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Two iterative methods for the calculation of acoustic transmission through a rough interface 

between two media are compared. The methods employ a continuous version of the conjugate 

gradient technique. One method is based on plane-wave expansions and the other on boundary 

integral equations and Green’s functions. A preconditioner is presented which improves the 

convergence for spectra that include evanescent modes. The methods are compared with regard to 

computational efficiency, rate of convergence, and residual error. The sound field differences are 

determined for a focused ultrasound beam distorted by surfaces having a Gaussian roughness 

spectrum. The differences are evaluated from the root-mean-square differences on the rough surface 

and in the focal plane. © 1996 Acoustical Society of America,

PACS numbers: 43.20.Fn, 43.30.Hw, 43.80.Qf

INTRODUCTION

In echographic imaging with large array transducers, 

wave distortions in intervening tissue layers often are the 

major cause for image distortions. Various correction meth

ods have been proposed to obtain better images for these 

c a s e s . I n  order to test the applicability and limits of the 

correction methods, it is important to have an accurate and 

efficient computational model describing the propagation 

through these distorting tissue layers. The sound propagation 

through tissue is often modeled as the propagation through a 

layer consisting of a cascade of thin sublayers, where each 

sublayer acts upon the incident wave as a random time-shift 

operator.5 Various papers,5"7 however, report that the wave 

modification cannot be described sufficiently with these 

models and that refraction effects also should be taken into 

account. In particular, ultrasound propagation through female
c 7

breast * suffers from severe refractive errors. In abdominal 

animal tissue6 strong multipath components were noticed, 

with refraction as a possible cause. Recently, therefore, we 

have tried to come up with an efficient numerical method9 to 

model the process of refraction, which is attacked by solving 

the numerical problem of wave propagation through an ir

regular interface between two uniform media. Of course, the 

present model should be extended with distributed wave ab

errations to get a more complete description of wave propa

gation through human tissue.

If the medium parameters within each layer are assumed 

to be constant, then the computational problem can be re

duced to the problem of finding the acoustic variables on the 

interfaces of the layered configuration. The discretization of 

the problem leads to a large number of unknowns. Due to the 

size of the numerical problem, iterative methods are essen

tial Iterative methods can lead to dramatically reduced stor

age requirements and total computation time, especially for

3-D calculations. Also for large 2-D problems the require

ments on computation time and memory resources can be 

prohibitive.

In this paper, two iterative methods are described for the 

calculation of reflection and transmission at a rough interface 

between two media. Both methods are based on a continuous 

version of the conjugate gradient technique.8 One method is 

based on plane-wave expansions9 while the other method is 

based on boundary integral equations and free-space Green's 

functions.10 Although the application deals with pulse-echo 

ultrasound, the domain of analysis is the frequency domain. 

An analysis in the frequency domain has the advantage that 

the strongly frequency-dependent absorption and dispersive 

sound speed can be incorporated quite easily. Time-domain 

results are obtained by analyzing the problem at several fre

quencies and subsequently calculating the inverse (temporal) 

Fourier transform. Wave propagation through random inter

faces can be analyzed by evaluating a large number of 

interfaces.11 According to Altmeyer,12 typical acoustic inter

faces in human tissue have a root-mean-square surface height 

of at least 0.5 mm. Characteristic length scales of these sur

faces are not given by Altmeyer. The soft tissues show low 

contrast between the different tissue layers, with a difference 

in sound speed typically lying between zero and five percent.

The extensions and novel techniques presented in this 

paper are the preconditioning scheme for the iterative plane- 

wave method of Ref. 9, an efficient preconditioner for this 

scheme, the comparison of the iterative methods, and the 

application of rigorous computational techniques to propaga

tion through refractive rough interfaces similar to those oc

curring in human skin and subcutaneous layers.

I. FORMULATION OF THE PROBLEM
The rough interface is assumed to be a local deformation 

of an otherwise plane boundary at z = 0, where a point in
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FIG. 1. Configuration and a realization of a rough surface having a Gaussian 

roughness spectrum with a correlation length 1 mm and a rms surface 

height h— 0.5 mm.

space is specified by its orthogonal coordinates x=(x,y,z). A 

2-D configuration is shown in Fig. 1. The analysis is earned 

out in the temporal frequency domain with angular fre

quency co where the complex time factor e ~ HOt is suppressed. 

The two fluidlike media occupy the domains and i§?2, 

respectively, and are assumed to be linear, homogeneous, and 

isotropic with respective mass densities py and p2 and com

pressibilities /C] and k2 . Furthermore, both media exhibit 

some losses and the real and imaginary parts of p and k 

satisfy the Kramers-Kronig causality relations. The interface 

is denoted by y .  Pressure and the particle velocity variables 

are denoted by P and V, respectively, in a source of 

finite extent generates a wave incident upon y\ The incident 

wave is denoted by {P,-,V,-}. The total field in is written 

as the superposition of the incident field and the reflected 

field {P,.,V,.}. The total field in S$2 is the transmitted field 

{Pt ,V,}. In two subsequent sections, one direct and two it

erative methods are described for the numerical solution of 

the problem.

II. INTEGRAL EQUATION METHODS 
A. Direct solution method

Assuming that the contribution from the parts of the 

contour integrals at infinity vanish, leads, at the interface y\ 

to the simultaneous integral equations10

^(x)
x'e.^’

• v(xf)dx* = P /(x), X6.7Î 

\p(x)+ I [ r 2(x|x')V(x') +A2(x|x')]- v(x')i/x'
1 I x' e.y

(1)

0, x e ,9", (2)

r i , 2 (x|x') = -/pwC1,2(x|x'),
A i ,2(x |x / ) =  - V xG Ij2(x |x ' ) 1

G i,2(x |x ')  is the volume injection Green’s function, and V; 

the spatial derivative at point x. For 2D we have G 12(x |x ')
iH^\k[t2 |x—x'|)/4, with the zero-order Hankel func

tion representing outgoing waves and and 

k2—(o(p2K2y/2 the (complex) wave numbers in ^  and & 2, 

respectively.

The integral equations relate the pressure P at a point x 

on the interface y  to surface integrals along y  involving 

pressure and the normal component of the particle velocity. 

The outward normal of the surface y  at x, pointing into &\, 

is denoted by v(x). Equations (1) and (2) constitute a system 

of two integral equations with two unknown quantities, viz., 

P(x) and j'(x)’V(x) on y . It is noted that the integrals in the 

left-hand sides of (1) and (2) have to be interpreted as their 

principle values, i.e., the integrals are, when necessary, cal

culated by a limiting procedure that excludes the singularity 

at x=x' in a symmetrica] manner. Once the solution to P(x) 

and jKx)-V(x) has been found, the transmitted field Pt fol

lows from an integral over y 10

P M
xf t  y

[ r 2(x|x')V(x')-l-À2(x|x')P(x')]
ï>(x')dx', x e i^2. (3)

The numerical solution to (1) and (2) can be obtained by 

discretizing the integral equations, evaluating the singular 

parts of the integrals, and solving the resulting system of 

linear equations by matrix inversion. This method will be 

called the direct integral equation method (DIE).

B. Iterative solution method
The technique described in Ref. 8 is used to arrive at an 

iterative method for the solution of the two coupled integral 

equations. The iterations are obtained from a continuous ver

sion of the conjugate gradient technique. The method will be 

called the conjugate gradient integral equation method 

(CGIE). Normalizing the unknowns P(x) and V(x) 

=V(x)-?/(x) according to

P (x)= Zq2X p(x), 

V(x) = YlJ 2Xv(x),

(4)

(5)

with Z0 and 70 a reference impedance and admittance, re

spectively, the integral equations (1) and (2) can be written 

as

7j(x)= I [KlP(xfx')XP(x')
J x e,y

+ K\ v(xix,)Xv(xt)]dx>, x e .5 ,̂ (6)

7 2(x )=  I [Je2 ?(x,x')X/,(x')
x sM

+ K2v(x,x')Xv(x')]dxt, xc=y. (7)

where

We assume the existence of an iterative procedure, in which 

n steps have been carried out. The iterative procedure has led
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to the values _X^°(x) and Xyl)(x), The integrated squared er

ror after n steps of iteration is

ERR('°

in which

xe.1/
(8)

As a result, a decrease of the error is obtained if 0. 

From Eq. (16) it can be seen that this is the case if s]i\v ̂  ̂ 0 . 

However, if vanishes, the exact solution is arrived at

in the iteration n -1. Once the iteration process has been 

stopped, the transmitted field is found from evaluation of Eq.

(3).

x' e y
{K U2P( x , x ' ) x f { x ' )

4-^i2v(x,x')X(y )(x , )]i/X, ) x e S *.

In going from the (n — l) st step to the nth, we use

(9)

yin)
P,V

~j(n)aW
i/ ^  V SpyP,v (10)

where rfn) is a variational parameter to minimize ERR(,l) and
(»)gp;V~£p,Wx) are search directions. Using Eq. (10), it 

can be shown that

r h2 * 1,2
~j(n)An) 
V /1,2 ’ (n )

in which

X ' E.'?

+ /srli2y(x,x ')xÿ  ̂ x 'JJrfx ', x e .5̂ . (12)
For the search directions the conjugate gradient directions 

are taken:13

>4
, _____  «(«-D

p,v • ^(«-1) Spy 2, (13)

(l) (0)
(14)

where the symbols j^ { /= kç^^(x) denote the steepest-descent 

directions

s$Ux)
x'e.S*5’

[K ! P'V(x',x) F\n) * (x> )

+ K 2P'V(x ',x )F W * (x ') ]d x >

*

, * 6 /

(15)

(the asterisk denotes complex conjugate) and

xe.y*
H“ 0*—1)12 

SV )dx. (16)

III. ITERATIVE PLANE-WAVE METHOD
The solution of the reflection/transmission problem can 

also be found by expanding the field in a Fourier-type inte

gral of plane waves.9 This method will be called the conju

gate gradient Rayleigh (CGR) method because of its close 

relationship with the modified Rayleigh method using direct 

matrix inversion.14 The existence of an iterative procedure is 

assumed in which n steps have been carried out. The itera

tive procedure has led to the plane-wave components 

and of the reflected and transmitted velocity potentials, 

respectively. The corresponding field values are

{P<n) ,v ^ }}

CO
{^(/ ) ,v|.',)}e‘k^ 'x dkx dky,

oc

x e£ (20)

{/>(*> jV(»)}
00

{pW ■* dkx dky,
—  00

2> (21)

where

(22)
The plane-wave vectors k f and k2 indicate plane waves 

traveling away from

K  =  (k X)ky,kZtl),y (23)

with

kz>{- ( c o 2p l K i - k l ' - k y ) i,2t 91(^1).2f(fcZtl)>0 , (24)

and

^2 ( ^ i ! ^ )  ^2,2)» (25)

with

h,2=(o>292*2-k2x-k])m, £K(*gi2),3(*ti2)>  0. (26)

The integrated squared error ERR(,l) in the boundary condi-

The variational parameter resulting from the choice for the ti°l1s after n steps of iteration is

conjugate gradient directions is given by

(H)= i40i )/#(«)
(17)

ERR(,,) =
x e ,5̂ (I F

(«) + \F̂ l)\2)dx, (27)

with

xe ,9e(\f\tt)\2+\Àn)\2)dx. (18)

The error decreases at each iteration step according to

ERR('!)=ERR (n-1)
|A('!) \ i

5 ('° ‘

(19)

in which the deviations F (pl) = F(p\x), F (y ) = i ,̂ ‘)(x)
given by

F ^ ' ^ Y ^ i P i + p M - p W ) ,

f {j,)= z '0I2v  (Vi+v (;°  -  v i'0).

In going from the (n-l)st step to the nth, we use

4 : r l)+ g iy ,

are

(28)

(29)
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wnere if " is a variational parameter to minimize JtiKK'" and 

— ^  search directions. Upon using Eq.

(29) it can be shown that

rpin) —join—l) _  ^{n) f{n)
r  P , V ~ r  P,V

where

An)
J  p

An)
Tv

icopiY1/2
0

r oo
1 -X

00

+ ¿wP2y¿
1/2

00

g|7IV k2 ’x dkx dky,
— 00

iZ 1/2
0

00

v k tg ^ e 1̂ ■* dkx dk
00 y

(30)

(31)

used. This results in the so-called point-matching technique, 

where the integrations are performed as simple summations 

of the discrete function values. If piecewise polynomials are 

used for both the weighting functions and the description of 

the surface, then the subintegrals of the CGR method can be 

evaluated analytically. The CGR scheme was implemented 

for two different weighting functions: the Dirac-impulse 

function and the piecewise constant function. The implemen

tation for different weighting functions also provides a con

venient check for the required spatial integration step size. If 

the root-mean-square difference in the solution for Dirac- 

weighting and piecewise constant weighting was larger than, 

say, one percent, then the step size was rejected as being too 

large.

+ iZ
1/2
0

00 _

v -k ^  g \n^elk2 x dkx dky .
— co

(32)

For the search directions the conjugate gradient directions 

are taken

>>  
ö r j

A(")
.(""D J_______ „ V

'* H ^ r’l
(n- 1)

2, (33)

„(D = iy(0)o r j  r,t *
where the symbols s[nJ  

descent directions

(34)

s\!j(kxiky) represent the steepest-

(H) io)p{Y1/2 1 p (n ) * e ik l‘X

x&y
dx

iZ 1/2
0

xe y
vk¡hJp(víl)*eík'ih-x dx

*
(35)

B. Integrals of Green’s functions
The Hankel functions of the integral equation methods 

were calculated by using the polynomial descriptions in (Ref. 

15, pp, 369-370). Although the latter expressions are in

tended for real-valued arguments, complex arguments with 

relatively small imaginary parts also may be used. For the 

absorption typically found in soft human tissue, these expres

sions are accurate to about seven significant digits, where 

recursion relations (Ref. 15, pp. 385-386) were used as ref

erence. When applying the Dirac-weighting functions, ex

ceptions have to be made for the integrable singularities of 

the integral equation kernels, which were evaluated by using 

a piecewise constant weighting function. These singular parts 

of the integrals were evaluated analytically.16 The subintegral 

of the singular derivative of the Hankel function was as

sumed to be zero.

(n) 1/2+ icop2Y0 , x pF(") V v *  dx

+ iZ 1/2
0 x e y

v-k2 F ^ *e lk2 *x dx
*

(36)

C. Spatial discretization
Experiments with the spatial step size showed that, for 

small to moderate surface slopes, the calculations gave con

sistent results for a spatial integration step size Ax^0.2\, 

where X is the smallest wavelength in both media. For larger 

surface slopes the discretization in the x direction should be 

smaller. As an alternative, the discretization can be earned 

out with constant step size along the surface. To study the 

behavior of the methods for vaiying surface characteristics, 

surfaces with different correlation lengths L and different 

The variational parameter is given by ?7(n) = A(?IV5(il) where root-mean-square surface heights h were generated. The ir

regular interface has a surface height with a Gaussian rough

ness spectrum, as described by Thorsos.16 A surface realiza-

and

(I r + (»—1)12)dkx dky. (37)

BW
x e y

(\f{A 2 + \f(J ]\2)dx. (38)

Again a decrease of the error is obtained: 

E R R ^ E R R 0*"1). The transmitted field follows from 

evaluation of Eq. (21).

IV. NUMERICAL IMPLEMENTATION 
A. Weighting functions

Some issues concerning the 2-D implementation are pre

sented. To be able to make a fair comparison between the 

integral equation methods and the plane-wave method, the 

same spatial weighting function was used. For the compari

son described in this paper, Dirac-impulse functions were

tion with correlation length L =  1 mm and rms surface height 

h = 0.5 mm is shown in Fig. 1. The convergence of the CGR 

method is primarily governed by the maximum surface 

slope.9 Therefore the ratio hlL was used as one of the inde

pendent parameters. The other independent parameter was 

the correlation length L. For h/L^0.5, 512 surface points at

a step size Ax=0.2X were used, with k = 2ir((o) Vp2^2) 
wavelength in medium 2. For h/L = 1,1024 surface points 

with Ax=0.1\ were used.

D. Spectral discretization
The CGIE method uses the same function spaces for the 

residuals as for the search directions. For the CGR method

1309 J. Acoust. Soc. Am., Vol. 99, No. 3, March 1996 Berkhoff et a/,: Propagation through rough interfaces 1309



FIG. 2. Residual error HRRC/,) of the CGR method as a function of the 
iteration number n with parameter the ratio r, the total number of plane 
waves taken into account divided by the number of propagating waves; 

L = \=0.294 mm, /z=\/2=0.147 mm.

FIG. 3. Final residual error HRR(N) of the CGR method as a function of the 

number of propagating modes. Evanescent modes are omitted. The dashed 

line corresponds to the number of propagating modes for the discrete Fou

rier transform; 2Nxàxfk, with A^=512, &x/\=0.2, L= 1 mm, h— 0.5 mm.

however, residuals are calculated in the spatial domain, 

whereas, the search directions are calculated in the spectral 

domain. This leads to an additional degree of freedom with 

respect to the discrete implementation. However, it will be 

seen that the discretization in the spatial domain prescribes 

the choice for the (optimum) discretization in the spectral 

domain. This is illustrated in Fig. 2, where the convergence 

properties of the CGR method are shown. The plot shows the 

residual error as a function of the number of iterations. The 

residual error ERRin) at iteration n is defined by

ERR(”>
ERR("}\1/2

ERR
(39)

o

where ERR0 is the initial error E R R ^  for a zero initial guess,

i.e., ^ °V = 0  (CGIE) or 0 ^ = 0  (CGR). The ratio r is intro

duced as the total number of modes taken into account di

vided by the number of propagating modes. In fact, the 

graph of Fig. 2 shows the convergence properties for a fixed 

spectral step size with the number of modes as parameter. It 

can be seen that the error reaches a certain minimum value 

after some iteration steps, where the minimum is lower if 

more modes are included. However, it can also be seen that

more if the number of modes is larger than the number of 

modes for the discrete Fourier transform. Taking the spectral 

stepsize corresponding to the discrete Fourier transform turns 

out to be very convenient in practice. It allows a direct cou

pling of the rough surface calculation method to FFT-based 

extrapolation methods for piano-parallel geometries. Follow

ing the above, the number of plane waves for the CGR 

method was taken to be equal to the number of surface points 

Nx. The spectral step size Akx was taken to be the value for 

the discrete Fourier transform, i.e., £ikx = 27r/(Nxhx). The 

number of unknowns then becomes 2NX if all modes are 

used and 4Nxkxfk if only the propagating modes are used.

E. Preconditioning
In the previous subsection, the inadequate convergence 

of the CGR method was mentioned in the case that evanes

cent modes were included. If the problem would have been 

solved with direct matrix inversion, then the matrix would 

have been found to be very ill conditioned.17 Ill-conditioned 

matrices often lead to badly converging conjugate gradient 

schemes.18 Therefore, a modification of the scheme was

the convergence rate strongly decreases if r becomes larger searched for by employing well-behaved matrix elements,

than unity, i.e., if more evanescent modes are included. In the The modification was implemented along the lines of Ref. 18

next subsection it will be shown how a preconditioning op- by using a preconditioning-operator P that approximates the

erator can improve the convergence considerably for this inverse operator of the problem at hand. The conjugate gra-

case. However, in almost every case occurring in our appli- dient directions for the preconditioned scheme become

cation, we found that the use of propagating modes only, 

leads to a sufficiently small residual error. If we omit the 

evanescent modes altogether, the question remains what the 

desired number of propagating modes is. To this end, all 

modes up to the evanescent mode limit were used where the 

mesh size in the discretized spectral domain was varied. This 

is equivalent to varying the number of propagating modes, 

which is shown in Fig. 3. The dashed line indicates the num

ber of propagating modes corresponding to the discrete Fou-

, , ( « )  
<5 r,f

* (1) o r,t

D *  p J n~ 1 ) -1____
r  S r,t ^  ^ ( » “ 1) 8r ,t

A {n) (/?-1)
(40)

P*Ps (0 ) 
r,t > (41)

where P* is the adjoint of P and where

A(n)
ÛG

J — ÛO
(I p s {; - i ) + \Ps[n~l)\2)dkx dky. (42)

rier transform, for a given spatial stepsize/wavelength ratio. Various preconditioners were evaluated. A preconditioner 

Figure 3 shows that the residual error is not improved any- which gave useful results is the inverse of the diagonal from

1310 J. Acoust. Soc. Am., Vol. 99, No. 3, March 1996 Berkhoff et al.: Propagation through rough interfaces 1310
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Ŝ SfÌ

« :

#ww m a * .

j f e / - : ^ ; . - ................................

M & Ì4 1

t f à i

f / fÀ t t

w,-,
f i i& i i

w $  •
■’W & ì



■! 1 i

v  //,
/ /

T¡

•VI ¿ y

f,

>

1.’

, ‘l 

.V- v’J

■ !■■■;; 
#  
W 1/',

y  i? sí-

'4

Ví

/í>'<

>.
< r

>-
}'

>•;

f.

i

•v

-i)
\ - 1 ?■' <? 

*  > ¥ '  *

y;
>.
V
!'
r

4.
r.

l

^  f ' . >

I

&  f Jw  i

■'o „.v - •; •'/■' •: ■///' -:' - • • '■.•’>■ - ̂  ' ;•1 •■'•• '

: K \ ' . x V f V ¿ . / ¿ / h : Á - k

v.

■■ " ' V . ' V r / S

■•M’ <-h¡0
4 '

,-R,v Í\ f  ’
c-5xr V.

M f  !*• ¿ ,1 >> « ¿ i l
%

%w r a '
*  ?' v  ^  o < &

# V

'í

f- <í/ ’
,-v>

;í;?> 

I  má><¿i <>,/

A  ^
'4 .^

J

-Va

I 4 r1

./A

ú
i-,

t í  f  

’M

J l

/ y1  %  

u - , 4

-J, , 'r 'V5V
«fe*-

11 '4
/ / , > /  y O/ v/--; '.

 ̂ 14 4 I%■¿: ; ' t  5: >, '̂ . :V 
í ;  fc . ■/$..■ >Y \t, '.,'1 y

''r
>-'-■ '.-'i y

'9'i i r :
U :c% uííkn €tíí> í  t K K ¡

r-y * *
*>"• 
f

- ' <í< f k%;̂h i .  1 ü*r>t :-ü I
v

i . : «  i f i c f  l a j k  m c i i i i X í ,  m - c  í i o i i í u í i i
>  : ' j ¿  p  % ' 3  /;■ 'f?fe .*, '1 ¿ | / *, i \ 

fy/ ¿ t /  ,, ?Cy/ '>>..■$

/
- i< f  ,• - '-, ?  

j;
v ,- ,

'.'Í / .  '  • *: Vi,

w

;?i \;íí $%Í*Z*-Tu*i4 --i.. íf- i-;. %■ 'V  ̂ 4--1
:y. f i e•. • j . y* r.

f Vk-
i  l A i l  % « , . % ■  i ‘4 V -  ,

>• - N
\i/j < 11 •

f *1 1 3̂ Irt !Tir%l t'M'Mli, 1. í $%
(< ' ■? .■' %  <f  ”  ’• H: I %

•- « •  K, ••>•

n , ? i 5 fc
■V ft.

yi<^Rv. . , •>
¿ J  

f4f¿,

t

ÍJ. V ^ ,

•:'  ■// ,1

. 1 '•< • - ■>. C í M
‘i1< , 'íi i 
<r

V  ' £ • *  •>. -i- -i-̂
- r/ ,  & p 

í /  (
? - y

'^>(>/

5:

f * 4 b  
% < /  -!; %  i-  -í 'i< -••'-• "

<\ 

- I

^ v. f  y*?,- ti 
¿  y ' i r '4 ,  i  V , #

'A '  •§•<■/.• X ,}.í I í!'|̂
^ • : :< '% % - y

f \ í  W l%  
í\  •> - ^  ■}{ ¿  it

r-w*% <%. I
•f ;y.

■!y' r Y  ■ A,

i  i  Á%

i;: 9 #' '¿v. S- : l'-'̂'i í: ■/- ,¿- "f■ ::-.f |'í. MI f \ fl t í ¡\% 7/1% ?\
0k yfi> <ƒ/ < í  ,V  .jx- I¿,'v •• V . -  ' í  -  . - ’ V J í  /, '

r^i 1 í'íiH ,¿ 
e-̂1

r' -3t

§ 114'. 11 " ̂ 344 U U4. v- Ul ̂  s- V11 i C

f ' . , ,  {{ -7 .,/j ./ ,  ■!..■ • . .  í  V • '

á ! í í l a % C,'k
<4* >h ^  W ' <h>

% % : f,0|1. í ? f w | i «:• ̂  &■■%,
'1'

* f br ^^ fé ^ frn !
•f '

■>/

s'f TéMi í f  ” * Hl
-̂ r) ' •  i '  ■*!<’

•y¡

i-"»» 'f 'f• ̂ .5-̂ f5 í ”W I
|  . . t

■W %>.«§ V*'
'ít¿ I

Vf

yj

í1/í, S-vi

W ’ í  

A '

|;
• f á̂í”

, ,  v. Vj: 
• /  .y

* ,í í s
.•5 . • ^  - / '.'- v  ,f '  <■ >^- í¿I 1 .41« .4' i féj

K . . *■ A .- -  •* » .*>  4  ^

/•i'-v  , / '  i1 ü- 'iy .

-Y v /. •

£ ■ U L ;
p H M ,I '  i?«- -1 <^r

> " j  Vi í;  ̂  ̂"’;í" 
y .

V- '• -y- A K-. ^ k ' ^ '>* ¿ t té I i-/ I ?; Vt 'y/ ^
*/, f , ,t ' $ ’JiS
't. üí

?''■'i i
r<.

i \  ¿Xfí
% I; t ii I¿ i *%

i
sñ.

//
ÚyAt

• '  ‘O '

IA y r * í
',<J .%\-

I 1 C M /-■'

f \ f 1111 f 1t j jk.Mi ! 1/
y  ^  '' xí j  ,íf ' " 'i-

lU M B t )

í í  V,

/ " A .  i “  S?  $I M 1 * :l!M i %H- $ ' t&m- í)  r *
-SVí

o  a  > n
t i " ¿í14 ĉ* T i
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PÏG. 10, Residual error n ÏÏR (" ’ versus computation time on » 40-M1I/ Sun 
Sparc for the CGIK method and the CCîR method.

FIG. H. Magnitude beam cross section of the pressure lield in the focus o f a 
linear array transducer for the CG1H method (solid line) and the C G R  
method (dolled line); plane surface,

is the very rapid convergence Tor media with relatively low

CCiR (Fig. 10). There are two reasons lor this. First, for the contrast and moderate surface roughness. The advantage is

first lew iteration steps, the convergence of C'GIH is not as for» large part obtained from the observation that evanescent 

last as the convergence of CGR. .Second, the computation of modes can safely be neglected. Also in the latter case, the

the Ilankel functions for CC11K requires much more time than method is more accurate than a phase-screen approximation,

the computation (if the exponentials in CGR. However, the For the cases that cvanesecnt modes arc required, an efficient

error obtained with the CCiR method reaches a steady value preconditioning scheme has been presented. A further advan-

after a number of iterations, whereas the error obtained with tagP of the COR method is that it can be directly coupled to

COIF: can be driven to an arbitrarily small value. Our interest MT-bascd extrapolation methods. In addition, the implomen-

is in simulation of interfaces of moderate surface slopes union is relatively simple (also for 3D) because of the lack of

separating media with low contrast. Then, the final error singular integrands. For improved accuracy and stability the

spatial subintegrals can be evaluated analytically for a com

mon class of surfaces and weighting functions. An often 

overlooked advantage of plane-wave methods over Green’s 

function methods is that the algorithms can remain un- 

Two iterative methods for the 2-t) simulation of wave changed for strongly absorptive media, For this condition, 

propagation through aberrating interfaces were compared, the Hankel functions of the integral equation methods should 

The iterative plane-wave (COR) method has a number of be calculated in a more sophisticated way.

However, if extremely rough surfaces have to he evalu

ated* possibly with reentrant points, then the integral equa

tion method should be used.

value which can be obtained with CCiR is sufficiently small.

VI. CONCLUDING REMARKS

attractive features that makes it very suitable for simulation 

through aberrating, media in human tissue, A clear advantage
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F I G . M a g n i t u d e  beam cross section o f the pressure lield in the focus of a 
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