarchical prior construct 
follows, with the ‘i’ sub-script denoting individual level parameters. The mean μ and standard deviation σ reflect the 
hyper parameters of the hierarchical distributions. Tau (τ) represents a temperature parameter for the softmax rule 
and is set to 1 in all the models considered. T(p,q) refers to truncation within the range [p,q]. The mean 
hyperparameter μm is drawn from the range [0.5,1] to reflect the fact that participants having being taught the causal 
relationship would likely infer a causal link greater than chance (0.5) levels. Figure D3 shows an expanded version 
of the model. 

μm ~ Uniform (0.5,1)  μc ~ Uniform (0,1)   μb ~ Uniform (0,0.25) 

σm ~ Uniform (0.001,4)  σc ~ Uniform (0.001,4)  σb ~ Uniform (0.001,4)  

mi ~ N ( μm , σm ) T(0,1)  ci ~ N ( μc , σc ) T(0,1)  bi ~ N ( μb , σb ) T(0,0.25) 

 

Conjunctive Model [CONJ] 

The Conjunctive model is similar to the CGM but the probabilities of the target being present (i.e. y1) under each 
state (A to H) are calculated conjunctively rather than normatively. For instance, under situation F, the probability 
pF is calculated simply as p(cause does not exist and both effects exist) rather than the normative calculation p(cause 
does not exist and both effects exist) / (p(cause does not exist and one of the two effects exist) + p(cause does not 
exist and both effects exist)) for the CGM model shown in figure D3. Similar calculations are performed for all the 
states. This essentially implies that the states A-H are not treated as given (i.e. the probability of the given values of 
X and Z is not treated as 1), but the probability of y1 is evaluated in conjunction with the probability of the state of 
X and Z. See Rehder (2014) for further details of the CONJ model. The graphical Bayesian implementation (not 
shown) is similar to that for the CGM model (Figure 6), with the probabilities for the eight possible states (pV1 and 
pV2, where pV1, pV2 ϵ { pA, pB, pC, pD, pE, pF, pG, pH }) calculated using the CONJ rather than the CGM 
model.  



Individual differences in Causal Reasoning 
 
 

73 

 

 

Fig. D2. Condensed graphical model for the normative causal graphical model [CGM]. The probabilities of states A 
to H are represented as pV1 and pV2, repeated over the T = 5 different problem types. pV represents the respective 
relative probabilities {pAB, pBC, pDE, pFG, pGH}. The calculations for pV1t and pV2 t can be represented simply 
as pV1t = CGM (ci, mi, bi, V1t) and pV2t = CGM (ci, mi, bi, V2t), where CGM (c, m, b, V) is defined as per the 
detailed model. The notation V:N refers to the output of a binomial process with 2N trials, probability pV. 

 

Fig. D3. Expanded graphical model for the normative causal graphical model [CGM]. Expanded graphical model 
for the CGM common cause network model (adapted from Rehder, 2014). In the figure, {e0, e1, e2} represent states 
with 0, 1 and 2 effects ‘present’, {c0, c1} represents states with the cause ‘absent’ and ‘present’ respectively. For 
example, (e1|c0) represents the independent probability of an effect being present conditional on the cause (Z) being 
absent, in this case being equal to b. Similarly, c0e1 represents the joint probability of a state with the primary cause 
absent and one of the two effects present. This can be derived as p(c0)p(e1|c0)p(e0|c0), which is (1-c)b(1-b). These 
joint probabilities can then be used to calculate the probability of each of the states A to H. For instance, state F 
represents a state with the primary cause being absent z0, one effect being present x1 and the state of the second 
effect unknown. The probability of the second effect (Y) being present (denoted as pF) can be calculated as pF = 



Individual differences in Causal Reasoning 
 
 

74 

p(c0,e2) / ( p(c0,e1) + p(c0,e2) ) = b2.(1-c) / ((1-b).b.(1-c) + b2.(1-c)) = b. The notation nAB refers to the output of a 
binomial process with 2N trials, probability pAB. 

Associative Model [ASSC] 

The associative model (ASSC; Figure D4) posits that reasoners do not take into account the direction of causality, 
but that variables are associatively linked only by symmetric connections. Rehder (2014) models this as a Markov 
random field (an undirected graph with a Markov property, that describes the dependencies between variables), with 
the parameters a2 and a3 capturing the pairwise and three-way associative strengths between the variables. This 
model is common for all three network structures. The parameter a2 represents the strength of the pairwise 
association, that is, the strength of X-Z (or Y-Z) pair having the same state values (0 or 1). The parameter a3 
represents the strength of the 3-way association, that is, the strength of X-Z-Y all having the same state value (0 or 
1). The probability of any combination of values for X, Y and Z is obtained from this model as; 

𝑝𝑝�𝑋𝑋𝑙𝑙 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑘𝑘� = 𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁𝑒𝑒𝑁𝑁 �𝑒𝑒−�𝑓𝑓2(𝑋𝑋𝑖𝑖,𝑍𝑍𝑘𝑘) + 𝑓𝑓2�𝑌𝑌𝑗𝑗,𝑍𝑍𝑘𝑘� + 𝑓𝑓3�𝑋𝑋𝑖𝑖,𝑍𝑍𝑘𝑘,𝑌𝑌𝑗𝑗���   (8) 

Here, f2(p,q) = a2 if p=q, 0 otherwise and f3(p,q,r) = a3 if p=q=r, 0 otherwise (see Rehder, 2014 for further details 
and properties of the model). The Bayesian graphical model (not shown) for implementation of the ASSC model is 
similar to the one shown for CGM (Figure D2), with pV1t = ASSC (a2i, a3i, V1t) and pV2t = ASSC (a2i, a3i, V2t). 
Hierarchical priors are set for the parameters a2 and a3 in the same way as the priors for the parameters of the CGM 
model, with the exception that a2 and a3 are constrained to the range [0, 3], since they reflect the relative strength 
and not probabilities (the range is similar to that explored in Rehder, 2014).  

 

 

Fig. D4. Network structure defined by the Associative model (ASSC). The associative model does not assume any 
particular direction of causality (adapted from Rehder, 2014). 

 

Specific Shared Disabler Model [DISAB] 

Figure D5 shows the specific shared disabler model adapted from Rehder (2014). The key difference between the 
normative CGM and the disabler (DISAB) model is that the latter introduces an additional auxiliary variable, which 
is a correlated external influence on both X and Z. This disabling mechanism adds a link between the effects, 
allowing inferences to be influenced by otherwise normatively independent variables (e.g. between Y and X in the 
case of the common cause structure) without a violation of the Causal Markov condition (see Rehder (2014) for a 
detailed discussion and elaboration of the model).  

The parameters c, m, and b have the same interpretation as the CGM and CONJ models. Two additional free 
parameters are d, the prior probability of the shared disabler W (range [0, 1]) and dm, the power of the causal link 
from the shared disabler W to the effects (range [0, 1]). Note that similar to B, the shared disabler W is not part of 
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the taught causal structure, but an auxiliary variable assumed to be constructed by the participants on the assumption 
that there may exist an interactive causal disabling influence that when present, probabilistically disables the 
primary causal mechanisms (e.g. from Z to X and Y in the common cause structure). The Bayesian graphical model 
(not shown) for implementation of the DISAB model is similar to the one shown for CGM (Figure D2), with pV1t = 
DISAB (mi, ci, bi, di, dmi, V1t) and pV2t = DISAB (mi, ci, bi, di, dmi, V2t). 

 

Fig. D5. Causal network structure defined by the specific shared disabler model (DISAB). The arrows show the 
direction of causality. Dotted lines and nodes represent variables that were not part of the experimental setup taught 
to participants but are auxiliary variables assumed by the model to be part of the participants’ mental construction of 
the causal system (adapted from Rehder, 2014) 
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E. Model metrics (correlation, bias, RMSE) by causal vs non-causal reasoners 

 

Common Cause Causal Reasoners Associative Reasoners 
  Correlation Bias RMSE Correlation Bias RMSE 
CGM 0.75 -0.020 0.122 0.30 -0.265 0.338 
CONJ 0.32 -0.062 0.251 0.36 -0.248 0.370 
ASS 0.78 0.028 0.121 0.36 -0.133 0.235 
DISAB 0.79 0.012 0.113 0.53 -0.156 0.238 
WTM 0.75 0.024 0.124 0.54 -0.153 0.225 
QPN 0.91 -0.003 0.08 0.88 -0.07 0.11 
QPC 0.91 -0.007 0.08 0.93 -0.04 0.08 
Chain Causal Reasoners Associative Reasoners 
  Correlation Bias RMSE Correlation Bias RMSE 
CGM 0.73 -0.046 0.148 0.29 -0.271 0.342 
CONJ 0.42 -0.001 0.218 0.12 -0.162 0.314 
ASS 0.75 0.008 0.136 0.45 -0.133 0.222 
DISAB 0.63 0.035 0.167 0.60 -0.073 0.161 
WTM 0.80 0.021 0.123 0.45 -0.150 0.231 
QPN 0.86 -0.02 0.10 0.78 -0.09 0.15 
QPC 0.91 -0.02 0.09 0.91 -0.04 0.09 
Common Effect Causal Reasoners Associative Reasoners 
  Correlation Bias RMSE Correlation Bias RMSE 
CGM 0.43 0.019 0.214 0.15 -0.258 0.334 
CONJ 0.41 0.027 0.245 0.39 -0.108 0.269 
ASS 0.48 0.116 0.248 0.43 -0.098 0.218 
DISAB 0.53 0.044 0.207 0.25 -0.250 0.325 
WTM 0.73 0.062 0.187 0.61 -0.132 0.217 
QPN 0.88 0.03 0.11 0.93 -0.07 0.11 
QPC 0.88 0.02 0.11 0.93 -0.05 0.10 
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F. Model fit by heuristic models (CGM, CONJ, ASSC, DISAB) by causal vs 
non-causal reasoners 

One of the purposes of this work is to understand in more detail the difference between causal and associative 
reasoners Rehder (2014) postulated. To this end, we undertook a comparison of aggregate (across participants) 
means of the posterior predictive choice responses predicted by the four different heuristic strategies, separately for 
causal and non-causal reasoners (as identified in Rehder, 2014), for each of the five problem types (AB, BC, DE, FG 
and GH). These are shown in figures F1, F2, F3 for the three types of network structures.  
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Fig. F1: Mean posterior predictive vs actuals by heuristic models (COMMON CAUSE) 

 

 

 

 

 

Fig. F2: Mean posterior predictive vs actuals by heuristic models (CHAIN) 
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Fig. F3: Mean posterior predictive vs actuals by heuristic models (COMMON EFFECT) 
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G. Inferred strategy weights for the WTM (dataset 1; comparative judgments) 
Figure G1 shows the mean inferred weights for the WTM model for each individual participant and Table G2 
summarizes these values across participants. Associative reasoners show higher weights for the ASSC model than 
causal reasoners, causal reasoners show higher weights for the CGM model, as expected, and the CONJ model is 
shown to have a slightly higher weight in the CE structure compared to the value in Rehder (2014). However, the 
mean weights inferred using the hierarchical Bayesian approach at an individual level differ from the aggregate 
weights reported in Rehder (2014), which were concentrated towards the CGM and ASSC models for the causal and 
associative reasoners respectively. The inferred weights for most participants show a reasonable combination of all 
four strategies, rather than a significant preference for a single strategy for each participant, especially for causal 
reasoners. This seems to be a result of two aspects. First, these strategies often make overlapping predictions and can 
account for normative behavior in a similar manner. Second, when modeling individual differences, both the 
parameters of the individual strategies and the weights of these strategies can vary at an individual level, providing a 
large number of degrees of freedom to the model to account for behavior. For example, the ASSC model shows a 
higher than expected weight (approximately 0.24) for causal reasoners in the CC and CH networks. However, when 
applied individually, the mean inferred a3 parameter for causal reasoners is much lower than that for associative 
reasoners (see the third row in figure 13). Hence, the weights of the models are not directly comparable, since their 
influence also depends on the underlying parameter values.  
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Figure G1: The mean posterior weights of the 4 strategies inferred as per the WTM model for each individual 
participant. The participants to the left of the black line in each plot are the non-causal reasoners and to the right are 
the causal reasoners (as per Rehder, 2014 classification). 

Table G2: Summary analysis (mean and standard deviation) of the inferred weight parameters in the WTM model. 
Numbers in bold highlight large differences between causal and associative reasoners. 

WTM model 
Common Cause Chain Common Effect 

mean std mean std mean std 

wCGM 
Overall 0.26 0.05 0.26 0.06 0.24 0.08 
Causal 0.28 0.03 0.28 0.04 0.26 0.06 
Associative 0.18 0.04 0.19 0.05 0.14 0.06 

wCONJ 

Overall 0.21 0.05 0.21 0.07 0.28 0.10 
Causal 0.22 0.05 0.23 0.07 0.30 0.09 
Associative 0.19 0.06 0.17 0.04 0.23 0.09 

 Overall 0.27 0.07 0.27 0.08 0.24 0.14 
wASSC Causal 0.24 0.02 0.24 0.03 0.19 0.08 
 Associative 0.37 0.08 0.38 0.09 0.44 0.14 

wDISAB 

Overall 0.26 0.03 0.26 0.03 0.23 0.06 
Causal 0.26 0.02 0.26 0.03 0.25 0.05 
Associative 0.26 0.05 0.27 0.04 0.19 0.07 
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H. Cluster level rotation parameters (dataset 1; comparative judgments) 

 

 

 
Fig. H1. Joint posterior probability density of the rotation parameters of the QPC model. The parameters are 
continuous but have been binned for this plot. The size of squares shows the value of the joint posterior probability 
density of the parameters within each cluster. Each cluster also shows the preferred projection orders for that cluster, 
and the number of participants for which this was the model cluster. 
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I. RMSE between each cluster and normative behavior  
To provide an overview of normative behavior, we computed root mean square error (RMSE) between mean 
proportions for each comparison (five comparisons per network) and normative point values (based on CGM 
predictions, as in Rehder, 2014). In Table I1, we show results for 4/5 comparisons (we excluded comparison GH for 
brevity and because GH results are less diagnostic concerning individual differences); the overall RMSE for each 
cluster is computed across all 5 comparative judgments including GH. 

Overall, for both CC and CH networks, participants who can focus on the immediate variable (normative) seem also 
able to incorporate other aspects of normative behavior, notably independence (CC) and compression (CH). Focus 
on the immediate variable and assumptions regarding symmetry or compression are interesting since they could 
influence behavior at the level of overall assumptions about the problem (e.g., regarding symmetry, a participant 
may think “I have been told that the variables are independent and conditionals should reflect this”). However, in the 
case of the DE comparisons, normative behavior is a matter of finer tuning of rotation parameters (i.e., assumptions 
regarding the relatedness of the variables), to achieve the normative effect, and many participants are unable to do 
this. The picture for CE is somewhat different, with normative behavior apparently easier to achieve in DE 
comparisons, but evidenced lack of sensitivity in relation to discounting effects. 
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Table I1: RMSE calculations based on the cluster mean proportions and normative point values based on 
CGM. High RMSE indicates high deviation from normative behavior. Values close to zero indicate 
normative-like behavior17 

   RMSE vs normative behavior 

Cluster Conflict Symmetry Conflict 
(BC, FG) 

SYM 
(AB) DE overall 

1. AZ1-CZ1-FZ0 Immediate No 0.09 0.05 0.28 0.15 
2. AZ1-CZ1-FX1 Present No 0.08 0.16 0.43 0.21 
3. AZ1-CX0-FZ0 Absent No 0.37 0.14 0.27 0.28 
4. AZ1-CX0-FX1 Distant No 0.39 0.48 0.25 0.38 
5. AX1-CZ1-FZ0 Immediate Yes 0.13 0.14 0.05 0.12 
6. AX1-CZ1-FX1 Present Yes 0.40 0.36 0.20 0.35 
7. AX1-CX0-FZ0 Absent Yes 0.38 0.47 0.09 0.35 
8. AX1-CX0-FX1 Distant Yes 0.39 0.25 0.40 0.35 
   RMSE vs normative behavior 

Cluster Conflict Compression Conflict 
(BC, FG) 

CMP 
(AB) DE overall 

1. AZ1-CZ1-FZ0 Immediate No 0.09 0.10 0.20 0.12 
2. AZ1-CZ1-FX1 Present No 0.11 0.05 0.35 0.18 
3. AZ1-CX0-FZ0 Absent No 0.29 0.15 0.19 0.22 
4. AZ1-CX0-FX1 Distant No 0.41 0.50 0.13 0.39 
5. AX1-CZ1-FZ0 Immediate Yes 0.15 0.22 0.05 0.15 
6. AX1-CZ1-FX1 Present Yes 0.34 0.44 0.06 0.34 
7. AX1-CX0-FZ0 Absent Yes 0.43 0.31 0.32 0.39 
8. AX1-CX0-FX1 Distant Yes 0.47 0.29 0.05 0.35 
   RMSE vs normative behavior 

Cluster Conflict Discounting Conflict 
(FG) 

DISC 
(AB, BC) DE overall 

1. AZ1-CZ1-FZ0 Immediate Ignore alternate cause 0.12 0.45 0.14 0.30 

2. AZ1-CZ1-FX1 Distant Ignore alternate cause 
(monotonicity violated) 0.49 0.49 0.15 0.40 

3. AZ1-CX0-FZ0 Immediate Anti-discounting 
(monotonicity violated) 0.23 0.76 0.40 0.54 

4. AZ1-CX0-FX1 Distant Anti-discounting 0.37 0.84 0.43 0.61 

5. AX1-CZ1-FZ0 Immediate Anti-discounting 
(weak positive product synergy) 0.27 0.64 0.28 0.45 

6. AX1-CZ1-FX1 Distant Discounting 
(strong negative product synergy) 0.39 0.35 0.05 0.31 

7. AX1-CX0-FZ0 Immediate Anti-explaining away 
(weak positive product synergy) 0.32 0.76 0.16 0.51 

8. AX1-CX0-FX1 Distant Explaining away 
(strong negative product synergy)  0.48 0.23 0.14 0.29 

                                                 
17 Note, even when behavior indicates focus on the immediate variable, which is normative, there may be a 

non-zero RSME value partly because of the probabilistic way in which participants were assigned to clusters, and 
because of deviation of participant behavior from exact point values from the CGM, even if the participant’s 
behavior is qualitatively normative. 
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J. Plausibility Check of absolute probabilities for comparative judgments 
Given a certain state of the variable X, higher absolute probability judgments when Z is present (z1) rather 

than absent (z0) for the common cause and chain networks are cognitively more plausible. Figure J1 plots 
corresponding conditional QPC predicted probabilities (the diagonal indicates equality of the conditionals). The first 
two panels in Figure J1 show that, as expected, the intermediate absolute probability judgments are generally higher 
(to the right of the diagonal) when Z is present compared to when they are absent, for specific values of X. The third 
panel concerns the common effect structure. When the value of X is known (either 0 or 1), the mean absolute 
predicted judgments tend to be similar (lie mostly along the diagonal) for most of the participants, suggesting that X 
(the value that is the same in the 2 situations compared) rather than Z (which is different between the two situations 
compared) is a key factor for judgments, which is highly plausible given that in the common effect structure the 
alternate cause (X) may play a strong role, especially when its value is known. When the value of the alternate cause 
(X) is unknown (data pattern vertical to the diagonal), the judgments for most the participants seems to be higher 
when Z is present, but there is also a reasonable share of participants where the opposite is true. Overall, the 
intermediate absolute probability judgments show a high level of cognitive plausibility. 

 

 
Fig. J1. Plausibility of intermediate absolute judgments (dataset 1): Comparison of intermediate absolute probability 
judgments generated by the clustered QPC model. Each dot represents the mean intermediate probability judgments 
for an individual. The x-axis plots the values when Z is present and the y-axis when Z is absent. The comparisons 
are made for comparable values of X (present, absent, unknown). Values to the right of the diagonal show 
judgments that are higher when Z is present compared to when Z is absent. 
 

 

 

  

0 0.5 1

p(y
1

|z
1

+)

0

0.5

1

p(
y

1
|z

0
+)

Common Cause

A:p(y
1

|z
1

x
1

)  vs    F:p(y
1

|z
0

x
1

)

B:p(y
1

|z
1

)     vs    G:p(y
1

|z
0

)

C:p(y
1

|z
1

x
0

)  vs    H:p(y
1

|z
0

x
0

)

0 0.5 1

p(y
1

|z
1

+)

0

0.5

1

p(
y

1
|z

0
+)

Chain

A:p(y
1

|z
1

x
1

)  vs    F:p(y
1

|z
0

x
1

)

B:p(y
1

|z
1

)     vs    G:p(y
1

|z
0

)

C:p(y
1

|z
1

x
0

)  vs    H:p(y
1

|z
0

x
0

)

0 0.5 1

p(y
1

|z
1

+)

0

0.5

1

p(
y

1
|z

0
+)

Common Effect

A:p(y
1

|z
1

x
1

)  vs    F:p(y
1

|z
0

x
1

)

B:p(y
1

|z
1

)     vs    G:p(y
1

|z
0

)

C:p(y
1

|z
1

x
0

)  vs    H:p(y
1

|z
0

x
0

)



Individual differences in Causal Reasoning 
 
 

87 

K. Calculation of Bayes Factors using the product-space method 
To calculate Bayes factors between the QP and WTM models, we use the product space method (Lodeyckx et al, 
2011). The schematic implementation is provided below: 

Model Index 
Mi ~ Bernoulli (Modelprior) 
Modeli = Mi + 1 
Model Likelihood 
Datai ~ Binomial(Probabilityi[Modeli]) 
Probabilityi[1] = Probabilityi[WTM] 
Probabilityi[2] = Probabilityi[QP] 
Model 1: WTM 
Probabilityi[WTM] = WTM(parametersW[Modeli]) 
parametersW [1] ~ parametersW.Prior 
parametersW [2] ~ parametersW.PseudoPrior 
Model 2: QP 
Probabilityi[QP] = QP(parametersQ[Modeli]) 
parametersQ [1] ~ parametersQ.PseudoPrior 
parametersQ [2] ~ parametersQ.Prior  
 

Here, parametersW and parametersQ refer to the vector of all parameters of the WTM and QP models respectively. 
WTM(parametersW[Modeli]) represents the full WTM model, and generates a probability for each choice based on 
parameters parametersW[Modeli]. The full QP model is represented as QP(parametersQ[Modeli]), and generates a 
probability for each choice based on parameters parametersQ[Modeli]. For each individual i, each iteration of the 
MCMC sampling selects either Modeli = 1 (WTM) or Modeli = 2 (QP). If the WTM model is selected, the 
parameters W[1] reflect a draw from the actual priors / hyper-priors. On the other hand, since the QP model is 
disconnected from the data, the parametersQ [1] reflect a draw from a pseudoprior. The opposite happens if the QP 
model is selected. For all the hyper-parameters of the WTM and QP models, the pseudo priors are normal 
distributions, and the parameters of these normal distributions are estimated by first running each of the two models 
in separate runs (as recommended in Lodeyckx et al, 2011) and using the summary statistics of the resulting MCMC 
samples, to construct the normal pseudopriors. We highlight that suitable pseudopriors are important to ensure good 
mixing and convergence of the MCMC sampling, but do not affect the resulting Bayes factor calculation. Figure 1 
shows an example of the distribution of MCMC samples for a single parameter of the WTM model when run 
separately, and the normal approximation of this using summary statistics (in line with recommendations by 
Lodeyckx et al (2011), that pseudopriors be chosen from a known family of probability distributions) which is then 
used as the pseudoprior. Finally, to calculate the Bayes factors, we use 5 different priors Modelprior ranging from 
0.01 to 0.99 in favor of each model. For each individual, we select the Bayes factor to report based on the prior that 
results in the maximum model switches and best mix of model activation (see section 4.3 in Lodeyckx et al, 2011). 
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Figure K1: Example of pseudoprior calculation of a single parameter of the WTM model based on MCMC samples 
obtained from a separate run of the model. 

L. Cluster level rotation parameters (dataset 2; absolute judgments) 

 

 

Fig. L1. Joint posterior probability density of the rotation parameters of the QPC model. The parameters are 
continuous but have been binned for this plot. The size of squares shows the value of the joint posterior probability 
density of the parameters within each cluster. Each cluster also shows the preferred projection orders for that cluster, 
and the number of participants for which this was the model cluster. 
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M. Parameter and data recovery for the QPC model 
We use the range of parameters inferred from human data to simulate new data using the QPC model, then conduct a 
parameter and data recovery exercise using the QPC model. Figure M1 shows the mean recovered rotation 
parameters and mean data (probabilities in the range 0 to 1) analogous to the comparative judgment task. Both 
parameters and data show reliable and robust recovery, with strong correlations (0.93-0.94 for the parameters and 
0.96 for the data). This confirms the identifiability and reliability of the QPC model. 

 

Fig. M1. Recovery of simulated rotation parameters and generated data by the QPC model 
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N. Using the QPC model to recover data generated by the WTM model 
We use the WTM model to simulate data analogous to the comparative judgment task, and attempt recovery of this 
data using the QPC model. Table N1 shows how well the posterior predictive data generated by the QPC model data 
correlates with the input data to the model. The columns show the three sources of input data – based on the 
simulated WTM and QPC models as well as the actual human data. The correlation is robust and reliable for both 
QPC and human data, but is much weaker for the data simulated by the WTM model, showing that there is a 
significant combination of data points produced by the WTM model that cannot be effectively captured by the QPC 
model. This is especially true for comparisons AB and GH. This shows that the improved fit is not simply a matter 
of the QPC model having significantly greater flexibility. 

Table N1: Correlation between posterior predictive of the QPC model and the input data for each 

comparison situation (AB, BC, DE, FG, GH). The columns show the three sources of input data – based on data 

simulated by the WTM model, by the QPC model, and the actual human data. 

Comparison WTM simulated QPC simulated Human data 
AB 0.46 0.92 0.90 
BC 0.73 0.98 0.93 
DE 0.92 0.95 0.92 
FG 0.81 0.96 0.93 
GH 0.49 0.90 0.90 
All 0.81 0.96 0.93 
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