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Abstract
i

Familial combined hyperlipidaemia (FCHL) is one of the major genetic causes of coronary heart 
and is characterised by elevated levels o f  plasma cholesterol and/or triglycerides in individuals within a single 
Decreased lipoprotein lipase (LPL) activity has been found in some cases of FCHL. A recent study revealed a 
common mutation in the LPL gene, LPL(Asn291 ->Ser), with a frequency of 9.3% in Dutch FCHL patients 
et al., Circulation, 90 (1994) 1-998). This mutation was found in 3 out of 17 FCHL families. Extensive family 
were subsequently performed to determine the effect of this mutation on the phenotypic expression of FCHL 
a pedigree-based maximum likelihood estimate, we demonstrated that the LPL(Asn291 -* 
affects the levels of plasma and very low density lipoprotein (VLDL) triglycerides (2.03 ±  0,21 vs. 1.14 4 
1.21 ±  0.16 vs. 0.62 ±  0.09 mmol/1, carriers and non-carriers, respectively) and VLDL- and high density lipoprotein 
(HDL) cholesterol (0.83 ±  0.10 vs. 0.38 ±  0.06 and 1.02 ± 0.08 vs. 1.29 +  0.05 mmol/1, carriers and non-carriers, 
respectively), but not those o f plasma and low density lipoprotein (LDL) cholesterol. These findings indicate that the 
LPL(Asn291 -»•Ser) mutation is associated with elevated lipid levels, indicating it may be one of the genetic factor* 
predisposing to FCHL in the families studied.
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1. Introduction Recently, the LPL(Asn291 ->Ser) mutation was

Familial combined hyperlipidaemia (FCHL) is 
commonly found among survivors of premature 
myocardial infarction (MI). Goldstein et al. [1] 
were the first to show that the FCHL syndrome 
was distinct from familial hypercholesterolaemia 
and familial hypertriglyceridaemia. FCHL is one 
of the major genetic causes of coronary heart 
disease (CHD), with an estimated frequency of 
0.3%-2% in the general population [1].

identified in 9.3% of Dutch patients with FCHL 
[14]. The identification of this mutation in three 
unrelated FCHL probands enabled us to study 
the inheritance of this mutation within FCHL 
families and estimate its effect on the lipid 
levels. Statistical analysis showed that the 
LPL(Asn291 -> Ser) mutation significantly affects 
lipid parameters, implying that this LPL mutation 
may be one of the genetic factors contributing to 
the FCHL phenotype in these families.

FCHL probands show elevated plasma levels of 
cholesterol, triglyceride or both. The FCHL phe- 2. Subjects, materials and methods
notype may vary from time to time in a given 
patient or among affected relatives within a single 
family [2]. In addition, characteristics such as 
increased very low density lipoprotein (VLDL) 
production, predominance of small dense low 
density lipoprotein (LDL), hypertension and in­
sulin resistance have been associated with FCHL 
[3-5]. Considering elevated levels of either VLDL, 
LDL or both as affected phenotype in family 
studies, FCHL was initially suggested to be an 
autosomal dominant disorder [1,6]. Recently, us­
ing complex segregation analysis, Cullen et al. [7] 
found evidence for a major gene acting on triglyc­
erides in families with FCHL.

2.1. Subjects 
FCHL probands were selected from patients 

attending the lipid clinics in Nijmegen and Am­
sterdam for analysis of a lipoprotein disorder 
when they fulfilled the following criteria: (i) ele­
vated levels of both total cholesterol and triglyce­
rides (at first measurement), (ii) a personal or 
family history of premature cardiovascular dis­
ease, and (iii) at least one first degree relative with 
elevated total cholesterol and/or triglyceride lev­
els. None of the FCHL probands had specific 
clinical signs, like tendon xanthomata, and none 
were homozygous for the APOE*2 allele. For all

Several genes, including the apolipoprotein B 
(APOB) gene the APOA1-C3-A4 gene cluster, the 
LDL receptor and the lipoprotein lipase (LPL) 
genes [8—13], have been suggested to be associated

probands, a secondary cause of hyperlipidaemia 
was excluded by standard laboratory tests. Using 
these criteria, 17 probands were diagnosed to have 
FCHL. The study protocol was approved by the

with the appearance of FCHL. However, despite ethical committee of the universities of Amster-
extensive studies in FCHL families, a major ge- dam and Nijmegen. Family members with total
netic defect underlying this heterogeneous and 
possibly polygenetic disorder has not been re­
ported.

Babirak et al. [12] showed in a study

cholesterol and/or triglyceride levels above the 
90th percentile using the age- and sex-related per­
centile levels of the PROCAM study are indicated 
in Fig. 1.

among relatives from homozygous LPL-deficient 
probands that the heterozygous state for LPL 
deficiency, determined by measurement of post-

2.2. Lipid and lipoprotein analysis 
Ethylenediamine tetraacetic acid (EDTA) blood

heparin LPL activity and mass, often segregates 
with hyperlipidaemia and decreased levels of high 
density lipoprotein (HDL)-cholesterol. In addi­
tion, decreased LPL activity has been found in 
one third of the cases with FCHL [13]. These 
results suggest that heterozygosity for LPL muta-

samples were obtained from the three probands 
and. family members after an overnight 
No lipid lowering drugs were administered to the 
subjects for 6 weeks at the onset of the study, 
except for individual II-5 of family A. This indi-
vidual was still on medication when blood

tions may be one of the factors influencing the 
lipid phenotype of FCHL.

were collected. Plasma was separated
from cells by centrifugation at 500 x g for 10
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min at room temperature, and was used for lipid 
and lipoprotein analysis.

VLDL (¿i < 1.006 g/ml) was isolated by ultra-
centrifugation for 16 h at 36 000 rev./min in an 
fixed-angle TFT 45.6 rotor (Kontron; Zurich) 
[16]. Plasma and lipoprotein cholesterol and 
triglyceride concentrations were determined by

commer
237574;

i t • 

Mannheim, FRG; Sera-pak,
No. 6639; Tournai Belgium). HDL-cholesterol 
was determined in whole plasma using the 
polyethylene glycol 6000 method [17]. LDL 
cholesterol was subsequently calculated using the 
formula of Friedewald et al. [18].

2.3. Detection o f the LPL(Asn291 Ser)
mutation

Genomic DNA was isolated from leukocytes 
according to Miller et al. [15]. Identification of the 
LPL(Asn291 -»Ser) allele carriers in probands 
and their families was performed by polymerase 
chain reaction (PCR) using a mutagenic amplifi­
cation primer approach. Primer LPL291L: 5'- 
ATA A T  A TAA A A T  ATA A A T  ACT  GCT TCT 
TTT GGC TCT GAC-TG TA-3' was designed

were separated on a 4% MP agarose gel
M FRG)

ethidium bromide. Digestion of PCR products 
revealed two fragments for the mutant allele of 
approximately 240 bp and 40 bp, and one frag­
ment of 280 bp for the normal allele.

2.4. Statistics 
Studying three FCHL families implies, in a 

strict sense, that there were only three indepen­
dent observations which can be used for statistical 
analysis. To test for the statistical significance of 
the effect of the mutant LPL(Asn291 -> Ser) allele
on the lipoprotein traits in these three families, we 
used a pedigree-based maximum likelihood

*

method developed by Lange et al. [20J. Using 
standard statistical analyses would give similar 
results concerning the univariate statistical calcu­
lations, but inappropriate standard errors due to 
the fact that individuals are related.

For a given pedigree of n individuals, a vector 
of observations (x) is defined and a vector of 
expected values (E(x)), that can depend on mea­
sured variables such as gender or measured geno­
type. The covariance between the residual part of

with a nucleotide mismatch (underlined) as com- the observations, i.e., the part that is not ac-
pared to the wild type LPL sequence [19]. In the 
case of the mutant allele, an Rsal restriction site 
is introduced due to the germline missense muta­
tion and the nucleotide mismatch in the primer.

counted for by the measured genotype or other 
variables, depends on the relationship between the 
pedigree members and on the genetic model as­
sumed for the observations. Throughout, we have

The primer was elongated with a TA-rich stretch modeled the variances not accounted for by the
(italics) at the 5' end to facilitate the subsequent 
electrophoretic screening (see below). PCR was 
performed using primer LPL291R 5'-GCC GAG

measured genotype as consisting of additive ge­
netic and random environmental variance, recog­
nizing that the genetic part may also reflect

ATA CAA TCT TGG TA-3' and primer environmental influences shared by family mem-
LPL291L. The reaction mixture included 15 pmol

■

of each primer, 0.5 //g genomic DNA, 0.2 mM of 
each dNTP, 10 mM Tris-HCl pH 9.0, 1.5 mM 
MgCl2, 50 mM KCL, 0.01% (w/v) gelatin, 0.1% 
Triton X-100, 0.1 unit Tag polymerase (Super 
Taq HT biotechnology Ltd, UK), and 10% 
dimethylsulphoxide (v/v) in a total volume of 50 
(i\. Amplification was performed for 32 cycles of 
30 s at 94°C, 30 s at 53°C and 1 min at 72°C, with 
an initial dénaturation period of 3 min. Some 20 
/¿I of PCR products were digested with the restric­
tion enzyme Rsal according to recommendations 
of the supplier (Pharmacia). Thereafter, fragments

bers. However, our main interest is to test for the 
influence of the measured genotype. For a given 
E(x) and expected covariance matrix E the log 
likelihood of obtaining the observation vector x
is:
L Un|£| l/2[x E(x)]'Z 1

[x E(x)] +
constant, where ' denotes matrix transpose.

The joint log-likelihood of obtaining all pedi­
grees is the sum of the log-likelihood of the 
separate pedigrees. Estimation involves selection 
of parameter values under a specific model that 
maximizes the joint likelihood of all pedigrees. 
The likelihood obtained for different models can
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be compared with chi-squared difference tests
where X 2 2 (L ! L0) and and L0 denote
the log liTcelihood for the general (H ,) and the 
constrained (H0) hypothesis. The degrees of free­
dom (df) for this test are equal to the number of 
independent parameters between H x and H0 [21], 
The Fisher package [19] was used for genetic 
modelling. Ascertainment correction was carried 
out by conditioning on the probands. Extensive 
description of model definition: A: most general 
model allowing for: (i) age regression, (ii) gender- 
difference, and (iii) difference between carriers and 
non-carriers; B: Equal to model A but no age 
differences; C: Equal to model A but no gender 
difference except for the trait ‘HDL-choF where 
model C is equal to model B but no gender 
difference; D: Equal to model C but no difference 
between carriers and non-carriers, except for the 
trait ‘VLDL-Tg’ where model D is equal to model 
A but no difference between carriers and non-car­
riers and the trait ’HDL-chol’ where model D is 
equal to model B but no difference between carri­
ers and non-carriers. Testing procedure: (1) 
Model B is tested against model A. The data from 
the probands were omitted from statistical calcu­
lations in order to avoid possible ascertainment 
bias.

(total cholesterol: 4.8 mmol/1 and total triglyce­
rides: 3.1 mmol/1) at the age of 22 despite very 
lean body constitution (body mass index (BMI)
21 kg/m2). Although total cholesterol levels were 
not elevated, the VLDL cholesterol was rather 
high, 1.44 mmol/1, while HDL levels are de­
creased, 0.66 mmol/1. Screening 114 random indi­
viduals of a general Dutch population revealed no 
carriers, suggesting that this mutation occurs with 
a low frequency in the general population.

3.2. Lipid and lipoprotein levels in carriers vs. 
non-carriers

I

Plasma samples of the three probands and 67 
additional family members were studied for lipid 
and lipoprotein parameters. The clinical details of 
allele carrying (n — 19) family members, including 
the homozygous carrier, and non-carrying (n = 48) 
family members are presented in Table 2, The 
statistical analyses of these data are presented 
in Table -3. Compared to non-carriers, the
LPL(Asn291 Ser) allele carriers exhibited
markedly increased levels of plasma and VLDL- 
triglycerides (2.03 ±  0.21 vs. 1.14 ±  0.13 and 1.21 
±  0.16 vs. 0.62 ± 0.09 mmol/1, respectively) and 
VLDL-cholesterol (0.83 ±  0.10 vs. 0.38 ±  0.06) 
(Table 2). HDL-cholesterol was slightly decreased 
in carriers (1.02 ±  0.08 vs. 1.29 ±  0.05 mm'ol/l).

3. Results As indicated in the and methods

3.1. Prohands and families 
As a part of an ongoing study aimed at the 

identification of genetic risk factors underlying 
FCHL, we screened 17 FCHL probands for

presence of a common LPL mutation

section, we considered allele carriers and non­
carriers of three different families, implying that, 
in a strict sense, there were only three inde­
pendent observations. Therefore, to test for the 
effect of the mutant LPL(Asn291-»Ser) allele in

LPL(Asn291 Ser). Screening revealed three ap-
parently unrelated carriers. The lipid parameters 
of these three probands, at their first visit to a 
lipid clinic, are shown in Table 1.

Family studies were performed for all three 
probands including 67 relatives. During screening 
of these 3 families, 19 carriers for the 
LPL(Asn291 ~->Ser) mutation were found includ­
ing an individual related by marriage. One of the 
offsprings of this marriage proved to be ho­
mozygous for the mutation (Fig. 1). This ho-
mozygous carrier of the LPL(Asn291 Ser)
mutation appeared to have hypertriglyceridaemia

Table 1
Clinical characteristics of three LPL(Asn29I -»Ser) probands

A: II-13

Age (yrs)
Gender 
BMI (kg/m2)
Plasma cholesterol (mmol/1)

45
M
22,5
7.6

Plasma triglycerides (mmol/1) 4,22
VLDL-cholesterol (mmol/1) 
LDL-cholesterol (mmol/1) 
HDL-cholesterol (mmol/1)

N D

0.87

B:II-3

56
M
26.9
8.40
3.71
1.98
5.61
Ò.97

O i l -3
, •,«!•> .M.*.-.;.*-*.I»--.'«.—' —- — a« *, ........ ...... ............"'‘"» 'M "1- - 1'. ..

52
M
28.5
9.50
6.49
ND
N D
0.63

Plasma samples were collected after an overnight fasting.
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Table 2
Descriptive statistics (means ±  S.E.) of the LPL(Asn291 -t-Ser) allele carriers and their non-carrier relatives

LPL(Asn291 -»Ser) allele carrier 
relatives (n =  19)

Non-carrier relatives
(« =  48)

BMI(kg/nr) 24.91 ± 0 .83 23.76 ±  0.52
Plasma TG" 2.03 ±  0.21 1.14 ±  0.13
VLDL-TG 1.21 ± 0 .16 0.62 ±  0.09
Plasma chol 5.85 ±  0.29 5.34 ± 0 .1 8
VLDL-chol 0.83 ± 0 .10 0.38 ±  0.06
LDL-chol 3,98 ±  0.26 3.57 ± 0 .1 6
HDL-chol 1.02 ±0 .08 1,29 ± 0 .0 5

Means and asymptotic standard errors were estimated from the most general model using the maximum likelihood estimate 
procedures implemented in the Fisher program. Probands were excluded for these quantitative analyses. "All levels are expressed in 
mmol/1.

these families, we used a pedigree-based maxi­
mum likelihood method [20]. The principle of this 
statistical method is briefly described in the Mate­
rials and methods section. The legend of Table 3 
indicates the four different models that were con­
sidered for the quantitative variables. Model A is 
the most general model, estimating the effects of 
age, gender and carrier status. Models B, C and D 
subsequently leave out each of these effects and 
are tested for a significant decrease in likelihood. 
In this table we present, when significant, the 
percentage of the total variance that can be ex­
plained by age, gender or carrier status respec­
tively. BMI did not differ between the two groups. 
Therefore, it cannot explain the differences found 
between carriers and non-carriers and is not used 
for one of the models. Table 3 shows that age 
influences BMI and all lipid parameters measured 
except HDL-cholesterol. In addition, gender influ­
ences levels of VLDL-triglycerides and HDL- 
cholesterol. No significant effects of additional 
genetic or environmental variances could be de­
tected on the residual variance (results not 
shown).

Independently from the effects of age and gen­
der, it is apparent that carrier status of the 
LPL(Asn291 -> Ser) mutation significantly affects 
the levels of plasma and VLDL-triglycerides, 
VLDL- and HDL-cholesterol, but not of plasma 
and LDL-cholesterol. In general, carrier status 
appears to explain approximately 14% of the total 
variance of these traits.

4. Discussion

FCHL is a frequently occurring lipid disorder 
in which multiple lipoprotein phenotypes occur 
within one family [1,6,7]. Although no major un­
derlying defect has been found so far, some stud­
ies suggested a link between heterozygosity for 
LPL deficiency and FCHL [12,13]. Therefore, we 
investigated the LPL gene as a candidate gene in 
Dutch FCHL families.

We screened FCHL families for a common 
mutation LPL(Asn291 -> Ser), which occurs with 
a frequency of 9.3%> among Dutch FCHL patients 
[14]. Moreover, in vitro site-directed mutagenesis 
revealed that the LPL(Asn291 -►Ser) mutation 
affects the catalytic function of LPL by causing a 
50% reduction of LPL activity and mass [22], 
making it a feasible candidate gene for FCHL.

Three probands from our study carried the 
LPL(Asn291-+Ser) mutation. This allowed us to 
determine the effect of this mutation on lipid and

have used a pedigree-based maximum likelihood 
method described by Lange et al. [20] which al­
lowed us to study the influence of measured alleles 
on quantitative traits under different models, since 
the subjects included are not unrelated and derive 
from only three families.

Since age and gender effects have an consider­
able influence on interindividual variability [23], 
we have estimated the effects of age and gender 
on the quantitative lipid traits and BMI for carri-
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Table 3
Log-likelihood for four different models testing the effects of age, gender, and carrier status for the quantitative traits and BMI in 
the LPL(Asn291-►Ser) pedigrees

A B C D Percent variance explained by

Age Gender Carrier
status

m u 1 IBM mnV

BMI — 104.19 -119.51*** -104.21 -1 0 4 .3 2 35.9 V> ̂ f i t . - *

Plasma TG -2 1 .4 1 -25 .92** — 22.44 -26 .09** 9,9 <r^:  ^  4 I ,« 12.9
VLDL-TG '— 1.83 -5 .1 7 * -4 .0 4 * -5 .4 3 * 7.9 5.6 13.9
Plasma chol -  33.39 -47 .16*** — 34,57 -  34.73 29.7 1  T-,

VLDL-chol 26.89 21.67*** 25.99 22.24** 11.5 13.5
LDL-chol - 2 7 .2 5 -38 .37*** -  27.49 -  27.60 24.6
HDL-chol 46.58 46.55 35.81*** 40.90*** 23.6 16.2

mmwm

Log-likelihoods for four models. Model definition; A: most general model allowing for: (i) age regression, (ii) gender “difference, and 
(iii) difference between carriers and non-carriers; B: Equal to model A but no age differences; C: Equal to model A but no gender 
difference; D: Equal to model C but no difference between carriers and non-carriers. Testing procedure: (1), Model B is tested 
against model A. When twice the difference in log-likelihoods of these models is higher than the %2 corresponding to d f =  1, this 
indicates a significant age difference as indicated by *P <  0.05 (x 2 >  3.84), **P <  0,01 (x 2 >  7.88) or ***P <  0.001 (x 2 >  
10.83); (2) Model C (with df =  1) is tested against model B as described above. When model B was significantly different from model 
A, then model C was tested against model A. (3) Model D (with d f =  1) is tested against model C or, in case of a significant effect 
o f  gender in model C, model B, or in case o f  a significant effect o f  age in model B, model A.

ers and non-carriers. In addition to the influences 
of age and gender, the LPL(Asn291 -> Ser) allele 
appeared to contribute considerably (14%) to the 
total variance in VLDL and HDL levels. Re­
cently, a segregation analysis of 55 FCHL 
families, predicted a model for FCHL in which a 
major gene predominantly acting on triglycerides, 
would explain 20%) of the phenotypic variance in 
triglyceride levels [7]. The influence found for the 
LPL(Asn291 -» Ser) mutation on the variance in 
triglyceride levels and the absence of associations 
with total cholesterol levels are in agreement with 
this predicted effect.

Hamsten and co-workers [24] estimated for 
serum triglyceride concentration in families that 
the genetic (0.33) and cultural i.e., smoking, alco­
hol intake and obesity (0.23), inheritance was of 
similar significance. In our study, carrier status 
explains approximately 13% of the total variance 
in plasma triglycerides, indicating that almost half 
of the genetic heritability is due to this mutation 
within the three families studied. For HDL- 
cholesterol, carrier status explains a similar effect 
of the genetic heritability. This reduction of levels 
of HDL cholesterol was also observed in patients 
with premature atherosclerosis carrying the

LPL(Asn291 ->Ser) mutation [25].
So far, only a few studies were performed on 

heterozygosity for LPL mutations and the effect 
of carrier status on the lipid parameters. Wilson et 
al. [26] found that heterozygotes for the 
LPL(Glyl88 -»Glu) mutation showed moderate
fasting hypertriglyceridaemia only after an age of 
40. Secondary factors such as obesity, hyperinsuli- 
naemia and lipid-raising drug use were aggravat­
ing factors on the genetic defect. Similar results 
were found with two Austrian families carrying 
the LPL(Glyl88 -»Glu) mutation, in which pro­
nounced postprandial lipidaemia was found [27].
In contrast with the LPL(Glyl88 Glu)
tion, homozygous carriers of the LPL(Asn291 
Ser) mutation do not develop severe hyperchy- 
lomicronaemia [this study, 28]. Although the het­
erozygous carriers of both mutations seem to 
develop hyperlipidaemia in the presence of other 
predisposing factors, the homozygous carriers do

in their phenotype. These in
phenotypic effects of mutations in the LPL gene 
suggest different underlying mechanisms.

Two studies, in which FCHL patients with
DNAimpaired LPL activity were screened 

changes in the LPL gene, showed that only poly-
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morphisms but no mutations causing defective 
catabolic activity could be found in the LPL gene, 
implying that LPL is not a significant primary 
factor leading to FCHL [29,30]. Recently, Mailly 
and co-workers [31] showed, among 773 healthy 
men, that carriers of the LPL(Asp9 -» Asn) substi­
tution have a significantly higher triglyceride con­
centration compared with non-carriers. This study 
suggests that the common LPL(Asp9 -> Asn) vari­
ant is a mutation that has insufficient impact on its 
own to cause hyperlipidaemia. In combination
with other predisposing factors, LPL(Asp9 -> Asn) 
is associated with the development of hyperlipi­
daemia. As a consequence, this mutation is also 
found among healthy individuals, but its frequency 
is lower than in patients with hyperlipidaemia.

Our study showed similar results for the 
LPL(Asn291 -»■ Ser) mutation, associated with a
significant increase of triglycerides and VLDL-

i

cholesterol and a decrease of HDL-cholesterol in 
carriers. In addition, this mutation is found with 
an increased frequency in patients with premature 
atherosclerosis and FCHL [14]. Taken together, 
these findings suggest that, within the families
described in this study, the LPL(Asn291 Ser)
mutation is one of the predisposing genetic factors 
to FCHL but does not cause the disease on its 
own. Additional ¿enetic and environmental fac­
tors are needed for complete expression of the 
FCHL phenotype.
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