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Abstract 
The iron hormone hepcidin is regarded as the main iron homeostatic regulator in 

the human body. It is predominantly produced by hepatocytes in response to 

systemic iron excess. However, since the cellular and molecular mechanisms 

involved in hepcidin expression are not fully understood, this project involved 

studying hepcidin expression and the role of the pro-region of the hepcidin pro-

hormone in regulation of iron homeostasis.  

 
Iron overdose in Chinese hamster ovary-transferrin receptor variant (CHO TRVb1) 

cells resulted in increased hepcidin peptide secretion after 30 min and 2 hours 

(p<0.03) as well as 24 and 48 hours (p<0.01). Also, partial characterisation of the 

previously unknown CHO-gene sequences of Hfe, Slc40-a1 and Irp2, was 

achieved. To determine the effect of intracellular iron overload on hepcidin 

expression, recombinant transferrin receptor 1 (rec-TfR1) HepG2 cells were 

created which express modified TfR1 to maximise iron uptake. Upon 

holotransferrin (5 g/L) treatment these cells showed significantly increased iron 

uptake which was in contrast to the response by Wt HepG2 cells. Also, it was 

shown for the first time that hepcidin peptide secretion increased upon iron 

overdose to HepG2 cells after 30 min, 2,4,24 and 48 hours (p<0.05). Also, 

holotransferrin treatment (5 g/L) increased hepcidin mRNA levels; in Wt HepG2 

cells by 0.6 fold (on average) after 30 min, 2,4,6 and 24 hours and in rec-TfR1 

HepG2 cells by 0.5 fold after 2 h (p<0.02). Gene expression studies of TfR1, 

SLC40-A1, and HFE upon iron overdose showed opposing functionalities of TfR1 

and SLC40-A1 in maintaining intracellular iron homeostasis and emphasised the 

significance of HFE in hepcidin induction. Additionally, localisation studies with the 

pre-pro derivative of preprohepcidin identified its presence in the nucleus, 

suggesting its involvement in the gene regulation process and thus possible 

participation in maintaining iron homeostasis.  

 

In conclusion, rec-TfR1 HepG2 cells partially resemble haemochromatotic cells 

and the findings indicate that hepcidin regulation involves the interaction between 

several iron-related genes and the extracellular and intracellular iron levels. 
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Chapter 1   

Introduction 

Iron is an essential element required by human beings for their survival and 

development. Although 13-18 mg of iron is obtained through diet per day, only 1-2 

mg is absorbed into the circulation. This dietary iron may be in two forms; the haem 

iron as present in meat and the non-haem iron which is mostly ferric (Fe3+) iron, as 

found in nuts, fruits and vegetables. Irrespective of the form of iron consumed the 

process of iron absorption occurs predominantly in the duodenum, from where it 

enters the circulation and is distributed to different parts of the body to be used for 

various metabolic purposes, as seen in Fig.1.1 (reviewed in Andrews, 2000 and 

Miret et al., 2003). 

 

The amount of iron absorbed by the duodenum is governed by various factors. For 

example, during iron deficiency iron absorption increases to 2-4 mg per day and 

during iron overload the absorption can reduce to 0.5 mg per day. Secondly, the 

process of iron absorption may be enhanced or inhibited by the presence of certain 

substances. For example, vitamin C creates an acidic environment in the lumen 

and enhances non-haem iron absorption by reducing ferric iron (Fe3+) to ferrous 

iron (Fe2+) making it more soluble and thus bioavailable. On the other hand, 

tannins present in tea and fruit juices, phytates present in cereals and polyphenolic 

compounds found in all plant products inhibit the absorption of dietary non-haem 

iron, as reviewed in Dzikaite et al., 2006 and Sharp and Srai, 2007.  



 

2 

 

 

 

Iron is absorbed into the circulation and utilised for various cellular processes, 

primarily for the production of red blood cells (Fig. 1.1). The high requirement of 

iron for erythropoesis is reflected in the fact that the total amount of iron in the body 

is 3-4 g, out of which about 2.5 g is bound to haemoglobin. Approximately two 

million red blood cells are synthesised every second in the bone marrow which 

requires 25-30 mg of iron per day for haem synthesis. Apart from erythropoesis, 

iron is also used in the synthesis of myoglobin which is an oxygen binding protein 

found in muscle tissues of vertebrates, aconitase, which converts citrate to 

Figure not included due to copyrights. 

Fig. 1.1 Pathways of iron absorption and utilisatio n  
Adapted from Andrews (2000).  
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isocitrate in the citric acid cycle and the membrane bound cytochromes, that are 

involved in electron transport chain in mitochondria. Also, iron acts as a cofactor for 

ribonucleotide reductase which converts ribonucleotides to deoxyribonucleotides, 

eventually used in DNA synthesis (reviewed in Andrews and Schmidt, 2007 and 

Muckenthaler et al., 2008). 

 

1.1 Iron absorption and distribution  

The three main cell types involved in iron metabolism are the iron-absorbing 

duodenal enterocytes, the iron-recycling reticuloendothelial macrophages and the 

iron-storing liver hepatocytes. Fig. 1.2 shows the cellular events in the absorption 

of iron. It begins when a ferric reductase duodenal cytochrome b (Dcytb) located 

on the apical surface of enterocytes reduces the poorly bioavailable Fe3+ iron to 

Fe2+ iron. The low pH of proximal duodenum along with an acidic climate of the 

brush border membrane maintains iron in the Fe2+ state. This Fe2+ iron can then be 

transported across the brush border membrane into the enterocyte via the protein, 

divalent metal transporter-1(DMT1). The process of haem iron uptake also occurs 

at the surface of enterocytes but through a different mechanism, briefly explained 

in section 1.2.1. Once inside the cell, iron enters the proposed labile iron pool (LIP) 

which may act as an iron reservoir for various cellular activities. Within the cell, 

excess iron is stored in the protein ferritin, where each ferritin molecule can hold up 

to 4500 iron atoms (reviewed in Andrews and Schmidt, 2007 and Miret et al., 2003). 
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           Key to Fig. 1.2  

 

 

Fig. 1.2  Cell types involved in iron absorption an d circulation   
 
The mechanism of iron absorption and circulation, along with the roles of participating proteins are 
briefly shown in the figure. 
 
(I) Proposed programming of crypt cells to absorb iron.  
(II) Mature villus duodenal enterocytes absorb non-haem iron.  
(III) Hepatocytes store iron as well as produce hepcidin. Here, both TBI and NTBI uptake of iron 

occurs. 
(IV) Macrophages engulf senescent erythrocytes, particularly in the spleen, and recycle iron back 

into circulation through ferroportin. 
 
Processes in (III) and (IV) are common to both haem and non-haem iron transport and utilisation.  
Adapted from Muckenthaler et al., (2008).  

? 



 

5 

 

Iron can be translocated outside the enterocytes into the circulation through the 

sole known mammalian transmembrane iron-exporter, ferroportin. Ferroportin is a 

unidirectional ferrous exporter and is expressed on the basolateral surface of the 

enterocyte which is in access with the circulation. It is present on all cell types 

involved in iron transport (Nemeth et al., 2004). During the exit of iron from the 

enterocyte, ferroportin is assisted by the ferroxidase hephaestin which converts 

Fe2+ to Fe3+ whereas the ferroxidase ceruloplasmin assists in the loading of Fe3+ 

onto transferrin. Transferrin is the iron carrier protein in circulation which can hold 

up to two atoms of iron in the form of Fe3+ per protein molecule and this transferrin 

is referred to as diferric transferrin or holotransferrin. It transports iron throughout 

the body via the circulation and binds to the transferrin receptor-1 (TfR1) present 

on cell surfaces to form a complex of diferric transferrin-TfR1. This complex is then 

internalised into a vesicle. The low pH of vesicle and intracellular DMT1 assist in 

the release of iron from this complex into the cell cytoplasm (Miret et al., 2003, 

Muckenthaler et al., 2008).  

 

Once the iron is released into the cytoplasm, the complex without iron is then 

recycled back to the cell surface for further iron uptake. Each TfR1 can undertake 

approximately 100 such recycling processes in its lifetime. Thus TfR1 functions to 

bring iron into the cells and the cells maintain intracellular iron levels by changing 

the expression levels of TfR1 on the cell surface (Aisen, 2004, Huebers and Finch, 

1987). Hence, while maintaining normal intracellular iron levels, the more iron the 

cells require, the higher is the expression level of TfR1.  
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Although TfR1 is present on the surface of all cells involved in iron transport, 

another type of transferrin receptor, TfR-2, is expressed mainly on hepatocytes. It 

has been proposed that TfR-2 binds to HFE, the haemochromatosis protein, and  

induces hepcidin synthesis and may act as a sensor of diferric transferrin in the 

circulation (Gao et al., 2009). HFE has also been shown to interact with TfR1 to 

regulate transferrin-bound iron uptake, as shown in Fig. 1.2 (Kroot et al., 2011). 

 

Along with the transferrin-bound iron, non-transferrin bound iron (NTBI) is also 

found in the systemic circulation. Although its chemical nature has not been 

confirmed yet, it is predicted to be in the form of iron bound to citrate or acetate. 

Iron in circulation could also be associated with albumin and other low molecular 

weight species. The uptake of such NTBI by cells is predominantly mediated by 

calcium channels and metal iron transporters (Andrews and Schmidt, 2007, 

Crichton et al., 2002). 

 

1.1.1 Haem iron absorption 

Haem iron absorption is yet to be fully understood. It has been proposed that in the 

lumen, the haem moiety in food is processed to separate the globin fraction. The 

protoporphyrin ring enters the enterocyte in an intact form with the help of the 

haem carrier protein-1(HCP1) (Shayeghi et al., 2005), which is highly expressed in 

the duodenal cells. Once inside the enterocyte, haem oxygenase excises the iron 

present in the protoporphyrin ring and this iron (Fe2+) joins the labile iron pool    

(Fig. 1.3). From here, iron could either be stored in ferritin molecules for future use 

or could be exported outside the cell into the circulation via a pathway common to 
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non-haem iron export, seen in Fig. 1.2 parts (III) and (IV). The degradation of haem 

iron via haem oxygenase leads to the formation of biliverdin, which is further 

reduced to bilirubin by biliverdin reductase. Bilirubin is then transported to the liver 

and excreted into bile (Andrews and Schmidt, 2007, Miret et al., 2003, Raffin et al., 

1974, Sharp and Srai, 2007).  

 

 

 

 

                                

 

 

Iron absorbed through haem or non-haem pathways is partly retained in the 

intracellular ferritin of enterocytes. After 2-3 days, when enterocytes slough from 

the gut into the lumen, iron present in these cells is also lost via faeces (Andrews 

and Schmidt, 2007).  

 

1.2 Overview of proteins involved in iron absorptio n and iron circulation 

An overview of the functions of some of the significant proteins involved in iron 

absorption and circulation are shown in table 1.1. 

Proteolysis: 
globin is 
split from 
haem ring  
 

HCP1 
 

   Haem  
oxygenase 

     Dietary  
    sources        
    of Haem 
 

+ Bilirubin  Fe2+

Labile iron pool  

Haem iron  

Fig. 1.3  Proposed model of haem iron uptake by an enterocyte  
 

Haem iron  
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Protein and  
chromosome 
location in 
humans 

Cell/tissue in 
which normally 
expressed 

Known or postulated func tion  Result of mutation  
 

Named disorder  Clinical 
manifestations 

HFE 
348-mer 
HFE 6p21.3 
 

All tissues except 
brain. 
Predominantly in 
hepatocytes. 
 
 

Regulates cellular iron absorption by 
binding to TfR1 on cell surface and 
reducing its affinity for 
holotransferrin.  
 
Regulates hepcidin production. 

Increased iron influx in 
cells leads to tissue iron 
overload and organ 
damage.  
 
Progressive increase in 
plasma iron. 

Haemochromatosis 
type 1 (HFE 1), 
most common form 
of iron overload,  

 
 
 
 
 
 
Intestinal iron 
hyperabsorption. 
 
Reduced hepcidin 
levels despite of iron 
overload, which 
normally induces 
hepcidin expression 
 
Cardiac disease, 
hypogonadism 
bronze skin 
pigmentation, hepatic 
cirrhosis, arthropathy 
and diabetes. 
 
 
 
 
 

Hemojuvelin  
426-mer 
HJV 1p21 
 

Adult and foetal 
liver, heart, and 
skeletal muscle. 

Membrane protein which exists in 
membrane bound and soluble forms. 
 
It functions as co-receptor for bone 
morphogenetic proteins (BMP) 
signalling.  
 
Regulates hepcidin production. 

Increased iron influx in 
cells.  
 
 
No hepcidin produced. 

Juvenile 
haemochromatosis 
or 
Haemochromatosis 
type 2A (HFE2A) 

Hepcidin  
25-mer 
HAMP 
19q13.1 
 

Predominantly in 
liver.  

Maintains systemic iron levels by 
regulating both intestinal iron 
absorption and iron release from 
macrophages. 
 

Lack of hepcidin leads to 
uncontrolled release of 
iron from macrophages. 
Iron overload in cells and 
tissues.  

Haemochromatosis 
type 2B 
(HFE2B) 
 

Transferrin 
receptor 2 
801-mer 
TfR2 7q22 

Homologue of 
TfR1. Mainly in 
liver  

Competes with TfR1 for binding with 
HFE. Acts as a sensor of 
holotransferrin in circulation.  
 
 
Regulates hepcidin production. 

Increased iron influx. High 
liver iron content.   
 

Haemochromatosis 
type 3 (HFE3)  

 
Table 1.1 continued overleaf.  
 



 

9 

 

Protein and  
chromosome 
location in 
humans 

Cell/tissue in which 
normally expressed 

Known or postulated function  Result of mutation  
 

Clinical manifestations  

Ferroportin 
571-mer 
SLC40A1 2q32 

Macrophages, 
basolateral side of 
intestinal enterocytes, 
placenta, muscle and 
spleen. 

Exports iron from enterocytes, 
macrophages and placenta. 

Loss of function leads to 
decreased iron efflux by 
intestinal enterocytes and 
macrophages resulting in   
tissue iron overload of, 
particularly the   
reticuloendothelial cells. 
 

Increased levels of hepcidin and 
anaemia.  

Hepcidin resistance  
 

Transferrin 
698-mer 
Tf 3q21 

Synthesised in liver and 
circulates in blood. 

Iron carrier protein that transports 
iron from sites of absorption and 
haem degradation to those of 
storage and utilisation. 
 

Increased iron influx in 
cells. 

Increased retention of iron in the 
reticuloendothelial system and 
anaemia. 

Ceruloplasmin 
1065-mer 
CP 3q23-q25 

Expressed by liver and 
secreted in circulation. 

Multicopper oxidase. Assists in 
transporting iron outside the cells. 
Posesses ferroxidase activity 
oxidizing Fe2+ to Fe3+ without 
releasing radical oxygen species. 

Decreased iron efflux from 
cells. 

Iron accumulation in the brain as 
well as visceral organs, retinal 
degeneration and diabetes 
mellitus.  
 
Neurological manifestations seen 
unlike all other genetic 
haemochromatosis. 
 

Divalent metal 
transporter 1 
568-mer 
NRAMP2 
 

Ubiquitously expressed 
in transmembrane 
regions and also 
present intracellularly. 

Involved in apical iron uptake into 
duodenal enterocytes. Involved in 
iron transport from acidified 
endosomes into the cytoplasm. 

Unregulated iron uptake. Abnormal haemoglobin content in 
the erythrocytes which are 
reduced in size. Progressive liver 
iron overload. 
 
 

Table 1.1  Overview of important protei ns involved in iron metabolism  
Information on proteins and clinical manifestations adapted from Andrews and Schmidt, (2007), Dzikaite et al., (2006), Gehrke et al., (2003) Jacolot 
et al., (2008) and Pieterangelo, (2006). 
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1.3 The iron hormone hepcidin  

The iron hormone hepcidin, also referred to as LEAP-1 (liver associated 

antimicrobial peptide), plays a significant role in maintaining iron homeostasis 

(Pigeon et al., 2001). In humans, hepcidin is encoded by the HAMP gene which 

contains 3 exons, located on chromosome 19q13.1. As explained in Fig. 1.4A, 

hepcidin is initially synthesised as an 84-mer preprohormone called preprohepcidin. 

 

 

 

 

 

                   

 

This preprohepcidin is cleaved by a signal peptidase to remove the N-terminal 24-

mer signal peptide. The remaining 60-mer peptide, referred to as prohepcidin is  

post-translationally cleaved by a furin like convertase to secrete the 25-mer mature 

bioactive hepcidin (2.7 kDa) which circulates in blood (Krause et al., 2000) at a 

concentration of 1.1-55 ng/mL (Ashby et al., 2009).  

Fig. 1.4A  Significant sites of cleavage in preproh epcidin (84 -mer)  
Sites of action of signal peptidase and furin convertase are shown in the figure. Cleavages 
eventually lead to the bioactive hepcidin-25. 
  

MALSSQIWAACLLLLLLLASLTSG SVFPQQTGQLAELQPQDRAGARASW MPMFQRRRRR DTHFPICIFCCGCCHRSKCGMCCKT  

<--Signal peptide -24 mer-> <------------------Pro-region –35 mer-------------> ����-----Hepcidin -25 mer-----���� 

<---------------------------------------Prohepcidin -60 mer------------------------------------->  

Signal peptidase 
cleavage site                      

Furin convertase 
cleavage site                      

Fig. 1.4B  Structure of bioactive hepcidin -25 
Hepcidin forms a hairpin-like structure (Hunter et al., 2002); figure adapted from 
protein databank (PDB), PDB ID 1M4F, available at http://www.rcsb.org/pdb/ 
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The small size of hepcidin-25 helps its excretion through urine where it offers 

antibacterial protection to the host (Ashby et al., 2009, Park et al., 2001). Although 

the most predominant form in circulation is hepcidin-25, other truncated forms like 

hepcidin-22 and hepcidin-20 have also been identified in human urine. These are 

either absent or present in low concentrations in the circulation (Park et al., 2001) 

which suggests that they are biologically less significant than hepcidin-25 in 

regulating iron levels. This has been supported by studies which showed that the 

N-terminal region is important for hepcidin-25 to exhibit its bioactivity and thus the 

other isoforms display much reduced iron regulatory activity as compared to 

hepcidin-25 (Nemeth and Ganz, 2006). It is not yet known if there are any other 

biological functions of these isoforms of hepcidin.  

 

Although hepcidin is predominantly produced by the liver hepatocytes, it is has 

been detected in low levels in the heart, brain, lung, tonsils, trachea, prostate gland, 

adipose tissue, adrenal gland, thyroid gland and bone marrow (Bekri et al., 2006, 

Krause et al., 2000, Park et al., 2001, Pigeon et al., 2001). Hepcidin exhibits 

antifungal and antibacterial properties and structurally resembles other known 

peptide antibiotics such as the defensins (Krause et al., 2000, Pigeon et al., 2001).  

 

So far, apart from humans, hepcidin has been found in mice, rats, dogs and fish 

(Nemeth et al., 2003). The furin cleavage site as well as the function and structure 

of hepcidin-25 are well conserved between fish and mammals. In particular, the 8 

cysteine residues in hepcidin-25, as seen in Fig .4B, are highly conserved amongst 
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species and the cysteines involved in the vicinal bond are believed to have 

structural and functional significance (Jordan et al., 2009).  

 

Along with similarities, there are some genomic differences between species with 

regards to hepcidin. Unlike the human genome which contains only one copy of the 

HAMP gene, mice possess two copies, Hamp-1 and Hamp-2, possibly due to a 

gene duplication event (Pigeon et al., 2001). Various studies were conducted to 

understand the functional significance of these two genes encoding hepcidin. It 

was earlier shown by Ilyin et.al (2003) that iron excess in the liver of mice 

upregulated both genes at the transcriptional level. Later, Lou (2009) showed that 

although Hamp-1 transgenic mice developed severe anaemia, Hamp-2 transgenic 

mice developed like the non-transgenic mice. This erased the possibility of 

functionality of Hamp-2 gene in mice. Hence, although the two genes encoding 

hepcidin are independently transcribed and bear high sequence similarity, Hamp-1 

is believed to be the bioactive molecule which regulates iron levels. Apart from 

mice, the fish Paralichthys olivaceus has also been shown to possess two genes 

encoding hepcidin (Kim et al., 2005). 

 

1.3.1 Function of hepcidin in systemic iron homeost asis  

Under normal physiological conditions regulation of iron takes place at both the 

systemic and cellular level. The systemic regulation of iron is mediated by hepcidin 

and the mechanism of its action is explained as follows. 
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The receptor of hepcidin is the transmembrane iron exporter ferroportin, located at 

the basolateral surface of duodenal enterocytes and on macrophages. As 

explained in Fig. 1.5, an increase in systemic iron levels lead to an increase in 

hepcidin expression (Nemeth and Ganz, 2006, Andrews and Schmidt, 2007). 

 

 

 

 

 

 

 

 

 

 

                    A 
Systemic iron deficiency 

                     B 
       Systemic iron excess 

Liver  Liver  

Apical 
surface 

Apical 
surface 

Ferroportin at 
basolateral 
surface 

Ferroportin at 
basolateral 
surface  

Villus enterocyte  Villus enterocyte  Macrophage  Macrophag e 

Fe Fe Fe Fe 

Low levels  
of hepcidin 

High levels  
of hepcidin  

   Systemic iron levels maintained  

Fig. 1.5  Systemic regulation of iron by hepcidin  
 
A: Under systemic iron deficiency, less hepcidin is produced. Low levels of hepcidin are unable to 
degrade all ferroportin. Undegraded ferroportin export iron outside the cells into circulation to raise 
systemic iron levels.  
 
 
B: Under systemic iron excess, hepcidin levels rise. High levels of hepcidin degrade ferroportin 
which is now unable to export iron outside the cells. This results in iron retention within the cells 
and iron is not exported into the circulation. Systemic iron levels are thus not further elevated.  
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Once the hepatocytes secrete hepcidin into the circulation, hepcidin interacts with 

ferroportin present on cell surfaces. The complex is then internalised via 

endocytosis and ferroportin is degraded in the lysosomes through proteolysis 

(Nemeth et al., 2004). Since ferroportin functions as an iron exporter, this 

degradation of ferroportin inhibits iron release from enterocytes, macrophages and 

placental cells into the circulation, thus preventing further systemic iron elevation. 

In contrast, systemic iron deficiency leads to a decrease in hepcidin production 

(Pigeon et al., 2001) and a resultant increase in iron efflux from cells, thus raising 

systemic iron levels.  

 

The significance of hepcidin in regulating iron levels has been understood through 

knockout and over-expression studies. Mice that over-express Hamp-1 die of 

severe anaemia due to over-degradation of ferroportin, intracellular iron retention 

and unavailability of iron in the circulation for erythropoesis (Nicolas et al., 2002). 

Conversely, constitutive hepcidin expression in a mouse model of iron overload 

haemochromatosis prevented iron overload (Nicolas et al., 2003). This evidence 

indicates that hepcidin plays a crucial role in regulating systemic iron levels in the 

body by inhibiting duodenal iron absorption and controls the release and recycling 

of iron by macrophages and iron mobilisation from the hepatocytes.  

 

1.3.2 Overview of hepcidin regulation  

Apart from iron overload, conditions like inflammation and infection also lead to an 

increase in hepcidin production. In contrast, iron deficiency, increased 

erythropoesis and hypoxia lead to a decrease in hepcidin production. Also, as 
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explained in table 1.1, the presence of functional genes HFE, TfR2, HAMP and 

HJV are required to execute a normal hepcidin response and mutations in these 

genes lead to reduction or abolishment of hepcidin production. Regulators of 

hepcidin expression have been summarised in Fig. 1.6.   

 

 

 

                                                 

 

 

 

 

 

The purpose of modulation of hepcidin production during infections and 

inflammation is to support host defence mechanisms. For example, localised high 

doses of hepcidin have been found in phagosomes in macrophages infected with 

tuberculosis bacteria (Sow et al., 2007). This can be explained by the fact that 

these organisms require iron for survival. An increase in hepcidin production leads 

to more sequestration of iron within the cells thus reducing the bioavailability of iron 

for the invading pathogens. Also, the increase in hepcidin causes a lowered iron 

absorption in the duodenum (Nicolas et al., 2002). However, in the host this 

response also limits the bioavailability of iron for erythroid precursors and often 

contributes to the anaemia associated with infections and inflammation. 

Consequently, hepcidin acts as a marker of anaemia of inflammation (AI) (Ganz, 

• Functional genes HFE,TfR2, 
HAMP, HJV 

• Infection: lipopolysaccharide  

• Inflammation: Interleukin 6  

• Systemic iron overload  

• Mutations in genes HFE, 
TfR2, HAMP and HJV 

• Hypoxia  

• Increased erythropoesis  

• Systemic iron deficiency   

 

  Hepcidin  
suppression 
 

   Hepcidin  
  induction 
 

Genes and factors that lead to 
hepcidin induction  
 

Genes and factors that lead to 
hepcidin suppression  
 

Fig. 1.6  Factors affecting hepcidin production  
Important genes and factors that lead to an increase and decrease in hepcidin expression. 
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2011). Although several mechanisms for regulation of hepcidin have been 

proposed, there has been no evidence to date of any other type of control, except 

at transcriptional levels (Truksa et al., 2007). An overview of signal transduction 

pathways, in particular the bone morphogenetic proteins (BMP)-SMAD, janus 

kinase/signal transducer and activator of transcription-3 (JAK-STAT) and HIF 

pathways which appear to regulate hepcidin transcription, are shown in Fig. 1.7.  

 

Briefly, intracellular iron stores influence the binding of BMPs to their receptors on 

the cell surface (Fig. 1.7A and 1.7B). As shown in Fig. 1.7A, membrane-bound HJV 

(mHJV) acts as a BMP co-receptor and assists in this process. This leads to 

phosphorylation and activation of the intracellular SMAD proteins which transmit a 

signal to the nucleus to increase HAMP transcription in the cells (Babitt et al., 

2006). During inflammation, IL6 induces HAMP transcription via the JAK/STAT 

pathway (Babitt et al., 2006, Wang et al., 2005). As shown in Fig. 1.7B, when iron 

stores are low, mHJV is cleaved by furin and/or matripase 2 (a transmembrane 

protease encoded by the gene TMPRSS6, expressed predominantly in liver) to 

form soluble HJV (sHJV). The sHJV disrupts the BMP-mediated activation  

and instead leads to down-regulation of HAMP transcription (Finberg et al., 2010).  
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Fig. 1.7A Pathways leading to transcriptional up -regulation of hepcidin  
The complex of SMAD proteins enter the nucleus, bind to the promoter region of hepcidin 
gene and stimulate HAMP transcription. Also, the STAT3 dimer formed as a results of IL6 
binding to its receptor leads to upregulation of hepcidin. High liver iron stores promote 
hepcidin synthesis via the BMP pathway.  

Fig. 1.7B Pathways leading to transcriptional down -regulation of hepcidin  
Both furin and matripase 2 are able to cleave mHJV to soluble HJV. The soluble HJV does 
not allow a stable complex to be formed between BMP ligands and receptors, thus inhibiting 
HAMP transcription via the BMP pathway. Hypoxia inducible factor increases the 
transcription of genes that would cleave the mHJV to soluble HJV. 
Adapted from Andrews (2007). 

Key to figure :  
 
• BMP : bone 

morphogenetic 
proteins  
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bound HJV 

• IL 6 : interleukin 6 
 
•                Nucleus 
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encoding matripase 2 
 
•   Nucleus 
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1.4 Regulation of cellular iron levels 

Cellular iron homeostasis is mediated by binding of the two iron regulatory  

proteins (IRP), IRP1 and IRP2, to iron responsive elements (IREs) on the mRNA of   

some iron-regulated genes. Binding of IRP1 to IRE in 5’ untranslated regions 

(UTRs) of transcripts prevent protein synthesis whereas binding of IRP1 to IREs in 

the 3’ region provides stability to mRNA and allows translation into proteins.  

The binding of the IRPs to the IREs is in turn regulated by the presence of iron (Fig. 

1.8).  

   

 

  

 

 

IRP2  

  Intracellular iron levels mainta ined  

IRP1  IRP1  
     4Fe-4S cluster   
      assembles in 
      IRP1. IRP1 is   
      unable to bind      
      mRNA  

mRNA 
stabilized   

���� iron 
uptake 
proteins 
produced 

Unprotected 
mRNA degraded 
by endo-
nucleases 
 
����Proteins 
not produced 

Inhibition of 
translation   
 
����  No iron export 
and  storage 
proteins 
                                        

IREs remain free 
of IRP1 

����  iron export 
and  storage 
proteins 
produced 
 

mRNAs of TfR1, DMT1, 
Ferroportin/Ferritin 

IRP1 binds to 
5’ or 3’ IREs 
on mRNA 

IRP2  

Fig. 1.8  Cellular regulation of iron by iron regul atory proteins (IRPs)  
Binding of IRPs to IREs in 5’ UTR and 3’ UTR lead to different effects. IRP binding to 5’ IREs result in 
inhibition of protein production whereas binding to 3’ IREs favour protein production.  

Cellular iron deficiency  Cellular iron exc ess  
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As shown in Fig. 1.8, when cellular iron levels are sufficient or in excess, an  

iron-sulphur cubane (4Fe-4S) is formed which prevents the binding of IRP1 to the  

IRE in 5’ UTR of mRNA of genes encoding ferroportin and ferritin. This permits 

translation of the mRNA into proteins to favour more iron storage within cells and 

more iron efflux. Thus cellular iron overload is prevented. In contrast, under cellular 

iron depletion, IRP1 is iron-free and can therefore bind to the IREs in 3’ UTR on 

transcripts of genes encoding TfR1 and intestinal DMT1. In doing so it stabilises 

the mRNAs and therefore increases the expression of both proteins, hence 

facilitating increased iron uptake by cells to eliminate cellular iron deprivation. Thus 

the IRP-IRE network maintains cellular iron levels (Muckenthaler et al., 2008). 

 

1.5 Iron homeostasis and disorders  

Iron is essential for survival and growth but free iron can be toxic. Since iron has 

the ability to accept and donate electrons, it can catalyse the Fenton reaction that 

leads to the generation of hydroxyl radicals. These radicals can cause severe 

damage to cells and tissues and thus high levels of iron can be deleterious. 

Additionally, there is no physiological pathway for iron excretion except by blood 

loss and the natural means of iron loss from the body occurring as a result of 

sloughing of mucosal cells and/or menstruation is minimal (Miret et al., 2003, 

Nemeth and Ganz, 2006). Hence maintaining iron homeostasis is crucial.  

 

The significance of body iron homeostasis can be realised by reflecting on the 

diseases and conditions in which iron homeostasis is disturbed. Considering iron  



 

20 

 

deficiencies, broadly, there are two types: absolute iron deficiency and functional 

iron deficiency. Absolute iron deficiency is characterised by depleted iron stores. 

This can be due to excessive blood loss or pregnancy when there is increased 

demand for iron or malnutrition when there is decreased supply of iron. This is also 

referred to as iron deficiency anaemia and could have one of the many observable 

effects such as developmental retardation in children. Surprisingly, a large 

proportion of the world population, approximately one third, is believed to be 

suffering from iron deficiency anaemia. On the other hand, functional iron 

deficiency, as seen in cancer and inflammation is referred to as anaemia of 

inflammation or anaemia of chronic disease. These are characterised by low serum 

iron levels despite replete iron stores due to iron-restricted erythropoesis (Munoz et 

al., 2011, Muckenthaler et al., 2008). 

 

Current treatments to alleviate iron deficiency anaemia involve increasing iron 

levels in the body by using ferrous salts. Although approximately 200 mg of 

inorganic iron per day is given to the patients, low doses have been found to be 

effective. Also, when the dose of iron is more than required, the unabsorbed iron 

salts cause nausea, abdominal pain and constipation. Thus low doses of iron salts 

between 50-100 mg of iron should be recommended (Munoz et al., 2011).  

On the other extreme of iron deficiency is iron overload, which could be acquired or 

functional. Examples of acquired iron overload are the iron overdose in children 

which is the commonest poisoning in children, iron overload as a result of repeated 

blood transfusions and/or alcohol consumption and Bantu siderosis (Munoz et al.,  

2011).  
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Functional iron overload, referred to as hereditary haemochromatosis, is the most 

frequent genetic disorder in Caucasians and results from defects in some of the 

genes involved in iron metabolism described in table 1.1. Under 

haemochromatosis, intestinal iron absorption can exceed iron loss by ~ 3 mg/day 

(Pietrangelo, 2006), the effect of which can be tissue specific. For instance the liver 

possesses high levels of antioxidants and cytoprotective enzymes. This suggests 

that a substantially high level of liver iron overload would be required to observe 

the toxic effects of iron. On the other hand, in the reticuloendothelial cells e.g. 

macrophages, only about a 2-3 fold increase in cellular iron would lead to changes 

in normal cell functions (Crichton et al., 2002, Munoz et al., 2011).  

 

Presently, phlebotomy is offered as the commonest therapy to remove excess iron 

from the body of haemochromatosis patients. The rationale behind this is to reduce 

the potential of iron-mediated tissue injury. However, since this strategy has its 

own complications, other therapeutic measures like using iron chelating drugs are 

also being used. This involves the use of iron chelators like deferoxamine, 

deferriprone and deferasirox which have their respective advantages. For example, 

deferriprone has a better half life than deferoxamine and is excreted in urine. 

Hence it is preferred over the use of deferoxamine. However, the use of these 

chelators has some limitations such as inadequate and/or variable chelation. Also, 

the lowest safety limit of iron overload with chelating therapies is yet to be 

determined (Munoz et al., 2011, Smith et al., 2011). 
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1.6 Hepcidin as a biomarker in diseases 

Since hepcidin is regarded as the main iron homeostasis regulator, involvement of 

hepcidin in any iron-associated disease is expected. For instance the levels of 

hepcidin-25 are high in the serum of patients suffering from anaemia of chronic 

disease. Also, increased hepcidin concentrations mark infections and inflammatory 

diseases like malaria and chronic kidney disease (Kroot et al., 2011). Not 

surprisingly, hepcidin has been identified as a type 2 acute phase protein (Nemeth 

et al., 2003). Levels of hepcidin are high in cases of obesity, acute myocardial 

infarction and acquired forms of non-haemochromatotic iron-overload resulting 

from excessive alcohol consumption, whereas iron deficiency anaemia shows 

inhibition of hepcidin synthesis and thus very low serum hepcidin concentrations 

(Kroot et al., 2011).  

 
Since hepcidin has been associated with such a wide range of conditions, its 

significance lies not only in maintaining iron homeostasis but also as a marker for 

diagnosing various disorders. One of the most recent applications of hepcidin as a 

biomarker is a study which proposed that measuring hepcidin concentrations can 

be a way to assess the requirement for iron supplementation in young athletes 

(Borrione et al., 2011). Additionally, a close relationship between iron and glucose 

metabolism has been previously shown. Increased iron stores were found to 

predict the development of type 2 diabetes while iron depletion was found to be 

protective (Fernandez-Real et al., 2002). Also, accumulation of iron in specific 

regions of the brain is associated with neurodegenerative diseases such  

Alzheimer’s disease and Parkinson’s disease (Crichton et al., 2002).  
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Hence studies related to iron regulation and hepcidin would lead to a better 

understanding of several aspects of human metabolomics and also find various 

diagnostic and therapeutic applications.  

  

1.7 Background and overall aims of the project 

In humans and in animal models, increased systemic iron levels lead to increased 

hepcidin levels and increased urinary hepcidin excretion (Lin et al., 2007, Nemeth 

et al., 2003, Pigeon et al., 2001). In humans, a 4-5 fold increase in hepcidin levels 

within 24 hours of iron dosage has been reported (Lin et al., 2007). Likewise, a 

high iron-supplemented diet given to mice resulted in a 10-fold higher iron 

concentration in the liver and a 4-fold increase in Hamp mRNA in the livers of 

these mice (Muckenthaler et al., 2003, Pigeon et al., 2001).  

 

However, these findings could not be replicated in vitro. High iron dosage to cells 

either increased or decreased or had no effect on hepcidin mRNA expression. For 

instance, holotransferrin treatment of HepG2 cells led to either a  decrease (Jacolot 

et al., 2008) or have no effect (Gehrke et al., 2003) on hepcidin mRNA. In primary 

hepatocytes it led to an increase (Lin et al., 2007, Rapisarda et al., 2010) or 

decrease (Nemeth et al., 2003) in hepcidin mRNA. Treatment of HepG2 cells using 

inorganic iron sources showed a dose-dependent hepcidin mRNA response (Fein 

et al., 2007) or a decrease in hepcidin mRNA (Jacolot et al., 2008). On the other 

hand in hepatocytes, such sources either showed no change (Lin et al., 2007, 

Pigeon et al., 2001), or a decrease in hepcidin mRNA expression (Dzikaite et al., 

2006, Nemeth et al., 2003). Other studies showed that hepcidin expression was 
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influenced by the plating and culturing time of hepatocytes (Lin et al., 2007) and by 

the presence and absence of serum  in the medium (Pigeon et al., 2001, Nemeth 

et al., 2003). The presence of macrophages along with the HepG2 cells was also 

crucial to observe a rise in hepcidin mRNA expression in HepG2 cells (Jacolot et 

al., 2008) whereas another group showed that the presence of other cell types was 

not necessary (Montosi et al., 2005).  

 

These varied and inconclusive findings require clarification and further investigation 

as it would aid in a better understanding of how iron regulates hepcidin, which is 

not yet known, or whether they both regulate each other via a feedback 

mechanism. 

 

One reason for the decrease in hepcidin transcription, as observed by some 

groups, could be due to the cells’ inability to uptake the supplemented iron. Most of 

these iron overdose experiments have been performed using inorganic sources of 

iron like ferrous sulphate, ferric ammonium citrate, ferric citrate or ferric 

nitrilotriacetic acid. Since the predominant physiologically relevant form of iron is 

the iron bound to transferrin, these inorganic iron sources may not be preferred by 

the cells as much as transferrin-bound iron. Secondly, iron uptake mechanisms of 

the inorganic iron sources are not fully defined yet. It is likely that such iron forms 

may enter the cells and be quickly sequestered, consequently leading to a 

decrease in hepcidin mRNA expression as the cells may not have recognised the 

high intracellular iron content.  
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Also, TfR1 on the cell surface controls the amount of iron intake by cells 

(Muckenthaler et al., 2008). If the cell is iron deficient it will express more TfR1 on 

its cell surface to encourage iron uptake until cellular iron sufficiency is reached. 

After this stage the cells would stop further TfR1 synthesis or decrease TfR1 

expression to prevent further iron uptake and thus intracellular iron overload. In this 

situation hepcidin mRNA expression may not increase because of the lack of 

intracellular iron overload. This may keep hepcidin levels stable rather than lead to 

an increase (Gehrke et al., 2003). In addition, commercially available 

holotransferrin is only between 5 % and 20 % diferric (Farnaud, personal 

communication). Transferrin containing such a low proportion of holotransferrin 

would not create an iron-rich environment for the cells to uptake high levels of iron. 

This would result in stable intracellular iron content and not an intracellular iron 

overload. These issues were addressed in this study in reference to hepcidin 

expression, where TfR1 on the cell surface of different cell lines and their 

responses under different conditions was also analysed. Whilst defining the nature 

of the supplemented iron source, cellular iron overload on iron supplementation 

was investigated.  

 

Overall aims  

1. To study the effect of iron supplementation on the regulation of hepcidin and 

other iron homeostasis regulators in the Chinese hamster ovarian cell lines and 

human liver carcinoma cell lines. 

2. To investigate the role of the pro-peptide region of the prohormone of hepcidin.  
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Chapter 2  

Materials and Methods 

2.1 Materials  

Primers for polymerase chain reaction (PCR), Hams’ F12 medium, Dulbecco’s 

Phosphate Buffered Saline (PBS) 1X and hygromycin B were purchased from 

Invitrogen (Loughborough, UK). Foetal calf serum (FCS) was purchased from 

Biosera (Ringmer, UK). PCR reagents, proteinase K, cDNA preparation, gel 

extraction and PCR product purification kits were purchased from Qiagen 

(Crawley, UK). The pGEM–T easy vector system was bought from Promega 

(Southampton, UK). All other reagents and labware were purchased from Sigma-

Aldrich (Poole, UK) and VWR (East Grinstead, UK) respectively, unless otherwise 

stated.  

 

2.2 Methods  

2.2.1 Cell culture 

All cell lines were grown and maintained in their respective maintenance medium in 

tissue culture flasks at 37 °C in a humidified atmo sphere of 95 % air and 5 % CO2. 

The maintenance medium was changed every 2-3 days and cells were passaged 

by trypsinisation (0.025 % trypisn EDTA for 5 minutes) on reaching 70-80 % 

confluence. To neutralise the trypsin, maintenance medium was added and 

centrifugation was performed at 1000 rotations per minute (rpm) (89 x g) for 5 min. 

The supernatant was removed, fresh maintenance medium was added to the cell 

pellet and the cells were plated at the required density for iron-related studies. 
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2.2.2 Chinese hamster ovary (CHO) cell lines 

Wild type CHO AA8 (Wt CHO) was a kind gift from Professor Keith Caldecott 

(University of Sussex, Falmer, East Sussex, UK). The CHO transferrin receptor 

variant cell line (CHO TRVb1 clone B6), constitutively expressing the human 

transferrin receptor-1 was kindly donated by Dr. Heinz Zoller (University of 

Innsbruck, Austria). These two CHO cell lines were maintained in Ham’s F12 

nutrient mixture (1X) containing 2 mM glutamax supplemented with 10 % FCS and 

1 % antibiotic/antimycotic solution (100X) (Fisher Scientific International Inc., UK).   

 

2.2.3 HepG2 cell lines 

2.2.3.1 Wild type HepG2 cells  

Wild type HepG2 (Wt HepG2), a hepatocarcinoma cell line, was bought from the 

Health Protection Agency (Colindale, London UK). These cells were maintained in 

Eagle’s Minimum Essential Medium (EMEM), 1 % non-essential amino acids,        

2 mM glutamax, 1 % antibiotic/antimycotic solution and 10 % FCS.  

 

2.2.3.2 Creation of recombinant HepG2 cells  

Recombinant HepG2 (rec-TfR1 HepG2), a HepG2 cell line that constitutively 

expresses human TfR1 receptor, was created in collaboration with Dr. Paul Brown 

(King’s College, London, UK). Details on the creation of this cell line are in 

appendix I.  

Principle:  The coding region of human TfR1 gene, devoid of its IRE was cloned 

into the plasmid vector pCEP4 (Invitrogen-Life technologies, UK). This recombinant 

plasmid was transfected into Wt HepG2 cells, resultantly giving rise to the 
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recombinant HepG2 cells. Since the IRE of TfR1 has been removed, on iron 

supplementation the cells should take up iron continuously regardless of their 

intracellular iron content, permitting intracellular iron overload. The human TfR1 

mRNA and the protein sequence alignment below shows the region of interest 

cloned into the vector pCEP4. It also shows the primers designed for cloning and 

real time PCR. 

 

ggcggctcgggacggaggacgcgctagtgtgagtgcgggcttctagaacta caccgaccctc 62 
   R  L  G  T  E  D  A  L  V  -  V  R  A  S  R  T  T  P  T  L  
Gtgtcctcccttcatcctgcggggctggctggagcggccgctccggtgctg tccagcagc 122 
 V  S  S  L  H  P  A  G  L  A  G  A  A  A  P  V  L  S  S  S  
Catagggagccgcacggggagcgggaaagcggtcgcggccccaggcggggc ggccgggat 182           
 H  R  E  P  H  G  E  R  E  S  G  R  G  P  R  R  G  G  R  D  
Ggagcggggccgcgagcctgtggggaaggggctgtggcggcgcctcgagcg gctgcaggt 242 
 G  A  G  P  R  A  C  G  E  G  A  V  A  A  P  R  A  A  A  G  
 
     forward primer for cloning  
     Tgatatatgcggccgcaccatggatcaagctagatcagcattctc >>  
Tcttctgtgtggcagttcaga atgatggatcaagctagatcagcattctctaacttgttt 302 
 S  S  V  W  Q  F  R   M  M  D  Q  A  R  S  A  F  S  N  L  F  
Ggtggagaaccattgtcatatacccggttcagcctggctcggcaagtagat ggcgataac 362 
 G  G  E  P  L  S  Y  T  R  F  S  L  A  R  Q  V  D  G  D  N  
Agtcatgtggagatgaaacttgctgtagatgaagaagaaaatgctgacaat aacacaaag 422 
 S  H  V  E  M  K  L  A  V  D  E  E  E  N  A  D  N  N  T  K  
Gccaatgtcacaaaaccaaaaaggtgtagtggaagtatctgctatgggact attgctgtg 482 
 A  N  V  T  K  P  K  R  C  S  G  S  I  C  Y  G  T  I  A  V  
Atcgtctttttcttgattggatttatgattggctacttgggctattgtaaa ggggtagaa 542 
 I  V  F  F  L  I  G  F  M  I  G  Y  L  G  Y  C  K  G  V  E  
Ccaaaaactgagtgtgagagactggcaggaaccgagtctccagtgagggag gagccagga 602 
 P  K  T  E  C  E  R  L  A  G  T  E  S  P  V  R  E  E  P  G  
Gaggacttccctgcagcacgtcgcttatattgggatgacctgaagagaaag ttgtcggag 662 
 E  D  F  P  A  A  R  R  L  Y  W  D  D  L  K  R  K  L  S  E  
Aaactggacagcacagacttcaccagcaccatcaagctgctgaatgaaaat tcatatgtc 722 
 K  L  D  S  T  D  F  T  S  T  I  K  L  L  N  E  N  S  Y  V  
Cctcgtgaggctggatctcaaaaagatgaaaatcttgcgttgtatgttgaa aatcaattt 782 
 P  R  E  A  G  S  Q  K  D  E  N  L  A  L  Y  V  E  N  Q  F  
Cgtgaatttaaactcagcaaagtctggcgtgatcaacattttgttaagatt caggtcaaa 842 
 R  E  F  K  L  S  K  V  W  R  D  Q  H  F  V  K  I  Q  V  K  
Gacagcgctcaaaactcggtgatcatagttgataagaacggtagacttgtt tacctggtg 902 
 D  S  A  Q  N  S  V  I  I  V  D  K  N  G  R  L  V  Y  L  V  
Gagaatcctgggggttatgtggcgtatagtaaggctgcaacagttactggt aaactggtc 962 
 E  N  P  G  G  Y  V  A  Y  S  K  A  A  T  V  T  G  K  L  V  
Catgctaattttggtactaaaaaagattttgaggatttatacactcctgtg aatggatct 1022 
 H  A  N  F  G  T  K  K  D  F  E  D  L  Y  T  P  V  N  G  S  
Atagtgattgtcagagcagggaaaatcacctttgcagaaaaggttgcaaat gctgaaagc 1082 
 I  V  I  V  R  A  G  K  I  T  F  A  E  K  V  A  N  A  E  S  
Ttaaatgcaattggtgtgttgatatacatggaccagactaaatttcccatt gttaacgca 1142 
 L  N  A  I  G  V  L  I  Y  M  D  Q  T  K  F  P  I  V  N  A  
Gaactttcattctttggacatgctcatctggggacaggtgacccttacaca cctggattc 1202 
 E  L  S  F  F  G  H  A  H  L  G  T  G  D  P  Y  T  P  G  F  
Ccttccttcaatcacactcagtttccaccatctcggtcatcaggattgcct aatatacct 1262 
 P  S  F  N  H  T  Q  F  P  P  S  R  S  S  G  L  P  N  I  P  
Gtccagacaatctccagagctgctgcagaaaagctgtttgggaatatggaa ggagactgt 1322 
 V  Q  T  I  S  R  A  A  A  E  K  L  F  G  N  M  E  G  D  C  
Ccctctgactggaaaacagactctacatgtaggatggtaacctcagaaagc aagaatgtg 1382 
 P  S  D  W  K  T  D  S  T  C  R  M  V  T  S  E  S  K  N  V  
Aagctcactgtgagcaatgtgctgaaagagataaaaattcttaacatcttt ggagttatt 1442 

Key to TfR1 mRNA and 
protein alignment 

• Region of the primers 
used for cloning the 
insert into the vector 
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 K  L  T  V  S  N  V  L  K  E  I  K  I  L  N  I  F  G  V  I  
Aaaggctttgtagaaccagatcactatgttgtagttggggcccagagagat gcatggggc 1502 
 K  G  F  V  E  P  D  H  Y  V  V  V  G  A  Q  R  D  A  W  G  
           Forward primer for TfR1 >>> 
Cctggagctgcaaaatccggtgtaggcacagctctcctattgaaacttgcc cagatgttc 1562 
 P  G  A  A  K  S  G  V  G  T  A  L  L  L  K  L  A  Q  M  F  
Tcagatatggtcttaaaagatgggtttcagcccagcagaagcattatcttt gccagttgg 1622 
 S  D  M  V  L  K  D  G  F  Q  P  S  R  S  I  I  F  A  S  W  
 
                                                         <<< 
Agtgctggagactttggatcggttggtgccactgaatggctagagggatac ctttcgtcc 1682 
 S  A  G  D  F  G  S  V  G  A  T  E  W  L  E  G  Y  L  S  S  
<<< Reverse primer for TfR1  
Ctgcatttaaaggctttcacttatattaatctggataaagcggttcttggt accagcaac 1742 
 L  H  L  K  A  F  T  Y  I  N  L  D  K  A  V  L  G  T  S  N  
Ttcaaggtttctgccagcccactgttgtatacgcttattgagaaaacaatg caaaatgtg 1802 
 F  K  V  S  A  S  P  L  L  Y  T  L  I  E  K  T  M  Q  N  V  
Aagcatccggttactgggcaatttctatatcaggacagcaactgggccagc aaagttgag 1862 
 K  H  P  V  T  G  Q  F  L  Y  Q  D  S  N  W  A  S  K  V  E  
Aaactcactttagacaatgctgctttccctttccttgcatattctggaatc ccagcagtt 1922 
 K  L  T  L  D  N  A  A  F  P  F  L  A  Y  S  G  I  P  A  V  
Tctttctgtttttgcgaggacacagattatccttatttgggtaccaccatg gacacctat 1982 
 S  F  C  F  C  E  D  T  D  Y  P  Y  L  G  T  T  M  D  T  Y   
Aaggaactgattgagaggattcctgagttgaacaaagtggcacgagcagct gcagaggtc 2042 
 K  E  L  I  E  R  I  P  E  L  N  K  V  A  R  A  A  A  E  V  
Gctggtcagttcgtgattaaactaacccatgatgttgaattgaacctggac tatgagagg 2102 
 A  G  Q  F  V  I  K  L  T  H  D  V  E  L  N  L  D  Y  E  R  
Tacaacagccaactgctttcatttgtgagggatctgaaccaatacagagca gacataaag 2162 
 Y  N  S  Q  L  L  S  F  V  R  D  L  N  Q  Y  R  A  D  I  K  
Gaaatgggcctgagtttacagtggctgtattctgctcgtggagacttcttc cgtgctact 2222 
 E  M  G  L  S  L  Q  W  L  Y  S  A  R  G  D   F  F  R  A  T  
Tccagactaacaacagatttcgggaatgctgagaaaacagacagatttgtc atgaagaaa 2282 
 S  R  L  T  T  D  F  G  N  A  E  K  T  D  R  F  V  M  K  K  
Ctcaatgatcgtgtcatgagagtggagtatcacttcctctctccctacgta tctccaaaa 2342 
 L  N  D  R  V  M  R  V  E  Y  H  F  L  S  P  Y  V  S  P  K  
Gagtctcctttccgacatgtcttctggggctccggctctcacacgctgcca gctttactg 2402 
 E  S  P  F  R  H  V  F  W  G  S  G  S  H  T  L  P  A  L  L  
Gagaacttgaaactgcgtaaacaaaataacggtgcttttaatgaaacgctg ttcagaaac 2462 
 E  N  L  K  L  R  K  Q  N  N  G  A  F  N  E  T  L  F  R  N  
 
                                                 << <  ctgcaa 
Cagttggctctagctacttggactattcagggagctgcaaatgccctctct ggtgacgtt 2522 
 Q  L  A  L  A  T  W  T  I  Q  G  A  A  N  A  L  S  G  D  V  
 
         <<< Reverse primer for cloning  
Accctgtaactgttactcaaaattattcctaggcgcgcg  
Tgggacattgacaatgagttttaa atgtgatacccatagcttccatgagaacagcagggt 2582 
 W  D  I  D  N  E  F   -  M  -  Y  P  -  L  P  -  E  Q  Q  G  
                         
Agtctggtttctagacttgtgctgatcgtgctaaattttcagtagggctac aaaacctga 2642 
 S  L  V  S  R  L  V  L  I  V  L  N  F  Q  -  G  Y  K  T  -  
Tgttaaaattccatcccatcatcttggtactactagatgtctttaggcagc agcttttaa 2702 
 C  -  N  S  I  P  S  S  W  Y  Y  -  M  S  L  G  S  S  F  -  
Tacagggtagataacctgtacttcaagttaaagtgaataaccacttaaaaa atgtccatg 2762 
 Y  R  V  D  N  L  Y  F  K  L  K  -  I  T  T  -  K  M  S  M  
Atggaatattcccctatctctagaattttaagtgctttgtaatgggaactg cctctttcc 2822 
 M  E  Y  S  P  I  S  R  I  L  S  A  L  -  W  E  L  P  L  S  
Tgttgttgttaatgaaaatgtcagaaaccagttatgtgaatgatctctctg aatcctaag 2882 
 C  C  C  -  -  K  C  Q  K  P  V  M  -  M  I  S  L  N  P  K  
Ggctggtctctgctgaaggttgtaagtggttcgcttactttgagtgatcct ccaacttca 2942 
 G  W  S  L  L  K  V  V  S  G  S  L  T  L  S  D  P  P  T  S  
Tttgatgctaaataggagataccaggttgaaagacctctccaaatgagatc taagccttt 3002 
 F  D  A  K  -  E  I  P  G  -  K  T  S  P  N  E  I  -  A  F  
Ccataaggaatgtagcaggtttcctcattcctgaaagaaacagttaacttt cagaagaga 3062 
 P  -  G  M  -  Q  V  S  S  F  L  K  E  T  V  N  F  Q  K  R  
Tgggcttgttttcttgccaatgaggtctgaaatggaggtccttctgctgga taaaatgag 3122 
 W  A  C  F  L  A  N  E  V  -  N  G  G  P  S  A  G  -  N  E  
Gttcaactgttgattgcaggaataaggccttaatatgttaacctcagtgtc atttatgaa 3182 
 V  Q  L  L  I  A  G  I  R  P  -  Y  V  N  L  S  V  I  Y  E  
Aagaggggaccagaagccaaagacttagtatattttcttttcctctgtccc ttcccccat 3242 
 K  R  G  P  E  A  K  D  L  V  Y  F  L  F  L  C  P  F  P  H  
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Aagcctccatttagttctttgttatttttgtttcttccaaagcacattgaa agagaacca 3302 
 K  P  P  F  S  S  L  L  F  L  F  L  P  K  H  I  E  R  E  P  
Gtttcaggtgtttagttgcagactcagtttgtcagactttaaagaataata tgctgccaa 3362 
 V  S  G  V  -  L  Q  T  Q  F  V  R  L  -  R  I  I  C  C  Q  
Attttggccaaagtgttaatcttaggggagagctttctgtccttttggcac tgagatatt 3422 
 I  L  A  K  V  L  I  L  G  E  S  F  L  S  F  W  H  -  D  I  
Tattgtttatttatcagtgacagagttcactataaatggtgtttttttaatag aatataa 3482 
 Y  C  L  F  I  S  D  R  V  H  Y  K  W  C  F  F  N  R  I  -  
Ttatcggaagcagtgccttccataattatgacagttatactgtcggttttt tttaaataa 3542 
 L  S  E  A  V  P  S  I  I  M  T  V  I  L  S  V  F  F  K  -  
Aagcagcatctgctaataaaacccaacagatactggaagttttgcatttat ggtcaacac 3602 
 K  Q  H  L  L  I  K  P  N  R  Y  W  K  F  C  I  Y  G  Q  H  
Ttaagggttttagaaaacagccgtcagccaaatgtaattgaataaagttga agctaagat 3662 
 L  R  V  L  E  N  S  R  Q  P  N  V  I  E  -  S  -  S  -  D  
 
                          TfR1-IRE forward primer > >> 
Ttagagatgaattaaatttaattaggggttgctaagaagcgagcactgacc agataagaa 3722 
 L  E  M  N  -  I  -  L  G  V  A  K  K  R  A  L  T  R  -  E  
Tgctggttttcctaaatgcagtgaattgtgaccaagttataaatcaatgtc acttaaagg 3782 
 C  W  F  S  -  M  Q  -  I  V  T  K  L  -  I  N  V  T  -  R  
Ctgtggtagtactcctgcaaaattttatagctcagtttatccaaggtgtaa ctctaattc 3842 
 L  W  -  Y  S  C  K  I  L  -  L  S  L  S  K  V  -  L  -  F  
 
                                <<< TfR1 reverse pr imer  
Ccatttgcaaaatttccagtacctttgtcacaatcctaacacattatcggg agcagtgtc 3902 
 P  F  A  K  F  P  V  P  L  S  Q  S  -  H  I  I  G  S  S  V  
Ttccataatgtataaagaacaaggtagtttttacctaccacagtgtctgta tcggagaca 3962 
 F  H  N  V  -  R  T  R  -  F  L  P  T  T  V  S  V  S  E  T  
Gtgatctccatatgttacactaagggtgtaagtaattatcgggaacagtgt ttcccataa 4022 
 V  I  S  I  C  Y  T  K  G  V  S  N  Y  R  E  Q  C  F  P  -  
Ttttctt catgcaatgacatcttcaaagcttgaagatcgttagtatctaacatgtatc cc 4082 
 F  S  S  C  N  D  I  F  K  A  -  R  S  L  V  S  N  M  Y  P  
Aactcctataattccctatcttttagttttagttgcagaaacattttgtgg tcattaagc 4142 
 N  S  Y  N  S  L  S  F  S  F  S  C  R  N  I  L  W  S  L  S  
Attgggtgggtaaattcaaccactgtaaaatgaaattactacaaaatttga aatttagct 4202 
 I  G  W  V  N  S  T  T  V  K  -  N  Y  Y  K  I  -  N  L  A  
Tgggtttttgttacctttatggtttctccaggtcctctacttaatgagata gcagcatac 4262 
 W  V  F  V  T  F  M  V  S  P  G  P  L  L  N  E  I  A  A  Y  
Atttataatgtttgctattgacaagtcattttaatttatcacattatttgc atgttacct 4322 
 I  Y  N  V  C  Y  -  Q  V  I  L  I  Y  H  I  I  C  M  L  P  
Cctataaacttagtgcggacaagttttaatccagaattgaccttttgactt aaagcagag 4382 
 P  I  N  L  V  R  T  S  F  N  P  E  L  T  F  -  L  K  A  E  
Ggactttgtatagaaggtttgggggctgtggggaaggagagtcccctgaag gtctgacac 4442 
 G  L  C  I  E  G  L  G  A  V  G  K  E  S  P  L  K  V  -  H  
Gtctgcctacccattcgtggtgatcaattaaatgtaggtatgaataagttc gaagctccg 4502 
 V  C  L  P  I  R  G  D  Q  L  N  V  G  M  N  K  F  E  A  P  
Tgagtgaaccatcatataaacgtgtagtacagctgtttgtcatagggcagt tggaaacgg 4562 
 -  V  N  H  H  I  N  V  -  Y  S  C  L  S  -  G  S  W  K  R  
Cctcctagggaaaagttcatagggtctcttcaggttcttagtgtcacttac ctagattta 4622 
 P  P  R  E  K  F  I  G  S  L  Q  V  L  S  V  T  Y  L  D  L  
Cagcctcacttgaatgtgtcactactcacagtctctttaatcttcagtttt atctttaat 4682 
 Q  P  H  L  N  V  S  L  L  T  V  S  L  I  F  S  F  I  F  N  
Ctcctcttttatcttggactgacatttagcgtagctaagtgaaaaggtcat agctgagat 4742 
 L  L  F  Y  L  G  L  T  F  S  V  A  K  -  K  G  H  S  -  D  
Tcctggttcgggtgttacgcacacgtacttaaatgaaagcatgtggcatgt tcatcgtat 4802 
 S  W  F  G  C  Y  A  H  V  L  K  -  K  H  V  A  C  S  S  Y  
Aacacaatatgaatacagggcatgcattttgcagcagtgagtctcttcaga aaacccttt 4862 
 N  T  I  -  I  Q  G  M  H  F  A  A  V  S  L  F  R  K  P  F  
Tctacagttagggttgagttacttcctatcaagccagtacgtgctaacagg ctcaatatt 4922 
 S  T  V  R  V  E  L  L  P  I  K  P  V  R  A  N  R  L  N  I  
Cctgaatgaaatatcagactagtgacaagctcctggtcttgagatgtcttc tcgttaagg 4982 
 P  E  -  N  I  R  L  V  T  S  S  W  S  -  D  V  F  S  L  R  
Agtagggccttttggaggtaaaggtata                                 5010 
 S  R  A  F  W  R  -  R  Y     
 

 

 

Fig. 2.1  Alignment of human TfR1 mRNA and protein  
The alignment shows the coding region of TfR1 cDNA that was cloned into vector pCEP4. 
It also shows the IRE located in the 3’ region (Casey et al., 1988) as well as the actual 
endonuclease site within the IRE region (Binder et al., 1994). Information on TfR1 
obtained from Proteinknowledgebase UniProtKB at www.uniprot.org/uniprot/P02786. 
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Fig. 2.2 is a representation of the plasmid pCEP4 into which the TfR1 segment  

of interest was cloned. Since the plasmid pCEP4 contains a hygromycin B 

resistance gene, the rec-TfR1 HepG2 cells were maintained in the same medium 

as the Wt HepG2 cells, with the addition of 200 µg/mL hygromycin B as a selection 

for exclusive growth of recombinant HepG2 cells. 

 

 

 

 

2.2.3.3 Creation of HepG2 cells containing empty pl asmid: HepG2 (p) cells 

HepG2 (p) cells were created to be used as a control in iron supplementation 

experiments. The cells were created by transfection of the Wt HepG2 cells with the 

empty pCEP4 plasmid. The method of creation was as per X-tremeGENE-9 DNA 

transfection reagent protocol (Roche, West Sussex, UK) and is briefly described as 

follows.  

Pre- transfection cell culture conditions:  Wt HepG2 cells were seeded at a 

density of 8 x104 cells per well in 6 wells of a 24 well plate. Cells were allowed to 

Fig. 2.2  Schematic of the cloning vector  
pCEP4 plasmid 

Image adapted from life technologies at 
http://products.invitrogen.com/ivgn/product/V04450 
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grow for 48 hours until they reached approximately 60 % to 70 % confluence, 

ready to be transfected.  

 

Preparation of transfection medium : On the day of transfection, the transfection 

medium was prepared. This was composed of X-9 (transfection reagent) and 

serum-free EMEM. These two were mixed in 3 different ratios, each ratio in 

duplicate. The ratios were 3:100, 4:100 and 6:100, i.e. 3 µL of X-9 and 100 µL of 

serum free medium, 4 µL of X-9 and 100 µL of serum-free EMEM, and 6 µL of X-9 

and 100 µL of serum-free EMEM. These 6 tubes containing the transfection 

medium were divided into 2 sets; one set was for the test (plasmid) and the other 

for the control (no plasmid). The test set of tubes were supplemented with 1 µg of 

the plasmid pCEP4. To the control set, instead of the plasmid, serum-free and 

antibiotic-free medium was added. All preparations were mixed gently and 

incubated at room temperature (RT) for 20 min.  

 

Transfection:  For transfection, Wt HepG2 cells growing in the maintenance 

medium, as described above, were washed once with PBS to remove any cell-

bound antibiotics. To each of the 6 wells, 1 mL of EMEM (with 10 % FCS and 

without antibiotics) was added. 50 µL from each of the transfection preparations 

was added to each of the respective wells, the plate was mixed gently and the cells 

were incubated at 37 ºC in an incubator for 48 hours. Following this, the 

transfection medium was removed and replaced with maintenance medium 

containing 500 µg/mL of hygromycin B. The medium was replaced after 3 days, 

and the cells were maintained in a medium containing 500 µg/mL hygromycin B. 
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After 3 weeks, the cells were maintained in a maintenance medium containing 200 

µg/mL of hygromycin B and passaged in the same way as the other HepG2 cell 

lines. 

 

2.2.4 Liquid nitrogen storage and cell revival 

All cell lines were stored in NUNC vials in 90 % FCS and 10 % dimethyl sulphoxide 

(DMSO) in the Cryo 1°C freezing container, (Nalgene ), at -80 ºC for 24 hours and 

then transferred to liquid nitrogen for long term storage. When reviving the cells 

from liquid nitrogen, frozen vials were quickly defrosted in an incubator at 37 ºC. To 

wash away the DMSO, contents were transferred to a 15 mL centrifuge tube, 

followed by addition of warm maintenance medium and centrifugation at 1000 rpm 

(89 x g) for 4 min. The supernatant was discarded and the cell pellet was 

resuspended in maintenance medium and seeded in a 25 cm2 flask containing 

warm maintenance medium to initiate cell growth.   

 

2.2.5 DNA extraction from cell lines and rodent liv er tissues 

DNA was extracted from cells in order to perform PCRs to confirm the presence of 

a gene of interest and/or to confirm its sequence identity by subsequent 

sequencing. DNA was also extracted from rodent tissues which served as a 

positive control in PCRs since the expected product size with respective primers 

was known. 

Principle:  Addition of lysis buffer makes cells permeable and lyses the cells. 

Sodium dodecyl sulphate (SDS) present in the lysis buffer removes membrane 

lipids and thus assists the lysis buffer. Proteinase K added later inactivates 
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nucleases that degrade DNA; its action is enhanced by SDS. It also removes the 

cellular and histone proteins bound to DNA, making the DNA more “accessible”. 

Finally, isopropanol precipitates the DNA.  

 

Methodology:  DNA extraction from tissues and cell lines was performed using the 

isopropanol-ethanol precipitation method (Maniatis et al., 1982). To extract DNA 

from cell lines, cells were grown in a 75 cm2 tissue culture flask. On reaching  

80-90 % confluence, cells were trypsinised and transferred to a 15 mL centrifuge 

tube. After centrifugation at 800 x g for 5 minutes, the supernatant was removed. 

To the cell pellet or rodent liver tissues, 3 mL of lysis buffer [100 mM Tris (pH 8), 

50 mM NaCl, 10 mM EDTA, 0.2 % SDS] and 10 µL of proteinase K (20 mg/mL) 

was added, mixed and incubated overnight in a water bath maintained at 65 ºC. 

After overnight incubation, contents were transferred to a 1.5 mL eppendorf tube 

and centrifuged at 13,000 rpm (16,060 x g) for 20 min. The supernatant was 

transferred to a fresh eppendorf tube and 600 µL of cold isopropanol was added, 

the tubes were vortexed and again centrifuged at 13,000 rpm (16,060 x g) for 15 

min. The supernatant was discarded and 2 µL of 5 M sodium chloride, 100 µL of 

distilled water and 200 µl of cold absolute ethanol (BDH, East Grinstead, UK) were 

added, mixed and incubated at -20 ºC for 1 hour. The tubes were then centrifuged 

at 13,000 rpm (16,060 x g) for 10 min, the supernatant was discarded and the 

pellet was dried in a speed vacuum. The DNA pellet was suspended in 50 µL of 

nuclease-free, diethylpyrocarbonate (DEPC)-treated water (Ambion, Warrington, 

UK) and stored at -20 ºC. 

 



 

35 

 

2.2.6 DNA purification and concentration 

The extracted DNA was purified and concentrated to improve its quality for PCRs 

and subsequent sequencing.  

Methodology:  To the DNA to be purified, 10 M ammonium acetate was added (at 

1/10th of DNA solution to be purified). Following this, an equal volume of 100 % 

isopropanol was added and the mixture was then incubated at RT for 20 min.  

Centrifugation was performed at 13,000 rpm (16,060 x g) for 10 min at RT. The 

supernatant was removed, 100 µL of 70 % ethanol was added, the tubes were 

vortexed and centrifuged at 13,000 rpm (16,060 x g) for 10 min at RT. The 

supernatant was removed and the precipitated DNA was suspended in 50 µL of 

nuclease-free water. The DNA was stored at -20 ºC and only the DNA preparations 

with a 260/280 ratio >1.8 were used in PCRs. 

 

2.2.7 Primer design and gene annotation   

The following databases, software programmes, algorithms and tools were used to 

design primers.  

a. National Center for Biotechnology Information (NCBI) for accession of gene 

sequences and software blastn to match the characterised sequence of a 

gene with existing gene sequences in the database.  

b. Genome Net for Clustal-W alignment, a multiple sequence alignment tool to 

align gene sequences from different species, aiming to identify most 

conserved regions to design primers.  

c. Software Primer 3 (available at http://frodo.wi.mit.edu/) to design gene- 

specific primers.  
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All primers were designed to have similar properties such as GC content close to 

60 %, melting temperature (Tm) close as 60 ºC and product size less than 200 

base pairs (bp) to facilitate their use in real time PCR. Once the primers were 

designed, each primer was checked for its gene specificity at the NCBI database 

with blastn.  

 

Tables 2.1, 2.2 and 2.3 shows all the primers used for PCRs and real time PCRs. 

• Table 2.1 lists the primers designed based on conserved nucleotides between 

human, mouse and rat. These were the primers used for the 1st and 2nd rounds 

of CHO gene sequencing.  

• Table 2.1 also shows the CHO-specific primers, referred as “CHO for x forward” 

and “CHO for x reverse”, where is x the gene of interest. These were designed 

exclusively on the characterised CHO gene sequence and were used in real 

time PCR optimisations with the CHO cells.  

• Table 2.2 shows the hepcidin primers used for rat, mouse and human 

genomes, published by other research groups.  

• Table 2.3 shows the primers used for PCR optimisations and real time PCR 

with HepG2 cells.  

The genes have been annotated in the text as follows: 

Protein  Gene encoding the pro tein in 
humans  

Gene annotation in text  

Hepcidin  HAMP (Hamp in rodents) Hepcidin gene 
Ferroportin SLC40A1 Ferroportin gene 
TfR1 TfRC TfR1 gene 
HFE HFE HFE gene 
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Genes Forward (F) primers 5’ to 3’  Reverse (R) primers 5’ to 3’  
                                                     Primers designed based on multiple sequence alignme nts of different species  
Hfe  (F)   CTCTTCATGGGTGCCTCA  (R)   CACCCTTTCAGNCTCTGACT   

(F1)   CAATNGCTNNAGGGTGACTTC  (R1)   AAGAGTTGGTCATCCACGTAG  
(F2)   ATAATCATGAGAATCGCCGTG (R2)   TTCACCAAAGNAGGCACTTG  

Ferroportin  (F)   ATCGGATGTGGCACTTTGC  (R)   GCCACTTTAAGTCTNGCATTCT  
(F1a)   CTTTCCAACTTCAGCTACAGTGTT  (R1)   CGTAGACAGCTGTCAAGAGGA   
(F1b)   TCCAACTTCAGCTACAGTGTT   
(F2)   TAGCAGGCTCTGTTCTGG  (R2a)   CCATTATTCCAGTTATNGCTGATGC   

(R2b)   ATTATTCCAGTTATNGCTGATGC  
Irp2 (F)   AATGCACCAAATCCTGGAG  (R)   AGGCACTGGTTGCAAATG   

(F1)   TAATATGGTCTCCGGCGATG  (R1)   TCCTCGGCAGGTAGTCTGG  
(F2)   CCAGACTACCTGCCGAGGA (R2)   CATTTAAGCAAGCCTGGAAATC  

Hepcidin  (F)   GCTGCCTGTCTCCTGCTTC (R)    ATGGGGAAGTTGRTGTCTC  

(F1)   CTGCCTGTCTCCTGCTTC (R1a)   ATGGGGAAGTTGNTGTCTC 
(R1b)   AGGNCAGGAATNAATANTGGGG 

(F2)   NCTCCTGCTNCTCCTCCT   (R2a)   AGAANNNGCANATGGGGAAG  
(R2b)   ATGGGGAAGTNGNTGTCTC    

Genes and 
source of 
primers                                                

Primers designed for Real time PCR on the basis of characterised CHO sequence 

Hfe Hfe for CHO (F)   AACCACAGTAAGGGCAGTAAGC  Hfe for CHO (Rx)   GAGGCACTTGCTGCTTCAG  
Hfe for CHO (Ry)   GCTCTCCATTCCAGTGTCGT  

Ferroportin FPN for CHO (F)   ATGGGTGCTCACTGTCTGCTA  FPN for CHO (R)   GCATTCATATCTGCTAATCTGCTTC  
Irp2 Irp2 for CHO (F)   ATTCTTGGGTGGGGAGTTG  Irp2 for CHO (R)   CCTACTTGCCTGAGGTGCTT   
Beta actin 
(Bahr et al., 
2009) 

(F)   GCTCTTTTCCAGCCTTCCTT (R)   GAGCCAGAGCAGTGATCTCC  
 

Pabpn1 
(Bahr et al., 
2009) 

(F)   GTGGCCATCCTAAAGGGTTT 
 

(R)   CGGGAGCTGTTGTAATTGGT 
 

CHO 
endogenous 
TfR1 

(F)   CCCAGCAGAAGCATTATCTTT (R)   TTCCCATCAATTGGATGTCTT 

 Table 2.1 Primers for CHO gene sequencing and real time PCR  
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 Forward (F) primers 5’ to 3’  Reverse (R) primers 5’ to 3’  
Source of Primers                                                                      Hepcidin primers published by other research groups  
(Fein et al., 2007) (FF)   CTGCAACCCCAGGACAGAG  (RR)   GGAATAAATAAGGAAGGGAGGGG   
(Lin et al., 2007) Mouse hepcidin -1 (F)   

TTGCGATACCAATGCAGAAGA   
Mouse hepcidin -1 (R)    
GATGTGGCTCTAGGCTATGTT  

(Dzikaite et al., 2006) Rat hepcidin (F)-x   
TGACAGTGCGCTGCTGATG   

Rat hepcidin (R)-x   
GGAATTCTTACAGCATTTACAGCAGA   

(Zhang et al., 2004) Rat hepcidin F-y   
CGAGACACCAACTTCCCCATAT  

Rat hepcidin R-y   
GCTCTTGGCTCTCTATGTTATGCA   

pGEM-T easy vector primers  
(Greenwell., P.) 

(F) GCGGCCGCGGGAATTCG   
 

(R)  GGCGGCCGCGAATTCA   

 
 
 
Genes and source of primers  Forward (F) primer 5’ to 3’  Reverse (R) primer 5’ to 3’  

Primers designed for HepG2 cells  
Hepcidin  (F I)  ACAGCCAGACAGACGGCACGA  (R I)  TTCGCCTCTGGAACATGGGCATC  

(F II)  CCTGACCAGTGGCTCTGTTT  (R II)  CACATCCCACACTTTGATCG  
TfR1  (F)  AAAATCCGGTGTAGGCACAG  (R)  TTAAATGCAGGGACGAAAGG   
TfR1-IRE  (F Ia)  AAGCGAGCACTGACCAGATAA  (R I)  TGCTCCCGATAATGTGTTAGG  

(F Ib)  GGTTGCTAAGAAGCGAGCAC   
F2  CCTAACACATTATCGGGAGCA   (R2)  TTCAAGCTTTGAAGATGTCATTG   

GAPDH  (F)  GCCAAAAGGGTCATCATCTC (R)  GGTGCTAAGCAGTTGGTGGT 
Primers for HepG2 cells, as published by other rese arch groups  

Hepcidin (Jacolot et al., 2008)  (F III)  CCTGACCAGTGGCTCTGTTT  (R III)  CTCTGGAACATGGGCATCCA  
Hepcidin (Wrighting and Andrews, 2006)  (F IV) CTGCAACCCCAGGACAGAG  (R IV)  GGAATAAATAAGGAAGGGAGGGG  
HFE (Jacolot et al., 2008)  (F I)  TGATCTGGGAGCCCTCACC  (R I)  GACGACAAAAACAGCAATTCC  
HFE (Rapisarda et al., 2010)  (F II)   AGAACAGGGCCTACCTGGAG  (R II)  TGTGTCACCTTCACCAAAGG  
Ferroportin (Jacolot et al., 2008)  (F I)  TGTTTCTGGTAGAGCTCTAT  (R I)  GATATAGCAGGAAGTGAGAA  
Ferroportin (Recalcati et al., 2010)  (F II)  GGGGTCGCGTAGTGTCAT  (R II)  CAGGTAGTCGGCCAAGGAT  
18s (Provenzano et al., 2007)  (F)   AACTTTCGATGGTAGTCGCCG  (R)   CCTTGGATGTGGTAGCCGTT  
Actin (Rapisada., personal communication)  (F)  CCAACCGCGAGAAGATGA  (R)   CCAGAGGCGTACAGGGATAG  

 Table 2.3  Primers for PCR optimisations and real t ime PCR with HepG2 cells  

Table 2.2 Primers used for hepcidin gene sequencing  in CHO cells  
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2.2.8 Polymerase chain reactions (PCRs) 

PCRs were performed to confirm the presence of a gene of interest, followed by 

sequencing to confirm product identity.  

Principle : Primers bind to DNA at complementary regions and Taq Polymerase, 

extends the primers by adding complementary bases to the free 3’ OH end of the 

primers, until it reaches the end of a defined region. After the first cycle of PCR, 

two strands of DNA are produced, identical to the original strands. In the second 

cycle these form the template for synthesis of the correctly sized amplicons. 

Subsequent cycles lead to a logarithmic increase in the number of copies of the 

region of DNA, defined by the primers. 

 

Methodology:   The PCR protocol adapted from Qiagen’s Taq PCR master mix 

protocol (Qiagen) is shown in Table 2.4. The annealing and extensions times were 

chosen depending on the size of the product expected. For example, the annealing 

time of 1 min and final extension of 10 min were chosen for products more than 

500 bp in length. Different annealing temperatures shown in table 2.4 represent the 

temperature gradient PCRs, as explained in the following section. All PCRs were 

performed on the Eppendorf® Mastercycler gradient.  

Contents  Volume  PCR cycle steps  
DEPC water 5.5 µL 1. Initial denaturation temperature: 94 ºC for 3 min 

2. Denaturation: 94 ºC for 30 sec 
3. Annealing: 55 ºC , 58 ºC or 60 ºC for 45 sec or 1 min  
4. Extension: 72 ºC for 1 min  
5. Repeat step 2 to 4, 29 times 
6. Final extension: 72 ºC for 5 or 10 min 
7. Final hold: 4 ºC 

Qiagen Taq PCR 
master mix (2X) 

12.5 µL 

5µM Forward primer 2.5 µL 
5µM Reverse primer 2.5 µL 
DNA template (200ng) 2 µL 
Total volume 25 µL 

 

 

Table 2.4  PCR protocol and cycles   
The volume of contents is adapted from Qiagen’s Taq PCR master mix kit protocol. 
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2.2.9 Temperature and magnesium chloride gradient P CR 

In order to identify the most appropriate annealing temperature for primer binding 

to the DNA template, multiple PCR tubes were set up for a sample and subjected 

to a gradient of annealing temperatures ranging from 51 ºC to 61 ºC. To avoid 

variability between PCR mixtures in different tubes, a single PCR master mix with 

the DNA was aliquoted in 25 µL volumes in each 0.2 mL PCR tube and then 

placed at desired temperatures on the PCR machine. The temperature which 

resulted in the highest product formation and a unique product was chosen as the 

most appropriate annealing temperature. A magnesium chloride (MgCl2) gradient 

PCR was set up in a range from 1.5 mM to 4 mM to facilitate more specific binding 

of primers. The annealing temperature chosen was as identified by the 

temperature gradient PCR.  

 

2.2.10 Agarose gel electrophoresis 

The presence and size of a PCR product was determined by agarose gel 

electrophoresis. 

Principle:   During electrophoresis, porous agarose helps in migration of DNA from 

the negative electrode to the positive electrode. Ethidium bromide intercalates 

between the double strands of DNA and fluoresces when exposed to UV light. This 

detects the presence of product. 

Methodology:  After the PCR, 5 µL of 5X DNA loading buffer (Bioline, London, UK) 

was added per 25 µL of a PCR reaction. 18 µL of amplicon was run on 0.8 %, 1 %, 

2 % or 3 % agarose gel (Web scientific, Cheshire, UK ) using 1X Tris-Borate-EDTA 

buffer (Fisher Scientific International Inc., Loughborough, UK). Alongside the 
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products to be analysed, 10 µL sample of a DNA ladder (Web scientific Cheshire, 

UK), as seen in Fig. 2.3, was loaded in one well. The gel was electrophoresed at 

100 volts until the loading dye had run 2/3rd of the gel. The gel was then observed 

under a UV transilluminator to check the DNA products.  

                                                          
 
 
 
2.2.11 Cloning and transformation  

Two PCR products of similar sizes on agarose gel are difficult to gel extract and 

sequence. Cloning of a dual product segment into a vector, followed by 

transformation and selection of clones aid in extraction and subsequent 

sequencing of each product.  

Principle:  The dual product segment was cut from the gel and ligated to a plasmid 

vector; the principle being that one plasmid would ligate to only one product. This 

created two kinds of recombinant plasmids, each one with one of the two products. 

These recombinant plasmids were then transformed into competent cells to obtain 

multiple copies of plasmids. These plasmids were then extracted from the 

competent cells and PCRs were performed to check sequence identity. 

 

3000 bp 
2000 bp 
1500 bp 
 
1000 bp 
800 bp 
700 bp 
600 bp 
500 bp 
400 bp 
300 bp 
 
200 bp 
 
100 bp 

Fig. 2.3 A typical DNA ladder  
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Methodology: The dual product segment was gel extracted and purified using 

Qiagen’s gel extraction kit, according to manufacturer’s instruction. The purified 

section was then ligated to the pGEM-T Easy Vector system I and the recombinant 

plasmids were transformed into competent Escherichia coli XL-1 Blue cells, 

according to the manufacturer’s protocol. For transformation, Luria-Bertani (LB) 

agar and LB broth were prepared and autoclaved at 121 ºC for 15 min. The LB 

agar was heated in a microwave oven and cooled to 40-50 ºC. Since the plasmid 

pGEM-T contains ampicillin resistance gene, ampicillin solution (100 µg/mL) was 

filtered using 0.22 µm filter unit and added to the LB agar. Along with this, isopropyl 

β-D-1 thiogalactopyranoside solution (IPTG) (0.5 mM) and bromo-chloro-indolyl-

galactopyranoside (X-gal) (80 µg/mL) were also filtered and added to the LB agar. 

X-gal as added to aid selection due to the presence of lacZ gene on the plasmid. 

The contents were mixed and plates poured. Agar was allowed to solidify and 

plates were surface spread with transformed E. coli cells. After overnight 

incubation at 37 ºC, blue and white colonies were observed. White colonies, which 

represented successful ligation of product to the vector were selected and 

inoculated in LB broth with ampicillin (100 µg/mL) and incubated at 37 ºC overnight 

on shaker. Recombinant plasmids from these cells were extracted and purified 

using Qiagen’s Qiaprep spin Miniprep kit (Qiagen). PCRs were performed using 

the purified plasmid and the vector primers as well as the designed gene primers. 

Amplicons were electrophoresed at 100 volts on an agarose gel to confirm the 

presence of the expected product. The products were either gel extracted or 

purified using Qiagen’s gel extraction kit or PCR product purification kit and sent for 

sequencing.  
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2.2.12 Sequencing PCR products  

The identity of the obtained PCR product was confirmed by sequencing.  

Principle:  Single stranded primer binds to a strand of dsDNA to be sequenced and 

the primer is extended by addition of nucleotides complementary to the DNA 

strand. As a convention the top and the bottom strands of DNA are represented as 

5’ to 3’ and 3’ to 5’, respectively. The forward primer binds to and thus reads the 

bottom strand of DNA and the reverse primer binds to and thus reads the top 

strand of DNA; both reads are given to the customer in 5’ to 3’ direction.   

 

Methodology : PCR products for sequencing were purified either using Qiagen’s 

gel extraction kit or Qiagen’s PCR product purification kit, as per manufacturer’s 

instructions. The concentration and purity of DNA was checked using a Nanodrop 

3.1 (Thermo Scientific, UK) and sent to the Wolfson Institute for Biomedical 

Research (University College London) or GATC-Biotech (London, UK) for 

sequencing, as per their respective specifications. Forward and backward reads for 

a product were requested. Characterised sequences were accessed and analysed 

using Applied Bio systems sequence scanner v 1.0. The forward and backward 

reads were aligned using blastn at NCBI to obtain the most clearly sequenced 

section of the DNA. This section of sequence was then used to find its matches in 

the NCBI database. 

 

2.2.13 Determination of iron saturation of holotran sferrin  

In order to check the iron saturation of holotransferrin used in iron supplementation 

experiments, a urea gel assay was performed.  
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Principle:  Transferrin is a bi-lobed protein. The N-lobe corresponds to the amino 

terminus of the protein and the C-lobe corresponds to the carboxyl terminus of the 

protein. Each lobe can accommodate up to one Fe3+ ions. Transferrin can thus 

exist in 4 different forms : holotransferrin, when both the lobes of transferrin are 

occupied by Fe3+; monoferric transferrin, when only one of the two lobes of 

transferrin is occupied with Fe3+ and apotransferrin when no Fe3+  is bound to 

transferrin (Makey and Seal, 1976).   

 

Since apotransferrin is iron-free, it is easily unfolded by 6 M urea and thus runs 

slowly on the gel. On the contrary, iron bound to transferrin does not allow urea to 

unfold the protein structure. Since the protein remains intact, iron bound transferrin 

runs at a comparatively faster rate than apotransferrin. Thus the 4 forms of 

transferrin have different mobilities on a 6 M urea gel and this allows identification  

of the different forms (Evans and Williams, 1978)(Makey and Seal, 1976).  

 

Methodology: Solutions of holotransferrin (SCIPAC LTD, Kent, UK) 5 g/L and  

apotransferrin (SCIPAC LTD, Kent, UK)  were prepared in 0.01 mM sodium 

bicarbonate. The concentrations and preparation of buffers and solutions are 

mentioned in appendix II. Briefly, two 400 cm2 glass plates were prepared with  

1 mm spacers between the two plates. Acrylamide gel solution was prepared and 

poured in between the glass plates and allowed to set with a comb of wells. The 

gel was then pre-equilibrated with stock buffer in the appropriate tank.  
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Samples for loading were prepared by adding 20 �L of transferrin solutions to  

30 �L of sample buffer. From this, 40 �L of sample was loaded into each well of 

the gel and 110 volts current was applied for 16 hours. Gels were then removed 

from the glass plates and stained overnight with coomassie blue solution with 

gentle agitation. This was followed by overnight destaining in 10 % acetic acid and 

10 % methanol. The gel was placed on a scanner and a photograph was taken. As 

seen in Fig. 2.4 the vast majority of the protein was holotransferrin, as expected, 

with some proportions of monoferric transferrins. 

 

 

 

 

 

 

 

 

 

 

2.2.14 Pre-iron supplementation optimisations 

For the iron supplementation experiment it was important that the iron supplied to 

the cells was of a defined concentration, type, and the sole source of iron available 

to the cells. Since FCS, which is a component of normal maintenance medium, 

may contain inorganic iron as well as holotransferrin, it was necessary to ensure 

that the iron supplementation studies were performed in a serum-free medium. 

Fig. 2.4  A 6 M urea gel assay  
Lane 1: Apotransferrin  
Lane 2: Holotransferrin (SCIPAC) 

1          2 

Monoferric transferrin 

 

 Monoferric transferrin 

Holotransferrin  
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However, the survival of cells without FCS for a long period of time would be 

difficult. Hence bovine serum albumin (BSA) was chosen as a substitute for FCS. 

Since iron can bind to albumin (Silva and Hider, 2009), BSA was checked for the 

presence of any bound iron through the ferrozine assay described in section 

2.2.17.1. Results revealed that there was no detectable iron in 4 % BSA prepared 

in deionised water (appendix III). Thus it was concluded that the BSA was iron-free 

and the holotransferrin supplementation prepared in a medium containing BSA 

would be the only source of iron available to the cells. 

 

Following this, cells were grown in different BSA concentrations (1 % BSA to 8 % 

BSA made in serum-free EMEM) to check the minimum concentration of BSA that 

would support cell survival in the absence of FCS throughout the duration of an 

iron supplementation experiment. The medium of choice was EMEM as it does not 

contain any inorganic iron. Cell viabilities were determined (section 2.2.16) after 6 

hours, 24 hours and 48 hours and the results were compared to the cells growing 

in normal maintenance medium with FCS at that time point. Viability studies along 

with cell morphology observations suggested that the BSA-free and serum-free 

medium was the most suitable for the cells up to 48 hours (appendix IV). 

 

Hence for the iron supplementation experiments, the cells were treated with the 

desired concentration of holotransferrin prepared in serum-free and BSA-free 

EMEM. Throughout the thesis, the term 'iron overdose' refers to the treatment of 

the cells whereas 'iron overload' refers to high intracellular iron content.  
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Also, before every experiment, the difference between the Wt HepG2 cells and rec-

TfR1 HepG2 cells was established by growing the cells in 500 µg/mL hygromycin B 

in one well of a 6 well plate. The recombinant HepG2 cells survived in hygromycin 

B due to the presence of the hygromycin B resistance gene in the pCEP4 plasmid 

whereas the Wt HepG2 cells died after 5-7 days. This confirmed the cell type. 

Images of HepG2 cells grown under different conditions are shown in Fig. 2.5. 

        

                 
 
 
 

2.2.15 Iron supplementations 

For the iron supplementation experiments, cells were seeded at a density of 3 X 

105 per well in a 24 well plate or 5 X 105 per well in a 6 well plate in maintenance 

medium with hygromycin B (for rec-TfR1 HepG2 and HepG2 (p) cells) and without 

hygromycin B (for Wt HepG2 and CHO TRVb1 cells). The medium was changed 

every 48 hours until the cells reached 60 % - 70 % confluence. For the next 24 

hours all cells were incubated in fresh hygromycin-free maintenance medium. 

Following the 24-hour hygromycin-free incubation the cells were washed twice with 

warm PBS to remove traces of FCS. This was followed by holotransferrin 

treatments (1 g/L to 5 g/L for 30 min, 2, 4, 6, 24 and 48 hours). These 

Fig. 2.5  Effect of hygromycin B on HepG2 cells  
A: Wt HepG2 cells in maintenance medium without hygromycin B.  
B: Rec-TfR1 HepG2 cells in maintenance medium with 500 µg/mL hygromycin B.  
C: Wt HepG2 cells in maintenance medium with 500 µg/mL of hygromycin B. 

A B C 
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holotransferrin treatment solutions were prepared in BSA-free, serum-free and 

hygromycin-free EMEM, denoted as 0 g/L. Alongside the holotransferrin 

treatments, cells were also treated with 0g/L which represented the untreated 

control, as well as the maintenance medium to enable comparisons between 

different conditions.  

 

Cells were incubated for the required period of time and assessed for viability (as 

per section 2.2.16), intracellular iron concentration (as per section 2.2.17) and 

gene expression (as per sections 2.2.18 and 2.2.19). 

 

2.2.16 Viability assay   

Following the experimental treatments, cell viability was assessed using the MTT 

assay (Mosmann, 1983).  

Principle:  Live cells possess active reductase enzymes. The enzymes convert   

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), a yellow 

tetrazolium salt, into purple coloured insoluble formazan crystals. The formazan 

crystals are dissolved by DMSO and the solution is read spectrophotometrically. 

Since these enzymes are only found in active mitochondria, this conversion only 

occurs in live cells. Hence, the higher the absorbance, the higher the viability of 

cells, compared to the control.  

Methodology:  To compare the viability of cells in between different treatments,  

2.5 X 104 cells were seeded per well of a 96 well plate in maintenance medium. 

The plate was incubated overnight at 37 ºC in a humidified atmosphere with 5 % 

CO2. The following day, the maintenance medium was removed and the cells were 
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washed twice with warm PBS to remove traces of the maintenance medium. 

Treatment media were then added to each well and the plates were again 

incubated at 37 ºC in a humidified atmosphere with 5 % CO2. On completion of the 

treatment exposure period, the old media were replaced with 200 µL of fresh media 

per well. This was followed by addition of 5 µL per well of 5 mg/mL of MTT 

prepared in PBS. The plates were incubated at 37 °C  for 2 hours, the media were 

removed and 100 µL DMSO was added to each well. Plates were incubated at RT 

for 15 min, vortexed for 30 sec and absorbances were read at 550 nm using a 

spectrophotometer. The absorbance values of blanks (medium only) were 

subtracted from controls and treated samples. 

 

2.2.17 Determination of cellular iron and protein c ontent  

In order to determine the intracellular iron level, cells were washed twice with ice 

cold PBS and the plates were frozen at -20 ºC to induce cell lysis. After overnight 

incubation, to each well, 200 µl (in a 24 well plate) or 500 µl (in a 6 well plate) of 50 

mM sodium hydroxide was added. Cells were detached by rocking on a plate 

shaker for 2 hours and collected in sterile 1.5 mL tubes. Cell lysis was further 

promoted by vortexing and one freeze-thaw cycle. The samples (i.e. cells) were 

dissolved in 50 mM NaOH, syringed using a 25 G needle and centrifuged for 10 

min at 13,000 rpm (16,060 x g) at 4 ºC. The supernatant was collected in a 1.5 mL 

tube, from which 100 µL was used in the ferrozine assay for iron determination and 

5 µL was used in the Bradford assay for protein quantification. The iron content 

determined through the ferrozine assay was expressed as nmoles of iron per mg of 

protein. 
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2.2.17.1 Determination of cellular iron content by the ferrozine assay 

Principle:  In an acidic environment and reducing conditions, iron is detached from 

the proteins to which it is bound and converted from Fe3+ to Fe2+. The iron 

detection reagent contains ferrozine, a chromophore with an aromatic ring 

structure, which binds to Fe2+ iron and gives a purple colour, which is measured 

spectrophotometrically. 

 

Methodology:  Iron standards were prepared (10 µM to 150 µM or 5 µM to 20 µM)  

from an iron atomic absorption standard solution (Fig. 2.6). The ferrozine assay 

was modified from Riemer et al. (2004). The supernatant of the cell lysate was 

used for the ferrozine assay. Additionally, 45 µL of iron detection reagent was 

added to the samples and the samples were incubated for 1 hour at RT in the dark. 

The intensity of the colour was measured spectrophotometrically at 550 nm.  
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2.2.17.2 Determination of cellular protein content by the Bradford assay 

Principle:  The dye Brilliant Blue G present in the Bradford reagent binds to the 

proteins in the solution to form blue coloured complexes. These complexes cause 

Fig. 2.6  A typical iron standard curve  
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a shift in the absorption maximum of the dye from 465 to 595 nm. The higher the 

absorbance, the more protein present in the sample.  

 

Methodology : The Bradford assay was performed as per the manufacturer’s 

guidelines (Sigma-Aldrich, Gillingham, UK) using the BSA protein standard liquid in 

the range from 0 -1.4 mg/mL. 
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2.2.18 RNA extraction and complementary DNA (cDNA) synthesis 

In order to understand gene expression under treatment conditions, RNA was 

extracted from cells, converted to cDNA and used as a template in real time PCR.  

Principle : TRI reagent lyses the cells and keeps the RNA stable to be processed. 

Addition of 1-bromo-3-chloropropane facilitates phase separation, i.e. separation of 

RNA from DNA and proteins. The supernatant which contains RNA is treated with 

isopropanol to precipitate RNA. 

 

Methodology: RNA was extracted from cells with TRI reagent using the 

manufacturer’s protocol (Sigma-Aldrich, Gillingham, UK), which was modified as 

Fig. 2.7  A typical protein standard curve  
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described as follows. The entire process was performed on ice, except when 

indicated otherwise. Cells were washed with warm PBS. TRI reagent was directly 

added dropwise to the cells: 1 mL for 25 cm2 flask, 200 µL for a well of a 24-well 

plate and 500 µL for a well of a 6-well plate. In the case of 24-well plates, TRI 

reagent-cell suspensions were pooled together to increase the RNA concentration. 

The cell suspensions were collected in 1.5 mL tubes and stored overnight at -80 ºC 

to prevent RNA degradation. The next day, tubes were thawed on ice and 

incubated at RT for 15 min. 150 µL of 1-bromo-3-chloropropane was added per 

500 µL of cell suspension in the TRI reagent, mixed by inverting the tubes and 

incubated at RT for 3 min. For phase separation, tubes were centrifuged at 4000 

rpm (1,523 x g) for 15 min at 4 ºC. The resultant top layer containing RNA was 

aliquoted into a separate tube. Isopropanol, at 1/4th this volume, was added and 

RNA was precipitated overnight at -20 ºC. The following day, tubes were 

centrifuged at 13,000 rpm (16,060 x g) for 15 min at 4 ºC. To the RNA pellet, 500 

µL of 70 % ethanol was added and centrifuged at 10,000 rpm (9,520 x g) for 10 

min at 4 ºC. The supernatant was removed completely and tubes were allowed to 

dry on ice. The RNA was suspended in 30 µL of DEPC-treated nuclease-free water 

and stored at -80 ºC. Reverse transcription and cDNA synthesis from this RNA was 

performed according to Qiagen’s QuantiTect reverse transcription kit protocol. All 

RNA preparations used in cDNA conversions had a 260/280 ratio >1.7. Once the 

cDNA was prepared, it was immediately analysed through real time PCR to 

prevent any degradation.  
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2.2.19 Real time PCR using SYBR green as detector 

Principle:  Real time PCR (RT PCR) measures the amount of product formed 

during a PCR in real time. In the SYBR green real time PCR, the fluorescent dye 

SYBR green binds to the minor grooves of DNA and binds only to double stranded 

(ds) DNA. As the cycles progress, an increase in fluorescence is measured by the 

machine which provides a set of CT (threshold cycle) values. CT is a cycle at which 

there is a significant detectable increase in the amount of fluorescence. Hence, the 

higher the initial starting template cDNA, the earlier the fluorescence will reach a 

certain threshold and lower will be the CT value. These CT values are then 

mathematically processed further for biological interpretations. 

 

Methodology : All real time PCRs were performed using Qiagen’s Quantifast 

SYBR green kit, as per manufacturer’s protocol (Table 2.5). cDNA equivalent to 

100 ng RNA was used in each reaction, except when performing standard dilution 

curves as described in the following section. The reactions were carried out in the 

Rotor-gene Q machine (Qiagen, Crawley, UK) and results were analysed using 

Rotor-gene software series 1.7. Products were electrophoresed on 1 % agarose 

gel to ensure product formation of the expected size.  

Contents  Volume  Real time PCR cycle steps  
Nuclease free water 4 µL 1. Initial denaturation temperature: 95 ºC for 10 min  

2. Denaturation: 94 ºC for 10 sec  
3. Annealing:  60 ºC for 15 sec (or 12 sec)  
4. Extension: 72 ºC for 20 sec (or 15 sec)  
5. Repeat step 2 to 4, 39 times or 34 times  
 

 

SYBR green master 
mix 

10 µL 

5 µM Forward primer 2 µL 
5 µM Reverse primer 2 µL 
cDNA equivalent to 
100 ng RNA. 

2 µL 

Total volume 20 µL 
 

 

Table 2.5  SYBR real time PCR protocol and cycles  
The table describes standard real time PCR protocol. The cycling steps described represent the 
default cycle, except when modified for optimisations as indicated in the brackets. 
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2.2.19.1 Standard dilution series  

Firstly, a PCR was performed to confirm the presence of all genes of interest in the 

cell line of interest. Amplicons obtained were sent for sequencing to confirm the 

sequence identity of each gene (appendix V). This was followed by a pilot real time 

temperature gradient PCR to ensure that the default annealing temperature was 

the most appropriate for product formation (appendix VI).  

 

Amplification efficiencies of all genes of interest were determined by setting up a 2- 

fold dilution series of the cDNA template with the respective primers. The starting 

amount of the template was cDNA equivalent to 100 ng RNA. As an example, the 

TfR1 gene is analysed in Fig. 2.8. The standard curves showing the amplification 

efficiencies and analysis of all other genes of interest are in appendix VII.  
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Fig. 2.8  Analysis of TfR1 standard curve  

A : Melt curve: shows the presence of a single peak, indicating unique product formation 
without any detectable primer dimers. 
B : Cycling curve: a sigmoidal curve of cycle number vs. fluorescence. The shape suggests 
that as the substrates are depleted over the course of cycles and thus the curve flattens 
towards the end. The line of threshold is placed above the negative controls (nuclease-free 
water). This displays a set of CT values which are used by the software to plot the efficiency of 
the reaction, as seen in part C.  
C : Efficiency curve: displays the efficiency of the reaction.  
 

A B C 

Temperature ºC Cycle number Concentration 
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2.2.19.2 Analysis of real time PCR data 

The CT values obtained from a particular experiment were analysed by the 

comparative method, also referred to as the Delta-Delta CT (∆∆CT) relative 

quantification. Essentially, the method is based on the following calculations:  

(I)   ∆ CT of sample = CT of target gene  -  CT of reference gene (in this study it 

was glyceraldehyde 3-phosphate dehydrogenase, GAPDH) 

(II)    ∆ CT of untreated  = CT of target gene  -  CT of reference gene 

(III)   ∆∆ CT = ∆ CT of sample - ∆ CT of untreated   

(IV) Normalised target gene expression of sample=  2-∆∆ CT 

 

2.2.20 Detection of transferrin receptor on cell su rface  

The effect of holotransferrin treatments on the cell surface expression of TfR1 was 

studied using flow cytometry. 

Principle: The human transferrin receptor, to be detected, binds to a 

complementary primary antibody. A fluorescein isothiocyanate (FITC)-labelled 

secondary antibody binds to the primary antibody and this label is detected by the 

flow cytometer. The higher the fluorescence detected, the higher would be the 

number of transferrin receptors present on the cell surface.  

 

Method: Cells were seeded at a density of 5 X105 cells per well in a 6 well plate. 

After 24 hours, the cells were washed with PBS to remove traces of the 

maintenance medium. Following this, the cells were either serum deprived for 24 

hours followed by addition of the treatment medium or the treatment medium was 

added immediately after washing the cells without any period of serum deprivation. 
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The cells were then incubated with the treatment medium for the desired period of 

time and harvested for flow cytometry. Cell harvesting was accomplished by 

dissociation of cells with 500 µL of TrypLE Express (ThermoFisher Scientific, UK), 

per well of a 6 well plate for 7 min, followed by centrifugation for 4 min at 1000 rpm 

(89 x g). Cells were suspended in PBC (PBS containing 0.15 % BSA and 1 mM 

calcium chloride) and 200 X 103 cells from each well were transferred to a 96 well 

plate. Cells were washed 3 times with PBC by centrifugation at 3800 rpm (~ 1,263 

x g) for 30 sec, on slow acceleration and no brake. Then, to each well, 20 µL of 

blocking IgG (i.e. γ-globulins from human blood) was added at the concentration of 

16 mg/mL prepared in PBC.  

 

The primary antibody, in this study the human transferrin receptor antibody (Abcam 

Cambridge, UK), was prepared at the optimised concentration of 5 µg/mL in PBC. 

20 µL of this solution was added to each of the test wells whereas the control wells 

were supplemented with 20 µL of PBC. The controls cells without the primary 

antibody and the treated cells with the primary antibody were incubated for 45 min 

on ice. The cells were then washed with PBC, as previously described, to remove 

any non-specifically bound primary antibody. A FITC-labelled secondary antibody 

STAR9B, rabbit F (ab')2 anti-mouse IgG (ABD Serotec Kidlington,UK) was added, 

at a concentration of 10 µg/mL; 40 µL was added to each well. The cells were 

incubated for 30 min on ice and washed twice with PBC and once with PBS, as 

previously described. The cell layer formed at the bottom of each well was 

resuspended in 200 µL of PBS. At the time of analysis using the flow cytometer, 

this 200 µL of cell suspension was transferred to a tube already containing 200 µL 
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of PBS. Thus for each sample 400 µL of cell suspension was analysed. All 

samples were kept on ice during analysis. Fig. 2.9 shows a typical analysis of cell 

surface TfR1 via flow cytometry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.21 Detection of human TfR1 in CHO TRVb1 cells 

The presence of human TfR1 protein in the CHO TRVb1 cells was checked using 

dot blot chemiluminescence and Western blotting.  

Principle of chemiluminescence:  Anti-human TfR1 antibody binds to the TfR1 

and a secondary antibody conjugated to horseradish peroxidase (HRP) binds to 

Fig. 2.9  Analysis of cell -surface TfR1 in Wt HepG2 cells by flow cytometry  

A and B : Cells without the primary antibody (negative control) 
C and D : Cells treated with primary antibody (test) 
 

          C           D 

        A         B 
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the primary antibody. The HRP produces luminescence on exposure to 

chemiluminescent substrates, the proportion of luminescence being directly 

proportional to the amount of protein. 

 

Methodology: Wt CHO and CHO TRVb1 cell lines were grown in a 25 cm2 flask in 

the maintenance medium. On reaching 70 % confluence, cells were trypsinised as 

normal. The supernatant was removed and the cell pellet was resuspended in 100 

µL of PBS. To this, 100 µL of 2X loading buffer (800 µl of milliQ water, 2 mL of 0.5 

M tris pH 6.8, 1.6 mL glycerol, 3.2 mL of 10% SDS, 0.5 mL of 0.1 % bromophenol 

blue) was added. The mixture was vortexed for 5 sec and 5 µL of each cell extract 

was applied as a dot on a nitrocellulose membrane (Bio-Rad, UK) and allowed to 

dry for 5 min at RT. Following this, the nitrocellulose membrane was blocked 

overnight at 4 ºC on a shaker, in 5 % milk prepared in PBST (0.05% Tween 20 in 

PBS). 

 

On the following day, the milk was removed and the membrane was washed with 

distilled water. Then the membrane was placed in a clean tray prior to the addition 

of the antibody. The primary antibody, human TfR1 antibody (Cell science) (100 

µg/mL), was diluted 1:2000 in PBS containing 1 % BSA. This antibody solution was 

added onto the membrane and incubated for 1 hour at 37 ºC on a shaker. After 

incubation, the membrane was washed three times for 10 min each wash on a 

shaker with PBST followed by a final wash with PBS for 10 min.  
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A rabbit anti-mouse HRP-conjugated secondary antibody (Dako UK Ltd, UK) was 

diluted 1:1000 by using 1 % BSA in PBS. This was added onto the nitrocellulose 

membrane and the membrane was incubated at RT for 1 hour on a shaker. After 

incubation the membrane was washed with distilled water once, followed by two 10 

min washes with PBST and one wash with distilled water for 10 min.  

 

A mixture of 750 µl of each of the ECL™ Western Blotting Detection Reagents 

(Amersham, GE healthcare, UK) was prepared in a tube and mixed thoroughly and 

added onto the membrane. Two Ryman films were placed on the nitrocellulose 

membrane like a “sandwich” such that the nitrocellulose membrane was in the 

middle and the two films were on either side. One X-ray film was placed on top of 

the sandwich and this assembly was put in a cassette and developed in the dark 

for 10 min. The luminescent signal was thus captured on the film.  

 

SDS PAGE and blotting was performed using the MINI- Protean-3 cell system 

(Laemmli buffer system) and Bio-Rad's Ready Gel, precast gels (BIO-RAD, UK) as 

per manufacturer’s recommendation. The samples for SDS PAGE were prepared 

by addition of dithiothreitol (DTT) at a final concentration of 10 mM to the 

previously prepared cell extract in loading buffer. The samples were boiled for 5 

min at 100 ºC and 20 µL was loaded per well. The samples were subjected to 

electrophoresis and immunoblotting was performed with the antibodies used in the 

dot blot. The concentrations of the primary and secondary antibody as well as the 

detection system were the same as those used in the dot blot.  
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2.2.22 Determination of hepcidin peptide concentrat ions  

The concentration of hepcidin-25 in the medium was measured by 

radioimmunoassay in collaboration with Dr. Mark Busbridge, Imperial college, 

London UK (Busbridge et al., 2009). 

 

2.2.23 Restriction digest  

pEGFPN1 plasmid constructs containing preprohepcidin derivatives were obtained 

from Dr. Sebastien Farnaud. In order to identify these plasmid constructs, each 

was digested with the restriction enzymes BamHI (Promega, UK) and Hind III 

(Promega, UK), as per the manufacturer’s restriction digest protocol. Prior to 

digestion, the yield of the plasmid was increased by transformation of each of the 

recombinant plasmid constructs into E.Coli XL1 blue cells as explained in section 

2.2.11, except that here 50 µg/mL of kanamycin sulphate (Fisher BioReagents) 

was used as a selection antibiotic (since the plasmid possesses a kanamycin 

resistance gene) without the addition of X-gal and IPTG in the agar plates. 

Following this, the purified plasmids were subjected to single and double restriction 

digest. Essentially, 1.5 µg of plasmid per 20 µL of the digestion reaction was added 

and the reaction mix was incubated at 37 ºC for 1 hour. An aliquot (2 µL) of loading 

buffer was added to 10 µL of the reaction mixture and electrophoresed on 2 % 

agarose gel at 100 V to check for post-digestion products. The host plasmid is 

shown in the Fig. 2.10. 
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2.2.24 Localisation studies of preprohepcidin deriv atives 

Localisation studies were performed by transfecting Wt HepG2 cells with the 

recombinant pEGFPN1 plasmid containing the ‘pre-pro’ construct of 

preprohepcidin. The transfection reagent used, Lipofectamine LTX and Plus 

reagent (Life technologies), is specially formulated to transfect the difficult-to-

transfect HepG2 cells.  

Principle of transfection:   Lipid globules surround the plasmids. These  

lipid-coated globules fuse with the cell membranes and the lipid-coated plasmids 

are uptaken by the cells.  

 

Methodology:  HepG2 cells were seeded at a cell density 2 x 105 cells per well of 

a 6 well plate and the transfection procedure was performed using the 

Lipofectamine LTX and PLUS reagent, adapted from the manufacturer’s 

recommendation. Essentially, the Wt HepG2 cells growing in maintenance medium 

Fig. 2.10  Cloning vector pEGFP -N1 plasmid  
Restriction sites for enzymes HindIII and BamHI  
are located within the multiple cloning site. The 
figure is adapted from Clonetech available at 
http://www.liv.ac.uk/physiology/ncs/catalogue/Cloni
ng/pEGFP-N1.htm 
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were trypsinised and seeded into 6 well plates at a cell density of 2 X 105 cells per 

well. After overnight incubation, the transfection procedure was initiated. A 

transfection mix containing 2.5 µg of pEGFPN1 plasmid, 500 µL of Optimem I 

medium and 2.5 µL of PLUS reagent was prepared and incubated for 10 min at 

RT. Following this, 10 µL lipofectamine LTX was added to this preparation and 

incubated for a further 25 min at RT. Once the transfection mix was ready, the 

maintenance medium from the cells was aspirated and replaced with 2.5 mL of 

maintenance medium without antibiotics and 100 µL of transfection mix per well. 

The plate was gently rocked and incubated at 37º C for 24 hours. Cell fixation was 

performed by washing the cells with PBS followed by addition of 2 mL of ice cold 

paraformaldehyde (4%) and incubation at 37º C for 20 min. The paraformaldehyde 

was then removed and 2 mL PBS was added to each well, followed by wrapping 

the plates with foil and storing the plates at 4º C. Prior to analysis by confocal 

microscopy, the PBS was removed and the cells were washed 2 times with fresh 

PBS. The cells were permeabilised using Triton-X 100 (0.1% in PBS) for 10 min at 

RT and washed 3 times with PBS. This was followed by incubation with the nuclear 

staining dye TO-PRO-3 (1 µM in PBS) for 20 min. After washing the cells with PBS, 

2 mL of fresh PBS was added to the cells followed by observation by confocal 

microscopy. 

 

2.2.25 Statistical analysis 

Statistical analysis of the data was carried out using one-way or two-way ANOVA, 

accompanied by post-hoc analysis using the software SPSS, version 19. The level 

of significance was set at p<0.05. 
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Chapter 3  

Effect of iron supplementation on hepcidin expressi on in recombinant 

Chinese hamster ovary cells 

3. 1 Introduction  

Although in humans and in animal models systemic iron excess leads to a rise in 

hepcidin production (Lin et al., 2007, Pigeon et al., 2001), these results have not 

been replicated in cell lines and primary hepatocytes. Iron overdose to cells 

resulted in variable hepcidin mRNA expression in different cell types as explained 

in chapter 1 section 1.7. This may partly be attributed to TfR1 on the cell surface 

which regulates iron uptake by the cells and thus limits the increase in intracellular 

iron levels. To overcome this limitation, in this study, modified Chinese hamster 

ovary (CHO) cells were used which are devoid of the endogenous TfR1 and 

instead over-express the human TfR1 (McGraw et al., 1987). Due to this specific 

property it was hypothesised that the cells would permit intracellular iron overload 

upon iron overdose and the resultant effect on gene expression could be studied. 

Also, the mechanisms involved in the transferrin cycle in CHO cells have been well 

described and have similar properties to other cell types (Yamashiro et al., 1984). 

Hence these cells were considered suitable for studies related to transferrin-bound 

iron uptake.  

 

The gene sequence of hepcidin and other iron-related genes in the CHO cells have 

not yet been determined. Therefore, it was necessary to first characterise these 

gene sequences to enable expression analyses in real time and thus establish the 
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CHO cells as a model system to study hepcidin and iron regulation. The other iron-

related genes in CHO cells chosen for this study were ferroportin, Hfe and Irp2.  

 

3.1.1 Aims and objectives 

Aim:  To characterise iron-related genes in CHO cells.  

Since the hamster species is a rodent it was expected to have high genomic 

similarities with the mouse, rat and human genome. Hence, primers designed 

based on conserved nucleotides between these three species should also bind to 

the CHO genome. This would enable product formation and subsequent 

sequencing of the previously unknown gene sequences. 

 

Objectives:  

1. To identify conserved nucleotides between human, mouse and rat in the gene 

of interest and design primers based on these conserved regions.  

2. To probe the CHO genome with the designed primers and optimise PCR 

conditions to facilitate maximum product formation. 

3. To sequence CHO genes and analyse these using blastn at NCBI to confirm 

sequence identity and compare it to the pre-characterised sequences in the 

database.  

4. To study the effect of iron overdose on hepcidin expression in CHO TRVb1 

cells.  
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3.2  Approach and optimisations  

3.2.1 Concept behind primer design and sequence acq uisition  

The aim of characterisation of previously unknown gene sequences in CHO cells 

was based on the hypothesis that there were genomic similarities between the 

hamster and human, mouse and rat. To confirm this, some pre-characterised 

hamster mRNA sequences were compared to corresponding transcripts in human, 

mouse and rat. As seen in table 3.1, the hamster genes showed high sequence 

similarity with the corresponding genes in the mentioned three species.  

Genes in Cricetulus griseus 
(hamster)   

Human  Mouse  Rat  

Transferrin receptor 82% 
99% 

87% 
100% 

87% 
100% 

Dihydrofolate reductase 83% 
65% 

86% 
75% 

97% 
28% 

Heat shock protein 89% 
96% 

93% 
90% 

93% 
90% 

Ferritin 87% 
88% 

91% 
99% 

90% 
99% 

Transferrin 82% 
99% 

88% 
100% 

88% 
100% 

Alpha tubulin 93% 
83% 

95% 
83% 

94% 
99% 

 

 

 

Using this principle, for a particular iron-related gene of interest, primers were 

designed based on conserved nucleotides between human, mouse and rat mRNA 

sequences. These primers were used to probe the CHO genome to obtain a partial 

sequence of that gene. This was the 1st round of sequencing. This partially 

characterised gene sequence was compared to corresponding pre-characterised 

gene sequences in the NCBI database and the identity of the CHO sequence was 

Table 3.1  Similarities between hamster, human, mouse and rat genomes 
The NCBI accession numbers of genes are in appendix VIII.  
Key to table: 
• Sequence similarity with CHO genes 
• Sequence coverage   
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confirmed. Following this, primers were designed again based on the partially 

characterised CHO sequence obtained from the 1st round of sequencing and 

conserved nucleotides between the mentioned three species. These primers, one 

CHO-specific and another based on conserved nucleotides, were used to probe 

the CHO genome to obtain a CHO gene product. This was the 2nd round of 

sequencing. Thus, as explained through Fig. 3.1, the concept of “PCR walking” 

was employed to characterise previously uncharacterised genes in the CHO cells. 

 

 

 

 

 

 

                                                                                                    

 

                                                                                                 

 

 

 

 

 

 

At every round of sequencing, the gene specificity of each designed primer was 

checked using blastn at NCBI. The characterised gene sequences of CHO cells 

5’ 

5’ 

3’ 

3’ 

CHO sequence 
obtained from 1st 
round of 
sequencing 
based on 
conserved 
nucleotide 
between 
human/mouse 
and rat  

CHO sequence obtained from 
2nd round of sequencing 

CHO sequence obtained from 
2nd round of sequencing 

Primer designed based on 
conserved nucleotides 
between human /mouse and 
rat sequences 

Primer designed based on 
conserved nucleotides 
between human/mouse and rat 
sequences  

Fig. 3.1  Concept of “PCR walking” used for CHO gen e sequencing     

Primers based 
on the 
characterised 
CHO gene 
sequence 
obtained from 1st 
round of 
sequencing  

Primers in 5’ to 3’ 
direction, designed for 
the 2nd round of 
sequencing 

Double stranded DNA 

Key to figure:  
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were further used to design CHO-specific and exon spanning primers for real time 

PCR. To identify conserved regions, mRNA and protein multiple sequence 

alignments were created using ClustalW2 (available at www.ebi.ac.uk). As an 

example, Fig. 3.2 demonstrates the approach used to design primers and the 

resultant gene sequence acquired for ferroportin gene in CHO cells.   

                                                                         5’ CTT  
HumanSLC40A1_      -----CTAGGCTCGGACGACCTGCTGAGCCTCCCAAACCGCTTCCATAAGGCTTTGCCTT 120 
MouseSlc40a1_      -----CTGCGGCCGG---------TGGATCCT CCAACCCGCTCCCATAAGGCTTTGGCTT 99 
RatSlc40a1_        -----CTGCGGCCGG---------TGGACCCT CCAACCCGCTTCCATAAGGCTTTAGCTT 61 
                   -----**  *  ***         **   *  **** ***** ************  *** 
 
                 5’TCCAACTTCAGCTACAGTGTT >>> 3' 
                   TCCAACTTCAGCTACAGTGTT >>> 3' 
HumanSLC40A1_      TCCAACTTCAGCTACAGTGTTAGCTAAGTTTGGAAAGAAGGAAAAAAGAAAATCCCT-GG 179 
MouseSlc40a1_      TCCAACTTCAGCTACAGTGTTAGCTAAGTTTGGAAAGAAGACAAAAAGAAGACCCCG-TG 158 
RatSlc40a1_        TCCAACTTCAGCTACAGTGTTAGCTAAGTTTG GAAAGAAGACATAAAGAAGACCCCGGTG 121 
                   ******************************** ********  * ****** * ***   * 
                                                                   5’ATCGGATGTG >>> 
HumanSLC40A1_      ----------TTCCTTCTCTACCTTGGTCATT CTCTCTCTACTTGGGGAGATCGGATGTG 476 
MouseSlc40a1_      ----------TTCCTCCTCTACCTTGGCCACT CTCTCTCCACTTGGGGGGATCGGATGTG 456 
RatSlc40a1_        ----------TTCCTCCTCTACCTTGGCCACT CTCTCTCCACTTGGGGGGATCGGATGTG 416 
                   ----------***** *********** ** * ******* ******** *********** 
                   GCACTTTGC >>> 3’ (F)  
HumanSLC40A1_      GCACTTTGCGGTGTCTGTGTTTCTGGTAGAGCTCTATGGAAACAGCCTCCTTTTGACAGC 536 
MouseSlc40a1_      GCACTTTGCAGTGTCTGTGTTTCTGGTGGAACTCTATGGAAACAGCCTTCTCTTGACAGC 516 
RatSlc40a1_        GCACTTTGCAGTGTCTGTGTTTCTGGTGGAAC TCTACGGAAACAGCCTCCTCTTGACAGC 476 
                   ********* ***************** ** * **** *********** ** ******** 
                                                              AGCCTCCTCTTGACAGC 

                                                     3’<<< AGGAGAACTGTCG 
                  
HumanSLC40A1_      AGTCTACGGGCTGGTGGTGGCAGGGTCTGTTCTGGTCCTGGGAGCCATCATCGGTGACTG 596 
MouseSlc40a1_      TGTCTATGGACTGGTGGTGGCAGGCTCTGTTCTGGTCCTGGGAGCCATCATTGGTGACTG 576 
RatSlc40a1_        TGTCTACGGGTTGGTGGTGGCAGGCTCTGTTC TGGTCCTGGGAGCCATCATTGGTGACTG 536 
                    ***** **  ************* ******* ******************* ******** 
 
                   TGTCTACGGGCTGGTGGTAGCAGGCTCTGTTC T  
               <<< ACAGATGC 5’   5' TAGCAGGCTCTGTTCTGG >>>3' 
 
                     3’<<< TCTTACGNTCTGAATTTCACCG 5’ (R)  
HumanSLC40A1_      GGTGGACAAGAATGCTAGACTTAAAGTGGCCCAGACCTCGCTGGTGGTACAGAATGTTTC 656 
MouseSlc40a1_      GGTGGATAAGAATGCCAGACTTAAAGTGGCCCAGACGTCACTGGTGGTTCAGAATGTGTC 636 
RatSlc40a1_        GGTGGATAAGAATGCCAGACTTAAAGTGGCCC AGACGTCCCTGGTGGTTCAGAATGTATC 596 
                   ****** ******** **************** **** ** ******** ******** ** 
                                           AGTGGCGC AGACTTCACTGGTGGTGCAGAACGTCTC 
HumanSLC40A1_      AGTCATCCTGTGTGGAATCATCCTGATGATGGTTTTCTTACATAAACATGAGCTTCTGAC 716 
MouseSlc40a1_      CGTCATCCTCTGCGGAATCATCCTGATGATGGTTTTCCTACACAAGAATGAGCTCCTGAC 696 
RatSlc40a1_        AGTCATTCTCTGCGGGATCATCCTGATGATGG TTTTCTTACACAAGAATGAGCTTCTGAA 656 
                    ***** ** ** ** **************** ***** **** **  ******* ****  
                   CGTCATTCTCTGCGGGATCATCCTGATGATGG TTTTCTTACACAAAAACGAGCTTCTGAC 
HumanSLC40A1_      CATGTACCATGGATGGGTTCTCACTTCCTGCTATATCCTGATCATCACTATTGCAAATAT 776 
MouseSlc40a1_      CATGTACCATGGATGGGTCCTTACTGTCTGCTACATCCTGATCATCACTATTGCAAACAT 756 
RatSlc40a1_        CATGTATCATGGATGGGTCCTTACTGTCTGCT ACATCCTGATCATCACCATTGCAAACAT 716 
                   ****** *********** ** ***  ***** * ************** ******** ** 
                   CATGTATCATGGATGGGTGCTCACTGTCTGCT ACATCCTGATCATCACGATTGCAAACAT 
                        5’ ATGGGTGCTCACTGTCTGCTA 3'>>> (FPN for CHO F) 
 
HumanSLC40A1_      TGCAAATTTGGCCAGTACTGCTACTGCAATCACAATCCAAAGGGATTGGATTGTTGTTGT 836 
MouseSlc40a1_      TGCAAATTTGGCCAGTACTGCCACTGCGATCACAATCCAAAGGGACTGGATTGTTGTTGT 816 
RatSlc40a1_        TGCGAATTTGGCCAGTACTGCCACTGCAATTA CAATCCAAAGGGACTGGATTGTTGTCGT 776 
                   *** ***************** ***** ** * ************* *********** ** 
                   TGCAAATCTGGCCAGTACTGCTACTGCAATCA CGATCCAAAGGGACTGGATTGTTGTTGT 

(F1a)  
(F1b)  

(F2)  

(R1)  
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HumanSLC40A1_      TGCAGGAGAAGACAGAAGCAAACTAGCAAATATGAATGCCACAATACGAAGGATTGACCA 896 
MouseSlc40a1_      GGCAGGAGAAAACAGGAGCAGATTAGCAGACATGAATGCTACCATTAGAAGGATTGACCA 876 
RatSlc40a1_        AGCAGGAGAAAACAGGAGCAGATTAGCAGACATGAATGCTACCATTAGAAGGATTGACCA 836 
                    ********* **** **** * ***** * * ******* ** **  ************* 
                   GGCGGGAGAGAACAGAAGCAGATTAGCAGATA TGAATGCTACCATCAGAAGGATTGACCA 
         (FPN for CHO R) <<<  3’ CTTCGTCTAATCGTCTATACTTACG 5 ’ 
 
HumanSLC40A1_      GTTAACCAACATCTTAGCCCCCATGGCTGTTGGCCAGATTATGACATTTGGCTCCCCAGT 956 
MouseSlc40a1_      GCTAACCAACATCCTGGCCCCCATGGCTGTCGGCCAGATTATGACATTTGGTTCTCCAGT 936 
RatSlc40a1_        GCTAACCAACATCCTGGCCCCCATGGCTGTTG GCCAGATTATGACATTCGGTTCCCCAGT 896 
                   * *********** * ************** * **************** ** ** ***** 
                   GCTAACCAACATCCTGGCCCCCATGGCTGTCG GCCAGATTATGACATTCGGTTCCCCAGT 
 
HumanSLC40A1_      CATCGGCTGTGGCTTTATTTCGGGATGGAACTTGGTATCCATGTGCGTGGAGTACGTTCT 1016 
MouseSlc40a1_      CATTGGCTGTGGTTTTATTTCCGGTTGGAATTTGGTGTCCATGTGTGTGGAGTACTTCTT 996 
RatSlc40a1_        CATTGGCTGTGGTTTCATTTCTGGTTGGAATT TGGTGTCCATGTGTGTGGAGTACTTCTT 956 
                   *** ******** ** ***** ** ***** * **** ******** ********* *  * 
                   CATTGGCTGTGGTTTCATTTCGGGGTGGAATT TGGTGTCCATGTGTGTGGAGTACTTCTT 
 
HumanSLC40A1_      GCTCTGGAAGGTTTACCAGAAAACCCCAGCTCTAGCTGTGAAAGCTGGTCTTAAAGAAGA 1076 
MouseSlc40a1_      GCTCTGGAAGGTTTACCAGAAGACCCCTGCTCTGGCTGTAAAAGCTGCTCTCAAGGTAGA 1056 
RatSlc40a1_        GCTCTGGAAGGTTTACCAGAAGACCCCTGCTC TGGCTGTAAAAGCTGCTCTCAAGGTAGA 1016 
                   ********************* ***** **** * ***** ******* *** ** * *** 
                   GCTCTGGAAGGTTTACCAGAAAACCCCTGCTC TGGCTGTGAAAGCTGTTCTCAAAGTAGA 
 
HumanSLC40A1_      GGAAACTGAATTGAAACAGCTGAATTTACACAAAGATACTGAGCCAAAACCCCTGGAGGG 1136 
MouseSlc40a1_      GGAGTCAGAACTGAAGCAGCTGACCTCACCTAAAGATACTGAGCCAAAACCTTTGGAGGG 1116 
RatSlc40a1_        GGAGTCAGAACTGAAGCAGCTGACCTCACCTA AAGATACTGAGCCAAAACCTTTGGAGGG 1076 
                   ***  * *** **** *******  * **  * *******************  ******* 
                   GGAGGCAGAACTGAAGCAACTGAACTTACCTA AAGACACTGAGCCAAAATCTCTGGAGGG 
 
HumanSLC40A1_      AACTCATCTAATGGGTGTGAAAGACTCTAACATCCATGAGCTTGAACATGAGCAAGAGCC 1196 
MouseSlc40a1_      AACTCATCTAATGGGTGAGAAAGACTCCAACATCCGTGAACTTGAATGTGAACAAGAGCC 1176 
RatSlc40a1_        AACTCACCTAATGGGTGAGAAAGACTCTAACA TCCGTGAACTTGAATGTGAACAAGAACC 1136 
                   ****** ********** ********* **** *** *** ******  *** ***** ** 
                   AACTCATCTTATGGGTGAGAAAGACTCCAACA TCCGTGAACTTGAACATGAGCAAGAGTC 
 
HumanSLC40A1_      TACTTGTGCCTCCCAGATGGCTGAGCCCTTCCGTACCTTCCGAGATGGATGGGTCTCCTA 1256 
MouseSlc40a1_      CACCTGTGCCTCCCAGATGGCAGAGCCCTTCCGCACTTTCCGAGATGGATGGGTCTCCTA 1236 
RatSlc40a1_        CACCTGTGCCTCCCAGATCGCAGAACCCTTCC GCACTTTTCGAGATGGATGGGTCTCCTA 1196 
                    ** ************** ** ** ******* * ** ** ******************** 
                   TACGTGTGCCTCCCAGATCGCTGAGCCCTTCC GCACCTTTCGAGATGGGTGGGTCTCCTA 
 
HumanSLC40A1_      CTACAACCAGCCTGTGTTTCTGGCTGGCATGGGTCTTGCTTTCCTTTATATGACTGTCCT 1316 
MouseSlc40a1_      CTATAACCAGCCAGTGTTTCTGGCTGGCATGGGCCTGGCTTTCCTCTATATGACAGTCCT 1296 
RatSlc40a1_        CTATAACCAGCCCGTATTTTTGGCTGGCATGG GCCTGGCTTTCCTCTATATGACAGTCCT 1256 
                   *** ******** ** *** ************ * ** ******** ******** ***** 
                   CTATAACCAGCCAGTGTTTCTGGCTGGCATGG GCCTGGCCTTCCTCTATATGACAGTCCT 
 
HumanSLC40A1_      GGGCTTTGACTGCATCACCACAGGGTACGCCTACACTCAGGGACTGAGTGGTTCCATCCT 1376 
MouseSlc40a1_      GGGCTTTGACTGTATCACTACAGGGTACGCCTACACTCAGGGGCTGAGTGGATCCATCCT 1356 
RatSlc40a1_        GGGCTTCGACTGTATCACCACAGGATATGCTT ACACTCAGGGACTGAGTGGTTCCATCCT 1316 
                   ****** ***** ***** ***** ** ** * ********** ******** ******** 
                   GGGCTTTGATTGCATCACCACAGGGTACGCCT ACACTCAGGGACTAAGTGG 
 
                              3’<<<CGTAGTCGNTATTGACCTTATTACC 5’  
                               3’<<CGTAGTCGNTATTGACCTTATTA   5’ 
HumanSLC40A1_      CAGTATTTTGATGGGAGCATCAGCTATAACTGGAATAATGGGAACTGTAGCTTTTACTTG 1436 
MouseSlc40a1_      TAGTATTTTGATGGGAGCATCAGCAATAACTGGAATAATGGGAACTGTGGCCTTCACCTG 1416 
RatSlc40a1_        CAGTGTTTTGATGGGAGCATCAGCAATAACTG GAATAATGGGAACTGTGGCCTTCACTTG 1376 
                    *** ******************* ******* **************** ** ** ** ** 
 

 

 
 
 

(F2a)  (R2b)  

Fig. 3.2  Partial alignment of ferroportin mRNA sequences  
Key to alignment: 
• Ferroportin gene sequence in CHO cells characterised by primers (F) and (R) in 1st round of 

sequencing.  
• Ferroportin gene sequence in CHO cells characterised by primers (F2) and (R2a) in 2nd round of 

sequencing  
• CHO-specific primers, FPN for CHO forward and FPN for CHO reverse, were based on the 

characterised CHO sequence. These primers span exon–exon boundaries in other species, as 
shown by downward arrows on the alignment. 

 

(R2a)  
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The NCBI accession numbers of all gene sequences used to design primers are 

listed in appendix VIII. Transcripts alignments and other information on sequencing 

of ferroportin, Hfe and Irp2 genes are in appendices IX, X and XI, respectively. 

 

3.2.2 PCR optimisations 

The CHO cells were maintained in cell culture as described in methods sections 

2.2.1 and 2.2.2, whereas DNA was extracted as per methods section 2.2.5. In all 

PCRs, rat liver DNA and/or mouse kidney were used as positive controls as these 

would yield gene products of expected sizes with the respective primers. Nuclease-

free water was used as a negative control and here no product was expected since 

there was no template in this reaction.  

 

To identify the most appropriate annealing temperature which would facilitate 

unique product formation in high amounts, temperature gradient PCRs were 

performed as described in methods sections 2.2.8 and 2.2.9. This optimisation was 

performed with each primer pair designed for every gene for the 1st round of 

sequencing (table 2.1 and appendix XIII). An example of the temperature gradient 

PCR for ferroportin gene in the 1st round of sequencing is shown in Fig. 3.3. In this 

case, the appropriate annealing temperature that yielded a single product of the 

expected size was identified as 51 ºC and multiple PCR reactions were set at  

51 ºC. The PCR products from these multiple tubes were pooled together, purified 

and sent for sequencing (section 2.2.12) to confirm sequence identity. 
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3.3 Results 

3.3.1 Characterisation of CHO gene sequences  

Using the concept explained in section 3.2.1 and PCR optimisations described in 

section 3.2.2, previously unknown sequences of iron-related genes in CHO cells 

were characterised. As a representation, CHO gene products obtained from the 1st 

round of sequencing are shown in Fig. 3.4.  

1   2  3  4   5   6  7   8  9 10  11 12    1   2  3   4   5   6  7   8  9 10 11 12    

1   2  3   4   5   6  7    8   9 10 11 12    

Fig. 3.3  Temperature gradient PCR for 1 st round of CHO ferroportin gene sequencing 
with primers ferroportin (F) and (R)  
DNA was extracted from the CHO TRVb1 cells (as per methods section 2.2.5) and amplified 
under different annealing temperatures (as described in sections 2.2.8 and 2.2.9). cDNA 
synthesis from mouse kidney was performed as described in section 2.2.18.  
 
In all figures:  
Lanes 1,5,9 = mouse kidney cDNA; expected product size=160 bp  
Lanes 2,6,10 = rat liver DNA, expected product size=160 bp 
Lanes 3,7,11 = negative control 
Lanes 4,8,12 = CHOTRVb1 DNA 
 

1   2  3  4    

51 ºC         52 ºC         53 ºC 54 ºC         55 ºC         56 ºC 

58 ºC         59 ºC         60 ºC 61 ºC         

100 bp 
200 bp 200 bp 

100 bp 

100 bp 
200 bp 

100 bp 
200 bp 
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The characterised CHO gene sequences of products encircled in Fig. 3.4, were 

compared to the corresponding pre-characterised gene sequences in other species 

and their identities were studied. For example, the characterised CHO-ferroportin 

sequence shares 92 % identity with the human-ferroportin gene sequence, as 

shown below.  

 
>ref|NG_009027.1|  Homo sapiens solute carrier fami ly 40 (iron-regulated 
transporter), member 1 (SLC40A1),  
 
 Score = 78.8 bits (86),  Expect = 2e-12 
 Identities = 49/53 (92%), Gaps = 0/53 (0%) 
 Strand=Plus/Plus 
 
CHO Ferroportin        1 CAGCCTCCTCTTGACAGCTGTCTACGGGCTGGTGGTAGCAGGCTCTGTTCTGG  53  
                              ||||||||| |||||||| || ||||||||||||||| ||||| |||||||||| 

Human Ferroportin   10548 CAGCCTCCTTTTGACAGCAGTCTACGGGCTGGTGGTGGCAGGGTCTGTTCTGG  10600 
 

 

     1      2      3     4     1     2     3     4     1    2    3    4     

Fig. 3.4  Amplicons generated for 1 st round of CHO gene sequencing  
Encircled products were purified and their sequence identity was confirmed as described in 
methods section 2.2.12. 
 
A: Amplicons of ferroportin gene in rodents and CHO cells with primers ferroportin (F) and (R); 
expected size of controls= 160 bp   
B: Amplicons of HFE genes in rodents and CHO cells with primers HFE (F) and (R); 
expected size of controls= 185 bp 
C: Amplicons of IRP2 gene in rodents and CHO cell lines with primers IRP2 (F) and (R);           
expected size of controls= 215 bp 
 
Lane 1= rat liver DNA (control) 
Lane 2= mouse liver DNA (control) 
Lane 3= CHO TRVb1 DNA 
Lane 4= negative control 
 

A B C 

100 bp 

200 bp 

100 bp 

200 bp 
100 bp 

200 bp 
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Following this, the 2nd round of CHO gene sequencing was initiated with primers 

listed in table 2.1. Coincidently, for all genes of interest, the primers F1 & R1 

showed minimal product formation, whereas primers F2 & R2 (R2a for ferroportin 

and Irp2 genes) yielded a comparatively higher amount of product (appendix XIII). 

Hence these were used for subsequent sequencing reactions. 

 

Percentage identities between the characterised CHO gene sequences and pre-

existing gene sequences in the database were tabulated (Table 3.2). Data showed 

that the iron-related genes bore very high level of genomic similarities between the 

hamster and human, mouse and rat, as hypothesised.  

Genes  CHO sequence characterised in     
1st  round of sequencing 

CHO sequence characterised  in 
 2nd round of sequencing 

 Human  Mouse  Rat Human  Mouse  Rat 
Ferroportin 92 % 92 % 96 % 89 % 93 % 92 % 
Hfe 86 % 91 % 87 % 80 % 88 % 88 % 
Irp2 95 % 94 % 96 % 92 % 97 % 96 % 

 

 

 

 

3.3.2 Functional analysis of characterised gene seq uences 

In order to understand the link between the genome and proteome and whether 

genomic similarities seen in table 3.1 inferred proteomic similarities, the 

characterised CHO gene sequences were translated to protein sequences and 

compared to corresponding protein sequences in other species. Fig. 3.5 shows 

functionally significant amino acids in ferroportin in different species. 

 

Table 3.2  Percentage identity between characterise d CHO gene sequences and other 
species 
The table shows identities between the characterised CHO gene sequences and the pre-
characterised gene sequences of other species in the NCBI database. Full details on the 
sequencing data on characterised CHO gene sequences for ferroportin, HFE and IRP2 
genes are in appendices IX, X and XI, respectively. 
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HumanSLC40a1        MTRAGDHNRQRGCCGSLADYLTSAKFLLYLGHSLSTWGDRMWHFAVSVFLVELYGNSLLL 60 
MouseSlc40a1        ------------------------------- ----------------------------- 
RatSlc40a1          MTKSRDQTHQEGCCGSLANYLTSAKFLLYLG HSLSTWGDRMWHFAVSVFLVELYGNGLLL 60 
CHOFerroportin      ------------------------------- -------------------------SLLL 4 
                                                                                 
HumanSLC40a1        TAVYGLVVAGSVLVLGAIIGDWVDKNARLKV AQTSLVVQNVSVILCGIILMMVFLHKHEL 120 
MouseSlc40a1        TAVYGLVVAGSVLVLGAIIGDWVDKNARLKV AQTSLVVQNVSVILCGIILMMVFLHKNEL 60 
RatSlc40a1          TAVYGLVVAGSVLVLGAIIGDWVDKNARLKV AQTSLVVQNVSVILCGIILMMVFLHKNEL 120 
CHOFerroportin      TAVYGLVVAGSVLVA---------------- -QTSLVVQNVSVILCGIILMMVFLHKNEL 47 
                    **************                  *************************:** 
 
HumanSLC40a1        LTMYHGWVLTSCYILIITIANIANLASTATA ITIQRDWIVVVAGEDRSKLANMNATIRRI 180 
MouseSlc40a1        LTMYHGWVLTVCYILIITIANIANLASTATA ITIQRDWIVVVAGENRSRLADMNATIRRI 120 
RatSlc40a1          LNMYHGWVLTVCYILIITIANIANLASTATA ITIQRDWIVVVAGENRSRLADMNATIRRI 180 
CHOFerroportin      LTMYHGWVLTVCYILIITIANIANLASTATA ITIQRDWIVVVAGENRSRLADMNATIRRI 107 
                    *.******** ******************** **************:**:**:******** 
                                         N144H            V162∆  
          
HumanSLC40a1        DQLTNILAPMAVGQIMTFGSPVIGCGFISGW NLVSMCVEYVLLWKVYQKTPALAVKAGLK 240 
MouseSlc40a1        DQLTNILAPMAVGQIMTFGSPVIGCGFISGW NLVSMCVEYFLLWKVYQKTPALAVKAALK 180 
RatSlc40a1          DQLTNILAPMAVGQIMTFGSPVIGCGFISGW NLVSMCVEYFLLWKVYQKTPALAVKAALK 240 
CHOFerroportin      DQLTNILAPMAVGQIMTFGSPVIGCGFISGW NLVSMCVEYFLLWKVYQKTPALAVKAVLK 167 
                    ******************************* *********.**************** ** 
 
 
HumanSLC40a1        EEETELKQLNLHKDTEPKPLEGTHLMGVKDS NIHELEHEQEPTCASQMAEPFRTFRDGWV 300 
MouseSlc40a1        VEESELKQLTSPKDTEPKPLEGTHLMGEKDS NIRELECEQEPTCASQMAEPFRTFRDGWV 240 
RatSlc40a1          VEESELKQLTSPKDTEPKPLEGTHLMGEKDS NIRELECEQEPTCASQIAEPFRTFRDGWV 300 
CHOFerroportin      VEEAELKQLNLPKDTEPKSLEGTHLMGEKDS NIRELEHEQESTCASQIAEPFRTFRDGWV 227 
                     **:*****.  ******.******** *** **:*** ***.*****:************ 
                               K253 
 
HumanSLC40a1        SYYNQPVFLAGMGLAFLYMTVLGFDCITTGY AYTQGLSGSILSILMGASAITGIMGTVAF 360 
MouseSlc40a1        SYYNQPVFLAGMGLAFLYMTVLGFDCITTGY AYTQGLSGSILSILMGASAITGIMGTVAF 300 
RatSlc40a1          SYYNQPVFLAGMGLAFLYMTVLGFDCITTGY AYTQGLSGSILSVLMGASAITGIMGTVAF 360 
CHOFerroportin      SYYNQPVFLAGMGLAFLYMTVLGFDCITTGY AYTQGLS---------------------- 265 
                    ******************************* *******                       
                     Y302,Y303              C326 

  

 

 

The translated HFE CHO gene sequences when alignme with the previously  

 

It can be seen that the CHO proteome bears a high degree of proteomic similarly 

with other species. The transmembrane region (De Domenico et al., 2008, Wallace 

et al., 2009) as well as the amino acids involved in binding hepcidin (De Domenico 

et al., 2008) are conserved. The amino acid C326 lies in the hepcidin binding 

domain in the extracellular environment and is consistent with its role in binding to 

hepcidin (Wallace et al., 2009). A mutation C326Y affects binding of hepcidin to 

Fig. 3.5  Functional significance of the characterised  CHO-ferroportin sequence  
The characterised gene sequence of ferroportin in CHO cells was translated using the functional 
tool “translate” available at web.expasy.org, and compared to ferroportin protein sequences of 
different species..  
Key to alignment:                       
• Transmembrane region  
• Hepcidin binding domain  
• K253,Y302,Y303 : amino acids affecting ferroportin degradation and internalisation  
• N144H, V162 ∆: Mutations that disruption ferroportin function 
• * represents conserved amino acid between species 
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ferroportin, reflecting the significance of this amino acid in ferroportin degradation 

and internalisation (De Domenico et al., 2008). This amino acid is also conserved 

in the CHO cells within the hepcidin binding domain. Binding of hepcidin to 

ferroportin leads to phosphorylation of either Y302 or Y303 followed by ferroportin 

internalisation (De Domenico et al., 2007) and degradation, involving K253 (De 

Domenico et al., 2006). Interestingly, these amino acids in the CHO proteome lie in 

the same position relative to other amino acids, as in human, mouse and rat 

proteomes. Additionally, in the CHO cells, the amino acids N144 and V162 are 

conserved, which if mutated, exhibit hepcidin insensitivity (Wallace et al., 2009). 

Also, the cysteines which form disulphide bonds and usually play a significant role 

in the folding and stability of proteins (Sevier and Kaiser, 2002), are well conserved 

in the characterised CHO-ferroportin sequence. Similarly, functional analysis of the 

characterised CHO-Hfe sequence was performed (Fig. 3.6). 

HumanHFE        ----MGPRAR-PALLLLMLLQTAVLQGRLLRSHSL HYLFMGASEQDLGLSLFEALGYVDD 55 
MouseHFE        MSLSAGLPVR-PLLLLLLLLWSVAPQALPPRSHSL RYLFMGASEPDLGLPLFEARGYVDD 59 
RatHFE          MDRSAGLPVRLLLLLLLLLLWSVAPQALRPGSHSL RYLFMGASKPDLGLPFFEALGYVDD 60 
CHOHFE          ----------------------------------- ------------------AMGYVDD 7 
                                                                     * ***** 
 
HumanHFE        QLFVFYDHESRRVEPRTPWVSSRISSQMWLQLSQSLKGWDHMFTVDFWTIMENHNHSK-- 113 
MouseHFE        QLFVSYNHESRRAEPRAPWILEQTSSQLWLHLSQSLKGWDYMFIVDFWTIMGNYNHSKVT 119 
RatHFE          QLFVSYNHESRRAEPRAPWILGQTSSQLWLQLSQS LKGWDYMFIVDFWTIMGNYNHSKVT 120 
CHOHFE          QLFVSYNHENRRAEPRAPWI---TSSQLWLQLSQS LKGWDHMFIVDFWNIMDNYNHSKGS 64 
                **** *:**.**.***:**:    ***:**:**** *****:** ****.** *:****   
                     H63D 
 
HumanHFE        ------ESHTLQVILGCEMQEDNSTEGYWKYGYDG QDHLEFCPDTLDWRAAEPRAWPTKL 167 
MouseHFE        KLGVVSESHILQVVLGCEVHEDNSTSGFWRYGYDGQDHLEFCPKTLNWSAAEPGAWATKV 179 
RatHFE          KLRVVPESHILQVILGCEVHEDNSTSGFWKYGYDG QDHLEFCPKTLNWSAAEPRAWATKM 180 
CHOHFE          KLGVMPESHILQVILGCEVHEDNSTSGIWKYGYDG QDHLEFCPTTLEWRAAEPGAWTTKV 124 
                      *** ***:****::*****.* *:***** ******** **:* **** **.**: 
 
HumanHFE        EWERHKIRARQNRAYLERDCPAQLQQLLELGRGVLDQQVPPLVKVTHHVTSSVTTLRCRA 227 
MouseHFE        EWDEHKIRAKQNRDYLEKDCPEQLKRLLELGRGVLGQQVPTLVKVTRHWASTGTSLRCQA 239 
RatHFE          EWEEHRIRARQSRDYLQRDCPQQLKQVLELQRGVL GQQVPTLVKVTRHWASTGTSLRCQA 240 
CHOHFE          EWEEHKIRTRQNKDYLERDCPEQLK---------- ------------------------- 149 
                **:.*:**::*.: **::*** **:                                    
 

 

 

Fig. 3.6  Functional significance of the characterised  CHO-Hfe sequence  
Translation of CHO-Hfe sequence was carried out as described in legend of Fig. 3.5.  
Key to alignment: 
• α 1 and α 2 : domains of HFE protein involved in interaction with transferrin 
• H63D : mutation that leads to haemochromatosis in humans 
• * represents conserved amino acid between species. 
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The alignment in Fig. 3.6 reveals high conservation of the alpha 1 and alpha 2 

regions of Hfe protein. These regions are known to interact with the transferrin 

receptor and play a role in transferrin-bound iron uptake (reviewed in Fleming, 

2009). Also, the characterised Hfe gene sequence in CHO cells showed the 

presence of histidine H63 at the same relative position as other species. A 

mutation (H63D) leads to the development of hereditary haemochromatosis in 

humans (reviewed in Pietrangelo, 2006).  

 

The iron regulatory proteins IRP1 and IRP2 play a significant role in maintaining 

cellular iron levels by binding to IREs on transcripts of various genes (reviewed in 

Muckenthaler et al., 2008). It has been proposed that IRP2 acts as an iron sensor 

within cells (Kang et al., 2003). Functional analysis of the characterised CHO-Irp2 

revealed the presence of important amino acids proposed to be involved in iron 

binding (Kang et al., 2003), as shown in Fig. 3.7. 

 

 

 

 

 

   

  
HumanIRP2 AIQNAPNPGGGDLQKAGKLSPVKVQPKKLPCRGQTTCRGSCD 179  
MouseIRP2 AIQNAPNPGGGDLQKAGKLSPLKVQSKKLPCRGQTTCRGSCD 180 
RatIRP2   AIQNAPNPGGGDLQKAGKLSPLKVQPKKLPCRGQTTCRGSCD 180 
CHOIRP2   -----------------------VQPKKFPCRGQTTCRGSC D 19 
                                 **.**:************ *  
 

 

Fig. 3.7  Functional significance of the characterised  CHO-Irp2 sequence  
Translation of CHO-Irp2 gene sequence was carried out as described in legend of Fig. 3.5. 
A: The encircled amino acids have been proposed to be involved in iron binding.  
B: The proposed amino acids are conserved in the CHO proteome in the same relative position, 
as in other species. * represents conserved amino acid between species. 
  

B 

A 
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3.3.3 CHO specific primers and preliminary real tim e PCR 

The purpose of characterising gene sequences in the CHO cells was to enable 

gene expression analysis upon iron overdose and thus using the CHO cells as a 

model system to study iron regulation. To serve the purpose, CHO-specific primers 

were designed based on the characterised CHO gene sequences. While designing 

these primers the exon–exon boundaries in the human, mouse and rat genomes 

were taken into consideration; assuming that these boundaries would be similar in 

the hamster genome (appendices IX-XI). These CHO-specific primers were used 

to amplify the CHO cDNA to confirm their appropriateness for use in real time PCR 

(appendix XIII). The resultant CHO gene products obtained were sequenced to 

confirm sequence identity.    

 

For the Hfe gene in CHO cells, three CHO-specific primers were designed, one 

forward and two reverse primers Hfe-for-CHO-Rx and Hfe-for-CHO-Ry. Both 

primer pairs yielded unique products of expected sizes (appendix X). The primer 

Hfe-for-CHO-Rx spans the exon-exon boundary in other species and therefore was 

initially considered appropriate for the real time PCR as it would eliminate the 

possibility of binding to DNA. However, the product size obtained with this primer 

(319 bp) was more than that recommended for an ideal real time PCR (<200 bp). 

Conversely, although the primer Hfe-for-CHO-Ry did not span exon-exon boundary, 

the product size formed (167 bp) is considered ideal for the real time PCR. Hence, 

despite formation of a single product of the expected size with both the reverse 

primers, the primer Hfe-for-CHO-Ry was used to amplify the CHO-Hfe gene.  
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On confirming gene identity, it was used in the subsequent standardisation of RT 

PCR (Fig. 3.8).     

 

Selection of a reference gene is crucial for the analysis of real time PCR data. 

Ideally, the expression levels of the reference gene should stay relatively stable on 

exposure to different stimuli. However, many studies have observed fluctuations in 

the expression levels of these genes and also that this variability was species-, 

cell- and tissue-specific and at times was dependent on the experiment conditions 

(reviewed in Bahr et al., 2009).  

 

In this context, Bahr et.al., (2009) validated the use of some reference genes for 

CHO cells. From this group, beta actin, that has been traditionally used as a 

reference gene and pabpn1 gene were chosen for this study. The pabpn1 gene 

encodes for a poly (A) binding protein which functions in the nucleus, unlike the 

actins which are found in the cytoplasm. The intention behind this selection was to 

normalise the genes of interest against two reference genes which function in 

different cell locations. This would improve the reliability of the real time PCR data.  

 

On performing a PCR with the designed primers (Table 2.1) formation of unique 

products confirmed the appropriateness of the primers of reference genes 

(appendix XIV) and the designed CHO-specific primers for genes of interest 

(appendix XIII). Following this, a preliminary real time PCR was performed, as 

shown in Fig. 3.8, to confirm the uniqueness of products formed and the 

appropriateness of the designed primers.  
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As seen in Fig. 3.8, the melt curve (A) shows the presence of two peaks with the 

Irp2 primers. This suggested the formation of a non-specific product, as was 

confirmed by agarose gel electrophoresis of the real time PCR products ((B) lane 

3). Thus the Irp2 primers required redesigning. Secondly, although the pabpn1 

primers showed single product formation in the melt cure (A), agarose gel 

electrophoresis revealed the presence of another product, as detected in (C) lane 5. 

Hence the beta actin gene product seen in (B) lane 4 was sequenced. On 

confirming its identity it was concluded that beta actin should be used as reference 

gene instead of pabpn1 for further real PCR with CHO cells. The Hfe and 

ferroportin genes showed unique product formation, confirming their 

appropriateness for further real time PCRs.  

 

 1  2  3 4  5  6  7   8  9 10   

Fig. 3.8  Preliminary real time PCR with CHO -specific primers   
CHO TRVb1 cDNA was probed with different primer pairs (Table. 2) in a real time PCR, as 
described in methods section 2.2.19. 
A: Melt curve, shows formation of two peaks with the Irp2 primers Irp2-for CHO (F) and (R).  
B: Amplicons from real time PCR, CHO TRVb1 cDNA and CHO specific primers 
electrophoresed on agarose gel. 
Lane 1= Primers HFE for CHO (F) and (Ry); expected product size= 167 bp 
Lane 2= Primers FPN for CHO (F) and (R); expected product size= 147 bp 
Lane 3= Primers Irp2 for CHO (F) and (R); expected product size= 177 bp 
Lane 4= Primers beta actin (F) and (R); expected product size= 187 bp 
Lane 5= Primers pabpn1 (F) and (R); expected product size~200 bp 
Lanes 6-10= negative controls with respective primers  
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Before performing gene expression analysis the amplification efficiencies of the 

genes are required to be determined to ensure that the efficiencies between the 

gene of interest and the reference gene closely match each other. Hence 

amplification efficiencies of Hfe and beta actin genes were determined, as shown 

in Fig. 3.9.  
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Fig. 3.9  Standard dilution curves of Hfe and beta actin genes in CHO cells  
In order to check the amplification efficiencies of genes, serial dilution of CHO cDNA 
were prepared (1:2) and probed with respective primers of each gene, as described 
in methods section 2.2.19.  
A and C: Fluorescence curves of Hfe and beta actin genes, respectively  
C and D: Efficiency curves of Hfe and beta actin genes, respectively 
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3.3.4 Hepcidin gene sequencing in CHO cells 

Partial sequencing of ferroportin, Hfe and Irp2 genes in CHO cells was successful, 

as represented by Fig. 3.4. Comparisons between characterised CHO genes and 

corresponding genes in human, rat and mouse showed that there is high degree of 

genomic similarity between these species (Table 3.1). Using the same approach, 

attempts were made to obtain the hepcidin gene sequence in CHO cells. 

Accordingly, conserved nucleotides on hepcidin mRNA alignment between mouse 

and rat (appendix XII), were identified and hepcidin primers (F) and (R) were 

designed. PCRs with these primers and CHO DNA could not yield a unique 

product at any of the annealing temperatures (appendix XIII). Hence, a new 

reverse primer R1a was designed which allowed more flexibility in binding the 

template than the previous reverse primer and a combination of hepcidin F and 

R1a was probed with the CHO DNA (Fig. 3.10). As previously observed, this 

combination of primers also resulted in multiple products. 

 

                         

 

The encircled predominant product of ~400 bp (lane 3) was gel purified and sent 

for sequencing. However the sequence of this product could not be obtained.   

Fig. 3.10  Amplicons of CHO genome obtained with 
hepcidin primers (F) and (R1a)  
DNA was extrcated as described in methods section 2.2.5 
and amplified with hepcidin primers, as listed in Table. 2.  
Lane 1 = rat liver DNA; lane 2 = mouse liver DNA,  
excepted size of products for lanes 1 and 2 =~1500bp 
Lane 3=CHO TRVb1 DNA, Lane 4 = negative control 
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3.3.4.1 Magnesium chloride gradient PCR 

To facilitate sequencing, a new forward primer hepcidin F1 was designed and used 

in combination with primer R1a. This combination showed the presence of two 

prominent products (Fig. 3.11, lane 1) of sizes ~1000 bp and 500 bp. In order to 

increase specificity of product formation and reduce non-specific binding of primers, 

a magnesium chloride gradient PCR was performed, ranging from 1.5 mM to 4 mM. 

 

 

 

 

 

 

 

It was observed that as the concentration of magnesium chloride increased, 

products A and B, seen in Fig. 3.11, lane 1, could not be formed and instead, two 

other products of sizes ~ 900 bp and 700 bp increased in intensity. Gel purification 

of these predominant products A, B and C followed by sequencing could not yield 

the sequence of any of these products. Thus increasing magnesium chloride 

concentration could not help the purpose of obtaining hepcidin gene sequence.  

Fig. 3.11  Amplicons of CHO DNA under MgCl 2 gradient 
using hepcidin primers (F1) and (R1a) 
Increased specificity of product formation was obtained (as 
per methods section 2.2.9) when a series of PCR reactions 
were set up with increasing concentrations of MgCl2. 
Encircled products were gel purified and sent for sequencing 
(as described in methods section 2.2.12). 
Lanes 1 to 6 = 1.5 mM, 2 mM, 2.5 mM, 3 mM, 3.5 mM and 4 
mM MgCl2, respectively. Lane 7 = rat liver DNA (1.5mM 
MgCl2), expected product size ~1500 bp. Lane 8 = negative 
control  
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3.3.4.2 Amplification of amplicon to increase produ ct yield 

It was observed that one of the reasons for not acquiring the hepcidin gene 

sequence was the inability of primers to yield products in large amounts. Hence to 

increase product yield and facilitate sequencing, PCR products were reused as 

templates in subsequent PCRs. Thus products A and B observed in Fig. 3.11 were 

gel purified and used as templates in PCRs (Fig. 3.12-X).  

 

 

 

 

 

 

 

 

 

 

 

Gel electrophoresis of the products on 2 % agarose gel (Fig. 3.12X, boxed) 

identified the presence of a double band B1-B2. Products A, B1-B2, B1 and B2 

were gel purified and electrophoresed (Fig. 3.12Y) before sequencing to confirm 

the presence of products. However, sequences of none of these products could be 

obtained. The reason for sequencing problems with the dual product segment B1-

B2 could be attributed to multiple priming as these products had very similar sizes.   

A 
B1-B2 

B1 
B2  

A 

B1-B2 
B1 B2 

X 
Y 

100 bp 

200 bp 

500 bp 

500 bp 

1000 bp 

500 bp 

  1      2      3     4      5      6      
8            

Fig. 3.12  Amplification of amplicon to increase pr oduct yi eld 
The PCR products obtained from the 1st round of amplification were used as templates in 
the 2nd round of PCR to increase product yield. Purified products of each lane were sent for 
sequencing as described in methods section 2.2.12. 
X: Amplicons of CHO TRVb1 DNA obtained using hepcidin primers F1 and R1a 
Product A was obtained when gel extracted band A, seen in Fig 27, was used as template.  
Products B1-B2 were obtained when gel extracted band B, seen in Fig 27 was used as a 
template.  
Y: Confirmation of presence of product before sequencing  
Lane 1 = CHO TRVb1 DNA; lane 2= Wt CHO DNA;  
lanes 3,4,5,6 = gel purified products of A, B1-B2, B1 and B2, respectively.  
 



 

83 

 

3.3.4.3 Cloning of DNA fragment 

Since the size of the products B1and B2 were similar to the size of the 

predominant product observed in Fig. 3.10 (lane 3) and Fig. 3.11 (lane1), it was 

decided to sequence the products B1 and B2 first, followed later by sequencing the 

product A. The products B1 and B2 were closely spaced on the gel due to similarity 

in sizes. Hence to separate the products B1 and B2 and then sequence these, the 

product segment B1-B2 was gel purified and cloned into a pGEM-T easy vector 

system. This was followed by transformation into competent E.coli XL-1 Blue cells. 

The recombinant plasmids were extracted, purified and amplified using the 

designed hepcidin primers and vector primers.  
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A B 

500 bp 

500 bp 

Fig. 3.13  Amplification of cloned plasmids  
The dual segment product B1-B1 seen in Fig. 3.12 was gel purified and cloned into pGEM-T 
Easy vector system as described in methods section 2.2.11. The yield of plasmid was increased 
by transformation of the recombinant plasmid into E.coli XL-1 Blue cells. Plasmids were purified 
from selected colonies of recombinant cells and amplified with hepcidin and vector primers as 
shown in the figure. Encircled products were gel purified and sent for sequencing as described 
in methods section 2.2.12.  
 
A: Amplicons of cloned plasmids obtained using hepcidin primers F1 and R1a 
Lanes 1 to 10 = Amplicons of 10 random recombinant plasmids obtained from 10 different 
recombinant colonies. Expected size of products = ~ 450 bp. Lane 11 = Wt CHO DNA. 
Lane 12= negative control.  
B: Amplicons of cloned plasmids obtained using pGEM-T easy vector primers pGEM-T easy 
forward and reverse. Expected size of products = ~ 450 bp including the vector sequence. 
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Fig. 3.13A shows that separation of the products B1 and B2 was successful via 

cloning, as indicated by the presence of two distinct bands of different sizes 

(encircled in Fig. 3.13A, lanes 1 and 2). Sequencing of the product in lane 1 was 

successful. Although the sequence did not match the hepcidin gene sequence, 5 % 

coverage of the characterised sequence matched a DNA binding protein in rat, as 

shown below.  

 
CHO sequence characterised (5% coverage)     78 AAT CACTAGTGAATTCGCGGCCG 400 
                                                ||| |||||||||||||||||||| 
[Rattus norvegicus] GENE ID:64470 Ddb1       3769 AATCACTAGTGAATTCGCGGCCG 3791 
Damage-specific DNA binding protein-1   
 
 

This suggests a potential role of this sequence in entering the nucleus to bind DNA. 

The other product seen in Fig. 3.13A lane 2, could not be sequenced, possibly 

because it still comprised two products, as seen in Fig. 3.13B, lane 2.  

 

3.3.4.4 Reverse primers with unique hepcidin specificity  

To improve the specificity of primer binding and encourage unique product 

formation, a new reverse primer, hepcidin R1b was designed, part of which 

indicated unique specificity for hepcidin gene at the NCBI–blastn. PCR conditions 

were optimised with hepcidin primer pairs F1 and R1b (appendix XIII). Results 

showed formation of diffused products in minimal amounts, which could be due to 

the degeneracy of the reverse primer. As this primer pair did not give a unique 

product, this combination of primers was not used any further.  
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3.3.4.5 Primer specificity  

Since attempts made so far could not yield the hepcidin gene sequence and the 

primers F1 and R1a resulted in multiple products (Fig. 3.11 and Fig. 3.12), the 

specificity of the primers was checked by using only one of the primers of the 

primer pair in separate PCR reactions, i.e. using only the forward primer F1 and 

only the reverse primer R1a for amplification, as shown in Fig. 3.14A. This should 

not yield products. 

                            

                

 

 

Amplification of CHO DNA using only the forward primer resulted in a product of  

~ 900 bp (Fig. 3.14A, lane 1). This suggested that the forward primer also 

functioned as a reverse primer by binding to a region in CHO DNA ~ 900 bp away 

from where it was originally designed to bind. This region could be within an intron 

and would be complementary and reverse of a section of the top DNA strand, as 

explained through Fig. 3.14B. Hence it was concluded that this was the product “A” 

seen in figures 3.11 and 3.12 and that this was a non-specific product and should 

Fig. 3.14 A  Amplification of 
CHO DNA with only the 
forward primer F1  
Lane 1 = Wt CHO DNA 
Lane 2 = CHO TRVb1 DNA 
Lane 3 = rat liver DNA 
Lane 4 = mouse liver DNA 
Lane 5 = negative control  

1      2      3     4   5                     

Fig. 3.14 B  Probable position of 
binding of forward primer F1, to 
function as a reverse primer   

1000 bp 

500 bp 
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not be sequenced. Thus, the forward primer required to be redesigned. On using 

only the reverse primer, no product was observed (results not shown for brevity).  

 

3.3.4.6 Hepcidin primers for other species 

Previously it was seen that the hamster genomes bears high genomic similarities 

with the genomes of human, mouse and rat (Tables 3.1 and 3.2). Hence published 

hepcidin primers used for these species (Table 2.2) were used to amplify the 

unknown CHO-hepcidin gene (Fig. 3.15). The resultant PCR products were 

electrophoresed on 2 % agarose gels to facilitate the separation of any closely-

sized products. It was observed that amplification of CHO DNA with mouse 

hepcidin-1 primers (A), rat hepcidin primers-x (A) and rat hepcidin primers-y (B), 

resulted in either no product or non-specific products. Also, human hepcidin 

primers (C) showed non–specific product formation with the CHO DNA.  

 

 

 

    

 

 

 

 

3.3.4.7 Primers designed with human hepcidin transc ript into alignment 

   1  2 3 4  5        6  7 8 9 10   

A 

Fig. 3.15  Amplification of CHO genome with hepcidi n primers used for other species  
A: Amplicons of CHO DNA obtained with rat hepcidin primers (x) and mouse hepcidin-1 primers   
Lanes 1-5 = Products obtained with rat hepcidin primers (x) 
Lanes 6-10 = Products obtained with mouse hepcidin-1 primers   
Expected product size of lane 1 (rat Liver DNA) = 95 bp  
Expected product size of lane 7 (mouse liver DNA) = 120 bp  
B: Amplicons obtained with rat hepcidin primers (y)  
Expected product size of lane 1 (rat Liver DNA) = 95 bp  
C: Amplicons obtained with human hepcidin primers FF and RR 
Lane H = HepG2 DNA, expected product size = 300 bp 
In all figures:  
Lanes 1,6 = rat liver DNA;   Lanes 2,7 = mouse liver DNA;   Lanes 3,8 = WT CHO DNA; 
Lanes 4,9 = CHO TRVb1 DNA;  Lanes 5,10= negative control.  
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Since the amplification of CHO DNA using mouse, rat and human hepcidin primers 

did not yield a specific product within the CHO genome (Fig. 3.15) and also due to 

the non-specificity of the forward hepcidin primer (Fig. 3.14), new hepcidin primers 

were designed based on conserved nucleotides between hepcidin transcripts of 

mouse, rat and human (appendix XII). One forward (F2) and two reverse primers 

(R2a and R2b) were designed and used to amplify CHO DNA. PCR products were 

electrophoresed on a 3 % agarose gel to enable separation of any closely sized 

products (Fig. 3.16).  

 

 

 

 

 

 

 

 

 

 

 

 

Here the reverse primer R2a yielded one prominent product (Fig. 3.16A, lane 1) 

whereas reverse primer R2b yielded two products (Fig. 3.16B, lane 1). Hence it 

was concluded that the hepcidin primer pair F2 and R2a was more specific and 

was used in subsequent PCRs. 

Fig. 3.16  Amplification of CHO genome with hepcidi n primers designed on human transcript  
Since primers designed based on conserved regions between mouse and rat hepcidin could not 
characterise CHO-hepcidin, primers were redesigned based on conserved regions between the 
human, mouse and rat hepcidin transcript alignment. The CHO genome was amplified with these 
primers. 
 
A: Amplicons obtained using hepcidin primers F2 and R2a 
B: Amplicons obtained using hepcidin primers F2 and R2b 
Lane 1 = WT CHO DNA;    Lane 2 = rat liver DNA;    Lane 3 = HepG2 DNA;  
Lane 4 = WT CHO DNA with only forward primer; Lane 5 = WT CHO DNA with only reverse primer; 
Lane 6 = negative control.  Expected sizes of products in lane 2 and 3 ~1400 bp 
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3.3.4.7 cDNA usage for sequencing 

So far in this study, sequencing the hepcidin gene using the DNA had presented 

various challenges. Thus, although the approach used to sequence hepcidin 

mRNA (cDNA) was more expensive, it was concluded that this would be more 

fruitful than sequencing hepcidin DNA. Accordingly, Wt CHO cDNA was amplified 

with hepcidin primers F2 and R2a.  

 

  

 

 

 

 

 

 

 

 

  

As seen in the Fig. 3.17A, lane 2, the Wt CHO cDNA yielded a product of ~ 400 bp, 

similar to the product observed in figures 3.10-3.13. Hence multiple tubes of 

reaction in lane 2 were set up. Before sequencing, the presence of the product was 

confirmed (Fig. 3.17B, lane 2). However, sequence of the purified product could 

not be obtained, possibly because of two closely sized products (Fig. 3.17B, lane 

2). This suggested that cloning the cDNA products and then sequencing would be 

an alternative strategy. 

 
   

     1                    2             1     2    3    4       5     6             
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Fig. 3.17  Amplicon of Wt CHO cDNA obtained with he pcidin primers F2 and R2a  
CHO cDNA amplified with selected hepcidin primer pair is shown in the figure. The encircled product 
was sent for sequencing as described in methods section 2.2.12.  
 
A: Lane 1 = WT CHO DNA; lane 2 = WT CHO cDNA;  lane 3 = HepG2 DNA; 
Lane 4= HepG2 cDNA;  Lane 5= rat liver DNA (expected size ~1400 bp); lane 6= negative control 
B: Purified WT CHO cDNA before sequencing.  
Lane 1 = WT CHO DNA; lane 2 = WT CHO cDNA 
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3.3.4.8 Cloning of cDNA fragment 

The cDNA product (Fig. 3.17B, lane 2) was cloned into the pGEM-T easy vector 

system. The recombinant plasmids containing Wt CHO cDNA were amplified with 

vector primers and hepcidin primers (Fig. 3.18). 

 

                   

 

 

 

 

 

Fig. 3.18A (lanes 3 and 4) showed products of different sizes indicating that the 

two products seen in Fig. 3.17B had been successfully separated via cloning. The 

encircled product in Fig. 3.18A was gel purified and sequenced with vector primers. 

However, instead of the expected hepcidin sequence, the characterised sequence 

matched a section of RNA splicing factor 3a, as shown in table 3.3. 

NCBI Accession  Description  Query 
coverage  

Max 
identity 

XM_003502240.1 PREDICTED: Cricetulus griseus splicing factor 3a,  99% 100% 
BC092058.1 Mus musculus splicing factor 3a, subunit 3 99% 95% 
NM_001025698.1 Rattus norvegicus splicing factor 3a, subunit 3  97% 95% 
BC011523.1 Homo sapiens splicing factor 3a, subunit 3 97% 89% 

Fig. 3.18  Amplification of cloned Wt CHO cDNA  
With the aim of sequencing hepcidin mRNA in the CHO cells, the cDNA from Wt CHO 
cells was synthesised as described in methods section 2.2.18 and amplified with vector 
and hepcidin primers, as shown in the above figure.  
 
A: Amplicons of cloned plasmids obtained on using pGEM-T easy vector primers, 
pGEM- T easy forward and reverse. 
B: Amplicons of cloned plasmids obtained on using hepcidin primers F2 and R2a. 
Excepted size of products ~ 450 bp, including the vector sequence 
Lanes 1 to 6 = Amplicons of 6 different recombinant plasmids obtained from 6 different 
recombinant colonies.  
 

A B 

Table 3.3  Sequence similarities between  the characterised CHO sequence and other species  
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Since the gene sequence of hepcidin in the CHO cells could not be characterised, 

gene expression analysis of hepcidin upon iron exposure was hampered. Hence 

studies apart from gene expression analysis were conducted which focussed on 

the iron uptake mechanisms and the consequent effect on hepcidin peptide 

production by the CHO TRVb1 cells. These studies included confirmation of human 

TfR1 at mRNA and protein levels under steady state conditions followed by 

analysis of cell surface TfR1, intracellular iron levels and finally measurements of 

hepcidin peptide levels upon iron overdose to cells.  

 

3.3.5 TfR1 transcript status in CHO TRVb1 cells  

The presence of human TfR1 at mRNA level in the CHO TRVb1 cells under steady 

state conditions was checked, as shown in Fig. 3.19.  

 

                                                   

    

 

 

 

 

 

 

 

Fig. 3.19  Amplicons of TfR1 transcript in CH O cells   
cDNA from CHO TRVb1 and Wt CHO cells was extracted and amplified as 
described in methods sections 2.2.18 and 2.2.8, respectively, using the 
CHO-endogenous and human-TfR1 primers (Table 2.1).  
 
A: Amplicons obtained on using CHO-endogenous TfR1 primers  
Lane 1= Wt CHO cDNA; expected size of product= 230 bp (appendix XV) 
Lane 2= CHO TRVb1 cDNA; no expected product  
B: Amplicons obtained on using human TfR1 primers 
Lane 1= Wt CHO cDNA; no expected product 
Lane 2= CHO TRVb1 cDNA; expected product size= 179 bp (appendix XV) 
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As seen in Fig. 3.19A (lane 1), the CHO-endogenous TfR1 transcript was amplified 

by CHO-specific TfR1 primers whereas CHO TRVb1 cDNA in lane 2 showed the 

absence of the CHO-endogenous TfR1 transcript. Likewise, human TfR1 primers 

were unable to form a product with the Wt CHO cDNA, but successfully formed a 

product with CHO TRVb1 cDNA, as expected (Fig. 3.19B). Together this confirmed 

the presence of human TfR1 mRNA and the absence of CHO-endogenous TfR1 

mRNA in the CHO TRVb1 cells.  

 

3.3.6 TfR1 protein status in CHO TRVb1 cells 

The status of TfR1 protein in the CHO TRVb1 cells under steady state conditions 

was checked, as shown in Fig. 3.20.  

 

                                                                

 

 

 

 

Fig. 3.20  TfR1 protein expression in CHO TRVb1 cel ls  
CHO TRVb1 cells were grown in maintenance medium and the cell pellet was 
probed with human TfR1 antibody, as described in methods section 2.2.21.  
 
A : Dot blot detected human TfR1 protein in CHO TRVb1 cells 
Lane 1= Cell extract of CHO TRVb1 cells 
Lane 2= Cell extract of Wt CHO cells  
B : Western blot detected humanTfR1 protein in CHO TRVb1 cells 
Lane 1= CHO TRVb1 cells under non reducing conditions 
Lane 2= CHO TRVb1 cells under reducing conditions  
Lane 3= Wt CHO cells under non reducing conditions  
Lane 4= Wt CHO cells under reducing conditions  
The marker is in kDa.  
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The CHO TRVb1 cells expressed human TfR1 protein, as seen by the dot blot in 

Fig. 3.20A (lane 1) and Western blot in Fig. 3.20B (lanes 1 and 2). Here, under 

non-reducing conditions human TfR1 protein showed a prominent band of 

approximately 180 kDa (Fig. 3.20B, lane 1), and under reducing conditions a band 

of smaller size, approximately 85-90 kDa was observed (Fig. 3.20B, lane 2), as 

previously shown by Turkewitz et al. (1988). No human TfR1 protein was detected 

in Wt CHO cells. This confirmed the suitability of CHO TRVb1 cells for iron-related 

experiments upon holotransferrin treatment as required to be conducted in this 

study.   

 

3.3.7 Iron overdose and CHO TRVb1 cells  

The CHO TRVb1 cells were treated with holotransferrin (5 g/L) and the resultant 

effect of treatment on cell surface expression of TfR1 is shown in Fig. 3.21. Here, 

Wt HepG2 cells, which express the endogenous TfR1 of human origin, were also 

treated simultaneously and the effect on the two cell types were compared. Each 

treatment undergone by the CHO TRVB1 cells is represented by figures 3.21 (A), 

(B) and (C). It was observed that under steady state conditions i.e. in the 

maintenance medium, CHO TRVb1 cells express approximately twice the levels of 

TfR1 protein on the cell surface than the Wt HepG2 cells (Fig. 3.21D). Iron 

overdose for a period of 48 h caused a significant gradual decrease (p<0.03) in 

surface expression of TfR1 in the Wt HepG2 cells, whereas the CHO TRVb1 cells 

showed constant levels of cell-surface TfR1 (Fig. 3.21E). This implied that CHO 

TRVb1 cells not only displayed higher levels of TfR1 than the Wt HepG2 cells 

under basal conditions but also under iron overload.  
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Under the same experimental conditions, hepcidin peptide levels in the treatment 

medium were measured. Data revealed that the CHO TRVb1 cells increased the 

production of hepcidin peptide with an increase in extracellular holotransferrin 

levels over time (Fig. 3.22). Iron overdose for 24 h significantly induced an 

approximately 4-fold increase in hepcidin peptide production and increased by 

approximately 7-fold after 48 h (p<0.01). 

Fig. 3.21  TfR1 response of CHO TRVb1 cells on iron  overload  
CHO TRVb1 and Wt HepG2 cells were treated with 5 g/L holotransferrin and analysed 
for cell-surface TfR1 by flow cytometry as described in methods sections 2.2.15 and 
2.2.20, respectively. Flow cytometry images of CHO TRVb1 cells before treatment i.e. 
time 0 (A) and after holotransferrin treatment for 24 h (B) and 48 h (C) are shown.  
D : Cell-surface TfR1 under steady state conditions (maintenance medium). 
E : Cell-surface TfR1 after 5 g/L holotransferrin treatment. 
Time 0 represent cells under steady state conditions. 
Data is presented as mean ± SEM (n=3).  
* p<0.03 compared to time 0, ** p<0.01, # p<0.03 compared to 24 h. 
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To further understand hepcidin peptide production by the CHO TRVb1 cells within 

a shorter time exposure to iron overdose, cells were treated with 5 g/L 

holotransferrin for up to 4 h. To ensure that the cells received the planned 

overdose, iron levels in the treatment media were determined (Fig. 3.23).  
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Fig. 3.22  Holotransferrin overdose and hepcidin 
peptide production by CHO TRVb1 cells  
CHO TRVb1 cells were treated with holotransferrin 
overdose and hepcidin peptides secreted into the 
medium after treatment were measured as described 
in methods section 2.2.22. 
Time 0 represent cells under steady state conditions 
i.e. in maintenance medium. Data is presented as 
mean ± SEM (n=3). * p<0.01 compared to time 0, # 
p<0.01 compared to 24 h. 

Fig. 3.23  Iron content in CHO TRVb1 
treatment media 
Iron levels in the media used to treat the CHO 
TRVb1 cells were measured by the ferrozine 
assay as described in methods section 2.2.17.1.  
0 g/L represents serum-free and holotransferrin-
free maintenance medium whereas 5 g/L 
represents serum-free maintenance medium 
supplemented with 5 g/L holotransferrin. Data is 
presented as mean ± SEM (n=3).  
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The effect of holotransferrin treatment on cell viability was studied using the MTT 

assay. Results showed that iron overdose in the form of 5 g/L holotransferrin for a 

period of 4 h reduced cell viability by approximately 10-15 %, as compared to the 

untreated controls (Fig. 3.24). However, the data also showed that cell viability was 

approximately 30 % higher in a medium deprived of FCS and iron (0 g/L) than the 

maintenance medium (10%FCS).  
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Following holotransferrin treatments it was observed that there was no significant 

increase in intracellular iron content in the CHO TRVb1 cells; levels generally 

remained constant under serum deprivation and maintenance medium (Fig. 3.25).  
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Fig. 3.24  Viability studies in CHO TRVb1 cells  
CHO TRVb1 cells were treated with 5 g/L holotransferrin and the viability of the cells was 
studied by MTT assay as described in methods sections 2.2.15 and 2.2.16, respectively.  
10%FCS represent cells in maintenance medium.  
Data is presented as mean ±SEM (n=3).  
 

Fig. 3.25  Intracellular iron levels in CHO TRVb1 c ells upon iron supplementation  
CHO TRVb1 cells were treated with 5 g/L holotransferrin up to 4 h. Intracellular iron levels 
were determined by ferrozine assay as described in methods section 2.2.17 and shown in 
the figure. 10% FCS represent normal maintenance medium. Data is presented as mean 
±SEM (n=3).  
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When in the maintenance medium, the CHO TRVb1 cells released constant levels 

of bioactive hepcidin up to 4 h (Fig. 3.26). A slight but significant decrease in 

hepcidin levels (p<0.03) was observed after 2 h, however, after 4 h hepcidin levels 

increased to those detected at time 0 and 30 min. Compared to the untreated 

control 0 g/L, hepcidin peptide production significantly increased upon 

holotransferrin overdose after 30 min and 2 h (p<0.03), although it appeared that 

the effect of holotransferrin gradually decreased with time. Serum and iron 

deprivation did not significantly decrease hepcidin production over the 4 h 

treatment period. 

 

3.4 Discussion   

Chinese hamster ovary cells have been used over the last 20 years in the 

biopharmaceutical industry for the production of therapeutic recombinant proteins 

for human use (reviewed in Bahr et al., 2009). Successful productions of such 

proteins include those offered for rheumatoid arthritis, colorectal cancer and 

Fig. 3.26  Hepcidin peptide secretion by CHO TRVb1 cells upon iron supplementation  
CHO TRVb1 cells were treated with 5 g/L holotransferrin up to 4 h. Hepcidin peptides 
released at various time points after treatment were measured as described in section 
2.2.22 and shown in the figure. 10% FCS represent normal maintenance medium 
Data is presented as mean ± SEM (n=3). * p <0.03 compared to the untreated controls at 
respective time points. # p<0.03 compared to hepcidin released at 30 min when in 
maintenance medium.  

* * 
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anaemia, as reviewed in Warner, (1999). The CHO TRVb1 cells are unique in that 

they are devoid of the endogenous hamster TfR1, and additionally over-express 

the human TfR1 (McGraw et al., 1987). Due to this characteristic these cells can 

be of immense use for iron-related studies and eventually can be valuable in the 

biopharmaceutical industry. In the present work, studies were conducted to 

understand iron-related responses exhibited by the CHO TRVb1 cells. 

 

Previous studies relating to hepcidin gene expression following iron overdose to 

cell lines have given inconsistent results, primarily due to the lack of a suitable cell 

model for iron overdose experiments. This issue has been addressed in this study 

by using the CHO TRVb1 cells. Since the CHO TRVb1 cells over-express the 

human TfR1 (McGraw et al., 1987), it was hypothesised that this characteristic 

should enable the cells to take up large amounts of iron via holotransferrin and the 

resultant effects on cells could be examined.  

 

Accordingly, an objective of this project was to study the effect of iron overdose via 

holotransferrin on the expression of iron-related genes, particularly hepcidin. 

However, many iron-related genes in the hamster have not been characterised yet 

and this limits experimental work with this cell line. If the gene sequence 

information was known, then this would aid in expression analyses of genes via 

real time PCR. This, along with the fact that the CHO cells are easy to transfect 

and widely used, it would then be possible to establish the CHO TRVb1 cells as a 

model system to study iron regulation.  
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In order to characterise the unknown sequences of genes of interest, the concept 

of genome similarities between species was exploited. It was seen that the 

hamster, being a rodent, bore genomic similarities with the human, mouse and rat 

genomes (Table 3.1). Hence, primers were designed based on conserved 

nucleotides between the human, mouse and rat genomes. These were used to 

amplify the CHO DNA and the PCR products obtained were sequenced. The 

partially characterised CHO sequences of genes ferroportin, Hfe and Irp2 showed 

high similarity with the corresponding pre-characterised gene sequences in the 

database (Table 3.2). This reconfirmed that indeed the hamster genome 

resembled the human, mouse and rat genomes. Also, the sizes of the CHO-gene 

products were very similar to gene products of the rat and mouse. For example, as 

seen in Fig. 3.4, in case of Hfe, Irp2 and ferroportin genes, the size of the CHO-

gene product was very similar to those of the rat liver DNA and mouse kidney 

cDNA. This suggests similarity in exon sizes and a probable similarity in exon-

intron boundaries between the three species.  

 

Since the objective behind sequencing iron-related genes in CHO cells was to 

perform gene expression studies through real time PCR, ideally the cDNA would 

have been a better choice to perform the preliminary PCRs. However the cDNA 

was not chosen because the basal mRNA levels of some genes may be low and 

hence it would be difficult to observe a product on the gel using the cDNA. In 

contrast, performing a PCR with DNA and visualising the product on the gel would 

at least confirm the presence of the gene and also indicate its probable size in the 

previously uncharacterised CHO cells. Secondly, PCR optimisations with cDNA 
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would be more expensive than using the DNA. An additional factor is the labile 

nature of RNA. Since RNA has a higher rate of degradation than the DNA, it is 

more difficult to optimise conditions with cDNA than with DNA.  

 

In order to optimise PCR conditions, temperature gradient PCRs were performed 

with all the designed primers (appendix XIII). This helped to identify the most 

appropriate annealing temperature which would give unique products and following 

this, all subsequent PCRs for sequencing were performed at the chosen 

temperature. Generally, lower temperatures produced more products than higher 

temperatures. This is due to the non-specific binding of the primers to the template. 

Also, high temperatures such as 60 ºC - 61 ºC resulted in fraying of DNA or even 

complete loss of product, as seen in Fig. 3.3D. This suggests that although the 

specificity of primer binding increased with increasing annealing temperature, there 

was a certain optimum functional range for a particular primer pair which led to 

maximum product formation. Since all the primer pairs were designed to possess 

similar properties (described in methods section 2.2.17), most primer pairs yielded 

a single specific product around an annealing temperature 58 ºC.   

 

3.4.1    Summary of ferroportin, Hfe and Irp2 gene sequencing in CHO cells 

• Partial characterisation of Hfe, ferroportin and Irp2 genes in CHO cells has 

been achieved, as represented by Fig. 3.4. The characterised gene 

sequences matched closely the corresponding gene sequences in other 

species (Table 3.2)  
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• Not only the gene sequences but also the translated protein sequences bear 

high resemblance to the corresponding proteins of other species, as seen in 

figures 3.5 - 3.7. These multiple sequence alignments of proteins showed 

conservation of many functionally significant motifs within the CHO 

proteome.  

• CHO-specific primers were designed based on the characterised CHO gene 

sequences and real time PCR was optimised with the CHO-specific primers 

for the genes ferroportin, Hfe and beta actin (Fig. 3.8 and Fig. 3.9).  

 

3.4.2   Hepcidin gene sequencing in CHO cells 

In order to enable studies related to hepcidin gene expression in the CHO TRVb1 

cells, here, attempts were made to acquire the previously unknown hepcidin gene 

sequence in CHO cells.  

 

Since the ferroportin, Hfe and Irp2 genes in CHO cells were successfully 

characterised, the same approach was used to acquire the CHO-hepcidin gene 

sequence. Accordingly, primers were designed based on conserved nucleotides 

between rat and mouse hepcidin transcripts. However, sequencing attempts using 

these primers could not yield the hepcidin gene sequence. Following this, several 

approaches were used to resolve the issue. These included redesigning primers    

(Fig. 3.10), using magnesium chloride to increase primer specificity (Fig. 3.11), 

increasing product yield to facilitate sequencing (Fig. 3.12), cloning of the DNA 

fragment (Fig. 3.13) and the cDNA fragment (Fig. 3.18) in order to separate and 
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then sequence closely sized products. None of these approaches yielded the 

desired sequence. Since the hamster showed high genomic and proteomic 

similarities to other species (Tables 3.1 and 3.2; Figures 3.5 - 3.7), published 

hepcidin primers used for these species were used to amplify the CHO DNA (Fig. 

3.15). This was to check if one of the primer pairs could yield a unique product 

which could be hepcidin. However, no specific product was obtained. The lack of 

product formation could be either due to the specificity of the hepcidin gene in CHO 

cells or primer specificity.  

 

The concept of the hepcidin gene in CHO cells being species-specific is related to 

genomic differences between these species. The existence of such differences is 

supported by the result that rat hepcidin primers could not amplify the mouse 

genome (Fig. 3.15B, lane 2). Also, using only the forward primer for amplification 

resulted in a product with hamster DNA but not with rat and mouse liver DNA (Fig. 

3.14A, lanes 4 and 5). Together, these results point at the overall genomic 

differences between the hamster and other rodents. However, the reason for the 

lack of product formation in these examples may also be due to intronic variation 

between hamster and other rodents as opposed to overall genomic differences. 

Indeed, there are mRNA similarities between these species but introns in different 

species may vary considerably. The concept of primer specificity mentioned earlier 

reflects on the specificity of PCR reactions. Along this line, it has been reported 

that when primers specific for hepcidin-1 and hepcidin-2 for mice were probed with 

the mouse hepcidin cDNA, there was no amplification after 25 cycles, eventually 

implying high specificity of this particular PCR reaction (Ilyin et al., 2003). 
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Whether the hamster is genetically close to other rodents or humans can be 

examined. As seen in Fig. 3.15B, the rat hepcidin primers yielded multiple products 

with CHO DNA (Fig. 3.15B, lanes 3, 4) but not with the mouse DNA. This suggests 

that the hamster genome bears more resemblance to the rat genome than the 

mouse genome. As seen in Fig. 3.15C, lanes 3 and 4, on using human hepcidin 

primers to amplify CHO DNA, two prominent products were obtained. These were 

of sizes approximately 700 bp and 250 bp. The 700 bp product matched closely in 

size to rat and mouse products (lanes 1 and 2) whereas the 250 bp product 

matched in size to the human DNA product (lane H). Together, this suggests that 

the hamster genome bears resemblance to humans and rodents but this is only at 

specific locations, again pointing at the specificity of the hepcidin gene.  

  

One major reason for the difficulties encountered in obtaining the sequence of the 

hepcidin gene arose from the fact that preprohepcidin is a small peptide of 84 

amino acids in human and rat (Park et al., 2001) and 83 amino acids in mouse 

(Pigeon et al., 2001). Thus the transcripts’ sizes are very small which offers fewer 

sections of conserved nucleotides to design primers. This was one of the 

constraints which led to designing degenerate primers. Such degenerate primers 

would be less specific and may bind to multiple regions in the genome to give 

multiple products, one of which could be a part of the hepcidin gene sequence.  

 

It is interesting to note that amplification of hamster DNA and cDNA with similar but 

different primer pairs resulted in two closely-sized products. This suggests that, 

there may be two hepcidin genes in hamster, like the mouse (Pigeon et al., 2001) 
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and the fish (Kim et al., 2005). These genes could be very similar in size and 

sequence. Since the designed hepcidin primers are degenerate, they may bind to 

both these genes giving two different products, barely separated on a gel.  

 

The natural ligand for hepcidin is ferroportin (Nemeth et al., 2004). Conservation of 

the hepcidin binding domain in the CHO cells accompanied by conservation of 

C326 which is implicated in binding to hepcidin (De Domenico et al., 2008) strongly 

suggested that the hepcidin gene should exist in the CHO cells, but it is probably 

highly specific. Thus further work needs to be done to obtain the hepcidin gene 

sequence in CHO cells so that the CHO TRVb1 cells which over-express human 

TfR1 can be proven to be a valuable model for iron-related studies. 

 

3.4.3 Effect of iron supplementation on CHO TRVb1 c ells  

This study confirmed the presence of human TfR1 at mRNA and protein levels in 

the CHOTRVb1 cells (Fig. 3.19 and 3.20). Here, it was shown for the first time that 

regardless of iron overdose the CHO TRVb1 cells expressed stable levels of  

cell-surface TfR1 up to a period of 48 h (Fig. 3.21E). Since the TfR1 in these cells 

is not devoid of its iron-sensitive IRE, the constant levels of TfR1 reflect the 

inherent characteristic of TfR1 over-expression in these cells. This led to a large 

number of receptors being present on the cell surface at a particular time point. 

Notably, the CHO TRVb1 cells express approximately 150,000 receptors on their 

cell surface whereas its Wt counterpart displays only 65,000 receptors (McGraw et 

al., 1987). Conversely, the Wt HepG2 cells showed not only lower levels of surface 

TfR1 than the CHO TRVb1 cells, but also showed a decrease in expression over 
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time upon iron overdose as seen in figures 3.21 (D) and (E). This response implied 

a regulated mechanism of iron uptake by the TfR1 which was sensitive to 

intracellular iron levels and decreased TfR1 levels on surface on reaching cellular 

iron sufficiency. The Wt HepG2 cells were surrounded by an iron-rich environment 

and thus demonstrated an iron-regulated TfR1 response. 

 

In the CHO TRVb1 cells, unlike the TfR1 levels which remained constant, iron 

overdose caused a significant rise in hepcidin peptide production over the period of 

48 h (p<0.01). As seen in Fig. 3.22, this increase in bioactive hepcidin on 

increasing extracellular holotransferrin levels was demonstrated in this study for 

the first time and correlates with the normal physiological response exhibited by 

humans under the influence of increased circulating iron levels.  

 

To further understand if such a response could be observed within a short time of 

exposure to iron, the CHO TRVb1 cells were exposed to holotransferrin overdose 

up to 4 h. Data showed that despite the over-expression of TfR1 protein on the cell 

surface, intracellular iron concentrations in these cells were not significantly raised 

upon increasing extracellular iron levels (Fig. 3.25). Essentially, iron overdose to 

cells did not result in intracellular iron overload in the CHO TRVb1 cells. Hence it 

was concluded that the abundance of TfR1 on cell surface does not necessarily 

lead to intracellular iron overload, primarily because the TfR1 mRNA in these cells 

is regulated at transcription level by its IRE region (Casey et al., 1988) and this 

controls the uptake of iron by the cells.  
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Regardless of the overall stability in intracellular iron levels, holotransferrin 

treatments led to a significant 1.4- and 1.5-fold increases in hepcidin peptide 

secretion at 30 min and 2 h, respectively (Fig. 3.26), compared to the untreated 

controls. Within the 4 h treatment period, cells were the most responsive to 

extracellular iron levels at the 2 h time point. Together, the data suggested that a 

significant intracellular iron overload was not a prerequisite for an increase in 

hepcidin peptide levels by the CHO TRVb1 cells and that the levels of bioactive 

hepcidin could be raised by increasing extracellular iron levels which may have 

caused minor variation in intracellular iron levels.  

 

As shown in Fig. 3.23, iron levels in the maintenance medium and 5 g/L 

holotransferrin medium were determined. Correlating the iron levels in treatment 

media with hepcidin peptide production, it was seen that approximately 7 µM of 

iron present in the maintenance medium led to approximately 3.7 ng/mL of 

hepcidin whereas 105 µM of iron in 5 g/L of holotransferrin induced approximately 

6.9 ng/mL of hepcidin. This meant that 16-fold higher iron levels in 5 g/L 

holotransferrin could only lead to a 1.9-fold increase in bioactive hepcidin. FCS 

thus showed a better potential to induce hepcidin production than high iron levels 

in the holotransferrin treatment medium. This is not surprising as FCS may contain 

an array of growth factors, proteins, cytokines and interferons and these cytokines, 

particularly IL-6, IL1 alpha and IL1 beta are known to induce hepcidin synthesis 

(Nemeth et al., 2003, Darshan and Anderson, 2009). Also, interferon gamma has 

been shown to induce hepcidin expression (Frazier et al., 2011).  
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As seen earlier, the hepcidin gene sequence in the CHO TRVb1 cells could not be 

characterised despite assuming its similarity with the human hepcidin gene 

sequence. However, the hepcidin peptide in CHO TRVb1 cells was detectable by 

the rabbit anti-human hepcidin antibody (figures 3.22 and 3.26) which has 

successfully detected bioactive hepcidin in human serum (Busbridge et al., 2009). 

This suggests that although the gene sequence of hepcidin in the CHO cells may 

be unique and may have dissimilarity with the human hepcidin gene sequence, the 

peptide sequence of hepcidin in the two species is probably similar. This is 

supported by the fact that the hepcidin peptide sequence is highly conserved 

amongst different species, as discussed in chapter 1 and shown in the below 

alignment. 

 

Human             1 DTHFPICIFCCGCCHRSKCGMCCKT 25 
Mouse hepcidin-1  1 DTNFPICIFCCKCCNNSQCGICCKT 25 
Mouse hepcidin-2  1 DINFPICRFCCQCCNKPSCGICCEE 25 
Rat               1 DTNFPICLFCCKCCKNSSCGLCCIT 25 
Dog               1 DTHFPICIFCCGCCKTPKCGLCCKT 25 
Pig               1 DTHFPICIFCCGCCRKAICGMCCKT 25 
Zebrafish         1 QSHLSLCRFCCKCCRNKGCGYCCKF 25 
                    : ::.:* *** **.   ** **   

 

Since in the CHO TRVb1 cells intracellular iron overload upon iron overdose was 

not achieved, whether intracellular iron levels influenced hepcidin transcription and 

peptide production remained a question. Another question was whether the 

increase in hepcidin peptide production, as observed here, was restricted only to 

the CHO cells under these specific cell culture conditions; particularly in the scene 

of variability in hepcidin transcription observed by other groups. Some of these 

issues were addressed via experiments conducted in the following chapter.  
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Chapter 4  

Effect of iron overload on TfR1-recombinant HepG2 c ells 

4.1 Introduction 

An objective of this research was to understand the effect of iron overload on 

hepcidin gene expression, for which initially the CHO TRVb1 cells were chosen. 

However, characterisation of the hepcidin gene sequence in these cells could not 

be achieved which prevented gene expression studies from being carried out. 

Hence, experiments investigating hepcidin peptide production were conducted. 

Results showed that the CHO TRVb1 cells increased hepcidin peptide production 

upon overdose of extracellular holotransferrin (chapter 3). However, the lack of 

intracellular iron overload in these cells restricted the understanding of whether 

excess iron within the cells would make an impact on hepcidin expression. In order 

to study the effect of iron overload on hepcidin gene and peptide expression, a cell 

line was required which could facilitate intracellular iron overload and also 

possessed a characterised hepcidin gene sequence to enable mRNA expression 

studies.   

 

To achieve this, the human liver carcinoma cell line, HepG2 was utilised. This was 

principally because the gene sequences of hepcidin and other iron-related genes 

have been pre-characterised which can enable gene expression analysis through 

real time PCR. Also, since it is a mammalian cell line it would provide a better 

understanding of cellular processes occurring in humans, as compared to the 

hamster ovarian cell line. For instance the HepG2 cells demonstrate many features 
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of hepatocytes including the ability to produce liver-specific proteins like albumin 

and transferrin (Bokhari et al., 2007). Another major advantage of these cells is 

that they are of hepatic origin and the liver acts as a main site for iron storage as 

well as hepcidin production (Kohgo et al., 2008). Considering these advantages, 

HepG2 cells were chosen for further studies and were cloned such that these 

would express an IRE-independent TfR1 mRNA (methods section 2.2.3.2) which 

therefore would be insensitive to an increase in intracellular iron levels. 

 

4.1.1 Aims and objectives 

Aim: To study the effect of iron overload on gene expression of hepcidin and other 

iron-related genes using the TfR1-recombinant HepG2 cells (rec-TfR1 HepG2) 

which constitutively express human TfR1 on the cell surface. It was hypothesised 

that upon iron supplementation the rec-TfR1 HepG2 cells would continuously 

uptake iron through holotransferrin causing intracellular iron overload. This would 

lead to increased hepcidin gene expression and peptide production. The resultant 

effect on gene expression of hepcidin and other iron-related genes in the rec-TfR1 

HepG2 cells was compared to the wild type HepG2 and the HepG2 (p) cells 

(HepG2 cells transfected with empty plasmid), both of which express unmodified 

iron-regulated TfR1 mRNA. 

 

Objectives: 

1. To ascertain the cell-surface expression of TfR1. 

2. Confirmation of the presence of iron-related genes in HepG2 cells. 

3. Upon iron supplementation, to perform:  
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a. Viability studies 

b. Confirmation of iron uptake by cells 

c. Gene expression analysis through real time PCR 

d. Determination of the levels of secreted bioactive hepcidin  

 

4.2 Results 

4.2.1 Cell-surface expression of TfR1 in HepG2 cell s 

The requirement of the rec-TfR1 HepG2 cells was that these cells expressed a 

greater amount of TfR1 on the cell surface as compared to the Wt HepG2 cells and 

also continuously uptake iron regardless of excess intracellular iron levels. To 

ascertain this, Wt and rec-TfR1 HepG2 cells were treated with holotransferrin (5 

g/L) for 48 h and cell-surface TfR1 was analysed. Each treatment undergone by 

the rec-TfR1 HepG2 cells is shown in figures 4.1 (A), (B) and (C). Here, 

fluorescence is depicted in R2 and the resultant effect on expression of cell-surface 

TfR1 is depicted in figures 4.1 (D), (E) and (F).  

 

Data showed that the rec-TfR1 HepG2 cells displayed significantly higher basal 

levels of TfR1 on the cell surface than the Wt HepG2 cells (Fig. 4.1D). When 

subjected to iron overdose, Wt HepG2 cells showed a slight but significant up-

regulation of TfR1 expression after 24 h (p<0.02) and a plateau at 48 h (Fig. 4.1E). 

In contrast, the rec-TfR1 HepG2 cells showed constant levels of cell-surface TfR1 

irrespective of holotransferrin overdose over time (Fig. 4.1F).  
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To further understand the TfR1 response, cells growing in the maintenance 

medium were treated with holotransferrin (5 g/L) without any period of serum 

starvation before the treatment. A representative cell response of each treatment 

undergone by the rec-TfR1 HepG2 cells is shown in Fig. 4.2 (A), (B) and (C) 

overleaf and the effect of the treatments is summarised in Fig. 4.2 (D) and (E).  

Fig. 4.1  Effect of holotransferrin overdose on cel l-surface expression of TfR1  
Wt and rec-TfR1 HepG2 cells were serum starved for 24 h (time 0) followed by treatment with 5 
g/L holotransferrin for 48 h, as described in methods section 2.2.15. Cell-surface expression of 
TfR1 was studied at various time points after treatment as described in methods section 2.2.20. 
Flow cytometry images of serum starved rec-TfR1 HepG2 cells before treatment i.e. time 0 (A) 
and after holotransferrin treatment for 24 h (B) and 48 h (C) are shown.  
 
D: Cell-surface TfR1 in rec-TfR1 HepG2 cells relative to Wt HepG2 cells before treatment (time 
0). E and F: Cell-surface TfR1 in Wt HepG2 cells and rec-TfR1 HepG2 cells upon iron overdose, 
respectively, relative to time 0. Data is presented as mean ± SEM (n=3). * p<0.02, ** p<0.01 
compared to Wt HepG2 cells. 
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Under steady state conditions i.e. in the maintenance medium, there was no 

significant difference between the cell-surface expression of TfR1 in Wt HepG2 

and HepG2 (p) cells (Fig. 4.2D). On the other hand, rec-TfR1 HepG2 cells 

expressed approximately 2-fold higher levels of TfR1 on the cell surface than Wt 

HepG2 and HepG2 (p) cells (p<0.01). On treating the Wt HepG2 and the HepG2 (p) 

cells with 5 g/L holotransferrin, TfR1 expression in these cells decreased with time 

whereas in the rec-TfR1 HepG2 cells, a significant increase in expression of  

cell-surface TfR1 was observed (Fig. 4.2E). 

Fig. 4.2  Effect of iron overdose on TfR1 cell -surface expressi on in HepG2 cells  
Wt and rec-TfR1 HepG2 cells were treated with 5 g/L holotransferrin up to 48 h and cell-surface 
expression of TfR1 before (time 0) and after treatment was studied, as described in methods 
section 2.2.20. Flow cytometry images of rec-TfR1 HepG2 cells before treatment i.e. time 0 (A) 
and after holotransferrin treatment for 24 h (B) and 48 h (C) are shown. 
D: Cell-surface TfR1 of HepG2 (p) and rec-TfR1 HepG2 cells, relative to Wt HepG2 cells (n=3). 
E: HepG2 TfR1 responses upon iron overdose, relative to time 0.  
Data is presented as mean ± SEM. * p<0.02 compared to time 0 and ** p<0.01, # p<0.05 
compared to 24 h.  
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4.2.2 Iron-related genes in rec-TfR1 HepG2 cells  

Prior to gene expression analysis via real time PCR, the expression of genes of  

interest at the mRNA level in the rec-TfR1 HepG2 cells was confirmed by 

amplifying the cDNA with the designed primers and those published by other 

research groups (appendix V). Each amplicon observed in Fig. 4.3 was sent for 

sequencing to confirm its identity before proceeding with expression analysis 

(appendix V). As observed by other groups (Fein et al., 2007, Kulaksiz et al., 2004), 

here through Fig .4.3, it was shown that HepG2 cells express hepcidin.   

       

 

 

 

 

 

 

 

 

 

 

 
4.2.3 HepG2 cells under steady state conditions: 48  h study  

The viability of Wt and rec-TfR1 HepG2 cells under steady state conditions (i.e. in 

the maintenance medium) increased with time (figures 4.4 A and B). This indicated 

growth of cells and increase in cell numbers, although the increase in cell numbers 

1   2   3   4    5        6   7   8   9  1011 12  

100 bp 

200 bp 
300 bp 

Fig. 4.3  Amplicons of transcripts of iron -related gene s in rec -
TfR1 HepG2 cells 
cDNA from rec-TfR1 HepG2 cells was synthesised as explained in 
methods section 2.2.18 and amplified by PCR as described in 
methods section 2.2.8. Primers (Table 2.3) used to amplify the rec-
TfR1 cDNA as seen in each lane, were as below: 
Lane 1= TfR1 (F) and (R); expected product size= 179 bp 
Lane 2= TFR1-IRE (F Ib) and (R I); expected product size= 210 bp 
Lane 3= Hepcidin (FI) and (RI); expected product size= 189 bp 
Lane 4= Ferroportin (FI) and (RI); expected product size= 260 bp 
Lane 5= GAPDH (F) and (R); expected product size= 131 bp 
Lane 6 = HFE (FI) and R (I); expected product size=77 bp 
Lanes 7-12 = negative controls with respective primers 
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in rec-TfR1 HepG2 cells was at a slower rate than Wt HepG2 cells from 24 to 48 h. 

This slow growth rate could be due to the presence of plasmid in the rec-TfR1 

HepG2 cells. Such plasmid-possessing recombinant cells may utilise a significant 

amount of the cell’s resources to maintain the plasmid; the plasmid being a 

metabolic burden on the cells (Glick, 1995). Intracellular iron content was 

determined which showed that basal levels of iron in the rec-TfR1 HepG2 cells 

were higher than those in the Wt HepG2 cells (figures 4.4 C and D). 

 

                          

0

1

2

3

4

6 h 24 h 48 h 

Time

R
e

la
ti

v
e

 v
ia

b
il

it
ie

s

 

0

1

2

3

4

6 h 24 h 48 h

Time 

R
e

la
ti

v
e

 v
ia

b
il

it
ie

s

 
 

                          

0

5

10

15

6 h 24 h 48 h

Time 

n
m

o
le

s 
F

e
/

m
g

 p
ro

te
in

 

 

0

5

10

15

6 h 24 h 48 h

Time

n
m

o
le

s 
F

e
/

m
g

 p
ro

te
in

 
 

 

 

 
 
 

 

 

Fig. 4.4  Viability studies and iron content in Hep G2 cells 
under steady state conditions 
Wt and rec-TfR1 HepG2 cells growing in maintenance medium 
were assessed for viability and intracellular iron content at 
various time points, as described in methods section 2.2.16 and 
2.2.17, respectively. Viabilities were expressed relative to the 6 
h time point.   
 
A and B : Cell viabilities of Wt HepG2 cells (n=2) and rec-TfR1 
HepG2 cells (n=2), respectively. 
C and D : Intracellular iron levels in Wt HepG2 cells (n=2) and 
rec-TfR1 HepG2 cells (n=3), respectively. 
Data is presented as mean± SEM  
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In the preliminary RNA expression analysis of iron-related genes via real time PCR, 

three reference genes actin, GAPDH and 18s  were chosen. The CT values of the 

genes showed that GAPDH was the most suitable under varying experimental 

conditions as it was the most stable (appendix XVI). Hence GAPDH was chosen as 

a reference gene to normalise expression of all the iron-related genes under study.  
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Gene expression analysis showed that in Wt HepG2 cells TfR1 levels significantly 

decreased after 24 h (Fig. 4.5A). Although no significant change in hepcidin mRNA 

was observed after 24 h, ferroportin expression showed a significant decrease, the 

cells aiming to retain intracellular iron levels. On the other hand, the rec-TfR1 

HepG2 cells showed a significant increase in TfR1 mRNA expression at 24 h and 

then a reduction after 48 h (Fig. 4.5B). However, the level at 48 h was higher than 

Wt HepG2 cells, despite the higher intracellular iron content than Wt HepG2 cells, 

as seen in Fig. 4.4D. This showed that the TfR1 in the rec-TfR1 HepG2 cells were 

insensitive to high intracellular iron concentration, as expected, due to the absence 

Fig. 4.5  Basal mRNA expression of iron -related genes in HepG2 cells  
Wt and rec-TfR1 HepG2 cells growing in the maintenance medium were analysed for basal 
mRNA expression of iron-related genes of interest. RNA expression analysis was carried out 
as described in methods sections 2.2.18 and 2.2.19, and was expressed relative to the 6 h.   
 
A and B : Expression of iron-related genes in Wt HepG2 cells and in rec-TfR1 HepG2, 
respectively. Data is presented as mean ± SEM (n=1-3). * p<0.05, ** p<0.02 and  
*** p<0.01 compared to the previous time point. 
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of the iron-regulated IRE element in the modified TfR1 in these cells. Also, in the 

rec-TFR1 HepG2 cells the mRNA of TfR1-IRE, which is a reflection of the 

endogenous iron regulated-TfR1, decreased at 24 h and 48 h (Fig. 4.5B) reflecting 

the cells’ high intracellular iron status. In this situation the endogenous TfR1 mRNA 

is expected to be down-regulated to prevent any further iron uptake.  

 

The high intracellular iron status of rec-TfR1 Hep2 cells was reflected in the 

increased levels of ferroportin mRNA at 6 h followed by a drop at 24 h and then 

again a rise at 48 h, mirroring the pattern of intracellular iron levels seen in Fig. 

4.4D. A similar pattern of HFE gene expression was observed. Although hepcidin 

mRNA levels were generally maintained, hepcidin expression appeared to be at a 

higher level than in the Wt HepG2 cells at the same time points. 

 

4.2.4 Iron overdose and Wt HepG2 cells : 48 h study      

On treating the Wt HepG2 cells with 1 g/L and 5 g/L holotransferrin, both the 

concentrations decreased cell viability by ~ 20 % at 6 h, remained stable at 24 h 

and increased by 50 % at 48 h with respect to the untreated control at each time 

point (Fig. 4.6A). A 24 h period of serum and iron deprivation did not have a major 

impact on cell viability but viability decreased by 40 % when deprivation was for 48 

h (Fig. 4.6B). Intracellular iron levels were generally maintained regardless of the 

high circulating holotransferrin concentration (Fig. 4.6C), implying the regulatory 

effect of TfR1-IRE, which controlled iron uptake by the cells under high 

extracellular iron environment.  
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Fig. 4.7 shows the effect of holotransferrin treatments on mRNA expression of 

various iron-related genes in the Wt HepG2 cells. It was observed that TfR1 mRNA 

levels generally decreased upon holotransferrin treatment and increased by 

approximately 3-fold under serum and iron deprivation (Fig. 4.7A and B). Unlike 

TfR1, hepcidin mRNA levels increased upon iron exposure at 6 and 24 h, whereas 

24 h-holotransferrin treatment (1 g/L) resulted in an approximately 2.9-fold increase 

in hepcidin mRNA levels (Fig. 4.7C).  

A B

C

Fig. 4.6   Viability studies and intracellular iron levels in Wt HepG2 cells  
under holotransferrin treatments 
Wt HepG2 cells were treated with different concentrations of holotransferrin 
for 48 h as described in methods section 2.2.15. Cell viability and 
intracellular iron levels after treatments were determined as mentioned in 
legend of Fig. 4.4. Viability of treated cells (1 g/L and 5 g/L holotransferrin) 
was expressed relative to viability of untreated cells (0 g/L) at each time 
point. 
 
A and B: Effect of holotransferrin overdose and iron deprivation (0 g/L) on 
cell viability, respectively (6 h and 24 h: n=2; 48 h: n=1). 
C: Effect of holotransferrin overdose on intracellular iron levels (n=2). 
Data is presented as mean ± SEM. 
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Fig. 4.7 mRNA expression of iron -related genes in Wt HepG2 cells upon holotransferri n 
treatments  
Wt HepG2 cells were treated with different concentration of holotransferrin for 48 h as described 
in methods section 2.2.15. RNA expression analysis was per legend of Fig. 4.5. mRNA 
expression of treated cells (1 g/L and 5 g/L holotransferrin) was expressed relative to untreated 
cells (0 g/L) at each time point. 
 
A and B: TfR1 and TfR1-IRE expression upon holotransferrin treatment and under serum and 
holotransferrin deprivation (0 g/L), respectively; (6 h and 48 h: n=2; 24 h: n=3). 
C and D: Hepcidin and ferroportin expression upon holotransferrin treatment and under serum 
and holotransferrin deprivation (0 g/L), respectively; (6 h and 24 h: n=2; 48 h: n=1). 
E and F:  HFE expression upon holotransferrin treatment and under serum and holotransferrin 
deprivation (0 g/L), respectively; (n=1)  
Data is presented as mean ± SEM. * p<0.02 compared to untreated control. 
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Ferroportin mRNA levels were generally maintained at constant levels throughout 

the treatment (Fig. 4.7C), similar to the intracellular iron levels seen in Fig. 4.6C. 

This implied that there was no excess iron within the cells and hence the cells 

retained iron. The increase in ferroportin expression by approximately 70 % after 

24 h of 1 g/L treatment may be to remove excess iron the cells have taken up. The 

down-regulation of ferroportin mRNA by approximately 20 % after 24 h in 5 g/L 

holotransferrin (compared to 0 g/L) was similar to that observed by Jacolot et al. 

(2008) on treatment of Wt HepG2 cells with 4.5 g/L of holotransferrin. 

 

Preliminary studies of HFE transcription showed that its level steadily increased 

upon increasing iron dosage but remained stable as compared to the untreated 

control after 24 h (Fig. 4.7 E). This is unlike the response reported by Jacolot et al. 

(2008) where HFE gene expression was slightly down-regulated on treatment with 

4.5 g/L of holotransferrin for 24 to 48 h.  

 

4.2.5 Iron overdose and rec-TfR1 HepG2 cells : 48 h  study   

The viability of rec-TfR1 HepG2 cells generally remained steady over the period of 

48 h when under holotransferrin treatment and serum and iron deprivation (Fig 4.8 

A and B). Intracellular iron levels were determined which showed that in contrast to 

Wt HepG2 cells, the rec-TfR1 HepG2 cells showed a significant increase in iron 

uptake (p<0.01) with increasing holotransferrin concentration at 24 h (Fig. 4.8C).  
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Matching the pattern of iron uptake, TfR1 mRNA levels were up-regulated in rec-

TfR1 HepG2 cells upon increasing holotransferrin concentrations at 6 and 24 h (Fig. 

4.9A). Following 2 g/L (data not shown) and 5 g/L holotransferrin treatment for 24 h, 

these cells showed a 2-fold and ~3-fold rise in TfR1 mRNA (p< 0.04) (Fig. 4.9A). 

Thus, unlike the Wt HepG2 cells, the rec-TfR1 HepG2 cells showed insensitivity to 

high intracellular iron levels by preventing TfR1 mRNA down-regulation (Fig. 4.8 C). 

Fig. 4.8   Viability studies and intracellular iron levels in rec-TfR1 HepG2  
cells under holotransferrin treatments 
Rec-TfR1 HepG2 cells were treated with increasing concentrations of 
holotransferrin up to 48 h followed by measurement of cell viability and 
intracellular iron levels as described in legend of Fig. 4.6. Viability of treated 
cells (1 g/L and 5 g/L holotransferrin) was expressed relative to the viability of 
untreated cells (0 g/L) at each time point. 
 
A and B: Effect of holotransferrin overdose and serum and iron deprivation (0 
g/L) on cell viability, respectively (n=3). 
C: Effect of holotransferrin overdose on intracellular iron levels (0g/L: n=6;  
1 g/L and 5 g/L: n=3). Data is presented as mean ± SEM. * p<0.01 compared to 
untreated control, # p<0.01 compared to 1 g/L treatment.  
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Fig. 4.9  mRNA expression of iron -related genes in rec -TfR1 HepG2 cells upon 
holotransferrin treatment  
Rec-TfR1 HepG2 cells were treated with increasing concentrations of holotransferrin and mRNA 
expression was analysed as mentioned in legend of Fig. 4.7. mRNA expression of treated cells (1 
g/L and 5 g/L holotransferrin) was expressed relative to untreated cells (0 g/L) at each time point. 
 
A and B: TfR1 and TfR1-IRE expression upon holotransferrin treatments and under serum and 
holotransferrin deprivation (0 g/L), respectively; (6 h and 48 h: n=2; 24 h: n=3) 
C and D: Hepcidin and ferroportin expression upon holotransferrin treatments and under serum and 
holotransferrin deprivation, respectively (n=2). 
E and F: HFE expression upon holotransferrin treatments and under serum and holotransferrin 
deprivation, respectively (n=2). 
Data is presented as mean ± SEM. * p<0.01 compared to untreated control. 
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Under serum and iron deprivation, like the Wt HepG2 cells, the rec-TfR1 HepG2 

cells increased TfR1 mRNA levels, but unlike the Wt HepG2 cells the TfR1-IRE 

was either down-regulated or remained stable (Fig.49B), displaying a feature of 

regulated iron uptake. Also, unlike the Wt HepG2 cells, hepcidin and ferroportin 

mRNA expression did not show any significant change upon holotransferrin 

treatments at any time points (Fig. 4.9C). HFE expression levels decreased with 

increasing iron overdose after 6 h and 24 h (Fig. 4.9E), completely opposite to the 

pattern of iron uptake in these cells as seen in Fig. 4.8C. 

 

In conclusion, the results showed that the 48 h period of iron overdose to the rec-

TfR1 HepG2 cells, caused an intracellular iron overload but did not lead to a rise in 

hepcidin mRNA expression, as was hypothesised. Hence to determine if the 

expected increase in hepcidin mRNA expression occurred earlier than 6 h, the 

“time window” of measurements was changed in the subsequent experiments. 

Since previous results showed that the Wt and the rec-TfR1 HepG2 cells differed 

strikingly in their responses when treated with 5 g/L holotransferrin (figures 4.7A 

and 4. 9A, 4.6C and 4.8C), the effect of iron supplementation on cell responses 

was studied within 4 h of 5 g/L holotransferrin treatment. Responses exhibited by 

rec-TfR1 HepG2 cells were compared to those of Wt HepG2 cells and HepG2 (p) 

cells i.e. Wt HepG2 cells with empty plasmid, in which the endogenous TfR1 was 

unchanged and hence were expected to demonstrate regulated iron uptake like the 

Wt HepG2 cells. 
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4.2.6 HepG2 cells under steady state condition : 4 h study  
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Fig. 4.11  Viability and iron uptake in HepG2 cells  under steady state 
conditions : 4 h study 
Wt HepG2, HepG2 (p) and rec-TfR1 HepG2 cells growing in maintenance medium 
were assessed for viability and intracellular iron content at various time points, as 
mentioned in legend of Fig. 4.4. Viabilities were expressed relative to the 1st time 
point of the assay (time 0).  
 
A, B, and C: cell viabilities of Wt HepG2, HepG2 (p) and rec-TfR1 HepG2 cells, 
respectively. 
D, E and F: Intracellular iron levels in Wt HepG2, HepG2 (p) and rec-TfR1 HepG2 
cells, respectively. 
Data is presented as mean ± SEM (n=3). * p<0.01 compared to time 0. 
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In the maintenance medium the viability of all cells generally remained stable within 

the 4 h period. Intracellular iron levels were also maintained at constant levels by 

the Wt HepG2 and HepG2 (p) cells, whereas rec-TfR1HepG2 cells showed a 

pattern of increasing iron uptake which significantly increased by 70 % after 4 h 

(p<0.01) (Fig. 4.11F). Iron levels in the Wt HepG2 cells measured in this study (3-4 

nmoles/mg protein) are similar to those measured by Gu et al.,(2008).  

 

The mRNA expression levels of various iron-related genes in the HepG2 cells in 

maintenance medium (i.e. under steady state) were analysed as shown in Fig.4.12. 
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Fig. 4.12  Basal mRNA expression of iron -related genes in HepG2 cells :  4 h study  
Wt HepG2, HepG2 (p) and rec-TfR1 HepG2 cells growing in the maintenance medium were 
analysed for basal mRNA expression of iron-related genes of interest. RNA expression 
analysis was carried out as mentioned in legend of Fig. 4.5 and expressed relative to time 0. 
mRNA expression studies of iron-related genes in A: Wt HepG2 cells; B: HepG2 (p) cells; C 
and D : Rec-TfR1 HepG2 cells. Data is presented as mean ± SEM (n=3).  
* p<0.01 compared to time 0. 
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In the Wt HepG2 cells there was no significant change in gene expression over the 

4 h period, except the rise in hepcidin mRNA expression after 4 h (Fig. 4.12A). In 

the HepG2 (p) cells the increase in TfR1 and hepcidin mRNA within the first 30 min 

followed a gradual stabilisation after 2 h and 4 h (Fig. 4.12B). The rec-TfR1 HepG2 

cells showed a notably different pattern of gene expression than the cells of Wt 

origin i.e. Wt HepG2 cells and HepG2 (p) cells. While the expression of HFE and 

hepcidin mirrored each other, these cells showed significantly high ferroportin 

mRNA levels (p<0.01) as seen in figures. 4.12 C and D.  

 

4.2.7 Effect of iron overdose on HepG2 cells : 4 h study 

In order to ensure that the cells had received a high dosage of iron via 

holotransferrin, iron levels in the treatment media were measured. The results 

showed that iron levels in 5 g/L holotransferrin treatment media were 15-20 fold 

higher than those in the maintenance medium (Fig. 4.13).   
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Fig. 4.13  Iron levels in treat ment media for HepG2 cells  
Iron levels in the treatment media used to treat HepG2 cells were detected as per methods 
section 2.2.17.1.  
A: Wt HepG2 cells; B: HepG2 (p) cells; C: Rec-TfR1 HepG2 cells 
10%FCS represent maintenance medium. Data is presented as mean ± SEM (n=3) 
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Viability studies revealed that holotransferrin treatment of 5 g/L up to 4 h did not 

have a major impact on the viabilities of any of the cell lines (figures 4.14, A, B  

and C). 
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Fig. 4.14  Viability studies and iron uptake in Hep G2 cells under holotransferrin 
treatment : 4 h study 
HepG2 cells were treated with 5 g/L holotransferrin for 4 h as described in methods section 
2.2.15. Cell viability and intracellular iron levels after treatments were determined as 
described in legend of Fig. 4.4. Viability of treated cells (5 g/L holotransferrin) was expressed 
relative to viability of untreated cells (0 g/L) at each time point. 
 
A, B and C : Effect of holotransferrin treatment on viability of Wt HepG2, HepG2 (p) and rec-
TfR1 HepG2 cells, respectively. 
D, E and F : Effect of holotransferrin treatment on intracellular iron levels in Wt HepG2, 
HepG2 (p) and rec-TfR1 HepG2 cells, respectively.  
Data is presented as mean ± SEM (n=3). * p<0.05, ** p<0.01 compared to untreated control 
at respective time points. 
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Likewise, the Wt HepG2 and HepG2 (p) cells generally showed constant levels of 

intracellular iron regardless of high extracellular iron highlighting that the iron 

uptake regulatory mechanisms in these cells were functional (figures 4.14, D and 

E). In comparison, the rec-TfR1 HepG2 cells not only showed considerably higher 

basal levels of iron but also significantly increased iron uptake upon holotransferrin 

treatment for 2 and 4 h by approximately 1.4- and 2.1-fold, respectively (Fig. 4.14F), 

a feature of these cells as observed earlier (Fig. 4.8C). 

 

Gene expression analysis under holotransferrin treatments in the three HepG2 cell 

lines under study has been captured in figures 4.15-4.17. In the Wt HepG2 cells 

(Fig. 4.15), holotransferrin treatment did not significantly affect the mRNA 

expression of TfR1, ferroportin and HFE genes in the first 30 min. When the 

duration of treatment increased to 2 h and 4 h, the expression of TfR1 significantly 

decreased (p<0.02 and p<0.01, respectively) compared to the untreated control at 

each time point. This was expected as the Wt HepG2 cells express IRE-regulated 

TfR1 mRNA which made the cells sensitive to intracellular iron levels and 

prevented any further iron uptake on reaching cellular iron sufficiency by down- 

regulation of TfR1. While the other genes were stably expressed, hepcidin mRNA 

levels were up-regulated by 0.7-, 0.4- and 0.6-fold after 30 min, 2 h and 4 h of 

holotransferrin overdose, respectively, compared to the untreated control at each 

time point.  
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The HepG2 (p) cells generally showed a similar pattern of gene expression to the 

Wt HepG2 cells (Fig. 4.16). Although these cells appeared to show increased 

hepcidin and ferroportin expression upon iron overdose, it was observed that these 

increases resulted from the changes in expression of the reference gene in these 

cells rather than changes in expression of hepcidin and ferroportin (appendix XVI). 

This conclusion was based on the CT values of hepcidin and ferroportin as well as 

the products observed on the gel, which remained unchanged under untreated and 

treated conditions at all time points.    
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Fig. 4.15  Effect of holotransfe rrin treatment on gene expression in Wt HepG2 cells  
Wt HepG2 cells were treated with 5 g/L holotransferrin up to 4 h and their mRNA 
expression analysis was per legend of Fig. 4.7. mRNA expression of treated cells (5 g/L 
holotransferrin) was expressed relative to untreated cells (0 g/L) at each time point. 18 µL 
of RT PCR products were electrophoresed on 1-1.5 % agarose gel.  
Data is presented as mean ± SEM (n=3).* p<0.02, ** p<0.01 compared to untreated 
control at respective time points.  
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The rec-TfR1 HepG2 cells displayed their typical characteristic of up-regulation of   

TfR1 mRNA under holotransferrin treatment (Fig. 4.17) as previously observed in 

Fig. 4.9A. Although hepcidin and HFE expression did not significantly change, 

ferroportin expression showed a pattern of increasing expression as the duration of 

treatment increased, similar to the pattern of iron uptake by these cells as seen in 

Fig. 4.14F.  
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Fig. 4.16  Effect of holotransferrin treatment on g ene expression in HepG2 (p) cells  
HepG2 (p) cells were treated with 5 g/L holotransferrin up to 4 h and their mRNA 
expression analysis was per legend of Fig. 4.7. mRNA expression of treated cells (5 g/L 
holotransferrin) was expressed relative to untreated cells (0 g/L) at each time point. 18 µL 
of RT PCR products were electrophoresed on 1.5 % agarose gel.  
Data is presented as mean ± SEM (n=3).  
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Although Wt HepG2 and HepG2 (p) cells showed similar patterns of gene 

expression with holotransferrin overdose over time, some differences surfaced with 

respect to hepcidin and ferroportin gene expression (figures 4.18 A and B). In Wt 

HepG2 cells, where hepcidin expression was down-regulated, the HepG2 (p) cells 

showed an elevated response after 30 min which gradually subsided after 4 h to a 

level similar to that in Wt HepG2 cells. Likewise, ferroportin mRNA levels were 

found to be generally up-regulated compared to the Wt HepG2 cells. The rec-TfR1 

HepG2 cells exhibited a different response (figures 4.18 C and D). Notably, after 

30 min, the cells showed increased TfR1-IRE, hepcidin, HFE and ferroportin 

expression. It was observed again that HFE and hepcidin expression mirrored 
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Fig. 4.17  Effect of holotransferrin treatment on g ene expression in rec -TfR1 HepG2 cells  
Rec-TfR1 HepG2 (p) cells were treated with 5 g/L holotransferrin up to 4 h and their mRNA 
expression analysis was per legend of Fig. 4.7. mRNA expression of treated cells (5 g/L 
holotransferrin) was expressed relative to untreated cells (0 g/L) at each time point. 18 µL of RT 
PCR products were electrophoresed on 1-1.5 % agarose gel. Data is presented as mean ± SEM 
(n=3). * p<0.02, ** p<0.01 compared to untreated control at respective time points.  
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each other. At 2 h and 4 h, the rec-TfR1 HepG2 cells expressed HFE and 

ferroportin genes at higher levels than the Wt HepG2 cells at the same time points.  
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4.2.8 Iron overdose and hepcidin secretion by HepG2  cells  

Holotransferrin overdose to the HepG2 cells resulted in increased hepcidin 

peptide secretion (Fig. 4.19). As seen in the figure, Wt and rec-TfR1 HepG2 

cells increased hepcidin peptide secretion regardless of a prior 24 h period of 

serum deprivation. Fig. 4.19B shows that the Wt HepG2 cells significantly 

Fig. 4.18 Gene expression in HepG2 cells under holo transfe rrin overdose over time  
The figure shows changes in gene expression over time in 
A: Wt HepG2 cells; B : HepG2 (p) cells ; C and D : Rec-TfR1 HepG2 cells 
Data is presented as mean± SEM (n=3). * p<0.05, ** p<0.01, compared to time 0,  
# p<0.05 compared to 30 min.  
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increased hepcidin secretion in the first 24 h exposure to holotransferrin 

overdose followed by a plateau in Wt HepG2 and HepG2 (p) cells. Unlike this, 

the rec-TfR1 HepG2 cells showed a significant steady increase in hepcidin 

peptide levels up to 48 h.  
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Similarly, holotransferrin overdose for a short period of 4 h resulted in increased 

hepcidin peptide secretion (~2-fold) by all the HepG2 cell lines (Fig. 4.20). In the 

case of rec-TfR1 HepG2 cells, the released levels of hepcidin were significantly 

higher than the untreated cells as well as cells in the maintenance medium. In the 

maintenance medium, the Wt and rec-TfR1 HepG2 cells secreted constant levels 

of hepcidin, although the secretion was decreased in rec-TfR1 HepG2 cells at 4 h 

Fig. 4.19  Effect of prolonged iron overdose on hep cidin peptide secretion by HepG2 
cells   
Wt and rec-TfR1 HepG2 cells were serum starved for 24 h (time 0) and treated with 5 g/L 
holotransferrin for 48 h, as described in methods section 2.2.15. Cell-surface expression of 
TfR1 was studied at various time points after treatment as described in methods section 
2.2.20. Determination of the level of hepcidin excreted in the treatment medium was as 
explained in methods section 2.2.22. 
 
A and B: Hepcidin peptide levels in HepG2 cells after a prior period of serum deprivation 
and without any period of serum deprivation, respectively. 
10% FCS represent maintenance medium. Data is presented as mean ± SEM. 
* p<0.05 compared to 24 h, ** p<0.01 compared to time 0, # p<0.01 compared to 24 h. 

** # * * 

A B

** 
** 

** 

** 



 

132 

 

 

(p<0.01). Serum and iron deprivation (0 g/L) up to 4 h resulted in a significant  

1.7-fold decrease in hepcidin peptide levels by the Wt HepG2 cells compared to 0 

g/L treatment for 2 h. 
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4.3 Discussion  

To date, experiments conducted by different groups showed that hepcidin mRNA 

expression varied on exposure to iron overdose (Gehrke et al., 2003, Jacolot et al., 

2008, Nemeth et al., 2003, Rapisarda et al., 2010). The observed variability in 

results was primarily due to the lack of an appropriate model system that would 

mimic human physiological conditions. In the present study, while trying to 

establish a suitable cell model for iron-related studies, iron overdose experiments 

were designed with the intention of observing the same effect on hepcidin 

expression as observed in human and animal models (Lin et al., 2007, Nemeth et 

al., 2003, Pigeon et al., 2001).  

Fig. 4.20  Effect of iron overdose on hepcidin pept ide secretion by HepG2 cells  
HepG2 cells were treated with holotransferrin overdose for 4 h and the hepcidin peptide levels 
were measured as described in legend of Fig. 4.17. 10%FCS represent maintenance medium. 
Data is presented as mean ± SEM (n=3).* p 0.058 compared to 2 h 0 g/L, ** p<0.05 and  
*** p<0.02 compared to 0 g/L at respective time points.  # p<0.01 compared to 2 h in 
maintenance medium (10%FCS). 
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Hepcidin-25 has been shown to bind iron and it was proposed that iron may play 

an important role in regulating hepcidin expression (Farnaud et al., 2008). Based 

on this information, in the present study it was hypothesised that intracellular iron 

overload would cause a rise in hepcidin mRNA expression and that such an 

increase in HepG2 cells would not require the presence of other cell types. To 

check this hypothesis, mRNA expression of hepcidin and other iron-related genes 

were analysed upon iron exposure. Through this, the intention was to study how 

iron regulates hepcidin gene expression, which has not been previously 

understood. 

 

Before proceeding with iron supplementations, the proportion of holotransferrin in 

the transferrin treatment medium was determined by using a 6 M urea gel assay 

(section 2.2.13). Results showed that the transferrin preparation used for iron 

supplementation experiments possessed a high proportion (approximately 80%) of 

holotransferrin (Fig. 2.4). This confirmed that the cells would be surrounded by an 

iron-rich environment to enable intracellular iron overload. Holotransferrin 

concentrations ranging from 1g/L to 5 g/L were initially chosen for iron 

supplementations to cover the normal human physiological range of transferrin (2-4 

g/L) (Sternberg, 1986) and to create an iron-rich environment to facilitate 

intracellular iron overload.  

 

As seen in chapter 3 (Fig. 3.25) holotransferrin overdose to CHO TRVb1 cells did 

not lead to intracellular iron overload but increased the secretion of hepcidin 

peptide levels (Fig. 3.26). To investigate whether intracellular iron overload could 
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affect hepcidin gene expression, rec-TfR1 HepG2 cells were created such that they 

expressed an IRE-independent TfR1 mRNA to maximise iron uptake. Using these 

cells, hepcidin expression and several other genes and iron-related aspects were 

studied. 

 

4.3.1 Regulation of iron uptake by TfR1  

In order to confirm the expression of recombinant TfR1 on the cell membrane of 

rec-TfR1 HepG2 cells, the level of total TfR1 proteins on the cell-surfaces of Wt 

HepG2 and rec-TfR1 HepG2 cells were compared. As expected, the rec-TfR1 

HepG2 cells displayed higher basal levels of cell-surface TfR1 than Wt HepG2 

cells (figures. 4.1D and 4.2D).  

 

In the Wt HepG2 cells, serum deprivation followed by holotransferrin overdose 

resulted in an increased expression of TfR1 on the cell surface (Fig. 4.1E). Such a 

response reflected the cells’ necessity for increased iron uptake for survival and 

growth, particularly after a period of serum starvation. After 24 to 48 h the cells 

may have reached intracellular iron sufficiency and hence the plateau or a slight 

down-regulation of TfR1, as seen at the 48 h time point (Fig. 4.1E). The 

mechanism is supported by the results obtained when the Wt HepG2 cells were 

treated with holotransferrin overdose without any prior period of serum starvation; 

in this instance cell-surface TfR1 was found to be down-regulated (Fig. 4.2E). This 

was an expected response in which cellular iron sufficiency would lead to down-

regulation of TfR1 to prevent any further iron uptake. Both responses (i.e. up-

regulation of TfR1 following serum and iron deprivation and down regulation under 
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holotransferrin overdose), are expected and characteristic of the well characterised 

regulated mechanism in which iron uptake is regulated by the functional TfR1-IRE.  

 

In contrast, the rec-TfR1 HepG2 cells showed either constitutive or up-regulated 

levels of cell-surface TfR1 upon holotransferrin overdose (figures 4.1E and 4.2E). 

This was expected since the recombinant TfR1 construct in these cells was devoid 

of the IRE region. The result of such constitutive and high TfR1 expression on cell 

surface was that these cells showed higher basal levels of intracellular iron than 

the Wt HepG2 cells (figures. 4.4C and D). In addition, holotransferrin overdose led 

to increased iron uptake by the rec-TfR1 HepG2 cells, unlike the Wt HepG2 cells 

(figures 4.6C and 4.8C; 4.11D and F; 4.14D and F). Together, the results indicated 

that TfR1 in the rec-TfR1 HepG2 cells was insensitive to the increase in 

intracellular iron levels and therefore independent of the regulatory mechanisms 

exhibited by the IRE region.  

 

Correlating the TfR1 responses observed at protein levels to transcript levels, it 

was observed that the rec-TfR1 HepG2 cells showed higher basal levels of TfR1 

mRNA and increased TfR1 mRNA expression upon holotransferrin overdose, 

unlike the Wt HepG2 cells (figures. 4.5, 4.7A, 4.9A). Decreased TfR1 mRNA in the 

Wt HepG2 cells under holotransferrin treatments observed in this study is similar to 

that observed by Gehrke et al. (2003). The most striking difference between the Wt 

HepG2 and rec-TfR1 HepG2 cells was that 5 g/L holotransferrin treatment for 6 

and 24 h led to a down-regulation of TfR1 mRNA in Wt HepG2 cells (Fig.4.7A) and 

an up-regulation in the rec-TfR1 HepG2 cells (Fig. 4.9A). 
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Another observation was that, as expected, serum and iron deprivation increased 

TfR1 mRNA levels in both the Wt HepG2 (similar to that reported by Jacolot et al. 

(2008)) and the rec-TfR1 cells. However, the TfR1-IRE, which is a reflection of the 

endogenous TfR1, was up-regulated in Wt HepG2 cells but not to the same extent 

in rec-TfR1 HepG2 cells (figures. 4.7B and 4.9B). This could be explained as 

follows. Along with the IRE-independent TfR1 mRNA, the rec-TfR1 HepG2 cells 

possess the endogenous TfR1 with its regulatory IRE region. High cell-surface 

TfR1 (Fig. 4.2D) along with high basal intracellular iron levels in these cells 

prevented any major increase in the endogenous TfR1, i.e. TfR1-IRE mRNA. 

Hence it could be concluded that the up-regulation of TfR1 mRNA by the rec-TfR1 

HepG2 cells, under holotransferrin-free conditions (0 g/L) was more due to TfR1-

insensitivity towards the high intracellular iron levels rather than cellular necessity 

to uptake iron.  

 

Together these results highlighted the difference in iron uptake mechanisms 

between the Wt and rec-TfR1 HepG2 cells, eventually highlighting the significance 

of TfR1 in regulating iron uptake.  

 

4.3.2 Effect of intracellular iron overload on hepc idin expression  

Although intracellular iron levels in the Wt HepG2 cells were lower than rec-TfR1 

HepG2 cells and upon holotransferrin treatments did not show a significant 

increase in iron uptake (figures 4.4C and 4.6C), hepcidin mRNA was up-regulated 

at 6 h and 24 h in the Wt HepG2 cells (Fig. 4.7C). The approximately 2.9-fold 

increase in hepcidin mRNA upon 1 g/L holotransferrin treatment (24 h) by the Wt 
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HepG2 cells is similar to that reported by Lin et. al (2007) where 1 g/L 

holotransferrin treatment to mouse hepatocytes for 18-24 h led to a 2.5±0.6 fold 

increase in hepcidin mRNA compared to iron-free medium. Also, the 0.6-fold 

increase (24 h) and 0.8-fold decrease (48 h) in hepcidin mRNA upon 5 g/L 

holotransferrin treatment observed in this study is similar to that observed by 

Jacolot et al. (2008), where 24-48 h treatment with 4.5 g/L holotransferrin resulted 

in a 0.82-fold decrease in hepcidin mRNA. Likewise, an average 0.6-fold increase 

in hepcidin mRNA following 5 g/L holotransferrin treatment for 30 min, 2 and 4 h, 

was also observed in the Wt HepG2 cells (Fig.4.15).  

 

In comparison, although the rec-TfR1 HepG2 cells showed high basal intracellular 

iron levels and increased intracellular iron uptake upon holotransferrin treatments, 

the expected increase in hepcidin mRNA levels was not observed (Fig. 4.9C and 

4.17). Interestingly, 2 h of 5 g/L holotransferrin treatment caused a significant  

0.5-fold increase in hepcidin mRNA followed by significant increase in ferroportin 

mRNA expression after 2 h and 4 h (Fig. 4.17). This scenario proposes a two-stage 

response under intracellular iron overload. In the first stage hepcidin mRNA 

expression shows a subtle physiological increase (here 0.5-fold) in an attempt to 

regulate high extracellular iron levels. However, prolonged high extracellular iron 

exposure along with increased intracellular iron levels leads to an increase in 

ferroportin expression to remove the excess iron, rather than further increasing 

hepcidin mRNA levels in an attempt to regulate extracellular iron levels.  
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Thus, data suggests that under these experimental conditions a minor increase in 

intracellular iron levels led to an increase in hepcidin mRNA, as expected, but a 

major and further increase in intracellular iron levels did not lead to a further 

increase in hepcidin mRNA levels. The observed increase in hepcidin mRNA in the 

Wt HepG2 cells, where there was no significant increase in intracellular iron levels, 

suggests that hepcidin mRNA levels subtly increase only under physiologically 

relevant conditions (i.e. optimal intracellular iron levels along with minor increases 

in extracellular iron levels). 

 

To complement the hepcidin mRNA studies, hepcidin peptide levels secreted into 

the medium were measured. Unlike the mRNA levels, hepcidin peptides exhibited 

a different response to extracellular holotransferrin overdose. For the first time, 

through this study it was shown that hepcidin peptide levels significantly increased 

upon holotransferrin overdose (figures 4.19 and 4.20) and decreased upon iron 

deprivation in a cell culture system (Fig. 4.21), as observed in human and animal 

models (Lin et al., 2007, Nemeth et al., 2003, Pigeon et al., 2001).   
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Fig. 4.21  Hepcidin secretion by HepG2 cells 
under iron deprivation 
Effect of serum and iron deprivation (0 g/L) on 
hepcidin peptide secretion over time is shown.  
Data is presented as mean ± SEM (n=3) 
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Although holotransferrin overdose triggered hepcidin peptide production, it was 

observed that FCS had a better capacity to induce hepcidin peptide secretion than 

holotransferrin overdose. As shown in Fig. 4.22, compared to the maintenance 

medium, 17-fold higher iron levels could only lead to a 1.6-fold increase in hepcidin 

peptide production. Results reported by other groups showed that serum factors in 

the FCS played a significant role in triggering hepcidin transcription (Dzikaite et al., 

2006). In the present study, the influence of FCS was observed at peptide levels as 

well. This suggests that hepcidin peptide secretion is not only influenced by 

intracellular or extracellular iron status, but also by a combination of various factors.   
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4.3.3 Influence of holotransferrin concentration an d exposure-time on 

hepcidin  

In this study it was observed that an increase in hepcidin transcription in Wt HepG2 

cells was not directly proportional to an increase in extracellular holotransferrin 

concentration (Fig. 4.23). A similar response has been reported where low dosage 

of Fe-NTA (1- 3 µM) induced hepcidin transcription and high dosage of 65 µM Fe-

NTA resulted in its down-regulation below basal levels (Fein et al., 2007). Since the 

purpose of hepcidin is to regulate circulating iron levels, such a response is an 

Fig. 4.22  Hepcidin induction by holotransferrin an d 
maintenance medium 
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attempt by the cell to regulate high extracellular iron levels. Thus, Fig. 4.23 shows 

the influence of increasing holotransferrin concentration on hepcidin mRNA levels.  
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Where previous studies showed that recombinant hepcidin is secreted in the 

medium within 1 h of its synthesis (Wallace et al., 2006), in this study, hepcidin 

peptides showed an immediate response to holotransferrin overdose. Both, the 

HepG2 and the CHO TRVb1 cell lines secreted hepcidin into the medium within 30 

minutes of increased iron exposure (figures 3.15 and 4.20). This fast response is 

not surprising as hepcidin is a hormone and its secretion in the extracellular 

environment should be a rapid process to be able to exhibit a quick response. 

There could be two possible scenarios mediating this quick response. Firstly, 

transcription of hepcidin gene could occur even earlier than 30 min. A quicker 

generation of preprohepcidin at the mRNA level is possible because it is only 430 

bases long. Secondly, hepcidin could be quickly secreted from the proposed 

prohepcidin pools stored within the cells (Farnaud, personal communication). 

Since the Wt and rec-TfR1 HepG2 cells showed similar increases in hepcidin 

peptide secretion on iron overdose, both at shorter and longer exposure time to 

Fig.  4.23  Hepcidin mRNA response towards increasing 
holotransferrin concentrations  
Pattern of hepcidin mRNA levels exhibited by Wt HepG2 cells is shown. 
Data is presented as mean ± SEM (n=2) 
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holotransferrin overdose (figures 4.19 and 4.20), where their hepcidin mRNA levels 

were variable (figures 4.7C and 4.9C), secretion of hepcidin from prohepcidin pools 

is probable. 

 

The response of hepcidin was also seen to be influenced by exposure time to 

holotransferrin. Fig. 4.24 shows the effect of holotransferrin overdose on hepcidin 

secretion over time.  
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Both the recombinant cell types i.e., the CHO TRVb1 cells and the rec-TfR1 

HepG2 cells showed comparatively low hepcidin secretion at 24 h and an increase 

again at 48 h. This drop followed by an increase predicts the same pattern of 

hepcidin response by the Wt HepG2 cells. Accordingly, the drop in hepcidin levels 

in the cells of Wt origin as seen at 48 h may be followed by an increase at 72 h. 

Although the cells of Wt origin (i.e. Wt HepG2 and HepG2 (p) cells) showed similar 

pattern of hepcidin secretion, it was different from that of the recombinant cells (i.e. 

rec-TfR1 HepG2 and CHO TRVb1 cells). The reason for these differences in 

Fig. 4.24  Hepcidin peptide release under holotrans ferrin overdose over time  
Effect of 5 g/L holotransferrin on hepcidin peptide secretion over time is shown. Data is 
presented as mean ± SEM (n=3) 
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hepcidin responses could be attributed to TfR1 in these cells; the  CHO TRVb1 

possess over-expressed human TfR1 and the rec-TfR1 HepG2 cells possess over-

expressed TfR1 which is devoid of the IRE-region, unlike the Wt and HepG2 (p) 

cells. These results highlight the role of TfR1 in hepcidin induction, probably via the 

proposed HFE-TfR1 dissociation mechanism (Schmidt et al., 2008).   

 

4.3.4 Relationship between HFE and hepcidin  

The effect of TfR1-regulated iron uptake on hepcidin expression suggests a 

probable link between HFE and hepcidin expression. It has been shown that HFE 

influences hepcidin expression. The absence of HFE abolishes hepcidin mRNA up-

regulation in the HepG2 cells (Gao et al., 2009). Similarly in the case of HFE-

related haemochromatosis, the absence of HFE on the cell surface is linked to 

reduced hepcidin mRNA (Bridle et al., 2003). Since both hepcidin and HFE are 

predominantly expressed in hepatocytes (Holmstrom et al., 2003, Zhang et al., 

2004) an inter-dependence between an up-regulated hepcidin response and the 

level of HFE expression can be envisaged.   

 

In the present study the rec-TfR1 HepG2 system can be described as being  

“haemochromatotic” since it is characterised by high intracellular iron content 

which is the case in haemochromatosis, however, with a major difference. 

Haemochromatosis is characterised by low levels of circulating hepcidin which is 

suggested to be linked with a mutated HFE which does not reach the cell surface 

(Feder et al., 1996, Bridle et al., 2003)  and therefore cannot induce hepcidin  
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synthesis. In contrast the rec-TfR1 HepG2 cells showed increased hepcidin 

peptide production on iron treatment (figures. 4.19 and 4. 20), possibly due to the 

presence of functional HFE on its cell-surface.  

 

Additionally, in this study, the expression of hepcidin and HFE genes mirrored 

each other at the mRNA level. Hepcidin mRNA expression increased only in the 

presence of stable or increased HFE mRNA expression (figures. 4.12C and 4.18C). 

Since hepcidin regulates systemic iron levels and HFE is necessary to exhibit a 

hepcidin response, it could be concluded that HFE contributes to the regulation of 

extracellular iron levels via hepcidin. Since a relation between hepcidin and HFE 

expression at mRNA and protein level is shown to exist, it is important to fully 

understand which one of the two, HFE and hepcidin, regulated the other. This 

issue has been addressed in the following chapter.  

 

Like hepcidin, the expression of HFE was also observed to be dependent on the 

duration of exposure to holotransferrin. Cell exposure to high holotransferrin levels 

for a shorter time span did not lead to any significant changes in HFE expression 

(figures 4.15-4.17). However, notable changes were observed at longer exposure 

times (figures. 4.7E and F; 4.9E and F). Correlating this to hepcidin peptide levels, 

hepcidin was induced regardless of the differences in HFE gene expression 

(figures. 4.19 and 4.20). Based on the proposed mechanism of hepcidin induction 

by Schmidt et al. (2008), it could be explained that high dosage of iron for a shorter 

time span (i.e. up to 4 h) led to hepcidin induction due to cell-surface dissociation 

of TfR1 from the HFE allowing free HFE to then bind to TfR2 to induce hepcidin 
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expression. However, when the cells were exposed for a long time (e.g. 6 to 24 h), 

the mechanism of cell-surface dissociation of HFE from TfR1 may not be sufficient 

to deal with increased extracellular iron. Hence notable changes in HFE mRNA 

expression were observed at the later time points. Thus, it could be concluded that 

the response of HFE to induce hepcidin was dependent on the time of iron-

exposure. 

 

4.3.5 Effect of intracellular and extracellular iro n levels on HFE 

It has been shown that in mouse hepatocytes the function of HFE is to bind to TfR1 

and regulate iron uptake by the cells (Chua et al., 2008). In the present study it 

was observed that increasing iron overdose to Wt HepG2 cells led to increased 

HFE mRNA expression, particularly at 6 h (Fig. 4.25A). 
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This is an expected response when extracellular iron levels are high and the cells’ 

attempt to control iron uptake via the HFE-TfR1 association, as proposed (Fleming 

and Britton, 2006). Since the Wt HepG2 cells did not show intracellular iron 

overload, the increase in HFE mRNA could be attributed exclusively to the 

Fig. 4.25  HFE sense iron levels  
A: HFE in Wt HepG2 cells sense extracellular iron levels 
B: HFE in rec-TfR1 HepG2 cells sense intracellular iron levels under basal conditions.  

 A  B 
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increasing extracellular holotransferrin concentrations, suggesting that the HFE is 

sensitive to extracellular iron levels. On the other hand, the similarity in patterns of 

intracellular iron content, ferroportin and HFE gene expressions in rec-TfR1 HepG2 

cells when in maintenance medium possibly suggests that the HFE participated in 

sensing intracellular iron levels (Fig. 4.25B).  

 

However, the existence of high intracellular iron levels in the rec-TfR1 HepG2 cells 

implies that the expected regulatory function of HFE via HFE-TfR1 association 

could not be executed due to the over-expression of TfR1 on the cell surface of 

these cells. Probably a certain ratio of HFE and TfR1 on the cell surface is required 

for the physiological regulation of iron uptake by the cells, which would suggest 

that in the rec-TfR1 HepG2 cells the expression of HFE was not sufficient to 

interact with the high number of TfR1 receptors on the cell surface and perform its 

suggested function of limiting iron uptake. The disturbance in this normal ratio in 

rec-TfR1 HepG2 cells led to uncontrolled iron uptake by these cells. 

 

Unlike the Wt HepG2 cells, the HFE expression in rec-TfR1 HepG2 cells 

decreased with increasing holotransferrin concentration at the 24 h time point (Fig. 

4.26). This decrease in HFE expression was similar to the decrease inTfR1-IRE 

which sensed the increase in intracellular iron levels and therefore decreased its 

mRNA expression, as expected. Since no IREs have been identified on HFE as yet, 

it is likely that HFE sensed iron status via TfR1. This confirms a correlation 

between the HFE and TfR1 as previously shown where HFE expression in HepG2 
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cells which were devoid of HFE led to an increase in TfR1 mRNA (Gao et al., 

2008). 
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If the proposition of iron sensing via HFE is correct, then the presence of an ‘iron 

insensitive’ TfR1 in the rec-Tfr1 HepG2 cells may have informed the HFE 

incorrectly of the intracellular iron status. Consequently, instead of increasing HFE 

expression to control iron uptake, the cells decreased HFE levels upon 

holotransferrin overdose despite the high intracellular iron content. This resulted in 

an uncontrolled iron uptake by the recombinant TfR1 on the cell surface. Thus this 

suggests that HFE controls and is controlled by intracellular iron levels via the TfR1. 

Essentially, when HFE is absent on the cell surface as in case of 

haemochromatosis, or present in lesser amounts compared to TfR1 as in the rec-

TfR1 HepG2 cells, regulated iron uptake by cells is abolished resulting in 

intracellular iron overload and prevention of increased hepcidin induction.   

 

 

 

Fig. 4.26  Iron sensing by HFE in rec -TfR1 HepG2 
cells under increasing holotransferrin concentratio ns 
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4.3.6 HepG2 cells have an iron holding threshold  

HepG2 cells belong to the cell lineage of hepatocytes which are known for their 

iron storing function. Hence these cells should be capable of accommodating large 

amounts of iron. However, increased ferroportin expression in the rec-TfR1 HepG2 

cells (figures. 4.12D, 4.17, 4.18D) showed that the cells were losing intracellular 

iron. Such up-regulation in hepatic ferroportin mRNA expression was also 

observed in haemochromatotic patients where intracellular iron levels were high 

(Bridle et al., 2003). This implies that the iron-storing cells can hold a large amount 

of iron but only up to a certain threshold and perhaps only under a normal 

physiological environment where the levels of iron are ‘manageable’ by the cells. 

Once the cells reach a certain iron-holding threshold, ferroportin expression would 

be raised to remove the excess intracellular iron to mediate intracellular iron 

homeostasis.  

 

In conclusion, it is certain that the homeostasis of extracellular/circulating iron 

levels is a complex process and it would be incorrect to state that hepcidin alone is 

the iron homeostasis regulator. As seen in this study, it involves an interaction 

between the key iron-related genes studied here and possibly may involve many 

more iron-related genes. Hepcidin would be synthesised, secreted and execute its 

function of maintaining iron homeostasis only if all interactions between genes and 

proteins function optimally. 
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Chapter 5 

Significance of preprohepcidin derivatives 
 
5.1 Introduction  
 
HFE-associated haemochromatotic patients as well as iron overloaded HFE -/-  

mice  showed decreased levels of hepcidin mRNA (Bridle et al., 2003). Thus it has 

been observed that HFE influences hepcidin synthesis. Parallel to this, in the 

current study the transcription of hepcidin and HFE genes mirrored each other 

where increased hepcidin mRNA levels accompanied increased HFE mRNA levels 

(chapter 4). Whether the HFE informed hepcidin synthesis or vice versa and 

whether this information was signalled by a direct physical interaction between 

HFE and derivatives of preprohepcidin remain to be elucidated.  

 

There are several aspects which support this putative interaction. Firstly, although 

HFE it is a pseudo major histocompatibility complex (MHC), it has been proposed 

that the binding groove of HFE is too narrow to accommodate a peptide for typical 

antigen presentation like the MHC class I molecule (Lebron et al., 1998).  

 
Fig. 5.1 Crystal structure of cytoplasmic region of  HFE protein  
Alpha 1 and alpha 2 regions of the HFE protein as well as the alpha 
3 region which binds to beta-2 microglobulin protein are displayed. 
Structure adapted from Lebron et al. (1998). 

Beta-2 microglobulin 
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However, unpublished results (Moss, personal communication) suggest that the 

groove is large enough to accommodate a peptide. Additionally, the structural 

similarity between the HFE and MHC class I molecule (Lebron et al., 1998) support 

this proposed peptide binding. Secondly, the HFE and MHC I genes are located on 

the same chromosome (6p21.3 in humans) quite proximal to each other. Genes 

located on the same chromosome may belong to the same multigene family which 

by definition, are “a set of genes descended by duplication and variation from some 

ancestral gene” (King and Stansfield., 1990). This implies that the genes on the 

same chromosome, here the HFE and MHC I, may have a similar or the same 

function (i.e. peptide binding and its presentation on cell-surface). On the other 

hand, the fate of the 35-mer pro-region generated as a result of furin cleavage of 

prohepcidin is unknown.  

 
5.1.1 Aims and objectives 

Aim: The aim was to understand the significance of preprohepcidin derivatives. 

The pro-region of preprohepcidin may bear functional significance. Like the MHC 

class I molecule, binding of a peptide, possibly a part of the pro-region, may 

stimulate the HFE to traverse across the endoplasmic reticulum and present the 

peptide to the cell surface. The presence of a nuclear localisation signal within the 

pro-region suggests a functional role in the nucleus.  

Objectives: 

1. To understand the interaction between preprohepcidin derivatives and HFE 

in silico. 

2. To perform localisation studies with the preprohepcidin derivative in Wt 

HepG2 cells. 
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5.2 Results  

5.2.1 Identification of hydrophilic regions in prep rohepcidin 

The hydrophilic regions in a protein are usually exposed on the surface of the 

protein to enable interactions with surrounding proteins whereas the hydrophobic 

amino acids are usually buried into the interior of a protein. In order to identify the 

region of hydrophilicity within the preprohepcidin peptide sequence, a Hopp-Woods 

hydropathy plot was created. As per the scaling pattern of the plot, for every amino 

acid, any value higher than 0 is considered as hydrophilic. In this case the C-

terminus of the pro-region was identified as the most hydrophilic (Fig. 5.2). Hence, 

this region is most likely to be exposed on the outer surface of the peptide and is 

thus the most potential protein-binding region within preprohepcidin.  

 

 

 

 

 

5.2.2 Putative binding of preprohepcidin derivative s to HFE 

Since the HFE bears structural similarity to MHC I molecule (referred as human 

leucocyte antigen, HLA in humans) (Feder et al., 1996), it was hypothesised that 

peptide binding to the HLA molecule should be similar to peptide binding to the 

MALSSQIWAACLLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASW  MPMFQRRRRR DTHFPICIFCCGCCHRSKCGMCCKT  

<---Signal peptide ---- > ����--------------Pro-region -35 mer  -----------���� ����---hepcidin -25 mer---���� 

<-------------------------------Prohepcid in-60 mer----------------------------------->  

Fig. 5.2  Hydrophilicity scal e for human preprohepcidin  
A Hopp-Woods scale identifies the most hydrophilic regions in preprohepcidin; created at ‘Molecular 
toolkit’ (available at http://www.vivo.colostate.edu/molkit/hydropathy/index.html).  
 

Most hydrophilic region  
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HFE molecule. Hence, binding affinities of different serotypes of HLA molecules to 

different combinations of nonamers from preprohepcidin was assessed through 

bioinformatics software HLA_BIND at ExPASy. Only those interactions with scores 

of 100 or above 100 were plotted in the graph (Fig. 5.3). The figure shows the 

regions within preprohepcidin which may interact with an HLA and hence the HFE. 

Along with the test interactions, a positive control (i.e. a concatenated amino acid 

sequence suggested by the software), was also used which gave the highest 

binding score of 30,000 (data not shown for brevity).  

 
 

 

 

 

 

 

 

 

 

 

 

 

The data shows that the nonamer RRRRRDTHF scored the highest binding score 

of 3,000 with the HLA molecule B_2705. This nonamer is located at the C- terminal 

region of pro-hepcidin and N-terminal region of bioactive hepcidin-25.  

Colour legends 
for nonamers: 
LLLLLLASL     
LASLTSGSV   
VFPQQTGQL  
AELQPQDRA  
AGARASWMP   
WMPMFQRRR  
RRRRRDTHF  
HRSKCGMCC  
SKCGMCCKT  

 

Fig. 5.3 Graphical representation of binding scores of HLA to different 
combinations of preprohepcidin nonamers 
Bioinformatics’ software HLA_BIND at ExPASy (available at 
http://bimas.dcrt.nih.gov/molbio/hla_bind) was used for prediction of MHC class I 
(HLA) binding to preprohepcidin protein derivatives. All triangles represent scores 
achieved by a particular nonamer of preprohepcidin with a particular HLA serotype.  

RRRRRDTHF 
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This is a part of the most hydrophilic region within preprohepcidin, as identified 

previously in Fig. 5.2. Other scores (represented by dark blue triangle) also 

suggest that the pro-region has a high possibility of interacting with the HLA and 

hence the HFE. In comparison to the pro-region, the regions in the signal peptide 

and bioactive hepcidin show the least likelihood of binding to HLA, as per the data 

extrapolated from the HLA_BIND software.  

 
5.2.3 Conservation of regions of potential interact ion 

Since the α-1 and α-2 regions in the HFE molecule form a groove within which the 

proposed putative peptide binding may occur, conservation of these regions in 

different species was checked (Fig. 5.4). As seen in the alignment, the α -1 and α - 

2 regions are highly conserved amongst species, which strengthens the possibility 

of these regions being functionally significant and involved in peptide binding. 

HFE_HUMAN       ----MGPRAR-PALLLLMLLQTAVLQGRLLRSHSL HYLFMGASEQDLGLSLFEALGYVDD 55 
HFE_MOUSE       MSLSAGLPVR-PLLLLLLLLWSVAPQALPPRSHSLRYLFMGASEPDLGLPLFEARGYVDD 59 
HFE_RAT         MDRSAGLPVRLLLLLLLLLLWSVAPQALRPGSHSL RYLFMGASKPDLGLPFFEALGYVDD 60 
HFE_Rhino       ----MGPRAR-PALFFLILLRTVAAQGRPPRSHSL RYLFMGASERDHGLPLFEALGYVDD 55 
HFE_Chimp       ----MGPRAR-PALLLLMLLQTAVLQGRLLRSHSL HYLFMGASEQDLGLSLFEALGYVDD 55 
                     *  .*   *::*:** :.. *.    **** :*******: * **.:*** ***** 
 
HFE_HUMAN       QLFVFYDHESRRVEPRTPWVSSRISSQMWLQLSQSLKGWDHMFTVDFWTIMENHNHSK-- 113 
HFE_MOUSE       QLFVSYNHESRRAEPRAPWILEQTSSQLWLHLSQSLKGWDYMFIVDFWTIMGNYNHSKVT 119 
HFE_RAT         QLFVSYNHESRRAEPRAPWILGQTSSQLWLQLSQSLKGWDYMFIVDFWTIMGNYNHSKVT 120 
HFE_Rhino       ELFVAYNHESRRAESRAQWVLGEAHSQLWLQLSQSLKGWDHMFIVDFWTIMDNHNHSK-- 113 
HFE_Chimp       QLFVFYDHESRRVEPRTPWVSSRISSQMWLQLSQSLKGWDHMFTVDFWTIMENHNHSK-- 113 
                :*** *:*****.*.*: *:  .  **:**:**** *****:** ******* *:****   
 
HFE_HUMAN       ------ESHTLQVILGCEMQEDNSTEGYWKYGYDG QDHLEFCPDTLDWRAAEPRAWPTKL 167 
HFE_MOUSE       KLGVVSESHILQVVLGCEVHEDNSTSGFWRYGYDGQDHLEFCPKTLNWSAAEPGAWATKV 179 
HFE_RAT         KLRVVPESHILQVILGCEVHEDNSTSGFWKYGYDG QDHLEFCPKTLNWSAAEPRAWATKM 180 
HFE_Rhino       ------ESHTLQVILGCEVQEDNSTRGFWKYGYDG QDHLEFCPETLDWRAAESRALTTKL 167 
HFE_Chimp       ------ESHTLQVILGCEMQEDNSTEGYWKYGYDG QDHLEFCPDTLDWRAAEPRAWPTKL 167 
                      *** ***:****::***** *:*:***** ********.**:* ***. * .**: 
 
HFE_HUMAN       EWERHKIRARQNRAYLERDCPAQLQQLLELGRGVLDQQVPPLVKVTHHVTSSV------E 348 
HFE_MOUSE       EWDEHKIRAKQNRDYLEKDCPEQLKRLLELGRGVLGQQVPTLVKVTRHWASTG------E 359 
HFE_RAT         EWEEHRIRARQSRDYLQRDCPQQLKQVLELQRGVLGQQVPTLVKVTRHWASTG------E 360 
HFE_Rhino       EWEVNKIRAKQNRAYLERDCPEQLQWLLELGRGVLDQQVPPLVKVTHHVASAV------E 348 
HFE_Chimp       EWERHKIRARQNRAYLERDCPAQLQQLLELGRGVLDQQVPPLVKVTHHVTSSV------E 348 
                **: ::***:*.* **::*** **: :*** **** .****.*****:* :*:       * 
 
 

 
Fig. 5.4  Conservation of alpha regions in the HFE protein in  various species  
This protein multiple sequence alignment was created using the tool ClustalW2 (available 
at http://www.ebi.ac.uk/Tools/msa/clustalw2/). The alignment highlights regions of 
conservation in the HFE protein sequence amongst different species. 
Key to Fig :  
• α-1  and α-2 regions in the HFE protein  
• ---- represents amino acids and * represents conserved amino acid between species. 
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Likewise, a clustalx protein multiple sequence alignment of preprohepcidin which 

involved a variety of species showed high conservation of the leucines and 

arginines (Fig. 5.5). The leucines are a part of the signal peptide of preprohepcidin 

and the arginines are a part of the pro-region (boxed). This is the region most 

hydrophilic and possibly antigenic as shown previously in Fig. 5.2 and Fig. 5.3. 

Together, it could be concluded that there is conservation of the proposed regions 

of interaction between the HFE and pro-region of preprohepcidin (Fig. 5.4 and Fig. 

5.5). 

 
 

 

 

5.2.4 Nuclear localisation signals in preprohepcidi n 

As seen in Fig. 5.5, the C-terminal region of prohepcidin encompasses repeats of 

arginines residues, typical to a nuclear localisation signal (Dingwall and Laskey, 

1986). The conservation of this region in different species suggested that it may be 

biologically significant. To ascertain this, the software programme cNLS mapper 

(Kosugi et al., 2008, Kosugi et al., 2009a) was used to assess the presence of 

nuclear localisation within the preprohepcidin sequence (Fig. 5.6).  As per the 

programme, a score of 1-2 indicates localisation of the protein in the cytoplasm, a 

score of 4-5 indicates location of the protein in both the cytoplasm and the nucleus 

Fig. 5.5  Conservation of a mino acids within the pro -region of preprohepcidin   
The alignment was created by using clustalx, a windows interface for ClustalW multiple 
sequence alignments. It highlights the conservation of arginine residues within the 
preprohepcidin protein sequence in different species. * represents conserved amino acid 
between species. 

Mouse  
Rat 
Chimpanzee 
Human 
Monkey 
Cow 
Pig 
Dog 
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whereas a score of 8-10 suggests location of the protein exclusively in the nucleus. 

Since the protein Yen1 from the yeast Saccharomyces cerevisiae has been shown 

to possess a nuclear localisation signal (Kosugi et al., 2009b), this protein was 

used as a positive control, as seen below. 

 

 

 

 

   

 

 

As seen in the Fig. 5.6, the positive control achieved a high score of 9, as 

expected, whereas the test sequence of human preprohepcidin scored 5.2. 

Hepcidin-25 would be found in the cytoplasm while it is being secreted. Since this 

region was also considered by the programme while assigning the score, the score 

of 5.2 is expected. Additionally, bioinformatics revealed homologies between the 

pro-region and some members of the the Krüppel associated box (KRAB) of Zinc  

Finger Protein (ZFP) family, as shown in Fig. 5.7.  

Predicted NLSs in  query sequence  

MGVSQIWEFLKPYLQDSRIPLRKFVIDFNKSQKRAPRIAIDAYGWLFECG 50  
FIQNIDISARSRSRSRSPTRSPRDSDIDSSQEYYGSRSYTTTGKAVINFI 100 
SRLKELLSLNVEFLLVFDGVMKPSFKRKFNHEQNATTCDDEKEYYSSWEQ 150 
HVKNHEVYGNCKGLLAPSDPEFISLVRKLLDLMNISYVIACGEGEAQCVW 200 
LQVSGAVDFILSNDSDTLVFGGEKILKNYSKFYDDFGPSSITSHSPSRHH 250 
DSKESFVTVIDLPKINKVAGKKFDRLSLLFFSVLLGADYNRGVKGLGKNK 300 
SLQLAQCEDPNFSMEFYDIFKDFNLEDLTSESLRKSRYRLFQKRLYLYCK 350 
DHSVELFGRNYPVLLNQGSFEGWPSTVAIMHYFHPIVQPYFDEEVLSDKY 400 
INMAGNGHYRNLNFNELKYFLQSLNLPQISSFDKWFHDSMHEMFLLREFL 450 
SIDESDNIGKGNMRITEEKIMNIDGGKFQIPCFKIRYTTFLPNIPISSQS 500 
PLKRSNSPSRSKSPTRRQMDIMEHPNSLWLPKYLIPQSHPLVIQYYETQQ 550 
LIQKEKEKKGKKSNKSRLPQKNNLDEFLRKHTSPIKSIGKVGESRKEILE 600 
PVRKRLFVDTDEDTSLEEIPAPTRLTTVDEHSDNDDDSLIFVDEITNSQS 650 
VLDSSPGKRIRDLTQDEQVDVWKDVIEISPIKKSRTTNAEKNPPESGLKS 700 
RSSITINARLQGTKMLPPNLTAPRLEREHSSVLDQLVTDAQDTVDRFVAC 750 
DSDSSSTIE                                          759  

Predicted monopartite NLS  

Pos.  Sequence Score 

123  PSFKRKFNHE 9 

Predicted bipartite NLS 

Pos.  Sequence  Score  

53  
FQRRRRRDTHFPICIF
CCGCCHRSKCGMC 

5.2  

Predicted NLSs in query sequence 

MALSSQIWAACLLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWM 50 
PMFQRRRRRDTHFPICIFCCGCCHRSKCGMCCKT                 84  

A 

D 
C 

B 

Fig. 5.6  Nuclear localisation signal in preprohepcidin  
In order to identify the nuclear localisation signal within preprohepcidin peptide the cNLS 
Mapper (available at http//nls-mapper.iab.keio.ac.jp/), was used.  
A and B : Positive control, protein Yen1 from Saccharomyces cerevisiae and its score. 
C and D: Test sequence preprohepcidin peptide and its score. 
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1 .[ 9]. AA.[4]. LDPAQSNLY.[1]. DVMLENYCN.[3]. MG.[1]. QAP.[2]. DMI SKL.[5]. PWL 59
4 .[11]. RE.[4]. LDPGQRALY.[1]. EVMLENHSS.[3]. LA.[2]. LVF.[2]. ELI SRL.[5]. PWV 65
6 .[11]. QE.[4]. LQPAQRDLY.[1]. CVMLENYGH.[3]. LG.[1]. SIS.[2]. DVVSLL.[5]. PWL 66

.      18 . [11] QT [5] . LQPQDRAGA. [1] ASWMPMFQR [4]
 

 

 

5.2.5 Localisation studies of pro-peptide of prepro hepcidin 

In order to assess whether the nuclear localisation signal in prohepcidin identified 

in silco (Fig. 5.6) performed a biological role in vitro, localisation studies were 

performed by transfecting Wt HepG2 cells with a recombinant pEGFPN1 plasmid  

containing the pre-pro region, as explained in the following sections. 

Fig. 5.7  Similarity betwee n KRAB and pro -region of preprohepcidin  
An alignment of some human zinc-finger proteins was created using the NCBI protein 
blastp followed by conserved domain search. A section of the pro-region showed 
similarity with the KRAB of ZFP. NCBI accessions of human ZFP 37,7 and 140 are  
gi1136151, gi141685 and gi1731416, respectively. 

Human ZFP -
Human ZFP -
Human ZFP -
Pro -region  
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5.2.5.1 Screening of plasmid constructs 

Firstly, the four pEGFPN1 recombinant plasmid constructs (referred to as P1 to 

P4), each possessing a unique derivative of preprohepcidin with either a GFP or 

V5 tag, required identification of the derivative and the tag in each construct. To 

achieve this, the plasmid constructs were screened via restriction enzyme 

digestion, as shown in Fig. 5.8. 

 

                                                                           

                                                    

 

 

 

 

 

 

 

 

As seen in the Fig. 5.8, the expected size products were observed for the plasmids 

P3 and P4, but not for plasmids P1 and P2. Thus, to confirm the identity of the 

Fig. 5.8  Restriction digests of pEGFPN1 plasmid constructs  
Recombinant plasmids P1, P2, P3 and P4 containing unknown preprohepcidin derivatives 
were transformed in E.Coli XL-1 blue competent cells, extracted, purified, and subjected to 
digestion with restriction enzymes as explained in methods section 2.2.23. The digested 
products were electrophoresed on 2 % agarose gels. 
 
A: Restriction digests of plasmids P2 (lanes 1-3) and P3 (lanes 4-6)  
Lane 1= uncut plasmid; expected product size ~4956 bp 
Lane 2= plasmid cut with BamHI; expected product size ~4956 bp 
Lane 3= plasmid cut with BamHI and Hind III; expected product size~ 4704 bp and 252 bp 
Lane 4= uncut plasmid; expected product size ~4956 bp 
Lane 5= plasmid cut with BamHI; expected product size ~4956 bp 
Lane 6= plasmid cut with BamHI and Hind III; expected product size ~ 4779 bp and 177 bp 
 
B: Restriction digests of plasmids P1 (lanes 1-3) and P4 (lanes 4-6) 
Lane 1= uncut plasmid; expected product size ~4956 bp 
Lane 2= plasmid cut with BamHI; expected product size ~4956 bp 
Lane 3= plasmid cut with BamHI and Hind III; expected product size ~ 4779 bp and 177 bp 
Lane 4= uncut plasmid; expected product size ~4956 bp 
Lane 5= plasmid cut with BamHI; expected product size ~4956 bp 
Lane 6= plasmid cut with BamHI and Hind III; expected product size~ 4704 bp and 252 bp  

 1    2    3                        4    5    6     1    2    3     4   5   6      

200 

100 

300 

3000  bp 

200 

400 

1500 bp 

A B 
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constructs in all the plasmids via sequencing, vector primers (pEGFPN primers) 

were designed as shown below.  

                  5’GGTGGGAGGTCTATATAAGCAGAG >>> 3’ 
pEGFPN1           AC GGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTA 600 
pEGFPN2           ACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTA 600 
                  ********************************* *************************** 
 
                   
                                                      3’ <<< TGTGGAGGGGGACTTGGA 5’ 
pEGFPN1           -----ACATTTGTAGAGGTTTTACTTGCTTTAA AAAACCTCCCACACCTCCCCCTGAACC 1488 
pEGFPN2           -----ACATTTGTAGAGGTTTTACTTGCTTTAA AAAACCTCCCACACCTCCCCCTGAACC 2098 
                       **************************** *************************** 

Each purified plasmid construct was amplified with the designed pEGFPN primers 

and the amplicons were electrophoresed on a 1 % agarose gel, as shown in Fig. 

5.9 and sent for sequencing to confirm its identity. 

 

.  

 
 

 

 

 

The characterised sequences of the recombinant plasmids were translated to 

protein sequences and the preprohepcidin derivative and the tag in each plasmid 

construct was identified as shown in Table. 5.1. Following identification, the aim 

was to perform localisation studies using all the constructs, commencing from the 

plasmid containing the pre-pro construct.   

Fig. 5.9 Amplicons of pEGFPN -
preprohepcidin constructs with 
designed vector primers 
Each recombinant plasmid was amplified 
with the designed vector primers as 
described in methods section 2.2.8. 
Following this, each product was gel 
purified and sent for sequencing as 
described in methods section 2.2.12.  

 P1    P2    P3    P4    

3000 bp 

500 bp 

100 bp 

300 bp 
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Plasmid 
construct  

Partial section of translated nucleotide sequence  Conclusion  

P1 5'3' Frame 3 
S A S A T G L R S R A Q A S N S A V D G T A G P G S  Met  G 
K P I P N P L L G L D S T S V F P Q Q T G Q L A E L  Q P Q 
D R A G A R A S W Met  P Met  F Q R R R R R D Stop  S R S 
Stop  S A I P H 

 

Pro region of 
preprohepcidin 
with V5 tag at 
N-terminus.  
 

P2 5'3' Frame 1 
X X X X R X I R Stop  R Y R T Q I S S S S F E F K L Met  A L 
S S Q I W A A C L L L L L L L A S L T S G S V F P Q  Q T G 
Q L A E L Q P Q D R A G A R A S W Met  P Met  F Q R R R R R 
D T H F P I C I F C C G C C H R S K C G Met  C C K T G K P 
I P N P L L G L D S T  Stop  S R S Stop  S A I P H L Stop  R F 
Y L L Stop  K T S H X X X X E P  

 

Preprohepcidin 
with V5 tag at 
C-terminus 
 

P3 D  V  D  R  S  A  P  D  S  D  L  E  L  K  L  M  A  L  S  S  
Q  I  W  A  A  C  L  L  L  L  L  L  L  A  S  L  T  S  G  S  
V  F  P  Q  Q  T  G  Q  L  A  E  L  Q  P  Q  D  R  A  G  A  
R  A  S  W  M  P  M  F  Q  R  R  R  R  R D  P  P  V   A  T  
M  V  S  K  G  E  E  L  F  T  G  V  V  P  I  L  V  E  L  D  
G  D  V  N  G  H  K  F  S  V  S  G  E  G  E  G  D  A  T  Y  
G  K  L  T  L  K  F  I  C  T  T  G  K  L  P  V  P  W  P  T  

Prepro region 
with GFP tag 
at C-terminus  

P4 5'3' Frame 2 
L  V  C  V  D  R  S  A  P  D  S  D  L  E  L  K  L  M  A  L  
S  S  Q  I  W  A  A  C  L  L  L  L  L  L  L  A  S  L  T  S  
G  S  V  F  P  Q  Q  T  G  Q  L  A  E  L  Q  P  Q  D  R  A  
G  A  R  A  S  W  M  P  M  F  Q  R  R  R  R  R  D  T  H  F  
P  I  C  I  F  C  C  G  C  C  H  R  S  K  C  G  M  C  C  K  
T  D  P  P  V  A  T  M  V  S  K  G  E  E  L  F  T  G  V  V  
P  I  L  V  E  L  D  G  D  V  N  G  H  K  F  S  V  S  G  E  
G  E  G  D  A  T  Y  G  K  L  T  L  K  F  I  C  T  T  G  K  
 

Preprohepcidin 
with GFP tag 
at C-terminus. 

 
 
 
 
 
 
 
 
 
 
 
5.2.5.2 Localisation study of hepcidin pro-peptide in Wt HepG2 cells 

Once the recombinant plasmid containing the pre-pro derivative was confirmed via 

sequencing, Wt HepG2 cells were transfected with this recombinant plasmid and 

the non-recombinant empty pEGFPN1 plasmid which acted as a control. The 

results of transfection are shown in Fig. 5.10. 

 

Table 5.1  Identification of plasmid pEGFPN1 -preprohepcidin constructs  
Proteomics tool ‘Translate’ at ExPASy (http://web.expasy.org/translate/) was used to translate 
the characterised plasmid sequences to amino acid sequences and the preprohepcidin derivative 
in each construct was identified. Sequence information on preprohepcidin was obtained from 
Proteinknowledgebase UniProtKB (P81172). Tags were identified using blastn at NCBI.  
Key to table:   
• Pre region of preprohepcidin    
• Pro-hepcidin 
• V 5 tag 
• GFP Tag 
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Following this, the images were observed under a confocal microscope, as shown 

in Fig. 5.11. In the case of transfection with the non-recombinant host plasmid 

(control), the fluorescence from the GFP tag was seen all over the cell, including 

the nucleus (Fig. 5.11 B and C). However, transfection of cells with the 

recombinant plasmid containing the pre-pro construct resulted in fluorescence 

being found exclusively in the nucleus (Fig. 5.11 D, E and F). 

Fig. 5.10 Transfecti on of HepG2 cells with pEGFPN1 plasmids  
Wt HepG2 cells were transfected with the plasmid containing the prepro-construct, as 
described in methods section 2.2.24, to identify the location of the construct in the cells.  
 
A, B and C : Transfection with non-recombinant pEGFP N1 plasmid (20X) 
A : Control; untransfected cells 
B : Transfected cells under normal light 
C : Transfected cells under fluorescent light 
 
D, E and F : Transfection with prepro-pEGFP N1 construct (40X) 
D : Control; untransfected cells  
E : Transfected cells under normal light  
F : Transfected cells under fluorescent light  
 

A B 

D 

C 

F E 
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5.3 Discussion  

The 84-mer preprohepcidin in humans is cleaved to yield a 25-mer bioactive 

hepcidin and a 35-mer pro-region (Park et al., 2001) which has an unknown 

function. Based on the similarities in structures between the HFE protein and MHC 

class I molecules, it was hypothesised that HFE may be involved in peptide binding 

and presentation like the MHC class I molecule and that this peptide could be a 

part of the pro-region. Hence to explore this hypothesis, bioinformatics was used to 

investigate the putative interaction between the pro-region of preprohepcidin and 

 

GFP GFP GFP 

Pre-Pro-GFP Pre-Pro-GFP Pre-Pro-GFP 

Fig. 5.11 Localisation of prepro -region in HepG2 cells  
Wt HepG2 cells were transfected with the plasmid containing the ‘prepro’ construct, as 
described in methods section 2.2.24, to identify the location of the construct in the cells.  
 
A, B, C  : Transfection with non-recombinant pEGFP N1 plasmid 
A: Location of nucleus in the cells. 
B: Localisation of GFP in the cells.  
C: Superimposition of the images A and B. 
 
D, E, F: Transfection with prepro-pEGFP N1 construct 
D: Location of nucleus in the cells 
E: Location of GFP tag within the cell.  
F: Superimposition of images D and E.  

A B C 

D E F 
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the HFE. The study showed that the C-terminal part of the prohepcidin sequence 

was the most hydrophilic and hence would be the most antigenic region (Fig. 5.2). 

Since the HFE is regarded as a pseudo MHC (HLA) (Feder et al., 1996), the 

binding affinity between nonamers of preprohepcidin and different serotypes of 

HLAs was investigated (Fig. 5.3). Data suggested that the C-terminal region of the 

pro-region showed the highest possibility of interaction with the HLA. Additionally, 

this region matched the most hydrophilic region in preprohepcidin as seen in Fig. 

5.2. Together this suggests that the C–terminus of the pro-region had the most 

potential for binding to a HLA and hence the HFE protein.  

 

Conservation of α-1 and α-2 regions of HFE in different species (Fig. 5.4) suggests 

that these regions might be functionally significant. Although it has been 

established that the HFE protein, through its α -1 and α - 2 regions, interacts with 

TfR1 and regulates iron uptake by cells (Fleming, 2009), it should not be excluded 

that that these α-regions may also be involved in peptide binding, particularly in the 

scenario when the HFE has been proposed to exhibit multiple roles. The bound 

peptide could be a section of the pro-region which by binding to the HFE in the 

endoplasmic reticulum (ER) would allow its maturation and may activate the HFE 

to traverse across the ER to be expressed on the cell surface where it would fulfil 

its role of limiting iron import inside the cell. Another role of the section of the pro-

peptide could be where its presentation on the cell surface may be a part of a 

signal to regulate hepcidin levels via a feedback mechanism. The C-terminal part 

of the pro-region, RRRRRDTHF, which was found to be the most hydrophilic and 

antigenic (figures 5.2 and 5.3), also contains a motif typical of a nuclear localisation 
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signal (figures 5.5 and 5.6). This motif indicates functional significance of the pro-

region as found in many proteins with arginine-rich domains that function as a 

nuclear localisation signal, for example as found in the HIV type 1, Tat and Rev 

proteins (Truant and Cullen, 1999). Further bioinformatics analysis indicated that 

the pro-region bore a similarity to the KRAB domain of some of the members of the 

Zinc-finger protein (ZFP) family (Fig. 5.7). The KRAB is a domain of around 75 

amino acids located at the N-terminal part of about one third of eukaryotic ZFP and 

some of the functions of the KRAB-containing protein family include transcriptional 

repression of RNA polymerase I, II, and III promoters, binding and splicing of RNA 

(Hirasawa and Feil, 2008, Pengue and Lania, 1996). Since the KRAB-zinc fingers 

constitute the largest class of transcription factors within the human genome (Mark 

et al., 1999), here it was hypothesised that the pro-region or part of the pro-region 

with the amino acids RRRRRDTHF may localise into the nucleus. 

 

Localisation studies of prohepcidin have been conducted by other research groups. 

Pigeon et.al. (2001) used a GFP-construct in which the GFP tag was inserted at 

the N-terminus of the prohepcidin sequence. When the recombinant peptide was 

expressed in HepG2 cells, it was found to be located in the nucleus. This showed 

the presence of GFP-tagged prohepcidin in the nucleus. However, this construct 

did not include the ‘pre’ region and therefore probably may not have been 

expressed through the ER but directly in the cytoplasm. Although the primary 

sequence of prohepcidin does not suggest posttranslational modifications, the 

presence of an ER targeting sequence in the first 24 amino acids in the 

preprohepcidin suggests that it is important for the recombinant peptide to traverse 
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across the ER for the original maturation process. Since the pro-region is proposed 

to be cleaved by a furin-like convertase to release the mature peptide it could be 

that in the study by Pigeon et.al. (2001) the GFP-pro region may have entered the 

nucleus. However, GFP is a much larger protein (238 mer, 26.9 kD)(Tsien, 1998) 

than the small pro-region (35 mer) and whether the size and placement of the GFP 

tag during the creation of the chimera influenced the localisation process, needs to 

be fully understood.  

 

Another study which used antibodies raised against human prohepcidin showed 

that in the HepG2 cells prohepcidin was localised in intracellular vesicular 

structures (Kulaksiz et al., 2004). Also, when human preprohepcidin was 

transfected in human embryonic kidney cells, the C-terminal part (i.e. tagged 

hepcidin-25) or prohepcidin was localised to the golgi complex (Wallace et al., 

2006). Detection of hepcidin or pro-hepcidin in vesicular structures or the golgi 

complex is not surprising as these may have been captured when prohepcidin was 

about to mature into hepcidin-25, ready to be cleaved by furin which is found to be 

localised in the transgolgi network (Nakayama, 1997) or when hepcidin-25 was 

about to exit the cell.  

 

Hence, to further investigate the potential role of the pro-region as a NLS, 

recombinant plasmid pEGFPN1 with the pre-pro-GFP was transfected into Wt 

HepG2 cells. In this construct the GPF tag was placed after the pre-pro region to 

allow normal process through the ER and to alleviate any interference in 

localisation from the huge GFP tag, unlike the previous studies. Here, localisation 
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studies showed that the construct entered the nucleus (Fig. 5.11 E and F). Since 

the pre-region of preprohepcidin is cleaved by the signal peptidase (Nemeth and 

Ganz, 2006), it is probably only the pro-GFP protein that is localised in the nucleus. 

The role of the pro-peptide in the nucleus remains to be identified. Its similarity with 

the KRAB motif suggests that it may act as a transcription factor to regulate gene 

expression of hepcidin or other iron-regulated genes. Further localisation studies 

using all the other characterised preprohepcidin constructs will be necessary to 

better understand the cellular trafficking of hepcidin and any role of the pro-region.  
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Chapter 6 

Overall summary and future work 

6.1 Overall summary  

The aim of this project was to understand how iron regulates hepcidin gene 

expression. To achieve this, in the first instance CHO TRVb1 cells were chosen for 

iron overdose studies. It was hypothesised that due to the over-expression of 

human TfR1, these cells would be able to uptake excess amounts of iron via 

holotransferrin and the resultant effect on gene expression of hepcidin and other 

iron-related genes could be investigated. Since the sequences of iron-related 

genes of interest in the CHO cells were not known, their characterisation was 

carried out to enable gene expression studies through real time PCR. 

Subsequently, in this study (chapter 3), CHO gene sequences of Hfe, ferroportin 

and Irp2 were partially characterised.  

 

However, the gene sequence of hepcidin in these cells could not be characterised 

which prevented the evaluation of hepcidin mRNA expression. Hence, studies 

focusing on hepcidin peptide secretion were carried out. For the first time it was 

shown that the CHO TRVb1 cells secreted significantly increased hepcidin peptide 

levels after 30 min, 2, 4, 24 and 48 hours following holotransferrin overdose 

(figures 3.22 and 3.26), as observed in human and animal models (Lin et al., 2007, 

Nemeth et al., 2003, Pigeon et al., 2001). Despite over-expressing TfR1 on the cell 

surface, the CHO TRVb1 cells did not uptake increased amounts of iron (Fig. 3.25) 

implying that over-expressed TfR1 along with holotransferrin overdose may not 
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necessitate intracellular iron overload, primarily because the TfR1 mRNA in these 

cell was IRE-regulated which limited the amount of iron intake via TfR1. Since the 

increase in hepcidin peptide levels by the CHO TRVb1 cells was achieved without 

intracellular iron overload, it was important to understand the effect of intracellular 

iron overload on hepcidin mRNA and peptide expression. Hence, rec-TfR1 HepG2 

cells were created such that they expressed an IRE-independent TfR1 so that the 

TfR1 mRNA would be insensitive to increase in intracellular iron content and this 

would maximise iron uptake (chapter 4). Consequently, the cells showed higher 

basal levels of iron than Wt HepG2 cells (figures 4.4C and 4.11F) and significantly 

increased iron uptake with increased holotransferrin concentrations at  2, 4 and 24 

hours after treatment (figures 4.8C and 4.14F). 

 

Holotransferrin dosage of 1 g/L and 5 g/L to the control Wt HepG2 cells for 30 min, 

2, 4, 6 and 24 h resulted in a physiological increase in hepcidin mRNA levels 

(figures 4.7C and 4.15). Despite increased intracellular iron levels, the rec-TfR1 

HepG2 cells did not demonstrate an expected increase in hepcidin mRNA levels, 

although after 2 h of 5 g/L holotransferrin treatment, a 0.5-fold increase was 

observed (p<0.02)(Fig. 4.17). This suggested that hepcidin mRNA expression was 

not directly proportional to intracellular iron levels. Interestingly, it was also 

observed that ferroportin mRNA levels in the rec-TfR1HepG2 cells were 

considerably higher compared to the Wt HepG2 cells and also significantly 

increased upon 5 g/L holotransferrin treatment indicating that the rec-TfR1 HepG2 

cells were excreting intracellular iron (figures 4.5B, 4.12D, 4.17). 
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Additionally, in this study, it was shown for the first time that HepG2 cells secreted 

significantly increased levels of hepcidin peptide upon holotransferrin overdose 

(Fig. 4.19 and 4.20) as observed in humans and animal models (Lin et al., 2007, 

Nemeth et al., 2003, Pigeon et al., 2001). Similarity in the levels of hepcidin peptide 

secretion by both the Wt and rec-TfR1 HepG2 cells, despite having different 

intracellular iron contents, suggested that both intracellular and extracellular iron 

concentrations affected hepcidin synthesis and secretion.  

 

Gene expression studies demonstrated the impact of HFE on hepcidin. The HFE 

and hepcidin gene expressions mirrored each other (figures 4.12C and 4.18C) 

which suggested that in the human body HFE may participate in regulating 

circulating iron levels via hepcidin. HFE is crucial for hepcidin expression, as is 

evident by comparing hepatocytes from haemochromatotic patients where the 

absence of HFE on the cell-surface is linked to reduced hepcidin production (Feder 

et al., 1996) and rec-TfR1 HepG2 cells where hepcidin is secreted with the help of 

functional HFE on the cell-surface. This study also suggested a probable role of 

HFE in sensing intracellular iron levels, either independently (Carlson et al., 2005) 

or via TfR1, and also in sensing extracellular iron levels (Fig. 4.25). Thus it 

appeared that HFE played multiple roles depending on the extracellular and 

intracellular iron environment. 

 

Gene expression studies showed evidence of opposing functionalities of TfR1 and 

ferroportin transcripts in regulating intracellular iron levels. For example, in the Wt 

HepG2 cells, basal intracellular iron levels along with increased extracellular iron 
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levels reduced TfR1 mRNA expression to prevent any further iron uptake (figures 

4.7A and 4.15). On the other hand, in the rec-TfR1 HepG2 cells, high basal 

intracellular iron content along with increased extracellular iron levels led to 

increased ferroportin mRNA expression to excrete the excess iron (Fig. 4.17). The 

process of down-regulation of the TfR1 transcript and up-regulation of the 

ferroportin transcript had the same purpose which was to maintain intracellular iron 

homeostasis.  

 

Simultaneously, this study attempted to understand the significance of the pro-

region of preprohepcidin. As a result of the in silco studies demonstrated in 

chapter 5, a potential binding between the HFE and a section of the pro-region of 

preprohepcidin has been proposed. The first proposed role of the pro-region is to 

aid in the maturation process of HFE to be expressed on the cell surface. 

Localisation of the pro-region within the cell was investigated which revealed that 

transfection of HepG2 cells with the pre-pro-GFP construct resulted in localisation 

of the pro-GFP in the nucleus (Fig. 5.11). This, along with the similarity of the pro-

region with the KRAB domain of ZFP family (Fig. 5.7) together propose a second 

role of the pro-region which is to act as a transcription factor in regulating gene 

expression.  

 

6.2 Future work  

Although hepcidin is regarded as a key iron homeostatic regulator, its expression is 

linked with the expression of other iron-related proteins. Hence, to obtain a 

complete picture of iron regulation it would be more beneficial to study hepcidin 
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expression along with and in relation to other iron-related proteins such as HFE, 

TfR2 and ferritin. Such a study is supported by the fact that liver cells express HFE 

in higher amounts than other cells, hepcidin is produced predominantly by the liver 

and TfR2 is present only on hepatocytes (Zhang et al., 2004, Park et al., 2001, 

Pigeon et al., 2001, Schmidt et al., 2008, Rapisarda et al., 2010). The three 

proteins influence each other and hence the interrelationship between the 

expressions of their genes would help in the overall understanding of iron 

regulation. 

 

The rec-TfR1 HepG2 cells possess an IRE-independent TfR1 and were able to 

demonstrate intracellular iron overload (figures 4.8C and 4.14F). However, 

increased ferroportin mRNA expression in the rec-TfR1 HepG2 cells implies that 

the cells may have only partially retained the iron content. Hence the question 

whether high intracellular iron levels influence hepcidin mRNA and protein 

expression and if so to what extent, still remains to be fully answered. This involves 

the influence of other genes like ferroportin and HFE. The loss of intracellular iron 

occurring in the rec-TfR1 HepG2 cells could be prevented by deletion of the 5’ 

IREs in the ferroportin gene. This will ensure that both the entry and the exit points 

of iron via TfR1 and ferroportin, respectively, are modified to maximise iron uptake 

and then retain the attained high intracellular iron. The effect on hepcidin 

expression could then be investigated. In addition, since HFE has been shown to 

limit intracellular iron uptake (Chua et al., 2008), iron supplementation experiments 

could be performed on HFE-deficient HepG2 cells and HFE- over-expressing cells 
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and the effects could be compared to Wt HepG2 and rec-TfR1 HepG2 cells used in 

this study.  

 

Also, the potential binding between the HFE and preprohepcidin derivative 

suggested by in silico studies performed in chapter 5 could be fully elucidated by in 

vitro peptide binding studies. Synthetic nonamers of HFE and the pro-region could 

be synthesised and their binding could be checked by probing the HFE nonamers 

to the pro-sections and vice-versa. This will not only help to understand the 

relationship between HFE and hepcidin but also aid in elucidating the proposed 

multiple roles of HFE, which have not yet been fully understood.  

 

Furin cleavage of prohepcidin into bioactive hepcidin is affected by the amino acids 

positioned C-terminal to the cleavage site (Lee, 2008). In the pre-pro-GFP 

construct used here, the furin cleavage site (RRRRR) as well as the first amino 

acid after the cleavage site i.e. aspartic acid (D) are preserved. Hence, it would be 

important to know if the substitution of hepcidin with GFP tag in the construct has 

affected the furin-cleavage process. This could be shown by performing an SDS-

PAGE with the extracted plasmids from transfected cells and comparing the sizes 

of the furin-cleaved and uncleaved products. Also, further studies should be 

performed with the other preprohepcidin GFP-construct characterised in this study. 

 

In the case of preprohepcidin constructs with GFP, a large GFP tag is attached to a 

small peptide whose movement within the cell is required to be traced. In order to 

ease the process, various combinations of preprohepcidin constructs could be 
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created with V5 tags at the C and N termini, two of which are already characterised 

in this study. These could be probed with V5 antibodies which will provide finer 

information than studies with the larger GFP-tagged preprohepcidin constructs. 

The tag will identify the location of the construct whereas the coherent view of all 

the constructs will show the pathway of secretion of bioactive hepcidin. Thus, such 

localisation studies will help to better understand the cell trafficking of hepcidin and 

may provide a new insight into the secretion process. It has been proposed by 

Farnaud et al. (2008) that iron may play a role in processing of prohepcidin. In 

order to verify this proposition, a combination of iron supplementation and 

localisation studies in HepG2 cells should be carried out. This may provide a better 

insight into the bio-processing of hepcidin as well as the destination of the pro-

region within the cell.    

 

It is clear that hepcidin regulation and secretion to regulate circulating iron levels is 

a complex mechanism, involving various genes/proteins and their responses under 

different extracellular and intracellular environments. The responses of cells are 

also governed by the concentration and exposure-time of iron. Since gene 

expressions are affected by the extracellular environment and vice-versa, the 

challenge is to elucidate what acts as the first trigger.  
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