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“Things should be made as simple as possible, but not any simpler.”    
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 ABSTRACT  

 

This research considers the Fourier transform calculations of multidimensional signals. 

The calculations are based on random sampling, where the sampling points are 

nonuniformly distributed according to strategically selected probability functions, to provide 

new opportunities that are unavailable in the uniform sampling environment. The latter 

imposes the sampling density of at least the Nyquist density. Otherwise, alias frequencies 

occur in the processed bandwidth which can lead to irresolvable processing problems. 

Random sampling can mitigate Nyquist limit that classical uniform-sampling-based 

approaches endure, for the purpose of performing direct (with no prefiltering or 

downconverting) Fourier analysis of (high-frequency) signals with unknown spectrum 

support using low sampling density. Lowering the sampling density while achieving the 

same signal processing objective could be an efficient, if not essential, way of exploiting the 

system resources in terms of power, hardware complexity and the acquisition-processing 

time.     

In this research we investigate and devise novel random sampling estimation schemes for 

multidimensional Fourier transform. The main focus of the investigation and development is 

on the aspect of the quality of estimated Fourier transform in terms of the sampling density. 

The former aspect is crucial as it serves towards the heart objective of random sampling of 

lowering the sampling density. This research was motivated by the applicability of the 

random-sampling-based approaches in determining the Fourier transform in 

multidimensional Nuclear Magnetic Resonance (NMR) spectroscopy to resolve the critical 

issue of its long experimental time.  
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CHAPTER ONE 

INTRODUCTION 

 

In signal processing, samples of the signal are usually designed to be captured on an 

equidistant grid of time instants. In multidimensional signal processing, the most common 

form of sampling is on a lattice which is the multidimensional equivalent of the equidistant 

grid in the one-dimensional case. This principle is known as uniform sampling and it 

underlies nearly all signal acquisition protocols used in consumer audio and visual 

electronics, medical imaging devices, radio receivers, and so on. The main advantage of 

uniformly sampling the data is the simplicity of the processing algorithms that have been 

developed in the past century. Nonetheless, uniform sampling (in its classical form) entails 

some restrictions in its design: the rate of sampling is governed by the Nyquist rate of twice 

the highest frequency present in the signal (this is for one-dimensional signals. An analogous 

condition is required in multidimensional domains, which we briefly survey in the next 

chapter). Violating the Nyquist condition usually results in false process of the signal’s 

samples. In many applications, fulfilling the Nyquist limit is achievable, although for high-

frequency signals downconversion and prefiltering are usually needed prior to sampling. 

However, unfortunately, this is not the case for some applications where maintaining these 

sampling densities is expensive or even impossible because of system limitations such as 

hardware complexity, power consumption and the data acquisition-processing time. 

Generally speaking, reducing the sampling density whilst achieving the aimed signal 

processing objective is an efficient way of exploiting the system’s resources. To this end, a 

vast number of researchers in several of fields of engineering, mathematics and science have 

pursued alternatives for uniform sampling in order to lower the operated sampling densities 

while preserving the ability of achieving the signal processing goal. Indeed, with few 
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exceptions, it is not expected for the alternative solutions to be uniform nor the classical 

uniform-based processing approaches to be valid.  

Reduction in sampling rates is beneficial in one-dimensional systems and particularly 

important when dealing with multidimensional signals where maintaining high sampling 

rates in each direction leads to a significant increase in the number of signal’s samples 

(assuming a Cartesian lattice). These problems are found when dealing with two-

dimensional images and three-dimensional video processing; however, they are most notably 

affecting processing data for Nuclear Magnetic Resonance (NMR) experiments where 

signals could easily be five, or more, dimensional [1-6]. The latter application has motivated 

our interest in the artful topic of multidimensional nonuniform sampling and the associated 

processing algorithms. We must remark that the work presented here is not particularly 

targeted for this application, and the advantages of this work can be explored in any other 

applicable scenario. Next, we provide a short survey about multidimensional NMR 

spectroscopy and its intrinsic bottleneck that is limiting its scope. The main aim of the 

following section is not to provide the principles of multidimensional NMR spectroscopy, 

but rather to demonstrate the nature of the NMR signals and highlight the problem from the 

DSP point of view.    

1.1   NMR Spectroscopy 

NMR spectroscopy allows the examination of the structure of individual molecules or 

portions of the molecules within a chemical sample. The NMR spectroscopy works by 

placing the sample in a strong magnetic field and irradiate it with electromagnetic pulse. 

Each radiating nucleus in the chemical sample responds with a detectable exponentially-

decayed sinusoid wave. Different nuclei, or identical nuclei in a different chemical or 

structural environment inside the molecule, react differently to the magnetic field and the 
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pulse, radiating exponentially-decayed sinusoid wave with different parameters. The 

distinction between the several detected waves provides useful information about the 

structure of the molecule and its chemical properties. The radiated waves of the nuclei 

represent the NMR signal (usually called Free Induction Decay (FID)), which can be 

expressed as the summation of decaying sinusoids with different centre frequencies, 

amplitude and decaying factors. Thus, if we allow R sinusoids to have separate intensities 

 
1

R

r r



, resonance frequencies  0, 1

R

r r



, and relaxation time constants  2, 1

R

r r
T


 , the NMR 

signal  x t  takes the form:  

                                                0, 2,

1

cos exp / .
R

r r r

r

x t t t T 


                                      (1.1)

                                                                                                         

Extracting the embedded parameters from these summed sinusoidal components is 

unfeasible to be conducted in the time domain. Instead, the signals are transformed to the 

frequency domain to attain a spectral representation of the signal, where the sinusoids appear 

as peaks mounted at their centre frequencies, with the highest magnitudes related to their 

amplitudes, and widths (at half the highest magnitude of the peaks) determined by the 

decaying coefficients. Accordingly, all the information can be easily interpreted by the user. 

See Fig. 1.1 for an illustrating example of an NMR signal in the time domain and its 

frequency representation. 

In the case of complex molecules, the spectrum shows an extensive overlap of the peaks 

because of the large number (hundreds) of radiating nuclei; see Fig. 1.2 for an illustration.  

In such a complex case, it is very difficult to identify and separate the peaks that are close to 

each other. A solution was proposed by Jeener [7] introducing the two-dimensional NMR 

spectroscopy where an additional spectral dimension is inserted to spread the peaks over a 

two-dimensional representation.  
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Fig. 1.1. An example of an NMR signal in the time domain (left plot) and frequency domain 

(right plot). 
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Fig. 1.2. Spectrum of an NMR signal of a complex molecule which shows an overlap of the 

peaks. 

 

In two dimensional NMR, the signal is recorded as a function of two time variables, t1 

and t2, and the resulting data is subjected to a two-dimensional Fourier transform to yield a 

spectrum that is a function of two frequency variables. In the first period, the tested object is 

excited by an electromagnetic pulse. The resulting magnetization is allowed to evolve for the 

first time period, t1. Then, another period follows which consists of a further pulse(s). After 

the second period of pulses, the signal is recorded as a function of the second time variable, 

t2. An illustration of a pulse sequence of a two-dimensional experiment is shown in Fig. 1.3. 
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Fig. 1.3. Pulse sequence and recording of an FID of a two-dimensional experiment. 

 

The two dimensional signal is recorded in the following way. First, t1 is set to zero, the 

pulse sequence is executed and the resulting radiated signal from the tested chemical object 

is recorded. Then, the system is allowed to return to equilibrium. After that, t1 is set to T’ 

and then the sequence is repeated and a signal is recorded and stored separately from the 

first. Again, the system is allowed to equilibrate, t1 is set to 2T’, the pulse sequence is 

repeated, and a new signal is recorded and stored. The whole process is repeated again for t1 

= 3T’, 4T’ and so on until sufficient data is recorded, typically 50 to 500 increments of t1 (it 

is usually referred to t1 and t2 by the indirect and direct dimension, respectively). Hence, we 

have a two dimensional data that is discrete along the indirect dimension with distance of T’. 

By subjecting the recorded signals to a two-dimensional Fourier transform, we can obtain a 

two-dimensional spectral representation with peaks spread over two dimensions. This 

concept was straightforwardly generalised later to multiple dimensions by creating multiple 

indirect dimensions, introducing the multidimensional NMR spectroscopy.  

Multidimensional NMR technique provides a unique source of information about 

biomolecular structure, interactions, and dynamics. But the bottleneck that tends to restrict 

its scope is the unfavourable experimental time. As we described above the 

multidimensional experiment is performed by acquiring a series of signals. Hence, for K-

t2 t1 
Pulse Pulse 

detection evolution 
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dimensional experiment with 
kN  points in the k-th dimension, the total experiment time 

totalT  

increases exponentially with the number of dimensions, and equals 

1 12K K

total k rpT N T                                                    (1.2) 

where 
rpT  is the repetition time that is required to record the signal (as we described above) 

and for the system to be back to its initial situation, and 2
K-1

 represents the number of data 

sets required by quadrature detection rules. Thus, for example, to conduct a three-

dimensional experiment with 60 samples in each indirect dimension, and 1 second repetition 

time, the acquisition time will be 4 hour long. And, increasing the experiment 

dimensionality (with the same number of samples along the added dimension) will increase 

the experiment time by 120 times. 

In addition, the time factor tends to restrict the scale of multidimensional spectroscopy to 

rule out the study of time-dependent phenomena such as chemical exchange, or the 

investigation of materials of limited stability [1]. Furthermore, the amount of data we need 

to store also increases with the dimensionality of the experiments. For example, if a three-

dimensional experiment has a size of data we need to store of 4 gigabytes, the four-

dimensional experiment with same resolution could have the size of data of 4 tetrabytes. 

 

1.2   The Adopted Sampling Methodology  

In the previous section we discussed how the acquisition time is directly proportional to 

the number of data samples (i.e. FIDs) in the indirect dimensions. An intuitive way to 

accelerate the experimental time according to (1.2), and reduce the size of data we need to 

store, is to reduce the number of the collected FIDs. However, conventional 

multidimensional NMR spectroscopy (which engages classical DSP) requires the distances 
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between successive samples in each indirect dimension to be fixed. This distance is 

determined by the Nyquist theorem of uniform-sampling-based DSP. Moreover, the total 

monitored time along the indirect dimensions is determined by the desired resolution of the 

constructed spectrum. Although the resolution can be scarified sometimes in experiments 

with more than three dimensions and, accordingly, the number of FID signals can be 

decreased, the experiment time can still be too long. 

Lowering the density of the collected FID signals below Nyquist leads to the overlap of 

the signal spectrum aliases that appear as a consequence of the periodicity of sampling 

points. This is undesirable as it will not be possible to differentiate between the original 

signal spectrum and its replicas; moreover, the signal spectrum can be distorted as a result of 

the overlap.  

An effective solution to tackle such an issue can come from random sampling estimation 

as methods for digital alias-free signal processing (DASP). These methods employ random 

sampling to mitigate spectral aliasing that is inherent in sub-Nyquist uniform sampling. 

Accordingly, the signal spectrum can be unambiguously determined whilst using low 

sampling densities, i.e. reduced number of FIDs. Random sampling simply refers to the 

sampling process where the sampling points are randomly distributed via strategically 

chosen probability density functions. NMR spectroscopy is probably the most advanced, 

suitable technology so far with regards to implementing random sampling. One reason for 

this is that choosing the location of the sampling points in the indirect dimensions is 

relatively flexible. Therefore, there is no need for any hardware modification in order to 

perform the irregular data acquisition. 

The recent work on random sampling estimation of Fourier transform [8]-[11] and its 

application in multidimensional NMR Spectroscopy [2]-[6] prompted our interest in the 

topic. In [8]-[11] forms of random sampling estimators of the Fourier transform were 
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introduced and studied for one dimensional signals. In [8] and [9] classes of total random 

estimators were considered. The authors showed that the rate of mean-square convergence 

of the estimates is N1 , where N is the number of random samples. A class of stratified 

estimation was considered in [10]. It was demonstrated that the asymptotic convergence rate 

of the estimates in the mean-square sense is 31 N . This result holds when the signal has a 

continuous first derivative. In [11], a form of antithetical stratified estimation was studied. It 

was proven that for signals with continuous second order derivatives, the asymptotic mean-

square convergence rate of the antithetical stratified estimates is 
51 N . Some of these 

random sampling estimators of the Fourier transform were adapted in multidimensional 

domains and their performances were evaluated based on NMR experiments, in [2]-[6], with 

no deep analytical analysis. This triggered us to extend the aforementioned random sampling 

estimation schemes to multidimensional signals and thoroughly analyse their estimation 

errors and their rates of decay as a function of the number of samples N and the number of 

the dimensionality of the signal K. We show that the rate at which the mean-square error of 

total random estimates decays is independent of the dimensionality of the signal K and 

equals to 1 N . We prove that for signals with the continuous derivative along each 

dimension, the asymptotic mean-square convergence rate of the stratified estimates in K-

dimensions can reach 1 2/1 KN  . For signals with the continuous second derivative along 

each dimension, we show that the antithetical stratified estimates can asymptotically 

converge at the rate of 1 4/1 KN  .  We also establish the asymptotic normality of the 

estimates which can be used to investigate the probability of their events and find the 

confidence intervals. Although [8]-[11] prompted us to study and evaluate the performances 

of these schemes in multidimensional domains, in this thesis we study wider strategies of 

distributing the sampling points and the associated unbiased estimators under these schemes 

to provide a deeper evaluation of their efficiency.  



1  Introduction   9 
 

 
 

In practice the sampling points of the random sampling are always lying on, more or less 

fine, grid as a result of the rounding of their coordinates caused by the finite step of the 

system’s clock and the limitations of designing capturing devices capable of collecting 

samples arbitrarily close to each other along the real time dimension. For that reason, we 

establish theoretical analysis for on-grid random sampling estimates of the Fourier transform 

of the three aforementioned schemes. We determine the statistical properties of these 

estimates and provide thorough analysis of their performances. 

Then we move to investigate the effect of the signal spectral position on the accuracy of 

the estimates. This issue is particularly important as it serves towards the key objective of 

random sampling in signal processing, i.e. using low sampling densities compared with the 

corresponding Nyquist density of the classical uniform-sampling-based approaches that is 

governed by the signal position in the frequency domain. The convergence rate of the total 

random estimates is achieved uniformly for any number of samples across all frequencies 

and the accuracy of the estimates is independent of the position of the signal spectrum in the 

frequency domain. Whereas, the quality of the (antithetical) stratified sampling estimates is 

affected to a certain extent by the signal’s spectral position. Their asymptotic fast 

convergence rates, which hold after a sufficient number of samples, do not appear uniformly 

across all frequencies We established some limits that demonstrate the fact that the requisite 

number of samples that is needed for the fast convergence rate to appear depends on the 

position of the signal spectrum from DC. Hence, the fast convergence takes place at DC and 

its close neighbourhood for small number of samples, and it spreads to higher frequencies 

only when the average sampling densities are significantly increased (hence, DC represents 

the acceleration frequency). Thus, to benefit from the fast convergence rates, more samples 

are required to be collected for processing high-frequency signals than for those placed 

closer to DC even if their spectral shapes are identical. In fact, the necessary number of 

samples for signals at high frequencies is comparable to what is required by Nyquist 
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(otherwise, the user would simply miss out on the advantages of these fast convergence 

rates). This observation defeats one of the popular objectives of using random sampling. 

Accordingly, these approaches are most advantageous for signals whose spectrum is 

concentrated in low frequency ranges. 

In this thesis, we develop a novel technique of (antithetical) stratified sampling for 

Fourier transform estimation which allows moving the acceleration frequency, from zero, to 

practically any selected point in the frequency domain. Consequently, fast convergence to 

the targeted Fourier transform can be obtained using small number of samples regardless of 

the positioning of the signal spectrum in the frequency domain. This is particularly 

important to process signals which are known to take positions in the region of some high 

frequencies, where sub-Nyquist random sampling technique is most useful to employ in the 

first place. This can provide an alternative solution to the classical way of downconverting 

and filtering the signal to relocate and reshape its spectrum prior to sampling (uniformly or 

randomly). In addition, this is essential when we only have access to the samples (that we 

would like to minimise their number) of the signal and hence filtering the signal to eliminate 

the high frequency replicas resulting from downconversion is not an option. Additionally, 

the developed methods leverage another principle to provide further reduction in the 

estimation error (compared with the regular random sampling approaches) that is 

independent of the error reduction rendered by facilitating the fast convergence rates, as we 

will see in Chapter 5. In fact, this principle can be even exploited in total random sampling 

(where no acceleration occurs). We refer to the proposed technique as the “IQ estimation”; 

because of the fact that it estimates the Fourier transform of the signal through its In-phase 

and Quadrature components, or their equivalents in multidimensional domains. 

The theory of random sampling has a relatively long history. The first substantial work in 

the field can be tracked to 1960 which was followed by considerable amount of research, 
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including two books [12,13] that have been written in the relatively recent term. Random-

sampling-based approaches are significantly important to study not only for their interesting 

theoretical aspects but also for the wide available implementations of their techniques. 

Examples range from simple sampling voltmeters and oscilloscopes from 1960s to complex 

NMR spectroscopy recently. In the next chapter, we demonstrate where the adopted random 

sampling techniques stand among the others in their family.  

Indeed, random sampling techniques are not the only methodology that seeks to reduce 

the employed sampling densities beyond Nyquist. These techniques share their goals with 

the wide theory of nonuniform sampling, which is as old as uniform sampling and Nyquist 

theorem itself. We must remark that it is difficult to build connections between random 

sampling techniques and other sub-Nyquist strategies as they considerably differ in their 

ideas and objectives. Nonetheless, in the next chapter we provide a short survey about the 

most popular sub-Nyquist strategies to help highlighting the main features of the adopted 

methodology.  
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1.3   Summary of the Contributions  

The original contributions of this research can be summarised by: 

Chapter 3 

 We extend the three most efficient reported random sampling estimators of the 

Fourier transform from one dimensional to multidimensional domains. These 

schemes are total random estimation, stratified estimation and antithetical stratified 

estimation. 

 We thoroughly analyse their performances in terms of the of the mean-square error 

they introduce to the estimated Fourier transform and their rates of convergence. 

 We investigate the dependence of the accuracy of the aforementioned sampling 

estimates on the distribution of the signal’s energy in the frequency domain. We 

determine that the number of samples required to analyse the signal with fast 

convergence in the (antithetical) stratified schemes depends on the distance of both 

of the analysed frequency and the frequencies that carry most of the energy of the 

signal from the acceleration frequency, i.e. the zero point.  

 We establish the joint asymptotic normality of the real and imaginary parts of the 

aforementioned Fourier transform estimates, which can be used to investigate the 

probability of events of the constructed random estimates. 

Chapter 4 

 We provide theoretical analysis for more practical, on-grid versions of the 

aforementioned Fourier transform estimators, where the sampling points can only 

take place on a grid of points. 
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Chapter 5 

 We develop a novel Fourier transform estimation method, i.e. IQ estimation, that 

can locate the acceleration frequency at practically any selected point in the 

frequency domain, rather than zero point. Choosing this frequency in the locality of 

the signal spectrum can lead to a substantial reduction in the estimation error or 

savings on the number of samples, subject to the system requirements.  
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1.4   Thesis Outline 

This thesis is organised as follows. In Chapter 2, we start with providing preliminaries on 

sampling and Fourier analysis in multidimensional domains, introducing some of the 

notations that will be adopted throughout the thesis. Then, we provide a concise survey of 

the most popular sub-Nyquist strategies, focusing on the methods that target the Fourier 

transform. In Chapter 3, we generalise the total random, stratified and antithetical stratified 

estimation schemes, and examine their statistical characteristics. The detailed derivations of 

the developed analytical expressions are included in Appendix A and B. In Chapter 4, we 

analyse the on-grid random sampling estimation schemes. Chapter 5 focuses on devising the 

IQ method and study its statistical properties with the derivations in Appendix C and D. 

Chapter 6 concludes the thesis and includes ideas about potential research based on the 

presented work. 

 



 

 
 

CHAPTER TWO 

 SAMPLING TECHNIQUES AND FOURIER ANALYSIS  

 

 

The Fourier transforms is a powerful mathematical tool which can enable us to view 

signals or data in a different domain, inside which several difficult (linear) problems become 

very simple to analyze. Fourier analysis finds applications in many diverse fields. In 

economics, astronomy, and several other fields, the Fourier analysis may reveal “hidden” 

periodicities in the collected data, which are to be associated with cyclic activities or 

recurring processes, and that can help to understand and predict future behaviour of the data. 

In speech analysis, Fourier analysis of voice signals are useful in better understanding the 

speech production process and can be used for both speech recognition and compression. In 

medicine, Fourier analysis of various signals measured from a patient can provide useful 

material for diagnosis, such as Magnetic Resonance Imaging (MRI). A shifted (delayed) 

signal in the time domain manifests as a phase change in the frequency domain. This 

elementary property is widely used in medical applications, especially in imaging and 

tomography applications. As we described in the previous chapter, the Fourier transform is 

also used in Nuclear Magnetic Resonance (NMR) and in other kinds of spectroscopy. 

Fourier analysis appears in other applications such as control systems, seismology, radar 

systems, vibration monitoring, etc. Its ubiquity in nearly every field of engineering and 

physical sciences, all for different reasons, makes it impossible to list all its applications. 

Despite the fact that other theoretical frequency spectrum techniques are used in handling 

some of these applications, Fourier transform methods are virtually indispensable in all of 

them. 

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
http://en.wikipedia.org/wiki/Spectroscopy
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A fundamental advance in the practicality of Fourier analysis occur owing to the theory 

of sampling, which made it possible to calculate the Fourier transform of signals using fast 

digital computers instead of analogue filter banks and spectrum analyzers. The most 

common form of sampling is the uniform sampling (also known as regular sampling). Its 

popularity is due to the practicality of designing capturing devices that collect data in a fixed 

rate. And, the development of the efficient, easy to implement Fast Fourier Transform (FFT) 

algorithms that are capable of performing the calculations in a considerably short time, gave 

the Fourier transform of uniform data a different dimension. 

Fourier analyses appear in various branches of signal processing. However, they bear on 

a wide aspect with the broad topic of spectral analysis. Typically, spectral analysis of a 

signal (or data) tells us what frequencies are present in the signal and in what proportions. 

Generally speaking, spectral analysis includes and focuses more on estimating the power 

spectrum density of signals (which can be seen as the square magnitude of the Fourier 

transform) that tells us how much power the signal has at a particular frequency. Spectral 

analyses approaches can deal with signals that do not possess a direct Fourier transform 

representation. This is distinct from the problem of the Fourier transform of deterministic 

finite-energy real signals that yields complex-valued spectrum, which is the focus of this 

thesis. In some applications, the magnitude of the Fourier transform (equivalently, the power 

spectral density) is adequate to fulfil the task, however for some other applications the phase 

is as important as or even more vital than the magnitude. There are two types of the Fourier 

transform based estimates of the power spectral density: the periodogram and the 

correlogram. The periodogram in its classical form is a solution to a least square data fitting 

to complex sinusoids, which results into Fourier transform type of calculations, that can be 

performed using FFT. Variations and properties of the periodogram have been devised and 

thoroughly studied in literature; see for example [14] for an introduction. The other type uses 

the correlation of the observed data via Fourier transform calculations to yield an estimate of 
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the power spectral density. These techniques are categorised under the broad category of 

nonparametric approaches of spectral estimation. Despite the fact these approaches can 

suffer from poor resolution and leakage effects, as well as large variance, they are still the 

most common spectral methods [14]. We note that, although these approaches are based on 

Fourier transform, the results we present in this thesis are not directly applicable to them. 

The second approach to spectral estimation, called the parametric approach, is to 

postulate a model for the data, which provides a means of parameterising the spectrum, and 

to thereby reduce the spectral estimation problem to that of estimating the parameters in the 

assumed model. Parametric methods offer more accurate spectral estimates than the 

nonparametric ones in the cases where the data indeed satisfy the model assumed. However, 

the nonparametric methods can outperform the parametric ones because of the sensitivity of 

the latter to model misspecifications [14]. This observation has motivated and renewed 

interest in the nonparametric approach to spectral estimation. The reader interested in 

parametric methods can refer to [14] for an introduction. 

In many applications, such as engineering, physics, biomedicine, economics, seismology, 

and, particularly, astronomy the available data is discrete and of irregular nature. Hence, 

from a different angle from earlier, the discrete nature of the data, considerably complicate 

the problem of calculating the spectrum of the signal. The usage and the accuracy of the 

general methods for arbitrary sampling have been reviewed. For example, the periodogram 

can be readily extended to the irregularly sampled data, see [15] for a to-the-point 

discussion. Similarly, parametric approaches can cope somehow with the irregular data, a 

critical review of some of those methods can be found in [16,17].  

Several methods have been specially developed in an attempt to relax and eliminate the 

consequences of the irregularity of samples. For example, modified forms of the 

periodogram that can deal with the uneven data were introduced, which we will discuss later 
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because of their popularity in the field. Some of the proposed methods are rather specialised 

on a particular irregularity of the sampling instants. The most commonly considered 

schemes correspond to the following situations where the data is available at points of a 

regular time grid, but not at all points in a given time interval; if the unavailable data 

samples form large gaps that are interlaced with large available data subsets, then we have a 

so-called gapped data case; on the other hand, if the unavailable samples form a more or less 

arbitrary pattern, then we simply say that we have a missing data case. These two cases have 

been considered in many papers, for example [18,19], where a nonparametric spectral 

analysis method for sinusoids in-noise data has been proposed, and in [20] which discussed a 

parametric approach for data with continuous spectra; many other methods for gapped or 

missing data can be found in the references of the cited works. 

In other application, such as NMR spectroscopy, where the user has the freedom of 

choosing the location of the sampling points to extract as much information as possible from 

the signal while using low number of samples, one rarely chooses the uniform strategy. Such 

problems are extremely common for a variety of reasons. For instance, the number of 

sensors may be limited. Or the measurements may be extremely expensive as in certain 

imaging processes via neutron scattering. Or the sensing process may be slow so that one 

can only measure the object a few times as in multidimensional NMR spectroscopy. And so 

on. Various strategies of collecting the data and the associated processing algorithms have 

been proposed in the research literature. To give a quick idea about deliberately nonuniform 

sampling we mention at this junction that the data can be randomly collected with a certain 

mode and distribution pattern (which is the category we are interested in). Or, it can be 

collected with a deterministic design of periodic nonuniform sampling. Or, there are other 

schemes that combine aspects of both. More details about these schemes are included in this 

chapter.  
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The literature on these topics is diverse, and still considerably expanding because of its 

theoretical importance and wide applicability in various field of science. In addition, since 

our target is sampling the signal and process them to extract as much information from the 

signal, some of the signal sampling-reconstruction strategies share the same goal, and can be 

easily “converted” to yield the Fourier transform of the signal. There are several superb 

review papers and books that survey and categorise the various results in the field, e.g. [21-

32]. While reviewing the extensive literature on the existing methods for nonuniformly 

sampled data is beyond the scope of this thesis, we briefly describe and categorise the 

approaches that have received a lot attention in the field. We highlight their various 

objectives and paces of addressing the problem. We will see by the end of this chapter the 

diversity of these methods, which makes them all impossible to compare or build solid 

bridges in between. 

Next, we start with introductory material about multidimensional Fourier transform 

calculations. Then, we describe some famous families of nonuniform sampling techniques. 

Indeed, we focus on the category of interest, i.e. random sampling estimation, reviewing the 

most important results in this field and demonstrating where our contribution fits in the 

literature. Then, we finish the chapter with a summary. 

2.1  Preliminary on Multidimensional Sampling and Fourier 

Analysis 

It is certainly not feasible to provide all the mathematical analysis behind Fourier analysis 

in here. However, we give a brief review of the representation and notations of 

multidimensional signals and their Fourier transform, which we will carry out in this thesis. 

The issues highlighted here can be interpreted in different ways; we choose the way that can 

provide the best insight from the DSP point of view. The K-dimensional Fourier transform 
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   1 2, ,..., KX X f f ff of a K-dimensional real, deterministic signal    1 2, ,..., Kx x t t tt with 

finite energy is defined as  

     : exp 2 .X x j π d 
t

f t f t t       (2.1) 

where 

1 2... ... Kd dt dt dt

  

  

   
t

t

  

and 

       1 1 2 2exp 2 . exp 2 exp 2  .... exp 2 K Kj π j πf t j πf t j πf t    f t . 

Hence to find the Fourier transform, the expression mathematically indicates that the signal 

must be calculated continuously for an infinite-size domain of t , which is not feasible 

indeed in any (DSP) system. According to Petersen and Middleton theorem [33], which is 

the generalization of Nyquist theorem to multiple dimensions, the Fourier transform of the 

signal can be determined using only samples of the signal.  At first, loss of information may 

seem infinite. In fact, simple analysis of the sampling process in the frequency domain 

shows that the complete information content is conserved provided that the sampling is 

adapted to the component frequencies of the signal, as we show next.  

The sampling operation is performed by multiplying the signal by a multidimensional 

lattice of deltas. In one dimensional domain, this operation would be equivalent to 

multiplying the signal by a train of deltas, where the period between successive deltas 

defines the sampling rate. In multiple dimensions, characterising the sampling process is not 

as straightforward as in one dimensional signals. Here, we have to deal with geometry forms 

rather than simple intervals, as the multidimensional lattice of deltas is not necessarily 
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Cartesian. The geometry and the density of the sampling points is defined by the sampling 

matrix which is composed of vectors of size K 

 1 2: | | ... | .KQ  q q q
               

(2.2) 

In Fig. 2.1 we show examples of two-dimensional sampling lattices/matrices. The geometry 

of these sampling points is important as we will see below. Now, we can define the sampled 

signal by 

 ( ) : ( )dx x δ Q 
m

t t t m

                                                     

(2.3) 

where 

1 2 30 0

...
m m m

  

  

   
m

 

and 

       1 2 ... Kδ δ t δ t δ tt
                                                 

(2.4) 

is the K-dimensional delta function. We note the Fourier transform pair 

     detδ Q P δ P   
m r

t m f r                                    (2.5) 

where  det .  denotes the determinant operator, and 
1P Q is the periodicity matrix which 

determines the locations of the deltas of the right hand side of (2.5) in the frequency domain.

 Multiplication in the t  domain corresponds to convolution in the f domain. Accordingly, 

the transform of (2.3) is 

     ( ) det .dX X P δ P  
r

f f f r                                   (2.6) 

Since convolving a function with  δ t a generates the same exact function but locates it at 

a :  

     ,X δ X   f f a f a                                                (2.7) 
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we conclude that 

   ( ) det .dX P X P 
r

f f r                   (2.8)

 

By examining the expression above we notice that the Fourier transform of the sampled 

form of the signal comprises (scaled) replicas of the Fourier transform (2.1) of the original 

signal that are centred at Pm (see Fig. 2.1 for some examples). Intuitively, the original 

signal spectrum can be retrieved if the replicas do not overlap. To this end, the Fourier 

transform must be zero outside a K-dimensional sphere (or any other shape) of finite radius, 

i.e. Bandlimited. Second, the sampling matrix (we defines the density and the geometry of 

the sampling points) should be properly structured so these spheres are adjacent. If these two 

conditions are fulfilled the original spectrum can be reconstructed by isolating (filtering) the 

original spectrum from its aliases. The above calculation of the Fourier transform of a 

sampled signal is formally known as Discrete-Time Fourier transform (DTFT) in one 

dimensional domains and also used in the multidimensional case, and it is simply expressed 

as follows:  

 ( ) ( )exp 2 . .dX x Q j π Q 
m

f m f m

                                    

(2.10) 

The expression above is of high importance; it reduces the continuum infinity of the signal 

required to obtain its Fourier transform in (2.1), to a countable set. However, the set is still 

infinitely large and this is not feasible for the two simple facts that no signal can be observed 

for an infinite-size domain of t and no system is capable to handle such data. Alternatively, 

the Fourier transforms calculation is conveniently performed over a finite-size observation 

domain A , and (2.10) is usually replaced by  
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Fig. 2.1.  Examples of sampling lattices (on top) and signal spectrum aliases (on the bottom) 

. On the left, we see the (Cartesian) sampling lattice on top with sampling matrix 

1

0

0

T
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T

 
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 , and its results in the frequency domain on the signal spectrum of a circular 

shape in the bottom. On the right, we see the (Hexagonal) sampling lattice on top with 

sampling matrix 2
/ 3 / 3
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 
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 , and its consequences on the signal spectrum in the 

bottom.  
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 
,

( ) : ( )exp 2 . .D

Q A

X x Q j π Q


 
m m

f m f m

                             

(2.11)

 

Simply speaking, the operation of limiting the set of calculated samples can be seen as 

multiplying the signal by a multidimensional rectangular window and then calculate the 

Fourier transform of the outcome. This is equivalent to convolving the signal spectrum with 

a multidimensional sinc function (the Fourier transform of a multidimensional rectangular 

function). Accordingly, the generated signal spectrum is distorted (with an extent that 

depends on the size of the observation window) as the result of the convolution with more or 

less wide main lob of the sinc function as well as its secondary lobes (instead of convolving 

with delta functions when infinitely large set of samples are collected). This operation limits 

the resolution of the calculated spectrum and might lead to extra lobes present in the 

spectrum, especially on the sides of the original signal spectrum. The counter back to this 

phenomenon is to use a windowing function of non-constant value. There is a vast range of 

choices of windows that can be used to offer a trade-off between the resolution and the 

impact of the side lobes. An excellent review of the topic that includes analysis of their 

properties and smoothing effects can be found in [34, 35].  

We conclude that the Fourier transform of signal is usually approximated with a sum 

using a finite number of the signal samples. To complete this section, we remark that in 

practice nearly all software and electronic devices that generate frequency spectra apply a 

fast Fourier transform (FFT) algorithms which calculate the Fourier transform on a discrete 

frequency representation, which corresponds to equally spaced samples of its DTFT. 

Because of the reversibility (the discrete signal, rather than the continuous signal, can be 

regenerated from its discrete points of Fourier transform), the generated Discrete Fourier 

Transform (DFT) is called a frequency representation of the discrete signal. 
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2.2 Nonuniform Sampling Techniques and Processing Algorithms 

In this section we briefly describe some of the most popular alternative paradigms of 

collecting the samples and their corresponding processing algorithms. We demonstrate these 

techniques for the one dimensional case for simplicity and refer to references for a 

generalisation to the multidimensional case, if they exist.  

2.2.1   Least-Square Spectral Analysis 

Until recent, this category had a major attention in the community of irregular sampling 

theory. Its merit is in the fact that it does not put assumption on the signal (however, these 

methods work most satisfactorily when the data is a combination of sinusoids). Typically, it 

is a method of estimating a frequency spectrum, based on a least squares fit of sinusoids to 

the data samples. The widely used form of calculations is the one suggested by Scargle 

[36,37] and Lomb [38] (which can be readily extended to multiple dimensions) that yield the 

spectral power at the analysed frequencies, and it is known as the Lomb periodogram or 

the Lomb–Scargle periodogram (although it was shown that straightforward solution to the 

fitting algorithm is preferable form the computational standpoint). In [15] the reader can find 

a straightforward explanation of why the least-square fitting of sinusoids is preferable to the 

least-square fitting (to complex sinusoids) of the classical Fourier periodogram that is 

developed initially for equally spaced data. We must remark that their fitting procedure is for 

each frequency at a time (in contrast to some parametric approaches which assume the 

number of sinusoids and require a nonlinear least-square fitting algorithms to obtain their 

frequencies and amplitudes). 

Their research was motivated by applications where nonuniform sampling is enforced by 

the experimental circumstances, and freedom in selecting the sampling instants is limited. In 

http://en.wikipedia.org/wiki/Frequency_spectrum
http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Sine_wave
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other words, there is no assumption made on the sampling scheme, thereby allowing for 

arbitrary sampling points. Therefore, it is not possible to tell a lot about the accuracy of 

spectrum estimation. Indeed the random sampling schemes developed in this thesis can be 

processed with this means, but there is no guarantee of them serving the purposes that are 

developed for. Similar to what we described earlier about truncating the observation window 

in Fourier calculations, this category can suffer from the low resolution and leakage. Despite 

its inferior performance, the Lomb periodogram is still one of the most commonly used 

spectral analysis method in applications involving arbitrary sampled data. Recently, a new 

enhanced method that engages an iterative weighted least-square fitting was developed in 

[15], extended to multiple dimensions in [39], to outperform the Lomb periodogram, 

eliminating almost completely its leakage problems.  

2.2.2   Compressive Sensing 

In the last couple of years a surge of research appeared in the theory of compressive 

sensing (also known as compressed sampling) after the seminal work in [40]. The former is 

a relatively new data acquisition-processing strategy that exploits the sparsity or 

compressibility of a signal. Some signal is defined to be sparse if its representation in some 

orthogonal basis contains only a few nonzero coefficients and is compressible if it can be 

well approximated by a sparse signal. Mathematically speaking, we have a discrete signal 

vector x  (or M samples of a continuous signal) which we expand in an orthogonal basis, 

such as Fourier basis, as follows  

x Xψ                                                                   (2.12) 

where ψ is the representation M M  basis matrix (e.g. Fourier exponents) and X  is a 

vector of size M that has W M nonzero entries. (A signal is sparse in the frequency 
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representation if its DFT has few nonzero coefficients.) If we are given the values of x  one 

can obviously construct the coefficients using simple linear algebra.  

Indeed, we are interested in the case of observing a subset of the data by acquiring  

N M  inner product measurements 

,k ky φ x ,   k P ,                      (2.13) 

where  1,2,...,P M is a subset of cardinality N M , and kφ  is the sensing waveform. 

The measurement vector can be written in matrix notation,  

. y φx φψX
                                                       

(2.14) 

(If the sensing waveforms are Dirac delta functions for example, then y  is a vector of 

sampled values of x .) With this information, the reconstruction is achieved by 1l norm 

minimization; the proposed reconstruction X̂  is the solution to the convex optimization 

program 

1
ˆ arg  min

X
X X     s.t.   y φψX .                    (2.15) 

That is, among all objects consistent with the data, we pick that whose coefficient sequence 

has minimal 1l  norm. A remarkable aspect of compressive sensing is that it asserts x  can be 

accurately reconstructed from the measurements y  even when (2.14) is (perhaps 

exceedingly) underdetermined, provided x  is sparse enough and the matrix φψ  satisfies 

certain conditions. These conditions can easily be fulfilled when the entries of the sensing 

matrix are random numbers (Gaussian or Bernoulli) [40], which are not appealing from the 

computational and practical point of view. Various works from the mathematical and 

engineering society develop algorithms in its general context: designing the basis matrix and 
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the sensing matrix, the optimization criteria to solve the underdetermined system (e.g. 

(2.15)), and the algorithms to obtain the sparse solution. However, the case of interest (from 

our prospective) is when compressive sensing is applied to uniform sampling of continuous-

time signals, i.e. using a sensing matrix of delta waveforms. In this case, the spectrum is 

discretised on a fixed frequency grid, then spectral values are estimated by locating a few 

nonzero values in the corresponding vector, i.e. by reconstructing a sparse vector. For this 

case, especially with the presence of noise, the conditions that guarantee the unique solutions 

are not easily satisfied, unless the vector is very sparse [41], and many of the developed 

techniques in the compressive sensing literature become irrelevant. There are several papers 

that tackle this exact problem, e.g. [42]. In general, such an approach has become a good 

alternative to parametric methods to achieve high resolution as their processing algorithm 

put less assumption on the signal. In fact, the use of such linear model gives more robustness 

to the estimation compared to parametric methods, especially regarding sampling artifacts 

[42]. On the other hand, it results in a considerable increase of the number of unknowns, and 

computationally demanding algorithms. In signal processing, compressed sensing is referred 

to the process of acquiring and reconstructing a signal that is supposed to be sparse  or 

compressible. However, it is a technique for finding sparse solutions to underdetermined 

linear systems. And, other sub-Nyquist technique leverages compressive sensing through a 

different strategy, e.g. [43] and [44] that is reviewed below. 

2.2.3    Periodic Nonuniform Sampling 

The occurrence of the signal spectrum aliases is the result of the periodicity of the 

sampling process. As we mentioned before, the density and the geometry of the sampling 

points dictate the locations of these aliases in the frequency domain. Intuitively, we would 

like the replicas to not overlap and theoretically the gaps between the replicas to be as small 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_(electronics)
http://en.wikipedia.org/wiki/Sparse_matrix
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Underdetermined_system
http://en.wikipedia.org/wiki/Underdetermined_system
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as possible to reduce the sampling density (downconversion and filtering prior to sampling is 

a way of reducing these gaps for high frequency signals). However, sampling with Nyquist 

density can easily produce gaps, which basically means that unnecessarily high sampling 

density is operated, and the task could be achieved with lower density. This topic has been 

examined by researchers in areas as diverse as mathematics, signal processing, 

communications, and circuit design, and the work is spread over many decades in widely 

differing notations. We will briefly summarise the main results in this category. We start 

with the work of Mark and Cheng [45], and Cheng [46]. The authors showed that if there are 

gaps among spectral replications at the Nyquist density then certain periodic samples can be 

removed with no expenses of losing any information about the signal. Their work targets the 

gaps that would appear because of the shape of the baseband signal spectrum. For example, 

let us have a signal with a baseband spectrum of a circular shape. No matter how carefully 

the sampling matrix is designed, gaps always occur among these circles; see Fig 2.1. Indeed, 

their work targets multidimensional signals, excluding the one dimensional case. Their 

approach is to slice the spectrum into narrow cells, and separate those cells which contain 

signal energy and those which do not. 

Sampling rates can be significantly reduced for bandpass signals using bandpass 

sampling (see [47] for a good review on bandpass sampling for one dimensional signal. For 

a generalization to multidimensional signals, reference [48] provides a concise survey). 

Although the former scheme is uniform, it shares many aspects with this category. Instead of 

sampling the signal according to the highest frequency present in the signal, bandpass 

sampling can significantly reduce the necessary sampling density by tiling the replicas to fill 

up the entire frequency domain with no gaps. This, of course, requires the signal spectrum of 

a certain shape to be properly located in certain positions in order for the aliases to be 

disjoint. Otherwise, either the aliases would overlap, or gaps can appear among them using 

more than the minimal rate requirement. At this junction we state that the minimal rate 
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requirement for arbitrary sampling method allowing perfect reconstruction is equal to (the 

summation of) the bandwidth actually occupied by the signal spectrum, which is known as 

Landau rate [49]. When the signal spectrum is not located “properly”, Kohlenberg [50] 

showed that we can use two sets of uniform sampling to sample bandpass signals with the 

minimal rate, and therefore it is known as periodic nonuniform sampling of order two. The 

results were generalised to handle multiband signals in [48], where the order of the periodic 

nonuniform sampling is larger than two. With all the listed methods, an exact prior 

knowledge about the spectral support of the signal must be available at the stage of 

designing the sampling scheme as well as the processing stage. We remark that all the 

previous approaches can fit or handled under the umbrella of the generalization sampling 

expansion of Papoulis [51].  

A much more challenging, sought problem is to design a blind sampling and 

reconstruction system that does not rely on a priori knowledge of the band locations, at 

asymptotically the minimum rate of Landau. Reconstruction under partial knowledge of the 

support was addressed in literature. In [52,53] partially blind systems were introduced, 

where sampling is carried out using (multi-coset) periodic nonuniform sampling strategy 

independent of the bands locations (See [54,55] for a two-dimensional system). However, 

the recovery is based on some knowledge of the spectral support. A completely blind system 

was devised in [44] based on the former work and the theory of compressive sensing. This 

work was slightly modified in [56] to improve the practicality of the system.   

All these methods are of significant theoretical aspect, as they can achieve perfect 

reconstruction of the signal approaching the minimal sampling rates that are required to 

reconstruct a signal, i.e. (twice for the blind case) Landau. These results are proven for 

infinitely long sampling sequences and assuming that signal is (bandlimited) multiband. 
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With the complexity of some of these approaches in the one dimensional case, it makes the 

high dimensional case is for nothing but theoretical interest. 

Another interesting strategy of sampling-reconstruction techniques was initiated in [57], 

and followed by further research, for processing signals with finite rate of innovation (i.e. 

signals with a finite number of degrees of freedom per second). These techniques can 

uniformly sample the (prefiltered) signals at a rate slightly above twice their rate of degrees 

of freedom, which is usually considerably low, and then recover the signal’s unknowns to 

reconstruct the signal using a numerically delicate procedure. Indeed, there are other 

interesting methodologies that we are not mentioning here, and they vary depending on 

several factors, such as modelling the signal, previous knowledge about the spectral support 

of the analysed signal, nonuniform sampling pattern, complexity of calculations, signal 

processing objective, etc. 

2.3 Random Sampling Estimation  

Sampling a signal can lead to information loss unless the signal and the sampling process 

together follow some pattern that has certain conditions. The theory of uniform sampling 

provides a pattern to achieve the former purpose, which we discussed in Section 2.1. Aliases 

of the signal spectrum in the uniform sampling environment appear because of the 

periodicity in the sampling pattern (which can lead to more or less overlapping of these 

aliases, if the corresponding conditions are not fully fulfilled). Random sampling can avoid 

the appearance of spectrum aliases, and provide alternative conditions to extract the spectral 

information from the signal. Random sampling typically focuses on spectral analysis of the 

signals, i.e. estimating the process’s power spectral density or the Fourier transform. The 

theory of random sampling has been gradually developed. The first paper in the field was by 

Shapiro and Silverman in 1960 [58] which based their definition of the criterion on the 
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autocorrelation sequence. Let   n n
x t




 be random samples of a wide-sense stationary 

process with zero-mean and covariance given by 

  ( )= ( ) ( ) ( ) ( )m m n nr n E x t x t R p d







    

       

0, 1, 2,n              (2.16) 

where ( )np   is the Probability Density Function (PDF) of 
,m n m n mt t    and ( )R   is the 

autocorrelation function of the underlying continuous ergodic signal. According to their 

work, the sampling scheme is considered to be sound if there exists only one continuous 

process with a ( )R   that would yield ( )r n  in (2.16). The term “alias-free” was given to the 

sampling pattern that fulfils the former condition. The “alias-free” feature implies that the 

exact power spectrum density of the continuous stochastic process can be obtained from an 

infinite number of its irregularly distributed random samples captured at arbitrarily low 

rates. Random sampling schemes, such as Additive Poisson and Bi-Poisson sampling 

schemes were found to be alias-free whilst Tri Poisson, jittered sampling and additive 

random sampling based on uniform distribution are not (the properties of these schemes can 

be found in the original paper [58] and many other resources such as [12]). Beutler [59] 

restated Shapiro and Silverman concept to sampling schemes that are alias-free in relation to 

a S  family of spectra if no two processes with different spectra in S  yielding the same 

covariance sequence. 

Masry [60-62] pointed out the deficiency in the alias-free definition in [58,59]. He 

highlighted the fact that the Shapiro and Silverman criterion does not guarantee a consistent 

estimate of the power spectral density of the underlying continuous-time signal for a finite 

number of signal samples. He reformulated the definition in order to accommodate the latter 

practical constraint to yield consistent estimators from the samples (he also showed that 

additive Tri-Poisson sampling is alias-free, which contradicts [58]). In the recent terms, 

Bilinskis and Mikelsons [12] enunciated a completely new criterion for alias-free sampling: 
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a scheme is alias-free if all time instants are equally likely to become sampling instants. This 

ensures that all parts of the signal are sampled with equal probability. They showed that the 

(Fourier transform or the power spectral density) spectrum of a randomly sampled 

(deterministic or random stationary) signal can give the underlying continuous-time 

spectrum using infinite number of samples, provided that the sampling scheme is alias-free 

according to their definition. This can be shown here by simple analysis. Let us consider the 

problem of estimating the Fourier transform of a continuous-time deterministic signal from a 

set of its nonuniformly distributed samples. Using the Fourier transform estimator defined 

by: 

                
1ˆ ( ) : ( )exp 2n n

n

X f x t j ft






  ,                 (2.17) 

where  is the average sampling density. It can be noticed that: 

 ( ) ( )exp 2n nx t X f j ft df




  , where ( )X f  is Fourier transform of the signal. The 

expected value of the estimator is 

 
1ˆ ( ) ( ) exp 2 ( ) nn

E X f X E j f t d   









         .              (2.18) 

Since    exp 2 ( ) ( )exp 2 ( )n nE j f t p t j f t dt   



        , where  np t  is the 

probability density function of the -thn  sampling instant, the expression in (2.18) emerges 

as: 

   ˆ ( ) ( ) ( )SE X f X f p t   
 

F            (2.19) 

where  ( )Sp tF  is the Fourier transform of the sample-point density function 

1

( ) ( )
N

S n

n

p t p t


 . When ( )Sp t  is a constant and equal to  , this means that  ( )Sp tF  is a 
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delta and the convolution yields ( )X f . Hence, ˆ ( )X f  is an unbiased estimator of ( )X f  

regardless of the average sampling rate. It was noted that for some sampling schemes a 

constant sample-point density function might not be observed until a certain time period 

passes. And, these random sampling schemes have been developed/modified, in the 

literature, to quickly reach the constant state. In [63-65] the interested reader can find a 

straightforward discussion and experimental studies on the shapes of the sample-point 

density functions for a number of randomised sampling techniques.  

We recall that such analysis imposes sampling the signal for infinitely long periods using 

infinite number of samples. In [12] Bilinskis and Mikelsons noted that under the practical 

constraint of having a finite number of signal samples that cover a finite period of time, their 

alias-free criterion cannot be totally fulfilled, and “the aliasing is more or less suppressed”. 

And, they noticed that white-noise-like spectral components appear across the whole 

frequency range with no clear dominant spectral parts, known by them and others as 

smeared aliasing. Most recently, Tarczynski [8,9] followed by Masry [10,11], focused on 

the practical case of estimating the Fourier transform over a finite-size observation domain 

using a finite number of samples. They developed and thoroughly analyse schemes for the 

former purpose, characterising and quantifying the smeared aliasing that appear with no 

dominant spectral parts. In fact, the main quest in their work is to devise sampling schemes 

(and associated processing algorithms) that can minimise the smeared aliasing for a finite set 

of data. The sampling instants in their case are distributed across the whole finite size 

observation domain but not necessarily with equal probability (for the goal of minimising 

the introduced smeared components). Effectively, alias-free criterion in their work which is 

also adopted in this thesis simply refers to the ability of the appropriately randomised 

sampling scheme to attenuate spectrum aliasing (in its classical form) within a wide 

frequency range. This suppression permits the unambiguous identification of the spectral 
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components of the signal within a bandwidth independent of and much wider than the 

employed sampling rates. In Chapter 3, the reader will be toured through a more formal and 

descriptive definition of the alias-free characteristics of the adopted schemes. The interesting 

work of [8-11] and its applicability in applications, such as multidimensional NMR 

spectroscopy, promoted our research to investigate and devise random sampling estimation 

schemes of the Fourier transform over a finite-size multidimensional observation domain 

using a finite number of samples. However, in this thesis we study and develop the Fourier 

transform estimation schemes in a wider view than the NMR scenario or the original papers 

[8-11].   

2.4   Chapter Summary  

Nonuniform sampling is a wide theory. A big part of this theory seeks the interesting 

target of lowering the sampling density, and various categories of sampling and processing 

techniques have been proposed in this regard. In lieu of the fact that they go in the same 

direction, each of these categories formulate the problem in a different way.  These 

categories differ on the type of the signal and its spectrum they deal with as well as their 

access to it (for example, in applications where the user has to deal with a finite discrete set 

of data, all the techniques that involve filtering the signal prior to sampling are not 

applicable). They also vary in terms of the aspects of the data acquisition-processing they 

strive to improve, as well as the signal processing objective. Accordingly, it is not possible 

to compare these methodologies, and each one could be more or less appealing depending on 

its relevance to the particular scenario.   

In conclusion, the merit of the adopted methodology, in comparison with other sub-

Nyquist techniques can be summarised as follows. First, no restrictive assumption is 

required to be made about the signal or the shape of its spectral support. Second, the 
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calculations at the processing stage (i.e. modified forms of the traditional discrete-time 

Fourier transform calculations) are relatively undemanding. Third, there are no strict limits 

on the employed sampling densities; the accuracy of the constructed spectrum increases at 

fast rates with the sampling density, so their values can be determined by the system’s 

specifications and the signal processing objective. Thus, for example, for detection purposes, 

where sensing the occurrence of spectral activities in a wide range of frequencies is the main 

aim rather than obtaining the exact features of the signal spectrum, the operated sampling 

rates can be significantly reduced, see [66]-[68]. Also, the techniques we consider here focus 

on the practical issue of dealing with a finite set of data.  These characteristics and others put 

this methodology to be the first choice for some applications, such as high dimensional 

NMR spectroscopy [6]. Additionally, this methodology could be combined with other 

techniques. That is, the Fourier transform calculated via the random sampling methodology 

could be the input to other techniques developed in the nonuniform sampling theory which 

can iteratively enhance the quality of the observed spectrum. Examples of these techniques 

are the CLEAN methods in their different flavours [69,70] and sequential component 

extraction method (SECOEX) [71].  



 

 
 

CHAPTER THREE 

 RANDOM SAMPLING ESTIMATION OF 

MULTIDIMENSIONAL FOURIER TRANSFORMS   
 

 

In the previous chapter we provided preliminary material about Fourier analysis in 

multidimensional domains.  In particular, we discussed the trivial fact that (real, 

deterministic, finite energy) signals  x t are conveniently observed over a finite-size K-

dimensional window, denoted by A, to obtain a form of its Fourier transform

   1 2, ,...,w w KX X f f ff . This Fourier transform is simply defined by  

       : exp 2 .w

A

X x w j π d f t t f t t                                 (3.1) 

where    1 2, ,..., Kw w t t tt is a windowing function. As we mentioned in Section 2.1, the 

windowing function is imposed herein to reduce the effect of truncation, so the Fourier 

transform (3.1) can be as close as possible to the actual Fourier transform that is calculated 

over an infinitely large observation domain. We note that choosing the size and the function 

of windowing in (3.1) is a deterministic problem that is not related to the estimation problem 

we are tackling in this chapter. And, for notational simplicity we use      :wx x wt t t

henceforth. 

In classical DSP, (the integral in) the Fourier transform (3.1) is approximated with a 

summation using samples of the signal collected in a uniform fashion (2.11), that has its 

advantages and limitations. As we previously mentioned with random sampling estimation 

schemes, the sampling points are distributed nonuniformly and randomly in the observation 

window. Then, these sampling points are used to construct an estimate of the Fourier 
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transform (3.1) via tailored forms of discrete-time Fourier transform type of calculations. A 

relatively large variety of random process can, in principle, be applied to the sampling points 

(and hence the form of the associated Fourier transform calculations). However, there are 

only few schemes that can lead to alias-free process in the adopted criterion; namely, the 

sampling process must generate no dominant alias frequencies. In this chapter, we analyse 

the three most efficient (to the best of our knowledge) random sampling estimation schemes 

that fulfil the criterion, in multidimensional domains. These schemes are the total random 

estimation, stratified estimation and antithetical stratified estimation. Since we are studying 

Fourier transform estimation using random sampling in its general concept and not limited to 

the scenario of NMR applications, we provide a broad investigation of these schemes. On 

the other hand, the analysis of error is the topic of interest wherever approximation is 

involved and given that the main sought target of random sampling is to employ low 

sampling density, our investigation goes around the critical point of the quality of the 

generated Fourier transform as a function of the number of samples.  

This chapter is organised as follows. We start with describing and analysing the three 

schemes individually in the following three sections. For each scheme we depict the 

distribution of the sampling points in the observation window and present an unbiased 

estimator of the Fourier transform defined in (3.1). The accuracy of the estimates using N 

samples of the signal are deeply studied and evaluated. In Section 3.4, we study the 

dependence of their accuracy on the frequency in particular. In Section 3.5, we provide 

numerical analysis for demonstration based on the provided analytical expressions. We 

discuss in Section 3.6 the selection of PDFs and the ways of investing prior information 

about the signal to reduce the error of the estimates. In Section 3.7, we analyse the effect of 

the observation error on the estimates. Then, we finish the chapter with a summary in 

Section 3.8.   
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3.1   Total Random Estimation 

In this scheme all the sampling points  
1

N

n n
t  are Independent Identically Distributed 

(IID) random variables with a continuous, bounded away from zero PDF

   1 2, ,..., Kp p t t tt  aligned with the observation window. The estimator of the Fourier 

transform (3.1) is defined by    

 
 1

( )exp 2 .1ˆ ( ) :
N

w n n
wTR

nn

x j π
X

N p


 

t f t
f

t
.              (3.2) 

Indeed, the expectation of the estimator is identical with the targeted Fourier transform (2.1): 

 











fwTRXE ˆ =  

1

1
( )exp 2 .

N

w

n A

x j π d
N 

 t f t t

 

=  ( )exp 2 .w

A

x j π d t f t t =  fwX .                    (3.3)          

Hence, the estimator is unbiased and its variance represents the mean-square estimation 

error. By exploiting the fact that the sampling points nt  are IID, the variance of the estimator 

(3.2) can be derived in the following way:  

 ˆvar wTRX
 

 
 

f
 
 

 
 

22
( )exp 2 . ( )exp 2 .1 w n w n

n n

x j π x j π
E E

N p p

          
       

t f t t f t

t t
 

       
 TRB

N


f
                                                                                      (3.4)           

where 

 
 

 
2

2( )
.w

TR w

A

x
B d X

p
 

t
f t f

t
                                           

(3.5) 
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We note from (3.4) that the mean-square estimation error decays at the rate of N1 . This 

rate is not affected by the number of dimensions or the smoothness of the signal (unlike the 

subsequent schemes). We also note that the variance varies with the frequency f. However, 

the variance depends actually on the absolute value of the Fourier transform  wX f at the 

frequency f, rather than the value of the frequency itself. This observation is of particular 

interest as it indicates that the quality of estimating the Fourier transform of the signal is 

independent of the position of the signal spectrum in the frequency domain. This observation 

clearly illustrates the profound difference between uniform sampling and the considered 

random sampling schemes, and the alias-free characteristics of the latter. In Section 3.6, we 

include a discussion about the selection of the PDF  p t  that affects the variance (3.5).   

Since the sampling points  
1

N

n n
t  are IID random variables, it follows from the standard 

multivariate central limit theorem that the scaled real and imaginary parts of the total 

random estimate: ˆ ( ) ( )wTR wN X X  
 

f f  and ˆ ( ) ( )wTR wN X X  
 

f f , respectively, are 

jointly asymptotically normal with zero means and covariance matrix:
 

2

2
Σ

R RI

RI I

σ σ

σ σ

 
  
           

(3.6)

 

where 

2
Rσ

 

 
 

2

2:
R

w

A

g
d X

p

 
     

 


t
t f

t
,                  (3.7)

 

2
Iσ

 

 
 

2

2:
I

w

A

g
d X

p

 
      

 


t
t f

t
,  

                      

(3.8)

 

and 
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RIσ
   

 
   :

R I

w w

A

g g
d X X

p

 
          

 


t t
t f f

t
                

(3.9)

 

with 

   : ( )cos 2 .R wg x t t f t                       (3.10)  

where    1 1 2 2cos 2 . cos 2 2 ... 2 K Kπ πf t πf t πf t   f t , and 

   : ( )sin 2 .I wg x t t f t
           

(3.11)  

where    1 1 2 2sin 2 . sin 2 2 ... 2 K Kπ πf t πf t πf t   f t . These results are particularly 

important for investigating the distribution of the estimation error for moderate/large N 

number of samples:
 

ˆ ( ) ( )wTR wP X X ε  
 

f f ≃
 

2Φ 1
TR

N
ε

B

 
 

 
 

f                        
(3.12) 

where  Φ .  is the zero mean unit variance Gaussian distribution function. Hence, with 

probability 1 α  the estimation error satisfies (we obtain the confidence intervals) 

 
 1ˆ ( ) ( ) Φ 1 / 2

TR

wTR w

B
X X α

N

  
f

f f .
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3.2   Stratified Random Estimation 

In this scheme the observation domain A  is divided into S non-overlapping subdomains iA : 

AAi

S

i


1

 .                          (3.13) 

Then iN  sampling points are chosen within each subdomain iA . The sampling points 

 . , ,1 , ,2 , ., ,...,i j i j i j i j Kt t tt 1,2,..., ij N
 
in the i-th subdomain are IID random variables with 

PDF   / ip vt  inside the i-th subdomain and zero elsewhere, where  :
i

i
A

v p d  t t is the 

weight of the subdomain and      1 2

1

, ,...,
K

K d d

d

p p t t t p t


 t  is a separable, continuous, 

positive PDF aligned with the observation domain. The stratified estimator of the Fourier 

transform (3.1) is given by  

ˆ ( ) :wSX f  ,

1

ˆ
S

i S i

i

v X


 f                                                   (3.14) 

where 

 
   

 
, ,

,

1 ,

exp 2 .1ˆ
iN

w i j i j

S i

i j i j

x j π
X

N p


 

t f t
f

t
.                                   (3.15) 

To prove that the estimator is unbiased, we show that its expectation is identical with the 

Fourier transform (3.1). First we note that the sampling points in each subdomain are 

independent of the sampling points in other subdomains and 

 
   

,

1

exp 2 .1ˆ
i

i

N
w

S i

i ij A

x j π
E X d

N v

  
 

  


t f t
f t

 

   
1

exp 2 .

i

w

i A

x j π d
v

  t f t t .                                 (3.16) 
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Hence, 

                                            

 











fwSXE ˆ =  ,

1

ˆ
S

i S i

i

v E X


 
 
  

 f

                 

   
1

exp 2 .

i

S

w

i A

x j π d


  t f t t =  fwX .                  (3.17) 

The variance of the estimator is 

                                   

 ˆvar wSX
 

 
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 
 
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ˆ
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d E X

N v p

  
    
     

 
t

t f
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                   (3.18) 

where  ,
ˆvar S iX 

 
f is found by performing the same calculations we went through to find 

the variance of the total random estimator in Section 3.1. We observe that the way the 

observation domain is subdivided and the number of samples iN  taken within each 

subdomain affect the value of the variance of the estimator. A strategy of choosing the 

number of samples within each subdomain to minimise the variance is through proportional 

allocation [72]. This is done by choosing the number of samples within each subdomain 

proportionally to its weight iv :  

NvN ii                                                             (3.19) 

where N is the total number of the signal samples we seek to collect. We note that when 

proportional allocation is used the relation between the variance of stratified estimator (3.18) 

and total random estimator (3.4), when both estimators use the same PDF and the same 

number of samples, is 
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(3.20) 

with simple calculations, it can be written as follows 
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 
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 
 f f .                   (3.21) 

The second term in the above expression cannot be negative; therefore, stratified estimation 

with proportional allocation offers an improvement over total random estimation. Now, if 

we increase the stratification, i.e. divide every subdomain into Ni (sub)subdomains
,i jA of 

weight 
,i jv  such that each one contain one sampling point, the last term of (3.20) becomes

 

2

2
, ,,

1 1

ˆ
iNS

S i ji j

i j

v E X
 

 
 
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 f . It follows from Cauchy inequality: 
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1 1 1

i i iN N N

j j j j

j j j

a b a b
  

                                                (3.22) 

with      
,

exp 2 .

i j

j

A

a x w j π d  t t f t t  and 1jb  , that 

           
, ,

2 2

1 1

1
exp 2 . exp 2 .

i i

i j i j

N N

i j jA A

x w j π d x w j π d
N  

    t t f t t t t f t t .             (3.23) 

Now, using (3.16) we see that 

   

2 2
2

2
, ,, ,

1

ˆ ˆ
iN

i
S i jS i i j

i j

v
E X v E X

N 

   
   

      
f f .                               (3.24) 
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This indicates that full stratification increases the last term of (3.20) and, hence, reduces the 

variance of  ˆ
wSX f even further. We conclude that, using N samples, the best choice is to 

divide the observation window into subdomains of the same weight, i.e.
 Nv

i
/1  .  The 

variance is clearly  

 


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




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 
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 f f .                     (3.25) 

Hence, 
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    
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t

t f
t

                            (3.26) 

The rate of convergence of the stratified estimates cannot be determined for a finite number 

of N, from the exact expression of the variance above. As an alternative, it is standard in 

statistical estimation to determine the rate of convergence from an asymptotic expression of 

the variance as N tends towards infinity. Accordingly, we prove that the variance satisfies  

 
2

1
ˆlim varK

wS
N

N X




 
 
  

f  SB f                                    (3.27) 

where 
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x w
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B d

p t p t
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      

 


t t
t t

f t



                           

(3.28) 

The proof of (3.28) is in the Appendix A. It follows from above that for sufficiently large N 

the variance of  ˆ
wSX f is asymptotically equal to 
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 ˆvar wSX
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f ≃
 

2
1

S

K
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N
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f
.                                       (3.29) 

(In the derivation of (3.28) we assume that  x t has a continuous derivative along each 

dimension, and when N  goes to infinity, the number of subdomains inside the observation 

domain goes to infinity with equal number of subdomains along each dimension.) We note 

from (3.29) that the mean-square error decays asymptotically at the rate of 1 2/1 KN  . The 

convergence rate of these stratified estimates depends on the number of dimensions; the 

higher the dimension of the signal is, the slower the rate of the convergence becomes. 

However, the asymptotic convergence rate of these estimates is always faster than the rate of 

total random estimates regardless of how large K is. A question arises here about the scale of 

the samples that is required for the asymptotic expression to be valid and, hence, the fast 

convergence rates to appear. The answer to this question is in Section 3.4, where we 

examine the dependence of the variance on the frequency. 

In Appendix A, we prove the joint asymptotic normality of the real and imaginary parts 

of the stratified estimates: 
0.5 1/ ˆ ( ) ( )K

wS wN X X   
 

f f and 
0.5 1/ ˆ ( ) ( )K

wS wN X X   
 

f f , 

which they have zero mean and asymptotic covariance matrix of the following: 
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and
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(3.33)

 

where  Rg t and  Ig t  are defined in (3.10) and (3.11), respectively. As we discussed in the 

previous section, these results give distributional information about the estimation error:  

ˆ ( ) ( )wS wP X X ε  
 

f f ≃
 

1
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2Φ 1
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N
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 
 


 
 
 

f
    (3.34) 

which holds for sufficient N number of samples. 
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3.3   Antithetical Stratified Random Estimation 

In this scheme the observation domain is also subdivided into S non-overlapping 

subdomains, then select iN  sampling points within each subdomain. Half of the sampling 

points 
,i jt 1,2,..., / 2ij N  within the i-th subdomain are IID random variables selected in 

the same way as in stratified sampling with PDF  / ip vt  inside the i-th subdomain and zero 

elsewhere, where      1 2

1

, ,...,
K

K d d

d

p p t t t p t


 t  is a continuous, positive, separable 

PDF aligned with the observation domain and  
i

i A
v p d  t t is the weight of the 

subdomain. The remaining sampling points are selected as “reflections” of the random ones 

around the centre points of the subdomains, i.e. random sampling point ,i jt  is accompanied 

by another sampling point at 
.2 i i jc t , where  ,1 ,2 ,, ,...,i i i i Kc c cc  is the centre point of  the 

i-th subdomain. We emphasise the fact that only one sampling point is selected as the 

reflection, regardless of the dimensionality of the domain. The antithetical stratified 

estimator of Fourier transform (3.1) is defined as  

ˆ ( ) :wANTX f  ,

1

ˆ
S

i ANT i

i

v X


 f                                                 (3.35) 

where 
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

c t f c t

t


                               (3.36) 

This estimator is also an unbiased estimator of the targeted Fourier transform:  
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Hence, 
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The variance of the estimator is 
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Similarly to the stratified case, proportional allocation with maximum stratification reduces 

the variance of the estimator. Thus, having subdomains of equal weights, 2 /iv N , with 

two sampling points in each of them is the best choice to reduce the estimation error. 
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Unfortunately, apart from some special cases, there is no analytical way to compare the 

variance of antithetical stratified estimator with those derived earlier. However, a profound 

evaluation of this scheme can still be obtained. It can be shown that if the analysed signal 

has continuous second derivatives along each dimension, the antithetical stratified estimates 

with proportional allocation and maximum stratification can have a faster asymptotic 

convergence rate than any of the other two schemes. In fact, if the observation domain is 

subdivided into / 2N subdomains with equal number of subdomains along each dimension 

and two samples in each of them, then (the proof is in Appendix B)  
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(3.41) 

Hence, for sufficiently high number of samples 
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It follows that the asymptotic mean-square convergence rate of these estimates is KN /411  . 

Thus, antithetical stratified estimation increases the asymptotic convergence rate noticeably 
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in low-dimensional domains, but the effect reduces in high-dimensional domains. However, 

these asymptotic convergence rates are always faster than the rates for the total random and 

stratified estimates. Expression (3.41) also shows that the variance is highly affected by the 

value of the analysed frequency f. A further discussion on the effect of the frequency and 

asymptotic rate of convergence is included in Section 3.4. 

The scaled real and imaginary parts of the antithetical stratified estimate: 

0.5 2 / ˆ ( ) ( )K
wSANT wN X X   

 
f f and 

0.5 2 / ˆ ( ) ( )K
wSANT wN X X   

 
f f , are jointly 

asymptotically normal with zero mean and covariance matrix: (see Appendix B for the 

proof) 
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with  Rg t and  Ig t  defined in (3.10) and (3.11), respectively 
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One can use the results to examine the distribution of the estimation error for sufficient N 

number of samples:  

ˆ ( ) ( )wSANT wP X X ε  
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f
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3.4   The Effect of the Frequency on the Rate of Convergence  

In the previous sections we profoundly analysed the statistical properties of the estimates 

to demonstrate and compare their performances. In this section, we study the important 

phenomenon of the influence of the value of the analysed frequency f  on the accuracy of 

the estimates. This is particularly important because of its relation to the main objective of 

random sampling estimates of lowering the sampling density below what is required by the 

uniform case whose densities are usually governed by the value of the frequencies we seek 

to analyse.  

We start with total random estimates. By examining the derived expression of the 

variance (3.4), we notice that the variance at a certain frequency is not an explicit function of 

the frequency. Rather, it depends on the magnitude of the sought Fourier transform. This 

simply means that a signal of certain spectral shape can be estimated with the same accuracy 

regardless of its position in the frequency domain. Besides, the rate of convergence is fixed 

for all frequencies. With stratified scheme (with maximum stratification for its importance), 

the exact expression of the variance (3.26) depends on the value of the frequency, but it does 

not explicitly show how. Whereas, the asymptotic expression of the variance (3.27) shows a 

quadratic dependence on the frequency. Our primary investigation at this point is to 

determine the scale of the samples that is needed for (3.27) to be potentially valid and, 

accordingly, the fast convergence rates to appear at a frequency f .  By addressing the raised 
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investigation, we can demonstrate the effect of the frequency on the actual mean-squared 

estimation error and its decay rate. For easy demonstration we focus on one-dimensional 

estimates with uniform stratification. Before embarking upon the investigation, we remind 

the reader about what we remarked earlier about stratified estimates: at any frequency, the 

mean-square error of the stratified estimates is upper limited by that for the total random 

estimates, when both schemes use the same number of samples. Thus, the asymptotic 

expression (3.27) can only hold at frequency f  when 

                                         
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Now, the target is to find limits on the number of samples required for (3.47) to hold at 

frequency f. To this end, we rewrite the variance of the total random estimator (with uniform 

PDF for simplicity) using Parseval’s theorem: 

     
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Similarly, the asymptotic expression can be rewritten in the following form: 
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1 2: J J  .                        (3.49)  

We now define a frequency point 0f  in the spectrum where half of the energy of the signal 

resides above, i.e. 

   
0

2 2

0

1
.

2
w w

f

X v dv X v dv

 
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(3.50) 
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(Hence, for example, if the signal has a rectangular spectrum that spans the frequency range 

,L Hf f   , the defined frequency 0f  will accordingly be  0.5L H Lf f f  .) It follows that the 

term 1J  in (3.49) satisfies 
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We can observe that the smallest number of samples required for 

2 3J J J                                                                   (3.52) 

to be true, can only be less than the smallest number that is necessary for (3.47) to be valid. 

Thus, by replacing the terms in (3.52) with their definitions and simplifying the relation, we 

conclude that the fast convergence rates can only appear for the number of samples 

satisfying 

2 2

01.81 0.5N T f f  .           (3.53) 

It follows for the density of the random samples
 

2 2

01.81 0.5
N

f f
D
  .               (3.54) 

The expressions above indicate that the number of samples/sampling density required to 

analyse the signal with fast convergence increases with the distance of the analysed 

frequency  f  and the distance of the frequencies that carry the bulk of the energy of the 

signal, from DC. In the case of analysing high-frequency signals, where using sub-Nyquist 

random sampling is particularly meaningful, this fact leads to unreasonably high sampling 
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rates (comparable to what is demanded by the traditional uniform-based methods), or simply 

missing out on the high convergence rate. Thus, the reported Fourier transform estimates 

based on stratified techniques do not outperform the other total random sampling approaches 

for nonbaseband signals. With antithetical stratified estimation, similar limits can be 

determined which indicate the requirement of a large number of samples in order for the fast 

convergence rates to be present if the signal spectrum is concentrated far from DC. 

3.5   Numerical Analysis 

Now, we use the analytical results of the previous sections to illustrate the performance 

of the estimators numerically. We use a two-dimensional decaying cosine function as a test 

signal. We choose such signal for easy computations and because of its relation to (NMR) 

Spectroscopy.   

    1
1 2 1 1

1

, cos 2 exp
t

x t t πα t
λ

 
  

 
  2

2 2

2

cos 2 exp
t

πα t
λ

 
 
 

.                     (3.55) 

We set 
3

1 2, 3 10α α   and 
3

1 2, 10λ λ   in (4.1). The signal is observed over a window of the 

same length along both dimensions
34 10  with a rectangular windowing function  1 2,w t t . 

We use the three estimators to estimate the Fourier transform of the truncated test signal. All 

the estimators use a uniform PDF. And since we have a full control/freedom on the design of 

the schemes, we use proportional allocation and maximum stratification where applicable in 

this numerical example.  

To depict the rate of convergence of the schemes, in Fig. 3.1, we show the mean-square 

error of all the estimators at specific frequency point    1 2, 3,3 kHzf f   as a function of the 

relative number of random samples to the requisite number of samples to practically achieve 
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Nyquist if uniform sampling was employed, i.e. 36 36 samples. With log-log scale plot we 

can manifest the rate of convergence of the estimates by the slope of the curve. The mean-

square errors of the estimators shown in Fig. 3.1 are obtained by computational results of the 

provided exact expressions of the variances. Whereas, the asymptotic mean-square error of 

stratified and antithetical stratified estimators are calculated using the derived expressions 

(3.27) and (3.42). We observe that the asymptotic convergence rates we provided 

theoretically are reached in practice after collecting a sufficient number of samples. These 

convergence rates are
KN /211 

 and 
1 4 /1 KN 

with 2K   for stratified and antithetical 

stratified estimates, respectively. 

We notice that all the estimators show similar performance when the number of samples 

N is below what is required to achieve Nyquist density. Also, stratified and antithetical 

stratified estimates converge at the same rate of total random estimates, 1 N  in the mean-

square sense, and they only show their accelerated convergence rates when the number of 

samples is higher than what is required to achieve Nyquist. Similar behaviour of the error is 

observed at other frequency points; however, the acceleration in the convergence rates 

appears earlier (in term of N )  for frequencies closer to DC, and the opposite is true as 

expected from the limits (3.54). To illustrate the influence of the frequency on the 

convergence rates of the estimates, we conduct another numerical analysis. We use the same 

form of the test signal of (3.55). But, we vary its centre frequency 1 2( , )α α . In Fig. 3.2, we 

plot the mean-square error of the three estimates against 1 2( , )α α , which we increase its two 

values 
1  

and 2 simultaneously from 3 kHz to 30 kHz, using the fixed number of samples 

100 100 . 
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Fig. 3.1. The mean-square error of total random, stratified, antithetical stratified schemes at 

frequency    1 2
, 3,3f f  kHz 

    

In plain term, we effectively vary both of the analysed frequency and the frequencies that 

carry the bulk of the energy of the signal. Hence, we can see the relation between the signal 

position in the frequency domain and the accuracy of the estimates. Total random estimation 

has the same performance across all the frequencies. Whereas, stratified and antithetical 

stratified estimates deliver excelling results when the signal energy is near DC and degrade 

with increasing the frequency to reach that of total random estimation.     
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Fig. 3.2. The mean-square error of total random, stratified, antithetical stratified schemes 

against the frequency 
1  

and 2  simultaneously. 

 

3.6   Probability Density Function (PDF) Design 

We can notice from the derived expressions of the variances of the studied estimators that 

the design of the PDF of the sampling points has an effect on the accuracy of the constructed 

estimates. The freedom of choosing the PDF could be used to reduce the variance of the 

estimator. This can be achieved by choosing a density function proportional to  wx t  to 

smooth it and bring to a nearly constant function to lessen the variance. Mathematically, this 

can reduce the first term of the variance (3.5) of total random scheme, i.e.     2
wA

x p d t t t

. This principle is known in Monte Carlo methods (which are numerical integration methods 

that exploit random assessing points of functions), as importance sampling [73]. It is 

obvious that the best choice is to put the density function in total random scheme as follows 

(see [9] for the proof) 
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   :optimal wp C xt t             (3.56) 

where the constant of proportionality  

 

1
: .

w

A

C
x d



 t t
                                            (3.57) 

Unfortunately, to properly implement this method one has to have a priori knowledge of the 

signal  x t . However, more pragmatic solutions may involve the use of the envelope of the 

signal or using a density function proportional to the designed window function  w t  to 

reduce the variance. Nonetheless, having the density function proportional to the window 

function may or may not smooth the integrand and reduce the variance. This will depend on 

the shape of the signal and the chosen window function. In [8], the reader can find a 

comparison between using a PDF that is proportional to the windowing function and a 

uniform PDF. Their comparison was for some special cases of one dimensional signals. This 

PDF (which effectively means the way of subdividing the observation window in maximum 

stratification) can also be used to reduce the error in stratified estimates, which decides the 

sizes of subdomains in the maximum stratification. However, PDF designs were devised in 

[10,11] to minimise the mean-square asymptotic error or its integration over a range of 

frequencies, which also requires the exact signal itself in advance. However, with no 

previous knowledge about the signal, it is more practical to deploy a uniform PDF in all the 

schemes. 

We have observed from above that some knowledge about the proportionality (which 

could be along only some of the dimensions) of the signal can be used to smooth the signal 

and reduce the variance. This brings us to another way of exploiting prior (different type of) 

information about the signal to decrease the estimation error. The idea is borrowed from 
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numerical integration literature; it is known as control variants [73] and it can be exploited 

herein as follows. If we have some knowledge about part of an additive signal with 

computationally obtainable Fourier transform, (for example, if some of the decaying 

sinusoids in an NMR spectroscopy signal:      0, 2,1
cos exp /

R

r r rr
x t t t T 


   are known 

in advance), denoted by  s t ,  we can modify the estimator to create the unbiased estimator 

of the form (we only show the total random estimator as the other estimators can be 

modified analogously): 

   

 
   

1

( ) exp 2 .1ˆ ( ) exp 2 .
N

w n n n

wTR

nn A

x s j π
X s j π

N p

   
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t t f t
f t f t

t
,          (3.58) 

which can have a lower variance than the basic one, i.e. the first term of the variance (3.4) 

satisfies 

         
2 2 .w w

A A

x s p d x p d    t t t t t t t  

We deduce that depending on the type of the knowledge we have about the signal, we can 

invests it to reduce the variance in two different ways, and either one of them could be the 

best way.   

3.7   The Effect of the Observation Errors 

Here we briefly investigate the statistical properties of the studied random sampling 

estimates with the presence of the observations error: let  
1

N

n n
ε


 IID random variables with 

zero mean and 
2
εσ  variance, and  

1
( )

N

n n n
x ε


t  are captured instead of  

1
( )

N

n n
x


t  . The 

total random estimator hence takes the following form:  
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The expected value of the estimator is identical with the targeted Fourier transform (3.1): 

 


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
fwTRXE ˆ =  fwX .                                                  (3.57)  

And, the variance is    
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We observe that the first term is the same as in (3.4). Whereas, the second term which is due 

to the observation error is independent of the frequency and decreases at the rate of  1 N . 

For stratified estimation, we assume that ,i jε  1,2,..., ij N
 

and 1,2,...,i S  are IID 

random variables with zero mean and 2
εσ  variance. And, we are observing  , ,i j i jx εt  

instead of  ,i jx t . The stratified estimator is now given by  

ˆ ( )wSX f  ,
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i S i

i

v X
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 f                                                  (3.59) 

where 
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We can show that the estimator is still unbiased:  

  

 











fwSXE ˆ =  fwX .                                                    (3.61) 
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And, the variance of the stratified estimator with maximum stratification (which is the most 

interesting case) is 
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     (3.62) 

We also see that the first term is equivalent to the variance of the stratified estimator with no 

noise (3.26). Last, the antithetical stratified estimator with the presence of additive error is 

given by 
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v X
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where 
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And,  ,i jε  and  ,i j
  are IID random variables with zero mean and variance 

2
εσ  . Second-

order calculations show that the estimate remains unbiased and that its variance has an 

additional term equal to the one of total random and stratified sampling schemes. 

Thus, all the estimators have an additional term because of the observation error that is 

independent of the frequency and decreases at the rate of 1 N . For such observation error in 

uniform-sampling-based applications, the signal is observed (i.e. a sample is captured) 

multiple times to improve the level of error in the generated Fourier transform.  Whereas, in 

random sampling approaches we can acquire additional random samples (at different 
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sampling positions) which allows the error level to decrease in the calculated spectrum as 

well as more spectral information to be captured to reduce the mean-squared error that 

appear because of the sampling process, allowing the overall quality of the estimated Fourier 

transform to be improved. 

3.8   Chapter Summary 

Three random sampling estimation schemes of the multidimensional Fourier transform 

were considered. The schemes use finite numbers of randomly selected samples of 

windowed signals to estimate their Fourier transform via tailored forms of the simple 

calculation of discrete-time Fourier transform. The main difference between these schemes 

is the pattern of distributing the sampling points, which impacts the accuracy of the 

produced estimates. The main advantage of these methods is that the estimators approximate 

the Fourier transform of the signal in infinitely large frequency domain using any number of 

samples with quality improves with increasing the number of samples N . Unlike classical 

uniform sampling based approaches, the size of the processing frequency domain and the 

dimensionality of the signal do not govern the employed sampling density. In fact, it was 

shown that the accuracy of the Fourier transform estimates is independent of the position of 

the signal in the frequency domain (the stratification technique can provide an improvement 

if the signal is located near DC; however, their accuracy is lower bounded by that for total 

random estimation which is independent of the value of the analysed frequency). The former 

quality is the splendour of random-sampling-based approaches, as opposed to uniform 

sampling which is usually dictated by the dimensionality and the spectral position of the 

signal and hence requires high sampling densities and/or downconversion and filtering (if 

possible) prior to sampling if the signal is located far from DC  
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We have demonstrated that the standard mean-square convergence rate of 1 N  for the 

total random estimates is maintained by all the studied estimates for small number of 

samples N . Also, total random sampling estimates deliver the rate of convergence of 1 N

regardless of the dimensionality of the signal, the frequency, or the number of samples. 

Whereas, stratified and antithetical stratified schemes deliver convergence rates that can 

accelerate with increasing N and reach the fast rates that depend on the dimensionality K , 

i.e. 
1 2/1 KN 

 and 1 4/1 KN   respectively, for sufficiently smooth signals. Also, the required 

number of sampling in order for the acceleration to emerge depends on the distance of the 

signal spectrum from zero.  

We conclude that total random sampling scheme can be appealing for applications where 

the signal is of high dimensionality, not enough smoothness or very high frequency 

compared with the prospective sampling density, and there are extra complications involved 

with practising stratification (for example, in deploying random sensors in fields). Whereas, 

stratified and antithetical stratified schemes shine if the signal is of low dimensionality and 

has its spectrum near the acceleration frequency, i.e. DC. We have also shown that the 

antithetical stratified scheme can outperform its regular stratified counterpart. However, for 

the case where choosing the reflection sampling points in antithetical sampling can be 

inaccurate, it is more effective to employ further (double) stratification and collect one 

sample from each subdomain.  

We must mention here that there are other random schemes that can be developed from 

the numerical integration literature which would produce the same performance of total 

random sampling for Fourier transform estimation. Example of these schemes is Latin 

hypercubic sampling [73]. According to this scheme the observation domain is divided into 

KN  subdomains, and then N subdomains are randomly selected such that only one of them 

occurs in each row and column of the subdomains. Afterwards, one sampling point is 
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randomly and independently selected from each chosen subdomain. With these further 

complications and no improvement in the performance, it seems pointless for us to study this 

scheme here.        



 

 
 

CHAPTER FOUR 

 RANDOM ON GRID SAMPLING ESTIMATION OF 

MULTIDIMENSIONAL FOURIER TRANSFORMS   
 

 

Three random sampling estimation schemes of the Fourier transform were considered in 

the previous chapter. These schemes employ sampling points with freely chosen coordinates. 

In fact, any point in the observation domain can be a sampling point. This means that the 

sampling points can be arbitrarily close to each other. This is not feasible because of, for 

example, the finite steps of the system’s clock and the limitations of building acquisition 

devices that are infinitely fast to capture such successive samples (in the real time 

dimension). For example, see [76] for a hardware implementation of random sampling, 

where the sampling instants are conveniently captured on a multiple of some time interval. 

And, see [6] where the sampling points are rounded to their coordinates, which effectively 

means that the sampling points are randomly selected from a Cartesian grid of points. For 

the calculations of spectra acquired with random on grid sampling it is possible to use the 

FFT-type of algorithms instead of performing the relatively slow direct calculation of the 

random (off-grid) schemes studied in the previous chapter, or recasting the sampled data into 

a Cartesian grid to employ the fast algorithms. Hence, the numerical efficiency of random 

sampling estimation can be increased with introducing the grid, especially in 

multidimensional signals where computational savings gained through FFT are very 

important because of the great volume of data.   

The above drove us to provide an analytical and numerical study of the on-grid versions 

of the random sampling schemes studied in the previous chapter (which we refer to in this 

chapter by the off-grid schemes for distinction). Some of the results presented in this chapter 
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might seem straightforward, but the aim is to provide a complete survey of their sampling 

patterns, estimators and accuracy (In fact, we have engaged these schemes in devising 

spectrum sensing algorithms, and used the analysis we providing here to obtain guidelines 

for the user [77,78]). In addition, this chapter facilitates demonstrating some aspects in 

Chapter 5. Indeed, the Fourier transform the off-grid estimation schemes theoretically seek 

is not valid for the on-grid estimation. The targeted Fourier transform here can be written as 

follows:  

 
1

( ) : ( )exp 2 .
M

wD w m m

m

D
X x j π

M 

 f t f t                               (4.1) 

where M  is the total number of the Cartesian grid points, D  is the size of the observation 

domain and  ,1 ,2 ,, ,...,m m m m Kt t tt , 1,2,...,m M are the grid points. Indeed, by introducing 

the Cartesian grid, the above Fourier transform consist of replicas of the Fourier transform 

(3.1) (that for the off-grid random sampling estimates of Chapter 3) and the area that is free 

of alias frequencies is limited. Accordingly, in this case a conservative prior knowledge 

about the highest frequency present in the signal is required. And, whether the grid is 

deliberately designed by the user or enforced because of practical consideration, its density 

must be high enough such that the replicas are shifted away from the region of interest and 

(4.1) serves a good approximation of the Fourier transform (3.1).  

In the next sections, we look at total random on grid estimation, stratified on grid 

estimation and antithetical stratified on grid estimation, in multidimensional space, and 

provide expressions for their variances. Then we use these derived expressions in a 

numerical test to evaluate the schemes and compare them with each other as well as their 

off-grid counterparts, providing a better insight into their performances.  
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4.1   Total Random on Grid Estimation 

In this estimation scheme the sampling points are selected as an N-element subset of M  

grid points. There are
M

N

 
 
 

 different possibilities of selecting the set of sampling points each 

with the same probability. To achieve this scenario and analyse the estimates, we use a 

random binary sequence  
1

M

m m
a


 that we associate with  

1

M

m m
t  such that 1ma  when the 

grid point mt  is selected and 0ma   otherwise. These random coefficients have the 

following probabilities  

 1m

N
P a

M
                                                  (4.2) 

 0m

M N
P a

M


   .                                                                                                                                                                                        (4.3)   

We note that the variables  
1

M

m m
a


 are not independent from each other. When estimating the 

Fourier transform (4.1) of the signal we use the following formula   

 
1

ˆ ( ) : ( )exp 2 .
M

TRG m w m m

m

D
X a x j π

N 

 f t f t .                            (4.4) 

The mean of each random variable ma  is given by 

 m

N
E a

M
  .                                                       (4.5)     

The expected value of the estimator (4.4) is  

                      
1

ˆ ( ) ( )exp 2 .
M

TRG m w m m

m

D
E X E a x j π

N 

 
  

  
f t f t  

                 
1

( )exp 2 .
M

w m m

m

D N
x j π

N M

  t f t ( )wDX f .                         (4.6) 
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This proves that total random on grid estimator is an unbiased estimator of the Fourier 

transform (4.1). The variance of total random on grid estimator can be found as follows 

                   
2

2

2
1

ˆvar ( )var
M

TRG w m m

m

D
X x a

N 

  
  

   
f t  

                                             
1 1,

( )exp 2 . ( )exp 2 . cov ,
M M

w m m w k k m k

m k k m

x j π x j π a a
  


  


  t f t t f t      

(4.7) 

where  

 var 1m

N N
a

M M

 
  
 

 
2

N M N

M


 .                                      (4.8)       

Since the probability that two grid points are selected in a set of sampling points is   

 
1

1 ,
1

m k

N N
P a a

M M

 
   

 
                               (4.8) 

the covariance is given by   

 cov ,m ka a 

2
1

1

N N N

M M M

   
   
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 
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
.                          (4.9) 

Thus, 
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By completing the square of the second term of (4.10), we obtain 
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Hence, the variance of the estimator is 

    
 ˆvar 1

TRG

TRG

B N
X

N M

   
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where 

          
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By examining the expression above we notice that the constant  TRGB f  is similar to the 

total random constant  TRB f . What differs the variances of the two estimators is the factor 

1 /N M . This factor plays the decisive role in shaping  ˆvar TRGX 
 

f when the number of 

samples N approaches the number of grid points M . Hence, if the number of samples we 

aim to collect is close to the number of grid points, total random on grid scheme is more 

accurate at estimating its target than its off-grid counterpart.  

4.2 Stratified on Grid Estimation 

Similarly to off-grid stratified estimation, this estimation scheme relies on dividing the 

observation domain into S non-overlapping subdomains  
1

S

i i
A


. Then within the i-th 

subdomain we select iN  sampling points in the same manner as in Section 4.1. We estimate 

the Fourier transform (4.1) using the following estimator  

ˆ ( ) :SGX f  ,
1

ˆ
S

i SG i
i

v X


 f

                                        

         (4.14) 

where 
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D
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                      (4.15) 
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where iM  is the number of grid points inside the i-th subdomain and /i iv M M
 
is its 

weight. The random variables ma  inside the i-th subdomain have the probability to be one or 

zero according to 

 1 i
m

i

N
P a

M
                                                                                                   (4.16) 

 0 i i
m

i

M N
P a

M


  .                                                                                                                                    (4.17)         

The random variables  ma  are dependent within each subdomain but they are independent 

of the other variables in other subdomains, and their unconditional probabilities are the same 

in each subdomain, defined by (4.16) and (4.17). The mean of the random variables ma  

inside each subdomain are identical and equal to 

  i
m

i

N
E a

M
 .                                                           (4.18) 

Hence, 
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(4.19) 

The stratified on grid estimator is an unbiased estimator of the Fourier transform (4.1):
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=  .wDX f
   

                                                                 (4.20) 

The variance of the estimator is 
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where 
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When the proportional allocation is used to distribute the sampling points between the 

subdomains, the relation between the variance of the stratified on grid estimator and total 

random on grid estimator is 
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If M
 
is considerably large, the expression becomes  
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 f f .         (4.23) 

We note that, unlike off-grid stratified estimators, the second term in (4.22) can be negative 

and hence the stratified on grid estimator with proportional allocation can have a larger 

variance than the total random on grid estimator. On the other hand, if the grid is 

significantly dense, formula (4.23) shows that the stratified on gird estimator delivers better 
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results compared to the total random on grid estimator. By designing the subdomains of 

equal sizes and collecting one sample from each subdomain, the variance is clearly 

 ˆvar SGX
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  

 f f  .                   (4.24) 

The performance of the stratified on grid estimator compared with total random on grid 

estimator is more evident in the numerical results in Section 4.4. 

4.3 Antithetical Stratified on Grid Estimation 

The Cartesian gird in this scheme must be divided such that each subdomain contains an 

even number of the grid points. As we showed above, maximum stratification reduces the 

estimation error. And since this scheme is mainly for applications where the user has 

complete freedom of designing the subdomains and the number/location of the sampling 

points within, we focus here on studying the scheme with maximum stratification. That is, 

only two sampling points are selected per subdomain. One sampling point is selected 

randomly from the grid points. The other sampling point is selected as reflection of the 

random one around the centre point of the subdomain. Explicitly, for each randomly selected 

grid point mt , we allocate another grid point as a sampling point at 2 i mc t , where 

 ,1 ,2 ,, ,...,i i i i Kc c cc  is the centre point between the first and the last grid points in the i-th 

subdomain. The Fourier transform is estimated using the following estimator:  

ˆ ( ) :AGX f  ,
1

ˆ
S

i A i
i

v X


 f

                                        

       (4.25) 

where / 2i iv M M , and 



4  Random on Grid Sampling Estimation of Multidimensional Fourier Transforms 74 
 

 
 

     ,
ˆ exp 2 .

m i

A i m w m m

A

X D a x j π


 
t

f t f t

 

        

                   2 exp 2 . 2 .w i m i mx j π     c t f c t                     (4.26) 

The random variables  ma  that belong to the i-th subdomain, have the probability to be one 

or zero according to 
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The means of the random variables  ma  inside each subdomain are equal to 

 
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Hence, 
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(4.30) 

The above estimator is an unbiased estimator of the Fourier transform (4.1):
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                                                        (4.31) 

The variance of the estimator is 
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In the next section, we use the expression of the variance derived above to demonstrate the 

performance of this scheme in a numerical test.  

4.4 Numerical Results  

We use the test signal of Section 3.5 to illustrate the performance of the on-grid 

estimators described in this chapter. A practical operation that we would like to address in 

this test is to compare the performance of all the estimators we discussed so far in Chapter 3 

and 4. However, there is an issue with the fact that the target (3.1) for the off-grid estimation 

is not the same as the target (4.1) for the on-grid estimation. The difference between them 

could be considered as the bias of the on-grid approaches. When the density of the gird is 

relatively high, the bias is very small compared to the variance, and hence the bias does not 

affect significantly any comparisons. In this numerical test we therefore compare only the 

variances of the estimators. Here, we set the grid density as 340 10
T

f   along both 

dimensions. For frequencies   1 2 1 2
, :  2 2  and 2 2

T T T T
f f f f f f f f      , the 

targeted Fourier  transforms, (3.1) and (4.1),  almost  represent  the same quantity and a  
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Fig. 4.1. The mean-square error of total random, stratified, antithetical stratified, total 

random on grid, stratified on grid, and antithetical stratified on grid estimators at frequency

   1 2
, 3,3f f  kHz 

 

comparison between their estimation errors is justified. We use uniform PDF/partitioning 

and maximum stratification, where applicable, to extract the best performance out of these 

schemes. Fig. 4.1 shows the mean-square error of all the estimators at    1 2, 3,3 kHzf f   

versus the relative number of random samples to the required number of samples to 

practically achieve Nyquist if uniform sampling was deployed, i.e. 36 36 samples. We see 

that the error of the on-grids schemes show similar behaviour to the error of their 

counterparts. However, when the number of collected samples N approaches the number of 

gird points M , the on-grid schemes tend to introduce less error. We conclude that the on-

grid estimators do not perform less than their off-grid counterparts. And, the on-grid 

estimators do accelerate and deliver the same fast convergence rate at the same number of 
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samples the off-grid estimates do. These results are consistent for different frequencies and 

different signals, given that the grid is sufficiently dense. And, the (antithetical) stratified on-

grid estimation schemes have their acceleration frequency at zero and require the same 

number of samples in order for their convergence rates to accelerate as their off-grid 

counterparts.   

 



 

 
 

CHAPTER FIVE 

 THE IQ ESTIMATION  

 

 

In the previous chapters we deeply analysed random sampling estimates of the Fourier 

transform, using N number of random samples. The focus of the previous chapters, as well 

as of [8]-[11], is on the error of the estimated Fourier transform for N number of samples. 

We found that the total random (on-grid and off-grid) sampling estimates have a fixed mean-

square error convergence rate of 1/ N , regardless of the dimensions of the signal or its 

location in the frequency domain. Whereas, stratified sampling and antithetical stratified 

sampling show a different behaviour. These advanced random sampling estimates deliver a 

mean-square convergence rate that undergoes an acceleration with increasing the number of 

samples. It was shown that for sufficiently smooth K-dimensional signals, the convergence 

rates can accelerate to reach 1 2 /1/ KN   for the stratified (on-grid and off-grid) estimates and 

1 4/1/ KN 
 for the antithetical (on-grid and off-grid) stratified estimates. These convergence 

rates are considerably fast for low-dimensional domain, compared with the rate these 

estimates deliver before they accelerate (i.e. 1/ N ) or the rates rendered by total random 

schemes. With these fast convergence rates a substantial reduction in the estimation error 

can be achieved for N number of samples.  

In Addition, we found an important fact about that the (antithetical) stratified schemes, 

namely, the acceleration of their convergence rates does not start uniformly (in terms of the 

number of samples) across all frequencies. First, it takes place at their acceleration 

frequency, i.e. DC, and its close neighbourhood, and it spreads to higher frequencies only 

when the average sampling densities significantly increase. In details, the requisite number 
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of samples in order to benefit from the fast convergence increases with the distance of the 

analysed frequency and the frequencies that carry most of the energy of the signal, from the 

acceleration/DC. This observation defeats the main objective of random sampling of 

lowering the sampling density.   

The main focus of this chapter is to develop a novel technique of (antithetical) stratified 

sampling for Fourier transform estimation where we have the freedom of choosing the 

location of the acceleration frequency. Consequently, the acceleration and hence the fast 

convergence to the targeted Fourier transform can be obtained for small numbers of samples 

regardless of the positioning of the signal spectrum in the frequency domain. This is 

important for high-frequency signals, where random sampling is particularly meaningful to 

engage in the first place. 

The above developed technique provides an alternative solution to downconversion and 

filtering the analogue signal prior to sampling at no additional cost. And, it is a vital solution 

to a wide range of scenarios, especially in multidimensional applications, where 

downconversion-filtering before sampling is not feasible. These scenarios are met in 

applications where we only have access to discrete samples of the signal while the target is 

to minimise the size of the collected data.  For such applications, the IQ estimation serves an 

excellent tool. Examples include minimising the number of sensors (i.e. sampling points in 

our definition) in spatial sampling.   

Additionally, the developed methods leverage another principle to provide further 

reduction in the estimation error (compared with the regular random approaches) that is 

independent from the error reduction rendered by facilitating the fast convergence rates. In 

fact, this error reduction mechanism is gained through symmetry of the Fourier transform, 

and can be employed for total random estimation that does not undergo any acceleration in 

its convergence rates, reducing its error by a considerable extent. Although it might seem 
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pointless to introduce/study the IQ total random estimation, we briefly describe its form and 

statistical properties for theoretical interest and to clearly illustrate the principle of error 

reduction through symmetry that the IQ (antithetical) stratified schemes also benefit from.  

As we mentioned in Chapter 1, we refer to the proposed technique as the IQ estimation 

because of the fact that it estimates the Fourier transform of the signal through its In-phase 

and Quadrature components, or their equivalents in higher dimensions. This chapter 

commences by restating the considered problem and stressing the intention on the estimation 

target in Section 5.1. In Sections 5.2 and 5.3, we describe the proposed stratified and 

antithetical stratified schemes separately, which we refer to as the IQ stratified scheme and 

the IQ antithetical stratified scheme, respectively. Also, we provide statistical analysis of the 

introduced estimates, and most importantly, we explain how the developed technique locates 

the acceleration frequency at the selected point in the frequency domain. In Section 5.4 we 

discuss the other mechanism of error reduction of the proposed schemes, and also we 

introduce the IQ total random estimation which can also leverage such technique. A 

numerical example is included to illustrate the performance of the proposed estimates. 

5.1 The Targeted Fourier Transform of the IQ Estimation  

The IQ estimation uses sampling points selected randomly from a dense Cartesian grid of 

uniformly distributed points. Unlike the traditional random on grid estimation, the density of 

the grid is uniquely determined by the value of the preselected acceleration frequency 

 ,1 ,2 ,, ,...,c c c c Kf f ff , and precisely equal to 4 cf with density of 
,4 c kf  along the k-th 

dimension. The form of the targeted Fourier transform is same of the on-grid schemes, i.e. 

 
1

( ) ( )exp 2 .
M

wD w m m

m

D
X x j π

M 

 f t f t
 
,                                    (5.1)  
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but indeed with a specific grid. Since we usually would move the acceleration frequency far 

from zero, the grid is dense and hence spectral analysis can be performed over a very wide 

range of frequencies with an extent that is independent of the employed (low) average 

sampling density.  

 

5.2   IQ Stratified Estimation 

After designing the Cartesian grid as we described above, in order to capture N  samples 

of the signal, we divide the observation domain into / 2KN  adjacent subdomains 
/ 2

1

N

i i
A


. 

Following the division of the domain, 2K  sampling points are selected from the grid points 

within each subdomain in the following way. First, we extract 2K  interlaced subgrids 

 
2

1

K

q q
G


from the original grid, then we select one sampling point from each subgrid within 

each subdomain. That is, for one dimensional signal, one sampling point is selected 

randomly from the odd-order grid points, and another sampling point is selected randomly 

from the even-order grid points within each subdomain. Each sampling point is selected 

independently of the other sampling points inside or outside the subdomain. Fig. 5.1 

demonstrates the sampling scheme for two-dimensional domains. 

The Fourier transform (5.1) is estimated using the IQ stratified estimator: 

ˆ ( ) :IQSX f  
/ 2

,

1

ˆ
KN

i S i

i

v X


 f                                (5.2) 

where  / 2K

i iv M M  and 

     
2

,

1 ,

ˆ exp 2 .

K

m i q

S i m w m m

q A G

X D a x j π
 

  
t

f t f t .     (5.3) 
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Fig 5.1. A two-dimensional observation window, with four interlaced subgrids labelled 

with (x, ∇, Δ, +) as grid points, and the shadowed points are the randomly  

sampling points. 

 

The coefficients  ma , which are binary random variables that identify the associated 

selected/nonselected grid points  mt according to the described pattern, have their 

statistical characteristics described in Appendix C, where we also show that the expected 

value of ˆ ( )IQSX f  satisfies: 

 ˆ
IQSE X 

 
f =  wDX f .                                      (5.4) 

This proves that  ˆ
IQSX f  is an unbiased estimator of the Fourier transform (5.1). The 

variance of the estimator at the analysed frequency f  
is described by (see Appendix C for 

the proof) 

     

   
2 / 2

2

2
1

ˆvar
2

m n

N
i

IQS w mK
i A

MD
X x

M  


  

  



 
t

f t

  
   

2
2

1 ,

exp 2 .

K

m i q

w m m

q A G

x j π
 


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


 
t

t f t  .   (5.5)
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We notice from the expression above that the way the grid is partitioned, i.e. the sizes of the 

subgrids, has an influence on the accuracy of the constructed estimates. As we have 

mentioned before, designing the sizes of the subdomains to reduce the variance of the 

estimator requires a priori knowledge about the signal itself. Hence, a practical, neutral 

operation is to divide the grid into subdomains of equal sizes, resulting in an IQ stratified 

estimator of the following simple form: 

 
1

ˆ ( ) ( )exp 2 .
M

IQS m w m m

m

D
X a x j π

N 

 f t f t
 
.              (5.6) 

Further discussion on the variance of the estimates is included in Section 5.4. Now, we 

demonstrate the rationale behind the devised technique and how it can locate the 

acceleration frequency at the selected point cf . For easy demonstration, we use one 

dimensional, equal partitioning estimator. We rewrite the IQ estimator as 

              
ˆ ( )IQSX f    

1,
 odd

exp 2
M

m w m m

m
m

D
a x t j πft

N 

     
2,

 even

exp 2
M

m w m m

m
m

D
a x t j πft

N 

   .    (5.7)

 

We now express the signal  x t  by its in-phase component  Ix t
 

and its quadrature 

component  Qx t as follows:
  

     cos2 sin 2I c Q cx t x t πf t x t πf t  .             (5.8) 

According to the defined grid, the signal samples captured at the odd-order points are 

samples of the in-phase component of the signal: 

   1m

m I mx t j x t ,      m   odd,                                              (5.9) 

whereas the even-order grid points capture samples of the quadrature component:
 

    
   m

m Q mx t j x t ,      m   even.                      (5.10)
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With   1exp 2 m

c mj πf t j  ,   1,2,...,m M and :v cf f f  , the IQ stratified estimator can be 

rewritten in the form  

                                             
       

1,   odd

ˆ exp 2
M

IQS m I m m v m

m m

D
X f a x t w t j πf t

N 

 
 

     
2,   even

exp 2 .
M

m Q m m v m

m m

D
j a x t w t j πf t

N 

              (5.11) 

By examining the expression above we observe that the proposed estimator consists of two 

Fourier transform estimators of the in-phase and quadrature components. Each of these two 

estimators is a regular stratified on grid estimator, which estimates the Fourier transform of 

one of the components at 
vf . Also, it is known that with a reasonably selected 

cf , each 

component is a low-frequency signal with spectrum concentrated around 0vf  . (This 

means that the IQ estimator  ˆ
IQSX f  estimates the Fourier transform (of arbitrarily high 

frequency signal) at  f  through estimating the Fourier transform of low-frequency 

components at the low values of 
vf .) We conclude that the acceleration in the convergence 

rates of the Fourier transform estimates of these two components originates at 0vf  , and it 

can spread to the frequencies where their spectral parts reside after collecting a low number 

of samples. This effectively means that the acceleration in the convergence rates of the IQ 

stratified estimates starts at 
cf f  , and it can rapidly spread to the frequencies where the 

signal spectrum is situated for small numbers of samples. Likewise, the IQ stratified 

estimator in multiple dimensions with equal partitioning can be expressed as follows: 

       
2

1

,

1

ˆ exp 2 .

K

m q

q

IQS m c q m m v m

q G

D
X j a x w j π

N



 

  
t

f t t f t                      (5.11) 
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where  ,c qx t is the in-phase or quadrature components, or their equivalents in higher 

dimensions (the reader interested about the extension of the concept of the in-phase or 

quadrature components to multiple dimensions can refer to [79,80]). The expression (5.11) 

basically means that  ˆ
IQSX f  consist of 2K

 regular stratified on grid estimators that 

approximate the Fourier transform of low frequency signals   
2

, 1

K

c q q
x


t  at the low values of 

:v c f f f . Hence, similar conclusion can be conducted, i.e. the acceleration in the 

convergence rates in the multidimensional domain starts at 
cf f .  

 

 

Fig 5.2. A two-dimensional observation window, with two interlaced subgrids labelled 

with (x, Δ) as grid points, and the shadowed points are the randomly selected 

sampling points. 
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Before we finish this section we note an important remark about selecting 
cf  For K-

dimensional signals that vary merely or mainly along L dimensions, where L K  (in other 

words, if the user would like to choose  ,1 ,2 ,, ,...,c c c c Kf f ff  such that 
0c Lf ). For such 

case, the grid is designed in the same way described earlier along the “nonzero” dimension, 

i.e. with density of ,4 c kf  along the k-th dimension. Whereas, any point can be a sampling 

point along the “zero” dimension, or the sampling points can be selected from an arbitrarily 

dense grid (the grid should be dense enough to shift the replicas far from the region of 

interest). And, following the subdivision of the observation domain, only  
2

1

L

q q
G


 are 

selected with each subdomain. An example of a two-dimensional domain where  ,1,0c cff  

is in the Figure 5.2. 

 

5.3   IQ Antithetical Stratified Estimation 

In this section we introduce and study the IQ antithetical stratified sampling and the 

associated estimates. This scheme divides the observation domain into / 4N  non-

overlapping subdomains  
/ 4

1

N

i i
A


 with  

/ 4

1

N

i i
M


 grid points inside. We extract 2K  interlaced 

subgrids  
2

1

K

q q
G


from the original grid. Each subdomain must contain an even number of 

each of the  
2

1

K

q q
G


grid points. Then, 12K  sampling points are selected within each 

subdomain. Half of these sampling points are selected in the same way as in the IQ stratified 

scheme, namely, one sampling point is randomly selected from each of  
2

1

K

q q
G


within each 

subdomain. The other half of the sampling points are selected as reflections of the random 

ones around the centre points of the subdomains with respect to each subgrid, denoted by 
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 
2

, 1

K

i q q
c (such that  , / 2i q

  c t t , where t and t are the closest and the furthest grid 

points from the origin that belong to the qth subgrid inside the ith subdomain). For example, 

in one dimensional case if the odd-order grid point 
mt  is randomly selected within the 

subdomain iA , another sampling point will be assigned at the odd-order grid point of 

position ,12 i mc t , where ,1ic  is the centre between the first and the last odd-order grid 

points in 
iA . Similarly, for each randomly selected even grid point 

mt , another even grid 

point is allocated as a sampling point at 
,22 i mc t , where ,2ic  corresponds to the middle 

point between the first and the last even-order grid points in the nth subdomain. The Fourier 

transform (5.1) is estimated using the IQ antithetical stratified estimator described by 

ˆ ( ) :IQAX f  
1/ 2

,

1

ˆ
kN

i A i

i

v X





 f                                                            (5.12) 

where  1/ 2k

i iv M M  and  

          
2

, , ,

1 ,

ˆ exp 2 . 2 exp 2 . 2

K

m i q

A i m w m m w i q m i q m

q A G

X D a x j π x j π
 

       
t

f t f t c t f c t .     

(5.13) 

The PDFs and the dependency of these binary random coefficients  ma  are discussed in 

Appendix D. The estimator ˆ ( )IQAX f  is an unbiased estimator of the discrete-time Fourier 

transform (5.1) (the proof is in Appendix D): 

 ˆ
IQAE X 

 
f =  wDX f .                             (5.14) 

The variance of the estimates is (see Appendix D for the proof) 
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 ˆvar IQAX 
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.                                    (5.15) 

The way the grid is divided affects the variance, and as we discussed in the previous section, 

the most sensible practice is the uniform division. Further discussion about the derived 

variance is included in Section 5.4.  

As with the IQ stratified estimator, the IQ antithetical stratified estimator comprises 

regular antithetical stratified estimators of the Fourier transform of the inphase-quadrature 

multidimensional equivalent components    
2

, 1

K

c q q
x


t  , and it can be expressed (for equal 

partitioning and uniform windowing for simplicity)  

                                   
12 / 2

1

,

1 1

ˆ exp 2 .

K k

m q

N
q

IQA m c q m v m

q G i

D
X j a x j π

N





  

   
t

f t f t                                 

    , , ,2 exp 2 . 2 .c q i q m v i q mx j π    


c t f c t                             (5.16) 

Hence, with a reasonably selected 
cf , the spectrum of these components concentrates around 

: 0v c  f f f , and hence the estimates  ˆ
IQAX f  at (arbitrarily high) frequency f are 

basically low-frequency estimates at 
vf . It follows from these facts that the acceleration in 

the convergence rate of  ˆ
IQAX f starts at 0v f , i.e. 

cf f , and it can spread rapidly to the 

frequencies where the signal spectral parts reside for small numbers of samples. 
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5.4   IQ Error Reduction Through Spectrum Symmetry and IQ 

Total Random Estimation 

 

The main advantage of the IQ estimation is to provide a key solution to the stratified 

technique estimation to relocate the acceleration frequency to the most prominent points in 

the spectrum. As we mentioned in the introduction of this chapter, the IQ estimation can 

provide another mechanism of error reduction that is independent of facilitating the 

acceleration in the convergence rates. By carefully examining the expressions of the 

variances of the estimates derived in this thesis we notice that at a given frequency point, the 

magnitude of the Fourier transform affects the variance. The variance at a specific frequency 

f  tends to be smaller if  wX f  is strong, as opposed to that if  wX f  is weak. 

Interestingly, the IQ estimation provides another advantage in this regard. All the estimation 

schemes leverage this technique, including total random scheme. Therefore, we introduce 

herein the IQ total random estimation. Indeed, there is no stratification with total random 

sampling. Instead, as we did with the previous schemes, we extract 2K  interlaced subgrids 

 
2

1

K

q q
G


from the original grid. Then, / 2KN sampling points are selected from each subgrid. 

The IQ total random estimator is given by   

     
2

1

ˆ : exp 2 . .

K

m q

IQTR m w m m

q G

D
X a x j π

N  
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t

f t f t                                (5.17) 

The random variables within the q-th subgrid have the same probability to be one/zero, 

given by (assuming/designing the number of the grid points of each subgrid to be identical)                     

              
2

1 ,
K

mP a
M

   

 
2

0
K

m

M
P a

M


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.                                       (5.18) 
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These random variables are dependent, but they are independent of all the other random 

variables outside their subgrids. Indeed, the estimator ˆ ( )IQTRX f  is an unbiased estimator of 

the discrete-time Fourier transform (5.1):  

 ˆ
IQTRE X 

 
f =  wDX f .                             (5.19) 

The variance of the estimates is  

      
 ˆvar IQTRX 
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.  (5.20)

 

We remarked earlier that the IQ estimates consist of regular estimates of the Fourier 

transform of the in-phase and quadrature components (or their equivalents in 

multidimensional domains). As a result, the variance of the IQ estimators at a frequency 

point is influenced by the magnitude of the Fourier transform of these components (this 

remark can also be clearly conducted from (5.20)). As we know, the in-phase and quadrature 

components (and their equivalents in multidimensional domains) are real signals with 

symmetrical Fourier transform, in magnitude, around 0v f  
(i.e. cf f ). Accordingly, weak 

parts of the estimated Fourier transform (at 
c f υ , where υ  is a real-valued vector) could be 

the result of estimating strong spectral parts of its in-phase and quadrature components (if 

there is a strong spectral part of the signal residing at c f υ ). We illustrate this phenomenon 

when it is most beneficial with the following simple example: consider a one dimensional 

signal with relatively strong and weak spectral elements, as shown in the upper plot of Fig. 

5.3. The variances of the regular and IQ total random schemes are shown at the lower plot of 

Fig. 5.3. With the IQ total random estimation which does not undergo acceleration in the 

convergence rate, this phenomenon is manifested. According to the regular approach, the 

variance at the weak part is high compared with the variance at the strong part. Whereas, 

with the IQ estimation 
310cf  Hz, the variance at the weak part is as relatively low as the 
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variance at the strong part owing to the spectral shapes of the in-phase and quadrature 

components of the signal. We remark that the positive effect of the strong parts on the 

variance spreads to their adjacent frequencies for a higher number of samples, especially for 

the stratified-based estimation schemes  

 

 

 

Fig. 5.3.  The magnitude of the Fourier transform of the example signal in the upper plot. 

The variance of the regular total random estimator (dashed line) and the IQ total random 

estimator (dotted line) are shown in the lower plot. 
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Indeed, not every signal leverages the described property of the IQ estimation in such a 

way. However, for any other signal, by selecting 
cf  in the middle of the frequency range 

where the user intends to search and estimate the signal spectrum, the IQ estimation exploits 

the strong spectral parts of the signal to reduce the error over more of the pertinent frequency 

points, where the signal spectrum is relatively weak or there is no signal activity. We remind 

the reader that this reduction in the error of the IQ estimates is independent of and 

supplementary to the main reduction caused by the facilitated acceleration of their 

convergence rates for the (antithetical) stratified estimation schemes. 

5.5    Numerical Illustration   

Here we present a numerical example to demonstrate the efficiency of the introduced 

technique. We compare the proposed IQ methods with the regular on-grid approaches and 

show how the proposed methods outperform their counterparts. For clear illustration of the 

estimation errors against the frequency, we consider a simple one-dimensional test signal: 

     92 sinc 2 cos 2 10 .x t B Bt π t                                         (5.20) 
 

The signal is centred at 910 Hz with 610 HzB  . The targeted Fourier transform is set for the 

signal observed over 
610 sD   and averaged with a Blackman window. 

Designing the grid, i.e. selecting 
cf , is a key factor for the IQ methods as it represents the 

frequency where the acceleration starts. Certainly, we would like to bring the advantages of 

fast convergence to the frequency points where the signal spectrum is positioned. Therefore, 

we would ideally like to choose cf  in the middle of the signal spectrum so the acceleration 

starts at and rapidly spreads to the signal’s spectral parts. However, it is not always the case 

that the location of the centre frequency of the signal spectrum is known in advance. 
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Nonetheless, as we will show here, choosing 
cf  in the locality of the signal spectrum can 

still facilitate the acceleration in the convergence rates at the pertinent frequencies for a low 

number of samples, in contrast to the regular approaches which have an acceleration that 

starts at DC and does not spread to these high frequencies unless a considerably large 

number of samples are collected. Throughout this example, we use equal partitioning in all 

the schemes. The results in this numerical example are obtained by computing the derived 

expressions of the variances of the IQ estimation schemes, (5.5) and (5.15), and the exact 

expressions of the regular on grid approaches, i.e. (4.5) and (4.16). 

In Fig. 5.4, we show the mean-square estimation error of the regular stratified on-grid 

scheme and the IQ stratified scheme with various values of 
cf , where all the estimators use 

the same number of samples, i.e. 20N  . The regular random schemes use the same grid of 

the IQ ones. The error is displayed for a frequency range of size 4B which covers the signal 

spectrum. It is evident how the IQ estimators outperform their counterpart. To manifest the 

convergence rates of the estimates and the acceleration they undergo, we plot the mean-

square estimation error at a frequency point in the signal spectrum versus the number of 

random samples. In Fig. 5.5, we demonstrate the mean-square error of the IQ and regular 

stratified on-grid estimation at 
910 Hzf   (for the IQ method, 

cf  is chosen to be 

91.001 10 Hz ). The thin lines in Fig. 5.5 represent reference curves with the labelled order of 

decay with respect to the number of samples N. Since the plots are on a log-log scale, these 

reference curves are lines of slopes equal to the order of convergence. We observe that the 

mean-square error of the regular method shows a rate of decay of 1 N and does not 

accelerate for the shown numbers of samples, whilst the IQ stratified estimates render the 

fast convergence rate of 
3

1 N  for small numbers of samples. 
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Fig. 5.4.  Mean-square estimation error of the regular stratified scheme (dashed line) and the 

IQ stratified scheme (dotted lines) with different 
cf  using 20N  . 

 

 

Fig. 5.5.  Mean-square estimation error of the regular stratified scheme (dashed line) and the 

IQ stratified scheme (dotted line) at frequency point
9=10 Hzf . The fine lines are reference 

curves with the labelled order of decay.  
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Fig. 5.6 demonstrates the mean-square error in the estimated Fourier transform of the IQ 

and regular antithetical stratified schemes with 40N  , for a frequency range that covers 

the signal spectrum. We show the estimation error for the IQ estimates with various
cf , and 

observe that the outperformance of the IQ method is prominent. In Fig. 5.7, we show the 

mean- square estimation error of the IQ antithetical scheme (
910 Hzcf  ) and the regular 

antithetical approach at frequency 
9=0.999 10 Hzf  versus the number of samples N. We 

discern that the decay rate in the mean-square error of the regular antithetical stratified 

estimates is 1 N for the shown numbers of samples, whereas the IQ antithetical stratified 

estimates show a rate of 
51 N for small values of N. 

 

 

Fig. 5.6.  Mean-square error of the regular antithetical stratified estimator (dashed line) and 

the IQ antithetical stratified estimator (dotted lines) with various cf  for 40N  . 
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Fig. 5.7.  Mean-square error of the regular antithetical stratified estimator (dashed line) and 

the IQ antithetical stratified estimator (dotted line) at frequency point
9=0.999 10 Hzf  . The 

thin lines are reference curves with the labelled order of decay.   

 

5.6   Chapter Summary 

The developed IQ Fourier transform estimation can facilitate fast convergence rates using 

low sampling densities regardless of the positioning of the signal spectrum. By appropriately 

distributing the sampling points with no extra complications in the procedure of 

acquiring/processing the samples, the IQ estimates have convergence rates that start 

accelerating at a frequency point 
cf
 
that is selected by the user. Choosing 

cf  in the locality 

of the signal spectrum can lead to a substantial reduction in the estimation error or saving on 

the number of samples, subject to the system requirements, especially in low-dimensional 

domains. The proposed methods provide great advantages over the existing Fourier 
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convergence rates that start accelerating at DC and, hence, require high numbers of samples 

to generate estimates with a satisfactory error if the signal spectrum is distant from zero.  

The IQ estimation constitutes a smart means to tackle the Fourier transform of high-

frequency signals with no requirement for high sampling rates or/and downconversion-

filtering the analogue signals (if accessible) prior to sampling. In particular, the devised 

approach is an excellent tool for processing signals with energy concentrated around some 

high frequency and have undesired spectral tails that spread over long frequency ranges. The 

reasons for stressing the former, besides the fact that these tails usually appear in the Fourier 

transform of truncated signals, are as follows. Many other “competing” methods (which 

were categorised under the periodic nonuniform sampling family in Chapter 2) are sensitive 

to signals with long tails. The other reason is that these tails do not carry a lot of the energy 

of the signal and hence they do not negatively affect the acceleration in the convergence 

rates at the prominent frequencies. As we showed in Section 3.7 for the regular estimators, 

the IQ estimators analogously deliver unbiased estimation with the presence of additive error 

(its characteristics is included in Section 3.7). And, the variances are equal to the ones 

without error plus a term that depends on the size of observation domain and the variance of 

error, which decays at the rate of 1 N , see (3.58) and (3.68). 

     



 

 
 

CHAPTER SIX 

 CONCLUDING REMARKS  

 

 

In this thesis we considered Fourier transform calculation of multidimensional signals 

using random sampling. The key advantage of using random sampling here, over other 

sampling schemes, is its capability to avoid aliasing. Various categories of random sampling 

have been examined here, and throughout this thesis we have sought to highlight their 

performances. All the categories deliver a performance that is lower bounded by the 

performance of total random sampling scheme. That is, the error in the calculated Fourier 

transform is independent of the location of the signal spectrum in the frequency domain. If 

the signal has certain smoothness, the performance can be improved with some of the 

studied techniques. We showed that all these techniques lose their effectiveness with 

increasing the dimensionality of the signal as well as the distance of its spectrum to the 

acceleration frequency. The IQ estimation widens the class of the signals that can capitalise 

upon these techniques by creating the unique chance of relocating the acceleration 

frequency.   

After the thorough analysis of the performances of the several techniques studied here, 

we conclude that there is no one optimal scheme. Each of the studied schemes can be in a 

certain scenario the scheme of choice in terms of the quality of the Fourier transform it 

yields as well as the way of implementing its distribution of the sampling points.  As 

examples for the latter, stratified sampling gives a good prospect of building two, or more, 

interlaced relatively slow analogue-to-digital converters, which makes it rather practical in 

real time applications of one-dimensional signals as opposed to total random sampling. And, 
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total random sampling is effortless to deploy in field estimation. Also, adding more sampling 

points can be performed efficiently as opposed to stratified-based estimation. And, so on.  

The random sampling estimation of the Fourier transform can be used for various signal 

processing objectives. These methods can/have been used for spectral analysis via reduced 

sampling density in multidimensional NMR spectroscopy, which is nowadays one of the 

most efficient spectroscopic techniques, providing insight into molecular structure and 

dynamics, and it has opened an avenue to a large number of new emerging applications in 

chemistry and biochemistry. Random sampling allows performing higher dimensional 

experiments (i.e. increasing the dimensionality of a multidimensional experiment) that are 

not conventionally obtainable. In many cases increasing the dimensionality of an experiment 

can be very interesting from a scientific point of view as it reveals more effects by spreading 

the spectral components over further dimensions. This approach is referred to by the 

magnetic resonance community as “Accurate NMR” [6]. 

Many interesting methods can be applied when NMR is considered in general. However, 

many of these methods usually engage heavy computations which make them intractable for 

the high dimensions and great amount of data that appear in “Accurate NMR” applications. 

For such applications, the simple data acquisition and processing algorithms of random 

sampling estimation are more suitable [6]. These random sampling approaches leverage the 

reasonable computational requirement of a discrete-time Fourier transform type of 

calculations. The other interesting characteristic of these approaches is that the 

dimensionality of the signal or the size of the observation window do not dedicate the 

required sampling density. These features qualify the random sampling approaches to be the 

methods of choice in the “Accurate NMR” applications. 
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Higher Order Approximation   

If the signal has a p-order (where 2p  ) continuous derivative, it is possible to construct 

a higher convergence approximation of the Fourier transform, compared with the studied 

approaches. This can be achieved by employing more sophisticated estimation schemes 

(based on the Newton-Cotes formulas). In fact, there are groups of numerical integration 

methods that can be employed in principles to approximate the Fourier transform with high 

order convergence rates. Examples are Newton-Cotes methods (such as the Simpson rule) 

that are based on equidistant evaluation points, and Gauss methods which use unequal-

spaced points. Although, these methods can theoretically provide fast convergence rate, it is 

safe to say that they are not useful for our purpose. The reason for that is that they provide 

“wrong” results when using relatively low number of samples. And, they can only provide 

acceptable error when the sampling density is higher than the corresponding Nyquist 

density. This can be anticipated from their mechanism of approximating the integration 

using high order polynomials, which is not appropriate for the highly oscillated function that 

we deal with here.  

We remind the reader about the remarkable following fact about the studied random 

sampling schemes that provide improved results over total random sampling. Although we 

showed that these methods can lose their effectiveness depending on several factors, the loss 

means that these methods perform no better than total random sampling and no less.          
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Future Work 

 Spectrum sensing entails scanning predefined parts of the spectrum in search of 

meaningful activity such as an ongoing transmission or the occurrence of an event. 

Spectrum sensing has a vast range of application areas including astronomy, 

seismology, communication systems and many others. In addition, the 

conceptualised Cognitive Radio technology has recently revived and intensified the 

research into new effective sensing techniques. The majority of these DSP-based 

methods employ uniform sampling. The remarkably high sampling rates imposed by 

classical DSP (especially for wideband radio-frequency applications) can be an 

obstacle for systems whose resources (such as power, complexity, and size) are 

limited. Approaches based on random sampling can accomplish the sensing task 

using considerably low sampling rates. In fact, since the spectrum sensing task does 

not seek the exact shape of the signal spectrum, the sampling rates can be 

significantly reduced. Most importantly, general guidelines can be developed based 

on the statistical properties of these estimates to ensure that the approaches satisfy 

certain detection probabilities predefined by the user. Some of the studied schemes 

have been employed and rigorously analysed for this purpose in [66-68,77,78]. 

However, other schemes, such as the IQ estimation schemes, can be considered and 

capitalised upon in spectrum sensing. And, efficient spectrum sensing algorithms are 

expected to be devised based on these advanced schemes. 

 Fluctuation of sampling instants is a common occurrence in all sorts of sampling. 

This practical limitation has been profoundly addressed in literature for uniform 

sampling. Hence, it can be an important aspect to analyse the performance of all the 

random sampling estimation schemes studied here with the presence of this 

limitation, and study the possibility of modifying their features to relax its effect. 
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 In spite of the wide research reported in the nonuniform sampling literature, not 

many papers address the sampling pattern design problem. It is rather 

understandable as many of the processing algorithms developed in this field can 

cope with arbitrary sampling schemes (or there is not an analytical way of 

associating their performance with the sampling pattern to optimise the design of the 

latter). In addition, the problem of arbitrarily distributed data is wider; in many 

applications the user has no control over the location of the sampling points. 

However, as we have seen, this thesis focuses on the distribution of the sampling 

points. And, it is worth to investigate the performance of these schemes with other 

processing tools (apart from the tailored forms of DTFT) and explore their 

advantages. Also, in the various studied schemes we have shown some mechanisms 

of improving the quality of the estimated Fourier transform by investing some 

knowledge about the signal through adapting the sampling process. This can be 

achieved by, for example, re-designing the PDF of the sampling points or re-

locating the acceleration frequency to the most important part of the signal spectrum 

in the IQ case. Hence, a promising future research is to develop a sort of adaptive 

sampling procedure to provide a reduced-error Fourier transform estimation.  

 

 

 

 



 

 
 

APPENDIX A 

 PROOFS FOR STRATIFIED ESTIMATION 

 

 

We find the asymptotic expression of the variance of the stratified estimator with maximum 

stratification for a K-dimensional signal with a continuous derivative along each dimension. 

We let  

     exp 2 .wg x j πt t t f t .                                              (A.1) 

With it
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First, we note that 
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where ,i dτ  and ,i kτ  are the lengths of the subdomain Ai  along the dimension d and k 

respectively. Hence, 
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Since  
2

g t and  ip t are continuous, according to the mean value theorem for integration
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where 'ic  is a point in iA . For now, we assume that  p t is uniform. This assumption will 

simplify the derivation and not affect the final expression where  p t  can be any 

permissible density function. Hence, 
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The variance of the stratified estimator is 
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Using Riemann integration, we find 
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Now, we establish the joint asymptotic normality of the real and imaginary parts of the 

stratified estimate. Since these parts are the sum of N independent random variables which 

are not identically distributed, the classical central limit theorem does not apply. Instead, we 

prove that the Lyapunov condition [74] is satisfied. For this purpose we use the Cramér-

Wold theorem which allows proving multivariate convergence in distribution by establishing 

univariate convergence in distribution for arbitrary linear combinations of the vector 

components [75]. Accordingly, we re-define  g t  as 

     1 2: R Ig λ g λ g t t t
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where 1λ and 
2λ are arbitrary real numbers, and  Rg t and  Ig t  are defined in (3.9) and 

(3.10). If for some 2r  , the Lyapunov condition
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is fulfilled, the random variable
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converges in distribution to normal random variable as N goes to infinity. Now, we 

determine the behaviour of the nominator and dominator of NL  
as N goes to infinity. Calling 

(A.7) we have 
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By using Hölder’s inequality, each element of the nominator follows
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The expectation of the first term on the right side of the inequality 
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Using (A.5), (A.6) and Hölder’s inequality, 
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(A.25)

 
Hence, with the aid of Hölder’s inequality one more time with the second term of (A.23) on 

the right hand side, we have  
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(A.27)

 
Using (A.16), 
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where C is a positive constant, thus 
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Subsequently,
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calling (A.18), (A.21) is proven for 2r  . The asymptotic covariance matrix follows by 

identifying the coefficients of 2

1λ , 2

2λ and 
1 2λ λ  in the right hand side of (A.18) with  g t of 

definition (A.19). 



 

 
 

APPENDIX B 

 PROOFS FOR ANTITHETICAL STRATIFIED ESTIMATION 

 

 

 Here, we calculate the asymptotic expression of the variance of the antithetical stratified 

estimator with full stratification for K-dimensional signals with a continuous second-order 

derivative along each dimension. Young’s form of the Taylor expansion of 

       : exp 2 .g x w j t t t t f t
  iAt around the centre of the subdomain 

 ,1 ,2 ,, ,...,i i i i Kc c cc , assuming that  g t has a continuous second-order derivative along 

each dimension is 
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With  g t and it
 

1,2,  ... , / 2i N random sampling points, we define a random variable iZ

1,2,  ... , / 2i N as follows  
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The expected value of iZ is 
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where  2
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  . Using (A.5) and (A.6) we have 
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that  p t  is uniform in these intermediate steps since this will not affect the final expression 
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Since iZ  are independent, the variance of the antithetical stratified estimator is   
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With the observation domain divided equally along each dimension, for any continuous 

positive    
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where 

,i d

d

A

dt  
is the integration over the subdomain iA  with respect to dt  . By (A.15) we 

have 
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Using Riemann integration 
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Analogously to stratified estimation, Lyapunov condition has to be satisfied to prove the 

normality of the antithetical stratified estimate. To establish this condition, we redefine 

 g t  as in (A.19) in order to use Cramér-Wold device for the proof of a multivariate 

distribution. For the antithetical stratified case the i-th element in the nominator of 
NL  , 

defined in (A.20), is as follows 

 i iZ E Z 
 

   
2

2 2

, , ,2
11

1 1

2 12

K K
i

i k d i d i d

dk d

g
τ t c τ

t

  
  

  


c

 

     

 
  

22

, , ,

1 11

1

2

K K K
i

i k d i d r i r

d rd rk
r d

g
τ t c t c

t t 



  

 


c
 2

, ,

11

K K

i k d i d

dk

τ o t c


 

 
2

, ,

1 1

KK

i d i k

d k

o  
 

 
  

 
 

 

.      (B.13) 

Following the same steps we took in the previous section, with further use of Hölder’s 

inequality, we find that the nominator of

 
NL :
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(B.14) 

where C denotes a positive constant. The behaviour of the dominator of NL  for N 

follows from (B.12). Thus,
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as N 
 

for 2r  . The asymptotic covariance matrix is directly obtained by identifying 

the coefficients of 2

1λ , 2

2λ and 
1 2λ λ  on the right hand side of (B.12) with the redefined  g t . 



 

 
 

APPENDIX C 

 PROOFS FOR IQ STRATIFIED ESTIMATION 

 

 

To achieve the described scenario of distributing the sampling points and study the 

characteristics of the proposed estimator, we define sequences of random variables 'sma  

which take either zero or one. We associate these random variables  
1

M

m m
a

  
 with the grid 

points  
1

M

m m
t  one by one, as shown in (5.3) (the IQ stratified estimates can be written in 

different forms. We chose the stated form for a clear demonstration of the scheme). The 

random variables within the q-th subgrid of the i-th subdomain have the same probability to 

be one/zero, given by (assuming/designing the number of the grid points of each subgrid to 

be identical inside the i-th subdomain)  
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.                                           (C.1) 

These random variables are dependent, but they are independent of all the other random 

variables inside outside their subdomain. Recall that the dependence of the random variables 

only affects their conditional probability. And, according to the law of total probability, the 

probability of the variables  ma to be one/zero is constant, defined in (C.1). Now, since the 

random variables  ma  within the q-th subgrid of the i-th subdomain are binary and all have 

the same probability of being one/zero, their expectations are identical and given by 

 
2K

m

i

E a
M

 .                                               (C.2) 

Now, the expected value of the IQ stratified estimator (5.2) is 
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Hence, (5.4) is proven. Next, we derive the expression of the variance of the developed 

estimator: 
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We find the variance of the i-th component as follows:   
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The variances of the random variables  ma are identical and given by 
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And, 
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Thus, 
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By completing the squares of the last term, we obtain 
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Using (C.4) we obtain the variance of the IQ stratified estimates.  



 

 
 

APPENDIX D 

 PROOFS FOR ANTITHETICAL STRATIFIED ESTIMATION 

 

 

In this scheme we also design the binary random variables  ma   within the q-th subgrid 

of the i-th subdomain with probabilities (assuming/designing the number of the grid points 

of each subgrid to be the same within the i-th subdomain) 
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The random variables within the q-th subgrid of the i-th subdomain are dependent, but they 

are independent of the variables elsewhere. Now, let 
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The expected value of ˆ ( )IQAX f  can be determined in the following way: 
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Now, we find the variance of the estimator: 
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The variance of each component can be obtained as follows:   
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We note that the variance is given by
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and the covariance 
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Accordingly, 
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By completing the squares and substitute  g t  by its definition, we obtain 
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