

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

System evolution for unknown context through multi-action
evaluation

Asanga Nimalasena
Vladimir Getov

School of Electronics and Computer Science, University of Westminster

This is a copy of the author’s accepted version of a paper subsequently
published in the proceedings of 2013 IEEE 37th Annual Computer Software
and Applications Conference Workshops (COMPSACW). IEEE, pp. 271-276.
ISBN 9780769549873. It is available online at:

http://dx.doi.org/10.1109/COMPSACW.2013.43

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.

© 2013 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161122394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

System Evolution for Unknown Context through Multi-action Evaluation

Asanga Nimalasena and Vladimir Getov

School of Electronics and Computer Science

University of Westminster

London, United Kingdom

Asanga.Nimalasena@my.westminster.ac.uk, V.S.Getov@westminster.ac.uk

Abstract — Context-aware computing has been attracting

growing attention in recent years. Generally, there are several

ways for a context-aware system to select a course of action for

a particular context change. One way is for the system

developers to encompass all possible context changes in the

domain knowledge. Then, the system matches a context change

to that in the domain knowledge and chooses the

corresponding action. Other methods include system

inferences and adaptive learning whereby the system executes

one action and evaluates the outcome and self-adapts/self-

learns based on that. However, there are situations where a

system encounters unknown contexts. In such cases, instead of

one action being implemented and evaluated, multiple actions

could be implemented concurrently. This parallel evaluation of

actions could quicken the evolution time taken to select the best

action suited to unknown context compared to the iterative

approach. This paper proposes a framework for context-aware

systems that finds the best action for unknown context through

multi-action evaluation and self-adaptation. In a case study, we

show how our multi-action evaluation system can be

implemented for a hypothetical hotelier who uses the name-

your-own-price mechanism to sell his perishable inventory.

Keywords - context-aware systems; self-adaptation; multi-

action evaluation

I. INTRODUCTION

Context awareness is a fundamental concept in pervasive
computing. There are many definitions to what is a context.
Context could be defined by location [13], location
combined with behaviour [3] or encompassing multitude of
factors such as the definition given by Dey [5]: “Context is
any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves”.
This definition gives the context-aware system developers
much more freedom to decide what constitutes a context.

Actions in context-aware systems are determined by the
context and any changes to the context. A context-aware
application does context inference on the basis of the so-
called 5W1H (Where, When, What, Who, Why, How)
factors [8]. This means that context-aware applications look
at the who’s, where’s, when’s and what’s (that is, what the
user is doing) of entities and use this information to
determine why the situation is occurring [10]. An application
doesn’t actually determine why a situation is occurring, but
the designer of the application does. This means the designer

has to capture the domain knowledge and input it to the
system. If there is a context which the designer did not
foresee, then the context inference would fail.

Self-adapting or self-learning methods are employed to
address the issues arising when a system encounters an
unknown context. These methods use an iterative approach
to finding the best possible action. In the cases when there is
a large action space to evaluate, the time to find the best
action would take longer and may not correctly identify the
nature of the change due to the unknown context.

In order to overcome the problems in the iterative
approach to unknown context, this paper proposes a
framework which evolves itself when an unknown context is
encountered. This is achieved by concurrently executing and
evaluating multiple sets of possible actions and then
determining the best course of action.

The rest of this paper is organized as follows. Section II
reviews related work on context and self-adapting context-
aware models. Section III gives a brief description of the
proposed framework and details description of the multi-
action evaluation system within the proposed framework.
Section IV describes the evaluation of the concurrent action
execution and evaluation system of the proposed framework.
Section V presents experimental results of the evaluation.
Finally, the paper concludes with Section VI which
summarizes the findings from the evaluation and outlines
directions for future work.

II. RELATED WORK

A. Single Context – Single Action

This category includes relatively simple context-aware
systems that are specifically developed for smart
environments and suffer from the earlier mentioned problem
– the designer has to capture and input the domain
knowledge into the system. Therefore, this limitation
prevents such systems from being used in multi-context
environments. One common theme of these smart
environments is that, based on sensory data of one or more
devices, other device(s) state(s) is/are changed to bring the
environment (in another word context) to an optimal level
that is most beneficial to the entity in that context. He et al
[6] provide an example of such a smart plant-watering
context-aware system. Three main areas could be identified
in these types of context-aware frameworks – they are
sensory data acquisition, context inference/management and
action.

Due to the nature of its application a context-aware
framework developed for these smart environments has an
output action that is of two mutually exclusive states for a
given context. In other words, the sensor data and action
have a one-to-one relationship. For example, a context-aware
application developed to control the ambient temperature in a
room would have actions to turn on or off a fan or set the
temperatures of the air conditioning to one specific value Z
when the ambient temperature is X degrees or between X and
Y degrees. It is not possible to have and neither does it make
sense to incorporate into the context-aware framework
actions such as: when the ambient temperature is X degrees
turn on and off the fan or set the air conditioning temperature
to P and Q degrees.

B. Single Context – Multiple Actions

One way to overcome this problem is to include system
inferences and adaptive learning whereby the system
executes one action and evaluates the outcome and self-
adapts/self-learns based on the outcome. This method is used
when an unknown context is encountered. For example, a
context-aware system can be based on the context triple
model – RAP – where R is a set of context resources, A is a
set of actors which interact with context resources, and P is a
set of real context related policies. A self-adapting algorithm
which implements the RAP model is presented in [4]. This
algorithm uses a closed feedback loop with four phases –
monitoring, analysis, planning, and execution.

Another approach [9] proposes a formal method for
incremental context awareness based on two monotonic
extension models. The breadth-monotonic model extends the
system so that it recognizes more situations (context) than
before while the depth-monotonic model is applied for the
cases when there is uncertainty and the system extends itself
through estimation.

A third approach [12] defines a self-adapting context
with the use of context edges (a context edge is the border
between two contexts) and context spaces where the model is
based on Q-Learning with a feedback loop which finds the
optimal action for each state by the reward it receives from
the environment for actions taken in that state.

Other proposed models include a model using case base
reasoning to address domain specific problems and
incomplete data sets [11]. The models mentioned above try
to address the lack of domain knowledge through self-
adapting whereas [8] proposes a model where both
ontological and Bayesian network probabilistic reasoning are
used for context reasoning and the context is modelled using
ontology. Similarly, the approach described in [2] uses fuzzy
sets to allow imperfection in context that is being sensed.

These models could be used to implement single context
– multi-action systems. When an unknown context is
encountered in such systems, it is possible to execute
multiple actions iteratively and then evaluate the outcome of
each of these actions to arrive at the best action for the given
unknown context. In these systems it is also possible to have
associated a single unknown context value with two or more
actions before deciding on a best course of action. However,

due to the iterative approach where each action in the action
space is executed one at a time and then evaluated to find the
best action, when the number of actions to execute and
evaluate increases, the amount of time taken to find the best
possible action becomes unacceptably long.

C. Multiple Context – Multiple Actions

In real world environments multiple contexts are
considered and the output action correlates to a set of context
values rather than to a single context, making the system
multi-context – multi-action one. How such a multi-action
context-aware system comes into use could be illustrated
with the name-your-own-price (NYOP) application [15].
NYOP is a strategy where the buyer suggests the price which
he/she is willing to pay for goods or services without
knowing the minimum threshold price T which is acceptable
to the seller. Imagine a hotelier who sells his inventory
through such a NYOP channel. If the decision to accept or
reject a bid is solely based on the bid value, then the hotelier
is not going to have the fluidity to react to the demand
uncertainty that occurs due to the change in context.

For example, consider a new event has been planned near
the vicinity of the hotel and there is no historical data or
knowledge to rely on which means that this is an unknown
context.

In this case, instead of having one threshold price T the
context-aware NYOP system could be set up with multiple
threshold values T1 and T2. Type of event and duration of
the event could be considered as context values as these will
affect the bid values, action space would consists of number
of threshold values evaluated concurrently against the bids.
Domain knowledge would provide the starting set of
threshold values eliminating threshold values that are not
worth evaluating against thus reducing number of actions in
the action space.

The business model of the hotelier does not suffer from
having multiple threshold values. Indeed, because the items
are either perishable or time-dated the retailer wants to
obtain as much revenue as possible and is ready to accept
even lower bids as long as the bids that are willing to pay
more also materialize [15].

The hotelier’s NYOP channel decisions could be
influenced by many contexts which may not relate to one
another. Other examples of such contexts that the hotelier’s
system could be part of are specific weather conditions (ice,
snow, hurricane), current occupancy rate (high, low) and
even the legislation (increase/decrease of taxes). Each of
these contexts would have multiple values which will have a
varying degree of influence on the hotelier’s decision making
process. For example, considering the earlier contexts, events
could be conferences, official gathering and weddings. Each
of these events has different characteristics which must be
considered in the decision making process. The weather
could be defined with concrete parameters such as
temperature 27

o
 C, humidity 60%, as well as using vague or

fuzzy terms such as “sunny day” or “mildly chilly day”.

Figure 1. High-level system diagram of proposed framework

Permutations of these multiple contexts could be defined

as below.
{Conference, Sunny day} action space {A1, A2, ..,An}
{Wedding, {27

 o
 C, 50% Humidity}, 20% Occupancy}

action space {Aa,Ab,..,Az}
Each permutation of these contexts result in multi-action

evaluation as the hotelier is unlikely to have encountered all
the permutations and has to decide on the best course of
action whenever a new permutation of the context values
occurs. As the number of permutations for different context
value combinations increases exponentially with an addition
of each new context, the environment that has to employ
multi-context – multi-action systems faces several
challenges. The main challenge is the high number of actions
or action values to evaluate which results in much longer
time needed to find the best action for current unknown
context.

The multi-action execution and evaluation framework
proposed in this paper is somewhat similar to the agent's
action evaluation in subsumption architecture [14] where an
agent executes multiple actions to evaluate the best one.

However, the subsumption architecture arranges the
modules into a hierarchy where actions are divided into low
priority and high priority as one of its characteristics. In
contrast, the proposed solution in this paper considers all
actions to be equal and to have the same level of priority
until the outcome is evaluated against the goals.

III. PROPOSED FRAMEWORK

The proposed framework consists of three systems. They
are the context system, the inference system and the action
system. Fig. 1 shows a high-level diagram of the framework
and the interactions between each system.

The primary objective of the context system is context
acquisition and defuzzification. It is assumed that context
space is a heterogeneous where context values are acquired

from various heterogeneous sources. Taking the earlier
example of the hotelier, the occupancy rates would come
from the hotelier’s own database, weather information from
a host-to-host (H2H) weather service and information about
upcoming events through various media sources (electronic
paper and social media).

The inference system forms the key part of self-
adaptation. When the best course of action is found for an
unknown context this information is stored within the
ontology for future use. The ontology’s inherent inference
capabilities can be used to check if an unknown context
could be deduced to a known context before proceeding to
concurrent multi-action evaluation.

The action system encompasses all sub-modules related
to concurrent action execution and evaluation of action
outcome based on a goal specification. It is only this action
system that this paper focuses on and evaluates in Section
IV.

The action systems come into play when an unknown
context is encountered by the framework. This would result
in multiple actions being executed for the same set of
perceived context values.

The framework address the problem of high number of
actions in the action space to evaluate with the use of goal
specifications. Goals specify the acceptable range of
outcomes and for an action to qualify to be considered, its
outcome must fall within the goal specification. This reduces
the number of actions to be considered in the action space.
The actual values for goal specifications is determined by
domain knowledge and dependent on the concrete
implementation of the framework.

Taking the earlier mentioned hotelier’s NYOP example,
the goal specification of the hotelier could be a threshold
prices between ($100, $200). This means that any action that
evaluates the threshold price lower than $100 or higher than
$200 is not considered. Though the hotelier’s NYOP is used

here for the evaluation, the framework could be adopted into
any context-aware system where the domain allows multiple
actions to be executed concurrently and then evaluated to
find the best possible option. Examples of such systems
include cloud services that provide spot instances [1] to find
the optimal market value under various demand and resource
constraints scenarios.

A separate concurrent action execution system is used
while the actions are executed before the evaluation. This is
intended to provide a separate environment for the actions
under evaluation. When an unknown context is encountered,
the system could evaluate either all possible actions within
the goal specification (brute force evaluation) or start with
the action of a context which is the closest to the unknown
one. The latter will further reduce the number of actions
requiring evaluation.

The closest known context action is found by calculating
the difference between the known context values and values
in the unknown context set. If there are two sets with equal
differences, then the priority of each context is considered,
based on the degree of influence each context value has on
the overall outcome. If two known contexts have the same
set of difference values, the decision is based on the selected
direction to start off – optimistically or pessimistically. We
define starting off optimistically as assuming that the overall
outcome of the system due to unknown context is higher
than the outcome from the closest known context action.
Similarly, starting off pessimistically is defined as assuming
that the overall outcome of the system due to the unknown
context is lower than the closest known context action
outcome. Once the closest action is determined, then it is
expanded both optimistically and pessimistically with
actions whose outcome is within the goal specification range.

The expansion criteria are defined in the action
refinement system which controls how many actions are in
the action space. This is done by specifying how many
actions to expand pessimistically and optimistically, as well
as the distance between the outcomes of the two nearest
actions. For an action A, the resulting outcome O is defined
as a function of O(A). Then, the total action space for
evaluation under the goal specifications Glo and Ghi with an
optimistic and pessimistic expansion criteria n,m (n,m > 0),
distance between the outcomes for the two nearest actions

 (> 0) and starting off with closest known context’s
action O(Ac) could be defined as follows.

Glo <O(An) < O(A(n-1)) < O(Ac) < O(A(m-1)) < O(Am) < Ghi

Here, the terminating conditions for the expansion are

defined below.

 O(A(n+1)) < Glo (1)

 O(A(m+1)) > Ghi (2)

O(A(n-1)) - O(An) = O(Am) - O(A(m-1)) = (3)

Equation (1) defines actions the outcome of which is

outside the lower end of the goal specification, while (2)
defines actions the outcome of which is outside the higher

end of the goal specification. Equation (3) specifies that the
difference between the outcomes for any two nearest actions
in the action space is equal.

The action evaluation consists of the evaluation criteria
used to determine the outcome of which action is the most
beneficial. The evaluation criteria are subjective to the
concrete implementation of the framework. For example, the
hotelier’s evaluation criteria would be the action that gives
the highest yield. If the framework is implemented for an
error correction system, then the evaluation criteria would be
the action that results in the lowest error.

IV. METHODOLOGY

For the evaluation test case we have envisaged a
hypothetical scenario where an hotelier sells rooms through
the NYOP channel. As discussed earlier, the NYOP operates
by allowing buyers to bid for an item on a perceived value
rather than based on the actual value set by the seller of the
item. The seller has an internal threshold value hidden from
the buyers which he or she considers to be the minimum
value for a bid in order to successfully complete the
transaction. There is a variety of NYOP strategies, such as
allowing multiple bids, restricting subsequent bids to happen
after a time laps [7, 15] but for our experiments we do not
employ any such NYOP strategies. Instead, each value is
considered as an individual bid and not as a subsequent bid
part of a bidding transaction. We also assume that there are
no restrictions to using multiple threshold values to evaluate
the bids.

For the evaluation we implemented standalone proof-of-
concept module only for the action system. The evaluation is
only concerned with the concurrent multi-action evaluation
and it’s assumed that the system is working under the
condition that it has already encountered an unknown
context. We have employed the strategy of start off with the
closest known context.

We have used two test cases and a control test to go
along with our experiments. One of the test cases simulates
an unknown context in which the mean value of the bids is
lower than the threshold value of the closest known context.
This case we refer as the pessimistic case where if the
hotelier does not adjust the threshold value by lowering it to
capture the bids, he or she will lose out under the current
context.

The second test case simulates an unknown context under
which the mean bid values are considerably higher than the
threshold value of the closest known context which we refer
to as the optimistic case. Under this context the hotelier has
to increase the threshold value to be just below the mean
value of bids to prevent the bids between the mean value and
the current threshold value being succeeding. This is a
NYOP strategy that encourages higher bidding values.
Though we make no assumption about the bidding strategies
we include this test case for the completeness of the
evaluation, by showing that the framework works for both
the optimistic and the pessimistic cases.

For the above two test cases each bid value will be
evaluated concurrently against all the actions in multi-action
space. It is possible some bids would be successful in more

than one threshold. In such cases the bid would be
considered successful only in the highest threshold it exceeds
and successful bid count will be calculated accordingly.

We generated bid values using a normal distribution and
adjusted the mean value to make the generated values fit to
either pessimistic case or the optimistic case. We set the
standard variation to the same value as the expansion criteria
thus ensuring that there are bid values for each range.

Though we use the normal distribution to generate input
bid values it makes no difference to the outcome of the test
case even if they are of different distribution. This is because
the best course of action is chosen after evaluating all the bid
values with all the actions in the action space.

For the control test we employ a self-adaptive context-
aware model that iteratively executes the all possible actions
when an unknown context is encountered and finally
evaluates the outcomes to find the best fit. We selected a
sample size of (total inputs bids / action space size) for each
action before the next iteration begins. With this sample size
each action in the action space will evaluate the same
number of bids and the total number of test cases would be
the same across all test cases. Under control test cases each
bid is only evaluated by one action and bid is not repeated
and also it will evaluate all the bids in the same order as they
appeared in the two main test cases.

The action evaluation is done based on the number of
successful bids for each threshold value. The best course of
action would be the one with the highest number of
successful bids. The system evolution would result in
associating threshold value used by this action being
associated with the unknown context.

For the test case we had a goal specification
(Glo, Ghi) = (190, 300). We set up equal numbers of
pessimistic and optimistic expansion – (n, m) = (2, 2) –
making the total actions in the action space (including the
closest known action) to be 5 and the distance between each
two nearest actions outcome to be 15. This value is derived
from the hotelier’s domain knowledge.

For the unknown context encountered, the system found
the closest known context action threshold value to be 225.
We had to know the closest known context action threshold
value beforehand in order to explicitly generate bid values to
match the pessimistic and the optimistic cases.

 We have generated for the pessimistic case 1000 bid
values using a normal distribution function with a mean
value of 212.50. For the optimistic case we have generated
another 1000 bid values with a mean value of 243.50.

We ran two control tests per each of the cases above
making four control tests altogether. The two control tests
differ from each other depending on the direction of the
iteration, whether it traverses in the optimistic direction or in
the pessimistic direction. We start off with the closest known
context action threshold value and evaluate the first 200
(derived from the total inputs bids / action space size) bid
values in the same order as the previous test cases. In the
subsequent iteration we select the nearest pessimistic action
for one test and when all pessimistic actions are exhausted
we move to the optimistic actions. In the other test we start
off from the closest action and move in the direction of the

optimistic actions before evaluating the pessimistic action.
This is to check if the order (optimistic action first or
pessimistic action first) and the nature of the action chosen
has any effect on the overall outcome compared with the
concurrent multi-action execution and evaluation.

V. RESULTS

The expansion from the closest known context action
threshold value resulted in five actions that will evaluate bids
with 5 different threshold values. The threshold values were
195, 210, 225, 240 and 255. These are denoted as A(195),
A(210), A(225), A(240) and A(250) in the graphs below.

A. Pessimistic Test Case

The results of the pessimistic test case (Fig. 2) show that
under the current unknown context the majority of successful
bid values were evaluated by an action that had a threshold
value of 210. In essence, our hypothetical hotelier could
associate the current unknown context with the threshold
value 210 for future evaluation thus effectively evolving the
system to recognise the current unknown context in the
future. We know this conclusion to be correct as we
generated the bid values using a normal distribution with a
mean value of 212.50.

Looking at the control test cases under the optimistic
direction we only had 332 successful bid values while in the
pessimistic direction we only had 342 bid values. The low
success rate is due to employing only a single action which
evaluates the bids by using only a single threshold value.
Furthermore, the results of the test case erroneously show
195 to be the threshold value under which the majority of
bids are successful. This proves that using a single action it is
not possible to capture the nature of the change due to the
context change evaluating a set number of bids (1000 bids in
this case) as compared concurrent evaluation.

Figure 2. Successful bid count for test case where unknown
context result in pessimistic bid values

B. Optimsitic Test Case

Figure 3. Successful bid count for the test case where unknown
context results in optimistic bid values

The results of the optimistic test case (Fig. 3) show that

under the current unknown context the majority of successful
bids occur with an action that evaluated them with a
threshold value of 240. Thus, the hypothetical hotelier could
evolve the system to recognise the current context as an
optimistic one and set 240 as the threshold for any future
actions that evaluate the buyer bids under the current context
set. We know this to be true as the bid values generated
under the normal distribution had a mean value of 243.50.

In this case the control test cases, both in the pessimistic
direction and in the optimistic direction, resulted in
erroneously identifying that using a threshold value of 195 is
the correct course of action. In fact, this indicates that the
context change, or the unknown context encountered has a
pessimistic effect on the bid values when we know for a fact
the opposite to be the truth.

 Examining the results from both test cases shows that
concurrent multi-action execution and evaluation is able to
identify the best course of action or an unknown context thus
evolving the system to work in previously unknown
contexts.

VI. CONCLUSION

In this paper, we proposed a framework for system
evolution when an unknown context is encountered through
concurrent multi-action evaluation. An implementation of
the action system of the proposed framework was completed
for the NYOP scenario. The experimental results from the
tests have shown that the concurrent multi-action evaluation
is capable of correctly identifying the best course of action
for the unknown context and is able to evolve the system so
the system could recognize the context in the future. These
promising results complement very well the much faster
evaluation time for our concurrent multi-action framework
when compared to context-aware systems based on the
iterative approach.

Though we implemented the action system of the
framework for an hotelier selling with a NYOP channel, we
believe the framework could be easily adopted for any
domain that allows concurrent multi-action evaluation. For
example, a cloud provider could use the proposed framework
to adjust the market value of spot instances using wide
variety of context values such as current resource
availability, current demand and future demand for spot
instances and even react quickly to dynamic changes in the
competitors’ spot instance market values. Another potential
domain of high interest is the application performance
tuning, where the proposed framework could be used to
determine which set of application parameters give the
greatest performance gains. Both the cloud computing and
the performance tuning areas provide exciting opportunities
and directions for future work based on our multi-action
evaluation framework.

REFERENCES

[1] Amazon EC2 Spot Instances, http://aws.amazon.com/ec2/spot-
instances/ , last visited on 19 Jan 2013.

[2] C. Anagnostopoulos and S. Hadjiefthymiades, Advanced Inference in
Situation-Aware Computing. IEEE Trans. Systems, Man and
Cybernetics, Part A: Systems and Humans, 39 (5), 1108-1115, 2009.

[3] P.J. Brown, J.D. Bovey and X. Chen, Context-aware applications:
from the laboratory to the marketplace, IEEE Personal
Communications, 4 (5), 58-64, 1997.

[4] T. Cioara et al., A self-adapting algorithm for context aware systems,
Proc. 9th Roedunet Int. Conference (RoEduNet), pp. 374-379, 2010.

[5] A.K. Dey, Understanding and Using Context, J. Personal and
Ubiquitous Computing. 5 (1), 4-7, 2001.

[6] J. He, Y. Zhang, G. Huang and J. Cao, A smart web service based on
the context of things. ACM Trans. Internet Technology. 11 (3), 13:1-
13:23, 2012.

[7] O. Hinz, I. Hann and M. Spann, Price discrimination in e- commerce?
An examination of dynamic pricing in name-your-own price markets,
Mis quarterly, 35 (1), 81-98, 2011.

[8] K. Kwang-Eun and S. Kwee-Bo, Development of context aware
system based on Bayesian network driven context reasoning method
and ontology context modeling, Proc. Int. Conf. Control, Automation
and Systems (ICCAS), pp. 2309-2313, 2008.

[9] S.W. Loke, Incremental awareness and compositionality: A design
philosophy for context-aware pervasive systems, Pervasive and
Mobile Computing. 6 (2), 239-253, 2010.

[10] J. Madhusudanan, A. Selvakumar and R. Sudha, Frame work for
context aware applications, Proc. Int. Conf. Computing
Communication and Networking Technologies (ICCCNT), pp. 1-4,
2010.

[11] N. Nwiabu, I. Allison, P. Holt, P. Lowit and B. Oyeneyin, Situation
awareness in context-aware case-based decision support, IEEE 1st Int.
Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (CogSIMA), pp. 9-16, 2011.

[12] N. O’Connor, R. Cunningham and V. Cahill, Self-Adapting Context
Definition, Proc. 1st Int. Conf. Self-Adaptive and Self-Organizing
Systems (SASO '07), pp. 336-339, 2007.

[13] B.N. Schilit and M.M Theimer, Disseminating active map
information to mobile hosts, IEEE Network, 8 (5), 22-32, 1994.

[14] M. Wooldridge, Intelligent Agents. MIT Press, 1999.

[15] J.G. Wilson and G. Zhang, Optimal design of a name- your- own
price channel, J. Revenue and Pricing Management, 7 (3), 281-290,
2008.

http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/

