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ABSTRACT [Max 200 Words; Currently 194] 

This study examined the ability of older children to integrate spatial information across 1 

sequential observations of bandpass noise. In Experiment I, twelve adults and twelve 8—14-year-2 

olds localized 1—5 sounds, all presented at the same location along a 34o speaker array. Rate of 3 

gain in response precision (as a function of N observations) was used to measure integration 4 

efficiency. Children were no worse at localizing a single sound than adults, and --- unexpectedly --5 

- were no less efficient at integrating information across observations. Experiment II repeated the 6 

task using a Reverse Correlation paradigm. The number of observations was fixed (N = 5), and the 7 

location of each sound was independently randomly jittered. Relative weights were computed for 8 

each observation interval. Distance from the ideal weight-vector was used to index integration 9 

efficiency. The data showed that children were significantly less efficient integrators than adults: 10 

only reaching adult-like performance by around 11 years. The developmental effect was small, 11 

however, relative to the amount of individual variability, with some younger children exhibiting 12 

greater efficiency than some adults. This work indicates that sensory integration continues to 13 

mature into late childhood, but that this development is relatively gradual. 14 

KEY WORDS: integration efficiency, multiple observations, sound localization, reverse correlation  
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I. INTRODUCTION 15 

On simple psychophysical tasks, older children often perform as well as adults1. For example, the 16 

ability to discriminate the frequency of two tones is adult-like by around 8 years of age2, while the 17 

ability to localize a single sound matures by around 6 years3. In everyday life, however, we are 18 

often presented with complex scenes, containing multiple sources of stochastic information. In 19 

such circumstances, perceptual judgments are limited not only by our ability to encode individual 20 

stimuli, but also by our ability to integrate multiple observations together, to make a single, 21 

overall decision. 22 

Outside of audition, children’s ability to integrate information across multiple sensory ‘channels’ 23 

is believed to remain immature until late childhood. For example, children up until 10 – 12 years 24 

have been shown to fixate disproportionately on a single modality in multisensory tests of 25 

navigation4, visuohaptic size discrimination5, and audiovisual stimulus detection6 (for reviews, 26 

see [7,8]). While within vision, the ability to combine different stimulus features (e.g., texture and 27 

stereoscopic disparity) to judge depth has been found to mature only by around 11-12 years9,10. 28 

Within audition, the developmental time course is unknown. However, there is clear evidence of 29 

suboptimal integration in early childhood. For example, Allen, Jones, & Slaney (1998)11 observed 30 

that adults exhibited a substantial benefit (~8 dB) on a tone-in-noise detection task when the 31 

target was positioned spectrally off-center. In contrast, preschool children (4--5 years) gained no 32 

such benefit, indicating that they were unable to exploit both pitch and level cues. 33 

It is also striking that where the development of sensory integration has been studied, it is often 34 

limited to tasks involving only two channels of information. And it is known that as the number of 35 

channels increases, even adults’ performance start to deviates from the ideal12–14 -- possibly due 36 

to constraints on memory or attention. This raises the possibility that, in arguably more realistic 37 

scenarios, where more than two sources of information are present, children may not be any 38 

poorer than adults at integrating information. Indeed, one recent study by Leibold and Bonino15 39 
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suggests this might be the case. There, it was found that children’s detection thresholds for a tone 40 

in noise improved progressively the more the target was repeated (N = 1 to 5), and the rate of 41 

improvement did not differ significantly between children and adults. 42 

The purpose of the present study was to quantify the ability of older children (aged 8 – 14 years) 43 

to integrate sequential auditory signals, and to determine at what age this ability matures. To 44 

quantify efficiency, we used a ‘multiple observation’12 perceptual averaging task. On each trial, the 45 

listener was presented with a sequence of sounds, all centered on a single location along the 46 

azimuth (location randomized between trials). The listener’s task was to listen to all N sounds, 47 

before judging the (single) source location. Two separate techniques were used, in two 48 

independent experiments, to estimate the efficiency with which listeners combined the N 49 

observations to form a single estimate of location. Each experiment is reported more fully in turn, 50 

but in brief: 51 

Experiment I measured integration efficiency using a relatively old method based on the rate of 52 

gain in response precision as a function of N observations. During the experiment, N was varied 53 

randomly between 1 to 5. Within a single trial, all N sounds were presented at the exact same 54 

location. This meant that every observation was equally informative, and the response precision 55 

of the ideal observer are predicted to improve at a rate of √𝑁16. To the extent that listeners failed 56 

to integrate additional observations, their response precision would improve at a lesser rate. The 57 

rate of gain provided an index of integration efficiency. 58 

Experiment II used a more modern measure integration efficiency based on Reverse Correlation. 59 

The number of observations was fixed at N = 5 and the location of each sound was randomly 60 

jittered between observations. Each of the five observations therefore predicted a slightly 61 

different response. The relative correlation between the listener’s actual responses, and the 62 

predicted responses for each of the five temporal intervals, therefore provided a measure of the 63 
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relative weight given to each observation. To the extent that the listener utilized all five 64 

observations, equal weight should be given to each. Conversely, a suboptimal integrator would 65 

over-weight some temporal intervals, and under-weight others. The similarity of the observed 66 

weights vector to the ideal provided an index of integration efficiency. 67 

Previous studies have used variants of both methods in adults12,13. These studies have shown that 68 

adults are effective but sub-optimal integrators: deriving a measurable benefit from every 69 

additional information channel, but less benefit than would be predicted by an ideal observer. The 70 

novel aspect of this present work was the application of these methods to children. It was 71 

therefore unknown how they would perform. In particular, it was unknown: how children’s 72 

efficiency compared to adults, and which (if any) of the N observations children would fail to 73 

exploit. 74 

 75 

  76 
FIG 1. Stimuli and test apparatus for both experiments. (A) The listener’s task was to locate the [single] source 77 

location of N noise bursts. Stimuli were presented along the azimuth, using 18 speakers distributed uniformly at 2° 78 

intervals along a 34° arc. Eighty LEDs arranged below the speakers were used for response-input, feedback, and 79 

fixation-cuing; (B) Each observation consisted of a 200 ms band-passed noise burst (1 octave bandwidth), centered 80 

at 1 kHz. (C) Each trial consisted of N observations (shown here: N = 5), presented sequentially with an inter-81 

stimulus interval of 100 ms. (D) In Experiment I, N varied from 1 to 5, between blocks, in random order. Within each 82 

trial, the target location (thin red vertical line) varied randomly, and all sounds (thick blue lines) were presented at 83 

the target location (shown here: target = -1.25°). (E) In Experiment II, N was fixed at 5, and the location of each sound 84 

was randomly distributed around the target location, based on independent samples from a truncated-gaussian 85 

random variable (shown here: target = -9.25°). 86 



The development of perceptual averaging       Page 6 of 39 

II. EXPERIMENT I: Relative gain in response precision as a function of N observations 87 

The goal of Experiment I was to quantify integration efficiency in children and adults, using the 88 

relative gain in response precision as the number of observations, N, increased. The logic of this 89 

method is derived from basic Signal Detection Theory12, and is described more fully elsewhere12. 90 

In brief: let us assume that the response to a single sound is determined by some putative 91 

‘internal response’, which is a scalar value proportional to the observed stimulus value, plus a 92 

sample of additive noise (i.e., due to random error due to intrinsic neuronal, physiological, or 93 

cognitive variability): 𝑥 + . And let us model the additive noise term as a zero-mean Gaussian 94 

variable,  – a choice that is mathematically expedient, but which in the present case 95 

is also supported by the empirical data (see Fig S1 in the Supplementary Material17). If we 96 

operationalize response precision as the reciprocal of the standard deviation of the observed 97 

response error, 
1

𝜎
, then response precision in the single stimulus condition is determined purely 98 

by the standard deviation (‘magnitude’) of the internal noise, σ𝑖𝑛𝑡: 99 

 
(Eq 1) 

When presented with multiple, equally-reliable observations, the ideal observer will mean-100 

average the N internal responses: ∑ [𝑥𝑖 + 𝑖]
𝑁
𝑖=1 . The decision variable will therefore be the mean 101 

of N normally distributed random variables, which is itself a normally distributed random 102 

variable with a mean of �̅� and a standard deviation of  𝜎 √𝑁⁄ . We would therefore expect the 103 

response precision of an ideal observer to improve at a rate of √𝑁 (for more detailed theory, see 104 

References [12,16]). 105 

Conversely, a listener who used only some proportion, k, of the additional information, would gain 106 

proportionally less benefit from observing additional observation, thus: 107 
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(Eq 2) 

For example, when k = 0, precision with N observations would be the same as precision with one 108 

observation (no improvement). As k increases towards 1, the rate of relative improvement 109 

becomes closer to the ideal: √𝑁. Thus, if N = 3 and k = 0.5, precision would be ~1.41 (√2) times 110 

greater than precision given a single observation, while if k = 1 precision would improve by ~1.73 111 

(√3). 112 

By combining Eqs 1 and 2 it can be seen that 𝜎𝑁 𝜎1⁄  (the ratio of response precision given N 113 

observations, to precision given one observation only) is determined solely by the single 114 

unknown parameter k, together with the experimentally controlled parameter N: 115 

 

(Eq 3) 

Thus, by plotting empirical values of 𝜎𝑁 𝜎1⁄   as a function of N, the best-fitting value of k 116 

(proportion of observations used) can be estimated. This is illustrated graphically in Figure 2, 117 

which shows individual data for two individuals, superimposed against isobars for various values 118 

of k, ranging from no integration (k = 0) to full integration (k = 1). By inspection, it can be seen 119 

that one listener (red circles) used only ~50% of the additional information, while a second 120 

listener (blue diamonds) was a near-optimal integrator (~100%). In practice, values of k were 121 

estimated numerically by finding the value of k that minimized the least-square error between Eq 122 

3 and the empirical data. 123 
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FIG 2. Experiment I: The determination of k (proportion of observations used), 124 

using five successive observations of a 1-octave noise burst. Black lines are 125 

isobars denoting the rate of gain predicted as integration varies from k = 0 (no 126 

integration) to k = 1 (full integration. Red circles and blue diamonds are data 127 

from two individual listeners. 128 

  129 
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A. Experimental Methods 130 

1. Task Overview 131 

As illustrated in Figure 1, the task was to localize the [single] source of N noise bursts 132 

(‘observations’), where N varied from 1 to 5 between blocks (random order). The N observations 133 

were presented sequentially at a random location along a 34o array of loudspeakers, which was 134 

arranged in a frontal arc around the participant. After all N observations, the participant made a 135 

single response, by using a rotary dial to position a light at the perceived sound-source location. 136 

Participants were encouraged to “listen carefully to all of the sounds without moving your head, 137 

before deciding where the sounds were coming from”.  138 

2. Participants 139 

Participants were 12 normal hearing children, aged 7.9 – 13.9 years (µ = 11.0, σ = 2.0), and 12 140 

normal hearing adult controls, aged 18 – 30 years. Adults were recruited through the UCL 141 

Psychology Subject Pool (‘SONA’), and received £7.5/h compensation. Children were recruited 142 

through the UCL Child Vision Lab volunteer database, and received certificates and small toys. 143 

Written consent was obtained from all participants (adults) or the responsible caregiver 144 

(children). Children themselves also gave written assent. The experiment was conducted in 145 

accordance with UCL Research Ethics Committee approval (#7611/001). 146 

3. Stimuli & Apparatus 147 

Each stimulus consisted of N band-pass noise bursts separated by inter-stimulus intervals of 100 148 

ms. Each noise burst was 200 ms in duration, including 10 ms cos2 on/off ramps (see Fig 1B-C). 149 

Each burst was independently randomly generated by filtering white Gaussian noise through a 150 

pair of second-order Butterworth band-pass filters, with cut-offs 1-octave either side of 1 kHz 151 

(i.e., 0.5 kHz High Pass, 2 kHz Low Pass). Stimuli were presented over loudspeakers, at an 152 

intensity of 59.5 to 60.5 dB SPL. The small amount of level jitter was drawn randomly from a 153 
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uniform distribution, and was designed to prevent loudness inadvertently becoming a location 154 

cue (e.g., due to errors in calibration, or systematic differences in room-acoustics). 155 

The exact choice of stimulus is not expected to have influenced the ability of children or adults to 156 

integrate observations. However, the bandwidth of the signal (1 octave) was significant from a 157 

practical perspective. The ability of listeners to localize sounds stimuli declines precipitously for 158 

narrower bandwidths18, and it was observed during piloting that listeners often became 159 

unmotivated when presented with narrowband noise or pure tones. In such circumstances, 160 

listeners were also liable to be influenced in their responses by a priori information (i.e., the 161 

visible extent of the speaker ring). Very wideband stimuli were also deemed inappropriate, as, 162 

consistent with previous findings18, some pilot listeners performed close to ceiling when 163 

presented with a single burst of white noise at certain locations. The center frequency of the 164 

stimulus (1 kHz) meant that the signal contained both ITD and ILD cues. However, the choice of  165 

center frequency is unlikely to have affected observed behavior substantially, as the ability to 166 

localize broadband stimuli along the azimuth is largely independent of center frequency for 167 

bandwidths of 1 octave or greater18. 168 

Stimuli were presented using an array of eighteen speakers (Visaton SC 5.9; Visaton GmbH, Haan, 169 

Germany), which were positioned symmetrically, equidistant from the listener. The speakers were 170 

uniformly-spaced in 2° intervals along a circular arc spanning ±17° either side of the listener’s 171 

midline [Fig 1A]. Each speaker was located 2.87m from the listener. To allow sounds to be located 172 

continuously anywhere along the 34° arc, Vector Distance Panning was used to interpolate 173 

between speakers19. Panning was used to ensure that the distribution of target locations was as 174 

close to gaussian-distributed as possible, and also to minimize the possibility that listeners might 175 

learn the N discrete speaker locations. The use panning may have introduced a small amount of 176 

additional variability into listeners’ location judgments. However, performance was similar to 177 
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previous studies in which panning was not employed (see General Discussion). An acoustically 178 

transparent curtain was arranged in front of the speakers, to prevent listeners from assuming 179 

that sounds were only ever located at the 18 discrete speaker locations. 180 

Stimuli were digitally synthesized in MATLAB v7.4 (2012a, The MathWorks, Natick, MA) using a 181 

sampling rate of 44.1~kHz and 24-bit quantization. Stimulus presentation was controlled using 182 

the Psychophysics Toolbox v320 ASIO wrapper (Steinberg Media Technologies, Hamburg). Digital-183 

to-analogue conversion was carried out by a Focusrite Saffire PRO 40 (Focusrite plc, UK) external 184 

sound card (channels 1 to 10), and by an Ultragain Digital ADA8000 (Behringer GmbH, Willich, 185 

Germany) ADAT interface (channels 11 to 18). Audio signals were amplified using nine Lvpin Hi-186 

Fi 2.1 stereo amps (Lvpin Technology Co. Ltd, Suzhou, China). Output levels were equalized using 187 

an Investigator 2260 sound level meter (Bru el & Kjær, Nærum, Denmark), and were adjusted to 188 

ensure no noticeable differences in intensity or timbre. 189 

Directly below the speakers was an array of 80 light-emitting diodes (12 mm diffused digital LED 190 

pixels; Adafruit Industries, New York, New York, USA), distributed uniformly between ± 19.75°, in 191 

intervals of 0.5°. The LEDs were used to provide: (i) a central fixation-target prior to each trial, 192 

(ii) post-trial feedback on the true target locations, and (iii) the means by which observers 193 

responded (see Procedure, below). An Arduino Uno microcontroller (SmartProjects, Strambino, 194 

Italy) was used to interface between the control computer and the LED pixels (see Reference [21]). 195 

When making responses, the listener controlled which one of the 80 LEDs was illuminated by 196 

rotating a dial (PowerMate USB; Griffin Technology, Nashville, Tennessee, USA). The participant 197 

used a keystroke to indicate when done, at which point their response was logged. 198 

With both children and adults, the experimenter was present throughout testing, to provide 199 

instruction and encouragement. A minority of the children were accompanied by a caregiver 200 
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(generally their parent), who sat outside the child's field of vision and who was asked to remain 201 

silent during testing. 202 

4. Procedure 203 

Each trial commenced with a 660 ms visual fixation target, during which the two central LEDs 204 

(±0.25°) were illuminated bright red. N successive 200 ms noise bursts were then presented at 205 

the target location, separated by inter-stimulus intervals of 100 ms. The target location was 206 

randomly selected on each trial, using a uniform distribution between ± 16.75°, rounded to the 207 

nearest 0.5° to ensure that the target always fell directly above one of the LEDs (i.e., to ensure 208 

accurate responses and veridical feedback). In instances where the target fell between two 209 

speaker locations, panning was used to present the stimulus, as described above (Stimuli & 210 

Apparatus). 211 

Following stimulus presentation, the listener responded by ‘pointing’ to the perceived sound 212 

source location. To do this, one of the two central LEDs was randomly selected and was 213 

illuminated white. The listener was then given unlimited time to ‘move’ this light to the perceived 214 

sound-source location, using a rotary dial to control which of the LEDs was illuminated. Feedback 215 

was then given in the form of a green LED light, which was presented at the target location for 216 

660 ms. 217 

The test session consisted of 250 trials, divided equally between five conditions: N = {1, 2, 3, 4, 5}. 218 

Each condition was tested in a separate block of 50 trials, and the order of the blocks/conditions 219 

was randomized between listeners. After each block, the listener was given the opportunity to 220 

take a short break, as required. Each listener completed a single session, which lasted 221 

approximately 60 minutes (including consenting, practice, and breaks). 222 

Before the test trials, each listener completed five practice trials. These trials were identical to the 223 

test trials, and were all drawn from the N = 3 condition. During this period, the listener was 224 
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encouraged to listen carefully to all the sounds, before deciding where [all] the sounds were 225 

coming from. 226 

B. Results 227 

Figure 3 shows mean response precision for adults and children. To analyze these data, a 5x2 228 

mixed ANOVA was performed with a within-subject variable of N OBSERVATIONS (5 levels: N = 1--5), 229 

and a between-subject variable of AGE (2 levels: children, adults). There was no significant main 230 

effect of AGE [F(2,22) = 1.37, p = 0.255, n.s.], indicating that children were no less precise than adults 231 

in terms of their overall localization ability (although, prima facie, a possible trend towards higher 232 

precision in adults is apparent in Fig 4). In particular, an independent-samples t-test indicated 233 

that children were not significantly less precise than adults in the N = 1 condition [t22 = 1.38, p = 234 

0.183, n.s.]. 235 

However, there was a clear main effect of N OBSERVATIONS [F(4,88) = 7.14, p < 0.001], indicating that 236 

precision improved as the number of observations increased. This implies that at least some 237 

integration was taking place. Accordingly, precision in the N = 5 condition was significantly higher 238 

than in the N = 1 condition, both for children [Paired t-test: t11 = 3.80, p = 0.003], and adults [t11 = 239 

3.79, p = 0.003]. There was no interaction between AGE and N OBSERVATIONS [F(4,88) = 0.20, p = 240 

0.937, n.s.], suggesting that the rate of improvement, and therefore the amount of integration, was 241 

similar between age groups.  242 
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 243 

FIG 3. Experiment I: Group-mean [± 1 S.E.] response variability for 244 

children (red crosses) and adults (blue circles), shown as a function 245 

of N Observations. Lower values denote greater precision. For the 246 

ideal observer, imprecision would be expected to decrease at a rate 247 

of √𝑁. 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

The foregoing implies that both children and adults integrated information from at least two 256 

observations (in the nomenclature of Boyaci and colleagues22, adults and children were both 257 

‘effective integrators’). However, these analyses do not allow us to quantify the relative efficiency 258 

of children and adults. 259 

To formally assess integration efficiency, we computed 𝜎𝑁 𝜎1⁄  and estimated k (proportion of 260 

observations used), using the procedure described in the Methods. Results are shown for 261 

individuals in Figure 4. By inspection, there was substantial inter-individual variability, but no 262 

systematic difference between children and adults. This was confirmed statistically using a Mann-263 

Whitney U test, which found no significant difference in efficiency, k, between children and adults 264 

[U = 148, Z = -0.09, p = 0.931]. In short, neither age group appeared better at integrating sensory 265 

information [Fig 5]. 266 

A Wilcoxon Signed-Rank test indicated that, on average both children [p < 0.001] and adults [p < 267 

0.001] deviated significantly from the ideal observer (dashed lines in Figs 4 & 5), indicating that 268 

both were suboptimal, and failed full use of the additional information. However, it can be seen in 269 

Figure 4 that there were individual exceptions, with some adults and some children performing 270 

close to the ideal. 271 
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 272 

 273 

 FIG 4. Experiment I: Value of  𝜎𝑁 𝜎1⁄  for all individuals. Solid lines represent least-square fits of Eq 3 to the data, 274 

from which estimates of the integration index, k, were derived (see Fig2 for details). Dashed lines show the ideal rate 275 

of gain (√𝑁). Individual children have been ordered by age (ascending). 276 

 277 

FIG 5. Experiment I: Group-mean [± 1 S.E.] integration efficiency for children and adults (same data as Fig 4). 278 

Markers indicate values of k for individual subjects. Horizontal dashed line represents the ideal observer.  279 
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C. Interim Discussion 280 

The results from Experiment I showed that both children and adults are able to integrate 281 

information across multiple, sequential observations. However: (i) both children and adults were 282 

suboptimal, and on average exhibited lower integration efficiency than the ideal observer 283 

(although substantial individual variability was observed). Furthermore, and contrary to 284 

expectations: (ii) children were, on average, no less efficient at integrating information than 285 

adults. 286 

The fact that integration efficiency was relatively low in adults stands in apparent contradiction 287 

to the wider ‘cue-combination’ literature, where sensory integration in adults is generally 288 

reported to be near-optimal (for a review, see 23). However, findings of near-optimality are 289 

generally predicated on tasks involving only two channels of information. In contrast, when, as in 290 

the present task, larger numbers of channels are presented sequentially, studies in both 291 

vision13,14 and audition12 have, like the present work, tended to report effective but suboptimal 292 

integration. 293 

That children’s localization precision improved at the same rate as adults is consistent with a 294 

study by Leibold and Bonino (2009)15, where children’s detection thresholds for a repeated-tone 295 

in noise were found to improve at the same rate as adults (see Introduction). Furthermore, the 296 

pattern of results observed in Figure 4 are also reminiscent of data from He, Buss, & Hall 297 

(2010)24, in which children were asked to detect brief pure tones embedded in a continuous 298 

bandpass noise. As the duration of the target tone increased, detection thresholds improved. And 299 

although thresholds were consistently poorer for children than adults, the rate of improvement 300 

was similar for younger children (5 – 7.5 years), older children (7.5 – 10 years) and adults. The 301 

absence of any developmental effects in the present experiment were, nonetheless, unexpected, 302 

given the overwhelming consensus in the wider developmental literature that sensory integration 303 

remains immature until ~11 years7–10. 304 
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The conclusions of Experiment I are, however, open to question. To see why, note that by inferring 305 

efficiency from the relative gain in response precision, we are assuming, implicitly, that all 306 

internal noise is occurs ‘early’ in the encoding process, in the sense that it arises independently in 307 

the peripheral auditory system, before any sensory observations are integrated, and so will 308 

cancel-out across repeated observations25. In contrast, there are many potential sources of 309 

response imprecision that are irreducible, and liable not to cancel-out across observations. For 310 

example, motor noise, memory decay, key press errors, variations in response criterion, sensory 311 

noise that is correlated across observations, interference between sensory observations (e.g., 312 

masking), and/or difficulties in mapping between auditory (stimulus) space and visual 313 

(response) space, may all add noise to the listener’s responses, and do so in a way that does not 314 

decrease with N (or may even increase). Of these, some potential sources of irreducible noise can 315 

be discounted by simple control experiments. For instance, when the experiment was repeated 316 

using a visual location cue, overall imprecision was greatly reduced, but continued to decline as a 317 

function of N (Fig 6A). This demonstrates that irreducible motor noise is unlikely to be primary 318 

limiting factors in the main experiment. Similarly, in a small number of adult controls, 319 

imprecision was found not to vary significantly when the lag between a single stimulus and 320 

response was systematically increased, either when using a visual (Fig 6B squares) or auditory 321 

(Fig 6B circles) stimulus. This suggests that simple memory-decay is also unlikely to be a limiting 322 

factor in the main experiment. Other forms of irreducible noise cannot, however, be ruled out. 323 
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\  324 

FIG 6. Experiment I control data, from six additional adults. These controls did not participant in the main 325 

experiment and were naï ve to the task (A) Data from a visual localization task. The task was identical to the main 326 

experiment, except that the N noise burst were replaced with N pulses of white light. As in the main experiment, 327 

indices of integration efficiency, k, were computed using Eq 3. The values of k are comparable with those for the main 328 

auditory task (Figures 4 & 5). (B) Control data for an N=1 localization condition in which a temporal lag was 329 

interposed between stimulus presentation and the participant’s response. Participants were instructed to keep 330 

fixating centrally until the response light appeared. Stimuli consisted of either sounds (circles) or lights (squares). 331 

Each colored line represents a different observer. 332 

To see why irreducible is problematic, note that without the common/convenient assumption 333 

that all internal noise is reducible, Equation 2 becomes: 334 

 

(Eq 4) 

where 𝜎𝑖𝑛𝑡−𝑟 and 𝜎𝑖𝑛𝑡−𝑖𝑟 are the reducible and irreducible internal noise components, 335 

respectively. It follows that Equation 3 becomes: 336 

 

(Eq 5) 
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The key point to note is that, unlike Equation 3 (which was used to fit the data in Figures 4 and 5), 337 

the internal noise terms in Equation 5 no longer cancel out. The ratio 𝜎𝑁 𝜎1⁄  therefore no longer 338 

provides an unambiguous measure of integration efficiency, k. Thus, with the model expressed by 339 

Equation 5, Listener A may show a greater rate of improvement than Listener B either because 340 

Listener A is a more efficient integrator (𝑘𝐴 > 𝑘𝐵), or because a greater proportion of Listener B’s 341 

internal noise is irreducible ([
𝜎𝑖𝑛𝑡−𝑖𝑟

𝜎𝑖𝑛𝑡−𝑟
]
𝐴
< [

𝜎𝑖𝑛𝑡−𝑖𝑟

𝜎𝑖𝑛𝑡−𝑟
]
𝐵
). 342 

The two key corollaries of this is that we cannot be sure that children are as efficient as adults 343 

(i.e., since the proportion of irreducible noise may change with age), and we cannot be sure that 344 

individual listeners --- either children or adult --- were in fact integrating suboptimally. To the 345 

extent that internal noise is irreducible, listeners may be better integrators than the results of 346 

Experiment 1 suggest, and the estimates of k reported in Figure 4 and 5 are only lower bounds on 347 

integration efficiency. 348 

One way to address the problem of irreducible noise is to explicitly introduce additional external 349 

noise that we know to be reducible. For example, Swets et al (1959)12 performed a multiple-350 

observation tone detection task analogous to the localization task reported here. They similarly 351 

found that adult performance improved as a function of N, and that the rate of gain was relatively 352 

small. Notably though, they also ran a second condition in which independent samples of external 353 

noise were added to each observation. In that case, the rate of gain improved markedly, and was 354 

close to optimal (√𝑁) for most listeners. This suggests that if Experiment I were repeated with 355 

external noise added, estimates integration efficiency might increase, and may start to differ 356 

between children and adults. Furthermore, since any external noise is directly observable, it also 357 

becomes possible to perform trial-by-trial (‘molecular’26) analyses, to determine which 358 

observations the listener predicated their response upon (see Experiment II). In this way, it is 359 
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possible to characterize not just whether, but in what way integration is suboptimal. This is the 360 

approach taken in Experiment II. 361 

III. EXPERIMENT II: Relative decision weights using Reverse Correlation 362 

The goal of Experiment II was to again quantify integration efficiency in children and adults. This 363 

time, however, external noise was added to each observation, and a Reverse Correlation 364 

technique was used to estimate each listener’s decision strategy.  365 

The Reverse Correlation methodology is described in detail elsewhere26–28, and has been used 366 

previously in adults to study integration of sequentially presented visual stimuli13,14. In brief: just 367 

as in Experiment I, N noise bursts were presented on each trial, and the listener was asked to 368 

make a single judgment of location. However, the location of each individual noise burst was 369 

independently randomly jittered prior to presentation, such that each observation predicted a 370 

slightly different response (Fig 1E). By comparing the listener’s trial-by-trial responses 371 

(irrespective of their accuracy) to the predictions of the various observations, one can estimate 372 

the relative degree to which the listener attends-to/relies-upon each observation. In practice, this 373 

procedure was carried out in the present study using a multiple regression model27 (MATLAB’s 374 

GLMFIT routine). 375 

The result of this analysis is a vector of estimated relative weights, 𝜔𝑒𝑠𝑡, where the ith weight 376 

indicates the listener’s relative reliance on the ith observation. By convention we shall normalize 377 

this vector such that the absolute magnitudes sum to 1. For example, a listener who only used the 378 

first observation would exhibit relative weights of 𝜔𝑒𝑠𝑡 = [1 0 0 0 0]. Conversely, when, as in the 379 

present case, all 5 observations are equally informative, the ideal weight vector, 𝜔𝑖𝑑𝑙, is: [0.2 0.2 380 

0.2 0.2 0.2]. 381 
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The deviation of the observed weights, 𝜔𝑒𝑠𝑡, to the ideal, 𝜔𝑖𝑑𝑙, provides an index of integration 382 

efficiency, 𝜂𝜔, which we can formalise in terms of root-mean-square error29: 383 

 

(Eq 6) 

Thus, 𝜂𝜔 = 1 represents perfect efficiency, and lower values indicate a progressive loss of sensory 384 

information. Note that this integration index is not directly comparable to the value k, reported 385 

previously in Experiment I, although conceptually both are intended to capture the degree to 386 

which listeners are able to exploit multiple observations. 387 

Crucially, the external noise was sampled independently for each observation, and so would 388 

cancel out across observations. This guaranteed that listeners would be more precise when 389 

integrating across observations, thereby swamping the effects of any irreducible internal noise. 390 

Furthermore, with this method of analysis, some forms of irreducible noise, such as motor error, 391 

are largely partialled out from the estimate of integration efficiency, since they add noise to the 392 

final response, but in a way that would not be expected to affect the estimated weight-vector, 𝜔𝑒𝑠𝑡 393 

(i.e., motor noise would not systematically bias responses towards any single observation 394 

interval). 395 

A. Experimental Methods 396 

1. Task, Stimuli, Apparatus & Procedure 397 

The task was identical to Experiment I, with two exceptions. Firstly, the number of observations 398 

was fixed at N = 5 for every trial (to ensure sufficient data for the Reverse Correlation analysis). 399 

Secondly, to facilitate the Reverse Correlation analysis, external noise, in the form of truncated 400 

Gaussian jitter, was added independently to every stimulus, prior to presentation. This jitter 401 

needed to be large enough that, across trials, each observation predicted a measurably different 402 

vector of responses, but small enough that listeners did not come to suspect that some 403 
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observations were unreliable. To this end, the jitter was determined by a zero-mean truncated 404 

Gaussian distribution, with a standard deviation of 3°, and a min/max of ±7° (i.e., 2.333σ). These 405 

parameters ensured that stimuli would not fall far outside the range of error predicted by internal 406 

noise alone (see Fig S1 in the Supplementary Material), and when questioned after testing, 407 

participants did not report being aware of the external noise manipulation. To further prevent 408 

stimuli falling outside the total span of speakers, the target location (i.e., the center of the 409 

Gaussian distribution) was limited to the central ±10° of the speaker arc. Jittered locations were 410 

not rounded to the nearest LED location and, unlike Experiment 1, the weighted-average location 411 

of the five observations was not guaranteed to fall directly above a target LED. This may have 412 

introduced a small amount of quantization error into listener’s responses, but this not expected 413 

to have had any effect on the reported findings. Each participant completed four blocks of 50 414 

trials (all N = 5), in a single session lasting approximately 60 minutes (including breaks). 415 

2. Participants 416 

A new cohort of participants was recruited, consisting of 12 normal hearing children, aged 8.3 – 417 

13.9 years (µ = 10.1, σ = 1.7), and 12 normal hearing adult controls, aged 18 – 30 years. None of 418 

the listeners from Experiment I participated, and there was no significant difference in the age of 419 

the children versus their Experiment I counterparts [t22  = 1.22, p = 0.24, n.s.]. 420 

421 
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B. Results 422 

We begin by considering the data for each individual listener, shown in Figure 7. To the extent 423 

that an overall pattern can be discerned, the general trend was towards response strategies that 424 

prioritized the first (primacy) or last (recency) observation. However, there was considerable 425 

individual variability in both response strategy and overall efficiency. Thus, while Adult 13 and 426 

Child 14 both up-weighted the first/last observation, and down-weighted the central observation, 427 

Adult 17 exhibited the inverse pattern: relying predominantly on the 3rd observation, and 428 

relatively little on the first/last observations. Only one listener (Child 20) appeared to base their 429 

responses on only a single observation. However, few listeners approximated the ideal -- though 430 

even in this respect were exceptions (cf. Adult 19, Adult 24, Child 15). Individual variability in 431 

weight efficiency, 𝜂𝜔, was positively correlated with response precision [Pearson’s linear 432 

correlation: r22 = 0.58, p = 0.003] – with more efficient weightings associated with lower response 433 

variability. This suggests that the reverse correlation method reliably captures performance-434 

relevant integration strategies. 435 
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 436 

FIG 7. Experiment II: Relative weight vectors for all individuals, with bootstrapped 95% standard error bars. Dashed 437 

lines show the ideal weight vector. Shaded markers denotate instances where empirical weights deviated 438 

significantly from the ideal. Individual children have been ordered by age (ascending). 439 

A significant difference in integration efficiency, 𝜂𝜔, was observed between children and adults 440 

[t22 = 2.49, p = 0.021], with adults tending to exhibit more efficient decision strategies [Fig 8A]. To 441 

confirm that this difference was not due to one poor performing child (see Fig 8A), this analysis 442 

was also repeated with this individual excluded [t21 = 2.33, p = 0.030], and using a non-parametric 443 

analog [Wilcoxon rank sum; Z = 2.17, r =  0.44, p = 0.030]. In both cases, the same age-difference 444 

was found. Both children [t11 = -6.50, p < 0.001] and adults [t11 = -8.29, p < 0.001] differed 445 

significantly from the ideal observer [horizontal dashed line] – indicating that, on average, both 446 

age-groups were suboptimal. 447 

To examine the developmental time-course, Figure 8B plots integration efficiency as a function of 448 

age. Based on the best fitting broken-stick function, it appears that adult-like performance was 449 

reached by 11.4 years. However, even many younger children fell within the 95% population 450 
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limits of the adults (Fig 8B, shaded region). Furthermore, the fitted curve only explained 44% of 451 

the variability in the raw data (R2 = 0.44), and the range of values between individual adults (𝜂𝜔: 452 

0.73 - 0.92) was greater than the model-difference between children and adults (Minima/Maxima 453 

of fitted curve: 0.70 -- 0.84). Taken together, these results indicate that auditory integration does 454 

not mature until around 11 years, but that the developmental effect in late childhood is small, 455 

relative to the amount of individual variability between listeners. 456 

 457 

FIG 8. Experiment II: Integration efficiency for children and adults. (A) Group-mean [± 1 S.E.] integration efficiency 458 

(same data as Fig 6). Markers indicate values of 𝜂𝜔 for individual subjects (one outlier at {10.2, 0.45} was excluded 459 

from analysis, but is shown here for completeness). Horizontal dashed line represents the ideal observer. (B) 460 

Integration efficiency as a function of age. The solid line represents the best-fitting piecewise polynomial (‘broken-461 

stick’) curve, in which the point inflection (dashed vertical line) was a free parameter. The grey shaded region 462 

indicates the 95% population interval for the adults.  463 
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C. Interim Discussion  464 

As per Experiment I, the results of Experiment II confirmed that children are able to integrate 465 

successive observations of an auditory location cue in order to perform a perceptual averaging 466 

task, but that neither children nor adults are, on average, ideal. Unlike Experiment I, however, a 467 

significant difference was observed between children and adults, with younger children tending 468 

to be less capable integrators than adults -- only reaching adult-like performance by 469 

approximately 11 years of age. 470 

This qualitative difference between experiments can be most parsimoniously attributed to the 471 

use of a more accurate methodology in Experiment II. Thus, as discussed after Experiment I, it is 472 

likely that at least some internal noise is irreducible, and will remain present even as N tends 473 

towards infinity.  The explicit addition of reducible external noise is expected to have swamped 474 

any residual effects of irreducible internal noise, thereby providing a more accurate measure of 475 

efficiency in Experiment II. 476 

Experiment II further allowed us to study why and in what way individual listeners were 477 

suboptimal. Typically, the pattern was towards primacy and/or recency, with listeners giving too 478 

great an importance to the first/last observation. There was, however, considerable individual 479 

variability, with many listeners exhibiting their own individual listening strategies. 480 

The tendency of some listeners to overweight the first observation is reminiscent of the 481 

Precedence Effect, whereby multiple sounds presented in quick succession are heard as a single 482 

“fused” image whose perceived direction is skewed towards the location of the first-arriving 483 

sound (for a review, see Reference [30]). This is a primarily low-level, sensory phenomenon that 484 

ensures perceptual robustness by effectively filtering-out acoustic reflections in reverberant 485 

environments, and is subserved primarily by peripheral adaptation and inhibition in the 486 

brainstem. It is, however, unlikely to have contributed significantly to the present results for four 487 
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main reasons. First, the stimulus properties are mismatched. Thus, convergent data from human 488 

psychophysics and animal physiology indicate that localization dominance occurs for lead-lag 489 

delays only up to approximately 10 ms30. This is an order of magnitude less than the 100 ms ISI 490 

used in the present study. And while the temporal window of the Precedence Effect has been 491 

found to increase to around 15—30 ms when stimuli are presented repeatedly31,32 (“buildup”) --- 492 

or up to 50 ms when speech stimuli are used33, these values still remain well-below the current 493 

ISI of 100 ms. Second, no detectable perception of fusion or echo was observed subjectively 494 

during piloting. Third, the development time-course is mismatched. For simple stimuli the 495 

Precedence Effect is believed to be adultlike by around 5 years34,35. It therefore seems unable to 496 

explain the differences observed between older (8-14-year-old) children and adults in the 497 

present study. Forth and finally, the Precedence Effect primarily biases perceived direction 498 

towards the first sound (though limited up-weighting of the final sound has also been reported in 499 

some listeners36–38). It therefore cannot explain the substantial individual variability in weight 500 

profiles observed in the present study (see Figure 7). In short, while we cannot rule out its 501 

influence completely, the Precedence Effect seems unlikely to be a significant factor in 502 

understanding the present data. Instead the individual and developmental differences observed 503 

appear more likely due to higher-order, cognitive factors relating to perceptual decision-making 504 

(see General Discussion). 505 

Notably, however, the Precedence Effect is itself not an entirely a low-level phenomenon, and can 506 

also be affected by various cognitive factors, including the listener’s expectations (see Reference 507 

[39]). Some relationship with the present findings therefore cannot be ruled out altogether, and it 508 

remains an empirical question whether there is any correlation between performance on the 509 

present task, and children’s ability to perceptually fuse rapid sound sequences. 510 
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IV. GENERAL DISCUSSION  511 

The aim of this study was to quantify how integration efficiency develops during childhood. Using 512 

a multiple-observation, absolute-localization task it was shown that adults and older children are 513 

capable of integrating auditory information across sequential observations. However, the 514 

efficiency of both groups fell well below that of the ideal observer. Using Reverse Correlation, this 515 

inefficiency was shown to manifest differently across individuals, although there was a general 516 

tendency towards primacy/recency listening profiles. In terms of development, children were 517 

found to be significantly less efficient than adults, and only reached adult-like efficiency by 518 

around 11.4 years. However, the amount of development was relatively small compared to 519 

individual variability between adult listeners. Taken as a whole, the data indicates that perceptual 520 

averaging undergoes a protracted, but relatively gradual period of development during older 521 

childhood. 522 

A. Integration efficiency in children 523 

Among studies of audition, the present data are most comparable to those of Leibold and Bonino 524 

(2009)15. There, it was found that children’s detection thresholds for a pure signal in noise 525 

improved progressively as the signal was repeated from 1 to 5 times. Furthermore, as in 526 

Experiment I of the present study, the rate of improvement was similar among both children and 527 

adults. These data provide converging evidence for the notion that children (in that study, as 528 

young as five years) are capable of integrating sequential auditory observations. 529 

Outside of audition, the idea that that children are less efficient integrators is consistent with an 530 

extensive literature. For example, studies of multi-sensory integration have found young children 531 

to overly fixate on individual cues on tests of navigation4, size/orientation discrimination5, and 532 

stimulus detection6. While, in the general decision-making literature, young children have been 533 



The development of perceptual averaging       Page 29 of 39 

shown to be worse at combining purely conceptual constructs, such as probabilistic 534 

information40,41, or risk-versus-reward42–44. 535 

It has been suggested previously that the ability to integrate sensory information only reaches 536 

maturations relatively late in a child's development8. In the present task, children’s behavior 537 

became adult-like at approximately 11 years. This developmental time course is in good 538 

agreement with studies of visual cue integration, where adult-like performance has been found to 539 

emerge around  11-12 years9,10. However, the developmental effect in the present study was 540 

modest. It was not detectable in Experiment I, and in Experiment II the effect size was small 541 

relative to overall individual variability, with several younger children (< 11 years) performing as 542 

well as some adults. Thus, while the present data support the general notion that perceptual 543 

decision making continues to develop all throughout childhood, the changes in older childhood 544 

appear relatively small. 545 

B. Integration efficiency in adults 546 

The finding that adults integrate sequential information sub-optimally is consistent with several 547 

recent studies in vision. For example, Juni & Maloney (2012)13 performed a visual analog of 548 

Experiment II. Adult observers made seven, sequential observations of a stochastic location cue 549 

(with additive jitter noise), and likewise exhibited effective, but suboptimal integration. Also as in 550 

the present study, considerable individual variability in weight vectors was observed. Thus, 551 

recency effects were particularly noticeable in some listeners, while others favored early or 552 

central intervals (see Figs A2 & A3 of Reference [13]). Similar findings for judgments of visual size, 553 

position, and direction have also been reported14. 554 

Within audition, the data from adults are also consistent with a number of previous works; in 555 

particular, a study by Swets and colleagues12 in which listeners were asked to detect a tone 556 

presented 1 to 5 times (sequentially). As in the present study, listeners exhibited clear evidence of 557 
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integration, but at a rate that was highly variable between individuals, and which generally fell 558 

markedly below that of the ideal observer45. Furthermore, as in the present study, integration 559 

efficiency improved markedly when external noise was added independently to each observation. 560 

This is consistent with the notion that some internal noise is non-reducible, and that this 561 

component is great enough limit the benefits of integration under noiseless listening conditions. 562 

More generally, adult performance is also consistent with a number of other ‘multiple-563 

observation’ tasks such as profile analysis26,46 and sample discrimination47 in audition, or 564 

motion-averaging, in vision48, wherein it is often observed that listeners use only a fraction of the 565 

information available, and exhibit substantial individual variability in terms of which – and how 566 

many – channels they attend to. 567 

C. Potential causes of inefficiency 568 

Why did many individuals, and younger children in particular, fail to integrate information 569 

efficiently? 570 

One possibility is that the observed deficits are primarily perceptual, and that information is 571 

being lost at the point of encoding due to interference --- either neural or acoustic --- between 572 

each sensory observation. In favor of this is the fact that children are also known to exhibit 573 

elevated levels of backwards-masking, and that, as in the present work, this deficit declines to 574 

near adult-levels by around 11 years49. Against this, however, stands the fact that sounds in the 575 

present study were separated by relatively long inter-stimulus intervals (100 ms): by which point 576 

any effects of non-simultaneous-masking are generally long-since abolished50,51 (see also the 577 

discussion regarding the Precedence Effect in Experiment II). Furthermore, it is difficult to see 578 

how perceptual interference could explain the level of individual variability in weight-vectors 579 

observed in Experiment II. Nor can it explain why the inefficiencies observed in adults are 580 

preserved across different tasks and sensory modalities. In short, while perceptual interference is 581 
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attractive in its simplicity, it appears inconsistent with the nature of the stimuli and the pattern of 582 

data observed. This ‘perceptual interference’ hypothesis could be tested empirically by increasing 583 

the temporal interval or acoustic dissimilarity between observations, in which case the relative 584 

inefficiency of younger children should be diminished. 585 

A second possibility is that inefficiencies observed in some listeners fundamentally represent 586 

limited processing capacity. Thus, a rational strategy for a system with limited memory or 587 

attention would be to fixate on a subset of the available information channels. Working memory 588 

in particular may be a limiting factor in the present study, due to the long stimulus sequence and 589 

slow presentation rate. Thus, information may have been lost over the course of the trial either 590 

due to memory decay (though cf. Fig 6B) and/or interference between the memory of each 591 

observation (see Reference [52]). Consistent with this, several listeners up-weighted the first/last 592 

observation: a common strategy in memory-limited tasks. Furthermore, the developmental time-593 

course in the present study is also broadly consistent with reports that working memory 594 

continues to improves up until the age of at least 11 years old53,54. This ‘working memory’ 595 

hypothesis predicts a correlation between efficiency in the present task, and measures of 596 

auditory working memory55. It also predicts that children’s efficiency would progressively 597 

decrease if the memory component of the task was made more demanding (i.e., by increasing the 598 

N observations, or adding a second ‘dual’ task). Alternatively, if the number of cues were reduced, 599 

then the relative difference between children and adults should be diminished. 600 

The idea that performance is primarily memory-limited appears plausible. However, it would be 601 

premature to assume that children’s poorer performance necessarily reflects a lack of capacity. 602 

Consider, for example, a recent study in which children aged 6 to 11 years were asked to ‘find the 603 

middle’ of N simultaneously presented visual stimuli (dots). There, it was observed that children 604 

were less precise in their responses than adults: a pattern consistent with the use of only a subset 605 
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of the available stimuli (i.e., due to a lack of capacity). Notably though, as the number of stimuli 606 

increased from 5 to 15, children actually became faster and more adult like in their responses. On 607 

close inspection, this change in performance appeared to be related to shift in response strategy. 608 

With small numbers of stimuli (< 6), children’s trial-by-trial responses were best predicted by a 609 

strategy of ‘finding the smallest shape that enclosed the visible dots, and pointing to its center’ 610 

rather than the ideal strategy of computing the arithmetic mean of the individual points. The 611 

precise reason for this difference in response strategy is unknown. However, what those data 612 

demonstrate is that poor performance does not necessarily imply the inability to implement an 613 

ideal strategy efficiently. Instead, children in the present task may be opting to interpret the task 614 

in a qualitatively different way to adults (i.e., and may even be implementing a different strategy 615 

in an optimal manner). Such differences in task interpretation are difficult to evidence. However, 616 

it could be achieved, in general terms, by formulating an alternative response model that predicts 617 

an individual’s trial-by-trial responses more reliably than the vector-weighted sum of the 618 

individual observations. 619 

Fourth, a related class of explanation is that children may simply be slower to learn what the task-620 

relevant information is, or how to weight each channel appropriately. In this respect, it is 621 

interesting to compare the present task, which requires multiple channels of useful information 622 

to be combined, with tasks of the inverse form, in which channels containing signal and noise 623 

must be segregated. For instance, studies by Kopco and colleagues have found that lateralization 624 

judgments in adults can, depending on the stimulus parameters, be biased towards or away from 625 

a preceding distractor presented at a fixed location56,57. Similar, but even greater effects have also 626 

been reported in children, where, unlike in adults56,57, distractor-induced bias have been 627 

observed even when the perceptual similarity between target and distractor is substantial58. 628 

Taken together with the present study, the fact that children appear to struggle both with over-629 

integration of useless information (in the case of distractor tasks), and under-integration of useful 630 



The development of perceptual averaging       Page 33 of 39 

information (in the present study), would seem to point towards a more generalized deficit in 631 

children’s ability to identify and/or attend to task relevant information. Such considerations also 632 

bring to mind Informational Masking (masking by energetically weak but unpredictable 633 

distractors), which is also elevated in young children59, and which has likewise been attributed to 634 

an over-integration of information (this time across frequency rather than space; i.e., a broad 635 

‘attentional filter’59,60).  Notably, the ability to listen selectively on Informational Masking tasks 636 

has been found to improve with practice in adults61–63. This suggests that even for individual 637 

adults, performance on the present multiple-observation task may be limited by their ability to 638 

learn the task statistics. Furthermore, it may be that younger children are simply slower, on 639 

average, to learn the extent to which each channel contains task-relevant information. This ‘slow 640 

learning’ hypothesis predicts that the developmental effect would be reduced given sufficient 641 

practice, or may increase if the task-statistics were made more complex (i.e., adding different 642 

levels of external noise to each observation interval13,29). 643 

Fifth and finally, it may be that some listeners voluntarily chose not to integrate across all of the 644 

available observations. This might have happened if, for example, a listener came to suspect that 645 

some observation intervals were unreliable, or that not all observations originated from the same 646 

source location. Efforts were taken to ensure that the latter did not occur (see Experiment II 647 

Methods), and anecdotally no such suspicions were reported. It is also not immediately apparent 648 

why this would produce less integration in young children, nor why it would lead to the various 649 

patterns of weights observed in Figure 7. For instance, the most parsimonious strategy if one 650 

believed that the sounds were independent, would be to respond based on only a single 651 

observation. Such a strategy was only observed in one listener: Child 20. (NB: Alternating reliance 652 

on different individual observations could potentially have produced the more uniform weights 653 

observed in other listeners, but is inconsistent with the observed correlation between weight-654 

efficiency and response precision.) Furthermore, such suspicions are unlikely to explain the 655 
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suboptimal integration observed Experiment I, where all observations were in fact located 656 

identically (although, due to internal noise, even identical stimuli are sometimes liable to be 657 

perceived as different64). Nonetheless, the possibility that some listeners chose to discount 658 

certain observations cannot be ruled out. This possibility could be investigated experimentally by 659 

systematically increasing the amount of external noise (i.e., the sigma parameter of the jitter 660 

distribution). In this case one would predict to see discontinuities, with a rapid reduction in 661 

weight-efficiency at the point where listeners started to notice discrepancies. 662 

Listeners might also have decided to voluntarily ignore some channels for the sake of ease, 663 

assuming that the integration of each additional observation incurs some non-trivial ‘cost’ in 664 

terms of listening effort. Such differences in motivation are always a concern in developmental 665 

studies, and pains were taken to ensure that children remained engaged and focused throughout 666 

the experiment. Furthermore, from a developmental perspective, the fact that the one child (Child 667 

20) who exhibited a relatively simple ‘single observation’ strategy was such a marked outlier in 668 

terms of efficiency is encouraging, as it suggests that younger children were not simply the ‘tail 669 

end’ of some normal distribution of motivation (see Fig 8B). However, the possibility that 670 

differences in motivation affected performance of some individuals cannot be ruled out. It could 671 

be probed empirically by including a subset of ‘high value’ trials (i.e., with an association financial 672 

incentive, or some child-friendly equivalent). If differences in motivation/effort do affect 673 

performance, then the difference between children and adults, or between individual adults, 674 

should be diminished on such trials. 675 

D. Absolute sound localization performance in children and adults 676 

Although the present study was concerned primarily with integration efficiency, it may also be of 677 

interest to consider how listeners’ sound-localization performance compared with data reported 678 

previously. 679 
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For adults, the present data are most comparable to the ‘noise’ condition of Recanzone, 680 

Makhamra, & Guard (1998)65, who measured absolute-localization performance using 200 ms 681 

white noise bursts. Within the central ±17° (i.e., the range of the present study), response errors 682 

were relatively stable, with a standard deviation of approximately 5°. This is in good agreement 683 

with the present data in Experiment 1, where the group-mean standard deviation (‘imprecision’) 684 

was 4.81° for adults and 5.53 for children° (Figure 2, N = 1 condition). The present values are also 685 

comparable to those of Yost and Zhong (2014)18, who asked listeners to localize 200 ms noise 686 

bursts of variable bandwidth and central frequency. There, RMS error (which, for an unbiased 687 

listener, is equivalent to the standard deviation of errors) was approximately 7.5° for a 1 octave 688 

bandpass noise centered on 2 kHz. This is somewhat higher than the value of 4.81° observed in 689 

the present study. However, it also includes presentations of up to +75°, and localization ability is 690 

known to decrease with eccentricity18. Conversely, at a single eccentricity of +15°, Yost and Zhong 691 

reported a mean RMS error of approximately 4° for bandwidths between 1/6 to 2 octaves: a value 692 

that is roughly consistent with the present value of 4.81° (measured with a bandwidth of 1 octave 693 

only). 694 

For children, we are aware of no directly comparable data. However, the finding that children’s 695 

response precision in the N=1 condition was not significantly lower than adults is consistent with 696 

a number of studies showing that Minimal Audible Angles are largely adult-like by 5 years34, and 697 

that absolute localization performance is mature by around 6 years66,67 (for a review, see 698 

Reference [3]). In short, in terms of absolute localization ability, the results of both children and 699 

adults appear to be in good agreement with previous data.  700 
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V. CONCLUSIONS 701 

(i) Using a multiple-observation localization task, both children and adults were shown to be 702 

effective integrators: able to combine up to five sequentially presented auditory stimuli. 703 

(ii) However, while localization precision improved as a function of N observations, the rate of 704 

gain was substantially less than that predicted by an ideal observer (Experiment I). This 705 

may indicate suboptimal integration. Alternatively, it may be that performance is limited by 706 

a substantial component of irreducible noise (e.g., correlated sensory noise, or response 707 

errors). 708 

(iii) When using Reverse Correlation (Experiment II), children were shown to be less efficient 709 

integrators than adults, only exhibiting adult-like performance by ~11 years old. The 710 

developmental effect was small, however, relative to the amount of individual variability, 711 

with younger children often exhibiting greater integration efficiency than some adults. That 712 

sensory integration does not develop until around 11 years is consistent with previous 713 

studies in vision. However, the modest effect size indicates a protracted, but relatively 714 

gradual period of development during older childhood. 715 

(iv) Substantial individual variability in listening strategy was observed. There was a general 716 

trend towards overweighting the first (primacy) or last (recency) observation. However, 717 

other patterns were also observed. The causes of the individual and developmental 718 

differences in integration efficiency remain unclear. However, five possible explanations are 719 

discussed, and testable predictions for each are detailed. 720 
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