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Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin 

sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing 

hyperglycemia and the secondary complications that result from these dysfunctions are being 

sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, 

the contraction-stimulated pathway reliant on Ca2+/5′-monophosphate-activated protein kinase 

(AMPK)-dependent mechanisms and an insulin-dependent pathway activated via upregulation 

of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 

diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose 

production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabet-

ics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its 

role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-

dependent pathway. Inositol hexakisphosphate (IP6) kinase 1 (IP6K1) produces a pyrophosphate 

group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol 

pentakisphosphate (IP7). IP7 binds with Akt/PKB at its pleckstrin homology domain, prevent-

ing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB 

membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a 

reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in 

the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current 

intervention in the management of type 2 diabetes. However, this treatment does not seem to 

improve peripheral insulin resistance. In light of this evidence, we suggest that inhibition of 

IP6K1 may increase insulin sensitivity and provide a novel research direction in the treatment 

of insulin resistance.

Keywords: type 2 diabetes, insulin resistance, Akt/PKB, 5′-monophosphate-activated protein 

kinase

Metabolic dysfunction in type 2 diabetes
Type 2 diabetes is a multifactorial metabolic disease characterized by defects in β-cell 

function and insulin action and increased hepatic glucose production.1 Metabolic 

dysfunction in type 2 diabetes is also the product of reduced glucose effectiveness or 

the ability of glucose to transport itself by a mass action effect.2 Central to this meta-

bolic condition is altered glucose and lipid metabolism resulting from the combined 

effects of insulin resistance in skeletal muscle, hepatic, renal, and adipose tissue. The 

resulting hyperglycemia is the primary cause of the secondary complications associ-

ated with type 2 diabetes. Thus, treatments that target glucose uptake while reducing 

gluconeogenesis are key in the management of type 2 diabetes.
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Faced with an increased prevalence, which is predicted 

to reach 6.1% of the world’s population by 2025,1 advances 

in the treatment of type 2 diabetes are clearly being sought 

after. There are three main approaches to treatment of diabe-

tes, ie, lifestyle modifications requiring patient-led metabolic 

responsibility, gastric bypass surgery, and pharmaceutical 

interventions. A current and effective target for the phar-

maceutical approach to treatment of type 2 diabetes centers 

around upregulation of the metabolic master switch, ie, 

5′-monophosphate-activated protein kinase (AMPK),3 with 

the use of metformin.

AMPK: a current target in 
management of type 2 diabetes
AMPK is a key regulatory protein ubiquitously expressed 

in cells throughout the human body. In mammalian tissues, 

AMPK is a heterotrimer consisting of a catalytic α subunit 

with two further regulatory subunits, β and γ. Each of these 

subunits has two or more isoforms.4,5 The γ subunit consists 

of 4-cystathionine-b-synthase domains, which are required 

for binding of adenosine triphosphate (ATP) or adenosine 

monophosphate (AMP). The binding of two AMPs to the 

γ subunit leads to conformational changes in the complex 

that result in activation of AMPK through exposure and 

phosphorylation of the Thr172 binding site on the catalytic 

α subunit.6,7 Binding of ATP to the γ subunit operates in an 

opposing manner by decreasing AMPK activity, while the 

binding of adenosine diphosphate (ADP) to the regulatory γ 

subunit protects AMPK against dephosphorylation.8

A working hypothesis is that upon stimulation, AMPK 

mediates contraction-stimulated GLUT-4 translocation and 

glucose uptake in skeletal muscle via phosphorylation of the 

Rab guanosine triphosphatase (GTPase)-activating protein 

(GAP), AS160, in a manner similar to insulin.9–11 AS160 is 

a proposed downstream target of AMPK and it is suggested 

that phosphorylation of AS160 by AMPK results in decreased 

Rab-GTPase activity, leading to an increase in GTP loading 

on intracellular GLUT-4 storage sites, promoting GLUT-4 

translocation and cell membrane fusion while stimulating 

glucose uptake in adipocytes and skeletal muscle.12–14

Using an in vivo electroporation/gene delivery technique 

that prevents phosphorylation on four regulatory phospho-Akt 

substrate sites on AS160, Kramer et al9 demonstrated that both 

insulin-stimulated and contraction-stimulated glucose trans-

port was impaired in skeletal muscle (tibialis anterior). In the 

same study, overexpression of mutant AS160 with abolished 

Rab-GAP activity showed normal elevations in contraction-

stimulated glucose uptake.9 Furthermore, transgenic mouse 

models lacking AMPKα2 activity in muscle show complete 

inhibition of AS160 phosphorylation and glucose transport 

on stimulation with the AMPK activator, 5-aminoimidazole-

4-carboxamide ribonucleoside. Taken together, these data 

suggest a prominent role of both AMPK and AS160 in glucose 

transport, uptake, and utilization.15

Metformin is extensively used in the treatment and man-

agement of type 2 diabetes. Metformin improves glycemic 

control primarily via suppression of hepatic glucose produc-

tion, and to a lesser extent, but still metabolically important, 

increased peripheral glucose uptake.16 This pharmaceutical 

agent activates hepatocyte-specific AMPK, resulting in 

reduced acetyl-CoA carboxylase activity, increased fatty acid 

oxidation, and suppression of lipogenic enzyme expression.16 

However, recent work suggests that inhibition of gluconeogen-

esis by metformin acts independently of the AMPK pathway 

because hepatic glucose production remains blunted in AMPK-

depleted hepatocytes despite treatment with metformin.17

Metformin is also known to activate AMPK and stimulate 

glucose uptake in isolated rodent skeletal muscle, presum-

ably via the ability of metformin to increase the intracellular 

AMP/ATP ratio.18 In addition, administration of metformin is 

known to increase AMPK activity in human skeletal muscle, 

promote GLUT-4 membrane translocation, and stimulate 

insulin-independent glucose uptake,18 in a manner similar to 

muscle contraction. Although inhibition of hepatic glucose 

production by metformin is considered to be the primary 

mechanism by which AMPK lowers hyperglycemia, its 

ability to increase glucose uptake in peripheral tissue is no 

less important. This action is of particular relevance given 

that peripheral insulin resistance is considered to occur prior 

to hepatic insulin resistance.19 However, it has been noted 

in more recent work using a high-fat mouse model that insu-

lin resistance in the liver precedes reduced insulin action in 

skeletal muscle.20 Recent work carried out in type 2 diabetic 

humans found that administration of metformin 2,550 mg/day 

for 3–4 months increased glucose disposal but did not alter 

insulin receptor substrate-1, class IA phosphatidylinositol-3 

(PI3) kinase, or Akt/protein kinase B (PKB) activity in 

skeletal muscle.21 These results suggest that metformin can 

stimulate glucose transport activity in type 2 diabetics, but 

does so via a mechanism that is independent of the traditional 

insulin signaling pathway in skeletal muscle.

Pathways in type 2 diabetes 
stimulated by insulin or contraction
When forming an understanding of the progression of this dis-

ease, it is important to recognize two points. First, peripheral 
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Figure 1 Insulin and contraction signaling pathways during GLUT-4 recruitment and translocation.
Note: Data from Sakamoto et al.14

Abbreviations: IRS, insulin receptor substrate; PI3-K, class IA phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol (4,5)-bisphosphate; PIP3, phosphatidylinositol 
3,4,5-trisphosphate; PDK1, phosphoinositide-dependent protein kinase-1; Akt, serine/threonine protein kinase; AS160, 160 kDa Akt substrate; GLUT-4, glucose transporter 4;  
GSV, GLUT-4 storage vesicle; Rab-GAP, Rab-GTPase-activating protein; Rab-GDP, guanosine-50-diphosphate-loaded Rab; Rab-GTP, guanosine-50-triphosphate-loaded 
Rab; CaMKK, Ca2+/calmodulin-dependent protein kinase kinase; LKB1, Serine/threonine kinase 11; STRAD, putative kinase; MO25, mouse protein 25/scaffold protein; 
AMPK, 5′-monophosphate-activated protein kinase; Thr172, phosphorylated AMPKα at threonine 172; AMP, adenosine monophosphate; ATP, adenosine triphosphate; P, 
phosphorylated site.

glucose uptake into skeletal muscle (the main disposal site 

for glucose) can be promoted via two distinct pathways, ie, 

insulin-dependent mechanisms resulting in recruitment and 

activation of Akt/PKB and contraction-mediated stimulation22 

or hypoxia-mediated stimulation23 of AMPK (Figure 1). It 

has been consistently shown that PI3 kinase is necessary for 

insulin-stimulated but not for contraction-stimulated glucose 

uptake,24–27 while Akt2 knockout mice demonstrate normal 

basal and contraction-stimulated glucose uptake.28 Indeed, 

glucose transport is additive when either hypoxia or contrac-

tile activity are coupled with insulin, whereas hypoxia and 

contractile activity are not.29,30 In support of this is the obser-

vation that wortmannin, a selective inhibitor of PI3 kinase, 

completely blocks insulin-stimulated glucose transport but 

has no effect on contraction-mediated or hypoxia-mediated 

2-deoxy-D-glucose uptake in rat skeletal muscle.25

Thus, insulin-stimulated glucose transport is thought 

to occur independently of AMPK activity,31,32 and when 

defects in the Akt/PKB pathway occur, the likely outcome 

is peripheral insulin resistance.33 In addition, it is worth not-

ing that Akt/PKB and target proteins sitting upstream and 

downstream thereof are defective in type 2 diabetes whereas 

AMPK activation remains largely intact.23,34 This latter point is 

important because peripheral insulin resistance is a catalyst for 

β-cell dysfunction, increased hepatic glucose production, and 

progression of the disease,35 so any intervention that improves 

peripheral insulin resistance may conceivably reverse β-cell 

function and reduce hepatic glucose production.

Hypoxia and contractile activity are known stimulators 

of AMPK, and upon activation, AMPK is widely accepted to 

increase glucose transport activity and GLUT translocation via 

an insulin-independent mechanism. Azevedo et al30 demon-

strated that insulin stimulation of 2-deoxyglucose transport is 

impaired in insulin-resistant tissue. These investigators further 

demonstrated no differences in hypoxia-stimulated glucose 

transport rates between lean and obese diabetic groups, sug-

gesting that this insulin-independent (or AMPK-dependent) 

pathway is intact in insulin-resistant muscle tissue.30 The muscle 

protein content of AMPKα1, α2, and γ3 is similar in type 2 

diabetics when compared with healthy controls.22 In addition, 

no difference was found in basal phosphorylated AMPK activity 

when the same comparison was made between insulin-resistant 

and lean muscle tissue.22 Furthermore, the basal activity of 

AMPKα1, α2, and Thr172 AMPK-α phosphorylation are all 

normal in type 2 diabetes.35,36 In support of this, normal AMPK 

activity was found despite decreased insulin-stimulated glucose 

transport when measured during euglycemic-hyperinsulinemic 

clamp in the same population.36
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The data reported by Højlund et al,36 along with the finding 

that type 2 diabetics have normal AMPK activation during 

exercise35 while showing metformin-induced increases in 

AMPK phosphorylation,34 suggest again that AMPK function 

is intact in type 2 diabetes. The conclusion drawn from the 

work of both Musi et al34 and Højlund et al36 is that normal 

AMPK activity and reduced insulin sensitivity are metabolic 

aspects of insulin resistance, indirectly supporting the notion 

that two separate pathways operate to facilitate glucose 

transport. Further, Højlund et al36 also demonstrated that 

AMPK activity under basal conditions in human skeletal 

muscle is not regulated by normal physiological concentra-

tions of insulin. These findings taken together may suggest 

that future therapeutic targets should focus not on AMPK 

specifically, but also on prominent proteins associated with 

the insulin-signaling pathway for the treatment of insulin 

resistance. However, the targeting of AMPK for insulin resis-

tance cannot be completely disregarded, with McBride et al37 

proposing a novel role for the AMPKβ subunit in glycogen 

sensing and synthesis. Further, AMPKα2 knockout mice show 

whole body insulin resistance, suggesting that AMPK may 

play a role in modulating insulin sensitivity.38 Insulin sensitiv-

ity is not altered in a dominant-negative mutant AMPK rodent 

model (Tg-KD-AMPKα2),39 although it is more susceptible 

to high-fat diet-induced insulin resistance,40 suggesting that 

AMPK is not an important mediator of insulin sensitivity 

in skeletal muscle.41 The potential role of AMPK in insulin-

stimulated glucose transport may be complicated by the recent 

findings from Sakamoto’s laboratory.42 5-aminoimidazole-4-

carboxamide ribonucleoside-induced activation of AMPK in 

knockin mice expressing a glucose-6-phosphate-insensitive 

glycogen synthase mutant demonstrates elevated glycogen 

accumulation through allosteric activation of glycogen syn-

thase, caused by elevated glucose uptake and intracellular 

glucose-6-phosphate levels. This evidence suggests that 

AMPK may be able to promote glycogen synthesis in skel-

etal muscle independent of the traditional insulin-signaling 

nexus.42 More work is clearly needed to identify how, or even 

if, AMPK affects insulin-induced glucose uptake, given that 

a direct mechanism via which AMPK is activated by insulin 

is yet to be determined.

AMPK is clearly a major target for the treatment of type 2 

diabetes. However, AMPK activation is known to be largely 

normal in this population22,43 and provides a rationale for the 

prescription of exercise in the treatment of type 2 diabetes. 

Although AMPK activation produces a number of desir-

able effects in metabolically responsive tissue, it seems to 

bypass the problem, at least in skeletal muscle. It therefore 

seems logical to focus future research on the activation/

inhibition of signaling mechanisms known to be defective in 

insulin-resistant tissue in the pursuit of future pharmaceuti-

cal treatment.

Akt/PKB isoforms
Akt, also known as PKB, is a serine/threonine-specific 

protein kinase that plays a key role in multiple cellular 

processes, including cell growth, survival, proliferation, 

and metabolism.44 Three homologous isoforms have been 

identified, ie, Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ.45 

Research conducted over the past decade has identified dis-

tinct roles for each isoform, with Akt1/PKBα linked to cell 

survival, Akt2/PKBβ with cell-substrate metabolism,46 and 

Akt3/PKBγ with brain development.47

Akt1/PKBα is known to inhibit apoptosis via activa-

tion of NF-κB and regulation of IκB kinase, resulting in 

upregulation of prosurvival genes.48 The same isoform is 

also implicated in stimulating skeletal muscle hypertro-

phy by promoting protein synthesis and inhibiting protein 

degradation pathways, providing evidence for its roles in 

muscle homeostasis.49

Hyperglycemia and reduced glucose transport in 

muscle is present in knockout Akt2/PKBβ mice,50 but is 

not apparent with deletion of the Akt1/PKBα and Akt3/

PKBγ isoforms. Involvement of the Akt3/PKBγ isoform 

in brain development comes from evidence examining 

Akt3 knockout mice, which shows reduced cerebral cell 

numbers and seemingly increased protein degradation and 

reduced synthesis. Further, the same Akt3/PKBγ knock-

out mice show diminished mTOR (mammalian target of 

rapamycin) signaling,51 highlighting its role in cell death 

and growth inhibition.

Akt/PKB activation
PI3 kinase, following upstream stimulation by the insulin 

receptor substrate, causes recruitment of phosphatidylinositol 

(4,5)-bisphosphate (PIP2) and production of the second lipid 

messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP3). 

PIP3 then binds to the pleckstrin homology domain of Akt/

PKB, allowing for its translocation and binding to the cell 

membrane. Following this membrane translocation, Akt/PKB 

can then be phosphorylated and activated52 by two further 

kinases, PDK1 and mTOR complex 2, within the T-loop 

of the catalytic domain (Thr308) and the carboxyl terminal 

hydrophobic domain (Ser473), respectively, resulting in phos-

phorylation of many downstream targets involved in cellular 

growth and metabolism.44
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Akt/PKB and insulin signaling
It is clear that Akt signaling plays a central role in insulin-

stimulated glucose uptake in both muscle and adipose tissue 

while inhibiting glucose release from hepatocytes.5 The effect 

of insulin on glucose uptake in peripheral tissue via Akt/

PKB is through its ability to translocate GLUTs to the cell 

membrane, thereby facilitating glucose uptake. Binding of 

insulin to its cell surface protein receptors causes subsequent 

tyrosine phosphorylation, resulting in phosphorylation of 

insulin receptor substrates on specific tyrosine residues and 

activation and recruitment of PI3 kinase and its downstream 

target Akt/PKB.52 The Akt substrate of 160 kDa (AS160), 

also known as TBC1D4, is an established candidate in Akt/

PKB-induced GLUT-4 translocation in skeletal muscle. 

AS160 functionally maintains Rab-GTPase(s) in an inactive 

form via guanosine-50-diphosphate-loading, thereby retain-

ing GLUT-4 within GLUT storage vesicles.14 Upon activa-

tion, Akt/PKB phosphorylates AS160, leading to a reduction 

in Rab-GAP activity, promoting GLUT-4 translocation and 

glucose uptake.14,53,54 Thus, any defects in the PI3 kinase/

Akt/AS160 transduction pathway would ultimately reduce 

glucose uptake in skeletal muscle. Similarly, hepatic deletion 

of the Akt1 and Akt2 isoform causes glucose intolerance, 

insulin resistance, and a defective insulin transcriptional 

response to feeding in hepatocytes.55

Akt/PKB and insulin resistance
Evidence from both human and animal work links insulin 

resistance with defects to both upstream and downstream 

targets of Akt/PKB in the form of dephosphorylation of 

protein side chains on insulin receptor substrates as well as 

complete loss of insulin receptor substrates from the cell sur-

face membrane,56 reduced PI3 kinase activity57 and impaired 

phosphorylation of the Akt/PKB substrate, AS160, in type 2 

diabetic skeletal muscle.58 In addition, knockdown or deple-

tion of the Akt2/PKBβ isoform in mice causes insulin resis-

tance and diabetic-like symptoms, with Akt2/PKBβ knockout 

rodents also demonstrating hepatic insulin resistance.59 This 

work has been extended to humans, with the finding that a 

mutation in the gene encoding Akt2/PKBβ results in severe 

insulin resistance,60 establishing Akt2/PKBβ as a key protein 

in the maintenance of euglycemia, given that defects in this 

important mediator would presumably result in reduced 

AS160-induced GLUT translocation.

In substituting the AS160-Thr649 phosphorylation/14-

3-3 binding residue with a nonphosphorylatable alanine, 

Chen et al were able to show that insulin-stimulated AS160 

binding to 14-3-4 is completely abolished.11 The same work 

also showed that insulin-stimulated glucose uptake and 

cell surface GLUT-4 content were reduced in this mutated 

knockin model.11 These results demonstrate the key role 

played by Akt/PKB and its downstream targets in insulin 

sensitivity and normal glucose tolerance, and may therefore 

represent an argument for its targeting as an intervention in 

the treatment of insulin resistance.

Inositol pyrophosphate  
and Akt/PKB signaling: targeting 
peripheral insulin resistance
Research in the field highlights Akt/PKB as a major signal-

ing intermediate in insulin-stimulated glucose transport in 

type 2 diabetes characterized by reduced insulin signal-

ing of Akt/PKB.45,58 Akt/PKB is known to upregulate S6 

kinase 1 (S6K1) via activation of mTOR complex 1, leading 

to phosphorylation of the serine residues on insulin receptor 

substrate-1 and resulting in Akt/PKB inhibition and a reduc-

tion in insulin-stimulated glucose uptake.61 PDK1-mediated 

phosphorylation of Akt at Thr308 is dramatically increased by 

binding of PIP3 to the pleckstrin homology domain on Akt.62 

Recent work from Chakraborty et al33 suggests a separate and 

seemingly novel feedback mechanism in the regulation of 

insulin signaling, whereby specific inositol pyrophosphates 

can also have an inhibitory effect on insulin stimulation of 

Akt/PKB by competing with PIP3 at the pleckstrin homol-

ogy domain.

Diphosphoinositol polyphosphates, also known as inosi-

tol pyrophosphates, are a family of water-soluble inositol 

phosphates.63 The most notable of these is diphosphoinositol 

pentakisphosphate (IP7),64 which has been implicated in insu-

lin secretion65 and peripheral insulin signaling (Figure 2).45 

Inositol pyrophosphates were first discovered in 1993 and 

have received a great deal of attention since due to their 

“high energy” pyrophosphate bond, which can be synthe-

sized by a family of three inositol hexakisphosphate (IP6) 

kinases (IP6Ks).66 The inositol hexakisphosphate kinase-1 

(IP6K1) isoform produces a pyrophosphate group at the 

position of IP6 to generate a further inositol pyrophosphate, 

IP7. Production of IP7 results in its binding to the pleckstrin 

homology domain of Akt/PKB, preventing its translocation to 

the cell membrane and reducing its subsequent phosphoryla-

tion by PDK1. The evidence for this comes from the finding 

that IP7 fails to prevent PDK1 Thr308 phosphorylation of Akt/

PKB lacking a pleckstrin homology domain.33 The conse-

quence of this is a reduction in insulin (Akt/PKB)-stimulated 

glucose uptake in muscle and adipose tissue (Figure 2), 

with a potential increase in accumulation of hepatic fat.33 
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Unpublished data from the authors’ laboratory shows that 

IP6K1 is detectable in human skeletal muscle and corre-

lates with one-compartment measures of insulin sensitivity 

(S
I
) in glucose-intolerant individuals. It is well known that 

calorie restriction in humans improves insulin sensitivity,67 

while starvation reduces IP7 formation in wild-type embry-

onic fibroblasts, again highlighting a potential mechanism 

whereby IP7 may play a role in insulin resistance.33

Does inhibition of IP7 formation 
restore normal Akt? Implications 
for obesity and insulin resistance
It seems that depletion or chemical inhibition of IP6K1 

may improve peripheral insulin action and hepatic  function. 

 Specific IP6K1 inhibitors have been shown, at least in cell 

culture, to reduce the conversion of IP6 to IP7, and so 

increase PIP3 binding to the pleckstrin homology domain of 

Akt/PKB.33,68 Padmanabhan et al68 showed that the selective 

inhibitor, N2-(m-(trifluoromethyl)benzyl) N6-(p-nitrobenzyl)

purine (TNP), reduces IP6K1 activity in a dose-dependent 

manner in vitro while reducing IP7 synthesis in vivo, 

providing the potential for decreased IP7-Akt/PKB interac-

tion and an increase in Akt/PKB membrane translocation. At 

least in the HeLa cell line, IP7 formation is returned to near 

baseline concentrations 2 hours post removal of TNP, sug-

gesting that the action of TNP on IP6K1 activity is both rapid 

and reversible.68 Using IP6K1 knockout hepatocytes,33 a 60% 

reduction in IP7 and elevations in Akt/PKB and GSK3β are 

seen in response to insulin stimulation. Similarly, these same 

hepatocytes show enhanced age-dependent phosphorylation 

of Akt at Thr308,33 suggesting a role for IP7 in age-related 

insulin resistance, with either depletion or knockout resulting 

in improved glucose tolerance by a presumable decrease in 

hepatic glucose production. The work on IP6K1 knockout 

and improved hepatic insulin resistance is a novel research 

topic with very little current published work, so provides an 

exciting avenue for future research.

This finding has been extended in IP6K1 knockout 

mouse models which have elevated Akt/PKB activity in 

response to insulin stimulation, accompanied by increased 
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Figure 2 Inositol phosphates and Akt/PKB inhibition, a potential Akt/PKB feedback mechanism.
Note: Adapted from Cell, 143(6), Manning BD, Insulin signaling: inositol phosphates get into the Akt, 861–863. Copyright © 2010, with permission from Elsevier. 
Abbreviations: IRS, insulin receptor substrate; PI3-K, class IA phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol (4,5)-bisphosphate; PIP3, phosphatidylinositol 
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glucose transport rates in skeletal muscle.33 IP6K1 mice also 

display diminished circulating insulin levels, suggesting 

increased insulin sensitivity or efficiency.69 These data are of 

note because IP6K1 knockout mice have a two-fold increase 

in insulin sensitivity when compared with their wild-type 

counterparts, and phosphorylated Akt/PKB at sites Thr308 and 

Ser473 were both increased while phosphorylated GSK3β was 

reduced in skeletal muscle.33 This is an important discovery 

because phosphorylated GSK3β Ser9 renders glycogen syn-

thesis active, resulting in the potential for increased glucose 

uptake and glycogenesis. These data were accompanied by 

a significant elevation in muscle glycogen content in IP6K1 

knockout models versus wild-type mice,33 with low muscle 

glycogen content being an inherent metabolic characteristic 

of type 2 diabetes.70 These data are important because they 

suggest that IP6K1 deletion may result in insulin hypersen-

sitivity, a known physiological consequence of elevated Akt/

PKB activity.71 Further, a reduction in IP7 by 10 µM TNP 

increased phosphorylation of Akt/PKB at Thr308 without 

affecting phosphorylation of Ser473.33 This latter finding is 

of clinical significance given that it is not likely that future 

pharmaceutical intervention acting via IP7 inhibition will 

negatively affect muscle growth and development through 

inhibition of mTOR signaling.

Interestingly, IP6K1 knockout mice also exhibit a lean 

phenotype,72 presumably as a result of increased fatty acid 

metabolism via β oxidation45 and reduced adipogenesis.73 Akt 

has been referred to as lipogenic, with double knockout of the 

Akt1 and Akt2 isoforms displaying reduced fat mass.74 Thus, 

it seems that IP7 formation, as synthesized by IP6K1 in mice, 

is implicated in obesity and insulin resistance via inhibition 

of Akt and increased GSK3β activity.33 Indeed, increased Akt 

activity and resistance to obesity are defined characteristics 

in genetic models of insulin hypersensitivity (ie, protein 

phosphatase 1B, S6K1, and JNK mutants).33,75

IPK61 inhibition and β-cell function
Decreased β-cell function is critical to the development of 

overt type 2 diabetes.1 IP6K1 knockout mice were found to 

have lower fasting serum insulin when compared with their 

wild-type counterparts, which the authors suggested repre-

sents a loss of β-cell function.69 Depletion of IP6K1 seems 

to inhibit insulin exocytosis in β-cells,69 while maintenance 

of IP7 levels in the same cell type may enhance insulin 

secretion.76 Indeed, IP6K1 knockout rodents demonstrate a 

65%–70% reduction in circulating insulin concentrations,69 

suggesting that mice lacking IP6K1 in their pancreatic β-cells 

have reduced insulin release. However, the mutant model 

used by Bhandari et al69 also showed signs of improved 

insulin-stimulated glucose uptake. The reduction in circulat-

ing insulin levels may therefore be a product of the hyperbolic 

relationship that exists between insulin sensitivity and insulin 

secretion,77 ie, a lower insulin requirement due to a more 

efficient rate of glucose disposal. Further, IP6K1 knockout 

mice with low physiological insulin concentrations do not 

demonstrate diabetic characteristics, with normal fasting 

glucose and glycosylated hemoglobin levels, and show 

reduced body weight over a 10-week period69 and resistance 

to obesity.33 These findings are particularly exciting in light 

of the positive effect that inhibition of IP6K1 might have on 

the sensitivity of peripheral tissue to insulin via increased 

Akt/PKB activity. Inhibition of IP6K1 in β-cells requires 

more research because incubation of pancreatic Min6 cells 

with TNP results in direct inhibition of insulin release,68 and 

more importantly, this reduction in insulin release is not a 

product of increased peripheral insulin action.

Targeting isoforms: β-cell function, 
cancer, and cell growth
The work of Bhandari et al69 in a mouse model is clearly excit-

ing, given that these authors assessed the effects of targeted 

depletion of the coding sequence of IP6K1 exon 6 on glucose 

control and insulin secretion. However, the IP6K1 mutant 

mice used in this study69 were smaller than their wild-type 

counterparts despite the same food intake, suggesting a nega-

tive consequence for protein synthesis and cell growth. This 

is surprising, given that a reduction in IP7 using the IP6K1 

inhibitor TNP does not affect phosphorylation of Akt/PKB 

at Ser473.33 The work of Bhandari et al69 may be countered by 

the knowledge that IP6K1 depletion may increase muscle pro-

tein synthesis while reducing fat accumulation,33 decreasing 

adipogenesis via GSK3β,78 and increasing Akt/PKB-induced 

fat oxidation.79 These results offer indirect evidence that 

reduced animal size69 may be due to increased fat loss rather 

than muscle atrophy, particularly given that increased p-Akt/

PKB at Ser473, as seen in IP6K1 knockout mice,33 may increase 

protein synthesis via mTOR activation.

Hyperactivity of Akt/PKB is a hallmark of most human 

forms of cancer, given that it modulates cell proliferation, 

growth, survival, and transit metabolism. In addition, overex-

pression of Akt/PKB is noted in various cancers and is pos-

sibly related to specific Akt/PKB isoforms.44 Indeed, Akt1/

PKBα is linked to breast cancer,80 Akt2/PKBβ is reported 

in pancreatic cancer,33 and Akt3/PKBγ mutations are associ-

ated with human melanoma.81 A detailed description of Akt/

PKB and its link to cancer is beyond the scope of this paper, 
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but this area has been comprehensively reviewed by others.44 

However, it is clear that blanket inhibition of IP6K1, with 

resulting hyperactivity of Akt/PKB in all cell types and/or in 

the whole body, cannot be advised at this stage.

Concluding remarks
Activation of AMPK has a clear beneficial effect in meta-

bolically responsive tissue in type 2 diabetics. We suggest 

that future research and potential therapies, in parallel with 

continued research into the role of AMPK in glucose control, 

should be directed towards mechanisms known to be involved 

in insulin resistance. Recent published work provides excit-

ing and novel data that may lead to a pharmaceutical agent 

capable of promoting insulin-stimulated glucose transport in 

insulin-resistant tissue via inhibition of IP6K1. Although early 

in development, use of IP6K1 inhibitors provides an inter-

esting area of research in the fight against insulin resistance 

and type 2 diabetes. Due to the varied response of Akt/PKB 

in different tissue types and the resulting individual and/or 

combined effects this kinase may have on whole body metabo-

lism, cell growth, and human cancers, blanket inhibition of 

IP6K1 and reduced production of IP7 is not recommended at 

this point. Indeed, while AMPK activity promotes growth of 

prostate cancer cells,82 use of metformin in vivo reduces the 

occurrence of pancreatic and hepatic malignancies.83 Further, 

it is important to point out that even AMPK, the current target 

protein, which is induced by metformin, is implicated in some 

cancers,82 but use of metformin is inversely correlated with 

other types of cancer in a dose-dependent manner.83

The introduction of Akt1/PKBα, Akt2/PKBβ, and Akt3/

PKBγ knockout rodents has suggested different physiologi-

cal functions for specific isoforms, but there is now some 

evidence pointing towards compensatory effects in a given 

isoform when another is knocked out. In terms of insulin 

resistance, it appears that future work should focus on 

pharmaceutical inhibition of IP6K1 in established animal 

models of diabetes (for example, Ob/Ob) before human trials 

can be considered. Likewise, the roles of IP6K1 depletion 

in pancreatic β-cells and in insulin production and release, 

warrant further investigation.
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