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All-Adaptive Blind Matched Filtering for the
Equalization and Identification of Multipath
Channels - A Practical Approach

Adem Coskun and lzzet Kal&/lember, IEEE,

Abstract—Blind matched filter receiver is advantageous over algorithm i.e. the Constant Modulus Algorithm (CMA). With
the state-of-the-art blind schemes due the simplicity in & imple-  the incorporation of the CMA into the blind CIR estimation
mentation. To estimate the multipath communication channts, .

. . h i, . process;

it uses neither any matrix decomposition methods nor statiscs
of the received data higher than the second order ones. On the 1) The communication doesn’t depend on the transmission
other hand, the realization of the conventional blind matcled Of tralnlng S|gna|S, as the use Of tra"'"ng Symbolsl

filter receiver requires the noise variance to be estlmatedrmthe which are carrying no valuable information, making
equalizer parameters to be calculated in state-space witheta-

tively costly matrix operations. In this paper, a novel architecture them inherently inefficient and wasting the bandwidth
is proposed to simplify a potential hardware implementation of of the communication channel as well as resources at
the blind matched filter receiver. Our novel approach transbrms both ends, and

the blind matched filter receiver into an all-adaptive format 2) Neither matrix decomposition methods, which are im-

which replaces all the matrix operations. Furthermore, thenovel

design does not need for any extra step to estimate the noise plementation inefficient and expensive (such[di55)

variance. In this paper we also report on a comparative chanal using Singular Value Decomposition (SVD) ari,
equalization and channel identification scenario, lookingnto the [7],[8] using Eigen Value Decomposition (EVD)) nor
performances of the conventional and our novel all-adaptig blind higher order cumulant functions of the received data, e.g.
matched filter receiver through simulations. [9], [10], which eventually leads to the need for long data

Index Terms—Blind Channel Estimation, Blind Channel records for accurate estimation of higher-order stafistic
Equalization, Constant Modulus Algorithm (CMA), Single In put of the received signal, were needed.

Single Output (SISO) Channels . ) . o
9 put { ) BMF is also applicable to space-time communicatifii

and its convergence speed and accuracy has further been
. INTRODUCTION enhanced if12). Good references on the conventional ways
Ultipath fading is one of the major problems in wireles$or the identification of the communication channels bljndl
communication channels. Due to scattering, reflectiaare [13 and [14].
and diffraction occurring within the channel, the trandedt  Over the past few years, many novel blind channel esti-
signal arrives at the receiver through a number of multination methods were proposed for various communication
ple paths. If the coherence bandwidth of the channel gefsenarios. In the recent studies matrix decomposition odsth
lower than the signal bandwidth, due to multipath fadingre still a need, such ad5 and [16] for Multiple Input
the symbols transmitted at each symbol period spread owgultiple Output Orthogonal Frequency Division Multiplexj
other signals in the adjacent symbol periods. This type @WIMO-OFDM), [17] for Multi-Carrier Code Division Multi-
interference is called Inter-Symbol Interference (ISIheT ple Access (MC-CDMA) systems arjdg for MIMO single-
estimation of the Channel Impulse Response (CIR), whidarrier zero-padding block-transmission systems. On thero
carries the information on the multipath components, aed thand, recursive methods for blind channel estimation needs
equalization of the communication channel play an impdrtafor multiple antennas or over-sampling at the receiver|[@8d
role in furnishing an ISl free signal transmission. Therefore, for Single Input Single Output (SISO) channikis,
The Blind Matched Filter (BMF) receivell], [2] aims to BMF receiver is still advantageous in terms of computationa
implement Forney’s receivgB|, which is the optimum receiver complexity over the state-of-the-art blind channel estiom
in the presence of ISI and Additive White Gaussian Noig@ethods due to the use of the CMA in its blind matched filter
(AWGN), blindly without the need for the explicit knowledgeestimation process.
of the CIR. For this purpose the BMF approach makes useApart from the adaptive filtering block that implements the
of an adaptive filter, updated via a computationally simpleMA, the BMF receiver is also composed of a linear channel
The authors are with the Applied DSP and VLS| Research Gro equalizgr block, the parameters Of.WhiCh have to be caledlat
(ADVRG), School of Electronics and Computer Science, Ursitg of By making use of the auto-correlation of the CIR. Althougé th
Westminster, W1W 6UW, London, U.K. (e-mail: adem@alpteom; Structural simplicity appears to be the most striking feautof
kalei@wmin.ac.uk). _ . _ the BMF receiver due to the use of the CMA, the calculation
Copyright ©2012 IEEE. Personal use of this material is permitted. How- . . .
ever, permission to use this material for any other purposest be obtained of the filter parameters of the channel equalizer is perfarme
from the IEEE by sending an email to pubs-permissions@iege. deploying state-space operations, including matrix isioer.
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In this paper we propose an all-adaptive BMF receiver discar

ing the need for any matrix operation, where the equalizer N(z)

parameters are found via a recursive algorithm. Operatiog(s) R(2) olz) Y(2)

such as matrix inversion have complexity of order for a = H(z) M(z)

JxJ matrix (See Table | in20)). On the other hand, the

recursive algorithms like Least Mean Square (LMS) and CMA @)

have a complexity order of when the size of the recursive

filter is set toJ. The estimation of the noise variance is also no N(z)

longer required in our novel receiver where it is an essbnti&@ R(z)

component in the conventional design of the BMF receiver. In

general the all adaptive design is applicable to Single tinpu

Single Output (SISO) communication channels, where there o

is no need for over-sampling or introducing space diversity Algorithm
In the next section the channel model, adopted throughout (b)

the paper, will be explained. Section Ill presents a dedaile

derivation and explanation on how our novel all-adaptivelBMFig. 1. (&) System model for the matched filter receiver (bjt@&y model

receiver works. An extensive set of simulations will be givel2 1"e SN recever uhere e channel eualitie) s placd ot e,

in Section 1V, demonstrating the validity and viability ofilo applied to a decision device in order to obtain the estimétaetransmitted

novel approach, with the final section being dedicated t@ta stream A is the equalization delay.

conclusions.

M) = 2

[I. CHANNEL MODEL h(©) -~ h(L) O -+ 0
We assume a Single Input Single Output (SISO) com- ¥ — 0 n0) - AL 2)
munications scenario, where a single transmit and a single : 0
receive antenna are present at the transmission ends. The 0 0 h(0) -+ h(L)
communication channel is assumed to be frequency selective
where the number of the multipath componedtsjs already andh = [ h(0), h(1), ---, k(L) ]2h(0) + h(1)z~" +
known to the receiver. The received data vecték,), can be ..+h(L)z~1 = H(z). Therefore, the communication scenario
formulated as follows, given in (1) can also be formulated in thedomain as
k) = H x s(k) + n(k), 1 Dl
I'( ) S( ) Il( ) ( ) R(Z) _ ZT‘(/C)ZkiDJrl
. . k=0
wherer(k) represents the vector of received symbols of size — H(2)S(z) + N(2). 3)

Wx1, ie. r(k) = [r(k), r(k —1),---, r(k — W + 1)]T.
Note that lower casédold characters represent the vectors H is in the form of a convolution matrix and for the sake
and upper case bold characters represent the matriceg wéflsimplicity a convolution matrix will simply be represeut
italic characters represent scalars in the time domain. TiWh the notationConv, e.g.H = Conv(H(z)), in this paper.
superscript(-)”" is the vector transpose aridis the discrete The representations irdomain will be in italic capitals as in
time index for0<k<D — 1. D is the duration for the whole (3).

channel activity and it is the same for the duration of the ho
signal transmission and signal reception. Brackétsontain
the elements of a vector or a matrix afid is the length of
the filter thatr(k) is processed with. In this paper this filter The matched filter receiver is shown in Fig.1(a). The
is either the channel matched filter or the channel equalizeteceiver is formed of two processing blocks; the channel

Similar to r(k), the noise vectom(k) is also of size Matched filterM/(z) and the channel equalizél(z). Because

Wx1 which is assumed to have zero mean white GauRoth M(z) and F'(z) represent linear filters, their positions
sian characteristics witlE{n(k)n” (k)} = 2Ly, where can be exchanged as in Fig.1(b), to form the BMF receiver.
o2 is the noise variance andy is the identity ma- Once the receiver is as in Fig.1()/(z) can be estimated

n

trix of size WxW. The vector of transmit symbols isVvia the CMA. The advantages of using this type of receiver is
s(k) = [s(k), s(k—1),---, s(k—L—W +1)]T, of size that

(L+W)x1 which are independent and identically-distributed « The matched filter, consequently the channel response, is
(ii.d), i.e. BE{s(k)s®(k)} = oI wriw. E{} is the extracted accommodating the CMA, which is known to
mathematical expectation arig” is the Hermitian transpose. be one of the simplest blind schemes

The time-invariant transmission channel matiik of size o The channel is equalized without a need for an extra
Wx (L + W) can be represented as hardware for channel equalization.

IIl. ALL-ADAPTIVE BLIND MATCHED FILTER RECEIVER
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On the other hand, for the realization 6%(z), the BMF
receiver necessitates the use of matrix operations (sesiequ ~ L D—1 X A —i
(8) in [1] as repeated in Appendix A, which will be re-visited () = q)_sz _ Z 2 ko {r(K)r 2(k: — 1)}z ’ 8)
further in this paper). In this section, we report on our riove g% e L Do
all-adaptive BMF receiver, where both/(z) and F(z) are .
estimated adaptively. In Section III.A we shall look at th&hereQ(z) = g(L)z~" + ...+ 4(0) + ... + g(~L)z". Terms
derivation of the FIR all-adaptive BMF receiver and in 111.BWVith ~ above them (a$-) ) represents the estimates of their
the findings will be extended to establish an IR model fdforresponding vector or scalar. We can conclude ftspthat
the all-adaptive BMF. Section 111.C summarizes the novkl alfor the estimation of)(z), a simple averaging operation would

adaptive approach with some remarks and discussions onBgsenough over the received signalagsis already known to
use. the receiver.

Calculation of the FIR Equalizer Coefficientslere we

. . define a noise-free communication scenario similar 5
A. FIR All-adaptive BMF Receiver Ao

follows
Filtering R(z) with F(z), as shown in Fig.1(b), gives
Ri(z) = Q(2)S1(2), 9)
X(z) = F(2)R(») where S;(z) is filtered byQ(z) as R;(z) is the result of the
= F(2)H(2)S(z) + F(2)N(2). (4) filtering operation inz-domain. Similar to {), (9) may also

be formulated as; (k) = Q x s;(k), whereQ = Conv(Q(z))

If M(z) is to be designed as a Minimum Mean Squaregndr;(k) is in the same form as(k) of (1). S;(z) is a white
Error (MMSE) equalizer, then/(z) should satisfy the orthog- random sequence, having the same propertiesfat has.
onality principle E{(M(2)X (z) — S(z))X(z)} = 0, which Here in this studyS;(z) will be generated inside the receiver
leads to for the purpose of estimating the an FIR approximantfz),

which will be detailed later on in this section.
It is pretty obvious thaF'(z) = 1/Q(z), as defined inf), is

M(z) = E{S(z)X(2)}E{X(2)X(2)} " also equal to the the optimum Auto-Regressive (AR) equalize
= Pox(Pxx) h (5) filter for the noise-free communication scenario given3dj (
which simply removes the effect @j(z).
where ®xy is the auto-correlation function forX(z), Note that the direct realization of(z) is not always

which can be calculated a®xx = F(2)®rrF(2). Sim- possible asF(z) may have poles outside the unit circle,
ilarly @5y is the cross-correlation function forS(z) and therefore it would be unstable. Therefore, rather than

and X(z), where &sx = [F(2)H(2)®ss. Notation an unstable AR equalizer, here we aim to obtain the FIR
() implies paraconjugate of a transfer function, e.gpproximant ofF'(z) by setting its length taJ.
F(z) = F*(£). ()" denotes the conjugate operation. A recursive algorithm in the form of the Least Mean Square
The autocorrelation functionbss is defined as®ss = (LMS) method can be introduced to estimate the tap values
B{S(z)5(2)} = 2 limp_ocs{>Xio s(k)s*(k — of the FIR approximant of the channel equalizer in the form
i)}z~". Becauses(k)s are i.i.d.,®gs = o7, and similarly of F(z) = f(0) + f(1)z=' + ... + f(J — 1)z—7+1. If LMS
Py =02, step-size,x, satisfies) < x < 2/ama: andx < 2/ 3, ay,
if we chooseF'(z) to be where ). o; and au,q, represents the sum of eigenvalues
and the maximum eigenvalue f®,,,, = E{r;(k)rf (k)}
52 1 1 respectively, the LMS settles around the optimum channel
F(z)= — = (6) equalizer[22 page 26]. Thereforef = [f(0),..., f(J — 1)],

®rr H(:)H(z)+7 Q)
the MMSE equalizeM (z) can be found as

is estimated through the following equation;

) f(k+1) = (k) + xe(k)r] (k), (10)
_H(z)®ss _ 5 _ .
M(z) = == = H(2), (7) wheree(k) is the error calculated ask) = f(k)xr;(k) —
F2)®rr si(k — A).
wherey = 02 /o2 and H (2) = Z?:—L W (—i)z . As f will recursively be estimated;(k) represents the value

(7) shows that, if(z) is as in (6), M(z), designed in of f at thekth iteration that takes place at théh time instant

the MMSE sense, is an FIR filter and is equal to the tim&nd f(k + _1) is_ that of value at the next iteration, i.e. at the
reversed conjugate off(z), which is also known as the (K +1)th time instant.

channel matched filter. The vector of coefficients fafi(z) Constant Modulus Algorithm for Channel Matched Filter
arem = [m(—L),..,m(0)], wherem(—i) = h*(:) for Estimation The close relationship between the Constant Mod-
1=0,..,L. ulus (CM) and MMSE (or Wiener) equalizers is well studied

On the other handQ(z), from (6), can be estimated by in many works including21], [22] and [23. Therefore, we
setting a finiteD in the autocorrelation functio®rr as replaceM (z), designed as a MMSE equalizer (i), with an
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adaptive filter, the coefficients of which are updated via the AFA-AR Filter
CMA.
The CM cost function/cyia to be minimized is;

i SI(k) > T \ 4 > T XX T E

1 E i i

Jonn = TE(? — Ra?} and Re = W) ) _ i X

! q(-L) N\ q(-L+1) q(L) !

where R, is called the dispersion constant. Using stochastic eee > :

gradient descent oricma, the matched filter can be updated : ~ |

by deploying the following formuld21]; 4 :

i v :

m(k+1) = (k) +ux(B)Ty(k) (k) - R2).  (12) LMS wh i

x(k) = [x(k), z(k —1), ..., z(k — L)]T is the vector of I Ittt
signal coefficients at the input d¥/ (=), where r(k) > T > T >eee| T

z(k) = £(k) x r(k) (13)

and similarlyy (k) = m(k)xx(k) is the output of the matched
filter for the receiver depicted in Fig.1(h). is a small step-
size.

The Error Bound Obtained Replacing the MMSE Equalizer
with the CM EqualizerBecauseJcna is not the same as the
MMSE criterion,m will converge towards the MMSE solutionFig. 2.  The two-layer FIR filter that enables the adaptive aipcof f =
with an error, which will be described in this part' [f( ), ,f(J — 1)] The block that estlmates is called the AFA-AR filter.

Based on Fig.1(b)Y (z) can be formulated asy(z) =
M(z)X(z) = A(2)S(z) + Q(2)N(z), where A(z) = ) )

M(2)F(2)H(z) and Q(z) = M(2)F(2). A(z) and Q(2) the vector of auto-correlation estimate of the channel wutp

are assumed to be Bounded Input Bounded Output (BIB@und using(8). This also shows that a separate estimate for
stable IIR/FIR filters. If we represent(z) and Q(z) with the noise power? is no longer needed, contrary to the need

their infinite impulse responses, i&(z) = S.°°___ A(i).~¢ [OF noise variance estimation fd] and[12.

i=—00

and Q(z) = Y272 __w(i)z%, the inverse of the Signal-to-

1=—00

Interference plus Noise Ratio (SINR) can be formulated asB. IIR All-adaptive BMF Receiver

12 12 In the conventional BMF desigri’(z) is an IIR filter, in
Zi |w(z)| + Zz;ﬁA |/\(7’)| : (14) the form of
IA(A)[? .
whereA is the equalization delay. F(z)= FF(z)xF—, (16)
The difference between, whenM (z) is an MMSE equal- 5(2)
@zer foun_d by(7), i._e. rvuse, ands when the CMAIn (2)  where Fp(z) = 2;12—01 fr(i)z=t and Fg(z) = 1 +
is used, i.excma, is [24 S F | fB(i)z~" are the FIR transfer functions of the feedfor-
) . ward and the feedback filters respectively. For the conven-
kMMsE — kema < Exyvse T O(Kvse) (15) tional BMF receiver the vector of filter coefficients =

where it shows that the error performance of the CMA i (0) ¢ d7 f?(‘] _I 1)]d and fp a /1), - ]:B(f )l
correlated with the performance of the MMSE equalizer W|tf’|re Ol:jn A‘:"S ormulated ir8¢) and @8) respectively from
a tolerable bound and is a constant being = o2/2 for Appendix

If the received signal is filtered by/(z), as shown in

Binary Phase Shift Keying (BPSK) constellations.
shald ! ying ( ) I Fig.1(a), then

The Adaptive Estimation of the Equalizer coefficieiise
communica_tion model ir(9)_ can implicit_ly and in a simple_ c(k) = Mr(k) = MHs(k) + Mn(k), (17)
manner be implemented within the receiver. If a random {rain
ing sequence generator runs within the receiver to cegdtg, WhereM = Conv(M(z)). Defining two concatenated vectors
a two layer filter as shown in Fig.2 can create the input signft = [fr, —fz] and co(k) = [c(k),s"(k — A — 1)]T,

x(k) to the adaptive filter formulated ifi2). The block named the solution to the minimization of the MMSE cost functlon
“LMS” in Fig.2 corresponds to equatigii0). The top layer in E{|foxcco(k) — s(k — A)|*}, leads to
Fig.2, wheres; (k) is implicitly generated anflis estimated, is
called the Adaptive FIR Approximant of the Auto- Regressive

1 .
(AFA-AR) filter. In Fig.2§ = [G(—L), g(—L+1), ..., 4(L)] is fr = Bls(k = M) (B)} (Ree — 5RacRac) " (18)
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and
Y =(Q-QG")uu”,
_ H
fp = frRe (19) and further be simplified as
assuming that the use @&f provides perfect recovery of the
transmitted symbols. Note that§) and (9) are also equal to r,u?
the fe_edforward and feedpack filters of a De_C|S|on F(_eedback T — [ of v o0, } v L.s
Equalizer (DFE)[3]]. R, is the auto-correlation matrix for r,uH

c(k) andRg. is the matrix of cross-correlation betwes(k — B " el
A —1) andc(k) of size Lx1 and.Jx1 respectively. = IFILUVUS 4+ 3. (27)
It can be shown thatlg) is equal to 86) (as provided in whereWw — QAH_

Appendix A) if the equalization dela is set to Oncefr is calculatedfs can be found as given ir8§).
The Adaptive Estimation of the Equalizer coefficieris
A=J+L—1. (20) obtain an estimate for the channel equalizer, in the form of

. . (16), (10) is modified as
Therefore, the conventional BMF receiver can also be

derived using 18) and (19) by setting the correci\. .
Based on 17), fo(k+1) = fo(k)+ xe(k)re (k). (28)

Ree = E{Mr(k)r?(k)M”}

= o’MHH MY + ZZMmH (21) (k) [Fp(k), —F5 (k)]
and by callingP = MH ro(k) = [r7(k),x"(k-1)"
, H , H e(k) = si(k—A)—xz(k)
Ree = o, PPT 40, PAT, (22) x(k) = [e(k), a(k - 1),---, a(k - L+ 1),

where A = [OW—L,LaIW—L,W—LaOW—L,L]- HerePAH is a where
square symmetric matrix the EVD of which is defined in the
form of PA” = UVU*.

) (k) = fo (k) xro(k) (29)
H _ 2 ~H A~ H

CTgRscRsc - USP&EP (23) and the equalization delay is as i20§. The equation inZg)

G estimatedr andfp to realize the system in¢). As explained

and earlier, it is expected that the LMS algorithm convergesiath

the optimum channel equalizer, i.&(z) = 1/Q(z), which
G = Ow.w+L ) (24) can be decomposed into feedforward and feedback compo-

0wl Ic nents asf'r(z) = 1/(007T(z)) and Fp(z) = T(z) making use

SinceQ = P +~vA andPG” = QG we have of the spectral factorization @(z) [31, page 199] stating that

Q(2) = 0T (2)T(2).

T(z) = Zfzo t(i)z~% is causal, minimum phase filter while

fr = oldaP"(0PP" + 07 PAY — o2PGPT) ! t(0) = 1 and 6, is a positive real number, which guarantees
= daP7((Q - PG")PH)! Fp(z) being in FIR structure as mandated by the conventional
= da((Q - QGHypHUV-IUH)! (25) BMF receiver design. To realize an FIR feedforward filter, too
1 instead of Fp(z) = 1/(007T(2)), the Ath vector fromd,T’s
= da¥ (26) pseudoinverse matrix can be selected as follows
whered denotes a “row” vector with all zero entries except
the (A + 1)th entry to bel(one) to ensure that the right delay foo— d (6,T)1
is initiated at the correct position in the matrix of equatio r Ao o SrerH 1 .
(25). = dabyT" (6p"TT") " =da¥P . (30)
P can also be written aP” = UVU", whereU = whereT = Conuv(T(2)) and A is as in 0). (-) represents
T » . Moore-Penrose pseudoinverse.
E - In addition to the eigenvector matrli, each one of o6 \ve can conclude that, the feedforward filter that the
2

. and T, introducesL, new row vectors, which correspondsLMS algorithm in @8) estimates can be approximated with

to the topL rows, denoted b¥I;, and bottoml. rows, denoted (30). _ e
by I, of PH. Therefore, | ] ] VUH — 11, ] <o that Effect of the Feedforward Filter lengttBecausdI; II; is

| ) I, composed of zeros except its< L leading principal minor, the
| [ IR . . term ITZ I1, UV~1U# in (27) would only be effective over
[ I, ] - [ 11, } UV~ which transformsT" in (26) into the first L rows of Y. This in fact corresponds to a transient
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response, which can be ignored if the length of the channelthis part we will make use of the findings frofhl], which

equalizer is significantly larger than the channel lengtly.(e describes BMF receivers for SIMO communications.

J>5L [1]) for the selected delar = J + L — 1. Therefore,  Based orj11], the use of all-adaptive design on oversampled

when J is selected long enough, bothh Y ! in (26) and signals requires for two modifications

da¥ 1 in (30) will lead to approximately the same result. 1) If B is the oversampling rate, in order to realize the
In Appendix B it is shown that ad gets larger, the very AFA-AR filter in Fig.2, @ should be calculated by setting

last coefficient offr increases in value, while that of early

filter coefficients get smaller and reach to zero. Since tlsé fir B
L components would be equal to zero, the filter 30)(can q= qu, (32)
also be used as an alternative ) b=1

We can conclude that the optimum IIR equalizer for th@heregq, represents the vector of auto-correlation estimate for
communication channel o) can also be used to equalize thgne pth fraction of oversampled signal.

channel depicted in the conventional BMF design by selgctin ) set
the equalizer length long enough. Supportive simulatisnlis

will be provided in the next section.
x(k) = [z1(k), z1(k —1)...,z1(k — L), 22(k),

C. Algorithm Summary ~xp(k—L),  (32)
Our novel all-adaptive blind matched filter approach can be (12), where

summarized as follows

foft eg(—z%.) Using (8), obtain an estimate wo(k) = £ x ry(k), for b—1,..B. (33)
Step-2) Setup (9) to obtain r;(k). In (33) rp(k) is the channel output for thith fraction. Note

Step-3) Run the recursive al gorithm (10) that same channel equaliziis used to filter eacl, (k) for
to obtain f (or run (28) and obtain fr and b=1,..,B.f is estimated from the AFA-AR filter, shown in

fp) . Fig.2, by settingg as in 81). The result of {2) will include
Step-4) Setup the receiver in Fig.1(b) the matched filter components corresponding to each part as
and obtain z(k) via (13) or via (29). follows

Step-5) CMA, given in (12), converges to
t he unknown channel matched filter, which
is sinply the tine reversed conjugate
(paraconjugate) of the channel itself. Apart from the two modifications listed in the above two
Remark 1) Although it is summarized as an approach witlparagraphs, the Forney’s matched filter receiver operétag a
5 consecutive steps, all of these steps can run concurrenthe Viterbi Algorithm, which is a nonlinear solution to the
Therefore, there is no need to wait for one step to legualization of the communication channels. Due to nonlin-
accomplished in order to go for the next one. In the simutetio earity the use of the Viterbi algorithm would not be possible
section we will provide a simulation result, where all fivavith the all-adaptive design. However, once the matcheef filt
steps run simultaneously (in parallel) , which doesn't efffeis estimated so that the channel is, the channel estimatd cou
the performance of the BMF receiver at all. be used to perform the Viterbi algorithm while the channel
Remark 2) It should also be noted that Step-1, Stepbeing updated in decision directed mode. $2& for further
4 and Step-5 are kept almost the same as they are in tbading on how the Viterbi algorithm can be used in the BMF
conventional BMF receiver. The only two differences aregceivers.
The need for the estimation of2 was discarded in Step- We can conclude that, although there is not a one-to-one
1, and for the calculation of the channel equalizer, neededrelationship between the all-adaptive matched filtering e
implement Step-4, no matrix operations such as inversioh alRorney’s matched filter, some modifications are possible to
multiplication were used with the help of Step-2 and Step-Znhance the equalization performance of our receiver to get

All-adaptive BMF receiver for Fractionally Spaced Equal<l0Ser to that of Forney's matched filter receiver.
ization The matched filter receiver depicted in Fig.1(a) is Architectural Complexity The highest complexity in the
in the same form as the Forney’s matched filter recej8er AFA-AR filter, depicted in Fig.2, is at the implementation of
However, the receiver if8] needs for an analog matched filtethe LMS algorithm2.J+1 multiplications an®.J additions are
and the matched filter in our design is a baud spaced FIR filtezquired to implement the LMS algorithm at each iteration fo
On the other hand, Fractionally Spaced Equalization (FSEulated in (0). The circuitry to create; (k), formulated in 9)
is regarded as an alternative to the use of analog matcherd filis only a FIR filter with complexity of.+1 multiplications and
at the front-end25]. Here in this section we will talk about 2L additions. The least computationally complex component
all-adaptive BMF receiver if it is intended to be operated oof the AFA-AR filter is the binary random sequence generator
the oversampled signals required to perform FSE. that createss;(k). Random number generators are a good
In theory the FSE and the communications over Single Inpcitoice due to their circuits being simple to be implemented
Multiple Output (SIMO) channels behave similarly. Themefo [28]. Two clock signals, running in frequencies that are not
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Fig. 4. MSE performance of the estimates, found for the twer#IR filter ~Fig. 6. MSE performance of the estimates, found for the twera IR filter
given in Fig.2 ifq is estimated. given in Fig.2. if trueq values are used.

multiples of each other, connected to comparator would be &FPectively plus the pseudo-random number generator. Be-
efficient solution for creating a random binary sequence. (GUS€/>L, almost half of the anticipated architecture has
the other hand Linear-Feedback Shift Registers (LFSR) &tg€n occupied by the LMS algorithm. In comparison to al-
commonly used to create pseudo random sequences, wherdfhms where matrix inversion and noise variance esemat
complexity is a number of Flip Flops (FFs) and XOR gate&'€ needed for channel equalization (suctj1#5 and [1]) or

For example, to create a pseudo random binary sequence H1§tON€s using matrix decomposition rules (Ijkg-{10)), the
repeats itself afte2'? — 1 samples, a circuitry of 10 FFs andyse of our novel receiver is computationally promising vath

2 XOR gates are enoug. complexity order ofO(J, L).
Apart from the AFA-AR filter, the all-adaptive BMF re-
ceiver needs for the CMA and the sample averaging circuit IV. SIMULATIONS

both inheriting from the conventional BMF design. Therefor We will present two sets of simulations in this section.
the total number of multipliers and the adders to realize the the first set of simulations the convergence of the AFA-
all-adaptive BMF receiver i8.J + 5L + 9 and3.J + 5L + 2 AR filter and its tracking capability in time varying chansel
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will be tested. In the second set, the channel identificatic

and equalization performance of the all-adaptive BMF wdl b 1t
compared with the conventional BMF design and two othi % 05
methods from the literature. 2 ok

For the simulations, unit energy BPSK symbol transmissic ©
is assumed from a single transmit antenna to a single rece -05 ‘ ‘ ‘ ‘
antenna. We assume a discrete FIR communication chan 0 200 400 600 800 1000
where the channel memory size is already known by tl Number of Symbols
receiver. The noise added to the received signals is assur @
to be white and Gaussian distributed (i.e., AWGN), and tt 1f
noise variance is not known to the receiver. To enable tl &
repeatability of the simulations here we define two CIRs bo & 05
of order L = 5, h,,;, = —0.722 4+ 0.5672"! + 0.081272 — g 0
0.1072~%+0.2542~% — 0.2742 5, which is a minimum phase =~ -0.5
channel andhmm = —0.362 + 0159271 + 0524272 + 0 260 460 660 860 1000
0.268272 + 0.4582~* — 0.5362~°, which is a mixed phase Number of Symbols
channel. (b)

o O
ke

A. AFA-AR filter 5 0

In the conventional BMF design, the tap values of th ‘£
equalizer can only be calculated if the process for the aul % —40
correlation function estimation is finalized. In our novebtgn £
we aim to run the AFA-AR filter in parallel with the auto- 4 _gg

correlation estimation process, formulated &), (which also 200 400 600 800 1000
. e . Number of Symbols

enables the tracking capability of changes in the CIR. Is th ©
first set of simulations we reveal how good the AFA-AR filte. ) B ) )
performs the calculation of the true channel equalizerpara % Z/aryﬂg]f tracking capability of the AFA-AR filter, when trhannel is
ters during the channel auto-correlation estimation takase.

For simulations, the correct equalizer filter coefficients
vector is calculated as ir8(). However, because the use of . ‘
feedback filter is not needed, there is no constraint on tREt ACO”"E,St,'S no longer needed and becauseiverse
choice of A. Fig.3 compares the correct equalizer filter taFY/ACO,W'ESt will calculate f perfectly, it is also not needed
values of f (using trueq) with f, estimated iteratively as © be included in Fig.6. It is clear Fhat the MSE is lowered
shown in (0) using the estimate. The difference between by _anotherlO_dB and the AFA—AR filter performed a better
the two filters was found to be around25 dB, where the €Stimate off in comparison to Fig.4.
difference is defined in Mean Squared Error (MSE) senseThe plots in Fig.3 to Fig.6 show that the AFA-AR filter
averaging||f — f||2 /||f||2. Please note that onlj,,;,, was estimates the true equalizer almost perfectly. The MSEoperf
used to create simulation results from Fig.3 to Fig.6. mance of the convergence of the adaptive filter relies vastly

Three results are shown in Fig.44¢orr. Est’ shows the ©on how good the auto-correlation function is estimated. s t
MSE for the auto-correlation function estimatioiécursive ~€stimation error of the auto-correlation function is iritest
w/Acorr.Est’ is the MSE, incurred in converging to the trugfrom the conventional BMF design, we can here conclude that
f, if AFA-AR filter is preferred. Tnverse w/Acorr.Est’ replacing matrix inversion with the adaptive filter, propdsn
is the MSE result in the same sense if matrix inversion ection Ill, does not cause a performance loss in finding
preferred as in3J0). Note that the tap valuet in Fig.3 are In Fig.7 the tracking capability of the AFA-AR filter when
the result of Recursive w/Acorr.Est’. From Fig.4 itis clear deployed in the ITU Vehicular B ChannéB(0] was tested
that the MSE made by the AFA-AR filter decreases along witlhsing MATLAB”™'s r ay| ei ghchan command with 2 GHz
the decrease in the estimation error for the auto-coroelaticarrier frequency, 40 km/hr velocity and 400 kbps transimiss
function. Another outcome of Fig.4 is that, there is almosate. Simulation parameters are setyto= 0.02, J = 31.
no performance loss if matrix inversion is replaced with theig.7 includes three subplots. Fig.7(a) shows how two of the
AFA-AR filter. equalizer coefficients are varying in time. Because both of

Similar to Fig.3, Fig.5 comparefswith f again but this time these coefficients are formed of an imaginary and a real part,
f is estimated by using the true auto-correlation functiothef in total of 4 plots are given in Fig.7(a). Fig.7(b) shows the
channel output, i.eq rather thang. The MSE drops down to same two coefficients estimated by the AFA-AR filter. Fig)7(a
—35 dB this time, showing that the tap valuesfofvere found and Fig.7(b) are identical which shows which shows how
to be almost equal to those 6f which can easily be realizedgood the AFA-AR filter tracks the changes in a time-varying
comparing Fig.3 and Fig.5. Fig.6 was created similarly th4i channel. Fig.7(c) simply gives the estimation error calted
but this time it was assumed thatwas perfectly known. The as||f — f||2 /||f||>. Although in some channel conditions the
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design

both of the receivers, all-adaptive BMF and the conventiona
BMF, performed at almost the same convergence rate for both
mixed phase and minimum phase channels.

In Fig.9 the Bit Error Rate (BER) performance of the two
receivers were shown for selected SNR levels. For these-simu
lations the communication channel was assumed to be known
by the receiver as to realize the equalization performapaea
from the blind channel estimation process. It is clear from
Fig.9 that the BER performance of the conventional BMF
receiver and the all-adaptive BMF are almost the same. The
minuscule difference can be attributed to the non-vangshin
step-size of the LMS algorithm. It should be noted that the
BER performance varies if a different channel was selected.
We can here conclude that the performance of the all-adaptiv
BMF is the same with the conventional BMF receiver and can
be used as an alternative to the BMF receiver. Thereforeg the
would be no noteworthy loss in the equalization performance
if the all-adaptive approach is preferred.

The performance of the CMA degrades if it is used to
recover non-constant modulus signals. In Fig.10 we have sim
ulated the channel estimation performance of the all-agapt
BMF receiver when signal modulation scheme is 16-QAM,
where the estimation errors froi®0 consecutive simulations
were averaged. The SNR is 7 dB and the communication
channel is the oversampled chanh@l) from [19, page 1384],
where the communication channel and the AWGN are com-
posed of complex numbers. In order to compare its per-
formance with other methods from the literature, the FSE
is performed in all-adaptive BMF receiver as explained in
Section III.C. In Fig.10 §S — Method’ is the error made
with the well known subspace method frddj. ‘ Rec — AS’
is the method in19.

The ‘AA — BMF(CMA)' shows the channel estimation
performance of the all-adaptive BMF receiver. On the other
hand ‘AA—BMF(M M A)’ is that of performance if equation
(12) is replaced with the Multi Modulus Algorithm (MMA)
[27]. The MMA equation we have replaced2] with is as
follows

m(k) = m(k — 1) — p((Re{y(k)}* — Ro,r)Re{y(k)}
+i(Im{y(k)}* — Ro.r) Im{y(k)})x" (k) (35)

estimation performance of the AFA-AR filter drops, almost alVhereR2 r and R,,; are the dispersion constants with respect
the times the estimation error stays belew0dB. Note that !0 the real and imaginary axis respectively. For the 16-QAM

Fig.7 is the result of a single simulation rather than anager constellationiz; p = Ry ; = 0.82. In (35), Re{y(k)} and

of a number of runs.

B. Performance of the All-Adaptive BMF Receiver

Im{y(k)} are the real and imaginary parts of gfk) and
j = v/—1. When creating Fig.10 we sgt= 0.02 but changed
it to 1 = 0.005 at the5000th sample.
The use of the MMA has improved the channel estimation

In Fig.8 two sets of plots are shown. Fig.8 compares tiperformance of the all-adaptive BMF as it was originally
MSE performance of the CIR estimation for the conventiondesigned to work well with non-constant modulus signals
and the all-adaptive designs as the SNR increases for btib. On the other hand, our novel receiver performs channel
of the channelsh,,;, and h,,;,. Note that for the update estimation almost as good as other methods from the state-of
of all-adaptive design, equation given 28] was used. The the-art, which are relatively more computationally comple
simulation parameters for the CMA algorithm were selected

as;J = 31, p = 0.015 for h,,;, and p = 0.02 for hy,;,.

V. CONCLUSION

In Fig.8 ‘AA — BM F’ corresponds to the all-adaptive BMF In this paper, we have presented a practical approach,
and ‘BM F’ is the conventional BMF. Fig.8 clearly shows thatalled “all-adaptive blind matched filtering”, which rep&s
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APPENDIXA
CONVENTIONAL BLIND MATCHED FILTER RECEIVER

T
1
1

For the conventional BMF receiver the feedforward filter
is calculated solving the following equatidd], modified to
comply with our notations and assumptions in this paper;

1
Step Size
Change —>;

1
1
1
&R

B(—J+1,-J+1) -+ B(-J+1,0)
B(0,—J +1) 5(0,0)
-12p fr(0) q(=J+1)
i <= ]
14} h . .
i fr(J—1) q(0)
8 1000 2000 3000 4000 5oloo 6000 7000 8000 9000 10000 (36)
Number of Symbols where
—J
Fig. 10. MSE performance of the all-adaptive BMF receiveingisCMA B(i,j) = Z qD)g™ (I + 5 — 1) +4(i = J) (37)
and MMA, I=—L
for i, = —J + 1,...,0. The feedback filter,fz =
[ fB(1), ---, fB(L) ] oflengthL is found by

0
fe(i)= > frl+J—1)q(—1) for i=1,..L
the conventional BMF receiver. In the novel design the mratri l=i—L

inversion and matrix multiplication operations were regld (38)
with a simple recursive algorithm. Therefore, the proposed

all-adaptive approach brings simplicity to the implemdiota APPENDIX B

of blind matched filtering. It has been shown through ourFEEDFORWARDFILTER COEFFICIENTS OF THEIIR BMF
simulations section that the performance of the recursive RECEIVER

algorithm is almost the same as the performance of its matrix

W is a Toeplitz positive definite matrix (See Appendix C) of

inversion counterpart. The recursive method runs in mra"sizeJxJ. We define a new matri® of size(J—1)x (J—1),

to the channel auto-correlation estimation process, wher?]. . .
. : : . . ich is formed by removing the last row and column®f
this process is also a must in the conventional design. Tg =

recursive algorithm has also enabled the tracking capyloii ﬁeref ore, ¥ is also a Toeplitz posﬂweildeﬂmte matrix.

) : . Define a vectorg = da¥ where g =
any change in the channel auto-correlation estimate. Asmotrr (0. g(1) (J — 1)]. Using cofactors of®
benefit of using the all-adaptive approach is that the catinri SANALASTARE ' 9
of the MMSE equalizer no longer needs the noise variance
estimation. The calculation of the MMSE equalizer filter was 19(0)] = [$AY d gl —1) = G (39)
performed solely on the channel auto-correlation estimate det(P) g det(W)

The channel identification and equalization performance of ) .
Nijgr the first and the last elements gf respectively, where

our novel receiver was compared to the conventional B represents determinant and the; is the cofactor
receiver and it was observed that they achieved almost equ%tl(') P %

MSE and BER levels, for the same experimental conditioﬁgrreSpondmg to thith row andjth column of®. || operator

and parameters at a much reduced computational burden.takes the magn!tude o.f.the SC‘.”"?“ It cor!tams.
For the Toeplitz positive definite matris,

We also would like to state that the implementation of the
so called AFA-AR filter is simply represented as a random im C,J — lim 1 (40)
training sequence generator with an adaptive filter being J—oo det(¥)  J—oo det(¥)T’
updated via LMS in this paper. This representation is useful
to understand the concept that we aim to introduce for tMéere the termyS4~ is increasing ag/ increases33). For a
realization of the all-adaptive BMF receiver. However, wheJ, when equality i40) holds regardless of the limit operator,
it comes down to the implementation of the AFA-AR filterg(/ — 1) will be constant ag/ increases and;,; will increase
in a real-life hardware platform or an integrated chip solut or decrease with a constant ratg,; = 1/g(J — 1) if the
further details of the actual implementation and their fldes equalizer size is increased by 1. Thereforg,.det(¥) =
constraints should be given. These aspect will be reporteddet(¥). R
a future upcoming paper. Calling the the cofactors o¥, (; ;,
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¢ q(0).Cr,y + q(1).Cr1,5 + o+ q(J — 1).C1,, (41)
Crg = q(J=1)Crs+q(J=2).Cr-1,0 + .. +(0).C1,5.
As can be seen in4(), ¢;1 and (;; are composed of

the same cofactors. Becaugé) for i = 0,...,J — 1 are

constant,r;, # 75, wherer;; is the rate of change for

[11] A. Coskun and l.Kale,

11

[10] J. Fang, A. R. Leyman, Y. H. Chew, and Y. C. Liang, “A Cuie

Interference Subspace Cancellation Method for Blind SISkar@el

Estimation,” IEEE Trans. Signal Processvol. 54, no. 2, pp.784-790,

Feb. 2006.

“Blind multidimensional matchditering
techniques for single input multiple output communicagidfEEE Trans.
on Instr. Meas. vol. 59, no. 5, pp. 1056 — 1064, May 2010.

[12] B. Baykal,“Blind channel estimation via combining aabrrelation and
phase estimation|EEE Trans. on Circuits and Syst.\ol. 51, no. 6, pp.
1125-1131, June 2004.

Cs1 as equalizer size increases. As the possibility whepss] C.Y. Chi, C.Y. Chen, C.H. Chen, and C.C. Feng, “Batchcpssing

T71 > 775 IS contrary to the applicability of the equalization,
thent;, < 7. Therefore, we can conclude that the valu94]
of the newly added coefficients asincreases are decreasing

due to(39).

APPENDIXC
STRUCTURE OFW¥

PAY can also be formulated ®8A " = H”H, which is
actually the channel autocorrelation mat@#” H is positive
semi-definite matrix32), its eigenvalues, vo, ...,v; being

v; >0fori=1,..,J. As¥ = (P +~yA)Af = PAH ¢
YAAT = PAY 441, 5, the eigenvalues o are
vi+y>0 for i=1,...,J (42)

assuming thatl /v # oo. Therefore,¥ is a positive definite
matrix in the following form,

[ q(0) q(L) 0 0
q(=1) q(0) q(L)
q(=L) - q(0) q(1)
L 0 0  q(-L) q(0) |

It is clear from(43) that ¥ is also a Toeplitz matrix.
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