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The pseudo McMillan degree of implicit transfer
functions of RLC networks

Thomas Berger · Nicos Karcanias ·
Maria Livada

August 13, 2018

Abstract We study the structure of a given RLC network without sources.
Since the McMillan degree of the implicit network transfer function is not a
suitable measure for the complexity of the network, we introduce the pseudo
McMillan degree to overcome these shortcomings. Using modified nodal analy-
sis models, which are linked directly to the natural network topology, we show
that the pseudo McMillan degree equals the sum of the number of capaci-
tors and inductors minus the number of fundamental loops of capacitors and
fundamental cutsets of inductors; this is the number of independent dynamic
elements in the network. Exploiting this representation we derive a minimal
realization of the given RLC network, that is one where the number of involved
(independent) differential equations equals the pseudo McMillan degree.

Keywords RLC networks · modified nodal analysis · McMillan degree ·
minimal realization

1 Introduction

In the present paper we consider complexity measures for linear time-invariant
RLC networks with finitely many elements and without sources. We investigate
models of RLC networks which arise from modified nodal analysis (MNA),
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see [14] and the survey [27], and can thus be described by a linear differential-
algebraic equation of the form

Eẋ(t) = Ax(t), (1)

where

sE −A =

[
sACCA>C +ARGA>R AL

−A>L sL

]
∈ R[s]n×n, (2)

x =

(
η
iL

)
, (3)

and
C ∈ RnC×nC ,G ∈ RnG×nG ,L ∈ RnL×nL ,

AC ∈ Rne×nC , AR ∈ Rne×nG , AL ∈ Rne×nL ,

n = ne + nL.

 (4)

Here R[s] denotes the ring of polynomials with coefficients in the set of real
numbers R. C, G and L are the matrices expressing the constitutive relations of
capacitances, resistances and inductances, η(t) is the vector of node potentials1

and iL(t) is the vector of currents through inductances. By nC , nG , nL we
denote the number of capacitances, resistances and inductances in the network,
resp., and ne+1 is the number of nodes in the network graph. The matrix pencil
sE −A is regular, i.e., det(sE −A) ∈ R[s] \ {0}, provided that the network is
connected and passive, cf. [4,22]. Then the implicit transfer function associated
with (1) exists and is given by G(s) = (sE −A)−1.

The complexity analysis of RLC networks is related to the problem of net-
work redesign, see [19,20], i.e., the desire to change the natural dynamics of
the network by modification of its elements and/or topology. In order to iden-
tify appropriate changes it is necessary to have a measure for the complexity
of the network. It is commonly believed that the McMillan degree of the im-
plicit transfer function G(s) is such a measure. According to [12,29,31], the
McMillan degree defines, roughly speaking, the minimum number of dynamic
elements which are necessary to fully describe the network. We will show that
this is not completely accurate.

A classical result of circuit theory, see e.g. [26, p. 322] and [25], says that
the McMillan degree of a positive real implicit transfer function G(s) equals
the minimal number of reactive elements (i.e., capacitors and inductors) in any
passive synthesis of G(s). A synthesis procedure which achieves this minimal
number for any (scalar) positive real function was provided in the seminal
work by Brune [7]. However, a drawback of this procedure is that it requires
the use of transformers, which is undesirable since there are some issues with
their physical realization, cf. [15, p. 3]. The synthesis procedure developed by
Bott and Duffin [6] resolves this drawback and does not need any transformers,
however the number of reactive elements in the synthesized circuit is larger

1 The node potential ηi expresses the voltage between the ith node in the network graph
and the ground node.
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than the McMillan degree in general, while improvements are available, see
also [15–17,30].

The present paper does not deal with the synthesis problem, but with the
structural properties of an implicit operator (represented by G(s)) describ-
ing the dynamics of a given and fix RLC network which we aim to analyze.
We stress that, in particular, there is no overlap with the works [15–17,30]
which are concerned with network synthesis. Also note that the latter refers
to realization issues of transfer functions of single-input, single-output (SISO)
systems; in our approach we consider properties of the implicit internal trans-
fer function that has no inputs and no outputs. Apart from this fundamental
difference between implicit internal models (discussed here) and the realiza-
tion of SISO systems discussed in network synthesis (e.g., [15–17,30]), there
are some common issues such as the McMillan degree, but this is where the
similarity stops.

While it follows from the above mentioned synthesis results that the McMil-
lan degree of the implicit transfer function of a given RLC network is a lower
bound for the number of its reactive elements, a characterization of the McMil-
lan degree in terms of the network topology is not available in the literature.
In fact, linking the McMillan degree to the dynamic elements of the network
is not an easy task, as it turns out that for some circuits the McMillan degree
is smaller than the number of dynamic elements. In these circuits the dynamic
elements are not independent in a certain sense. In order to rigorously define
what “independent” means, we use the concepts of fundamental loops and
cutsets. We further introduce the new concept of “pseudo McMillan degree”
and show that it equals the sum of the number of capacitors and inductors
minus the number of fundamental loops of capacitors and fundamental cut-
sets of inductors, i.e., the number of independent dynamic elements in the
network. We stress that the McMillan degree and the pseudo McMillan degree
are not equal in general, but show some relations between them. Note that
this significantly improves earlier results obtained in [24].

Let us also mention that early results [5,8] define the order of complexity
of an electrical network as the number of natural frequencies and derive some
formulas in terms of the network topology. However, this measure is not equal
to the number of independent dynamic elements in the network in general.

The implicit description that forms the core of the paper provides the
natural setup for redesign of the network. Network redesign problems are often
considered in the context of impedance and admittance models (see [32]) as
discussed in [2,21,22,24]. The impedance-admittance operator is the implicit
transfer function G(s) = (sE − A)−1, which is a rational matrix function
and not a scalar transfer function. The operator G(s) describes the network,
which has no inputs and no outputs, and by selecting different sets of inputs
and outputs we can generate different transfer functions. From this viewpoint,
G(s) acts as a generator of all possible transfer functions associated with the
network. We stress again that we consider the characterization of the (pseudo)
McMillan degree of G(s) and not the synthesis of scalar transfer functions.
This problem has not been treated before except for [24] which provides an
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exterior algebra characterization of the McMillan degree. In contrast to this,
in the present paper we consider models arising from modified nodal analysis,
which are linked directly to the natural network topology. This allows to derive
the representation of the (pseudo) McMillan degree in terms of the network
topology.

As a second main result, we exploit the representation of the (pseudo)
McMillan degree to derive a minimal realization of a given RLC network, that
is an equation of the form (1) where the number of involved (independent)
differential equations equals the pseudo McMillan degree. To avoid any confu-
sion, we stress that in the present paper a minimal realization does not mean a
synthesized network with a minimal number of reactive elements. We illustrate
our results by means of two examples.

2 Graph theoretical preliminaries

In this section we introduce the graph theoretical concepts (cf. for instance [10])
on which the modified nodal analysis is based. We further introduce the no-
tions of fundamental loops and cutsets and characterize their number in terms
of the incidence matrix of the network graph.

Definition 1 A graph is a triple G = (V,E, ϕ) consisting of a node set V and
a branch set E together with an incidence map

ϕ : E → V × V, e 7→ ϕ(e) = (ϕ1(e), ϕ2(e)) ,

where ϕ1(e) 6= ϕ2(e) for all e ∈ E, i.e., the graph does not contain self-loops.
If ϕ(e) = (v1, v2), we call e to be directed from v1 to v2; v1 is called the initial
node and v2 the terminal node of e.

Let V ′ ⊆ V and let E′ be a set of branches satisfying

E′ ⊆ E|V ′ := { e ∈ E | ϕ1(e) ∈ V ′ and ϕ2(e) ∈ V ′ } .

Further let ϕ|E′ be the restriction of ϕ to E′. Then the tripleK := (V ′, E′, ϕ|E′)
is called a subgraph of G. If V ′ = V , then K is called a spanning subgraph.
A proper subgraph is one with E 6= E′.

For each branch e, define an additional branch −e being directed from the
terminal to the initial node of e, that is ϕ(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. Now
define the set Ẽ = { e | e ∈ E or − e ∈ E }. A tuple w = (w1, . . . , wr) ∈ Ẽr,
where for i = 1, . . . , r − 1,

v0 := ϕ1(v1), vi := ϕ2(wi) = ϕ1(wi+1)

is called path from v0 to vr; w is called elementary path, if v1, . . . , vr are
distinct. A loop is an elementary path with v0 = vr. Two nodes v, v′ are
called connected, if there exists a path from v to v′. The graph itself is called
connected, if any two nodes are connected. A subgraph K = (V ′, E′, ϕ|E′) is
called a component of connectivity, if it is connected and Kc := (V \ V ′, E \
E′, ϕ|E\E′) is a subgraph.
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A tree is a minimally connected graph, i.e., it is connected without having
any connected proper spanning subgraph. A spanning subgraph of a connected
graph G, which is a tree, is called a tree in G. If G is not connected, with k
components of connectivity, and Ti is a tree in any such component for i =
1, . . . , k, then T = T1 ∪ . . . ∪ Tk is called a forest in G.

A spanning subgraph K = (V,E′, ϕ|E′) is called a cutset of G = (V,E, ϕ),
if its branch set is non-empty, G − K := (V,E \ E′, ϕ|E\E′) is a disconnected

subgraph and G−K′ is a connected subgraph for any proper spanning subgraph
K′ of K.

In this work we consider only finite graphs, i.e., graphs with finite node set
and finite branch set.

Definition 2 Let G be a graph, K,L be spanning subgraphs of G, and ` be a
path of G.

(i) L is called a K-cutset, if L is a subgraph of K and a cutset of G.
(ii) ` is called a K-loop, if ` is a loop of K.

A graph can have many K-loops and K-cutsets, resp., but not all of them
are independent. In the following we introduce the crucial notions of funda-
mental K-loops and K-cutsets, which generalize the notions of fundamental
loops and cutsets given e.g. in [1].

Definition 3 Let G be a graph and K be a spanning subgraph of G. Further
let T1 be a forest in K and T2 be a forest in G − K. Then

(i) every branch in K − T1 closes a unique loop in K that consists of that
branch and branches from T1 only. These loops are called fundamental
K-loops of G.

(ii) T2 can be completed to a tree T3 in G by adding branches from K (if
necessary). Every branch in T3 − T2 defines a unique cutset of G that
consists of that branch and branches which are common to G − T3 and K
only. These cutsets are called fundamental K-cutsets of G.

Similar to [1] we may show that any K-loop/K-cutset can be expressed
in terms of fundamental K-loops/K-cutsets, for any fix choice of trees/forests
T1, T2 and T3 as in Definition 3. Therefore, in particular, the number of fun-
damental K-loops/K-cutsets in a graph G is independent of the choice of the
trees/forests and we may define, using the notation from Definition 3,

FLK := | { ` | ` is a fundamental K-loop of G corresponding to T1 } |
= | { e | e is a branch of K − T1 } |,

FCK := | { c | c is a fundamental K-cutset of G corresponding to T2 and T3 } |
= | { e | e is a branch of T3 − T2 } |.

In the following we introduce the notion of an incidence matrix, which is
helpful in describing the topology of RLC networks. In particular, we derive
formulas for FLK and FCK using incidence matrices.



6 Thomas Berger et al.

Definition 4 Let a graph G = (V,E, ϕ) with l branches E = {e1, . . . , el}
and k nodes V = {v1, . . . , vk} be given. Then the all-node incidence matrix of
G is given by A0 = (aij) ∈ Rk×l, where

aij =


1, if ϕ1(ej) = vi,

−1, if ϕ2(ej) = vi,

0, otherwise.

Since the rows of A0 sum up to the zero row vector, one may delete an arbitrary
row of A0 to obtain a matrix A having the same rank as A0. We call A an
incidence matrix of G. Usually, the chosen row corresponds to the ground node
from V .

A spanning subgraph K of the graph G has an incidence matrix AK which is
constructed by deleting columns of the incidence matrix A of G corresponding
to the branches of the complementary spanning subgraph G−K. By a suitable
reordering of the branches, the incidence matrix reads

A =
[
AK AG−K

]
. (5)

In the following result we derive the number of fundamental K-loops/K-
cutsets in terms of the incidence matrices AK, AG−K; this improves the result
in [28, Lem. 2.1 & Lem. 2.3].

Theorem 1 Let G be a connected graph with incidence matrix A ∈ R(k−1)×l.
Further, let K be a spanning subgraph and assume that the branches of G are
sorted in a way that (5) is satisfied. Then the following holds true:

(i) FLK = dim kerAK,

(ii) FCK = dim kerA>G−K.

Proof Let T1, T2 and T3 be trees/forests as in Definition 3.
We show (i): Let m denote the number of branches of K, n the number of
its node and p the number of its components of connectivity. Note that AK ∈
R(k−1)×m. Since T1 is a forest in K, it has n− p branches, hence

FLK = m− (n− p).

By [27, Thm. 4.3] we have that rkAK = n− p, and hence

FLK = m− rkAK = dim kerAK.

We show (ii): Since T3 is a tree in G, it has k− 1 branches. Therefore, we have

FCK = k − 1− r,

where r is the number of branches in T2. Since T2 is a forest in G − K, it has
k− q branches, where q is the number of components of connectivity of G−K,
thus

FCK = q − 1.
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By [27, Thm. 4.3] we have that rkAG−K = k−q, where AG−K ∈ R(k−1)×(l−m),
and hence

q = k − rkA>G−K = k −
(
k − 1− dim kerA>G−K

)
= dim kerA>G−K + 1,

which completes the proof of the theorem. ut

3 Network equations

It is well-known [9,14] that the graph underlying an electrical network can be
described by an incidence matrix A ∈ R(k−1)×l, which can be decomposed
into submatrices

A =
[
AC AR AL

]
for the quantities in (4), where ne = k− 1 and l = nC +nG +nL. Each subma-
trix is the incidence matrix of a specific subgraph of the network graph. AC is
the incidence matrix of the subgraph consisting of all network nodes and all
branches corresponding to capacitors. Similarly, AR and AL are the incidence
matrices corresponding to the resistor and inductor subgraphs, resp. Then, us-
ing the standard MNA modeling procedure [14], see also the survey [27], which
is just a clever arrangement of Kirchhoff’s laws together with the character-
istic equations of the devices, results in a differential-algebraic equation (1)
with (2)–(4). C, G and L are the matrices expressing the constitutive rela-
tions of capacitances, resistances and inductances, η(t) is the vector of node
potentials and iL(t) is the vector of currents through inductances.

Definition 5 For a given RLC network, any differential-algebraic equation (1)
satisfying (2)–(4), which arises from the MNA modeling procedure [14], is said
to be an MNA model of the network.

It is a reasonable assumption that an electrical network is connected (see
also [22]); otherwise, since the components of connectivity do not physically
interact, one might consider them separately. Furthermore, in the present pa-
per we consider networks with passive devices. These assumptions lead to the
following assumptions on an MNA model (2)–(4) of the network (cf. [27]).

(A1) rk
[
AC AR AL

]
= ne,

(A2) C = C> > 0,L = L> > 0,G + G> > 0.

It is shown in [4, Cor. 4.5] that under the conditions (A1) and (A2), the
pencil sE −A in (2) is regular.

In the following we will use expressions like C-loop for a loop in the circuit
graph whose branch set consists only of branches corresponding to capaci-
tors. Likewise, a L-cutset is a cutset in the circuit graph whose branch set
consists only of branches corresponding to inductors. Using the concepts of
fundamental loops and cutsets from Section 2 it is reasonable to say that the
number of independent capacitors equals the total number of capacitors minus
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the number of fundamental loops of capacitors; likewise, the number of inde-
pendent inductors equals the total number of inductors minus the number of
fundamental cutsets of inductors. This justifies the following definition.

Definition 6 Consider a MNA model (1) with (2)–(4) of a RLC network.
We call nC − FLC the number of independent capacitors of the network and
nL − FCL the number of independent inductors of the network.

4 The McMillan and pseudo McMillan degrees

In this section we investigate the McMillan degree of implicit network transfer
functions and, because of several shortcomings, we introduce the new concept
of pseudo McMillan degree. For both concepts we derive a formula in terms of
the system matrices as well as a topological interpretation.

The McMillan degree of a proper2 rational matrix G(s) ∈ R(s)n×n, where
R(s) is the quotient field of R[s], is the total number of its poles, and can be
defined via its Smith-McMillan form

U(s)−1G(s)V (s)−1 = diag

(
ε1(s)

ψ1(s)
, . . . ,

εr(s)

ψr(s)
, 0, . . . , 0

)
∈ R(s)n×n , (6)

where U(s), V (s) ∈ R[s]n×n are unimodular (i.e. invertible over R[s]n×n),
rkG(s) = r, εi(s), ψi(s) ∈ R[s] are monic, coprime and satisfy εi(s) | εi+1(s),
ψi+1(s) | ψi(s) for all i = 1, . . . , r − 1. If G(s) is not proper, then it can be
decomposed into a proper rational matrix and a polynomial matrix, and the
McMillan degree can be defined following [18, p. 466].

Definition 7 ConsiderG(s) ∈ R(s)n×n. IfG(s) is proper with Smith-McMillan
form (6), then we call

δMG(s) := deg

r∏
i=1

ψi(s)

the McMillan degree of G(s). Otherwise, if G(s) = Gp(s) + P (s) with proper
Gp(s) ∈ R(s)n×n and polynomial P (s) ∈ R[s]n×n, then we call

δMG(s) := δMGp(s) + δMP
(
s−1
)

the McMillan degree of G(s).

The McMillan degree has several important properties, for instance that
δMG(s)−1 = δMG(s) for any invertible G(s) ∈ R(s)n×n, and these properties
may also serve to uniquely define the McMillan degree, see e.g. [18,25]. For
the implicit transfer function G(s) = (sE −A)−1 of a system (1) with regular
matrix pencil sE − A, it is a consequence of the Weierstraß canonical form
(see [11]) that

δMG(s) = rkE. (7)

2 G(s) ∈ R(s)n×n is proper, if lims→∞G(s) ∈ Rn×n exists.
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The following example shows that the McMillan degree neither equals the
number of dynamic elements, nor the number of independent dynamic elements
of a given RLC network in general.

Example 1 Consider the RLC network depicted in Figure 1. According to the

C1 C2

L2

L1

1

2

3

Fig. 1: RLC network

numbering of the nodes, the element-related incidence matrices are as follows:

AC =

 1 1
0 0
−1 −1

 , AL =

 1 0
−1 1
0 −1

 ,
and

C = diag (C1, C2), L = diag (L1, L2).

An essential step is now to observe that one of the three node potentials can be
chosen freely. Therefore, we may, for instance, choose the potential at node 3
to be zero, which is equivalent to choosing this node as the ground node as in
Figure 1. As a result, the corresponding node potential is not relevant in the
modified nodal model and we may delete the corresponding row (here it is the
last row) in the incidence matrices, that is

AC =

[
1 1
0 0

]
, AL =

[
1 0
−1 1

]
.

Therefore, the matrix pencil (2) corresponding to the MNA model is

sE −A =


s(C1 + C2) 0 1 0

0 0 −1 1
−1 1 sL1 0
0 −1 0 sL2
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and the McMillan degree of G(s) = (sE − A)−1 is δMG(s) = rkE = 3.
However, the number of dynamic elements is nC+nL = 4 and, furthermore, we
observe that the circuit contains one fundamental C-loop and one fundamental
L-cutset, so the number of independent dynamic elements is nC +nL−FLC −
FCL = 2.

Finally, let us compare the above findings to the “order of complexity” in-
troduced in [5,8] as the number of natural frequencies in the network. Accord-
ing to [8], this order of complexity is given, in terms of the network topology,
as

σ = nL + (ne + 1) + 1− SC − SCR,
where SC , SCR denote the number of components of connectivity of the sub-
network formed by the capacitors only and by the capacitors and the resistors
only, respectively. For the network in Figure 1 it can be seen that σ = 4, which
neither equals δMG(s), nor the number of independent dynamic elements.

Therefore, both the order of complexity from [5,8] and the McMillan degree
are not suitable as a measure for the complexity of the dynamic part of a
given network. To appropriately deal with the independent dynamic elements
of a network using an algebraic concept associated with the implicit transfer
function G(s) = (sE−A)−1 we introduce the new concept of pseudo McMillan
degree, which is simply defined as the total number of poles in the Smith-
McMillan form, even in the case of a non-proper rational matrix.

Definition 8 Consider G(s) ∈ R(s)n×n with Smith-McMillan form (6), then
we call

δPMG(s) := deg

r∏
i=1

ψi(s)

the pseudo McMillan degree of G(s).

Obviously, δPMG(s) = δMG(s) for any proper rational matrix. On the
other hand, δPMG(s)−1 6= δPMG(s) in general, for an arbitrary invertible
G(s) ∈ R(s)n×n, so this nice property of the McMillan degree is not retained.
For the implicit transfer function G(s) = (sE − A)−1 of a system (1) with
regular matrix pencil sE−A we find that, again using the Weierstraß canonical
form,

δPMG(s) = deg det(sE −A). (8)

Therefore, we obtain the relation

δPMG(s) ≤ δMG(s), G(s) = (sE −A)−1.

We are now in a position to derive the first main result of the present
paper.

Theorem 2 Consider a MNA model (1) with (2)–(4) of a RLC network.
Then, for G(s) = (sE −A)−1, we have

δMG(s) = nL + rkAC ,

δPMG(s) = nL + rkAC − dim ker [AR, AC ]
>.
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Proof It is straightforward to compute that, using (7),

δMG(s) = rkE = rk

[
ACCA>C 0

0 L

]
= nL + rkAC .

To show the second equation, choose matrices V,W with full column rank such
that

imV = im[AR, AC ], imW = ker [AR, AC ]
> =

(
imV

)⊥
,

and let m := rkW . With

T :=

[
V W 0
0 0 InL

]
∈ GLne+nL ,

where GLn denotes the set of invertible matrices from Rn×n, we obtain

T>(sE −A)T =

V >(sACCA>C +ARGA>R
)
V 0 V >AL

0 0 W>AL
−A>LV −A>LW sL

 . (9)

Then, the Schur complement formula (see e.g. [13, Lem. A.1.17]), yields

det(sE −A) = det
(
V >
(
sACCA>C +ARGA>R

)
V
)

· det

[
0 W>AL

−A>LW sL+A>LV
(
V >
(
sACCA>C +ARGA>R

)
V
)−1

V >AL

]
.

Let

P (s) := sL+A>LV
(
V >
(
sACCA>C +ARGA>R

)
V
)−1

V >AL,

then, again using the Schur complement formula,

det(sE −A)

= det
(
V >
(
sACCA>C +ARGA>R

)
V
)

detP (s) detW>ALP (s)−1A>LW.

We show that A>LW has full column rank: Let x ∈ Rm be such that A>LWx = 0,
then

Wx ∈ kerA>L ∩ imW = kerA>L ∩ ker [AR, AC ]
> = ker [AR, AC , AL]>

(A1)
= {0},

and the full column rank of W implies x = 0. Write P (s) = sL+Gp(s), where
Gp(s) is proper. Then

P (s)−1 = (sL)−1
(
I + (sL)−1Gp(s)

)−1
=

∞∑
k=0

(−1)ks−k−1L−k−1Gp(s)k,

and

W>ALP (s)−1A>LW = s−1W>ALL−1A>LW + s−1Gsp(s),
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where Gsp(s) is strictly proper. Since W>ALL−1A>LW ∈ GLm, the highest
power of s appearing in detW>ALP (s)−1A>LW is s−m. Furthermore, the high-
est power of s appearing in detP (s) is snL . By (8) and the above observations
we obtain

δPMG(s) = deg det
(
V >
(
sACCA>C +ARGA>R

)
V
)

+ nL −m.

We consider the matrix pencil sẼ−Ã := V >
(
sACCA>C +ARGA>R

)
V . We show

that ker Ẽ ∩ ker (Ã+ Ã>) = {0}: Let x ∈ ker Ẽ ∩ ker (Ã+ Ã>), then

x>V >ACCA>C V x = 0 and x>V >AR(G + G>)A>RV x = 0,

which implies, using (A2), that A>C V x = 0 and A>RV x = 0. Therefore,

V x ∈ ker [AR, AC ]
> ∩ imV = ker [AR, AC ]

> ∩ im[AR, AC ] = {0},

and full column rank of V implies x = 0. Invoking that ker Ã ⊆ ker (Ã+ Ã>)
by (A2), it now follows from [4, Cor 2.6 & Lem. 2.6] that sẼ − Ã is regular.
We show that its index (see e.g. [23, Def. 2.9] for a definition) is at most one.
Seeking a contradiction, assume that it is larger than one. Then [3, Prop. 2.10]
implies that there exist x, y ∈ Rq \ {0}, where q = rkV , such that Ẽy = Ãx
and Ẽx = 0. Therefore,

x>(Ã+ Ã>)x = x>Ẽy + y>Ẽx = 0,

hence (Ã + Ã>)x = 0 which gives x ∈ ker Ẽ ∩ ker (Ã + Ã>) = {0}, a contra-
diction. Since the index of sẼ − Ã is at most one we find that (see e.g. [23])

deg det(sẼ − Ã) = rk Ẽ.

Furthermore,

rk Ẽ = rkV >AC = rk

[
V >AC

0

]
= rk

[
V >AC
W>AC

]
= rk

[
V >

W>

]
AC = rkAC ,

and so we finally obtain

δPMG(s) = rkAC + nL −m = rkAC + nL − dim ker [AR, AC ]
>.

ut

We present an interpretation of Theorem 2 in terms of the network topol-
ogy. By Theorem 1, dim kerAC equals the number of fundamental C-loops and
dim ker [AR, AC ]

> equals the number of fundamental L-cutsets in the network,
thus the following is an immediate consequence of Theorems 1 and 2.

Corollary 1 Using the notation from Theorem 2 we have that

δMG(s) = nC + nL − FLC ,

δPMG(s) = nC + nL − FLC − FCL.

As a consequence of Corollary 1, we see that δPMG(s) equals the number
of independent capacitors and inductors in the network, whereas the difference
δMG(s)− δPMG(s) equals the number FCL of fundamental L-cutsets.
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5 Minimal realization

In this section we derive a minimal realization of a given RLC network in the
following sense.

Definition 9 A system of the form (1) is called a minimal realization of a
RLC network, if its number of (independent) differential equations equals the
pseudo McMillan degree of the implicit transfer function G(s) of the network,
i.e., rkE = δPMG(s), and there is a one-to-one correspondence to the solutions
of an MNA model of the network.

In order to obtain a minimal realization we start with an MNA model (1)
satisfying (2)–(4) of the RLC network and its transformation in (9), using the
notation from the proof of Theorem 2. Now let Y be a matrix with full column
rank such that

imY = kerW>AL =
(

imA>LW
)⊥
,

and, recalling that A>LW has full column rank,

S :=

[
Ine

0 0
0 A>LW Y

]
∈ GLne+nL .

Then

S>T>(sE −A)TS

=


V >
(
sACCA>C +ARGA>R

)
V 0 V >ALA

>
LW V >ALY

0 0 W>ALA
>
LW 0

−W>ALA>LV −W>ALA>LW sW>ALLA>LW sW>ALLY
−Y >A>LV 0 sY >LA>LW sY >LY

.
Obviously, W>ALA

>
LW ∈ GLm and hence there is a one-to-one correspon-

dence between the solutions of the MNA model (1) and the solutions of the
system

V >ACCA>C V ẋ1(t) = −V >ARGA>RV x1(t)− V >ALY x4(t),

W>ALLY ẋ4(t) = W>ALA
>
LV x1(t) +W>ALA

>
LW x2(t),

Y >LY ẋ4(t) = Y >A>LV x1(t).

Again using that W>ALA
>
LW ∈ GLm, the second equation can be solved for

x2 and we obtain a one-to-one correspondence to the solutions of the system

Ẽ ˙̃x(t) = Ãx̃(t), x̃(t) =

(
x1(t)
x4(t)

)
, (10)

with

sẼ − Ã =

[
V >
(
sACCA>C +ARGA>R

)
V V >ALY

−Y >A>LV sY >LY

]
.

The variables x1 in (10) may be interpreted as those corresponding to indepen-
dent capacitors in the network and x4 as those corresponding to independent
inductors.
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Theorem 3 Consider a MNA model (1) with (2)–(4) of a RLC network. Then
the system (10) is a minimal realization of that network. In particular, for the
matrices in (10) we find

rkA>C V = nC − FLC and rkY = nL − FCL.

Proof It is obvious that there is a one-to-one correspondence between the
solutions of (1) and (10). Furthermore,

rk Ẽ = rkV >AC + rkY >LY = rkAC + rkY,

where we have used that rkV >AC = rkAC as shown in proof of Theorem 2.
We may further calculate that

rkY = dim kerW>AL = nL − rkW>AL = nL − rkA>LW = nL −m,

since A>LW has full column rank m = rkW . Therefore,

rkY = nL − rkW = nL − dim ker [AR, AC ]
>

and hence

rk Ẽ = rkAC + nL − dim ker [AR, AC ]
> = δPMG(s)

for G(s) = (sE −A)−1 by Theorem 2. The last statement is a consequence of
Corollary 1. ut

Since there is a one-to-one correspondence between the solutions of (1)
and (10) it follows that det(sẼ − Ã) = det(sE −A) and hence

deg det(sẼ − Ã) = δPM (sE −A)−1 = rk Ẽ,

thus the index of the matrix pencil sẼ − Ã is at most one. Therefore, the
procedure which leads from (1) to (10) may also be viewed as an index reduc-
tion method (cf. [23]), because the possibly higher index of sE − A in (1) is
reduced to at most one in (10). Note that this procedure is simpler than those
presented in [1], however we do not consider any sources in the network here.

6 Examples

We illustrate our obtained results by means of two examples.
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6.1 Example 1 revisited

Consider again the RLC network depicted in Figure 1 from Example 1. We
have observed that for G(s) = (sE −A)−1 we have δMG(s) = 3. Since

det(sE −A) = s2(C1 + C2)(L1 + L2) + 1,

the pseudo McMillan degree is given by δPMG(s) = 2. From Theorem 2 we
obtain the same values:

nL+rkAC = 2+1 = 3 and nL+rkAC−dim ker [AR, AC ]
> = 2+1−1 = 2.

Since rkE = 3 6= 2 = δPMG(s), the MNA model is not a minimal realization.
We see that sE −A is already in the form (9), so it remains to choose

Y =

[
1
1

]
, imY = kerW>AL = ker [−1, 1].

Then, with

S :=


1 0 0 0
0 1 0 0
0 0 −1 1
0 0 1 1

 ∈ GL4

we obtain

S>(sE −A)S =


s(C1 + C2) 0 −1 1

0 0 2 0
−1 2 sL1 + sL2 −sL1 + sL2

1 0 −sL1 + sL2 sL1 + sL2

 ,
and hence a minimal realization is given by (10) with

sẼ − Ã =

[
s(C1 + C2) 1

1 s(L1 + L2)

]
.

6.2 Example 2

Consider the RLC network depicted in Figure 2.
After deleting the row corresponding to the ground node the incidence

matrices read

AR =

1 0 1 1
0 0 0 0
0 1 −1 −1

 , AC =

0
1
0

 , AL =

 1 0
−1 1
0 −1

 ,
G = diag (R−11 , R−12 , R−13 , R−14 ), C = [C1], L = diag (L1, L2).
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L1 L2

R1R2

R3

C1

R4

1 2 3

4

Fig. 2: RLC network

Therefore, the matrix pencil (2) corresponding to the MNA model is

sE −A =

[
sACCA>C +ARRA>R AL

−A>L sL

]

=


R−11 +R−13 +R−14 0 −R−13 −R

−1
4 1 0

0 sC1 0 −1 1
−R−13 −R

−1
4 0 R−12 +R−13 +R−14 0 −1

−1 1 0 sL1 0
0 −1 1 0 sL2


and the McMillan degree of G(s) = (sE−A)−1 is δMG(s) = rkE = 3. Further,
we calculate

det(sE−A) = s3 C1L1L2(R−11 R−12 +R−11 R−13 +R−11 R−14 +R−12 R−13 +R−12 R−14 )

+ s2(. . .) + s(. . .) +R−11 +R−12 ,

and hence the pseudo McMillan degree of G(s) is δPMG(s) = 3. These are the
same values as we obtain from Theorem 2:

nL+rkAC = 2+1 = 3 and nL+rkAC−dim ker [AR, AC ]
> = 2+1−0 = 3,

and we observe that the network neither contains C-loops nor L-cutsets. Since
rkE = 3, the MNA model itself is already a minimal realization.

7 Conclusion

In the present paper we have argued that the McMillan degree is not a suitable
measure for the complexity of the dynamic part of an RLC network, because
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it neither equals the number of dynamic elements nor the number of inde-
pendent dynamic elements. To resolve this drawback we have introduced the
new concept of pseudo McMillan degree and shown that the pseudo McMillan
degree of an implicit network transfer function equals the number of inde-
pendent dynamic elements. The latter is given by the sum of the number of
capacitors and inductors minus the number of fundamental loops of capacitors
and fundamental cutsets of inductors. A minimal realization of the RLC net-
work is then derived, where the number of involved (independent) differential
equations equals the pseudo McMillan degree.

The starting point for our analysis has been the modified nodal analy-
sis model, which preserves the natural graph topology of the network, but
in general leads to an implicit non-minimal representation. The results pre-
sented here provide an extension to the results derived in [24] based on the
impedance-admittance network description, which provides an appropriate
framework for network re-engineering. The corresponding integral-differential
rational description also leads to a state space description that is in general
non-minimal [22], but that preserves the natural nodal/loop topologies of the
network. Extending the results on the (pseudo) McMillan degree obtained in
the present paper to this alternative description is a topic of future research.
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