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All-Adaptive Blind Matched Filtering for the
Equalization and Identification of Multipath

Channels - A Practical Approach
Adem Coskun and Izzet Kale,Member, IEEE,

Abstract—Blind matched filter receiver is advantageous over
the state-of-the-art blind schemes due the simplicity in its imple-
mentation. To estimate the multipath communication channels,
it uses neither any matrix decomposition methods nor statistics
of the received data higher than the second order ones. On the
other hand, the realization of the conventional blind matched
filter receiver requires the noise variance to be estimated and the
equalizer parameters to be calculated in state-space with rela-
tively costly matrix operations. In this paper, a novel architecture
is proposed to simplify a potential hardware implementation of
the blind matched filter receiver. Our novel approach transforms
the blind matched filter receiver into an all-adaptive format
which replaces all the matrix operations. Furthermore, thenovel
design does not need for any extra step to estimate the noise
variance. In this paper we also report on a comparative channel
equalization and channel identification scenario, lookinginto the
performances of the conventional and our novel all-adaptive blind
matched filter receiver through simulations.

Index Terms—Blind Channel Estimation, Blind Channel
Equalization, Constant Modulus Algorithm (CMA), Single In put
Single Output (SISO) Channels .

I. I NTRODUCTION

M Ultipath fading is one of the major problems in wireless
communication channels. Due to scattering, reflection

and diffraction occurring within the channel, the transmitted
signal arrives at the receiver through a number of multi-
ple paths. If the coherence bandwidth of the channel gets
lower than the signal bandwidth, due to multipath fading,
the symbols transmitted at each symbol period spread over
other signals in the adjacent symbol periods. This type of
interference is called Inter-Symbol Interference (ISI). The
estimation of the Channel Impulse Response (CIR), which
carries the information on the multipath components, and the
equalization of the communication channel play an important
role in furnishing an ISI free signal transmission.

The Blind Matched Filter (BMF) receiver[1], [2] aims to
implement Forney’s receiver[3], which is the optimum receiver
in the presence of ISI and Additive White Gaussian Noise
(AWGN), blindly without the need for the explicit knowledge
of the CIR. For this purpose the BMF approach makes use
of an adaptive filter, updated via a computationally simple
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algorithm i.e. the Constant Modulus Algorithm (CMA). With
the incorporation of the CMA into the blind CIR estimation
process;

1) The communication doesn’t depend on the transmission
of training signals, as the use of training symbols,
which are carrying no valuable information, making
them inherently inefficient and wasting the bandwidth
of the communication channel as well as resources at
both ends, and

2) Neither matrix decomposition methods, which are im-
plementation inefficient and expensive (such as[4],[5]
using Singular Value Decomposition (SVD) and[6],
[7],[8] using Eigen Value Decomposition (EVD)) nor
higher order cumulant functions of the received data, e.g.
[9], [10], which eventually leads to the need for long data
records for accurate estimation of higher-order statistics
of the received signal, were needed.

BMF is also applicable to space-time communications[11]
and its convergence speed and accuracy has further been
enhanced in[12]. Good references on the conventional ways
for the identification of the communication channels blindly
are [13] and [14].

Over the past few years, many novel blind channel esti-
mation methods were proposed for various communication
scenarios. In the recent studies matrix decomposition methods
are still a need, such as[15] and [16] for Multiple Input
Multiple Output Orthogonal Frequency Division Multiplexing
(MIMO-OFDM), [17] for Multi-Carrier Code Division Multi-
ple Access (MC-CDMA) systems and[18] for MIMO single-
carrier zero-padding block-transmission systems. On the other
hand, recursive methods for blind channel estimation needs
for multiple antennas or over-sampling at the receiver end[19].
Therefore, for Single Input Single Output (SISO) channels,the
BMF receiver is still advantageous in terms of computational
complexity over the state-of-the-art blind channel estimation
methods due to the use of the CMA in its blind matched filter
estimation process.

Apart from the adaptive filtering block that implements the
CMA, the BMF receiver is also composed of a linear channel
equalizer block, the parameters of which have to be calculated
by making use of the auto-correlation of the CIR. Although the
structural simplicity appears to be the most striking feature of
the BMF receiver due to the use of the CMA, the calculation
of the filter parameters of the channel equalizer is performed
deploying state-space operations, including matrix inversion.
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In this paper we propose an all-adaptive BMF receiver discard-
ing the need for any matrix operation, where the equalizer
parameters are found via a recursive algorithm. Operations
such as matrix inversion have complexity of orderJ3 for a
J×J matrix (See Table I in[20]). On the other hand, the
recursive algorithms like Least Mean Square (LMS) and CMA
have a complexity order ofJ when the size of the recursive
filter is set toJ . The estimation of the noise variance is also no
longer required in our novel receiver where it is an essential
component in the conventional design of the BMF receiver. In
general the all adaptive design is applicable to Single Input
Single Output (SISO) communication channels, where there
is no need for over-sampling or introducing space diversity.

In the next section the channel model, adopted throughout
the paper, will be explained. Section III presents a detailed
derivation and explanation on how our novel all-adaptive BMF
receiver works. An extensive set of simulations will be given
in Section IV, demonstrating the validity and viability of our
novel approach, with the final section being dedicated to
conclusions.

II. CHANNEL MODEL

We assume a Single Input Single Output (SISO) com-
munications scenario, where a single transmit and a single
receive antenna are present at the transmission ends. The
communication channel is assumed to be frequency selective
where the number of the multipath components,L, is already
known to the receiver. The received data vector,r(k), can be
formulated as follows,

r(k) = H× s(k) + n(k), (1)

wherer(k) represents the vector of received symbols of size
W×1, i.e. r(k) = [r(k), r(k − 1), · · ·, r(k − W + 1)]T .
Note that lower casebold characters represent the vectors
and upper case bold characters represent the matrices, while
italic characters represent scalars in the time domain. The
superscript(·)T is the vector transpose andk is the discrete
time index for0≤k≤D − 1. D is the duration for the whole
channel activity and it is the same for the duration of the whole
signal transmission and signal reception. Brackets[·] contain
the elements of a vector or a matrix andW is the length of
the filter thatr(k) is processed with. In this paper this filter
is either the channel matched filter or the channel equalizer.

Similar to r(k), the noise vectorn(k) is also of size
W×1 which is assumed to have zero mean white Gaus-
sian characteristics withE{n(k)nH(k)} = σ2

nIW,W , where
σ2

n is the noise variance andIW,W is the identity ma-
trix of size W×W . The vector of transmit symbols is
s(k) = [s(k), s(k − 1), · · ·, s(k − L − W + 1)]T , of size
(L+W )×1 which are independent and identically-distributed
(i.i.d.), i.e. E{s(k)sH(k)} = σ2

sIL+W,L+W . E{·} is the
mathematical expectation and(·)H is the Hermitian transpose.
The time-invariant transmission channel matrixH of size
W×(L + W ) can be represented as
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Fig. 1. (a) System model for the matched filter receiver (b) System model
for the BMF receiver, where the channel equalizerF (z) is placed prior to the
channel matched filterM(z). The filtered signal from the matched filter is
applied to a decision device in order to obtain the estimate of the transmitted
data stream .∆ is the equalization delay.

H =





h(0) · · · h(L) 0 · · · 0

0 h(0) · · · h(L)
...

...
. . .

. . .
. . . 0

0 · · · 0 h(0) · · · h(L)




(2)

and h = [ h(0), h(1), · · · , h(L) ],h(0) + h(1)z−1 +
...+h(L)z−L = H(z). Therefore, the communication scenario
given in (1) can also be formulated in thez-domain as

R(z) =

D−1∑

k=0

r(k)zk−D+1

= H(z)S(z) + N(z). (3)

H is in the form of a convolution matrix and for the sake
of simplicity a convolution matrix will simply be represented
with the notationConv, e.g.H = Conv(H(z)), in this paper.
The representations inz-domain will be in italic capitals as in
(3).

III. A LL -ADAPTIVE BLIND MATCHED FILTER RECEIVER

The matched filter receiver is shown in Fig.1(a). The
receiver is formed of two processing blocks; the channel
matched filterM(z) and the channel equalizerF (z). Because
both M(z) and F (z) represent linear filters, their positions
can be exchanged as in Fig.1(b), to form the BMF receiver.
Once the receiver is as in Fig.1(b),M(z) can be estimated
via the CMA. The advantages of using this type of receiver is
that

• The matched filter, consequently the channel response, is
extracted accommodating the CMA, which is known to
be one of the simplest blind schemes

• The channel is equalized without a need for an extra
hardware for channel equalization.
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On the other hand, for the realization ofF (z), the BMF
receiver necessitates the use of matrix operations (see equation
(8) in [1] as repeated in Appendix A, which will be re-visited
further in this paper). In this section, we report on our novel
all-adaptive BMF receiver, where bothM(z) and F (z) are
estimated adaptively. In Section III.A we shall look at the
derivation of the FIR all-adaptive BMF receiver and in III.B
the findings will be extended to establish an IIR model for
the all-adaptive BMF. Section III.C summarizes the novel all-
adaptive approach with some remarks and discussions on its
use.

A. FIR All-adaptive BMF Receiver

Filtering R(z) with F (z), as shown in Fig.1(b), gives

X(z) = F (z)R(z)

= F (z)H(z)S(z) + F (z)N(z). (4)

If M(z) is to be designed as a Minimum Mean Squared
Error (MMSE) equalizer, thenM(z) should satisfy the orthog-
onality principleE{(M(z)X(z) − S(z))X̄(z)} = 0, which
leads to

M(z) = E{S(z)X̄(z)}E{X(z)X̄(z)}−1

= ΦSX(ΦXX)−1. (5)

where ΦXX is the auto-correlation function forX(z),
which can be calculated asΦXX = F (z)ΦRRF̄ (z). Sim-
ilarly ΦSX is the cross-correlation function forS(z)
and X̄(z), where ΦSX = F̄ (z)H̄(z)ΦSS . Notation
(̄·) implies paraconjugate of a transfer function, e.g.
F̄ (z) = F ∗( 1

z∗
). (·)∗ denotes the conjugate operation.

The autocorrelation functionΦSS is defined asΦSS =
E{S(z)S̄(z)} =

∑∞
i=−∞ limD→∞

1
D
{∑D−1

k=0 s(k)s∗(k −
i)}z−i. Becauses(k)s are i.i.d.,ΦSS = σ2

s , and similarly
ΦNN = σ2

n.
if we chooseF (z) to be

F (z) =
σ2

s

ΦRR

=
1

H(z)H̄(z) + γ
=

1

Q(z)
, (6)

the MMSE equalizerM(z) can be found as

M(z) =
H̄(z)ΦSS

F (z)ΦRR

= H̄(z), (7)

whereγ = σ2
n/σ2

s andH̄(z) =
∑0

i=−L h∗(−i)z−i.
(7) shows that, ifF (z) is as in (6), M(z), designed in

the MMSE sense, is an FIR filter and is equal to the time-
reversed conjugate ofH(z), which is also known as the
channel matched filter. The vector of coefficients forM(z)
are m = [m(−L), ..., m(0)], where m(−i) = h∗(i) for
i = 0, .., L.

On the other hand,Q(z), from (6), can be estimated by
setting a finiteD in the autocorrelation functionΦRR as

Q̃(z) =
Φ̃RR

σ2
s

=
L∑

i=−L

∑D−1
k=0 {r(k)r∗(k − i)}z−i

Dσ2
s

, (8)

whereQ̃(z) = q̃(L)z−L + ... + q̃(0) + ... + q̃(−L)zL. Terms
with ∼ above them (as̃(·) ) represents the estimates of their
corresponding vector or scalar. We can conclude from(8) that
for the estimation ofQ(z), a simple averaging operation would
be enough over the received signal asσ2

s is already known to
the receiver.

Calculation of the FIR Equalizer Coefficients: Here we
define a noise-free communication scenario similar to (3) as
follows

RI(z) = Q(z)SI(z), (9)

whereSI(z) is filtered byQ(z) asRI(z) is the result of the
filtering operation inz-domain. Similar to (1), (9) may also
be formulated asrI(k) = Q× sI(k), whereQ = Conv(Q(z))
andrI(k) is in the same form asr(k) of (1). SI(z) is a white
random sequence, having the same properties thatS(z) has.
Here in this studySI(z) will be generated inside the receiver
for the purpose of estimating the an FIR approximant forF (z),
which will be detailed later on in this section.

It is pretty obvious thatF (z) = 1/Q(z), as defined in (6), is
also equal to the the optimum Auto-Regressive (AR) equalizer
filter for the noise-free communication scenario given in (9),
which simply removes the effect ofQ(z).

Note that the direct realization ofF (z) is not always
possible asF (z) may have poles outside the unit circle,
and therefore it would be unstable. Therefore, rather than
an unstable AR equalizer, here we aim to obtain the FIR
approximant ofF (z) by setting its length toJ .

A recursive algorithm in the form of the Least Mean Square
(LMS) method can be introduced to estimate the tap values
of the FIR approximant of the channel equalizer in the form
of F (z) = f(0) + f(1)z−1 + ... + f(J − 1)z−J+1. If LMS
step-size,χ, satisfies0 < χ < 2/αmax and χ < 2/

∑
i αi,

where
∑

i αi and αmax represents the sum of eigenvalues
and the maximum eigenvalue forRrIrI

= E{rI(k)rH
I (k)}

respectively, the LMS settles around the optimum channel
equalizer[22, page 26]. Thereforef = [f(0), ..., f(J − 1)],
is estimated through the following equation;

f̃(k + 1) = f̃(k) + χe(k)rH
I (k), (10)

wheree(k) is the error calculated ase(k) = f̃ (k)×rI(k) −
sI(k − ∆).

As f will recursively be estimated,̃f(k) represents the value
of f̃ at thekth iteration that takes place at thekth time instant
and f̃(k + 1) is that of value at the next iteration, i.e. at the
(k + 1)th time instant.

Constant Modulus Algorithm for Channel Matched Filter
Estimation: The close relationship between the Constant Mod-
ulus (CM) and MMSE (or Wiener) equalizers is well studied
in many works including[21], [22] and [23]. Therefore, we
replaceM(z), designed as a MMSE equalizer in(5), with an



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

adaptive filter, the coefficients of which are updated via the
CMA.

The CM cost functionJCMA to be minimized is;

JCMA =
1

4
E{(|y(k)|2 − R2)

2} and R2 =
E{|s(k)|4}
E{|s(k)|2} , (11)

whereR2 is called the dispersion constant. Using stochastic
gradient descent onJCMA, the matched filter can be updated
by deploying the following formula[21];

m̃(k + 1) = m̃(k) + µx(k)Hy(k)(|y(k)|2 − R2). (12)

x(k) = [x(k), x(k − 1), ..., x(k − L)]T is the vector of
signal coefficients at the input ofM(z), where

x(k) = f̃ (k) × r(k) (13)

and similarlyy(k) = m̃(k)×x(k) is the output of the matched
filter for the receiver depicted in Fig.1(b).µ is a small step-
size.

The Error Bound Obtained Replacing the MMSE Equalizer
with the CM Equalizer: BecauseJCMA is not the same as the
MMSE criterion,m̃ will converge towards the MMSE solution
with an error, which will be described in this part.

Based on Fig.1(b),Y (z) can be formulated as,Y (z) =
M(z)X(z) = Λ(z)S(z) + Ω(z)N(z), where Λ(z) =
M(z)F (z)H(z) and Ω(z) = M(z)F (z). Λ(z) and Ω(z)
are assumed to be Bounded Input Bounded Output (BIBO)
stable IIR/FIR filters. If we representΛ(z) and Ω(z) with
their infinite impulse responses, i.e.Λ(z) =

∑∞
i=−∞ λ(i)z−i

and Ω(z) =
∑∞

i=−∞ ω(i)z−i, the inverse of the Signal-to-
Interference plus Noise Ratio (SINR) can be formulated as

κ =

∑
i |ω(i)|2 +

∑
i6=∆ |λ(i)|2

|λ(∆)|2 , (14)

where∆ is the equalization delay.
The difference betweenκ, whenM(z) is an MMSE equal-

izer found by(7), i.e. κMMSE, andκ when the CMA in (12)
is used, i.e.κCMA, is [24]

κMMSE − κCMA ≤ ξκ2
MMSE + O(κ3

MMSE) (15)

where it shows that the error performance of the CMA is
correlated with the performance of the MMSE equalizer with
a tolerable bound andξ is a constant beingξ = σ2

s/2 for
Binary Phase Shift Keying (BPSK) constellations.

The Adaptive Estimation of the Equalizer coefficients: The
communication model in(9) can implicitly and in a simple
manner be implemented within the receiver. If a random train-
ing sequence generator runs within the receiver to createsI(k),
a two layer filter as shown in Fig.2 can create the input signal
x(k) to the adaptive filter formulated in(12). The block named
“LMS” in Fig.2 corresponds to equation(10). The top layer in
Fig.2, wheresI(k) is implicitly generated and̃f is estimated, is
called the Adaptive FIR Approximant of the Auto-Regressive
(AFA-AR) filter. In Fig.2 q̃ = [q̃(−L), q̃(−L+1), ..., q̃(L)] is

 

T T

LMS

T)(kIs

)(-~ Lq 1)(-~ +Lq )(~ Lq

T T T)(kr

(0)
~
f (1)

~
f 1)-(

~
Jf
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q~

)(kx

TT TT

LMS

TT)(kIs

)(-~ Lq 1)(-~ +Lq )(~ Lq

TT TT TT)(kr

(0)
~
f (1)

~
f 1)-(

~
Jf

AFA-AR Filter

q~

)(kx
 

Fig. 2. The two-layer FIR filter that enables the adaptive update of f̃ =
[f̃(0), ..., f̃(J − 1)]. The block that estimates̃f is called the AFA-AR filter.

the vector of auto-correlation estimate of the channel output
found using(8). This also shows that a separate estimate for
the noise powerσ2

n is no longer needed, contrary to the need
for noise variance estimation in[1] and [12].

B. IIR All-adaptive BMF Receiver

In the conventional BMF design,F (z) is an IIR filter, in
the form of

F (z) = FF (z)× 1

FB(z)
, (16)

where FF (z) =
∑J−1

i=0 fF (i)z−i and FB(z) = 1 +∑L

i=1 fB(i)z−i are the FIR transfer functions of the feedfor-
ward and the feedback filters respectively. For the conven-
tional BMF receiver the vector of filter coefficientsfF =
[fF (0), ..., fF (J − 1)] and fB = [fB(1), ..., fB(L)]
are found as formulated in (36) and (38) respectively from
Appendix A.

If the received signal is filtered byM(z), as shown in
Fig.1(a), then

c(k) = Mr(k) = MHs(k) + Mn(k), (17)

whereM = Conv(M(z)). Defining two concatenated vectors
fC = [fF ,−fB] and cC(k) = [cT (k), sT (k − ∆ − 1)]T ,
the solution to the minimization of the MMSE cost function
E{|fC×cC(k) − s(k − ∆)|2}, leads to

fF = E{s(k − ∆)cH(k)}(Rcc −
1

σ2
s

RH
scRsc)

−1 (18)
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and

fB = fF RH
sc (19)

assuming that the use offC provides perfect recovery of the
transmitted symbols. Note that (18) and (19) are also equal to
the feedforward and feedback filters of a Decision Feedback
Equalizer (DFE)[31]. Rcc is the auto-correlation matrix for
c(k) andRsc is the matrix of cross-correlation betweens(k−
∆ − 1) andc(k) of sizeL×1 andJ×1 respectively.

It can be shown that (18) is equal to (36) (as provided in
Appendix A) if the equalization delay∆ is set to

∆ = J + L − 1. (20)

Therefore, the conventional BMF receiver can also be
derived using (18) and (19) by setting the correct∆.

Based on (17),

Rcc = E{Mr(k)rH(k)MH}
= σ2

sMHHHMH + σ2
nMMH (21)

and by callingP = MH

Rcc = σ2
sPPH + σ2

nPAH , (22)

whereA = [0W−L,L, IW−L,W−L,0W−L,L]. HerePAH is a
square symmetric matrix the EVD of which is defined in the
form of PAH = UVUH .

1

σ2
s

RH
scRsc = σ2

sPĜHĜ︸ ︷︷ ︸
G

PH (23)

and

G =

[
0W,W+L

0L,W | IL,L

]
. (24)

SinceQ = P + γA andPGH = QGH , we have

fF = σ2
sd∆PH(σ2

sPPH + σ2
nPAH − σ2

sPGPH)−1

= d∆PH((Q − PGH)PH)−1

= d∆((Q − QGH)PHUV−1UH)−1 (25)

= d∆Υ−1 (26)

whered∆ denotes a “row” vector with all zero entries except
the (∆+ 1)th entry to be1(one) to ensure that the right delay
is initiated at the correct position in the matrix of equation
(25).

PH can also be written asPH = ÛVUH , whereÛ =


Γ1

U

Γ2



. In addition to the eigenvector matrixU, each one of

Γ1 andΓ2 introducesL new row vectors, which corresponds
to the topL rows, denoted byΠ1, and bottomL rows, denoted

by Π2, of PH . Therefore,

[
Γ1

Γ2

]
VUH =

[
Π1

Π2

]
, so that

[
Γ1

Γ2

]
=

[
Π1

Π2

]
UV−1, which transformsΥ in (26) into

Υ = (Q − QGH)ÛUH ,

and further be simplified as

Υ =
[

ΠH
1 Ψ 0J,L

]
×




Γ1U

H

IJ,J

Γ2U
H





= ΠH
1 Π1UV−1UH + Ψ. (27)

whereΨ = QAH .
OncefF is calculated,fB can be found as given in (38).

The Adaptive Estimation of the Equalizer coefficients: To
obtain an estimate for the channel equalizer, in the form of
(16), (10) is modified as

f̃C(k + 1) = f̃C(k) + χe(k)rH
C (k). (28)

In (28)

f̃C(k) = [f̃F (k),−f̃B(k)]

rC(k) = [rT
I (k),xT (k − 1)]T

e(k) = sI(k − ∆) − x(k)

x(k) = [x(k), x(k − 1), · · ·, x(k − L + 1)]T ,

where

x(k) = f̃C(k)×rC(k) (29)

and the equalization delay is as in (20). The equation in (28)
estimates̃fF andf̃B to realize the system in (16). As explained
earlier, it is expected that the LMS algorithm converges around
the optimum channel equalizer, i.e.F (z) = 1/Q(z), which
can be decomposed into feedforward and feedback compo-
nents asFF (z) = 1/(θ0T̄ (z)) andFB(z) = T (z) making use
of the spectral factorization ofQ(z) [31, page 199] stating that
Q(z) = θ0T̄ (z)T (z).

T (z) =
∑L

i=0 t(i)z−i is causal, minimum phase filter while
t(0) = 1 and θ0 is a positive real number, which guarantees
FB(z) being in FIR structure as mandated by the conventional
BMF receiver design. To realize an FIR feedforward filter too,
instead ofFF (z) = 1/(θ0T̄ (z)), the ∆th vector fromθ0T’s
pseudoinverse matrix can be selected as follows

f̃F = d∆(θ0T)†

= d∆θ0T
H(θ0

2TTH)−1 = d∆Ψ−1. (30)

whereT = Conv(T̄ (z)) and ∆ is as in (20). (·)† represents
Moore-Penrose pseudoinverse.

Here we can conclude that, the feedforward filter that the
LMS algorithm in (28) estimates can be approximated with
(30).

Effect of the Feedforward Filter length:BecauseΠH
1 Π1 is

composed of zeros except itsL×L leading principal minor, the
term ΠH

1 Π1UV−1UH in (27) would only be effective over
the firstL rows of Υ. This in fact corresponds to a transient
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response, which can be ignored if the length of the channel
equalizer is significantly larger than the channel length (e.g.
J≥5L [1]) for the selected delay∆ = J + L − 1. Therefore,
when J is selected long enough, bothd∆Υ−1 in (26) and
d∆Ψ−1 in (30) will lead to approximately the same result.

In Appendix B it is shown that asJ gets larger, the very
last coefficient offF increases in value, while that of early
filter coefficients get smaller and reach to zero. Since the first
L components would be equal to zero, the filter in (30) can
also be used as an alternative to (26).

We can conclude that the optimum IIR equalizer for the
communication channel of (9) can also be used to equalize the
channel depicted in the conventional BMF design by selecting
the equalizer length long enough. Supportive simulation results
will be provided in the next section.

C. Algorithm Summary

Our novel all-adaptive blind matched filter approach can be
summarized as follows
Step-1) Using (8), obtain an estimate

for Q(z).
Step-2) Setup (9) to obtain rI(k).
Step-3) Run the recursive algorithm (10)

to obtain f̃ (or run (28) and obtain f̃F and
f̃B).
Step-4) Setup the receiver in Fig.1(b)

and obtain x(k) via (13) or via (29).
Step-5) CMA, given in (12), converges to

the unknown channel matched filter, which
is simply the time reversed conjugate
(paraconjugate) of the channel itself.

Remark 1) Although it is summarized as an approach with
5 consecutive steps, all of these steps can run concurrently.
Therefore, there is no need to wait for one step to be
accomplished in order to go for the next one. In the simulations
section we will provide a simulation result, where all five
steps run simultaneously (in parallel) , which doesn’t affect
the performance of the BMF receiver at all.

Remark 2) It should also be noted that Step-1, Step-
4 and Step-5 are kept almost the same as they are in the
conventional BMF receiver. The only two differences are;
The need for the estimation ofσ2

n was discarded in Step-
1, and for the calculation of the channel equalizer, needed to
implement Step-4, no matrix operations such as inversion and
multiplication were used with the help of Step-2 and Step-3.

All-adaptive BMF receiver for Fractionally Spaced Equal-
ization: The matched filter receiver depicted in Fig.1(a) is
in the same form as the Forney’s matched filter receiver[3].
However, the receiver in[3] needs for an analog matched filter
and the matched filter in our design is a baud spaced FIR filter.

On the other hand, Fractionally Spaced Equalization (FSE)
is regarded as an alternative to the use of analog matched filters
at the front-end[25]. Here in this section we will talk about
all-adaptive BMF receiver if it is intended to be operated on
the oversampled signals required to perform FSE.

In theory the FSE and the communications over Single Input
Multiple Output (SIMO) channels behave similarly. Therefore,

in this part we will make use of the findings from[11], which
describes BMF receivers for SIMO communications.

Based on[11], the use of all-adaptive design on oversampled
signals requires for two modifications

1) If B is the oversampling rate, in order to realize the
AFA-AR filter in Fig.2, q̃ should be calculated by setting

q̃ =

B∑

b=1

q̃b, (31)

whereq̃b represents the vector of auto-correlation estimate for
the bth fraction of oversampled signal.

2) Set

x(k) = [x1(k), x1(k − 1)..., x1(k − L), x2(k),

... xB(k − L)], (32)

in (12), where

xb(k) = f × rb(k), for b = 1, ..., B. (33)

In (33) rb(k) is the channel output for thebth fraction. Note
that same channel equalizerf is used to filter eachrb(k) for
b = 1, ..., B. f is estimated from the AFA-AR filter, shown in
Fig.2, by setting̃q as in (31). The result of (12) will include
the matched filter components corresponding to each part as
follows

m̃(k) = [m̃1(k), m̃2(k), ..., m̃B(k)], (34)

Apart from the two modifications listed in the above two
paragraphs, the Forney’s matched filter receiver operates along
the Viterbi Algorithm, which is a nonlinear solution to the
equalization of the communication channels. Due to nonlin-
earity the use of the Viterbi algorithm would not be possible
with the all-adaptive design. However, once the matched filter
is estimated so that the channel is, the channel estimate could
be used to perform the Viterbi algorithm while the channel
being updated in decision directed mode. See[26] for further
reading on how the Viterbi algorithm can be used in the BMF
receivers.

We can conclude that, although there is not a one-to-one
relationship between the all-adaptive matched filtering and the
Forney’s matched filter, some modifications are possible to
enhance the equalization performance of our receiver to get
closer to that of Forney’s matched filter receiver.

Architectural Complexity: The highest complexity in the
AFA-AR filter, depicted in Fig.2, is at the implementation of
the LMS algorithm.2J+1 multiplications and2J additions are
required to implement the LMS algorithm at each iteration for-
mulated in (10). The circuitry to createrI(k), formulated in (9)
is only a FIR filter with complexity ofL+1 multiplications and
2L additions. The least computationally complex component
of the AFA-AR filter is the binary random sequence generator
that createssI(k). Random number generators are a good
choice due to their circuits being simple to be implemented
[28]. Two clock signals, running in frequencies that are not



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tap number

T
ap

 v
al

ue
 f

 f

~

Fig. 3. The tap values forf and f̃ if q̃ is estimated

0 1000 2000 3000 4000 5000

−30

−25

−20

−15

−10

−5

0

Number of symbols

M
S

E
 (

dB
)

Acorr. Est.
Recursive w/ Acorr. Est.
Inverse w/ Acorr. Est.

Fig. 4. MSE performance of the estimates, found for the two layer FIR filter
given in Fig.2 if q̃ is estimated.

multiples of each other, connected to comparator would be an
efficient solution for creating a random binary sequence. On
the other hand Linear-Feedback Shift Registers (LFSR) are
commonly used to create pseudo random sequences, where the
complexity is a number of Flip Flops (FFs) and XOR gates.
For example, to create a pseudo random binary sequence that
repeats itself after210 − 1 samples, a circuitry of 10 FFs and
2 XOR gates are enough[29].

Apart from the AFA-AR filter, the all-adaptive BMF re-
ceiver needs for the CMA and the sample averaging circuit
both inheriting from the conventional BMF design. Therefore
the total number of multipliers and the adders to realize the
all-adaptive BMF receiver is3J + 5L + 9 and 3J + 5L + 2
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Fig. 5. The tap values forf and f̃ if true q values are used.
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Fig. 6. MSE performance of the estimates, found for the two layer FIR filter
given in Fig.2. if trueq values are used.

respectively plus the pseudo-random number generator. Be-
causeJ≫L, almost half of the anticipated architecture has
been occupied by the LMS algorithm. In comparison to al-
gorithms where matrix inversion and noise variance estimates
are needed for channel equalization (such as[19] and [1]) or
the ones using matrix decomposition rules (like[4]–[10]), the
use of our novel receiver is computationally promising witha
complexity order ofO(J, L).

IV. SIMULATIONS

We will present two sets of simulations in this section.
In the first set of simulations the convergence of the AFA-
AR filter and its tracking capability in time varying channels
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will be tested. In the second set, the channel identification
and equalization performance of the all-adaptive BMF will be
compared with the conventional BMF design and two other
methods from the literature.

For the simulations, unit energy BPSK symbol transmission
is assumed from a single transmit antenna to a single receive
antenna. We assume a discrete FIR communication channel
where the channel memory size is already known by the
receiver. The noise added to the received signals is assumed
to be white and Gaussian distributed (i.e., AWGN), and the
noise variance is not known to the receiver. To enable the
repeatability of the simulations here we define two CIRs both
of order L = 5, hmin = −0.722 + 0.567z−1 + 0.081z−2 −
0.107z−3 +0.254z−4−0.274z−5, which is a minimum phase
channel andhmix = −0.362 + 0.159z−1 + 0.524z−2 +
0.268z−3 + 0.458z−4 − 0.536z−5, which is a mixed phase
channel.

A. AFA-AR filter

In the conventional BMF design, the tap values of the
equalizer can only be calculated if the process for the auto-
correlation function estimation is finalized. In our novel design
we aim to run the AFA-AR filter in parallel with the auto-
correlation estimation process, formulated in (8), which also
enables the tracking capability of changes in the CIR. In this
first set of simulations we reveal how good the AFA-AR filter
performs the calculation of the true channel equalizer parame-
ters during the channel auto-correlation estimation takesplace.

For simulations, the correct equalizer filter coefficients
vector is calculated as in (30). However, because the use of
feedback filter is not needed, there is no constraint on the
choice of ∆. Fig.3 compares the correct equalizer filter tap
values of f (using trueq) with f̃ , estimated iteratively as
shown in (10) using the estimatẽq. The difference between
the two filters was found to be around−25 dB, where the
difference is defined in Mean Squared Error (MSE) sense
averaging||f̃ − f||2 /||f||2. Please note that onlyhmin was
used to create simulation results from Fig.3 to Fig.6.

Three results are shown in Fig.4. ‘Acorr.Est’ shows the
MSE for the auto-correlation function estimation. ‘Recursive
w/Acorr.Est’ is the MSE, incurred in converging to the true
f , if AFA-AR filter is preferred. ‘Inverse w/Acorr.Est’
is the MSE result in the same sense if matrix inversion is
preferred as in (30). Note that the tap values̃f in Fig.3 are
the result of ‘Recursive w/Acorr.Est’. From Fig.4 it is clear
that the MSE made by the AFA-AR filter decreases along with
the decrease in the estimation error for the auto-correlation
function. Another outcome of Fig.4 is that, there is almost
no performance loss if matrix inversion is replaced with the
AFA-AR filter.

Similar to Fig.3, Fig.5 comparesf with f̃ again but this time
f̃ is estimated by using the true auto-correlation function ofthe
channel output, i.e.q rather thañq. The MSE drops down to
−35 dB this time, showing that the tap values off̃ were found
to be almost equal to those off , which can easily be realized
comparing Fig.3 and Fig.5. Fig.6 was created similarly to Fig.4
but this time it was assumed thatq was perfectly known. The
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Fig. 7. The tracking capability of the AFA-AR filter, when thechannel is
time varying.

plot ‘Acorr.Est’ is no longer needed and because ‘Inverse
w/Acorr.Est’ will calculate f perfectly, it is also not needed
to be included in Fig.6. It is clear that the MSE is lowered
by another10dB and the AFA-AR filter performed a better
estimate off in comparison to Fig.4.

The plots in Fig.3 to Fig.6 show that the AFA-AR filter
estimates the true equalizer almost perfectly. The MSE perfor-
mance of the convergence of the adaptive filter relies vastly
on how good the auto-correlation function is estimated. As the
estimation error of the auto-correlation function is inherited
from the conventional BMF design, we can here conclude that
replacing matrix inversion with the adaptive filter, proposed in
Section III, does not cause a performance loss in findingf .

In Fig.7 the tracking capability of the AFA-AR filter when
deployed in the ITU Vehicular B Channel[30] was tested
using MATLABTM ’s rayleighchan command with 2 GHz
carrier frequency, 40 km/hr velocity and 400 kbps transmission
rate. Simulation parameters are set toχ = 0.02, J = 31.
Fig.7 includes three subplots. Fig.7(a) shows how two of the
equalizer coefficients are varying in time. Because both of
these coefficients are formed of an imaginary and a real part,
in total of 4 plots are given in Fig.7(a). Fig.7(b) shows the
same two coefficients estimated by the AFA-AR filter. Fig.7(a)
and Fig.7(b) are identical which shows which shows how
good the AFA-AR filter tracks the changes in a time-varying
channel. Fig.7(c) simply gives the estimation error calculated
as ||f̃ − f||2 /||f||2. Although in some channel conditions the
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estimation performance of the AFA-AR filter drops, almost all
the times the estimation error stays below−20dB. Note that
Fig.7 is the result of a single simulation rather than an average
of a number of runs.

B. Performance of the All-Adaptive BMF Receiver

In Fig.8 two sets of plots are shown. Fig.8 compares the
MSE performance of the CIR estimation for the conventional
and the all-adaptive designs as the SNR increases for both
of the channels,hmin and hmix. Note that for the update
of all-adaptive design, equation given in (28) was used. The
simulation parameters for the CMA algorithm were selected
as; J = 31, µ = 0.015 for hmin and µ = 0.02 for hmix.
In Fig.8 ‘AA − BMF ’ corresponds to the all-adaptive BMF
and ‘BMF ’ is the conventional BMF. Fig.8 clearly shows that

both of the receivers, all-adaptive BMF and the conventional
BMF, performed at almost the same convergence rate for both
mixed phase and minimum phase channels.

In Fig.9 the Bit Error Rate (BER) performance of the two
receivers were shown for selected SNR levels. For these simu-
lations the communication channel was assumed to be known
by the receiver as to realize the equalization performance apart
from the blind channel estimation process. It is clear from
Fig.9 that the BER performance of the conventional BMF
receiver and the all-adaptive BMF are almost the same. The
minuscule difference can be attributed to the non-vanishing
step-size of the LMS algorithm. It should be noted that the
BER performance varies if a different channel was selected.
We can here conclude that the performance of the all-adaptive
BMF is the same with the conventional BMF receiver and can
be used as an alternative to the BMF receiver. Therefore, there
would be no noteworthy loss in the equalization performance
if the all-adaptive approach is preferred.

The performance of the CMA degrades if it is used to
recover non-constant modulus signals. In Fig.10 we have sim-
ulated the channel estimation performance of the all-adaptive
BMF receiver when signal modulation scheme is 16-QAM,
where the estimation errors from100 consecutive simulations
were averaged. The SNR is 7 dB and the communication
channel is the oversampled channelh(t) from [19, page 1384],
where the communication channel and the AWGN are com-
posed of complex numbers. In order to compare its per-
formance with other methods from the literature, the FSE
is performed in all-adaptive BMF receiver as explained in
Section III.C. In Fig.10 ‘SS − Method’ is the error made
with the well known subspace method from[4]. ‘Rec − AS’
is the method in[19].

The ‘AA − BMF (CMA)’ shows the channel estimation
performance of the all-adaptive BMF receiver. On the other
hand ‘AA−BMF (MMA)’ is that of performance if equation
(12) is replaced with the Multi Modulus Algorithm (MMA)
[27]. The MMA equation we have replaced (12) with is as
follows

m̃(k) = m̃(k − 1) − µ((Re{y(k)}2 − R2,R)Re{y(k)}
+j(Im{y(k)}2 − R2,I)Im{y(k)})xH(k) (35)

whereR2,R andR2,I are the dispersion constants with respect
to the real and imaginary axis respectively. For the 16-QAM
constellationR2,R = R2,I = 0.82. In (35), Re{y(k)} and
Im{y(k)} are the real and imaginary parts of ofy(k) and
j =

√
−1. When creating Fig.10 we setµ = 0.02 but changed

it to µ = 0.005 at the5000th sample.
The use of the MMA has improved the channel estimation

performance of the all-adaptive BMF as it was originally
designed to work well with non-constant modulus signals
too. On the other hand, our novel receiver performs channel
estimation almost as good as other methods from the state-of-
the-art, which are relatively more computationally complex.

V. CONCLUSION

In this paper, we have presented a practical approach,
called “all-adaptive blind matched filtering”, which replaces
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the conventional BMF receiver. In the novel design the matrix
inversion and matrix multiplication operations were replaced
with a simple recursive algorithm. Therefore, the proposed
all-adaptive approach brings simplicity to the implementation
of blind matched filtering. It has been shown through our
simulations section that the performance of the recursive
algorithm is almost the same as the performance of its matrix
inversion counterpart. The recursive method runs in parallel
to the channel auto-correlation estimation process, where
this process is also a must in the conventional design. The
recursive algorithm has also enabled the tracking capability of
any change in the channel auto-correlation estimate. Another
benefit of using the all-adaptive approach is that the calculation
of the MMSE equalizer no longer needs the noise variance
estimation. The calculation of the MMSE equalizer filter was
performed solely on the channel auto-correlation estimate.
The channel identification and equalization performance of
our novel receiver was compared to the conventional BMF
receiver and it was observed that they achieved almost equal
MSE and BER levels, for the same experimental conditions
and parameters at a much reduced computational burden.

We also would like to state that the implementation of the
so called AFA-AR filter is simply represented as a random
training sequence generator with an adaptive filter being
updated via LMS in this paper. This representation is useful
to understand the concept that we aim to introduce for the
realization of the all-adaptive BMF receiver. However, when
it comes down to the implementation of the AFA-AR filter
in a real-life hardware platform or an integrated chip solution
further details of the actual implementation and their possible
constraints should be given. These aspect will be reported in
a future upcoming paper.

APPENDIX A
CONVENTIONAL BLIND MATCHED FILTER RECEIVER

For the conventional BMF receiver the feedforward filterfF
is calculated solving the following equation[1], modified to
comply with our notations and assumptions in this paper;




β(−J + 1,−J + 1) · · · β(−J + 1, 0)

...
. . .

...
β(0,−J + 1) · · · β(0, 0)





×




fF (0)

...
fF (J − 1)



=




q(−J + 1)

...
q(0)



 ,

(36)
where

β(i, j) =

−j∑

l=−L

q(l)q∗(l + j − i) + γq(i − j) (37)

for i, j = −J + 1, ..., 0. The feedback filter,fB =
[ fB(1), · · · , fB(L) ] of lengthL is found by

fB(i) =

0∑

l=i−L

fF (l + J − 1)q(i − l) for i = 1, ..., L.

(38)

APPENDIX B
FEEDFORWARDFILTER COEFFICIENTS OF THEIIR BMF

RECEIVER

Ψ is a Toeplitz positive definite matrix (See Appendix C) of
sizeJ×J . We define a new matrix̂Ψ of size(J−1)×(J−1),
which is formed by removing the last row and column ofΨ.
Therefore,Ψ̂ is also a Toeplitz positive definite matrix.

Define a vector g = d∆Ψ−1 where g =
[g(0), g(1), ..., g(J − 1)]. Using cofactors ofΨ

|g(0)| =
|ζJ,1|

det(Ψ)
and |g(J − 1)| =

ζJ,J

det(Ψ)
(39)

for the first and the last elements ofg respectively, where
det(·) represents determinant and theζi,j is the cofactor
corresponding to theith row andjth column ofΨ. |·| operator
takes the magnitude of the scalar it contains.

For the Toeplitz positive definite matrixΨ,

lim
J→∞

ζJ,J

det(Ψ)
= lim

J→∞

1

det(Ψ)
1

J

, (40)

where the term ζJ,J

det(Ψ) is increasing asJ increases[33]. For a
J , when equality in(40) holds regardless of the limit operator,
g(J−1) will be constant asJ increases andζJ,J will increase
or decrease with a constant rateτJ,J = 1/g(J − 1) if the
equalizer size is increased by 1. Therefore,τJ,J .det(Ψ̂) =
det(Ψ).

Calling the the cofactors of̂Ψ, ζ̂i,j ,
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ζJ,1 = q(0).ζ̂J,J + q(1).ζ̂J−1,J + ... + q(J − 1).ζ̂1,J , (41)

ζJ,J = q(J − 1).ζ̂J,J + q(J − 2).ζ̂J−1,J + ... + q(0).ζ̂1,J .

As can be seen in (41), ζJ,1 and ζJ,J are composed of
the same cofactors. Becauseq(i) for i = 0, ..., J − 1 are
constant,τJ,1 6= τJ,J , where τJ,1 is the rate of change for
ζJ,1 as equalizer size increases. As the possibility where
τJ,1 > τJ,J is contrary to the applicability of the equalization,
then τJ,1 < τJ,J . Therefore, we can conclude that the value
of the newly added coefficients asJ increases are decreasing
due to(39).

APPENDIX C
STRUCTURE OFΨ

PAH can also be formulated asPAH = HHH, which is
actually the channel autocorrelation matrix.HHH is positive
semi-definite matrix[32], its eigenvaluesv1, v2, ..., vJ being
vi ≥ 0 for i = 1, ..., J . As Ψ = (P + γA)AH = PAH +
γAAH = PAH + γIJ,J , the eigenvalues ofΨ are

vi + γ > 0 for i = 1, ..., J (42)

assuming that1/γ 6= ∞. Therefore,Ψ is a positive definite
matrix in the following form,

Ψ=





q(0) · · · q(L) 0 · · · 0

q(−1) q(0) · · · q(L)
...

...
. . .

. . .
. . . 0

... q(−L) · · · q(0) q(1)
0 · · · 0 q(−L) · · · q(0)





. (43)

It is clear from(43) that Ψ is also a Toeplitz matrix.
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