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Abstract — Context-aware computing has been attracting 

growing attention in recent years. Generally, there are several 

ways for a context-aware system to select a course of action for 

a particular context change. One way is for the system 

developers to encompass all possible context changes in the 

domain knowledge. Then, the system matches a context change 

to that in the domain knowledge and chooses the 

corresponding action. Other methods include system 

inferences and adaptive learning whereby the system executes 

one action and evaluates the outcome and self-adapts/self-

learns based on that. However, there are situations where a 

system encounters unknown contexts. In such cases, instead of 

one action being implemented and evaluated, multiple actions 

could be implemented concurrently. This parallel evaluation of 

actions could quicken the evolution time taken to select the best 

action suited to unknown context compared to the iterative 

approach. This paper proposes a framework for context-aware 

systems that finds the best action for unknown context through 

multi-action evaluation and self-adaptation. In a case study, we 

show how our multi-action evaluation system can be 

implemented for a hypothetical hotelier who uses the name-

your-own-price mechanism to sell his perishable inventory.  

Keywords - context-aware systems; self-adaptation; multi-

action evaluation 

I.  INTRODUCTION 

Context awareness is a fundamental concept in pervasive 
computing. There are many definitions to what is a context. 
Context could be defined by location [13], location 
combined with behaviour [3] or encompassing multitude of 
factors such as the definition given by Dey [5]: “Context is 
any information that can be used to characterize the situation 
of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction between a user and an 
application, including the user and applications themselves”. 
This definition gives the context-aware system developers 
much more freedom to decide what constitutes a context. 

Actions in context-aware systems are determined by the 
context and any changes to the context. A context-aware 
application does context inference on the basis of the so-
called 5W1H (Where, When, What, Who, Why, How) 
factors [8]. This means that context-aware applications look 
at the who’s, where’s, when’s and what’s (that is, what the 
user is doing) of entities and use this information to 
determine why the situation is occurring [10]. An application 
doesn’t actually determine why a situation is occurring, but 
the designer of the application does. This means the designer 

has to capture the domain knowledge and input it to the 
system. If there is a context which the designer did not 
foresee, then the context inference would fail.  

Self-adapting or self-learning methods are employed to 
address the issues arising when a system encounters an 
unknown context. These methods use an iterative approach 
to finding the best possible action. In the cases when there is 
a large action space to evaluate, the time to find the best 
action would take longer and may not correctly identify the 
nature of the change due to the unknown context.  

In order to overcome the problems in the iterative 
approach to unknown context, this paper proposes a 
framework which evolves itself when an unknown context is 
encountered. This is achieved by concurrently executing and 
evaluating multiple sets of possible actions and then 
determining the best course of action.  

The rest of this paper is organized as follows. Section II 
reviews related work on context and self-adapting context-
aware models. Section III gives a brief description of the 
proposed framework and details description of the multi-
action evaluation system within the proposed framework. 
Section IV describes the evaluation of the concurrent action 
execution and evaluation system of the proposed framework. 
Section V presents experimental results of the evaluation. 
Finally, the paper concludes with Section VI which 
summarizes the findings from the evaluation and outlines 
directions for future work.  

II. RELATED WORK 

A. Single Context – Single Action 

This category includes relatively simple context-aware 
systems that are specifically developed for smart 
environments and suffer from the earlier mentioned problem 
– the designer has to capture and input the domain 
knowledge into the system. Therefore, this limitation 
prevents such systems from being used in multi-context 
environments. One common theme of these smart 
environments is that, based on sensory data of one or more 
devices, other device(s) state(s) is/are changed to bring the 
environment (in another word context) to an optimal level 
that is most beneficial to the entity in that context. He et al 
[6] provide an example of such a smart plant-watering 
context-aware system. Three main areas could be identified 
in these types of context-aware frameworks – they are 
sensory data acquisition, context inference/management and 
action.  



Due to the nature of its application a context-aware 
framework developed for these smart environments has an 
output action that is of two mutually exclusive states for a 
given context. In other words, the sensor data and action 
have a one-to-one relationship. For example, a context-aware 
application developed to control the ambient temperature in a 
room would have actions to turn on or off a fan or set the 
temperatures of the air conditioning to one specific value Z 
when the ambient temperature is X degrees or between X and 
Y degrees. It is not possible to have and neither does it make 
sense to incorporate into the context-aware framework 
actions such as: when the ambient temperature is X degrees 
turn on and off the fan or set the air conditioning temperature 
to P and Q degrees. 

B. Single Context – Multiple Actions 

One way to overcome this problem is to include system 
inferences and adaptive learning whereby the system 
executes one action and evaluates the outcome and self-
adapts/self-learns based on the outcome. This method is used 
when an unknown context is encountered. For example, a 
context-aware system can be based on the context triple 
model – RAP – where R is a set of context resources, A is a 
set of actors which interact with context resources, and P is a 
set of real context related policies. A self-adapting algorithm 
which implements the RAP model is presented in [4]. This 
algorithm uses a closed feedback loop with four phases – 
monitoring, analysis, planning, and execution. 

Another approach [9] proposes a formal method for 
incremental context awareness based on two monotonic 
extension models. The breadth-monotonic model extends the 
system so that it recognizes more situations (context) than 
before while the depth-monotonic model is applied for the 
cases when there is uncertainty and the system extends itself 
through estimation.  

A third approach [12] defines a self-adapting context 
with the use of context edges (a context edge is the border 
between two contexts) and context spaces where the model is 
based on Q-Learning with a feedback loop which finds the 
optimal action for each state by the reward it receives from 
the environment for actions taken in that state.  

Other proposed models include a model using case base 
reasoning to address domain specific problems and 
incomplete data sets [11]. The models mentioned above try 
to address the lack of domain knowledge through self-
adapting whereas [8] proposes a model where both 
ontological and Bayesian network probabilistic reasoning are 
used for context reasoning and the context is modelled using 
ontology. Similarly, the approach described in [2] uses fuzzy 
sets to allow imperfection in context that is being sensed. 

These models could be used to implement single context 
– multi-action systems. When an unknown context is 
encountered in such systems, it is possible to execute 
multiple actions iteratively and then evaluate the outcome of 
each of these actions to arrive at the best action for the given 
unknown context. In these systems it is also possible to have 
associated a single unknown context value with two or more 
actions before deciding on a best course of action. However, 

due to the iterative approach where each action in the action 
space is executed one at a time and then evaluated to find the 
best action, when the number of actions to execute and 
evaluate increases, the amount of time taken to find the best 
possible action becomes unacceptably long. 

C. Multiple Context – Multiple Actions 

In real world environments multiple contexts are 
considered and the output action correlates to a set of context 
values rather than to a single context, making the system 
multi-context – multi-action one. How such a multi-action 
context-aware system comes into use could be illustrated 
with the name-your-own-price (NYOP) application [15]. 
NYOP is a strategy where the buyer suggests the price which 
he/she is willing to pay for goods or services without 
knowing the minimum threshold price T  which is acceptable 
to the seller. Imagine a hotelier who sells his inventory 
through such a NYOP channel. If the decision to accept or 
reject a bid is solely based on the bid value, then the hotelier 
is not going to have the fluidity to react to the demand 
uncertainty that occurs due to the change in context. 

For example, consider a new event has been planned near 
the vicinity of the hotel and there is no historical data or 
knowledge to rely on which means that this is an unknown 
context. 

In this case, instead of having one threshold price T the 
context-aware NYOP system could be set up with multiple 
threshold values T1 and T2. Type of event and duration of 
the event could be considered as context values as these will 
affect the bid values, action space would consists of number 
of threshold values evaluated concurrently against the bids. 
Domain knowledge would provide the starting set of 
threshold values eliminating threshold values that are not 
worth evaluating against thus reducing number of actions in 
the action space. 

The business model of the hotelier does not suffer from 
having multiple threshold values. Indeed, because the items 
are either perishable or time-dated the retailer wants to 
obtain as much revenue as possible and is ready to accept 
even lower bids as long as the bids that are willing to pay 
more also materialize [15].  

The hotelier’s NYOP channel decisions could be 
influenced by many contexts which may not relate to one 
another. Other examples of such contexts that the hotelier’s 
system could be part of are specific weather conditions (ice, 
snow, hurricane), current occupancy rate (high, low) and 
even the legislation (increase/decrease of taxes). Each of 
these contexts would have multiple values which will have a 
varying degree of influence on the hotelier’s decision making 
process. For example, considering the earlier contexts, events 
could be conferences, official gathering and weddings. Each 
of these events has different characteristics which must be 
considered in the decision making process. The weather 
could be defined with concrete parameters such as 
temperature 27

o
 C, humidity 60%, as well as using vague or 

fuzzy terms such as “sunny day” or “mildly chilly day”.  
 
 



 
 

Figure 1.  High-level system diagram of proposed framework 

 
Permutations of these multiple contexts could be defined 

as below.  
{Conference, Sunny day} action space {A1, A2, ..,An} 
{Wedding, {27

 o
 C, 50% Humidity}, 20% Occupancy}  

action space {Aa,Ab,..,Az} 
Each permutation of these contexts result in multi-action 

evaluation as the hotelier is unlikely to have encountered all 
the permutations and has to decide on the best course of 
action whenever a new permutation of the context values 
occurs. As the number of permutations for different context 
value combinations increases exponentially with an addition 
of each new context, the environment that has to employ 
multi-context – multi-action systems faces several 
challenges. The main challenge is the high number of actions 
or action values to evaluate which results in much longer 
time needed to find the best action for current unknown 
context. 

The multi-action execution and evaluation framework 
proposed in this paper is somewhat similar to the agent's 
action evaluation in subsumption architecture [14] where an 
agent executes multiple actions to evaluate the best one. 

However, the subsumption architecture arranges the 
modules into a hierarchy where actions are divided into low 
priority and high priority as one of its characteristics. In 
contrast, the proposed solution in this paper considers all 
actions to be equal and to have the same level of priority 
until the outcome is evaluated against the goals. 

III. PROPOSED FRAMEWORK 

The proposed framework consists of three systems. They 
are the context system, the inference system and the action 
system. Fig. 1 shows a high-level diagram of the framework 
and the interactions between each system. 

The primary objective of the context system is context 
acquisition and defuzzification. It is assumed that context 
space is a heterogeneous where context values are acquired 

from various heterogeneous sources. Taking the earlier 
example of the hotelier, the occupancy rates would come 
from the hotelier’s own database, weather information from 
a host-to-host (H2H) weather service and information about 
upcoming events through various media sources (electronic 
paper and social media). 

The inference system forms the key part of self-
adaptation. When the best course of action is found for an 
unknown context this information is stored within the 
ontology for future use. The ontology’s inherent inference 
capabilities can be used to check if an unknown context 
could be deduced to a known context before proceeding to 
concurrent multi-action evaluation.  

The action system encompasses all sub-modules related 
to concurrent action execution and evaluation of action 
outcome based on a goal specification. It is only this action 
system that this paper focuses on and evaluates in Section 
IV.  

The action systems come into play when an unknown 
context is encountered by the framework. This would result 
in multiple actions being executed for the same set of 
perceived context values. 

The framework address the problem of high number of 
actions in the action space to evaluate with the use of goal 
specifications. Goals specify the acceptable range of 
outcomes and for an action to qualify to be considered, its 
outcome must fall within the goal specification. This reduces 
the number of actions to be considered in the action space. 
The actual values for goal specifications is determined by 
domain knowledge and dependent on the concrete 
implementation of the framework.  

Taking the earlier mentioned hotelier’s NYOP example, 
the goal specification of the hotelier could be a threshold 
prices between ($100, $200). This means that any action that 
evaluates the threshold price lower than $100 or higher than 
$200 is not considered. Though the hotelier’s NYOP is used 



here for the evaluation, the framework could be adopted into 
any context-aware system where the domain allows multiple 
actions to be executed concurrently and then evaluated to 
find the best possible option. Examples of such systems 
include cloud services that provide spot instances [1] to find 
the optimal market value under various demand and resource 
constraints scenarios. 

A separate concurrent action execution system is used 
while the actions are executed before the evaluation. This is 
intended to provide a separate environment for the actions 
under evaluation. When an unknown context is encountered, 
the system could evaluate either all possible actions within 
the goal specification (brute force evaluation) or start with 
the action of a context which is the closest to the unknown 
one. The latter will further reduce the number of actions 
requiring evaluation.  

The closest known context action is found by calculating 
the difference between the known context values and values 
in the unknown context set. If there are two sets with equal 
differences, then the priority of each context is considered, 
based on the degree of influence each context value has on 
the overall outcome. If two known contexts have the same 
set of difference values, the decision is based on the selected 
direction to start off – optimistically or pessimistically. We 
define starting off optimistically as assuming that the overall 
outcome of the system due to unknown context is higher 
than the outcome from the closest known context action. 
Similarly, starting off pessimistically is defined as assuming 
that the overall outcome of the system due to the unknown 
context is lower than the closest known context action 
outcome. Once the closest action is determined, then it is 
expanded both optimistically and pessimistically with 
actions whose outcome is within the goal specification range. 

The expansion criteria are defined in the action 
refinement system which controls how many actions are in 
the action space. This is done by specifying how many 
actions to expand pessimistically and optimistically, as well 
as the distance between the outcomes of the two nearest 
actions. For an action A, the resulting outcome O is defined 
as a function of O(A). Then, the total action space for 
evaluation under the goal specifications Glo and Ghi with an 
optimistic and pessimistic expansion criteria n,m (n,m > 0), 
distance between the outcomes for the two nearest actions 

 ( > 0) and starting off with closest known context’s 
action O(Ac) could be defined as follows.  

 
Glo <O(An) < O(A(n-1)) < O(Ac) < O(A(m-1)) < O(Am) < Ghi 
 
Here, the terminating conditions for the expansion are 

defined below. 

 O(A(n+1)) < Glo                                                                           (1) 

 O(A(m+1)) > Ghi                                                 (2) 

O(A(n-1)) - O(An)  = O(Am)  - O(A(m-1))  =    (3) 
 
Equation (1) defines actions the outcome of which is 

outside the lower end of the goal specification, while (2) 
defines actions the outcome of which is outside the higher 

end of the goal specification. Equation (3) specifies that the 
difference between the outcomes for any two nearest actions 
in the action space is equal.  

The action evaluation consists of the evaluation criteria 
used to determine the outcome of which action is the most 
beneficial. The evaluation criteria are subjective to the 
concrete implementation of the framework. For example, the 
hotelier’s evaluation criteria would be the action that gives 
the highest yield. If the framework is implemented for an 
error correction system, then the evaluation criteria would be 
the action that results in the lowest error.  

IV. METHODOLOGY 

For the evaluation test case we have envisaged a 
hypothetical scenario where an hotelier sells rooms through 
the NYOP channel. As discussed earlier, the NYOP operates 
by allowing buyers to bid for an item on a perceived value 
rather than based on the actual value set by the seller of the 
item. The seller has an internal threshold value hidden from 
the buyers which he or she considers to be the minimum 
value for a bid in order to successfully complete the 
transaction. There is a variety of NYOP strategies, such as 
allowing multiple bids, restricting subsequent bids to happen 
after a time laps [7, 15] but for our experiments we do not 
employ any such NYOP strategies. Instead, each value is 
considered as an individual bid and not as a subsequent bid 
part of a bidding transaction. We also assume that there are 
no restrictions to using multiple threshold values to evaluate 
the bids.  

For the evaluation we implemented standalone proof-of-
concept module only for the action system. The evaluation is 
only concerned with the concurrent multi-action evaluation 
and it’s assumed that the system is working under the 
condition that it has already encountered an unknown 
context. We have employed the strategy of start off with the 
closest known context.  

We have used two test cases and a control test to go 
along with our experiments. One of the test cases simulates 
an unknown context in which the mean value of the bids is 
lower than the threshold value of the closest known context. 
This case we refer as the pessimistic case where if the 
hotelier does not adjust the threshold value by lowering it to 
capture the bids, he or she will lose out under the current 
context. 

The second test case simulates an unknown context under 
which the mean bid values are considerably higher than the 
threshold value of the closest known context which we refer 
to as the optimistic case. Under this context the hotelier has 
to increase the threshold value to be just below the mean 
value of bids to prevent the bids between the mean value and 
the current threshold value being succeeding. This is a 
NYOP strategy that encourages higher bidding values. 
Though we make no assumption about the bidding strategies 
we include this test case for the completeness of the 
evaluation, by showing that the framework works for both 
the optimistic and the pessimistic cases.  

For the above two test cases each bid value will be 
evaluated concurrently against all the actions in multi-action 
space. It is possible some bids would be successful in more 



than one threshold. In such cases the bid would be 
considered successful only in the highest threshold it exceeds 
and successful bid count will be calculated accordingly. 

We generated bid values using a normal distribution and 
adjusted the mean value to make the generated values fit to 
either pessimistic case or the optimistic case. We set the 
standard variation to the same value as the expansion criteria 
thus ensuring that there are bid values for each range. 

Though we use the normal distribution to generate input 
bid values it makes no difference to the outcome of the test 
case even if they are of different distribution. This is because 
the best course of action is chosen after evaluating all the bid 
values with all the actions in the action space.  

For the control test we employ a self-adaptive context-
aware model that iteratively executes the all possible actions 
when an unknown context is encountered and finally 
evaluates the outcomes to find the best fit. We selected a 
sample size of (total inputs bids / action space size) for each 
action before the next iteration begins. With this sample size 
each action in the action space will evaluate the same 
number of bids and the total number of test cases would be 
the same across all test cases. Under control test cases each 
bid is only evaluated by one action and bid is not repeated 
and also it will evaluate all the bids in the same order as they 
appeared in the two main test cases. 

The action evaluation is done based on the number of 
successful bids for each threshold value. The best course of 
action would be the one with the highest number of 
successful bids. The system evolution would result in 
associating threshold value used by this action being 
associated with the unknown context. 

For the test case we had a goal specification  
(Glo, Ghi) = (190, 300). We set up equal numbers of 
pessimistic and optimistic expansion – (n, m) = (2, 2) – 
making the total actions in the action space (including the 
closest known action) to be 5 and the distance between each 
two nearest actions outcome to be 15. This value is derived 
from the hotelier’s domain knowledge.  

For the unknown context encountered, the system found 
the closest known context action threshold value to be 225. 
We had to know the closest known context action threshold 
value beforehand in order to explicitly generate bid values to 
match the pessimistic and the optimistic cases.  

 We have generated for the pessimistic case 1000 bid 
values using a normal distribution function with a mean 
value of 212.50. For the optimistic case we have generated 
another 1000 bid values with a mean value of 243.50. 

We ran two control tests per each of the cases above 
making four control tests altogether. The two control tests 
differ from each other depending on the direction of the 
iteration, whether it traverses in the optimistic direction or in 
the pessimistic direction. We start off with the closest known 
context action threshold value and evaluate the first 200 
(derived from the total inputs bids / action space size) bid 
values in the same order as the previous test cases. In the 
subsequent iteration we select the nearest pessimistic action 
for one test and when all pessimistic actions are exhausted 
we move to the optimistic actions. In the other test we start 
off from the closest action and move in the direction of the 

optimistic actions before evaluating the pessimistic action. 
This is to check if the order (optimistic action first or 
pessimistic action first) and the nature of the action chosen 
has any effect on the overall outcome compared with the 
concurrent multi-action execution and evaluation.  

V. RESULTS 

The expansion from the closest known context action 
threshold value resulted in five actions that will evaluate bids 
with 5 different threshold values. The threshold values were 
195, 210, 225, 240 and 255. These are denoted as A(195), 
A(210), A(225), A(240) and A(250) in the graphs below.  

 

A. Pessimistic Test Case 

The results of the pessimistic test case (Fig. 2) show that 
under the current unknown context the majority of successful 
bid values were evaluated by an action that had a threshold 
value of 210. In essence, our hypothetical hotelier could 
associate the current unknown context with the threshold 
value 210 for future evaluation thus effectively evolving the 
system to recognise the current unknown context in the 
future. We know this conclusion to be correct as we 
generated the bid values using a normal distribution with a 
mean value of 212.50. 

Looking at the control test cases under the optimistic 
direction we only had 332 successful bid values while in the 
pessimistic direction we only had 342 bid values. The low 
success rate is due to employing only a single action which 
evaluates the bids by using only a single threshold value. 
Furthermore, the results of the test case erroneously show 
195 to be the threshold value under which the majority of 
bids are successful. This proves that using a single action it is 
not possible to capture the nature of the change due to the 
context change evaluating a set number of bids (1000 bids in 
this case) as compared concurrent evaluation.  

 
 

 
 

Figure 2.  Successful bid count for test case where unknown 
context result in pessimistic bid values 



B. Optimsitic Test Case 

 

 
 

Figure 3.  Successful bid count for the test case where unknown 
context results in optimistic bid values 

 
The results of the optimistic test case (Fig. 3) show that 

under the current unknown context the majority of successful 
bids occur with an action that evaluated them with a 
threshold value of 240. Thus, the hypothetical hotelier could 
evolve the system to recognise the current context as an 
optimistic one and set 240 as the threshold for any future 
actions that evaluate the buyer bids under the current context 
set. We know this to be true as the bid values generated 
under the normal distribution had a mean value of 243.50.  

In this case the control test cases, both in the pessimistic 
direction and in the optimistic direction, resulted in 
erroneously identifying that using a threshold value of 195 is 
the correct course of action. In fact, this indicates that the 
context change, or the unknown context encountered has a 
pessimistic effect on the bid values when we know for a fact 
the opposite to be the truth.  

 Examining the results from both test cases shows that 
concurrent multi-action execution and evaluation is able to 
identify the best course of action or an unknown context thus 
evolving the system to work in previously unknown 
contexts. 

VI. CONCLUSION 

In this paper, we proposed a framework for system 
evolution when an unknown context is encountered through 
concurrent multi-action evaluation. An implementation of 
the action system of the proposed framework was completed 
for the NYOP scenario. The experimental results from the 
tests have shown that the concurrent multi-action evaluation 
is capable of correctly identifying the best course of action 
for the unknown context and is able to evolve the system so 
the system could recognize the context in the future. These 
promising results complement very well the much faster 
evaluation time for our concurrent multi-action framework 
when compared to context-aware systems based on the 
iterative approach. 

Though we implemented the action system of the 
framework for an hotelier selling with a NYOP channel, we 
believe the framework could be easily adopted for any 
domain that allows concurrent multi-action evaluation. For 
example, a cloud provider could use the proposed framework 
to adjust the market value of spot instances using wide 
variety of context values such as current resource 
availability, current demand and future demand for spot 
instances and even react quickly to dynamic changes in the 
competitors’ spot instance market values. Another potential 
domain of high interest is the application performance 
tuning, where the proposed framework could be used to 
determine which set of application parameters give the 
greatest performance gains. Both the cloud computing and 
the performance tuning areas provide exciting opportunities 
and directions for future work based on our multi-action 
evaluation framework. 
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