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Highlights

• A numerical framework to simulate transcritical and supercritical flows utilising the compressible form of the Navier–Stokes equations
coupled with the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS) is presented.

• Both conservative and quasi-conservative formulations have been tested.
• Advection test cases and shock tube problems are included to show the overall performance of the developed framework.
• Two-dimensional simulations of nitrogen and dodecane jets are presented to demonstrate the multidimensional capability of the devel-

oped model.
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Abstract 14 
The present paper describes a numerical framework to simulate transcritical and supercritical 15 
flows utilising the compressible form of the Navier-Stokes equations coupled with the 16 
Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS); 17 
both conservative and quasi-conservative formulations have been tested. This molecular 18 
model is an alternative to cubic EoS which show low accuracy computing the thermodynamic 19 
properties of hydrocarbons at temperatures typical for high pressure injection systems. Liquid 20 
density, compressibility, speed of sound, vapour pressures and density derivatives are 21 
calculated with more precision when compared to cubic EoS. Advection test cases and shock 22 
tube problems are included to show the overall performance of the developed framework 23 
employing both formulations. Additionally, two-dimensional simulations of nitrogen and 24 
dodecane jets are presented to demonstrate the multidimensional capability of the developed 25 
model. 26 
 27 
Keywords: Supercritical, transcritical, PC-SAFT EoS, double-flux model, Riemann problem 28 
 29 
Nomenclature 30 
 31 
List of abbreviations  32 
AAD   Average Absolute Deviation 33 
CFD  Computational Fluid Dynamics 34 
CFL  Courant–Friedrichs–Lewy  35 
ENO  Essentially Non-Oscillatory 36 
EoS  Equation of State 37 
FC  Fully Conservative 38 
HLLC  Harten-Lax-van Leer-Contact 39 
LES  Large Eddy Simulation  40 
PR  Peng-Robinson 41 
PC-SAFT  Perturbed Chain Statistical Associating Fluid Theory 42 
QC  Quasi-Conservative  43 
RK2  Second-order Runge–Kutta 44 
SRK  Soave-Redlich-Kwong 45 
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SSP-RK3 Third-order strong-stability-preserving Runge–Kutta  46 
TVD   Total Variation Diminishing 47 
WENO  Weighted Essentially Non-Oscillatory 48 
 49 
List of Symbols 50 

resa  Reduced Helmholtz free energy [-] 51 
c Sound speed [m s-1]  52 
d  Temperature-dependent segment diameter [Å] 53 
g Radial distribution function [-] 54 
I  Integrals of the perturbation theory [-] 55 

Bk  Boltzmann constant [J/K] 56 

m Number of segments per chain [-] 57 
m  Mean segment number in the system [-] 58 
p  Pressure [Pa] 59 
R  Gas constant [J mol-1 K-1] 60 
T Temperature [K] 61 

ix  Mole fraction of component i [-] 62 

Z  Compressibility factor [-] 63 
U  Conservative variable vector 64 
F x-convective flux vector 65 
G  y-convective flux vector 66 

VF  x-diffusive flux vector 67 

VG  y-diffusive flux vector 68 

 69 
Greek Letters  70 
ε  Depth of pair potential [J] 71 
η Packing fraction [-] 72 
ρ  Density [kg/m3] 73 

mρ  Total number density of molecules [1/Å3] 74 

dσ  Segment diameter [Å] 75 

 76 
Superscripts 77 
disp Contribution due to dispersive attraction 78 
hc  Residual contribution of hard-chain system 79 
hs  Residual contribution of hard-sphere system 80 
id  Ideal gas contribution 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
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1. Introduction 89 

Transcritical and supercritical states occur in modern combustion engines that operate at 90 
pressures higher than the critical pressure of the fuels utilised. In Diesel engines for example, 91 
the liquid fuel is injected into air at pressure and temperature conditions higher than the 92 
critical point of the fuel [1]. The liquid injection temperature is lower than the fuel critical 93 
temperature but as the liquid is heated, it may reach supercritical temperature before full 94 
vaporisation. This is known as a transcritical injection. Similarly, in liquid rocket engines, 95 
cryogenic propellants are injected into chambers under conditions that exceed the critical 96 
pressure and temperature of the propellants. 97 

A single-species fluid or a mixture reaches a supercritical state when the pressure and 98 
temperature surpass its critical properties. In the critical region, repulsive interactions 99 
overcome the surface tension resulting in the existence of a single-phase that exhibits 100 
properties of both gases and liquids (e.g., gas-like diffusivity and liquid-like density). A 101 
diffuse interface method is commonly employed in supercritical and transcritical jet 102 
simulations to capture the properties of the flow [2]–[4]. Several difficulties should be 103 
overcome for simulating the mixing of the jets using a diffused interface [5]. The presence of 104 
large density gradients between the liquid-like and the gas-like regions, the need of using a 105 
real-fluid EoS, or the spurious pressure oscillations generated in conservative schemes are the 106 
main challenges.  107 

High order reconstruction methods are usually applied to capture the large density 108 
gradients. The authors of [6] performed a two-dimensional large-eddy simulation (LES) of 109 
supercritical mixing and combustion employing a fourth-order flux-differencing scheme and a 110 
total-variation-diminishing (TVD) scheme in the spatial discretization. In [7] a fourth-order 111 
central differencing scheme with fourth-order scalar dissipation was applied in order to 112 
stabilize the simulation of a  cryogenic fluid injection and mixing under supercritical 113 
conditions. Moreover, [8] employed an eighth-order finite differencing scheme to simulate 114 
homogeneous isotropic turbulence under supercritical pressure conditions, while in [9] a 115 
density-based sensor was utilized, which switches between a second-order ENO (Essentially 116 
non-oscillatory) and a first-order scheme to suppress oscillations. In the present study a fifth-117 
order WENO (Weighted Essentially Non-Oscillatory) scheme [10] is applied due to its high 118 
order accuracy and non-oscillatory behaviour.  119 

Cubic EoS models like PR (Peng-Robinson) [11] and SRK (Soave-Redlich-Kwong) EoS 120 
[12] are usually used in supercritical and transcritical simulations. In the studies reported in 121 
[4], [13]–[15] the SRK EoS was employed in order to close the Navier Stokes equations and 122 
compute the fluid properties under supercritical and transcritical conditions. Moreover, the 123 
works reported in [3], [9], [16], [17] modeled the non-ideal fluid behavior applying the PR 124 
EoS. However, cubic models commonly present low accuracy computing the thermodynamic 125 
properties of hydrocarbons at temperatures typical for injection systems [2]. To overcome 126 
this, the Statistical Association Fluid Theory Equation of State (SAFT EoS) can be employed. 127 
This molecular model is based on the perturbation theory, as extensively studied in [18]–[21] 128 
by Wertheim. The authors of  [22], [23] developed this EoS by applying Wertheim’s theory 129 
and extending it to mixtures. Figure 1 shows a schematic representation of the terms 130 
considered in the SAFT equation. Each molecule is represented by segments of equal size, 131 
assumed to form a repulsive, hard sphere reference fluid. Next, the attractive interactions 132 
between segments are added to the model. The segment-segment energy needed to form a 133 
chain between the hard-sphere fluid segments is included and, if the segments exhibit 134 
associative interactions, such as hydrogen bonding, a term for this interaction is also added. 135 
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 Among the different variants of the SAFT model, the PC-SAFT is the one implemented 136 
here. In this model, hard chains are used as the reference fluid instead of hard spheres. While 137 
the SAFT EoS computes segment-segment attractive interactions, the PC-SAFT EoS 138 
computes chain-chain interactions, which improves the thermodynamic description of chain-139 
like, fluid mixtures [24]. 140 

Several papers have been published pointing out the advantages of the SAFT models 141 
with respect to the cubic EoS commonly used in CFD simulations. For example, [25] 142 
describes how the PC-SAFT model is better than cubic EoS for predicting gas phase 143 
compressibility factors and oil phase compressibilities. In [26] the superiority of the PC-144 
SAFT performance is demonstrated relative to the Cubic Plus Association (CPA) EoS in 145 
correlating second order derivative properties, like speed of sound, dP/dV and dP/dT 146 
derivatives, heat capacities and the Joule–Thomson coefficient in the alkanes investigated. 147 
Similarly, [27] points out the superiority of the SAFT-BACK EoS over the PR EOS, 148 
particularly at high-density conditions, for computing second order derivative properties such 149 
as sound velocity and isobaric and isochoric properties. The study of [28] states that cubic 150 
EoS predict a linear increase of the Z factor (compressibility factor) with pressure, while the 151 
PC-SAFT EoS shows a better pressure dependence. Finally, [29] shows how the sPC-SAFT 152 
(simplified PC-SAFT) is more precise than SRK and CPA to compute the speed of sound of 153 
normal alkanes and methanol. 154 

If a fully conservative (FC) formulation is employed along with a real-fluid EoS, 155 
spurious pressure oscillations may appear; the work of [4] has related this problem to 156 
computational stability issues, turbulence, and acoustics accuracy loss. The same authors of 157 
[4] developed a quasi-conservative (QC) scheme solving a pressure evolution equation 158 
instead of the energy conservation equation, while [30] developed a quasi-conservative 159 
framework where the artificial dissipation terms in the mass, momentum and energy 160 
equations are related and the pressure differential is considered to be zero. In [31] the double 161 
flux model was developed to avoid spurious pressure oscillations in simulations of 162 
compressible multicomponent flows that employ a perfect gas EoS; [32] extended it to 163 
reactive flows; and finally, [3], [17], [33] extended the double flux model to real-fluids and 164 
transcritical conditions. However, recently it has been reported that the large energy 165 
conservation error in quasi-conservative schemes maybe produce an unphysical quick heat-up 166 
of the jet [2].  167 

 

 

Figure 1. Schematic representation of the attractive and repulsive contributions of the SAFT EoS 168 
and the PC-SAFT EoS [24] 169 

 170 
The novelty of the approach described here is the coupling of the PC-SAFT EoS with 171 

the Navier-Stokes equations, which it is not present in the literature. During the last years 172 
conservative and quasi-conservative formulations have been employed in the simulation of 173 

Hard sphere 
fluid 

Associative 
forces between 
molecules  

Attractive 
forces between 
molecules 

Chains with hard 
sphere segments 

SAFT EoS PC-SAFT 
EoS 

Intermolecular attractive forces 



5 
 

supercritical and transcritical jets. For this reason, two codes have been developed employing 174 
both schemes: the conservative and the so-called quasi-conservative approach, where the 175 
double flux model of  [3], [17], [33] is utilized. The aim of this research is not to solve the 176 
spurious pressure oscillations characteristic of FC schemes when real-fluid EoS are applied or 177 
the energy conservation error of QC formulations but to present how the Navier-Stokes 178 
equations can be closed with the PC-SAFT in both scenarios. Advection test cases and shock 179 
tube problems are included to show the overall performance of the developed framework 180 
using both formulations. Moreover, two-dimensional simulations of nitrogen and dodecane 181 
jets are presented to demonstrate the capability of the code to predict fluid mixing. 182 
 183 

2. Numerical Method 184 
The Navier-Stokes equations for a non-reacting multi-component mixture containing N 185 
species in a x-y 2D Cartesian system are given by: 186 
 187 

v v

t x y x y
∂ ∂∂ ∂ ∂+ + = +

∂ ∂ ∂ ∂ ∂
F GU F G

            (1)  188 
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 193 
where  is the fluid density, u and v are the velocity components, p is the pressure, E is the 194 
total energy, Ji is the mass diffusion flux of species i,  is the deviatoric stress tensor and q is 195 
the diffusion heat flux vector.  196 

The finite volume method has been applied in this work for obtaining a numerical 197 
solution to the above equations. The PC-SAFT EoS is implemented to simulate supercritical 198 
and transcritical states. The developed numerical framework considers a condition of 199 
thermodynamic equilibrium in each cell. Phase separations or metastable thermodynamic 200 
states are beyond the scope of this research and are not considered. 201 
 202 
2.1 Formulations  203 

Since PC-SAFT EoS is rarely used in CFD simulations, two codes have been 204 
developed employing different formulations (conservative and quasi-conservative) to 205 
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determine which one is more appropriate for the simulation of transcritical and supercritical 206 
fluid jets.  207 
2.1.1 Conservative formulation  208 
Operator splitting [34] is adopted to divide the physical processes into hyperbolic and 209 
parabolic sub-steps. The global time step is computed using the CFL (Courant–Friedrichs–210 
Lewy) criterion of the hyperbolic operator. 211 
 212 
Hyperbolic sub-step 213 

The HLLC (Harten-Lax-van Leer-Contact) solver is used to solve the Riemann 214 
problem. The conservative variables are interpolated onto the cell faces using a fifth-order 215 
WENO scheme [10] due to its high order accuracy and non-oscillatory behaviour. TVD 216 
(Total Variation Diminishing) limiters [34] are applied to avoid oscillations near 217 
discontinuities. Time integration is performed using a SSP-RK3 (third-order strong-stability-218 
preserving Runge–Kutta) method [35].  219 

 220 
Parabolic sub-step 221 

The method developed in [36] is applied to calculate the values of the dynamic 222 
viscosity and thermal conductivity of the mixture. The model of [37] is implemented to 223 
compute the diffusion coefficient. A RK2 (second-order Runge–Kutta) scheme is employed 224 
to perform the time integration of this sub-step. Linear interpolation is performed for 225 
computing the conservative variables, enthalpy and temperature on faces from cell centres.  226 
 227 
2.1.2 Quasi-conservative formulation  228 

The physical processes are divided into hyperbolic and parabolic sub-steps using 229 
operator splitting as well [34]. The CFL criterion of the hyperbolic operator is used to 230 
compute the global time step. 231 

 232 
Hyperbolic sub-step 233 

The double flux model of [3], [17], [33] has been implemented. The HLLC solver is 234 
used to solve the Riemann problem. In the one-dimensional cases presented, the primitive 235 
variables are interpolated onto the cell faces using a fifth-order WENO scheme [10]. In the 236 
two-dimensional cases, a sensor that compares the value of the density in the faces and the 237 
centre of the cells is employed to determine in which regions a more dissipative scheme must 238 
be applied [3] . If the sensor is activated,  TVD limiters [34] are employed. The solution is 239 
then blended with a first-order scheme (90% WENO). Time integration is performed using a 240 
SSP-RK3 method [35].  241 
 242 
The following steps were followed to implement the double flux model [3], [17], [33]: 243 

1) In each cell are stored the values of *γ  (eq.3) and  *
0e  (eq.4). 244 

2
* c

p
ργ =             (3) 245 

*
0 * 1

pve e
γ

= −
−

                       (4) 246 

where p  is the pressure, c  is the sound speed, e  is the internal energy and v is the 247 
specific volume. 248 

 249 
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2) Runge-Kutta scheme 250 
• Step 1: The fluxes at the faces are computed using the primitive variables. The total 251 

energy in the left (L) and right (R) states are computed using eq.5.     252 

, *,
, , 0, , , ,*,

1( )
1 2

n
L Rn n n n n n

L R L R j L R L R L Rn
j

p
E eρ ρ ρ

γ
= + + ⋅

−
u u         (5) 253 

• Step  2:  Update conservative variables using the RK scheme 254 
• Step 3: Update primitive variables (using the double flux model to compute the 255 

pressure). 256 
 257 

3) Update total energy: The total energy is updated from primitive variables based on the EoS 258 
(eq.6). Only at this point the PC-SAFT EoS is used to compute the internal energy, sound 259 
speed, temperature and enthalpy.  260 

1
2

E eρ ρ ρ= + ⋅u u                        (6) 261 

 262 
Parabolic sub-step 263 
The diffusion fluxes are calculated conservatively in the same way that is explained in the 264 
conservative formulation. 265 
 266 
2.2 PC-SAFT EoS subroutine  267 
A different subroutine has been developed for each formulation because of the different 268 
inputs of the EoS subroutine. 269 
 270 
Conservative formulation  271 

The thermodynamic variables computed in the CFD code by the PC-SAFT EoS are 272 
the temperature, pressure, sound speed and enthalpy. The algorithm inputs are the density, 273 
internal energy, molar fractions and three pure component parameters per component 274 
(number of segments per chain, energy parameter of each component and segment diameter), 275 
see Table 1. The density and the internal energy are obtained from the conservative variables 276 
of the CFD code. The molar fractions are computed using the mass fractions employed in the 277 
continuity equations and the molar weights of the components. The pure component 278 
parameters are specified in the initialization of the simulation. A detailed description of the 279 
PC-SAFT EoS can be found in the Appendix A. 280 

 The Newton-Raphson method is employed to compute the temperature that is needed 281 
to calculate the value of all other thermodynamic variables. The temperature dependent 282 
function used in the iterative method is the internal energy. Initially, a temperature value is 283 
assumed (for example the value of the temperature from the previous time RK sub-step or 284 
from the previous time step) to initialize the iteration process. In most cells, this value is close 285 
to the solution. Then the compressibility factor is calculated as the sum of the ideal gas 286 
contribution (considered to be 1), the dispersion contribution and the residual hard-chain 287 
contribution (Appendix A): 288 

 289 

1 hc dispZ Z Z= + +             (7) 290 
 291 
The pressure is then calculated using eq.8 once the compressibility factor is known [38]:    292 
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( )31010B mp Zk Tρ=            (8) 293 

where k  is the Boltzmann constant and mρ  is the total number density of molecules. 294 

Finally, the internal energy is estimated as the sum of the ideal internal energy and the 295 
residual internal energy. The ideal internal energy is computed using the ideal enthalpy. The 296 
residual internal energy is calculated using eq.9 [39]: 297 
 298 

,ρ

∂= −
∂

i

res res

x

e aT
RT T

                                    (9) 299 

where resa is the reduced Helmholtz free energy. 300 
 301 
If the difference between the internal energy computed with the PC-SAFT model and the 302 
value obtained from the conservative variables is bigger than 0.001J/kg, the Newton-Raphson 303 
method is applied to calculate a new value of the temperature and the aforementioned steps 304 
are repeated, see Appendix D. 305 
 306 
Quasi-conservative formulation 307 

The thermodynamic variables computed in the CFD code by the PC-SAFT EoS are the 308 
temperature, internal energy, sound speed and enthalpy. The algorithm inputs are the density, 309 
pressure, molar fractions and three pure component parameters per component. The density 310 
and mass fractions (used to compute the molar fractions) are obtained from the conservative 311 
variables. The pressure is obtained employing the double flux model. The temperature is 312 
iterated until the difference between the pressure computed with the PC-SAFT model and the 313 
value obtained from the double flux model is lower than 0.001Pa, see Appendix D. 314 
 315 
2.3 Peng-Robinson EoS and PC-SAFT EoS comparison 316 

The most attractive feature of the PC-SAFT EoS is the better prediction of derivative 317 
properties such as compressibility and speed of sound. [27] shows the inaccuracy of cubic 318 
models to predict second derivative properties such as isobaric heat capacity and sound 319 
velocity in hydrocarbons at high density ranges. In the case of the sonic fluid velocity, the 320 
AAD% (Average Absolute Deviation) by PR EoS for methane, ethane, and propane are 321 
28.6%, 14.7%, and 61.2%, respectively. 322 

Figure 2 presents a comparison of the thermodynamic properties of n-dodecane at 323 
6MPa computed using the PC-SAFT EoS and the Peng-Robinson EoS. NIST Refprop [40] 324 
has been used as reference due to its extensive validation with experimental data. While the 325 
results of both EoS are quite similar at density values lower than 550 Kg/m3 there is a 326 
significant difference at higher densities, especially in the sound speed. Cubic models 327 
commonly present low accuracy computing the thermodynamic properties of hydrocarbons at 328 
temperatures typical for injection systems [2]. However, the PC-SAFT EoS shows an 329 
accuracy similar to NIST without the need of an extensive model calibration as only three 330 
parameters are needed to model a specific component. Another advantage is the possibility of 331 
computing the thermodynamic properties of mixtures; NIST has limited mixture 332 
combinations. 333 
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Figure 2: Comparison of thermodynamic properties of n-dodecane at 6MPa computed using the 334 
PC-SAFT EoS and the Peng-Robinson EoS: (a) density, (b) sound speed, (c) internal energy 335 

3. Results 336 

Initially, advection test cases and shock tube problems are solved to validate the 337 
hyperbolic part of the numerical framework employing the conservative and quasi-338 
conservative formulations, while the parabolic part is omitted. Following, two-dimensional 339 
simulations of transcritical and supercritical nitrogen and dodecane jets are presented, 340 
including the parabolic part, to prove the multi-dimensional capability of the code. 341 
 342 
3.1. One-dimensional cases 343 
3.1.1 Advection test cases 344 
Conservative formulation  345 

Figure 3 shows the results of the supercritical Advection Test Case 1, see Table 2. 346 
Nitrogen is used as working fluid (The critical properties of nitrogen are pc,N2 = 3.4 MPa and 347 
Tc,N2 = 126.2 K). The computational domain is x  [0, 1] m; the initial conditions in 0.25m < x 348 
< 0.75m  are =250 kg/m3, p=5 MPa, and T=139.4 K; in the rest of the domain are = 45.5 349 
kg/m3, p=5 MPa, and T=367.4 K. The advection velocity applied is 50m/s; periodic boundary 350 
conditions are utilized; a uniform grid spacing of 0.01m is employed; the simulated time is 351 
t=0.02s; and the CFL is set to be 0.5. Four spatial discretization schemes are compared: fifth-352 
order WENO, second-order (based on the Minmod limiter), first order and a blend of the 353 
fifth-order WENO and the first-order schemes (95% WENO and rest 1st order). 354 

The oscillations are more severe when high-order reconstruction schemes are applied. 355 
By blending a high-order scheme and a low-order model, dissipation can be used to smooth 356 
the numerical solution. If the advection test case is initialized using a smooth profile no 357 
spurious pressure oscillation appear in the solution as the sharp jumps in the thermodynamic 358 
properties between cells are avoided, see Figure 4. The smooth initial interface was generated 359 
as described in [13] using eq.10. 360 

(a) (b) 

(c) 
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(1 )= − +L sm R smq q f q f          (10) 361 

(1 [ / ])
2

ε+ Δ=sm
erf Rf         (11) 362 

Where L and R refers to the left and right states respectively and ΔR  is the distance from the 363 
initial interface. εε = ΔC x , where Δx  is the grid spacing and εC  is a free parameter to 364 

determine the interface smoothness set to be 8. 365 
 366 

 
Figure 3. Advection Test Case 1 (N2), FC formulation, CFL = 0.5, u = 50 m/s, 100 cells,  367 
t=0.02 s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 368 
between the analytical and the numerical solution. 369 

 370 

Figure 4. Advection Test Case 1 (N2), FC formulation, CFL = 0.5, u = 50 m/s, 300 cells,      371 
t=0.01 s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 372 
between the analytical and the numerical solution. 373 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Quasi-conservative formulation 374 
Figure 5 presents the results of the transcritical Advection Test Case 1 solved using the 375 

QC formulation. The advection velocity applied is 50m/s; periodic boundary conditions are 376 
applied; a uniform grid spacing of 0.01m is used; the simulated time is t=0.02s; and the CFL 377 
is set to be 1. Unlike the fully conservative scheme, spurious pressure oscillations are not 378 
present in the solution.  379 
 380 

Figure 5. Advection Test Case 1 (N2), FC and QC formulations, CFL(FC) = 0.5, 381 
CFL(QC)=1.0, u = 50 m/s, 100 cells, t=0.02 s. Comparison of the (a) density, (b) 382 
temperature, (c) pressure and (d) x-velocity between the analytical and the numerical 383 
solution. 384 

 385 
Figure 6 presents the results of the transcritical Advection Test Case 2 where nitrogen 386 

is used as working fluid, see Table 2. The computational domain is x  [0, 1] m; the initial 387 
conditions in 0.25 m < x < 0.75 m are =804.0 kg/m3, p=4 MPa, and T=84.41 K; in the rest of 388 
the domain the initial conditions are =45.5 kg/m3, p=4 MPa, and T=299.0 K. The advection 389 
velocity utilized is 100 m/s; periodic boundary conditions are used; the computational domain 390 
is x  [0, 1] m; 150 cells are employed; the simulated time is t=0.01 s; a fifth-order WENO 391 
discretization scheme is used; and the CFL is set to be 1.0. It can be observed how large 392 
density gradients are solved without spurious pressure oscillations applying the double flux 393 
model.  394 

Figure 7 shows the results of the transcritical advection of n-dodecane at supercritical 395 
pressure and subcritical temperature (pc,n-dodecane =1.817 MPa, Tc,n-dodecane =658.1 K) in 396 
supercritical nitrogen, Advection Test Case 3 (Table 2). The computational domain is x  397 
[0,1] m; the initial conditions in 0.25m < x < 0.75m  are n-dodecane =700.0 kg/m3, pn-dodecane = 398 
6MPa, and Tn-dodecane =360.1 K; in the rest of the domain N2 =20.0 kg/m3, pN2 =6 MPa, and TN2 399 
=965.7 K. The advection velocity utilized is 100 m/s; periodic boundary conditions are used; 400 
150 cells are employed; the simulated time is t=0.01 s; a fifth-order WENO discretization 401 
scheme is used; and the CFL is set to be 1.0. Unlike conservative codes, velocity and pressure 402 
equilibriums are preserved in multicomponent cases if the double flux model is applied.  403 

(a) (b) 

(c) (d) 
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Table 1. PC-SAFT pure component parameters [38] 404 
 m Åσ  [ ]/ k Kε  

NITROGEN   1.2053 3.3130 90.96 

DODECANE 5.3060 3.8959 249.21 

 405 
 406 

Table 2. 1D Test Cases 407 
ADVECTION TEST CASES 

CASE 1  Pressure [MPa] Density [kg/m3] Temperature [K] 

0.25 m < x < 0.75 m N2, 5 N2, 250 N2, 139.4 

0.25 m > x or x > 0.75 m   N2, 5 N2, 45.5 N2, 367.4 

CASE 2     

0.25 m < x < 0.75 m N2, 4 N2, 804 N2, 84.4 

0.25 m > x or x > 0.75 m   N2, 4 N2, 45.5 N2, 299.0 

CASE 3     

0.25 m < x < 0.75 m n-dodecane, 6.0 n-dodecane, 700.0 n-dodecane, 360.1 

0.25 m > x or x > 0.75 m   N2, 6.0 N2, 20.0 N2, 965.7 

SHOCK TUBE PROBLEM 

PROBLEM  Pressure [MPa] Density [kg/m3] Temperature [K] 

x < 0.5 m   n-dodecane, 13.0 n-dodecane, 700.0 n-dodecane, 372.8 

x > 0.5 m   n-dodecane, 6.0 n-dodecane, 150.0 n-dodecane, 944.4 

 408 
 409 

Table 3. 2D Test Cases 410 
CASE A  Pressure [MPa] Density [kg/m3] Temperature [K] 

JET   N2, 4.0 N2, 804.0 N2, 84.4 

CHAMBER N2, 4.0 N2, 45.5 N2, 299.5 

CASE B     

JET   N2, 4.0 N2, 440.0 N2, 127.0 

CHAMBER N2, 4.0 N2, 44.5 N2, 305.0 

CASE C     

JET   n-dodecane, 11.1 n-dodecane, 450.0 n-dodecane, 687.2 

CHAMBER N2, 11.1 N2, 37.0 N2, 972.9 

 411 
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Figure 6. Advection Test Case 2 (N2), QC formulations, CFL = 1.0, u = 150 m/s, 100 cells, 412 
t=0.01s. Comparison of the (a) density, (b) temperature, (c) pressure and (d) x-velocity 413 
between the analytical and the numerical solution. 414 

 415 
 416 

Figure 7. Advection Test Case 3 (N2 - Dodecane), QC formulations, CFL = 1.0, u = 100 417 
m/s, 150 cells, t=0.01 s. Comparison of the (a) density, (b) temperature, (c) pressure and 418 
(d) x-velocity between the analytical and the numerical solution. 419 

 420 
 421 
 422 

(c) (d) 

(a) (b) 

(a) (b) 

(c) (d) 
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Energy conservation error in the quasi-conservative formulation 423 
The evolution of the energy conservation error of the Advection Test Case 2 is presented in   424 
Figure 8 . The error has been evaluated employing eq.12 [3]. 425 
 426 

[ ]( )( ) ( )(0)

( )(0)

ρ ρ
ε

ρ
Ω

Ω

−
=

E t E dx

E dx
       (12) 427 

where ε  is the relative error of the total energy respect to initial conditions and Ω  is the 428 
computational domain. 429 
 430 
The energy conservation error is higher using the PC-SAFT EoS than Peng-Robinson EoS. 431 

This is related to the fact that the profiles of *γ  and *
0e  are smoother employing the cubic 432 

model.  There are shaper jumps in the internal energy and speed of sound employing the PC-433 
SAFT EoS, see Figure 10. The error in the conservation of the energy depends on the jumps 434 

in the variables ( )*1/ 1γ − and *e [3]. A convergence of the error to 0 exists increasing the 435 

refinement. 436 

 437 
Figure 8. Relative energy conservation error computed using eq.10 of the QC formulation for the 438 

Advection Test Case 2 (Transcritical nitrogen) using the Peng-Robinson EoS (PR) and the PC-439 
SAFT EoS. N is the number of cells employed. 440 

 441 

 442 
Figure 9. Relative energy conservation error computed using eq.10 of QC formulation for the 443 

Advection Test Case 3 using the PC-SAFT EoS. N is the number of cells employed. 444 



15 
 

Figure 10. Advection Test Case 2 (N2), QC formulation, CFL = 1.0, u = 150 m/s, 100 cells, 445 
t=0.01s. Comparison of * and e0* computed using the Peng Robinson EoS (PR EoS) and 446 
the PC-SAFT in the Advection Test Case 2. 447 

 448 
Figure 9 presents the evolution of the energy conservation error of the Advection Test 449 

Case 3. Because of the different thermodynamic properties of the components, a higher 450 
energy conservation error than in the single-species cases appears. Although, a convergence 451 
to 0 is observed in one-dimensional cases increasing the refinement like in the single-species 452 
cases.  453 
 454 
3.1.2 Shock tube problems 455 
The Euler equations are solved in this validation so a direct comparison with the exact solver 456 
can be done. The exact solution has been computed using the methodology described in [41].  457 

 458 
Quasi-conservative formulation 459 

The domain is x  [0, 1] m. The working fluid employed is dodecane. A fifth-order 460 
WENO scheme is employed to interpolate the primitive variables onto the cell faces. 800 461 
equally spaced cells were used. Wave transmissive boundary conditions are implemented in 462 
the left and right sides. The double flux model is applied. The pressure exceeds the critical 463 
value in all the domain while there is a transition in the temperature from subcritical to 464 
supercritical from left to right. The initial conditions in the left state are L=700 kg/m3, pL=13 465 
MPa, uL=0 m/s; and in the right state are R=150 kg/m3, pR=6 MPa, uR=0 m/s. The simulated 466 
time is t=0.2 ms. 467 

Figure 11 displays the results obtained for density, temperature, pressure and 468 
velocity. Despite being a quasi-conservative scheme, the double flux model [3], [17], [33] can 469 
solve strong shock waves in transcritical cases with a high degree of accuracy without 470 
generating spurious pressure oscillations. 471 
 472 

(b) (a) 

(c) (d) 
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Figure 11. Shock Tube Problem 1 (Dodecane), QC formulation, CFL = 1.0, 800 cells, 473 
t=0.2 ms. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure 474 
profiles: exact solution and numerical solution. 475 

 476 

Figure 12. Shock Tube Problem 1 (Dodecane), FC formulation, CFL = 0.5, 4000 cells, 477 
t=0.2 ms. Comparisons of (a) density, (b) temperature, (c) velocity and (d) pressure 478 
profiles: exact solution and numerical solution. 479 

 480 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Conservative formulation 481 
The same shock tube problem described before is solved. A fifth-order WENO 482 

scheme is employed to interpolate the conservative variables onto the cell faces. Large 483 
spurious pressure oscillations appear in the solution because of the sharp jumps in the 484 
thermodynamic properties between cells, see Figure 12. 485 
 486 
Comparison with the Peng-Robinson EoS (Quasi-conservative formulation) 487 

 Figure 13 shows the density, temperature, pressure, velocity, sound speed and 488 
internal energy of the same shock tube problem solved in a larger domain x  [0, 2] m using 489 
the PC-SAFT and the Peng-Robinson EoS. The simulated time is t=0.3 ms. The quasi-490 
conservative formulation has been employed. 800 equally spaced cells were used. A 491 
significant difference can be observed in the results between the two EoS. Due to the high 492 
deviation in the sound speed computed by the Peng-Robinson EoS in the high-density region, 493 
the expansion wave travels much faster using the cubic model. Moreover, the calculated 494 
temperatures are much lower using the Peng-Robinson EoS in the high-density region.  495 

 496 

 

 

 
 Figure 13. Shock Tube Problem 2 (Dodecane), QC formulation, CFL = 1.0, 800 cells, 497 
t=0.3 ms. Comparison of the (a) density, (b) temperature, (c) pressure, (d) x-velocity, (e) 498 
sound speed, (f) internal energy between the numerical solutions obtained using the 499 
Peng-Robinson EoS and the PC-SAFT EoS. 500 

(a) (b) 

(c) (d) 

(e) (f) 
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3.2 Two-dimensional cases 501 
Planar two-dimensional simulations of transcritical and supercritical jets are presented 502 

in this section. The initial conditions are summarized in Table 3. The parabolic sub-step is 503 
included into these simulations, without sub-grid scale modelling for turbulence or 504 
heat/species diffusion. 505 
 506 
Transcritical nitrogen injection (Quasi-Conservative formulation, Case A) 507 

A structured mesh is applied with a uniform cell distribution. The cell size is 0.043 mm 508 
× 0.043 mm. The domain used is 30mm × 15mm. Transmissive boundary conditions are 509 
applied at the top, bottom and right boundaries while a wall condition is employed at the left 510 
boundary. A flat velocity profile is imposed at the inlet. The case is initialized using a 511 
pressure in the chamber of 4 MPa, the density of the nitrogen in the chamber is 45.5 kg/m3 512 
and the temperature is 299.5 K. The temperature of the jet is 84.4 K and the density is 804.0 513 
kg/m. A summary of the initial conditions can be found in Table 3.  The velocity of the jet is 514 
100 m/s and the diameter of the exit nozzle is 1.0 mm.  515 
 516 

Figure 14. 2D Test Case A, CFL = 1.0, 245000 cells, QC formulation. Density results of the 517 
simulation of the planar cryogenic nitrogen jet at various times. 518 

 519 
When the jet enters the elevated temperature environment of the chamber, the 520 

velocity gradients at the jet surface generate a vortex rollup that finally breakup into ligament-521 
shaped structures, see Figure 14. The Kelvin Helmholtz instability can be observed in the 522 
shear layer, which is similar to a gas/gas turbulent mixing case. No droplets are formed at 523 
these conditions. The jet is quickly heated to a gas-like supercritical state after the injection 524 
takes place. It must be highlighted that the mesh resolution is not enough to resolve all the 525 
scales (the aim of these simulations is to test the developed numerical framework). Moreover, 526 
2D simulation cannot resolve turbulence. Figure 17 shows the density, temperature, pressure 527 
and sound speed results at 4 x 10-4 s. 528 

Figure 15 shows a scatter plot of pressure as a function of density for the planar 529 
cryogenic nitrogen jet. The simulated case remains in the hyperbolic region of the governing 530 
equations with a real-valued speed of sound (Appendix B). The mixing trajectory passes close 531 
to the critical point with a few individual points inside the saturation curve, which means that 532 
phase separation does not occur [42]. The larger fluctuations caused by the confined domain 533 
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or the two-dimensionality of the case could be the reason why a small number of cells are in 534 
the unstable region [3]. 535 

Although one of reasons of the prevailing usage of cubic EoS is their efficiency, 536 
practical simulations can be performed using the PC-SAFT EoS. The quasi-conservative 537 
formulation is computationally less expensive than the conservative scheme because the PC-538 
SAFT EoS has to be used only once in the hyperbolic operator in each time step. The 539 
computational time is 65-70% higher using the PC-SAFT EoS than utilizing the PR EoS. 540 
Figure 16 shows the time taken by the code to solve the transcritical nitrogen injection case 541 
depending on the number of cells used (only one core is used to perform the simulation). 542 

The PC-SAFT EoS is implemented using loops that depend on the number of 543 
components solved, which means that it takes more time to compute the properties of 544 
mixtures. However, knowing the mass fractions it is possible to determine how many 545 
components are present in a cell a priori. The PC-SAFT is then only solved for that specific 546 
number of components. Most cells along the simulation in the combustion chamber contain 547 
only nitrogen. For this reason, a significant increment on time has not been observed 548 
performing two-component simulations.    549 

 550 
Figure 15. Scatter plot of pressure as a function of density for the transcritical nitrogen jet (Case 551 
A). The vapor dome, non-convex region and the region with complex speed of sound (SOS) are 552 

included. 553 

 554 
Figure 16. Computational time employed to compute the solution of the transcritical nitrogen jet 555 

(Case A) at t = 4 x 10-4 employing a variable number of cells. 556 
 557 
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Figure 17.  2D Test Case A, CFL = 1.0, 245000 cells, QC formulation.  Results of the simulation 558 
of the planar cryogenic nitrogen jet at t = 4 x 10-4 s using the quasi-conservative formulation: (a) 559 

density, (b) temperature, (c) pressure, (d) sound speed. 560 
 561 

(a) 

(b) 

(d) 

(c) 
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Supercritical nitrogen injection (Conservative formulation, Case B) 562 
The case is initialized using a pressure in the chamber of 4 MPa, the density of the 563 

nitrogen in the chamber is 45.5 kg/m3 and the density of the jet is 440.0 kg/m3 (Table 3). The 564 
velocity of the jet is 50 m/s. The spatial reconstruction is carried out using a blending of the 565 
fifth-order WENO and the first-order schemes (95% fifth-order WENO). The CFL number is 566 
set at 0.4. Transmissive boundary conditions are applied at the top, bottom and right 567 
boundaries while a wall condition is employed at the left boundary. A flat velocity profile is 568 
imposed at the inlet. 569 

 If sharp interface methods (i.e. front tracking method)  are not applied, the interfaces 570 
are not sharp one-point jumps but smooth as they are resolved [43]. This is the reason why the 571 
wiggles that appear in this 2D simulation are not as severe as in the 1D cases presented in 572 
Section 3.1 initialized using a sharp interface, see Figure 18. The study of [43] shows how 573 
smooth interfaces can reduce the spurious pressure oscillations.  574 

The minimum pressure encountered along the simulation is higher than the nitrogen 575 
critical pressure so there are no cells in the vapor-liquid equilibrium region. The heat-up of 576 
the jet follows the same density-temperature trajectory employing a FC or a QC formulation 577 
in single-species cases, see Figure 19. In the works of [2], [44] a different behaviour in 578 
multicomponent cases can be observed, where QC formulations follow an isobaric-isochoric 579 
mixing model for binary mixtures while conservative schemes follow an isobaric-adiabatic 580 
mixing model. 581 
 582 

 
Figure 18. 2D Test Case B, CFL = 0.4, 180000 cells, FC formulation. Results of the simulation of 583 

the supercritical nitrogen jet at t = 7.84 x 10-4 s: (a) density, (b) pressure. 584 

(a) 
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 585 
Figure 19. 2D Test Case B solved using the FC and QC formulations. Scattered data of density 586 

and temperature. The nitrogen vapor dome is included. 587 
 588 
Supercritical dodecane injection (Conservative formulation, Case C) 589 

Dodecane/nitrogen mixtures are Type IV as stated by [45], which means that the 590 
critical temperature of the mixture is an intermediate value of the critical temperature of both 591 
components and the mixture critical pressure is higher than the critical pressure of either 592 
component, see Figure 23. A simulation of a dodecane jet where VLE (Vapor-Liquid 593 
Equilibrium) conditions are avoided injecting the dodecane at a temperature higher than its 594 
critical value has been included to prove the multi-species capability of the code. To check 595 
that any cell is in a thermodynamic metastable state, the vapor-liquid saturation curves were 596 
computed (Appendix C). 597 

A structured mesh is applied with a uniform cell distribution. The cell size is 8.3μm × 598 
8.3μm. The domain used is 5mm × 2.5mm. Transmissive boundary conditions are applied at 599 
the top, bottom and right boundaries while a wall condition is employed at the left boundary. 600 
A flat velocity profile is imposed at the inlet. The case is initialized using a pressure in the 601 
chamber of 11.1 MPa, the density and the temperature of the nitrogen in the chamber are 37.0 602 
kg/m3 and 973 K (high-load Diesel operation conditions [46]) respectively. The density and 603 
temperature of the jet are 450.0 kg/m3 and 687 K (Table 3).  The velocity of the jet is 200 m/s 604 
and the diameter of the exit nozzle is 0.1 mm.  605 

As in the transcritical nitrogen case ligament-shaped structures appear and the Kelvin 606 
Helmholtz instability can be observed in the shear layer, see Figure 20. The jet is quickly 607 
heated-up from a liquid-like supercritical state to a gas-like supercritical state. Some spurious 608 
oscillations appear in the pressure field because of the high non-linearity of the EoS. The 609 
quasi-conservative formulation was not employed because of the incorrect prediction of the 610 
jet heat-up that appear in multi-component cases [2], [44].  611 

A comparison of averaged scattered data of composition and temperature and an 612 
isobaric-adiabatic mixing process can be seen in Figure 21. As [44] stated, fully conservative 613 
schemes describe an isobaric-adiabatic mixing process. The isobaric-adiabatic line in the 614 
Figure 21 was computed using eq.13-14 and the initial conditions of this case. 615 

3 1 2m m m= +           (13) 616 

3 3 1 1 2 2m h m h m h= +          (14) 617 
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Figure 20. 2D Test Case C, CFL = 0.5, 180000 cells, FC formulation. Results of the simulation of 618 

the supercritical dodecane jet at t = 2.5 x 10-5 s: (a) density, (b) temperature, (c) pressure, (d) 619 
sound speed. 620 

 621 

(a) 

(b) 

(d) 

(c) 
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 622 
Figure 21. Scattered data of composition and temperature of the planar dodecane jet Case C. 623 

Solid lines are dodecane-nitrogen phase boundaries from VLE at 4.5 MPa and 6 MPa. 624 

4. Conclusions 625 

The Perturbated Chain Statistical Associating Fluid Theory (PC-SAFT) is utilized to close the 626 
Navier-Stokes equations using both  a conservative and a quasi-conservative formulation, 627 
where the double flux model of  [3], [17], [33] is applied. The PC-SAFT EoS presents a 628 
precision similar to NIST without the need of an extensive calibration as only three 629 
parameters are needed to model a specific component. It is presented as an alternative to the 630 
commonly used cubic EoS that present a low accuracy for computing the thermodynamic 631 
properties of hydrocarbons at temperatures typical for high pressure injection systems. 632 
Advection test cases and shock tube problems have been used to validate the hyperbolic 633 
operator of the developed numerical framework. The conservative formulation generates 634 
spurious pressure oscillations, like it has been reported with other diffuse interface density-635 
based codes employing a real-fluid EoS. Due to fact that the interfaces are not sharp one-point 636 
jumps but smooth, as they are resolved in 2D simulations, the wiggles generated do not 637 
compromise the stability of the simulation. The quasi-conservative scheme can model 638 
transcritical single- and multicomponent cases without spurious pressure oscillations. Errors 639 
in the energy conservation that appear employing this formulation may produce an unphysical 640 
quick heat-up of the injected jet in multicomponent cases. Two-dimensional simulations of 641 
nitrogen and dodecane jets have been presented to demonstrate the multidimensional and 642 
multicomponent capability of the numerical framework. 643 
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Appendix A PC-SAFT EoS  652 

The PC-SAFT EoS is expressed as the sum of all the residual Helmholtz free energy 653 
contributions. These contributions correspond to the distinct types of molecular interactions. 654 
The residual Helmholtz free energy is computed using eq.15 [38]. 655 

 656 

= +res hc dispa a a           (15) 657 
 658 
The hard-chain term, hca , for a mixture of nc components, is given in eq. 16 659 

( 1)ln ( )
nc

hc hs hs
i i ii d ii

i
a ma x m g σ= − −       (16) 660 

where m  is the number of segments for a multicomponent mixture (eq. 17), ix  is the mole 661 

fraction of every component i in the fluid, hsa is the hard sphere contribution (eq. 18), hs
iig is 662 

the radial distribution function of the hard-sphere fluid (eq.23) and im  is the number of 663 

segments per chain of every component. 664 
 665 
The number of segments for a multicomponent mixture is: 666 

=
nc

i i
i

m x m           (17) 667 

The hard sphere contribution is: 668 

( ) ( )
( )

3 3
1 2 2 2

0 32 2
0 3 33 3

1 3 ln 1
1 1

ς ς ς ς ς ς
ς ς ςς ς

= + + − −
− −

hsa     (18) 669 

ς n  is defined as:    670 

6
πς ρ= n

n m i i i
i

x m d     { }0,1, 2,3∈n    (19) 671 

where ρm  is the molecular density and id  is the temperature-dependent segment diameter of 672 

component i (eq.21). 673 

1
36

m i i i
i

x m dρ η
π

−

=  being  3η ς=       (20) 674 

1 0.12 exp 3 εσ= − − i
i did

kT
       (21) 675 

where k  is the Boltzmann constant, T  is the temperature and iε  is the depth of pair potential 676 

of the component. 677 
 678 
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The mixture parameters σ ij  and εij  which are defined for every pair of unlike segments are 679 

modeled using a Berthelot-Lorentz combining rule. 680 

1 ( )
2

σ σ σ= +ij i j          (22) 681 

(1 )ε ε ε= −ij i j ijk                       (23) 682 

where ijk  is the binary interaction parameter. 683 

 684 
The radial distribution function of the hard-sphere fluid is: 685 

2
2

2 2
2 3

3 3 3

1 3 3
(1 ) (1 ) (1 )

ς ς
ς ς ς

= + +
− + − + −

i j i jhs
ij

i j i j

d d d d
g

d d d d
        (24) 686 

The dispersion term is defined as: 687 

2 3 2 2 3
1 1 22 ( , ) ( , )πρ η εσ πρ η ε σ=− −disp

m d m da I m m mCI m m                    (25) 688 

where 3η ζ=  is the reduced density, 1I  and 2I  are integrals approximated by simple power 689 

series in density 690 

6

1
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= i
i

i
I m a m         (26) 691 

6

2
0
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= i
i

i
I m b m         (27) 692 

The coefficients ai and bi depend on the chain length: 693 

0 1 2
1 1 2( ) − − −= + +i i i i

m m ma m a a a
m m m

      (28) 694 

0 1 2
1 1 2( ) − − −= + +i i i i

m m mb m b b b
m m m

      (29) 695 

Where 0 1 2 0 1 2, , , , ,i i i i i ia a a b b b   are constants [38]. 696 

1C  is defined as:  697 
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    (30) 698 

The terms 2 3
dm εσ  and  2 2 3

dmε σ  are defined as: 699 
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2 3 3ε
εσ σ=

nc nc
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i j

m x x m m
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       (31) 700 

2
2 2 3 3ε
ε σ σ=
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ij

d i j i j ij
i j

m x x m m
kT

      (32) 701 

Compressibility factor 702 
Then the compressibility factor is calculated as the sum of the ideal gas contribution 703 
(considered to be 1), the dispersion contribution and the residual hard-chain contribution [38]: 704 

1 hc dispZ Z Z= + +                       (33) 705 
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where: 709 

[ ]
2 3 2

21
2 1 35

4 20 8 2 12 48 40(1 )
(1 ) (1 )(2 )

η η η η η
η η η η

∂ − + + + − += = − + −
∂ − − −
CC C m m   (37) 710 

3 2 32
2 2 3

3 3 3

2
22

2 32
3 4

3 3

63
(1 ) (1 ) (1 )

64
(1 ) (1 )

hs
ij i j

i j

i j

i j

g d d
d d

d d
d d

ζ ζ ζζρ
ρ ζ ζ ζ

ζ ζζ
ζ ζ

∂
= + + +

∂ − + − −

+
+ − −

    (38) 711 

6
1

0

( ) ( )( 1) i
j

j

I a m jη η
η =

∂ = +
∂

        (39) 712 

6
2

0

( ) ( )( 1) i
j

j

I b m jη η
η =

∂ = +
∂

        (40) 713 

 714 
Derivative of the Helmholtz free energy respect to temperature. 715 

The temperature derivative of resa is the sum of two contributions. 716 
 717 
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                   (41) 718 

The temperature derivative of the Helmholtz free energy hard-chain reference contribution is: 719 
 720 
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 722 
The temperature derivative of the Helmholtz free energy residual contribution of the hard-723 
sphere system is: 724 
 725 
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 727 
with abbreviations for two temperature derivatives: 728 
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 731 
The temperature derivative of the radial pair distribution function is: 732 
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 734 
The temperature derivative of the Helmholtz free energy contribution due to dispersive 735 
attraction is: 736 
 737 
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 739 
with 740 
 741 
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 747 
Estimation of enthalpy and sound speed. 748 
The enthalpy is used to compute the thermal diffusion vector in the parabolic sub-step. It is 749 
computed as the sum of the ideal contribution (obtained by integrating the ideal heat capacity 750 
at constant pressure with respect to the temperature) and the residual enthalpy [38]: 751 
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            (50) 752 

 753 
Sound speed is computed using the equation applied by [47]: 754 

p
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C Pc
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          (51) 755 

where pC  and vC are the heat capacities at constant pressure and volume respectively [39].  756 

 757 
The derivatives needed to compute the sound speed are: 758 
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can be found in [48].        (56) 764 
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Appendix B Hyperbolicity of Euler system with PC-SAFT EoS 765 

The hyperbolicity of the Euler system relies on a real speed of sound [3]. Using the 766 
PC-SAFT, the speed of sound is always real outside of the vapor-liquid equilibrium state. 767 
Inside the vapor-liquid equilibrium region, the spinodal curves (determined by 768 

( )/ 0∂ ∂ =Tp v ) enclose the unstable / non-convex region where a complex speed of sound 769 

could be found, see Figure 22. 770 

Appendix C  Pressure-composition phase diagram for the N2+C12H26  771 

system 772 

The calculation of the number of phases present in a mixture in a certain condition is 773 
a recognized problem in the utilization of any EoS. In some cases, the number of phases is 774 
assumed a priori and then the composition in every phase is calculated by imposing 775 
equilibrium conditions. However, this technique often leads to divergence in the iterative 776 
methods used to achieve these. In our case, this is solved by an isothermal flash calculation 777 
after a stability analysis using the Tangent Plane Criterion Method proposed by [49] and 778 
applied to the PC-SAFT EoS by [50], see Figure 23. 779 

 780 

 781 
Figure 22. The vapor dome, non-convex region and the region with complex speed of sound of 782 

dodecane computed using the PC-SAFT EoS.  783 
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 784 
Figure 23. Experimental [51]  and calculated pressure-composition phase diagram for the N2 (1) 785 

+ C12H26 (2) system. Solid lines: PC-SAFT EoS with kij = 0.144 786 
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Appendix D PC-SAFT EoS subroutines 816 

Algorithm 1: Fully conservative formulation 817 
 818 
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     9) Compute dispersion contribution to the compressibility factor (eq.36)
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    14) Compute residual enthalpy 
    15) Compute sonic fluid velocity
    16) Compute ideal enthalpy
    17) Compute ideal internal energy
    18) Compute total enthalpy
    19) Compute total internal energy
    20) C

d
o

 
mp

i
ute

 
 the

e
 new 

n
temper

r
ature using the

 
Newton-Raphson method. The temperature 

  dependent function use s th  i te nal energ

F

y

   RETURN
END I
END DO
  

ELSE
819 

 820 
 821 
 822 
 823 
 824 
 825 
 826 



33 
 

Algorithm 2: Quasi-conservative formulation 827 
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