

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Resolving semantic conflicts through ontological layering

Pavandeep Kataria

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2011.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

i

RESOLVING SEMANTIC CONFLICTS

THROUGH ONTOLOGICAL LAYERING

PAVANDEEP KATARIA

A thesis submitted in partial fulfilment of

the requirements of the University of Westminster

for the degree of Doctor of Philosophy

July 2011

ii

Dedication

The greatest pleasure for me is writing dedications and acknowledgements for this thesis. I would like to

dedicate this thesis to my family, especially to my husband Mr Haresh Ahuja, my mother Ms. Krishna

Devi, Papa Tom, Mama Renu and to my younger siblings, Sonia and Suraj. You gave me all the strength

and love that brought me so far. It‟s simple; without you, I would be nothing.

Haresh, you are my soul mate and I am blessed to have you in my life. You have been my one

constant rock and I deeply value our relationship and will treasure it forever. Mum, you are my best

friend and I thank you for always being there whenever I have needed you. I will forever admire your

strength as a woman and cherish the sacrifices you have made over the years. Papa and Mama, your

support and patience is more than any daughter-in-law can ask for, I will be eternally grateful. Sonia,

your positive words and confidence in me has given me the strength to complete this thesis. Suraj, you

really are my little ray of “sunshine”. You have constantly been there for me, and your hugs have never

failed to make me feel better. Sonia and Suraj I love you with all my heart and I will always be there for

you whenever you need me.

iii

Acknowledgement

First of all, my deepest thanks goes out to my supervisor and friend Dr. Radmila Juric, who gave me this

unique opportunity to write this thesis in her research group. As my academic supervisor, Dr Juric has

offered me a lot, from determining the thesis topic, numerous constructive and intellectually stimulating

discussions, to the careful examination and correction of every paper and thesis draft. Her priceless

support and invaluable experience is highly appreciated and she has constantly been a role model in

various aspects. As a respectable lecturer she has set an example with her devotion to her career and

passion for research. As an individual, her energy and motivation is contagious and have been

contributing factors to the completion of this thesis.Her integrity and boldness are worthy of admiration,

and for me she is one of the most competent people I have met in my life, both on a personal level as well

as professional level. I am deeply grateful and proud to be a student of hers.

Sincere thanks goes to Dr. Shamimabi Paurobally for agreeing to be the external examiner. Her

detailed comments have been insightful and I would like to thank her for all the efforts she has made for

the review of my thesis. Special thanks are extended to the financial support I received from Dr. Andrzej

Tarczynski. Without this help my PhD thesis completion would not have been possible.

A very big thank you goes to all my research colleagues; Nigel Koay, Preya Syal and Reza

Shojanoorie for their encouragement. Nigel and Preya your friendship, support, and encouragement will

always be remembered.

I would also like to express my gratitude to the MSc. students I had the opportunity to work with,

especially Anirudh Thotapalli, Tomas Jakimavicius, Emilian Adrian Filip, Raja Saadi and Nemanja

Granatir. Your motivation and commitment to the task were invaluable for the research reported in this

thesis. Furthermore, I‟d like to thank all of my co-authors for their valuable contribution to the

publications that this thesis uses. Sincere thanks goes to Sukanta Ganguly from Texas Tech University for

his collaboration on a joint journal paper.

Finally, I give my heartfelt thanks to my husband, for his unfailing love, patience and proof reading.

It is no exaggeration that the completion of this thesis is due largely to his understanding and efforts.

iv

Abstract

We examine the problem of semantic interoperability in modern software systems, which exhibit

pervasiveness, a range of heterogeneities and in particular, semantic heterogeneity of data models which

are built upon ubiquitous data repositories. We investigate whether we can build ontologies upon

heterogeneous data repositories in order to resolve semantic conflicts in them, and achieve their semantic

interoperability. We propose a layered software architecture, which accommodates in its core,

ontological layering, resulting in a Generic ontology for Context aware, Interoperable and Data sharing

(Go-CID) software applications. The software architecture supports retrievals from various data

repositories and resolves semantic conflicts which arise from heterogeneities inherent in them. It allows

extendibility of heterogeneous data repositories through ontological layering, whilst preserving the

autonomy of their individual elements.

Our specific ontological layering for interoperable data repositories is based on clearly defined

reasoning mechanisms in order to perform ontology mappings. The reasoning mechanisms depend on the

user‟s involvments in retrievals of and types of semantic conflicts, which we have to resolve after

identifying semantically related data. Ontologies are described in terms of ontological concepts and their

semantic roles that make the types of semantic conflicts explicit. We contextualise semantically related

data through our own categorisation of semantic conflicts and their degrees of similarities.

Our software architecture has been tested through a case study of retrievals of semantically related

data across repositories in pervasive healthcare and deployed with Semantic Web technology. The

extensions to the research results include the applicability of our ontological layering and reasoning

mechanisms in various problem domains and in environments where we need to (i) establish if and when

we have overlapping “semantics”, and (ii) infer/assert a correct set of “semantics” which can support any

decision making in such domains.

v

Contents

List of Tables vii

List of Figures viii

List of Abbreviations xi

Glossary xiii

Declaration xvii

1 Introduction

 1.1 The Domain . 1

 1.2 The Research Problem . 2

 1.3 Research Approach . 4

 1.4 Research Objectives . 6

 1.5 Research Methods . 7

 1.6. Outline of Forthcoming Chapters . 7

2 Semantic Heterogeneities and Ontologies

 2.1 Semantic Heterogeneities through Generations of Software Systems. 11

 2.2 Modern Software Systems . 13

 2.2.1 The Vision of Ubiquitous Computing . 13

 2.2.2 Current Trends in Pervasive Computing . 14

 2.3 The Problem of Semantic Heterogeneities in Pervasive Computing 16

 2.4 Ontologies and Semantic Heterogeneities 18

 2.4.1 The Role and Application of Ontologies . 18

2.4.2 Ontologies for the Semantic Web . 20

2.4.3 Ontologies for Pervasive Computing . 21

 2.4.4 Towards Meaning-based Computing . 22

 2.5 Summary . 25

3 Related Works

3.1 Semantic Conflicts – Types and Classifications . 27

3.1.1 Structural Differences in Data Modelling . 28

 3.1.2 Semantic Differences in Data Interpretation . 28

 3.1.3 Ontological Mismatches . . . 30

3.2 Resolving Semantic Conflicts through Different Methods and Approaches 31

3.2.1 Federation, Global Conceptual Schema and Mediation in Databases 32

3.2.2 Using Single Ontologies as Vocabularies in Heterogeneous Databases and

 Information Systems . 33

 3.2.2.1 Ontology and Shared Vocabularies . 33

 3.2.2.2 Ontology and Rich Vocabularies . 34

3.2.3 Using Multiple Ontologies and Reasoning in Modern Software Systems 36

 3.2.3.1 Ontologies and Semantic Matching . 36

 3.2.3.2 Ontologies and Semantic Mapping . 37

 3.2.3.3 Ontologies and Ontology Mapping . 37

3.3 Ontological Layering and Semantic Web Technology . 39

3.3.1 Ontology Mapping . 39

 3.3.1.1 Ontology Reasoning . 40

 3.3.1.2 Managing Multiple Ontologies . 42

3.4 Conclusions . 42

vi

4 Software Architecture for Resolving Semantic Conflicts through Ontological Layering

4.1 The Proposal: Software Architecture for Ontological Layering 45

 4.1.1 The Go-CID Environment . 46

 4.1.2 The Core Ontological Layers . 46

 4.1.3 Interactions between the Go-CID Environment and Core Ontological

 Layers . 47

4.2. Semantic Similarities versus Semantic Conflicts . 48

 4.2.1 Categorising Semantic Conflicts . 49

 4.2.2 Degrees of Semantic Similarities . 50

4.3 Resolving Semantic Conflicts through Ontological Layering . 54

 4.3.1 The Process for Resolving Semantic Conflicts 54

 4.3.2 Example Scenario . 58

 4.3.3 Preparing Semantics for Ontological Layering . 59

 4.3.3.1 Translating of Data Repositories into Local Ontologies 59

 4.3.3.2 Mirroring of Data Repositories into the ENV_ONT 60

 4.3.3.3 Preparing lists of Data Repositories and Information Types 61

 4.3.3.4 Capturing User‟s Involvements . 61

 4.3.3.5 Storing and Interpreting User Involvements 63

 4.3.3.5.1 Ontological Reasoning through Selection Rules 63

 4.3.3.5.2 Ontological Reasoning through Grouping Rules 65

 4.3.3.5.3 The Reasoning Mechanism behind Grouping

 Rules . 66

 4.3.3.5.4 Technology-specific decisions for Grouping

 Rules . 68

4.3.3.6 Adding Value to User‟s Inputs . 69

 4.3.4. Core Ontological Layering . 69

 4.3.4.1 Reasoning Mechanisms in Core Ontological Layering 70

 4.3.4.2 Alignment of Local Ontologies . . 71

 4.3.4.3 Integration of Target Ontologies . 74

 4.3.4.4 Merge of Derived Ontologies 77

 4.3.4.5 Technology-specific decisions in Ontology Mappings 78

4.4 Summary . 80

5 Illustration of Ontological Layering

 5.1 Retrievals across Heterogeneous Pervasive Healthcare Environments 79

 5.1.1 Heterogeneous Relational Schemas . 80

 5.1.2 Types of Semantic Conflicts in Relational Schemas . 82

 5.2 Example of Preparing the Semantics for Core Ontological Layering 86

 5.2.1 Step 1: Translating Relational Schemas into Local Ontologies 87

 5.2.2 Step 2: Mirroring of Relational Schemas into ENV_ONT 92

 5.2.3 Resolving Mispelt and Case-Sensitive Semantic Conflicts 93

 5.2.4 Steps 3 and 4: Preparing Lists of Data Repositories and Information Types

 and Capturing Dr. Smith‟s Involvements. 93

 5.2.5 Step 5: Storing and Interpreting Dr. Smith‟s Involvements – Running Selction

 and Grouping Rules. 96

 5.2.5.1 Grouping Semantically Related Data in Patient Details 98

 5.2.5.2 Grouping Semantically Related Data in Medical Summaries 101

 5.2.5.3 Grouping Semantically Related Data in Treatment Summaries . . . 104

 5.2.6 Resolving Homonym Semantic Conflict . 107

 5.3 Example of Generating Core Ontological Layering . 107

 5.3.1 Step 6: Aligning Local Ontologies . 108

 5.3.1.1 Aligning Semantically Related Data in Patient Details 109

5.3.1.1.1 Resolving Aggregation Conflict 114

 5.3.1.2 Aligning Semantically Related Data in Medical Summaries 114

 5.3.1.3 Aligning Semantically Related Data in Treatment Summaries . . . 118

5.3.1.3.1 Resolving Synonym Conflict 122

 5.3.2 Step 7: Integrating Target Ontologies . 122

 5.3.2.1 Integrating Semantically Similar Data in Patient Details 124

 5.3.2.2 Integrating Semantically Similar Data in Medical Summaries 127

 5.3.2.2.1 Resolving Generalisation Semantic Conflict 129

 5.3.2.2.2 Resolving Isomorphism Semantic Conflict 130

vii

 5.3.2.3 Integrating Semantically Similar Data in Treatment Summaries . . 130

5.3.2.3.1 Resolving Specialisation Semantic Conflict 132

5.3.2.3.2 Resolving Union Incompatibility Semantic

 Conflict . 132

 5.3.3 Step 8: Merging Derived Ontologies 133

 5.3.3.1 Merging Semantically Equivalent Data in Patient Details 136

 5.3.3.2 Merging Semantically Equivalent Data in Medical Summaries . . . 137

 5.3.3.3 Merging Semantically Equivalent Data in Treatment

 Summaries . 139

 5.4 Example of Software Application built upon Ontological Layering140

 5.4.1 Illustrating Architectural Elements of the Software Application built upon

 Ontological Layering . 141

 5.4.2 Technology-specific Design Decisions for the Software Application 143

 5.4.2.1 Tools and Languages . 143

 5.4.2.2 Flow of Data and Order of Computations . 144

 5.4.3 Example of GUIs and Java Code of the Software Application 146

5.6 Summary . 154

6 Case Study: Submissions of MA Applications for Medicines

 6.1 Problems with Submissions for Marketing Authorisations of Medicines 156

 6.2 Reasoning Mechanisms for Creating a Correct eCTD . 158

 6.3 Grouping Semantically Related Ontological Individuals in Module 2 of the eCTD . . . 161

 6.3.1 Object Properties for Securing the Correct Content in Module 2 of the

 eCTD . 163

 6.4 Summary . 164

7 Conclusions
 7.1 Research Summary . 166

 7.2 Evaluation . 169

 7.2.1 Achieving Research Objectives . 169

 7.2.2 Contribution 170

 7.2.3 Comparison to Similar Approaches . 171

 7.2.4 Lessons Learnt 176

 7.3 Reflections . 177

 7.3.1 Complexity of Computations . . . 179

 7.3.2 Impact of Technology. 181

 7.3.2.1 OWL DL Versus OWL Full. 182

 7.3.2.2 Reasoning Rules and Hard Coding . 184

 7.3.2.3 Computations in Java Versus SWRL Rules 185

 7.4 Future Research . 185

Appendices 188

References 220

Index 239

viii

List of Tables

4.2 SELECTION_RULEi . 64

4.3 GROUPING_RULEi . 67

5.4 The results of running the Grouping rules 14, 15, 16 and 17 . 99

5.5 The results of running the Grouping rules 22, 23 and 24 . 102

5.6 The results of running the Grouping rules 29 and 30 . 105

5.7 The results of running the Low-Level rule 31 . 110

5.8 The results of running the Low-Level rule 32 . 111

5.9 The results of running the Low-Level rule 33 . 112

5.10 The results of running the Low-Level rule 34 . 113

5.11 The results of running the Low-Level rule 35 . 115

5.12 The results of running the Low-Level rule 36 . 116

5.13 The results of running the Low-Level rule 37 . 117

5.14 The results of running the Low-Level rule 38 . 119

5.15 The results of running the Low-Level rule 39 . 120

5.16 The results of running the Low-Level rule 40 . 121

5.17 The results of running the High-Level rule 41 . 124

5.18 The results of running the High-Level rule 42 . 125

5.19 The results of running the High-Level rule 43 . 126

5.20 The results of running the High-Level rule 44 . 126

5.21 The results of running the High-Level rule 45 . 127

5.22 The results of running the High-Level rule 46 . 127

5.23 The results of running the High-Level rule 47 . 128

5.24 The results of running the High-Level rule 48 . 128

5.25 The results of running the High-Level rule 49 . 130

5.26 The results of running the High-Level rule 50 . 131

5.27 The results of running the Post-High-Level rules 51, 52, 53, and 54 136

5.28 The results of running the Post-High-Level rules 55, 56, 57, 58, 59, 60 and 61 137

5.29 The results of running the Post-High-Level rules 62, 63, 64, 65, 66, 67 and 68 138

5.30 The results of running the Post-High-Level rules 69, 70 and 71 . 139

5.31 The results of running the Post-High-Level rules 72, 73, 74 and 75 139

5.32 The results of running the Post-High-Level rules 76, 77, 78 and 79 140

6.1 Ontological individuals that make up the correct content of the section named non-clinical

 and clinical summaries in module 2 of the eCTD . 161

6.2 Grouping rule used to move ontological individuals into the non_clinical_and_clinical_summaries

subclass of Navigational Structure class in PDF_ONT . 162

6.3 The results of running the Grouping rule to move ontological individuals into the

non_clinical_and_clinical_summaries subclass . 162

ix

List of Figures

2.1 The Semantic Web stack . 22

4.1 SA for resolving semantic conflicts through ontological layering . 45

4.2 Classification of semantically related concepts and the degree of similarity between them . . . 51

4.3 The process for resolving semantic conflicts . 54

4.4 Resolving different types of semantic conflicts generated by degrees of similarities between

semantically related concepts through steps 1-8 . 57

4.5 Example scenario of a heterogeneous healthcare environment . 58

4.6 An example of the ENV_ONT ontology from the User Request layer that stores ontological

 concepts that represent the availability of heterogeneous data repositories

 {Repi | i = 1, …, m} from the Persistent layer . 60

4.7 An example of the USER_INP ontology from the User Request Layer that stores ontological

concepts that correspond to the available heterogeneous data repositories

 {Repi | i = 1, …, m} from the Persistent Layer . 62

4.8 An example of steps 5a and 5b in the process for resolving semantic conflicts 63

4.9 The process of storing user inputs and determining user selections . 64

4.10 An example of the USER_INP ontology from the User Request Layer that stores ontological

concepts that correspond to the available heterogeneous data repositories

 {Repi | i = 1, …, m} from the Persistent Layer . 65

4.11 The inference as a result of running Grouping rules in step 5b of our process for resolving

 semantic conflicts . . 66

4.12 Levels of reasoningmMechanisms in core ontological layering . 70

4.13 The inference as a result of running SWRL rules as part of the Low-Level reasoning which

 secures ontology alignment . . . 72

4.14 The inference as a result of running SWRL rules as part of the High-Level reasoning which

 secures ontology integration . 75

4.15 The inference as a result of running SWRL rules as part of the Post-High-Level reasoning

 which secures ontology merge . 77

4.16 The incremental inference as a result of running SWRL rules as part of the Low-Level,

High-Level and Post-High-Level reasoning in ontology alignment, integration and merge . . . 70

5.1 Relational schema for the GP_data_rep . 80

5.2 Relational schema for the Hospital_data_rep . 81

5.3 Relational schema for the Clinic_1_data_rep . 82

5.4 Relational schema for the Clinic_2_data_rep . 82

5.5 Results from the translation of GP_data_rep database into the local ontology LO_gp 87

5.6 Examples of datatype properties in the „db:patient‟ class generated as a result of translating

 the GP_data_rep database into local ontology LO_gp .88

5.7 Examples of object properties created as part of the relationships existing in between the classes

‘LO_gp-patient_instances’ and ‘LO_gp-patient_records’ in local ontology LO_gp 90

5.8 Results from the translation of Hospital_data_rep database into local ontology

 LO_hospital . 90

5.9 Results from the translation of Clinic_1_data_rep database into local ontology

 LO_clinic_1 . 91

5.10 Results from the translation of Clinic_2_data_rep database into local ontology

 LO_clinic_2 . 91

5.11 Results from the modelling of metadata in GP_data_rep, Hospital_data_rep, Clinic_1_data_rep

 and Clinic_2_data_rep databases into the ENV_ONT . 92

5.12 Example of performing “clicks” on radio buttons offering data repository Repi and

 information type InfTypej . 93

5.13 Example of the classes we populate in the USER_INP_ONT . 95

x

5.14 Results of running Selection rules 1 – 8 against the Jess reasoning engine in the Protégé 3.4

ontological editing toolkit environment . 96

5.15 Example of inferring ontological individuals as a consequence of running SWRL Selection

 rules . . 97

5.16 Example of the ‘PATIENT_DETAILS_information_retreivals’ class in the

 ADDED_VAL_ONT . . 98

5.17 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

 LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type

 Patient details . 100

5.18 OWL restrictions that determine the set criteria for ‘patient_details-FROM-gp--hospital--

 clinic_1--clinic_2_rep’ class membership in the ADDED_VAL_ONT 100

5.19 Example of the ‘MEDICAL_SUMMARIES_information_retreivals’ class in the

 ADDED_VAL_ONT . . 101

5.20 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

 LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type

 Medical summaries . 103

5.21 OWL restrictions that determine the set criteria for ‘medical_summaries-FROM-gp--

 hospital--clinic_1--clinic_2_rep’ class membership in the ADDED_VAL_ONT 103

5.22 Example of the ‘TREATMENT_SUMMARIES_information_retreivals’ class in the

ADDED_VAL_ONT . . 104

5.23 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type

 Treatment summaries . 105

5.24 OWL restrictions that determine the set criteria for ‘treatment_summaries-FROM-gp--

 hospital--clinic_1--clinic_2_rep’ class membership in the ADDED_VAL_ONT 106

5.25 Example of the target ontologies {TOk | k =1...10 } . 108

5.26 Example of OWL conditions set upon the datatype property ‘has_same_FIRST_NAME’ 110

5.27 Example of OWL conditions set upon the datatype property ‘has_same_LAST_NAME’ 110

5.28 Transferring and inferring ontological individuals from local ontologies LO_gp and

 LO_hospital into the TO_1 target ontology . 111

5.29 Transferring and inferring ontological individuals from local ontologies Lo_gp and

 LO_clinic_1into the TO_2 target ontology . 112

5.30 Transferring and inferring ontological individuals from local ontologies LO_hospital and

LO_clinic_2 into the TO_3 target ontology . 113

5.31 Transferring and inferring ontological individuals from local ontologies LO_clinic_1 and

LO_clinic_2 into the TO_4 target ontology . 114

5.32 Transferring ontological individuals from local ontologies LO_hospital and LO_clinic_1 into

 the TO_5 target ontology . 115

5.33 Transferring ontological individuals from local ontologies LO_clinic_1 and LO_clinic_2 into

 the TO_6 target ontology . 116

5.34 Transferring ontological individuals from local ontologies LO_clinic_1 and LO_clinic_2 into

 the TO_7 target ontology . 117

5.35 Example of OWL conditions set upon the datatype property

 ‘has_same_UNIQUE_IDENTIFIER1’ . 118

5.36 Example of OWL conditions set upon the datatype property

 ‘has_same_UNIQUE_IDENTIFIER2’ . 119

5.37 Example of OWL conditions set upon the datatype property

 ‘has_same_UNIQUE_IDENTIFIER3’ . 119

5.38 Inferring ontological individuals from local ontologies LO_gp and LO_hospital into the

 TO_8 target ontology 120

5.39 Transferring ontological individuals from local ontologies LO_gp and LO_hospital into the

 TO_9 target ontology . 121

5.40 Transferring ontological individuals from local ontologies LO_gp and LO_hospital into the

 TO_10 target ontology . 122

5.41 Example of derived ontologies {DOg | g =1 ...10} . 123

5.42 Transferring ontological individuals from target ontologies ‘TO_1’, ‘TO_2’, ‘TO_3’

 and ‘TO_4’ into the DO_1 target ontology . 125

5.43 Transferring ontological individuals from target ontologies ‘TO_1’, ‘TO_2’, ‘TO_3’

 and ‘TO_4’ into the DO_2 target ontology . 125

5.44 Transferring ontological individuals from target ontologies ‘TO_1’, ‘TO_2’, ‘TO_3’

 and ‘TO_4’ into the DO_3 target ontology . . 126

xi

5.45 Transferring ontological individuals from target ontologies ‘TO_1’, ‘TO_2’, ‘TO_3’

 and ‘TO_4’ into the DO_4 target ontology . 126

5.46 Transferring ontological individuals from target ontologies ‘TO_5’ and ‘TO_6’ into the

 DO_5 target ontology . 127

5.47 Transferring ontological individuals from target ontologies ‘TO_5’ and ‘TO_6’ into the

 DO_6 target ontology . 128

5.48 Transferring ontological individuals from target ontologies ‘TO_5’ and ‘TO_6’ into the

 DO_7 target ontology . 128

5.49 Transferring ontological individuals from target ontologies ‘TO_7’ into the

 DO_8 target ontology . 129

5.50 Transferring ontological individuals from target ontologies ‘TO_9’ into the

 DO_9 target ontology . 131

5.51 Transferring ontological individuals from target ontologies ‘TO_10’ into the

 DO_10 target ontology . 131

5.52 Example of the „PATIENT_DETAILS‟ subclasses in Go-CID . 134

5.53 Example of the „MEDICAL_SUMMARIES‟ subclasses in Go-CID . 135

5.54 Example of the „TREATMENT_SUMMARIES‟ subclasses in Go-CID 135

5.55 Relocating ontological individuals from derived ontologies ‘DO_1’, ‘DO_2’, ‘DO_3’ and

 ‘DO_4’ into the Go-CID . 136

5.56 Relocating ontological individuals from ‘LO_gp-patient_instances’ in the LO_gp into

 the Go-CID . 137

5.57 Relocating ontological individuals from derived ontologies ‘DO_5’, ‘DO_6’, ‘DO_7’ and

 ‘DO_8’ into the Go-CID . 138

5.58 Relocating ontological individuals from ‘TO_5’and ‘TO_7’ target ontologies into the

 Go-CID . 139

5.59 Relocating ontological individuals from derived ontologies ‘DO_9’ and ‘DO_10’ into the

 Go-CID . 139

5.60 Relocating of ontological individuals from ‘TO_8’, TO_9’ and ‘TO_10’ target ontologies into

 the Go-CID 140

5.61 Architectural elements of the software application built upon ontological layering 141

5.62 Example of illustrating the elements contained within the architectural model of the software

application built upon ontological layering . 142

5.63 Example of the interface design used for the software application . 146

6.1 Example of linking ‘content’ of a PDF document to the (wrong) ‘section’ in the eCTD 157

6.2 The results of mirroring the eCTD navigational structure into the ENV_ONT 159

6.3 Example of the PDF_ONT created in order to exemplify semantics of PDF documents

 constituting the eCTD . 159

6.4 Results of mirroring the list of ‘sections’ for each module in the eCTD and the list of

 ‘contents’ for each module in the eCTD navigational structure into the USER_INP_ONT . . . 160

6.5 Results of mirroring the eCTD navigational structure into the ADDED_VAL_ONT and

 the example of the „non_clinical_and_clinic_summaries‟ subclass . 160

6.6 Inter-relationships between ontologies ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT

 to secure grouping of ontological individuals from PDF_ONT . 161

6.7 Grouping ontological individuals from classes „section‟ and „content‟ into the class

 „non_clinical_and_clinical_summaries‟ in the ADDED_VAL_ONT . 162

6.6 OWL restrictions that determine the set criteria for „non_clinical_and_clinical_summaries‟

 class membership in the ADDED_VAL . 163

xii

List of Abbreviations

ADDED_VAL_ONT Added Values Ontology

AI Artificial Intelligence

CWA Closed World Assumption

DB Database

DAML Defense Advanced Research Projects Agent Markup Language

DL Descriptions Logic

eCTD electronic Common Technical Document

ENV_ONT Environment Ontology

ESM Extending relational database Schema Model (ESM)

Go-CID Generic ontology for Context aware, Interoperable and Data sharing

GUI Graphical User Interface

HTML Hyper Text Mark-up Language

KM Knowledge Management

MA Marketing Authorisations

OIL Ontology Inference Layer

OWA Open World Assumption

PCE Pervasive Computational Environment

RDBO Relational DataBase Ontology

RDF Resource Description Framework language

RIF Rule Interchange Format

SCO Semantic Conflict Ontology

SCM Semantic Conflict representation Model

SCROL Semantic Conflict Resolution Ontology

SWRL Semantic Web Rule Language

SE Software Engineering

SPARQL Protocol and RDF Query Language

xiii

SQL Structure Query Language

UoD Universe of Disclosure

URI Uniform Resource Identifiers

USER_INP_ONT User Input Ontology

OWL Web Ontology Language

WWW World Wide Web

xiv

Glossary

Alignment is the process of establishing a semantic relation between two semantically related ontological

individuals, which in turn either (i) transfers duplicates of ontological individuals to a NEW ontological

class, or (ii) infers a new ontological individual into a NEW ontological class.

Assertion is the selection of an ontological individual or creation of an axiom according to a particular

context.

Atoms are ontological classes, properties, individuals or datatype property literal values declared as

variables in a SWRL rule.

Axioms are constituent parts of OWL abstract syntax, which may include classes, individual,

object/datatype property and literal values.

Classification of ontological concepts is the result of running SWRL rules upon them. Ontological

concepts are being „classified‟ in terms of having either their different characteristics or ontological

individuals being aligned, integrated or merged into a different ontological class of types: NEW,

CRADLE, COMMON or DISPLAY.

Class membership concerns ontological individuals that belong to a class because they meet the set

criteria imposed on the class. We can also claim that class membership may be the result of classification

of ontological concepts.

COMMON ontological class is an ontological class which initially, at the time of it‟s creation does not

contain any ontological individuals, but may accommodate in future semantically equivalent ontological

individuals that are asserted in this class because they have a semantic correspondence between them, as a

consequence of ontology integration.

Comparison is a process which compares a pair of ontological individuals against a set of OWL

restrictions/conditions.

Context is the result of grouping semantically related ontological individuals according to a user‟s

request for retrievals, i.e. choice of repository or information type. We can also claim that a certain

context pinpoints which ontological concepts might be semantically related.

Correlation is established between semantically equivalent ontological individuals that have the same

meaning. A correlation can only be established through running SWRL rules in the Post-High-Level

reasoning mechanism.

CRADLE ontological class is an ontological class which initially, at the time of it‟s creation does not

contain any ontological individuals, but may accommodate in future semantically similar ontological

individuals that are either (i) transferred in this class because they have a semantic relation between them,

or (ii) inferred in this class as a consequence of ontology alignment.

Datatype property refers to a „binary relation‟ between an ontological individual and a data literal value.

Binary relations use „domain‟ and range „values‟ to specify a relationship between ontological individuals

and a data literal. In a datatype property „values‟ refer to the names of the ontological individuals and

data literals of type XML schema datatype value or RDF literal.

DISPLAY ontological class is an ontological class which initially, at the time of it‟s creation does not

contain any ontological individuals, but may accommodate in future ontological individuals that model

the same „real world‟ meaning; that are relocated as a consequence of ontology merge.

xv

Domain and Range values are either (i) ontological classes that represent a set of ontological individuals

or (ii) a set of literal values associated to ontological individuals.

Duplicate of an ontological individual is a copy of the ontological individual that has been transferred

from the original class to a different ontological class of types CRADLE, COMMON or DISPLAY.

Grouping of ontological individuals is the process of acknowledging that these ontological individuals

are semantically related. Grouping ensures that semantically related ontological individuals are moved

into a NEW ontological class because they satisfy a set criteria for being a member of a NEW class.

High-Level reasoning mechanism is the process of executing ontological integration of semantically

similar ontological individuals. High-Level reasoning mechanism ensures that semantically similar

ontological individuals have a semantic correspondence between them and are transferred into an

ontological class of type COMMON.

Inference is the creation of a “new” ontological concept.

Integration is the process of creating a semantic correspondence, as a consequence of a „link‟ between

two or more semantically related ontological individuals, and asserting ontological individuals into an

ontological class of type COMMON.

Link is the establishment of a semantic correspondence between semantically similar ontological

individuals. A link can only be established through running SWRL rules in the High-Level reasoning

mechanism which may include the comparison between semantically similar ontological individuals.

Low-Level reasoning mechanism is the process of executing ontological alignment of semantically

related ontological individuals. Low-Level reasoning mechanism ensures that semantically related

ontological individuals have a semantic relation between them and are transferred into an ontological

class of type CRADLE.

Match is the establishment of a semantic relation between semantically related ontological individuals.

A match can only be established through running SWRL rules in the Low-Level reasoning mechanism

which may include the comparison between semantically related ontological individuals.

Merge is the process of creating a semantic correlation between two or more semantically equivalent

ontological individuals, and asserting ontological individuals into an ontological class of type DISPLAY.

Movement of ontological individuals is related to their groupings. It means that all ontological

individuals from one ontological class are moved to a NEW ontological class because they all satisfy the

set criteria for grouping. The criteria for grouping indicate that these ontological individuals are

semantically related.

Post-High-Level reasoning mechanism is the process of executing ontological merge of semantically

equivalent ontological individuals. Post-High-Level reasoning mechanism ensures that semantically

equivalent ontological individuals have the same meaning in „real world‟ concepts they model.

Named modeling concepts refer to modeling concepts that describe the view and interpretation a

particular domain of discourse of a given application domain.

NEW ontological class is an ontological class which initially does not contain any ontological

individuals, but may accommodate in future semantically related ontological individuals that generate

semantic conflicts as a consequence of their grouping in a particular context.

NEW ontological individual is an ontological individual which did not initially exist as an instance in an

ontological class, but is inferred as a result of a comparison between ontological individuals based on

OWL conditions.

Object property refers to a „binary relation‟ between ontological individuals. „Binary relations‟ use

„domain‟ and range „values‟ to specify a relationship between ontological individuals. In an object

property „values‟ refer to the names of ontological classes, in which the ontological individuals belong.

xvi

Ontological Class is a representation of a domain concept, which could be placed at the roots of various

taxonomical hierarchies. An ontological class may or may not contain instances, i.e. ontological

individuals. Ontological classes, which do not contain ontological individuals may be of class types:

NEW, CRADLE, COMMON or DISPLAY.

Ontological concept is an ontology description, where an ontology description is an ontological class,

ontological individual, or ontological property (relationship).

Ontological individuals refer to „instances‟ of a particular class, i.e. they are members or the extension

of a particular class (OWL).

Ontological property refers to „binary relations‟ between ontological individuals. Ontological properties

can be in the form of „object‟ or „datatype‟ properties. „Binary relations‟ use „domain‟ and range „values‟

to specify a relationship between ontological individuals. „Values‟ refer to ontological individuals or data

literals of type XML schema datatype value or RDF literal.

Ontological relationship is a specification of a „domain‟ and „range‟ value between two ontological

classes using an object property.

Original ontological individual is an ontological individual that is in its class of origin.

OWL Abstract Syntax is a sequence of axioms, facts, imports, and annotations.

OWL conditions are a set of „boolean combinations’ attached to an object property/datatype property

that exactly express the criteria for ontological individuals to secure their membership into an ontological

class of type CRADLE and COMMON.

OWL file is a flat file containing either an ontology (i.e. all ontological concepts, SWRL rules or both

ontology and SWRL rules created in OWL/SWRL.

OWL restrictions are a set of additional ontological descriptions attached to an object property/datatype

property that exactly express the criteria for ontological individuals to secure their membership into an

ontological class of type NEW.

Rule chaining is the mechanism of running a new SWRL rule on the result set of reasoning done with an

old (previously run) SWRL rule. We use moved/inferred/transferred ontological individuals/axioms as a

result set created after running an old SWRL rule to become one or more atoms in the antecedent (body)

and consequent (head) of a new SWRL rule.

Semantic conflicts are the differences in named concepts as a consequence of „semantic heterogeneities‟

between named modeling concepts because of either: (i) the interpretation of related named concepts in

respect to their meaning in a given context, (ii) the intended use of related named concepts within a given

context or (iii) the way we have modelled related named concepts in a universe of disclosure. Semantic

conflicts may differ in terms of “modeling the meaning behind the same concept”. This can happen at

many levels: from meta-data or data level to technology specific and model/view specifications.

Semantic correspondence exists between one or more ontological individuals in the COMMON class.

This means that these ontological individuals have exhibit similarities to each other before they have been

asserted (integrated) into the COMMON class. The level of their similarity, prior to their integration has

been established as “semantic equivalence”.

Semantically equivalent ontological concepts are concepts which have the exact same meaning, i.e.

these concepts are either result of (i) resolved semantic conflicts or (ii) bear no semantic conflicts initially

between them.

Semantically related concepts are concepts which have a semantic relation between them, and

subsequently generate a number of semantic conflicts.

Semantic relation exists between one or more ontological individuals in the CRADLE class. This means

that these ontological individuals exhibit overlapping semantics to each other before they have been

xvii

inferred (alignment) into the CRADLE class. These individuals, prior to their alignment, have been

grouped into “semantically related” concepts (in this case, concepts are classes).

Semantically similar concepts are concepts which have semantic correspondence defined between them.

In other words these ontological individuals share the same semantics.

Set criteria are a set of OWL restrictions/conditions upon object properties or datatype properties

between ontological classes and their individuals.

Strength of a match is the degree of similarity between overlapping ontological concepts.

SWRL rule is the conjunction of atoms. Atoms are deifned as classes, individual properties, data valued

properties, individuals, data ranges, and built-in functions. The conjunctions of atoms are grouped into an

antecedent (the body), and a consequent part (head) in the SWRL syntax.

Transferring of ontological individuals is COPYING of ontological individuals (“originals”) and

creating DUPLICATES of these “originals” in order to move them into a different ontological class of

types: CRADLE, COMMON or DISPLAY.

xviii

Declaration

The following list of published papers has resulted from this research:

2011

PATADIA, R.; KATARIA, P.; JURIC, R. (2011) “Building Semantic Software Applications upon

Ontological Environments”, To appear in the proceedings of the 16
th

 International Conference on

Transformative Science, Engineering, and Business Innovation (SDPS 2011), (Jeju Island, South Korea,

June 12-16).

SUH, S.; AJIT, S.; SADANANDAN NAIR, J.; KATARIA, P.; JURIC, R. (2011) “Smart Preventive

Healthcare System using Ontological Reasoning”, To appear in the proceedings of the 16
th

 International

Conference on Transformative Science, Engineering, and Business Innovation (SDPS 2011), (Jeju Island,

South Korea, June 12-16).

KATARIA, P.; JURIC, R. (2009) “Sharing Healthcare Data by Manipulating Ontological Individuals”, to

appear in a chapter of the working title Advances in Bio-medical Engineering, published by Springer

Verlag as hard copy with an ISBN number.

SAAIDI, S.R.; KATARIA, P.; JURIC, R. (2009), “Semantic Management of the Submission Process for

Medicinal Products Authorisation”, to appear in a chapter of the working title Advances in Bio-medical

Engineering, published by Springer Verlag as hard copy with an ISBN number.

KATARIA, P.; JURIC, R. (2010) “Creating Semantics from User Inputs through Ontological Reasoning”,

In: Proceedings of the 15
th
 International Conference on System Design and Process Science (SDPS 2010),

(Texas, Dallas, US, June 6-11), CD-ROM.

2010

KOAY, N.; KATARIA, P.; JURIC, R. (2010) “Semantic Management of Non-Functional Requirements

in e-Health Systems”, Telemedicine and e-Health Journal, 16(4), pp. 461-471.

KATARIA, P.; JURIC, R. (2010) “Creating Semantics from User Inputs through Ontological Reasoning”,

In: Proceedings of the 15
th
 International Conference on System Design and Process Science (SDPS 2010),

(Texas, Dallas, US, June 6-11), CD-ROM.

SYAL, P.; KATARIA, P.; JURIC, R.; ROBBINS, D.; TANIK, M.M.; HLUPIC-VIDJAK, V. (2010) “The

Virtual Learning Environment Ontology for Smart Classrooms”, In: Proceedings of the 15
th

 International

Conference on System Design and Process Science (SDPS 2010), (Dallas, US, June 6-11), CD-ROM.

KATARIA, P.; JURIC, R. (2010) “Automated Reasoning in Resolving Semantic Conflicts across

Heterogeneous Repositories”, In: Proceedings of the 17
th

 Automated Reasoning Workshop - – Bridging

the gap between theory and practice, (University of Westminster, Harrow, Middlesex, UK, March 30-31),

available at http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html, [accessed September 2010].

KATARIA, P.; JURIC, R. (2010) “Sharing Healthcare Data through Ontological Layering” In:

Proceedings of the 43
rd

 Annual Hawaii International Conference on System Sciences (HICSS 43), (Kauai,

Hawaii, January 5-8), pp. 1-10.

http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html

xix

2009

GANGULY, S.; KATARIA, P.; JURIC, R.; ERTAS, A.; TANIK, M. M. (2009) “Sharing Information

and Data across Heterogeneous e-Health Systems”, Tele-Medicine and e-Health Journal, 15(5), pp. 454-

464.

KATARIA, P.; JURIC, R. (2009) “Sharing Healthcare Data by Manipulating Ontological Individuals”, In:

Proceedings of the 12
th

 International Conference System Design and Process Science (SDPS 2009),

(Montgomery, Alabama, US, November 1-5), CD-ROM.

SAAIDI, S.R.; KATARIA, P.; JURIC, R. (2009), “Semantic Management of the Submission Process for

Medicinal Products Authorisation”, In: Proceedings of the 12
th

International Conference on Integrated

Design and Process Technology (SDPS 2009), (Alabama Montgomery, USA, November 1-5), CD-ROM.

JAKIMAVICIUS, T.R.; KATARIA, P.; JURIC, R. (2009) “Semantic Support for Dynamic Changes in

Enterprise Business Models”, In: Proceedings of the 12
th

International Conference on Integrated Design

and Process Technology (SDPS 2009), (Alabama Montgomery, USA, November 1-5), CD-ROM.

FILIP, E.A.; KATARIA, P.; JURIC, R. (2009) “Intelligent Business Process Improvement”, In:

Proceedings of the 12
th

International Conference on Integrated Design and Process Technology (SDPS

2009), (Alabama Montgomery, USA, November 1-5), CD-ROM.

KATARIA, P.; MACFIE, A.; JURIC, K.; MADANI, K.; (2009) “Ontology for Supporting Context

Aware Applications for the Intelligent Hospital Ward”, Transaction of Integrated Design & Process

Science Tran-Disciplinary International Journal, 12 (3), pp. 35-44.

KOAY, N.; KATARIA, P.; JURIC, R.; TERSTYANSKY, G.; OBERNDORF, P. (2009) “Ontological

Support for Managing Non-Functional Requirements in Pervasive Healthcare”, In: Proceedings of the

42
nd

Hawaii International Conference on System Science (HICSS 42), (Waikoloa, Big Island, Hawaii,

January 5-8), pp. 1-10.

2008

MACFIE, A.; KATARIA, P.; KOAY, N.; DAGDEVIREN, H.; JURIC, R.; MADANI, K. (2008)

“Ontology Based Access Control Derived From Dynamic RBAC and its Context Constraints”, In

Proceedings of the 11
th

International Conference on Integrated Design and Process Technology (IDPT

2008), (Taichung, Taiwan, June 1-6), CD-ROM.

KATARIA, P.; KOAY, N.; JURIC, R.; MADANI, K.; TESANOVIC, I. (2008) “Ontology for

Interoperability and Data Sharing in Healthcare”, In: Proceedings of the 4
th

 International Conference on

Advances in Computer Science and Technology (Langkawi, Malaysia, April 2-4), CD-ROM.

KATARIA, P.; JURIC, R.; PAUROBALLY, S.; MADANI, K. (2008) “Implementation of Ontology for

Intelligent Hospital Wards”, In: Proceedings of the 41
st
 Hawaii International Conference on System

Science (HICSS 41), (Hawaii, Big Island, January 7-10), pp.1-8.

2007

KATARIA, P.; JURIC, K.; MADANI, K.; (2007) “Go-CID: Generic Ontology for Context Aware,

Interoperable and Data Sharing Applications”, In: Proceedings of the 11
th

 International Conference on

Software Engineering Applications (Cambridge, MA, US, November 19-21), CD-ROM.

KATARIA, P.; JURIC, K.; MADANI, K.; CROFT, J. (2007) “Building Ontology for Intelligent Software

Applications in Hospitals”, In: Proceedings of the 10
th

International Conference on Integrated Design

and Process Technology (IDPT 2007), (Antalya, Turkey, June 3-8), CD-ROM.

http://www.liebertonline.com/toc/tmj/15/5?cookieSet=1
http://www.liebertonline.com/toc/tmj/15/5?cookieSet=1
http://www.liebertpub.com/products/product.aspx?pid=54

xx

The following list of papers in preparation as a result from this research:

“Transferring Ontological Individuals in OWL/SWRL enabled Ontologies”, to be submitted to the 8
th

Extended Semantic Web Conference 2011, (May 29 - June 2, Heraklion, Crete, Greece).

“Application Architectures for Semantic Computational Spaces (SemCOS)”, to be submitted to the

Journal of Software Practices and Experiences (JSPE), John Wiley and Sons, Ltd.

“Building Software Applications with Semantic Web Technologies, to be submitted to the ACM/SIG,

Software Engineering Notes (SEN).

“Ontological Layering for Resolving Semantic Conflicts in Retrievals across Heterogeneous Sources”, to

be submitted to the ACM Transactions on Information Systems.

“Adding Values through Reasoning upon User‟s Requirements in Retrievals from Heterogeneous

Sources”, to be submitted to the Requirements Engineering Journal, Springer.

“Semantic Management of Submissions of Applications for Marketing Authorisations of Medicines” to

be submitted to the IEEE Transactions on Information Technology in Biomedicine.

“Driving Business Values with Semantic Technologies: Supporting Dynamic Enterprise Models”, to be

submitted to Knowledge-based Systems, Elsevier.

 Chapter 1: Introduction 1

Chapter 1

Introduction

1.1 The Domain

Wesier‟s [1] idea of “a collection of a wide variety of smart devices and services that react to their

environments, coordinate with each other and network services to assist users in completing their tasks,

and provide them with ubiquitous access to information” has given us a visionary direction towards

Pervasive Computational Environments (PCEs) as the natural evolution of traditional standardised

desktop computing to ubiquitous computing. Embedded and smart devices, which perform computations

in such environments through direct communication with user centric applications [2], have led us to the

pervasive computing paradigm, which we have embraced as the way forward in modern computing. The

most cited author Satayanarayan [3] simplified in 2001, Weiser‟s views on what PCEs are, and

subsequently described them as “distributed information systems and mobile computing environments”.

However, Satayanarayan‟s simplified definition does not really clarify the complexity and content of any

PCE, therefore, Gupta‟s and Moitra‟s [4] views on pervasiveness in modern computational spaces are

more precise. Gupta and Moitra emphasise that computers, including smart and mobile devices, are

essential mechanisms for making PCEs possible, through the communication and exchange of data, using

wireless connectivity and dynamic application development on an ad hoc basis, thus providing feasibility

of anytime, anywhere computations. Therefore, if we agreed that PCEs are our reality, in terms of

creating computational environments today, then we may argue that it is impossible to eliminate

pervasiveness from software systems in the 21
st
 century.

However, meaningful sharing of data, which allows immediate access to data/information,

regardless of who owns it, is also typical of PCEs. Therefore, PCEs are not only characterised by a

multitude of devices and software executions upon them, but rather by semantically rich data and

information which they generate and store. The different nature, structure and complexity of

data/information generated in PCEs very often include a number of data repositories that contain

semantically related data, which are heterogeneous in their models and structures (some even lack

structures). This is not only a consequence of the way we create PCEs and decide about their contents.

Furthermore, different pervasive applications and software systems in PCEs are understood by different

types of data models and utilised by different types of data repositories. Consequently, heterogeneities in

 Chapter 1: Introduction 2

PCEs is one of their most important characteristics, which allows us to exercise all possible combinations

of hardware, software, data, information, communication patterns, and the philosophy of the storage and

retrievals of persistent data in any particular PCE. Without this freedom we will not be able create a

space which secures anytime, anywhere computations.

Inevitably, pervasive software systems, like any other heterogeneous software systems, are required

to interoperate seamlessly in order to allow the sharing of semantically related data from multiple

repositories, which in turn makes human interaction and user involvements in such systems feasible. We

users, are consumers of PCEs and are able to draw upon the most relevant information from our

environment, i.e. we draw their content to clarify our ideas, to make decisions and even adapt our

behavior according to semantics stored in PCEs. Communication and exchange of data is essential in

PCEs, but at the same time it does not necessarily lead to the retrieval and sharing of meaningful data.

This has been known as the semantic interoperability problem, which has existed across autonomous and

heterogeneous software systems since the late 80s and was defined as the ability to manage semantic

heterogeneities between them [5, 6, 7, 8, 9, 10, 11, 12, 13 and 14].

1.2 The Research Problem

Semantic heterogeneities make the semantic interoperation [10, 15, 16, 17 and 18] in software systems

extremely difficult to achieve, since each of them may operate within different environments, may have a

number of different data repositories which have been created according to different models, purposes,

and may run on different platforms. Thus, the ability to manage semantic heterogeneities effectively and

successfully would imply addressing the semantic interoperability problem in the first place. This will

depend on how we manage the various interpretations of data (or data heterogeneities) and their

overlapping meaning with regards to either [19, 20, 21 and 22]:

(i) the intended use of related data, or

(ii) when the same phenomena in an Universe of Disclosure (UoD) is modelled in different ways.

Obviously, our concerns on heterogeneities and interoperability have not changed since the late 80s, i.e.

we are still dependent on various interpretations of data and manipulating their meaning (semantics?)

when addressing heterogeneities in modern software systems.

 The ad hoc creation, and dynamic nature of PCEs, suggests that the semantic heterogeneity problem

will often arise when conflicting data and their interpretations occur. This is an important dimension of

the heterogeneity problem. Whether we have semantic heterogeneity or not, will depend on the exact

content of a PCE, and the way we build it. Furthermore, when choosing a set of data repositories essential

for the functioning of a particular PCE, we will not nessecarily be aware immediately about possible

heterogeneity at data level. These semantic heterogeneities become evident when we start retrieving data

from such repositories. Therefore, user‟s interventions in terms of issuing request for retrievals in a

particular instance of a PCE can trigger the first awareness of potential conflicts in data and their

interpretations.

 Chapter 1: Introduction 3

 Managing semantic heterogeneities would mean resolving conflicting data and interpretations, i.e.

resolving semantic conflicts
1
 between semantically related data. Examples of semantic conflicts have

been documented in [10, 12, 14, 16, 17, 18, 19, 20, 21 and 22]. However, one of the best and the oldest

papers on semantic conflicts dates from the 80s. The work in [23] gives author‟s perception on “why

semantic conflicts may appear”, which is itemised in the bullet-points below:

 the existence of different perspectives as a result of the different viewpoints that groups of users and

designers have about a certain „real-world‟ concept when modeling systems;

 the appearance of equivalent constructs as a result of different data models;

 the incompatible design specifications as a result of different schemas.

This was one of the first attempts to understand what was happening in heterogeneous database systems

in the 80s and why semantic conflicts were natural “results” of their heterogeneities. In addition to the

perception of semantic conflicts from [23], we have the additional views on what further aggravates the

problem of semantic interoperability created by the existence of semantic conflicts [13]:

 semantic (or other) data models in heterogeneous databases may be unable to sufficiently capture

the semantics of real world concepts
2
 in terms of their meaning and use, and

 there may be multiple views and interpretations of a given application domain which may change

with time.

Therefore, we agree with the views from [24] that, if we do not resolve semantic conflicts, they may

result in either (i) the wrong usage of semantically related data within a given context
3
, or (ii) the

incorrect understanding of the meaning of real life concepts they model, hence becoming an obstacle to

achieving semantic interoperability. Semantic conflicts, if undetected, may produce disastrous results and

may provide imprecise and incomplete sharing of data.

Subsequently, the software community has been interested in the heterogeneity problem since the

early 80s, which primarily addressed heterogeneities in relational databases. The problem remained in

the focus of the Database (DB) research community for more than 15 years, because of a huge demand

for databases in business software applications, which were supposed to be autonomous and

heterogeneous. There were many solutions which attempted to resolve heterogeneities in DB systems,

and claimed that they delivered interoperable databases. Solutions ranged from migrations between

various DB systems and federations amongst them [25, 26 and 27], to mediation and wrapping

architectures which accommodate a variety of repositories and software applications built upon them [28,

29, 30, 31, 32, 33 and 34]. However, in 2010, we know that none of these solutions have provided a

definitive answer to “how we manage semantic heterogeneities in databases” and how we can resolve

semantic conflicts inherent in them [10, 35, 36, 37, 38, 39, 40].

 The distributed and heterogeneous nature of PCEs [41] makes semantic heterogeneities an

unavoidable outcome, if we attempt to share data and information across them. This is because the true

nature of modern computational environments is in favoring heterogeneities over uniform representations

of data, information and software applications which generate them. The continuous growth of the World

1
 See the Glossary for the definition of „semantic conflicts‟.

2
 The term “real world concept” distinguishes from the “(model) concepts” that can be captured using abstractions in

the semantic data model [44].
3
 See the Glossary for the definition of a given „context‟.

 Chapter 1: Introduction 4

Wide Web (WWW), and the need for pervasive software systems, has revitalised the research in

interoperability. As more software systems are interrelated across domains, through pervasive software

applications, we have started witnessing the demand for information retrievals, data sharing and

meaningful exchange of semantically related data within and across PCEs. This has become essential in

modern software systems and reinforces the need to address the semantic interoperability problem, i.e. to

manage semantic heterogeneities.

However, if we attempt to address the semantic interoperability problem in 2010, we are in a much

better position than the DB research community was in the 90s. Firstly, we are adopting heterogeneities

as a desirable feature of modern software systems, i.e. we are not trying to eliminate it. Secondly, we are

in a position of experimenting with and embracing the Semantic Web initiative [42], as a possible vehicle

for providing “meaningful exchange of semantically related data across PCEs”. This can be done through

the commercialisation of Semantic Web technologies, such as Extensible Markup Language (XML)
4
, the

development of tools for supporting semantic interoperability on the WWW, standardisation of the

Resource Description Framework (RDF)
 5

 language, plus the power of the Web Ontology Language

(OWL)
6
 and reasoning languages such as the Semantic Web Rule Language (SWRL) [43], which provide

the additional expressivity for making the semantics of data explicit.

1.3 Research Approach

The complexities of semantic heterogeneities in modern software systems might not require addressing

the interoperability problem in its entirety. Our view is that we should welcome and keep heterogeneities

of software systems today, particularly in PCEs, maintain their autonomy and secure retrievals across

them according to the semantics of data and applications stored in them. This will help us to:

 understand the environment where PCEs reside,

 exploit the power of users‟ involvements when creating and managing PCEs,

 manage semantically related data in such environments, and

 secure the correct results of retrievals across them.

We advocate the use of the Semantic Web technology, i.e. OWL ontologies and reasoning mechanisms

upon their ontological concepts, in order to understand the environment where retrievals across

heterogeneous repositories are made, and help us to resolve semantic conflicts triggered by the existence

of semantically related data involved in such retrievals. OWL ontologies and reasoning mechanisms can

be implemented through a software architectural model, which in turn can manage multiple ontologies

through ontology mappings. The purpose of ontology mappings is to ultimately secure the correct results

of retrievals across heterogeneous data repositories. The correctness of the results of retrievals will

depend on how successfully we resolve semantic conflicts which may exist between semantically related

data involved in such retrievals.

Our research approach has the following pathway:

4 www.xml.com/
5 http://www.w3.org/RDF/
6
 http://www.w3.org/OWL/

http://www.xml.com/
http://www.w3.org/RDF/
http://www.w3.org/OWL/

 Chapter 1: Introduction 5

 we start by proposing a layered Software Architecture (SA), based on ontological layering, which

supports retrievals across various data repositories in pervasive software systems and resolves

semantic conflicts which arise from heterogeneities inherent in them;

 we design ontology mappings, and execute them through reasoning mechanisms, which create

different ontological layers of our SA. Each layer resolves a set of semantic conflicts, triggered by

the existence of semantically related data involved in a particular retrieval;

 we ensure that such ontology mappings are deployable with Semantic Web technologies.

However, there are four important issues that we must take into account in our research approach.

The first relates to the complex nature of semantic heterogeneities and semantic conflicts which we

may have in PCEs. Semantic conflicts in heterogeneous data repositories are usually of interest only

when semantically related data exists, i.e. where data may have similar meaning according to a particular

UoD [19, 20, 21, 22 and 44]. Thus, resolving semantic conflicts in such situations inevitably depends on

the understanding of the semantics stored in heterogeneous data repositories (i.e. computational models

of database schema or ontology elements) and the identification of that particular semantically related

data. However, the context within which data is semantically related also implies the understanding of

the overlapping meaning of data in terms of their similarities and differences [45]. These similarities and

differences can point towards the different types of semantic conflicts and help us to understand the

different relationships between them. Thus, the context within which data is semantically related also

needs to be taken into account, when resolving semantic conflicts, as it can indicate when a particular

semantic similarity holds true between semantically related data.

The second relates to the power of user‟s involvement in retrievals across heterogeneous

repositories. It is often the case that user‟s involvements are essential in verifying what users expect and

in determining which information is relevant to user‟s particular retrieval [24 and 46]. Therefore, the need

to understand and exploit the semantics of user‟s involvements in pervasive software systems can prove

to be essential in creating a particular context within which semantic conflicts occur. This will ultimately

secure the correct results of retrievals across heterogeneous data repositories.

The third relates to the deployment of our ontological and layered SA using Semantic Web

technologies. We know that ontologies have appeared to be the answer to resolving semantic conflicts

between heterogeneous multi-databases [47, 48, 49, 50, 51 and 52]. We also know that there are a variety

of ontological approaches that are commonly used to deal with mismatches between heterogeneous

ontologies available for the Semantic Web [53 and 54], and that they are also used in tools which relate

different ontological concepts to each other, such as ASCO [55], SAT [56], GLUE [57], Cupid [58],

QOM [59], Anchor-PROMPT [60] and Chimaera [61]. Thus, if we wanted to build an ontological and

layered SA, for retrievals across heterogeneous data repositories, then these previous works should be

taken into account in our research pathway.

The fourth relates to the design of the environment for deploying ontologies and reasoning in our

SA. This will be dependent on the choice of tools and languages available in the Semantic Web

technology stack
7
, thus having an impact on our ontological models and reasoning mechanisms.

7
 http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

 Chapter 1: Introduction 6

1.4 Research Objectives

The aim of this research is to propose an ontological and layered SA, which generates software

applications for supporting retrievals across heterogeneous data repositories in pervasive software

systems, and resolves semantic conflicts which arise from heterogeneities inherent in them. We also aim

to examine whether ontology mappings and reasoning mechanisms can be designed and deployed within

the proposed architectural layers, using Semantic Web technologies. Consequently, ontology mapping

will be the main contributing factor when creating SA for resolving semantic conflicts in PCEs.

Thus, the first research objective is to investigate traditional ontology based approaches to resolving

semantic conflicts across various repositories, databases and in information systems in general. We

should also examine whether ontological engineering and its existing mappings between ontologies,

would be sufficient to guide us in our own approach to creating mappings between ontological layers in

our SA. We have to pay attention to the latest standardisation of Semantic Web tools and languages and

their impact on the way we use them to exploit and manipulate semantics of ontological models.

The second objective is to propose the SA and prove that the deployment of its components through

ontological layering will create software applications which support retrievals in pervasive software

systems and resolves semantic conflicts which arise from heterogeneities inherent in them. More

specifically, we build specific ontologies for each layer of the SA, with clearly defined reasoning

mechanisms. We perform ontology mappings and resolve a particular set of semantic conflicts at each

layer. Thus, our SA should be described through its building blocks: ontologies, ontological concepts and

their roles needed for resolving semantic conflicts. We also use reasoning rules for adding more

expressivity to our ontological models, which in turn will specify which type of reasoning would be

responsible for building a particular ontological layer within our proposal.

The third objective is to illustrate and evaluate the proposed ontological and layered SA through a

specific example of retrievals of semantically related data across repositories in pervasive healthcare.

However, our SA and its ontological layering, which is based on reasoning rules, has proved to be an

excellent vehicle for manipulating semantically related concepts in a range of of other problem domains.

We include a case study which uses our ontological layering and reasoning in the domain of applications

for Marketing Authorisations (MAs) of medicines. We also list several other case studies where our

ontological layering and reasoning have been re-used, such as supporting dynamic changes of business

models and business processes, managing non-functional requirements in pervasive healthcare and

creating virtual learning environments. All these examples are extensions to our research results when

exploiting ontological layering for the purpose of resolving semantic conflicts in retrievals of

heterogeneous data.

The difficulty of manipulating semantically related concepts, and addressing the semantic

interoperability problem in PCEs, while using Semantic Web technologies, may raise questions on how

we can approach this problem in 2010. Thus, our final objective is to put forward any suggestions we

may have when resolving semantic conflicts in modern software applications of the 21
st
 century.

 Chapter 1: Introduction 7

1.5 Research Methods

The research methods include primarily the reading and surveying of literature, which involves

examining the existence of semantic heterogeneities through generations of software systems: from the

research in heterogeneous databases which started in the late 80s, to the current research in PCEs, which

may use ontological engineering when addressing the semantic interoperability problem. We have also

conducted a separate research into the definitions of semantic conflicts and the role of semantic

similarities between data, which trigger these conflicts. This has helped us to create our own

classification of semantic similarities, their degrees and the types of semantic conflicts they trigger.

 Our investigation of Semantic Web technologies, as the vehicle for manipulating the semantics

stored in any type of data repositories, including WWW, has helped us to:

i. exploit the enormous power of OWL and SWRL enabled ontologies in modern computing, and

ii. create inferences from existing semantics, in order to satisfy our research objectives, without being

dependent on traditional forms of inferences known in the Artificial Intelligence (AI) and

Description Logic (DL) communities.

We have demonstrated that OWL and SWRL enabled ontologies do guarantee the deployment of our SA

and prove the feasibility of our proposal.

1.6 Outline of Forthcoming Chapters

This work is divided into 7 chapters. We start with the analysis of semantic heterogeneities and the

problem of semantic interoperability, applications of ontologies in modern computational environments

and related works in chapters 2 and 3. Chapter 4 proposes an ontological and layered SA, which generates

a Generic ontology for Context aware, Interoperable and Data sharing (Go-CID) that ensures correct

results of retrievals across heterogeneous data repositories, and secures inference mechanisms for

resolving semantic conflicts. We illustrate and test the SA through case studies in chapters 5 and 6.

Conclusions and future works are in chapter 7. The content of the forthcoming chapters are detailed

below.

In chapter 2 we review semantic heterogeneities through generations of software systems: from

traditional heterogeneities in database systems, to heterogeneities inherent in modern pervasive software

systems. We give an insight into how technologies and research advances have changed the nature of

computing and we look at the problem of semantic heterogeneities in PCEs in terms of enabling data

sharing, which raises the question of semantic interoperability. We also review the evolution and

application of ontologies as a software engineering solution for semantic interoperability in today‟s

modern computational environments. Meaning based computing is discussed as a step towards managing

the problem of semantic heterogeneities today.

In chapter 3 we analyse approaches related works to resolving semantic conflicts in heterogeneous

databases, information systems and ontologies. The related work has been discussed through the various

classifications of semantic conflicts, understanding when/where they can occur and in which type of data

repositories we may find them. We also discuss methods and approaches for resolving them, such as

well-known federations, global schemas and mediations in heterogeneous databases, demonstrating their

benefits and drawbacks. We also look at the use of ontologies as vocabularies in heterogeneous databases

 Chapter 1: Introduction 8

and information systems, which happened to be the first attempt for using ontologies when resolving

semantic conflicts. However, we pay more attention to the use of Semantic Web technologies, ontological

modelling and reasoning in resolving semantic conflicts. As our proposal is dependent on ontological

layering and ontology mapping; therefore we also review research on ontology mapping and open/closed

world reasoning.

In chapter 4 we propose a generic SA which accommodates ontological layering and Go-CID,

which supports retrievals from various data repositories and resolves semantic conflicts. The architecture

focuses on resolving semantic conflicts and achieving data sharing and interoperability in any

heterogeneous environment through unique ontological layering which is based on a set of specific

ontological mappings and reasoning performed upon ontological concepts. We illustrate the way

ontological layers are created, and when we resolve semantic conflicts through ontological alignment,

integration and merge. We also layout our theoretical foundations for classifying similarities between

semantically related concepts in heterogeneous data repositories and introduce the process for resolving

semantic conflicts.

In chapter 5 we illustrate the implementation of SA components through a case study in pervasive

healthcare. We conduct three activities, as a part of our process for resolving semantic conflicts:

I. Detailing the preparation of semantics essential for creating core ontological layers by:

a. translating the content and structure of heterogeneous Data Repositories {Repi | i = 1, ... m} into

Local Ontologies {LOj | j = 1, ... n} and the Environment Ontology (ENV_ONT), and

b. storing user‟s involvements in terms of capturing user‟s inputs, while requesting retrievals across

heterogeneous data repositories, in the User Input Ontology (USER_INP_ONT). We interpret

the meaning of user‟s involvement through reasoning upon concepts of Local Ontologies LOj

and USER_INP_ONT. The results of reasoning are stored in concepts of the Added Value

Ontology (ADDED_VAL_ONT).

II. Creating core ontological layers according to the semantic stored in ADDED_VAL_ONT. We

illustrate how we perform ontological alignment, integration and merge to resolve different types of

semantic conflicts. We have three different types of SWRL rules which support mappings: Low-

Level rules that align Local Ontologies LOj into Target Ontologies {TOk | k = 1, ... p}, High-Level

rules that integrate Target Ontologies TOk into Derived Ontologies {DOg | g = 1, ... q} and Post-

High-Level rules that merges Derived Ontologies DOg into the final Go-CID ontology.

III. Describing our full scale implementation of a software application built upon ontological layering

that successfully retrieves ontological concepts stored in Go-CID, thus ensuring the correct results

of retrievals.

In chapter 6 we cover a separate case study which illustrates how ontologies ENV_ONT,

USER__INP_ONT and ADDED_VAL_ONT from our proposal, can be used in a completely different

domain of applications for Marketing Authorizations (MAs) of medicines. We reuse the reasoning

mechanism from (I) above to ensure that, when applying for MA of medicines, correct data has been

submitted, as a part of MAs procedure and according to the requirements specified in their electronic

Common Technical Document (eCTD). In this section we also list a number of case studies that

illustrates and tests ontological layering for solving the problem of manipulating semantically related

 Chapter 1: Introduction 9

concepts in a range of sub-domains such as dynamic changes of business models and business processes,

managing non-functional requirements in pervasive healthcare and creating virtual learning environments.

In chapter 7 we summarise our research and evaluate it by looking at the research objectives and our

results. We have proved that it is feasible to use the ontological and layered SA to resolve semantic

conflicts, which appear in retrievals across heterogeneous data repositories. Our approach of creating and

using ontology mappings is unique because it is done according to:

 the understanding of the environment where heterogeneous data repositories reside;

 the power of user‟s involvement in retrievals across these repositories;

 our own classification of semantically related data and the degrees of similarities between them

which trigger semantic conflicts in retrievals across heterogonous data repositories;

 specific SWRL rule chaining which automatically creates core ontological layers though reasoning

upon ontological concepts.

We close chapter 7 by outlining contributions of the research, reflecting upon certain concerns and views,

as the result of this research, and by listing future works.

 Chapter 2: Semantic Heterogeneities and Ontologies 10

Chapter 2

Semantic Heterogeneities and Ontologies

In this chapter we chronologically review the impact of semantic heterogeneities through various

generations of development of software systems, and how we perceive them today, when ubiquity and

pervasiveness are at the core of modern computational environments.

In section 2.1 we classify a variety of heterogeneities which has existed in software systems since

the late 80s and the way they influence semantic interoperability in today‟s software systems. In section

2.2 we give an insight into how technologies and research advances have changed the nature of our

computing environments and software systems developed in them. Ubiquitous computing and pervasive

software systems have created new computing directions: we talk about pervasive or “smart” spaces,

pervasive software applications, pervasive middleware, sensor driven computing, etc. In section 2.3 we

look at the problem of semantic heterogeneities in PCEs and emphasise the importance of data sharing in,

and autonomy of data repositories in various domains.

The need for data sharing across heterogeneous data repositories, whilst preserving their autonomy,

and the emergence of ubiquity and pervasiveness in modern computing, has once again brought the

problem of semantic interoperability to our attention. Today, we are not talking solely about semantic

interoperability of data intensive software applications, as we did in the late 80s, which singled out

database and information systems semantic heterogeneities. We are now raising the same question of

semantic interoperability in different computational environments characterised by ubiquity and

pervasiveness, because they are heterogeneous and autonomous by their nature, and they heavily depend

on sharing of data and information stored within them.

In section 2.4 we review the role and application of ontologies as a possible solution in addressing

semantic interoperability in modern computational environments. The power of modern technologies,

such as the Semantic Web technologies brings us towards a new era of meaning-based computing, which

we discuss in section 2.5. This might be a possible fundamental step towards better management of

semantic heterogeneities inherent in modern computational environments. We summarise in section 2.6.

 Chapter 2: Semantic Heterogeneities and Ontologies 11

2.1 Semantic Heterogeneities through Generations of Software

Systems

We perceive software systems as heterogeneous if they have different characteristics such as

data/information resources/services, computation/communication devices, application/service interfaces,

access methods, protocols etc., which are commonly referred to as heterogeneities. These heterogeneities

can range from differences in organisational autonomy of data repositories and applications built upon

them, hardware/software platforms which are used for their implementations, to similar/identical data

which exists in different sets of requirements for and solutions in data-intensive software applications.

The understanding of heterogeneities has evolved so much during the past two decades, and it has always

been closely related to the problem of interoperability. However, the issue of heterogeneities in software

systems originated in the DB community of the 80‟s, when they wanted to address the problem of DB

systems interoperability. Heterogeneities in those days were considered an unwelcome feature because

they proved to be an obstacle in achieving DB system‟s communication and exchange of their operational

data. This was before the era of the WWW when we were concerned about heterogeneties in [17, 18, 35,

36, 37, 38, 62, 63, 64, 65, 66, 67, 68 and 69]:

 platforms, hardware/operating systems, the different database management systems, access methods,

protocols, legacy applications and similar;

 interface expressiveness, query facilities and their possible restrictions in heterogeneous DB systems;

 software applications: structural (e.g. data structures and meta-data specifications), behavioral (e.g.

languages which deal with data management such as Structure Query Language (SQL
8
) and

implementation information (e.g. creating schemas and supporting DB engines);

 data modalities in the different kinds of data stored in DB systems (e.g. records, text, multimedia);

 data structures that may overlap and may run autonomously on different computers, and may be

designed to meet different organisational needs.

The 1990‟s saw the advent of the WWW and the increasing requirements for the interoperation of

systems [45 and 70]. As information and knowledge proliferated across the web, heterogeneities of

systems became a critical problem for achieving the interoperability. The lack of standards and

appropriate solutions of that time proved to make exchange of data between heterogeneous systems

difficult. As a result several classifications of heterogeneities existed at different levels of details and for

different purposes. The best sources which elaborate on both are [17, 18, 65, 68 and 69].

Furthermore, this was the first time that the research community classified the types of

heterogeneities that can become an obstacle during the interchange of information between software

systems [10, 32, 71 and 72]:

 system heterogeneities in hardware and operating systems;

 syntactic heterogeneities in different representation languages and data formats;

 structural heterogeneities in different model representations;

 semantic heterogeneities in different meaning of terms used in the interchange.

8
 www.sql.org/

http://www.sql.org/

 Chapter 2: Semantic Heterogeneities and Ontologies 12

Subsequently, in the 90‟s we also witnessed „federations‟ [13 and 73] and „mediations‟ [17], as two

dominant approaches to DB and information systems interoperability. Federations relied on the

construction of mappings between heterogeneous DB, and were usually accomplished by constructing a

federated (or global) schema [25, 26 and 27]. Mediations on the other hand, relied on intermediary

mechanisms such as mediators, agents and ontologies. They usually required the use of domain specific

knowledge, mapping knowledge, or rules for specifically coordinating various autonomous databases [28,

29 and 31]. Both federations and mediations proved to be successful in addressing system, syntactic and

structural heterogeneities that enabled multiple DBs to cooperate and interoperate even though their

implementation languages, interfaces and execution platforms were different. They indicated that we can

address application-level of interoperability though standards such as (i) XML, (ii) Web Services based

on the Simple Object Access Protocol
9
, and (iii) the Web Services Description Language

10
, demonstrating

that system and syntactic interoperability problems were more easily dealt with [10, 74 and 75].

However, at the same time when the DB research communities were using federations and

mediations in heterogeneous DB systems, they did not explicitly deal with “semantic heterogeneity”.

This was because there was no clear definition on what exactly “semantic heterogeneity” might mean.

The solutions in the forms of federations and mediations provided users with a single unified interface,

sometimes called query interfaces, supported by algorithms/rules which manipulated the content of

databases, in order to address their heterogeneities and did not explicitly give their way of resolving

“semantic heterogeneity”. There was also no clear evidence that data was being shared without

integrating heterogeneous databases, and hence interoperable DB systems from the 90s sacrificed DB

autonomy and integrations compromised the semantics stored in original DBs. Consequently, the

problem of semantic interoperability became more evident as autonomous, distributed and evolving data

repositories started being deployed across a globally interconnected WWW environment. The

combination of structured DB, semi-structured and unstructured Web data exuberated the problem of

semantic heterogeneity. In 2000 we started talking about semantic heterogeneity of multiple XML

documents, web services [76] and ontologies, or more broadly, whenever there was more than one way to

structure a body of data [77].

Therefore, it has become more evident that the meaning of the information that is supposed to be

interchanged across software systems is heterogeneous, and any disagreement about the meaning,

interpretation or intended use of the same or related data, had to be resolved. This change in focus led to a

shift in our thinking on how semantic heterogeneities affect semantic interoperability. Semantic

heterogeneities that formerly referred to the different meaning of terms used in the interchange of

information was now more concerned with the disagreements in the implicit meanings, perspectives and

assumptions made during the creation of computational models of data repositories, i.e. the nature of

semantic heterogeneities were now concerned with the various interpretations of data (or data

heterogeneities) regarding intended use of related data or when the same phenomena in an UoD is

modeled in different ways [19, 20, 21 and 22]. In particular, the works of [21, 26, 78, 79, 80, 81, 82 and

83] singled out semantic heterogeneities in the form of the differences in meta-data, data value, and

9
 www.w3.org/TR/soap/

10
 www.w3.org/TR/wsdl

 Chapter 2: Semantic Heterogeneities and Ontologies 13

model/view specifications in contrast to the syntax heterogeneities that refers to the structure of the

schema items (e.g., classes and attributes).

Today, semantic heterogeneities are inherent in modern computational environments, i.e. the true

nature of modern computational environments is in favoring heterogeneities over uniform representations

of data, information and software applications which generate them. The continuous growth of the WWW

and the need for pervasive software systems have revitalised research in the problem of interoperability

and has consequently created a modern division of semantic heterogeneities into different [5, 6, 7, 8, 9

and 11]:

 data models, which occurs when semantically-related data exists, and where the semantics behind

them is important for data sharing across heterogeneous pervasive systems;

 context models, which occurs when a variety of sensors or devices produce semantics necessary to

pervasive environment;

 sensors derived information, which are often the consequence of synthesising multiple sources of

sensor derived information;

 application/interfaces and data they use, which may include user preference/profile models for

designing interfaces or reasoning mechanisms for adjusting/adapting them to users/locations;

 user generated data, which includes task/domain related data, role of users in a particular context

where data is generated, user personal preferences etc.

The bullet-points above highlight the complexity of the heterogeneities in modern computational

environments and signal that we might not be able to solve this problem in its entirety. As more

pervasive software systems in ad hoc and dynamic situations are interrelated across domains through

pervasive smart spaces/software applications/semantic information retrievals; data sharing and the

exchange of data increases, and become increasingly necessary to the functioning of modern software

systems. This reinforces the need for semantic interoperability and the issue of managing semantic

heterogeneities in pervasive computational environments.

2.2 Modern Software Systems

2.2.1 The Vision of Ubiquitous Computing

In 1991, the term ubiquitous computing was coined by Mark Weiser, who described the future of modern

computational environments as “a world in which computers and associated technologies become

invisible and thus, indistinguishable from everyday life” [84]. An emphasis on technologies that would

disappear and weave themselves into everyday lives through embodied virtuality required the process of

drawing computers into the physical world; where they would no longer be seen as silicon technology but

as a part of the natural environment [1]. Contrary to virtual reality, where humans are placed inside a

computer-generated world, Weiser‟s vision sparked changes in the direction of the way humans would

participate and interact within PCEs. Technologies that would lead to true calm and comfort within the

PCEs, entailed new interfaces which would allow users to experience an unobtrusive computing

experience without the distractions made by technology [85].

 Chapter 2: Semantic Heterogeneities and Ontologies 14

The importance of computation and communication capabilities of small embedded computers and

devices, that would seamlessly recede into the background of everyday lives, would utilise wireless

connectivity on an „always‟ and „everywhere‟ basis; where the dynamicity of PCEs would dictate the

level of computation and communication available [86]. This required a surge in technological

advancements that not only changed the way we, as consumers of ubiquitous computing, would perceive

PCEs, but also the way in which new computational spaces would be created.

The significance of computer readable data, including all the different ways in which it can be

retrieved, altered, processed and analysed was made to be an intrinsic part of PCEs to overcome the

problem of information overload [87]. User-selective representations of information without

redundant/un-useful data would transform the way in which we valued the importance of computer

readable data. Ubiquitous use and retrieval of adequate information highlighted the role for the effective

management of information exchange between users and their surroundings in semantic information

retrievals.

Hence, Mark Weiser envisioned that PCEs would be pervaded with computing capabilities that

invisibly enhanced the world, through being „present, appearing or found everywhere‟. Letting humans

focus on their daily tasks, rather than on the underlying technologies surrounding them, underlines

Weiser‟s vision to transform the human psyche to embody ubiquitous computing by being unaware of the

computer, technologies and software systems that entailed them. The benefit of realising this vision was

obvious in the way 21
st
 century computing would progress, and most importantly, shape computing

directions over the next decade.

2.2.2 Current Trends in Pervasive Computing

A decade later, we see Weiser‟s vision of ubiquitous computing steadily taking place. The evolution of

mobile computing, embedded and wireless communication and computing networks have transformed the

intersection of personal computers and computational/communication mechanisms. The high bandwidth

and low error rate of wireless local area networks has made it possible to connect two or more computers

by a network - whether mobile, static, wired or wireless, sparse or pervasive [3]. The technological

maturity of portable and wearable computers, such as laptops and hand held devices, and sophisticated

embeddable sensors, have moved traditional standardised desktop computing towards a less obtrusive

computing experience, where embedded computing devices are capable of performing computations

through direct communications with user centric applications [2]. This has consequently made it easier

for contributing towards computational and communication abilities that provide users with universal

information that can be transparently transported into answering their user requests on an „anywhere‟ and

„anytime‟ basis [88].

The advances in the development of embedded wireless network technology, and mobile computing

represent the major trends for the future of pervasive software systems, which are significantly changing

the nature of conventional software systems, we find in finance, healthcare, public sector, etc. We outline

below some directions in pervasive computing applications, which give better insight on what the future

of pervasive software systems hold.

 Chapter 2: Semantic Heterogeneities and Ontologies 15

Pervasive smart spaces aim to provide a mechanism for achieving an „anywhere-anytime‟

computing experience with users accessing computational and computer controlled devices [89, 90, and

91]. Computers in everyday life, including personal digital assistants, smart phones and other mobile

devices have made this possible through allowing users immediate access to situational information that

may be embodied in smart spaces, i.e. a smart home, office, or automobile [92, 93, 94 and 95]. Moreover,

smart spaces are capable of interacting with user devices and adapting according to user

preference/profile. Thus, smart spaces utilize context-aware systems for fusing information from location-

aware systems and computational world models to make contextual inferences about its location of use,

the collection of nearby people and objects, as well as the changes to those objects over time [96].

The dynamic nature of a smart space creates great challenges for developing context-aware and

location-aware systems. Some of the critical research issues are context modelling and reasoning,

knowledge sharing, and user privacy protection [6, 7, 97 and 98]. With ad hoc networking technologies

used as the backbone of applications pushing mobile computing and interconnectivity to connect to

various devices, the issue of sharing, storing and managing data produced by devices requires the explicit

representation of context meanings (or semantics) so that independently developed applications can easily

understand them.

 Pervasive software applications aim to endorse the practicality of PCEs across a variety of

domains [99, 100, 101, 102 and 103]. Pervasive software applications are spontaneously established and

terminated due to changing contexts, device mobility, and resource fluctuation in PCEs [104]. Smart

mobile phones and rapid pervasive prototyping can be seen as some key indicatives to developing

pervasive software applications [105 and 106]. Smart mobile phones act as mini personal computers,

which include accessibility to operating systems and are engaged in many forms of computational

methods including interactions of nearby users [107] and social interactions through distributed pervasive

software applications [108]. However, the ad hoc engagement in spontaneous information exchange

requires computational power and reasoning mechanisms for effective management of data across a

variety of applications and devices [6, 109, 110, 111 and 112].

 Pervasive middleware frameworks and software architectures handle the orchestration of

wireless networks and distributed mobile applications into a functioning pervasive software system. The

use of middleware frameworks and software architectures provide pervasive software applications with

rich interfaces that support ad hoc communication among application software in various pervasive

software systems [89, 113 and 114]. The research in middleware frameworks and software architectures

has been in progress for a few years, both in academia and industry. Examples include the One.World

[115], Event Heap [116], GAIA [117] and Aura [118]. However, issues in the scalability introduced by

the potential number of users, heterogeneity of the different environments, devices/network diversity,

changes in resource availability and user movements, all raise challenges in designing mobile

applications and dealing with uncertainty and operating under unpredictable conditions [119, 120, 121,

122 and 123].

Sensor driven computing augments the physical environment where sensors are embedded

ubiquitously and transparently into everyday objects and living spaces [124]. Often linked to smart

spaces, sensor driven computing uses embedded computations and sensor capabilities to form

computational intelligence that is capable of perceiving, reasoning, learning, and reacting to their

 Chapter 2: Semantic Heterogeneities and Ontologies 16

environments [125, 126 and 127]. The urbanet revolution allows the integration of computing and sensor

technologies through system/human participation [120]. The use of location sensors and resource

information are gathered by software and presented in a form suitable for supporting context aware

applications.

As sensor derived computing technology matures, raw context data obtained from various sensors

and sources comes in heterogeneous formats. Furthermore, without prior knowledge of the context

representation of raw data applications are unable to use it. Thus, new issues into sharing, storing and

managing of data produced by sensors are arising. The research into sharing, storing and managing of

data produced by sensors is vast and ranges from the management of data in worldwide sensors web

[128], making sense of sensors data [125 and 129] to the emergence of a highly heterogeneous spectrum

of sensor technologies [130].

Semantic information retrievals aim to allow users immediate access to information that may be

available in data repositories storing sensor derived data to XML and Hyper Text Mark-up Language

(HTML)
11

 documents, Web services, information systems, DBs, etc. They do not overlap with traditional

Information Retrieval Systems in terms of organizing the content of data repositories as a collection of

unstructured documents represented through relatively simple data models [131 and 132]. Instead,

semantic information retrievals are likely to retrieve data direct from heterogeneous data repositories.

Furthermore, semantic information retrievals in PCEs also support the derivation of semantics behind

user requests that are naturally expressed in the form of their intention to retrieve, manage or manipulate

the content of data repositories [133]. Therefore, semantic information retrievals use the power of the

user‟s involvement to ensure correct retrievals across data repositories, as opposed to similarity-based

retrievals using approximate keyword searches and retrieving documents based on the degree of

relevance to a query, e.g. semantic annotations supporting semantic indexing, keyword matching and

agent crawlers [134, 135, 136 and 137].

 The ad hoc and dynamic nature of PCEs means that semantic information retrievals will be scattered

across a number of data repositories. They will be required to perform intelligent task-directed

information gathering whilst retrieving semantically related data needed for satisfying user requests. The

heterogeneity of data repositories will have to be managed where the semantics behind them is important

for ensuring the correct semantic information retrievals across them. Semantic information retrievals in

PCEs will acquire the support of software applications which provide semantically rich interfaces that

support the information richness behind PCEs.

2.3 The Problem of Semantic Heterogeneities in Pervasive

Computing

The inherently distributed and heterogeneous nature of PCEs leads to enormous amounts of data and

information generated in them. Data and information are semantically rich, semantically related, and

heterogeneous in their structures (some even lack structures). Thus, PCEs are not only characterised by a

multitude of devices and software executions. They also accommodate different natures, structures and

11

 www.w3.org/MarkUp/

 Chapter 2: Semantic Heterogeneities and Ontologies 17

complexities of data and information generated in them. This inevitably triggers the problem of semantic

interoperability. The old fashioned semantic heterogeneity problem across structured DBs and

information systems still persists, but is now aggravated with the surplus of data contained within PCEs,

and the growing abundance of individual autonomous data repositories which is often needed to be

shared, combined and interrelated [88]. Therefore we are concerned with the autonomy of data

repositories and meaningful sharing of their content in PCEs.

Autonomy of Data Repositories

Pervasive software systems must be open to a wide range of data repositories in order to exchange the

data produced by sensors and devices, user‟s generated data and any other task-related or domain-specific

data within interrelated domains. However, the high possibility of these data repositories being

independently designed and implemented leads to a very old division of autonomy which existed almost

15 years ago [13, 14 and 138] and which has been adapted to PCE and summarised in the bullet-points

below:

 communication autonomy, which refers to the capability of a pervasive software system to decide

with what other systems to communicate and what information to exchange with them;

 execution autonomy, which refers to the ability of a pervasive software system to decide how and

when to execute requests received from another system;

 design autonomy, which includes the presentation of data elements, their naming and format, and

the choice of UoD.

Specifically, design autonomy may result in semantic conflicts that arise from heterogeneities in the form

of the different structure/format used for data or the semantic interpretations of data. Therefore, design

autonomy and its resulting semantic conflicts constitute a major obstacle in accomplishing semantic

interoperability. This is very much similar to what is desired for a Semantic Web [139]: supporting

autonomous machine readable data exchange over the WWW [140]. However, communication and

execution autonomy, on the other hand, pose many new challenges for query processing and optimization

[141], which is outside the scope of this thesis.

Meaningful Data Sharing

Pervasive software systems must allow meaningful data sharing across other disparate software systems.

Associated data repositories may be related to the same task or domain, hence having a similar set of

semantics. This may result in semantic conflicts, which arise from heterogeneities in the form of (i) their

different naming/terms used for data and (ii) their semantic interpretations of data. Thus, the data being

shared will be semantically related and exhibit a number of semantic similarities, because they model

concepts which may have identical or overlapping meaning. This implies an explosion in the number and

type of domains that need to be involved in achieving semantic interoperability in PCEs.

Hence, managing semantic heterogeneities is to guarantee meaningful data sharing across

heterogeneous data repositories in PCEs and to ensure that pervasive software systems interoperate

seamlessly whilst preserving the autonomy of underlying data repositories, i.e. data sharing across

 Chapter 2: Semantic Heterogeneities and Ontologies 18

heterogeneous data repositories and the preservation of their autonomy leads to achieving semantic

interoperability.

The ad hoc and dynamic nature of PCEs would imply that the semantic heterogeneity problem will

arise only when conflicting data and interpretations occur. Thus, in the pervasive nature of today‟s

computing, we must take into account unanticipated data sharing across data repositories and we should

think about addressing semantic heterogeneities at the particular time it arises, i.e. to resolve semantic

conflicts if and when they occur. At the same time, we should also think about the adaptation to the

changing conditions of the environment (i.e. the task at hand or the domain in which it is built in) and

particularly to the current needs of the user.

Subsequently, the future of PCEs lies in their computational power and reasoning mechanisms for

managing semantic heterogeneities and to resolve semantic conflicts between an array of heterogeneous

data repositories. Therefore, PCEs must contain sophisticated models of the environment they reside in,

which means that, software systems that use them are aware of their users and the semantics stored in

their heterogeneous data repositories. The complexity of PCEs and their ad hoc and dynamic nature

should benefit from reasoning upon the semantics stored in relationships between (i) user‟s context, (ii)

user‟s information needs, and (iii) the physical environment at runtime, i.e. available data repositories.

Semantically related views upon available data repositories should be at the heart of PCEs, where the

explication of implicit and hidden semantics in PCEs should support the identification and resolution of

semantic conflicts. Furthermore, user‟s involvements which contribute to enhancing the physical

surroundings of a PCE should make human interaction easy in PCEs, because they are consumers of a

PCE, they can draw upon the most relevant data/information from our environment and decide on how to

use them.

2.4 Ontologies and Semantic Heterogeneities

Using ontologies to address interoperability is proving to be successful in providing a broader range of

information and contexts through shared semantics and syntax. The authors in Uschold and Gruninger

[142] mention interoperability as a key application of ontologies, and many ontology-based approaches

are used across a variety of business and scientific communities as a way to share, reuse and process

domain knowledge, which is central to many applications such as information management, electronic

commerce, semantic web services, scientific knowledge portals, etc.

By using ontologies which behave like reference trees, we can mask semantic and syntactic conflicts

through mapping techniques to resolve heterogeneities [143, 144 and 145]. Furthermore, allowing

ontologies to behave like enriched data-centric models provide a means to deal explicitly with semantic

interoperability challenges. The examples of using ontologies in such a manner have been elaborated in

various works, such as [146, 147, 148, 149, 150, 151, 152, 153, 154 and 155].

2.4.1 The Role and Application of Ontologies

The term „ontology‟ as an idea originates from the field of philosophy that is concerned with the study of

being or existence. Interpreting ontology as “the philosophical science behind the types and structures of

the entities, properties and relationships behind every conceptualised reality” [156] has traditionally led

 Chapter 2: Semantic Heterogeneities and Ontologies 19

philosophers‟ to use ontologies as a way of a semantic “grounding”, to either represent a regimentation of

their scientific theories or a clarification of their foundations. Over the last decade the evolution of

ontology and its application has spanned across a variety of computing disciplines. In computer science,

Borst [157] and Gruber [158] introduced a precise definition of an ontology as „a formal explicit

specification of a shared conceptualisation‟. Explicit means that the concepts used in the ontology and

any other constraints upon them are explicitly defined. Formal means that the ontology describes exactly

what each concept is meant to represent, and specifies formal axioms that constrain their interpretations.

Shared conceptualisation means that the ontology captures a common understanding of a particular

domain of interest. Hence, this definition described how the philosophical nature of ontologies would be

incorporated into computer science.

In the 80s ontologies were adopted by AI researchers, who used ontology like a formal description

of mathematical logic [159]. The notion of formalised ontologies created new computational models that

automated certain types of decision making, i.e. the generation of inferences from a given set of facts

about the world. Hence, various ontologies were promoted for representing knowledge in forms that can

be exploited by computational procedures and heuristics. To add, using „objects‟
12

 of a common interest

between two or more agents, ontologies became components of knowledge systems that formed content

theories that would provide forms of intelligence in terms of describing the theory of a modeled world

[160]. Drawing inspiration from philosophical ontologies, computational ontologies were created and

viewed as a kind of applied philosophy [161].

In the early 90s, ontologies were employed by Knowledge Management (KM) researchers, who

used ontology as a mechanism of providing a common set of terms that would support the exchange of

data. The diversity of application domains of that time and their contributing set of terms raised the need

for knowledge organisation and shared conceptualisations of domain models. Various methods of that

time, such as controlled vocabularies, only provided a list of terms for use during indexing or document

retrievals. Data dictionaries that organised specific relations to form taxonomies or thesauri failed to

specify the semantics of a domain in terms of conceptual relationships and logical theories [162, 163 and

164]. Thus, the employment of ontologies as replacement for more complete and precise domain models

transformed and enhanced interoperability standards of that time. The CyC project [165], the ARPA

Knowledge Sharing effort [166], the Knowledge Interchange Format effort [29], and the National Library

of Medicine which works on the Unified Medical Language System [167] are examples of an effort to

create interoperability standards through identifying technology stacks that called out the ontology layer

as a core component of knowledge systems.

In the post 90s, ontologies were exploited by Software Engineering (SE) researchers, who used

ontology to represent the explicit specification of a shared domain and to serve as a backbone for

providing and searching for information sources [160, 163 and 168]. Using ontologies as a common

structure of information transformed the way in which SE researchers achieved data sharing amongst

disperse sources of information in heterogeneous environments [144, 169 and 170]. With respect to DB

management systems, the key role of ontologies was to specify a data model representation at the level of

abstraction above the specific database design (logical or physical), so that data could be exported,

12

 where an object represents the notion of entities describing some desired communication, interaction or event.

 Chapter 2: Semantic Heterogeneities and Ontologies 20

translated, queried and unified across independently developed systems and services [153 and 171].

Hence, ontologies proved to provide similar functionalities as that of a middleware layer/federated

schema between heterogeneous databases but without the need to be dependent on local

schemas/applications [151 and 172]. This was the first time that ontologies proved to mask semantic

heterogeneities by providing a means to deal explicitly with semantic conflicts [151, 153, 170, 172, 173,

174 and 175].

In the 21
st
 century, ontologies were breaking free from their past restrictive rigid formalised nature

and traditional role for modeling semantics, i.e. ontologies were breaking free from the specification of

formal axioms that constrain their interpretations. As advised in [70] and [176], ontologies promised

success towards semantic interoperability between data repositories and devices embedded in modern

compuataional environments, and in this manner the application of ontologies (including their associated

knowledge bases) extended across a number of domains, ranging from:

 data integration and information analysis in biology systems [177],

 integration of multi-lateral data for disaster planning [178],

 integration of healthcare information systems [147],

 data integration for pharmaceutical based research and development processes [179],

 the European project for Standardized Transparent Representations in order to Extend Legal

Accessibility: ESTRELLA, IST-2004-027655 [180], to

 data integration over multiple structured and semi-structured biological data sources [181].

At the same time ontologies were also being employed in context-aware computing and became a popular

tool for modeling and reasoning upon contextual information, i.e. using ontology to either model

elements of information conforming to a specific context [182 and 183], arrangements of sensor derived

data or powerful predicate expressions/logical constructs for computational procedures and heuristics
13

.

Works by [184, 185, 186, 187, 188 and 189] explicitly deal with modeling elements of context

information and reasoning upon them through Description Logic (DL)
 14

. To add, ontology usage also

proved to be successful in Service Oriented Architectures (SOA)
15

, supporting the formal specification of

service descriptions, functions and the context in which resources will be used by services [113 and 190].

2.4.2 Ontologies for the Semantic Web

From 2000 to the present day, we notably identify the Semantic Web [139] as a key application of

ontologies today. The Semantic Web is an evolving development of the WWW in order to make sense of

semantics stored on the WWW, whether it is in web documents, pages or any other form of web data.

Prior to the application of ontologies the WWW had been extremely successful in enabling information

sharing among a seemingly unlimited number of people worldwide. However, the exponential growth of

web documents, pages and data on the WWW had resulted in information overload which often made

discovering the meaningful association between distinct pieces of information difficult. This was because

semantics stored within underlying web data on the WWW are only accessed, understandable and

13

 notably different to representing knowledge in forms that can be exploited by computational procedures and

heuristics.
14

 dl.kr.org/
15

 www.service-architecture.com/

 Chapter 2: Semantic Heterogeneities and Ontologies 21

manipulated by humans and not very machine friendly. Hence, web documents, pages and data are rarely

exploited in terms of their semantic relationship to each other. To that end, the Semantic Web is initiated

and put forth as the „Web of Data‟, where machines were able to “connect the dots” through a common

framework of ontologies. The aim was to use ontology and their explicit descriptions to make it easier for

machines (as opposed to humans) to find, access and process data from web repositories [191, 192 and

193], hence reducing information overload and exploiting semantics for correct and most relevant

retrievals.

To date, the Semantic Web consists of several phases, commonly known as Web 1.0, Web 2.0, Web

3.0. The Web 1.0 phase marked the early WWW days and was categorised by the static HTML pages,

web forms, directories and homepages. The content of Web 1.0 was reflected by the passive consumption

of information and was mainly aimed towards business, advertising and publishing domains. The Web

2.0 phase, more commonly referred to as the „social web‟, was and continues to be aimed at facilitating

the collaboration and information sharing among users through blogs, twitters, widgets/tagging and

folksonomies. The content of Web 2.0 is reflected by the dynamic nature of web documents/pages and is

mainly aimed at „us‟ the end users, and our social interactions using the web [145].

The next phase, Web 3.0 (the „real‟ Semantic Web) is aimed to be focused on meanings, connecting

knowledge in ways that make the users experience of the WWW more relevant, useful, and enjoyable.

The content of Web 3.0 will be reflected by mazes of web applications working together homogenously,

where online searching and requests will be tailored specifically to users request and needs. The Web 3.0

will use machine-based learning and reasoning to provide a notion of „anytime-anywhere‟ internet

experience leading to „pervasiveness‟ in the form of an integrated and interconnected world of the web

[194].

Subsequently, ontologies are an integral part of the Semantic Web because ontologies are seen as

the backbone of structuring the semantics of not only web documents or pages, but also information and

services on the web, making it possible for the machines to use web content and to satisfy the requests of

the users. With the high interconnectivity and access to many underlying data repositories, the primary

issues of the Semantic Web 3.0 and beyond will not be how to efficiently process the data, but which data

is relevant and semantically related.

2.4.3 Ontologies for Pervasive Computing

Ontologies have no doubt become an essential tool and product of engineering, hence becoming one of

the most powerful software engineering solutions today [195]. Subsequently, ontologies could be the

answer to the semantic interoperability problem in PCEs because they can provide:

 pervasive software applications with shared application or domain specific ontological knowledge

that supports information exchange and data sharing across a variety of applications, devices and

data repositories in PCEs [195, 196 and 197]. Examples can be seen in [188, 198, 199 and 200];

 pervasive smart spaces supported by sensor driven computing with the aid of ontological context

models conforming to either a specific computational procedure or heuristic that describes data

produced by embedded devices and sensors in PCEs. Examples can be seen in [92, 184, 186, 189,

190, 201, 202, 203 and 204];

 Chapter 2: Semantic Heterogeneities and Ontologies 22

 pervasive smart spaces with the support of ontological context models describing user

intention/preference/profile. Examples can be seen in [199, 205, 206, 207, 208 and 209];

 pervasive middleware frameworks and software architectures the aid of machine readable

descriptions which describe the explicit representation of the functionality of mobile applications

and their logical inferences of uncertain and unpredictable situations in which they may be used in

PCEs [210]. Examples can be seen in [185, 187 and 211];

 semantic information retrievals with ontological semantic models for facilitating semantic

interoperability across multiple heterogeneous data repositories in PCEs [195]. An example can be

seen in [205].

An important factor in the success of ontologies has been the availability of sophisticated Semantic Web

tools with built in reasoning support. This is because reasoning is essential in supporting both the design

of high quality ontologies, and the deployment of ontologies in their applications. Hence, in order to

manage semantic heterogeneities, we must exploit Semantic Web technologies in order to support explicit

representation, expressive querying, and flexible reasoning for the understanding and resolution of

semantic conflicts. We should use a combination of semantic web tools, which may give us new hope in

providing a basis upon which we can start to resolve semantic conflicts and provide a reasonable balance

between power, expressivity and manipulation of semantics.

2.4.4 Towards Meaning-based Computing

As introduced by Berners-Lee in [139], “for the Semantic Web to function, computers must have access to

structure collections of information and sets of inference rules that they can use to conduct automated

reasoning”. The core design principles and collaborative working groups of the World Wide Web

Consortium (W3C)
16

 have initiated a variety of technologies that express the implementation and future

realization of the Semantic Web. Figure 2.1 outlines an architecture for the Semantic Web that is multi-

layered and machine processable.

Figure 2.1The Semantic Web stack17

16

 www.w3.org/
17

 http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

 Chapter 2: Semantic Heterogeneities and Ontologies 23

The various technologies in Figure 2.1 are supposed to be used on top of each other in order to provide

standardised support for the vocabulary with which to make assertions about semantic relationships

between web documents or pages in order to facilitate greater machine interoperability and in turn may be

used as inputs or outputs of web applications [197]. These technologies are intended to provide a formal

description of concepts, terms, and relationships within a given knowledge domain. The Web Ontology

Language Overview
18

 describes each of these technologies in more detail; however, we briefly outline

their purposes below.

We are particularly interested in the OWL, because it supports formal semantics and efficient

reasoning. It models RDF triples into high level concepts that form a standard semantic integration

language. It adds more vocabulary in the form of an ontology for describing properties and classes:

relations between classes (e.g. disjointness), cardinality (i.e. exactly one), equality, richer typing of

properties, characteristics of properties (e.g. symmetry), and enumerated classes. The OWL language

provides three increasingly expressive sub-languages designed for use by specific communities of

implementers and users. It consists of OWL Lite, OWL DL, and OWL Full in a layered approach; that is,

OWL Lite is a subset of OWL DL, OWL DL is a subset of OWL Full [42]. It must be noted: OWL

originates from the Ontology Inference Layer (OIL)
19

 and the Defense Advanced Research Projects

Agent Markup Language (DAML)
20

 . The OIL is from the On-To-Knowledge Project and is notably the

first ontology representation language that extends Resource Description Framework Schema (RDFS)
21

with additional language primitives. The DAML is aimed at developing a language to facilitate the

semantic concepts and relationships understood by machines. DAML+OIL [212] is the latest extension of

DAML which has some important features of OIL imported and is currently evolving as OWL. OWL is

almost the same as DAML+OIL, but some primitives of DAML+OIL are renamed in OWL for easier

understanding.

In our research we also use the SWRL, which provides additional expressivity to OWL concepts. It

combines sublanguages of OWL (OWL DL and Lite) with those of the Rule Markup Language. SWRL

rules are in the form of an implication between an antecedent (body) and consequent (head). The intended

meaning can be read as: whenever the conditions specified in the antecedent hold true, then the conditions

specified in the consequent must also hold true [213]. SWRL is needed to allow describing relations that

cannot be directly described using description logic used in OWL. However, the Rule Interchange

Format (RIF)
22

 is the part of the rule layer for the semantic web. The design of RIF is based on the

observation that there are many rule languages around which deal with Semantic Web data in one or

another way, hence the exchange of rules between them is required [214]. RIF includes three dialects, a

Core dialect which is extended into a Basic Logic Dialect and Production Rule Dialect [215].

The XML is the surface syntax for content structure within web documents and pages. XML syntax

does not imply the semantic of web documents or pages, i.e. there is no meaning associated to the content

of web documents or pages [216]. The RDF is a language for expressing metadata data models. RDF

18 http://www.w3.org/TR/owl-features/
19 http://www.ontoknowledge.org/oil/TR/oil.long.html
20 http://daml.semanticweb.org/
21

 www.w3.org/TR/rdf-schema/
22

 www.w3.org/2005/rules/

http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Concept
http://en.wikipedia.org/wiki/Terminology
http://en.wikipedia.org/wiki/Causality
http://en.wikipedia.org/wiki/Knowledge_domain
http://www.w3.org/TR/owl-features/
http://www.ontoknowledge.org/oil/TR/oil.long.html
http://daml.semanticweb.org/

 Chapter 2: Semantic Heterogeneities and Ontologies 24

models relationships between web pages (referenced by their Universal Resource Identifier (URI)) in

simple statements in the form <subject, predicate and object>, where:

- a subject denotes a resource represented as a URI or International Resource Identifiers (IRI) that can

be identified uniquely and globally,

- an object can be either a literal (such as a string or number) or a URI reference to another resource,

and

- a predicate is a relationship between a subject and an object [216].

The RDFS is a vocabulary description language for describing semantics for generalized-hierarchies of

RDF triples that indicate which application specific classes and properties are expected to be used

together [217].

Finally, the Protocol and RDF Query Language (SPARQL)
23

 is the query language for RDF,

OWL and semantic web sources. SPARQL allows for a query to consist of triple patterns, conjuctions,

disconjuctions and optional patterns [218].

Besides ontology languages, other Semantic Web tools and reasoning systems include modeling and

development toolkit environments, inference engines, annotation tools, ontology based crawlers and

mining tools [219]. Modeling and development toolkit environments such as TopBraid Composer
24

(which is commercially available), Protégé Knowledge Editor
25

 and WSMO Studio
26

 (which are open

source tools) provide a standard way of creating and sharing ontologies, which can be reused, extended

and translated into machine interpretable definitions. Inference engines such as Jess
27

, Pellet
28

, Racer

[220] and Owler [221] are used to check the consistency and integrity of ontologies. They also are

responsible for the deduction of new knowledge based on the rules or relationships of the concepts

specified by ontologies without the explicit need for algorithms advocated by the Distributed Systems and

AI communities etc. A detailed analysis of these modeling and development toolkit environments and can

be found in [222].

However, during research on Semantic Web technologies the demands for combined formalisms

which integrate ontology and rule languages have emerged as a consequence to supply advanced

reasoning capabilities and the need for new inferences from existing data on the web. The wealth of

mature Semantic Web tools and their reasoning systems available today have opened new doors towards

meaning-based computing that does not necessarily follow the original Semantic Web Stack, but instead

uses a combination of ontology technologies in which new inferences from existing data can be made. .

At the heart of the inferences lies the dependency on DL as a decidable fragment of first order predicate

logic as the formal foundation of OWL (as well as its predecessor DAML+OIL [212]). Subsequently,

DLs has turned out to be an adequate formalism for representing and decidable reasoning about

expressive ontologies.

Furthermore, OWL Lite and OWL DL represent decidable fragment of OWL with complete

reasoning support, in which a subset of first order logic that allows description of complex concepts from

23

 www.w3.org/TR/rdf-sparql-query/
24

 http://www.topbraidcomposer.com/
25

 http://protege.stanford.edu/
26

 http://www.wsmostudio.org/
27 http://www.jessrules.com/
28 http://clarkparsia.com/pellet/

http://www.topbraidcomposer.com/
http://protege.stanford.edu/
http://www.wsmostudio.org/
http://www.jessrules.com/
http://clarkparsia.com/pellet/

 Chapter 2: Semantic Heterogeneities and Ontologies 25

simpler ones with an emphasis on decidability of reasoning tasks. For example, using Protégé and

TopBraid Composer in combination with:

 logic-based rule languages such as RuleML
29

, F-Logic [223] or SWRL;

 information visualisation tools such as OWL viz [224], or Jamabalya [225];

 ontology translations techniques such as DR2Q mapping [226] or Datamaster [227];

allow OWL based ontology usage for not only structuring the WWW but also for the acquisition,

structuring and reasoning upon XML documents, database management systems, context aware databases,

sensor derived data etc.

The availability of Semantic Web tools and their reasoning systems such as those mentioned above

has contributed to the increasingly widespread use of OWL, not only in the Semantic Web per se, but as a

popular language for ontology development and reasoning in fields as diverse as medicine [228],

astronomy [229], geography [230], defence [231], biology [232], agriculture [233] and geology
30

.

In essence, Semantic Web tools and their reasoning systems have ultimately paved the way towards

meaning-based computing that can bring extraordinary opportunities for semantic interoperability and the

exploitation of semantics for dealing with the heterogeneity of software systems, data, their

representational levels and terminological differences [234]. Thus, shouldn‟t we use Semantic Web tools

and their reasoning systems in dealing with semantic heterogeneities in PCEs? Should we not assume that

our meaning-based computing captures the content of heterogeneous data repositories in terms of

understanding their semantically related data and resolving the semantic conflicts contained within them?

2.5 Summary

In this chapter we have reviewed the semantic heterogeneities through various generations of software

systems. We have discovered that the nature of semantic heterogeneities has evolved over the years and

remained the major obstacle to semantic interoperability. Today semantic heterogeneity are in the form

of semantic conflicts that are concerned with the disagreements in the implicit meanings, perspectives and

assumptions made during the creation of computational models of data repositories, i.e. the nature of

semantic heterogeneities are concerned with the various interpretations of data. Consequently, we have

also revealed how difficult it is to manage such semantic heterogeneities since past solutions have failed

or proven to have a short life. The trade off between the loss of semantics and the preservation of

„original‟ semantics make managing semantic heterogeneities harder and hence still very much prevalent

in modern computational environments today.

 We have given an insight into how technologies and research advances have changed the nature of

computing into ubiquitous computing in pervasive software systems. The inherently distributed and

heterogeneous nature of PCEs has led to multiple computing directions that suggest that the future of

PCEs will further aggravate the problem of semantic heterogeneities and trigger the problem of semantic

interoperability as a result for the need to guarantee meaningful data sharing whilst preserving the

autonomy of participating data repositories. The growing abundance of semantics generated in

29

 http://ruleml.org/
30 http://sweet.jpl.nasa.gov/

http://ruleml.org/
http://sweet.jpl.nasa.gov/

 Chapter 2: Semantic Heterogeneities and Ontologies 26

heterogeneous data repositories in PCEs once again reminds us of the complexity of dealing with the

semantic heterogeneity problem.

 As a promising approach to addressing semantic interoperability in PCEs and managing semantic

heterogeneities, we have pointed towards the use of ontologies as a powerful software engineering

solution for dealing with semantic heterogeneities inherent in PCEs. We have reviewed the evolution and

application of ontologies, where ontologies have been increasingly applied in computer science to areas

that require the exchange of information with significant structure and diverse semantics. The multiple

examples of exploiting and manipulating semantics has implied meaning-based computing as a new way

forward in supporting the explicit representation, expressive querying, and flexible reasoning for the

understanding and the resolution of semantic conflicts.

 Chapter 3: Related Works 27

Chapter 3

Related Works

In this chapter we review research which is related to our proposal of resolving semantic conflicts

through ontological layering. We have not found research which explicitly uses layering of OWL/SWRL

enabled ontologies for the purpose of resolving semantic conflicts. However, we do relate our works

across three main areas of research: (i) understanding and classification of semantic conflicts (ii) methods

and approaches to resolving them and (iii) the use of semantic web technologies, ontology mapping and

reasoning in resolving semantic conflicts, i.e ontology mismatches.

In section 3.1 we review various classifications of semantic conflicts, as in (i) above, in terms of

understanding where they can occur, in which type of data repositories they may exist and with which

level of data granularity they are concerned with, e.g. are they dealing at the meta-data or data value

levels. In section 3.2 we give an overview of the most common methods and approaches used to resolve

semantic conflicts, as in (ii) above. We divide them into three groups. Thus, section 3.2.1 reviews

methods and approaches to resolving semantic conflicts through federations, global schemas and

mediations in heterogeneous databases. Section 3.2.2 reviews methods and approaches which use

ontologies as vocabularies in heterogeneous databases and information systems. Last but not least,

section 3.2.3 reviews the use of Semantic Web technologies, ontological modelling and reasoning as in

(iii) above, in modern computational environments, which naturally create semantic conflicts due to their

heterogeneous nature. Finally, as our proposal is based on ontological layering and reasoning

mechanisms using the Semantic Web technology, section 3.3 reviews research on ontology mapping

(section 3.3.1), reasoning mechanisms (section 3.3.2) and any other issues that are relevant to our work

(section 3.3.3). We end the chapter by summarising current research outcomes which single out

limitations of existing solutions for resolving semantic conflicts in general (section 3.4.).

3.1 Semantic Conflicts - Types and Classifications

Semantic conflicts arise from semantic heterogeneities. Therefore, the issue of resolving semantic

conflicts is closely related to the semantic heterogeneity problem in the database and information system

research communities (see chapter 2, section 2.1). In general, the various types of semantic conflicts can

be classified into two broad categories: structural differences and semantic differences. As the name

 Chapter 3: Related Works 28

suggests, structural differences are concerned with how data is logically organised and structured.

Semantic differences are concerned with the interpretation of data and what data means. Both structure

and semantic differences have been well documented in literature over the last decade.

3.1.1 Structural Differences in Data Modelling

Structural differences were of major interest in the DB community, where the focus was on resolving

structure conflicts [235], constraint conflicts [44] and schematic conflicts [236, 237, 238 and 239] at the

syntactic level in the federation, mediation and integration of databases. This was when the database

community was interested in the structural differences between database schemas at the following levels

of data granularity [18 and 80]:

- concept level, i.e. the use of different semantics for the concepts in data models, e.g. relational

model does not have the inheritance concept as in object orientation models;

- schema level, i.e. the use of different schemas of DB models, e.g. when data under one schema

corresponds to database or schema labels in the other;

- attribute level, i.e. the structure of a set of attributes and their values belonging to an entity class in

one database is organized to form a different structure in another database.

In particular, the works of [21, 50, 66, 78, 82 and 83] singled out heterogeneities in the form of structural

conflicts in meta-data, data value, and model/view specifications as:

 naming/representation conflicts, which occur when different models use different names to

represent the same concepts, i.e. labels of schema elements such as entity, relationships and

attributes are arbitrarily different;

 domain-specific/scaling/scope conflicts, which occur when different models use different values to

represent the same concepts, i.e. data values can have multiple representations and interpretations;

 structural/granularity/precision conflicts, which occur when different models use different data

organization to represent the same concepts (for example, the same concept can have a number of

attributes);

 meta-data/identifier conflicts, which occur when the same concepts are represented at different

levels of the model (for example, at the schema level in one database and at the instance level in

another).

3.1.2 Semantic Differences in Data Interpretation

Semantic differences were of interest only when semantic problems became more evident in the semantic

interoperability of multi-database and information systems. In other words, semantic differences were of

interest when semantic problems regarding the different interpretations of data and their UoD become an

obstacle during the meaningful exchange of data. As a result, there have been numerous classifications of

semantic conflicts that emphasise conflicts at the attribute and data-value levels of data granularity [10,

44, 77 and 151]. However, there has been little consensus on what each type of semantic conflict

encompasses and as result have overlapped with conflicts belonging to structural differences. We outline

the classifications of semantic conflicts proposed by [44, 50 and 240] because they provide the most

 Chapter 3: Related Works 29

detailed list of semantic conflicts and have been the most cited and referenced over the years of research

in semantic interoperability.

The most exhaustive list of semantic conflicts is available in [44]. They organize semantic conflicts

between structured databases into: domain, entity, data value, abstraction level, and schematic levels of

data granularities, where:

 domain conflicts arise between two objects when they have different definitions of attributes.

Domain conflicts include naming, data representation, data scaling, data precision, default value

and attribute integrity constraint sub types of conflicts;

 entity conflicts arise between two objects when the entity descriptors used by the objects are only

partially incompatible. Entity conflicts include database identifier, naming, union incompatibility,

schema isomorphism and missing data item sub types of conflicts;

 data-value conflicts arise between databases where data values already existing are different. Data-

value conflicts include known inconsistency, temporal inconsistency and acceptable inconsistency

sub types of conflicts.;

 abstraction-level conflicts arise between entities that are represented at differing levels of abstraction,

i.e. different level of generality at which an entity is represented. Abstraction-level conflicts include

generalisation and aggregation sub types of conflicts;

 schematic-level conflicts arise between databases when data in one database corresponds to the

metadata of another. Schematic-level conflicts include the data-value attribute, attribute entity and

data-value entity sub types of conflicts.

They also make clear distinction between the different levels of data granularity but many of the sub

types of semantic conflicts listed, for instance, naming, data representation and database identifier

conflicts are semantically the same type of conflict, but are considered separately if they occur at the

entity level or the attribute level.

However, the classification of semantic conflicts as in [240] is catergorised along the three

dimensions of „naming‟, „abstraction‟ and „level of heterogeneity‟. The „naming‟ dimension refers to the

relationship between the object, attribute, or instance names, and thus contains naming conflicts. Naming

conflicts include the synonyms, homonyms and unrelated sub types of semantic conflicts. The abstraction

conflicts refer to the relationship between two schematic elements. Abstraction conflicts include the class,

generalization, aggregation and computed function sub types of semantic conflicts. The „level of

heterogeneities‟ refers to the object, attribute, and instance levels of data granularity. Therefore, the

naming and abstraction conflicts can exist at the object, attribute, and instance levels of the schema.

Their classification is not as exhaustive as the classification available in [44] because they describe

semantic conflicts with a fewer dimensions, hence reducing the redundant treatment of conflicts that are

overlapping or those which are essentially the same.

Furthermore, Goh [50] characterises semantic conflicts between databases into four categories:

 schematic conflicts are concerned with the differences in the structure of data as a result of data

heterogeneities and include data type, labeling, aggregation and generalisation sub types of

schematic conflicts;

 Chapter 3: Related Works 30

 semantic conflicts are concerned with the different interpretations of data, even when the

corresponding database schemas are identical. Semantic conflicts include naming, scaling and

confounding sub types of semantic conflicts;

 intension conflicts are concerned with the differences in the informational content present in data

sources or information content expected by receivers. Intension conflicts include the domain and

integrity sub types of conflicts.

It is obvious that Goh loosely categorises semantic conflicts as compared with classifications available in

[44] and [240], i.e. data representation, synonyms and homonyms based semantic conflicts which are

closely related to semantic interpretations of data have been excluded in their classification. However, out

of all the three classifications of semantic conflicts, Goh is the only one that takes into account the

expectations of the information content required by end users (i.e. receivers of data).

3.1.3 Ontological Mismatches

In modern computational environments today, outside structured databases, ontologies too, can be

heterogeneous on many levels. Ontologies can have different models, different representations/meanings

of the same reality, different naming conventions, and different ways to organize the taxonomy of

information. Examples are available in [54, 161, 247, 250]. Subsequently, the problem of resolving

semantic conflicts within heterogeneous ontologies has been documented in many works, such as in [15,

142, 241, 242 and 243].

However, classifications of semantic conflicts in the ontological community are commonly referred

to ontological mismatches between different levels of modelling constructs, i.e. concept, property or

instance, and are usually based on either: existing classifications of semantic conflicts from the database

and information communities (as described above) [147, 153,173, 174, 245 and 246] or associated to

ontology mapping, i.e. the alignment, merge or integration of multiple ontologies [247, 248 and 249]. The

works of [54, 69, 250 and 251] give the best examples of the classifications of ontological mismatches

that do not rely on classifications of semantic conflicts from the database community.

The classification of ontology mismatches available in [69] is based on the differences in the

conceptualisation and explication (i.e. the way in which the conceptualisation is specified) of ontological

concepts and their relations. Their classification includes conceptualisation, class, categorisation and

aggregation ontological mismatches.

Klien [250] gives the most comprehensive list of ontological mismatches. Klien distinguishes

between two levels of mismatches: the language/meta-model level that deals explicitly with non-semantic

differences and the ontology/model level that deals explicitly with semantic differences. The mismatches

in the first level are concerned with the specification of ontology i.e. the different mechanisms used to

define classes and relations. They have the language, syntax, logical representation, semantics of

primitives, and language expressivity sub types of ontological mismatches. The mismatches in the second

level are concerned with the differences in the way the domain is modeled and have the conceptualisation,

explication, terminological and encoding values sub types of ontological mismatches. Klien further

classifies:

 Chapter 3: Related Works 31

 conceptualisation ontological mismatches into differences in either the scope, model coverage or

granularity of ontological concepts,

 explication ontological mismatches into differences in either the paradigm or concept description of

ontologies, and

 terminological ontological mismatches into synonyms or homonyms based ontology concepts.

However, the simplest classification of ontology mismatches that occur when using multiple

ontologies in the same application domain is available in [54]. Their ontological mismatches include

naming (i.e. different names for labels), restriction, property and concept mismatches. Therefore, their

classification is geared more towards the structural differences rather than the semantic differences in

ontologies, which are described in [69]. However, the classification available in [54] distinguishes

between concept-level and property-level of data granularity.

A classification of ontological mismatches based on the different meaning of terms used in

ontologies and their overlapping content within the same domain is available in [251]. Ontological

mismatches include ambiguous reference, synonymical reference, one-to-many matching, uncertain

matching and structural differences between different ontologies. Their classification differs from

classifications available in [54] and [69] because it is directly related to the problem of ontology

alignment.

To summarise, there are many similarities and discrepancies in the semantic problems of the

different types of semantic conflicts and ontological mismatches listed above. The semantic conflicts do

not easily fall into the discrete categories and they do not neatly fit into the structural or semantic

differences. The distinction between structural or semantic differences in each above mentioned

classifications are not always clear as the logical organisation of data (or taxonomical structure of

concepts in the case of ontologies) often conveys or implies semantic interpretation of data.

 However, the above classifications do enumerate numerous types of semantic conflicts in advance.

These semantic conflicts subsequently can be used as a basis of describing new types of semantic

heterogeneities within different domains of interests, where they can lead to a clear picture of what to

expect from semantic conflicts of the future. Hence, the classifications of semantic conflicts give us the

space to extend and tailor their sub types according to future data repositories in modern computational

environments. Future data repositories may not necessarily be structured as in the traditional relational

database philosophy, i.e. we may have semantic conflicts in semi-structured data repositories which may

have ontological concepts rather than database schemas. We may still be faced with some/limited

structure in the ontological world, regardless of the existence of a database or not.

3.2 Resolving Semantic Conflicts through Different Methods and

Approaches

Within the last two decades, there has been an array of different methods and approaches aimed at

achieving interoperability among autonomous and heterogeneous databases and information systems.

Some of the notable ones include federation, global conceptual schema, mediation and ontology based

approaches. Mostly, these approaches have differed from one another along three key aspects:

 Chapter 3: Related Works 32

 the choice of the underlying data model for achieving schematic and semantic transformations

needed for resolving semantic conflicts (e.g. relational models, object oriented models or

ontological models);

 the choice of preserving or destroying autonomy of databases, i.e. retaining the maximum number of

„original‟ semantics through non/partial-integration (e.g. translators, brokers and partial global

schemas) or losing „original‟ semantics through full-integration (e.g. federations and global

schemas);

 the level of data sharing, i.e. a shared schema or interactions with a limited subset of the databases at

any one time.

3.2.1 Federation, Global Conceptual Schema and Mediation in Databases

As we mentioned in chapter 2 (section 2.1), traditionally, federations, global schema and mediations have

been the three most popular approaches to heterogeneous database integration. They namely resolve

schematic conflicts and are more concerned with the differences in schema structures as opposed to

semantic differences.

 Federations rely on the construction of mappings between heterogeneous databases, and are usually

accomplished by constructing a federated (or global) schema [25, 26 and 27]. Thus, federations assume

the collection of cooperating but autonomous database systems, where each database is expected to

export a portion of its schema that it was willing to share with other databases, i.e. federations assume the

pre-integration of participating databases. Sheth and Larson [13] proposed two methodologies for

managing the pre-integration of schemas resulting in either a tightly coupled system or loosely coupled

systems.

 In the case of a tightly-coupled system, the identification of semantic conflicts and the means of

resolving them is created and maintained by a system administrator. The actual resolution of conflicts is

done through one or more views which define the shared federated (or global) schema for the system,

providing users with a canonical representation of the data originating from heterogeneous databases. An

example of a tightly coupled federation system can be seen in [252]. However, the global or federated

schema must be developed before issuing any queries in a federated system, thus requiring the pre-

integration of schemas, hence compromising the level of independence required to preserve the autonomy

of each participating database. Furthermore, any changes in the local schemas affect the global or

federated schema implying rigidity in the flexibility of accommodating more semantics for data sharing.

 In a loosely coupled system, a federated schema is created and managed by the user, i.e. it allows

users to query local database systems directly by placing the integration responsibility on users. Hence,

the users can directly interact with local databases instead of being restricted to querying federated

schemas. Consequently, instead of resolving semantic conflicts through one or more views which define

the shared federated schema for the system, conflict identification and resolution are undertaken by users

themselves. Examples of loosely coupled federation systems can be seen in [20, 253 and 254]. However,

loosely coupled federation systems require users to have semantic understanding and to be able to resolve

conflicts in creating their schemas, thus placing too heavy a burden on users by requiring them to

understand the underlying local databases [50]. Furthermore, users may only interact with a limited

 Chapter 3: Related Works 33

subset of the sources at any one time, restricting the number of participating databases, thus reducing the

level of data sharing.

 To add, the choice of underlying model for a federated dictates the level of semantic richness and

flexibility [255]. Federated schemas can be specified in the form of relational global schemas, object

orientated global schemas or single domain model/global ontology. Examples of relational global schema

can be seen in the Mermaid [252] and Multibase [256] that uses a data model that originates from the era

before object orientation. Examples of object orientated schemas can be seen in Pegasus [257] that

attempts to create super classes to subsume related data from several databases. Examples of global

ontologies can be seen in [177 and 232], which both attempt to construct a single global ontology which

expresses the shared semantics of participating databases, i.e. the use of a single domain ontology against

which all data is integrated. However, all three forms of global schemas lack semantic richness and

flexibility from the users‟ perspective. For example, Ziegler and Dittrich [24] discuss that the available

information in global schemas may be too general or too fine-grained and hence conclude that

inappropriately collected and selected content of global schemas contribute towards their lack of semantic

richness.

 Mediations on the other hand, rely on intermediary mechanisms such as mediators, wrappers, agents

and ontologies. They usually require the use of domain specific knowledge, mapping knowledge, or rules

for specifically coordinating various autonomous databases [28, 29, 31 and 34]. Examples of mediations

can be seen in the Mediated Integration Framework [258], Information Manifold [30], Garlic [32] and

TSIMMIS [33]. However, the use of intermediary mechanisms needs highly specialised translations for

each pair of local database systems. Therefore, when the number of local database systems increases, the

number of intermediary mechanisms grows resulting in numerous ad hoc programs. The development of

these ad hoc programs is expensive in terms of both time and money.

3.2.2 Using Single Ontologies as Vocabularies in Heterogeneous Databases and

 Information Systems

As we mentioned in chapter 2 (section 2.4.1), ontology based approaches in resolving semantic conflicts

(which may include schematic conflicts) have by far been the most successful attempt to achieving a

certain level of semantic interoperability of databases and information systems through data sharing.

Traditional ontology based approaches use a single global ontology to either [15, 142 and 251]:

 provide a shared vocabulary for the specification of a particular domain, eliminating the occurrence

of semantic conflicts (i.e. a canonical representation of inter-domain knowledge), or

 provide a rich vocabulary for the explicit description and resolution of semantic conflicts,

thus allowing the sharing of data and knowledge to take place across different computing environments.

3.2.2.1 Ontology and Shared Vocabularies

From the data sharing perspective, the BioMediator ontology available in [181 and 259] provides a

common interface to Web-accessible databases of biologic information and eliminates the need to deal

with semantic conflicts through a shared vocabulary of biologic information. Similarly, a global ontology

from [170] is used as common knowledge domain amongst a variety of databases systems to allow data

 Chapter 3: Related Works 34

integration between them. Each pertaining local relational schema of the contributing database system is

merged into a global schema in the form of an ontology. The classes established within the global

ontology are a result of mapping and reasoning upon relationships in the local relational schemas,

subsequently eliminating both syntactic and semantic conflicts of local relational schemas. However, all

works in [170, 181 and 259], integrate databases against a single ontology, which subsequently requires

domain expertise that can carry out manual mappings between database schemas and the single global

ontology.

3.2.2.2 Ontology and Rich Vocabularies

Ontologies that are used as a rich vocabulary for the explicit description and resolution of semantic

conflicts attempt to enumerate and describe all the possible semantic conflicts that can occur between

heterogeneous DBs and information systems. Furthermore, they tend to use either semantic weightings or

mappings as a means of comparing semantic conflicts in their reconciliation. For example, the Semantic

Conflict representation Model (SCM) from [47] detects and resolves semantic conflicts in database

integration. Their SCM is based on a Semantic Conflict Ontology (SCO) and an Extending relational

database Schema Model (ESM). The SCO is used for the vocabulary of semantic conflicts based on data

type, data format, data unit, data precision, default values and attribute integrity constraints. The ESM

used to express data semantics of the databases explicitly. Semantic mediators between the SCO and

ESM are used to detect semantic conflicts through „conversion‟ knowledge carried forward into the ESM,

according to the presence of semantic conflicts modelled in the SCO. The semantic conflicts are resolved

through transforming semantics from the ESM and loading them into databases that need to be integrated.

However, the underlying database schemas are still integrated losing the autonomy and evolution of their

semantics.

Similarly, the Relational DataBase Ontology (RDBO) from [48] resloves semantic conflicts between

databases automatically while allowing the individual DBs to evolve. RDBO is based on ontological

classes that make up the semantic descriptions of the individual databases. Each ontological class

conforms to a set of vocabularies, structures, and restrictions that are commonly agreed upon by

participating DBs. A reasoning engine is used to validate and infer additional semantic relationships from

the existing relationships. To resolve semantic conflicts, terms defined in different database ontologies

are compared to each other semantically using semantic weights and the reasoning engine. However, the

semantic weights are based on probabilistic methods that do not guarantee the resolution of semantic

conflicts as per the users expectation, i.e. overlapping semantics are purely based on semantic

descriptions that describe the structural characteristics of relationships, e.g. meta-data, class name or

primary/foreign key constraints; they do not take into consideration overlapping information or degrees

of similarities.

However, the Semantic Conflict Resolution Ontology (SCROL) from [49] can be used to identify

and resolve semantic conflicts among heterogeneous databases. A common categorisation of semantic

conflicts has been derived through the analysis of geographical data, which in turn constitutes towards

their own semantic classification framework. The semantic classification framework helps users to

identify the types of semantic conflicts taking place. Depending on the type of semantic conflict, SCROL

 Chapter 3: Related Works 35

is used to deal with the resolution of the conflict. Ontological class „conflict resolver‟ is used to hold

such conflicts and through reasoning mechanisms is mapped to the „semantic resolver‟ ontological class

to provide a common consensus of the semantic conflict. However, although the definition of SCROL is a

one-time effort and the resulting ontology can essentially be used repeatedly in many application domains,

whilst keeping the autonomy of the local schemas, the burden still lays on each user of a domain to

correctly establishing ontological mappings between SCROL and schemas of databases.

Furthermore, a shared ontology from [50] as part of the context interchange framework is used for

the reconciliation of semantic conflicts between heterogeneous databases. In their context interchange

framework it is assumed that the interpretations of data contained within databases are explicitly

represented in the form of a shared ontology. Therefore, the shared ontology constitutes a shared

vocabulary for describing the context in which data supplied by a database („import‟ context) and the data

expected by the data receiver („export‟ context). A mediator is used for detecting the presence of semantic

conflicts based on naming, measurement, representation and computational disparities between data

supplied by a database and data expected by the data receiver. Upon detection of semantic conflicts the

context mediator compares both the „import‟ and „export‟ contexts in the shared ontology and calls upon

conversion functions to reconcile disparities. However, because the requirements of data receivers are

diverse and can change rapidly, it is impractical for the shared ontology to capture all data expectations of

the users, i.e. the shared ontology resolves only semantic conflicts in a subset of pre-defined user

expectations of available data.

The choice of using a single global ontology to either provide a shared vocabulary for the

specification of a particular domain, or provide a rich vocabulary for the explicit description and

resolution of semantic conflicts no doubt provides more flexibility in terms of increasing the level of data

sharing through accommodating a wider range of databases and making their semantics explicit. However,

the resolution of semantic conflicts is very much similar to a semantic approach to database integration

chosen by integrating databases against one domain model. Thus, full preservation of the autonomy of the

databases cannot be made, hence leading to a compromise between retaining original semantics in

database versus the level of their ontological commitment to the global ontology. For example, single

global ontology approaches are susceptible to changes in the databases that can affect the

conceptualisation of the domain represented in the single global ontology, i.e. depending on the nature of

the changes in one database it can imply changes to the single global ontology and in the mappings to the

underlying database.

Furthermore, current semantic conflict detection using a single global ontology mostly depends on

human intervention which is an obstacle towards the automatic semantic interoperability between

heterogeneous databases or any other data source for that matter. Automated solutions where the burden

does not lie on the user to identify and resolve semantic conflicts implies the need for run time solution to

resolving semantic conflicts, i.e. automatic identification and resolution of semantic conflicts. The

inappropriate collected and selected content of the global ontology suggests the continuous problem of

the available information being too general or too fine-grained from the users‟ perspective. These

disadvantages lead to the development of multiple ontology approaches.

 Chapter 3: Related Works 36

3.2.3 Using Multiple Ontologies and Reasoning in Modern Software Systems

Today modern ontology based approaches in resolving semantic conflicts rely on the use of multiple

ontologies. Each heterogeneous data source (i.e. web data, web repositories, XML documents, databases,

information systems etc.) is described by its own ontology, commonly referred to as source/local

ontology. Semantic conflicts are resolved through either the process of ontology based semantic matching

between source ontologies, or the process of ontology based semantic mapping of source ontologies into

a domain (or upper) ontology.

3.2.3.1 Ontologies and Semantic Matching

In the case of semantic matching, semantic conflicts are usually resolved through a set of logical

inferences that create a „match‟ between related concepts of source ontologies. Each match is dictated by

a correspondence between underlying data sources, where a particular correspondence implies a

particular type of semantic conflict. Semantic access to reconciled matched ontological concepts of

source ontologies harmonises underlying semantic conflicts, thus providing a homogenous view of data

in heterogeneous data sources. The works in [153] and [173] use ontology based semantic matching to

find correspondences based on structural and lexical characteristics between databases after their

semantics have been expressed into ontologies.

For example, an ontology based OntoGrate system from [153] consists of Web-PDDL, and

OntoEngine that uses multiple ontologies as a means of resolving semantic conflicts in heterogeneous

databases. The Web-PDDL is an ontology language centred upon expressive first order predicate logic

and the OntoEngine consists of a powerful knowledge inferring engine. Ontology usage is illustrated

through source ontologies that are created as per the different schemas of databases, which are then

matched through correspondences based on structural and lexical characteristics using rules defined in

Web-PDDL. Furthermore, the rules defined in Web-PDDL act as bridging axioms to merge all databases

schemas together, thus providing a means of data integration. By providing the bridging axioms in Web-

PDDL, the OntoEngine is able to resolve semantic conflicts through powerful inferences upon source

ontologies.

Similarly, a schema matching framework from [173] is used for the identification and resolution of

semantic conflicts between relational schema attributes. Multiple ontologies are used to replicate the

participating relational schemas so that the semantics behind each attribute can be extracted in the form of

ontological classes and instances describing their structural and lexical characteristics. A semantic

matching technique is used to identify correspondences, reconciling any semantic conflicts through their

common quantifying ontological parent classes.

In both works multiple ontologies and schema matching prove to avoid the complexity and

overheads of integrating underlying heterogeneous databases. The advantage seems to be that no

ontology commitment to a single shared global ontology is needed, and that each source ontology, can be

developed without the common agreement of all sources. However, in reality the lack of a common

vocabulary makes it extremely difficult to compare different source ontologies, thus affecting the true

comparison of semantic overlapping and similarities in heterogeneous databases.

 Chapter 3: Related Works 37

3.2.3.2 Ontologies and Semantic Mapping

In the case of semantic mapping, semantic conflicts are usually identified through semantic mappings

between related concepts of source ontologies, where semantic mappings make the use of a mapping

criterion based on similarity measurements to dictate the type of semantic conflict among source

ontologies. In order to resolve semantic conflicts, semantic mappings from source ontologies are mapped

into ontological concepts of a domain (or upper) ontology, which acts very similar to that of a rich

vocabulary of shared semantics describing basic terms of a domain. Semantic access to the domain

ontology provides a shared representation of inter-domain knowledge, where underlying semantic

conflicts of data sources are reconciled. The works in [51] and [52] use semantic mappings to reconcile

differences in semantic definitions and terminological differences in heterogeneous web data.

A multiple ontology based approach from [51] is used as a solution for the reconciliation of data

value, schema and data model conflicts between diverse sources of web data at both the syntactic and

semantic levels. A domain ontology is created for a particular heterogeneous computing environment and

covers all the semantic definitions of all the possible set of terms required for user querying (also known

as a query path). Local ontologies are created to represent the web data which may be in the form of

repositories or existing ontologies. An algorithm is used to create semantic mappings to relate similar

terms from local ontologies according to the terms specified in a query path. The algorithm compares

semantically related concepts, attribute and relationships in local ontologies using the query path as a

mapping criterion. However, users of the system are expected to choose their query-terms from the

domain ontology.

The GeoNis Semantic Mediator from [52] is used to resolve semantic conflicts between the

terminologies of geospatial information sources (i.e. terminologies used within city services, local offices,

local telecom, public utilities, water and power supply services, etc). The GeoNis Semantic Mediator

formally (i) specifies the terminologies of geospatial information sources by translating them into local

ontologies, and (ii) uses the relationship between concepts of different information sources (between local

ontologies), in order to judge whether semantic conflicts exist (non-semantic equivalence) or not

(semantic equivalence). In order to resolve semantic conflicts (if any), each relationship is mapped onto a

top-level ontology based on a semantic mapping using fuzzy logic rules for computing the probability of

similarity results. However, they do not use concept attributes to check similarity.

3.2.3.3 Ontologies and Ontology Mapping

Resolving semantic conflicts in heterogeneous computational environments is also motivated by the

Semantic Web [139], and the maturity of Semantic Web technologies. As we mentioned in chapter 2

(section 2.4.2), the Semantic Web is an continous development of the WWW in order to make sense of

the data stored on the WWW, whether it is in web documents, pages, or any other form of web data.

Central to making sense of this data is Tim Berner-Lee‟s belief that in the near future ontologies will give

meaning to the data on the Web [192]. Therefore, it is likely that there will be many different ontological

models on the Semantic Web, resulting in a number of dissimilar ontologies for the same or overlapping

domains, which subsequently generate the problem of resolving ontological mismatches between them

 Chapter 3: Related Works 38

[142, 260 and 261]. Ontological mismatches are resolved through the process of inter-ontology mapping,

either based on [57, 59, 249, 262 and 263]:

- schema mapping between heterogeneous ontologies,

- instance mapping between heterogeneous ontologies, or

- hybrid mapping that uses a combination of both schema and instance based ontology mappings.

Inter-ontology mapping based on schema mapping tries to infer semantic mappings by creating matches

between information related to structure of heterogeneous ontologies, i.e. a semantic mapping can create

a match between related topological properties, labels or description of nodes, and structural constraints

defined on the schema of the ontologies. On the other hand, inter-ontology mapping based instance

mapping, tries to infer semantic mappings by creating matches between information related to the

information contained in the instances of each element in the ontological schemas of heterogeneous

ontologies.

In both cases of inter-ontology mappings (schema or instance based) the semantic mappings are

usually inferred through finding maximum similarity measures in the two heterogeneous ontologies being

mapped. For example, an inter-ontology mapping method is used in [53], which employs machine

learning to integrate ontology instances from heterogeneous ontologies that have same names but refer to

different entities. and overlap with each other in terms of their intended meaning. The authors in [53]

assume that for a particular domain, there could be one or more ontologies that encode the knowledge of

this domain in the form of different concepts, properties and their semantic relations, resulting in

ontological mismatches. Therefore, in order to resolve ontological mismatches between heterogeneous

ontologies, the authors in [53] use a string based similarity measurement to check similarities based on:

(i) the computation of the subsumption relations between instances in the ontology schema, and

(ii) the examination of object properties of instances, i.e. the distance between semantically related

ontological concepts.

Furthermore, the use of a support vector machine classifier as in [264], is trained with these similarity

measures, and hence used to identify instances referring to same real entities, which enables creates

semantic relations between different ontologies. However, the subsumption relations based on ontological

constructs cannot be sufficient in identifying overlapping meaning or similarities in heterogeneous

ontologies.

Another example can be found in [54] where an ontology alignment strategy is used for resolving

ontological mismatches between ontologies of different applications running on the Semantic Web. Their

ontology alignment is divided into two steps: inconsistency detection and action taking. Inconsistency

detection involves the use of the TreeDiff algorithm proposed in [265] that identifies the largest common

substructure of the two ontologies being compared. This includes detecting differences in ontological

concepts or properties using:

- different names (i.e. labels) for the same meaning, and

- same names with different meaning.

Upon the identification of inconsistencies, ontological concepts, properties, axioms, restrictions are

mapped into an intermediate representation using the degree of similarity between ontological hierarchies

that point to disjointness, superposition, specialisation and equality. The result of ontology alignment is

an intermediate representation of semantically related concepts that can be shared by both applications.

 Chapter 3: Related Works 39

However, the similarities thresholds, i.e., how much is necessary to qualify as enough to ignore, tolerate

or resolve ontological mismatches are not yet clear and will have to be determined.

The choice of using multiple ontologies avoid the commitment to a single global ontology, and

hence give the flexibility of accommodating change such as adding or removing of additional data

sources. New data sources can easily be added without the need of modification in existing ontology

mappings or in the shared global ontology. Furthermore, each source ontology may be combined with

additional semantics making them easier to compare for the resolution of semantic conflicts without

losing the integrity of underlying original semantics. Thus, using source ontology to describe each

heterogeneous data source naturally preserves the autonomy of underlying data sources and increases the

level of data sharing across heterogeneous data sources. However, if one database has a different view on

a domain (e.g. by providing another level of granularity) finding the minimal ontology commitment

becomes a difficult task. Therefore, the above mentioned schema and instance based ontology mappings

for resolving semantic conflicts are sufficient when mapping ontologies in the same level, i.e. where

schema and instance based ontology mapping can provide a common layer from which several ontologies

can be accessed. The need to consider multiple ontologies in environments in which different views and

interpretations of ontological data (e.g. different aggregation and granularity of the ontology concepts)

raise the question of comparing ontological concepts, in order to identify overlapping similarities between

them.

3.3 Ontological Layering and Semantic Web Technology

As our proposal relies on the use of ontological layering, we aim to resolve semantic conflicts using

multiple ontologies built on top of each other. We anticipate that multiple ontologies will be the best way

to contribute towards semantic interoperability in PCEs. The use of multiple ontologies will be the most

suitable approach to managing the growing abundance of semantics generated in heterogeneous data

repositories in PCEs, and specifically make their various interpretations of data explicit. Additional

representation formalism through the specification of semantic relationships between ontologies will

allow a means of resolving semantic conflicts through ontology mappings between different layers of

ontologies. Therefore, we believe it is appropriate to briefly review the research surrounding ontology

mapping techniques and ontological reasoning mechanisms that do not necessarily overlay with the issue

of resolving semantic conflicts in heterogeneous computing environments.

3.3.1 Ontology Mapping

 Ontology mapping in essence is the specification of how concepts in different ontologies are related in a

logical sense, and subsequently constitute towards a form of knowledge about the inter-relationship

between two ontologies and the domain of discourse they model. Ontology mapping is closely related to

the problem of ontology interoperability; in terms of necessitating the combination of distributed and

heterogeneous ontologies in order to access multiple ontologies from different systems and understand

similar ontologies (i.e. semantically related ontological data). According to Noy [260], the research into

ontology mapping can be divided into three broader categories: ontology mapping discovery, declarative

formal representation of mappings and reasoning with mappings.

 Chapter 3: Related Works 40

The research in the area of ontology mapping discovery specifically deals with ontology mapping

discovery, where the focus is on trying to find similarities between two ontologies in order to determine

how and which concepts and properties represent similar notions. More commonly referred to as

ontology alignment, integration and ontology merging depending upon the application and intended

outcome, ontology mapping discovery concerns how we find similarities between two ontologies and

how we determine which concepts and properties represent similar notions.

The research in the area of declarative formal representation of mappings deals with the

representation of mappings and investigates the way in which we can represent ontology mappings

between two ontologies in order to enable reasoning with mappings. Depending upon the intended use of

the mapping, the representation of ontology mappings may be integral according to their outcome. For

example, ontology mappings that may produce a translation of a source ontology into a target ontology,

or merge two ontologies into a third ontology will no doubt depend on the way inter-relationships have

been defined in ontology mappings. However, in other cases, ontology mappings may be represented as

queries or bridging axioms that simply describe how one entity can be mapped or transformed into

another, and stored separately from the ontologies they map [266].

In the ontology mapping process, a reasoning system finds the similar concepts between two

ontologies and maps the corresponding concepts to each other. Hence, the research in the area of

reasoning with mappings deals with performing the actual reasoning upon mappings between

ontologies, i.e. once the mappings are defined, what do we do with them or what types of reasoning is

involved? However, because this research is inter-linked with area of declarative formal representations

of ontology mappings, given some formal representation of a mapping between ontologies one may be

able to reason with the mapping itself. For example, reasoning may determine such things as the

adequacy of a mapping to a given task or application, whether two mappings are equivalent or to query

the ontologies that have been mapped [266].

We list ASCO [55], SAT [56], GLUE [57], Cupid [58], QOM [59], Anchor-PROMPT [60] and

Chimaera [61] as some of the recent research and approaches in the ontology mapping domain. However,

these tools are usually based on either heuristics that identify structural and naming similarities between

models or using machine learning to learn mappings that require feedback from a user to further refine a

proposed mapping as opposed to automatic creation of ontology mappings. We guide the reader to the

ontology mapping surveys by [15, 247, 248, 249 and 267] in order to gain further knowledge on ontology

mapping research and approaches.

3.3.2 Ontology Reasoning

In general, “reasoning” means to derive inferences in the form of logical conclusions from a corpus of

explicitly stored information, to solve a range of problems [268]. Hence, in ontology based reasoning,

“ontology reasoning” means that we must derive inferences that are sanctioned by the knowledge

contained within an ontological model (i.e. an ontology‟s concepts, instances, axioms and constraints).

However, ontology languages are good for describing knowledge adhering to the Open World

Assumption (OWA), in which conclusions cannot be derived from an ontological model because its

modeled knowledge is considered incomplete. Therefore, several rule languages which adhere to the

 Chapter 3: Related Works 41

Closed World Assumption (CWA) are considered as partners for ontologies, in which rules add

expressivity in the form of a closed view of the world i.e. everything which is not derivable from the

ontological model is assumed to be false, hence, reducing the level of OWA in ontology reasoning.

Due to the complementary nature of existing ontology and rule languages, a plethora of rule based

systems have been developed over the last years driven by the need for rule-based integration of

constantly growing Semantic Web data. The issue of building rules either inside or outside OWL

ontologies is in practice often underestimated and is an important milestone on the W3Cs agenda for

completing the Semantic Web architecture. Subsequently, we explicitly list the works in [269, 270, 271

and 272] as an in-depth description of ontology reasoning using rule-based approaches ranging from

deductive rule languages to probabilistic and fuzzy rule approaches. Specifically, the work of Eiter and

Ianni [273] overview a number of rule-based formalisms, which can either work with rules built either

inside or outside ontologies.

Furthermore, in [274 and 275] examples of ontology reasoning which do not rely on rule based

formalisms and ontology knowledge bases are given. Howewer, their practicability in modern

computational environments is questionable, because they do not embrace the vision of the Semantic

Web.

The authors of [274] discuss the logical foundations of OWL in context-aware applications. They

illustrate the various levels of descriptions for general properties of ontological concepts through

terminological concepts defined in DL theory such as T-box (intentional knowledge in terms of

terminology) and A-box (knowledge base - actual ontology) declarations, Using such DL-based

reasoning through ontology query languages such as Resource Description Framework Data Query

Language (RDQL)
31

 and rule based extensions such as the Jess reasoning engine, the authors also

emphasise the benefits of having reasoning support build into the logical basis of the ontology. However,

the authors of [275] discuss OWL ontologies as a vehicle in decision making within pervasive spaces of

self-care smart homes. They illustrate the limitations of OWL ontologies through ontology design models

in which the distribution of computational power and reasoning capabilities are balanced through

different OWL modeling constructs. They use ontological constructs and restrictions, the inference

mechanism that uses either DL or SWRL rules, and create Java code through OWL Application

Programming Interface (OWL API)
32

.

Although the authors in both sources [274] and [275], raise different points on the use and

practicality of ontology reasoning mechanisms. They both highlight the role of efficient reasoning in

terms of the reasonable balance between ontological facts (i.e. the formalism of ontology‟s concepts,

instances, axioms and constraints) and rules as additional expressivity. However, the design decision of

ontological models and the number of constituting rules give rise to the trade-off between the

expressiveness of OWL and the efficient OWL reasoning support.

31

 www.w3.org/Submission/RDQL/
32

 owlapi.sourceforge.net/

 Chapter 3: Related Works 42

3.3.3 Managing Multiple Ontologies

The number of multiple ontologies available for modern heterogeneous computing environments gives

rise to the problem of managing them. We mention a few works on ontology versioning, ontology storage

and distributed ontology architecture as some issues relevant in the context of ontological layering.

Ontology versioning is just one task in managing multiple ontologies. According to Noy and Musen

[60] ontology developers now face the same problem as software engineers encountered long ago:

versioning and evolution. For example, ontology developers and users must be able to find and compare

existing ontologies, reuse complete ontologies or their parts, maintain different versions, and translate

between different formalisms. Noy and Musen categorise current ontology-versioning research issues into:

- identifying ontology versions in distributed environments (an example can be seen in [250]),

- explicitly specifying change logs between the different versions of ontologies (examples can be seen

in [276 and 277]), and

- determining a set of additional ontology changes that each user-specified change incurs (examples

can be seen in [164 and 278]).

Ontologies may contain millions of concepts in complex relationships, thus the need for ontology storage

triggers the need for appropriate ontology servers. The majority of research on ontology storage

concentrates on ontology servers described as either:

- an integrated tool for building ontologies such OntoEdit [219], WebODE [279] and Protégé-2000

[280], or

- stand alone servers that explicitly deal with storing ontologies such as tools OntoRama [281],

Ontosaurus [282] and Ontolingua Server [283].

However, the research on ontology server technology is limited and very much immature compared to the

rapid growth in the application of ontologies. We guide the reader to the evaluations of Ahmad and

Colomb [284] for a more detailed understanding of the ontology server technology available today.

 Lastly, it is worth mentioning that the evaluations in [285] have explored some important design

questions in order to consider distributed architectures for heterogeneous ontologies. For instance, they

question how one would define the various components of an ontology, and they would be related? Or

what the consequences would be for the exchange of expressions between systems using different

ontologies?

3.4 Conclusions

In this chapter we have reviewed the most important related works and demonstrated their benefits and

drawbacks. To set this thesis into perspective, we have reviewed the various classifications of semantic

conflicts as a means to understand where semantic conflicts can occur, i.e. in which type of data

repositories and which level of data granularity they are concerned with, e.g. meta-data or data value. We

have discovered that semantic conflicts do not easily fall into discrete categories of structural or semantic

differences. However, semantic differences usually signal the need for the semantic interpretation of data.

We have discovered that methods and approaches based on the use of federations and global

schemas have notably been successful in dealing with structural differences of databases. However, they

tend to be rigid and inflexible, in terms of accommodating more semantics for data sharing, which

 Chapter 3: Related Works 43

suggests that they lack semantic richness. Very often information they generate can be too general or too

“fine grained”. We have also briefly reviewed the use of mediations as an approach to resolving conflicts

between heterogeneous databases, and have concluded that the development of them can be expensive in

both time and money.

 We have also given an insight into the multiple ways ontology based approaches are used to resolve

semantic conflicts in traditional databases and information systems to modern computational

environments today. It has been discussed that ontologies as a solution to resolving semantic conflicts

between heterogeneous databases have no doubt been more successful in resolving semantic differences

then previous approaches based on the use of federations, global schemas and mediations. However using

ontologies as vocabularies in heterogeneous databases and information systems prove to be a similar

semantic approach to data base integration as that of using global schemas in federations. Hence,

compromising the level of original semantic contained with databases versus the level of ontological

commitment to the global ontology. Furthermore, we have seen the heavy burden on manual intervention

for the correct identification and resolution of semantic conflicts, hence hindering the posissibility to

automating solutions for resolving semantic conflicts.

 We have also extensively discussed the use of multiple ontologies that prove to be more suitable to

the dynamic nature of modern computational environments today. We have shown how having

heterogeneous data sources described by their own ontologies can significantly eliminate problems of

flexibility in terms of adding new data sources, and avoid commitment to a single ontology. However,

semantic matching and mappings are limited to a common layer from which multiple ontologies can be

accessed, and subsequently suggest the need to consider multiple ontologies.

 Finally, as our proposal relies on the use of ontological layering and reasoning mechanisms using

the Semantic Web technology, we have reviewed research on ontology mapping and reasoning

mechanisms that has identified the issue of having an reasonable balance between ontological facts (i.e.

the formalism of an ontology‟s concepts, instances, axioms and constraints) and rules as additional

expressivity. The question of having rules on built either inside or outside ontologies advocates the trade-

off between the expressiveness of OWL versus an efficient OWL reasoning support.

 Chapter 4: Software Architecture for Supporting Ontological Layering 44

Chapter 4

Software Architecture for Resolving

Semantic Conflicts through Ontological

Layering

In this chapter we describe our proposal, which supports retrievals from various data repositories and

resolves semantic conflicts which arise from heterogeneities inherent in them. Our proposal is based on

ontological layering, which is in the core of the proposed layered SA. Ontological layering generates Go-

CID that ensures correct results of retrievals across heterogeneous data repositories, and secures inference

mechanisms for resolving semantic conflicts. Our contribution and the novelty in our proposal are

threefold:

1) the SA which accommodates ontological layering is generic and applicable across any domain

where we need to manipulate the understanding of the environments where heterogeneous data

repositories reside PLUS use the power of user‟s involvement in retrievals across these repositories;

2) the SA helps to resolve semantic conflicts and achieve data sharing and interoperability in any

heterogeneous environment through unique ontological layering, which is based on a set of specific

ontological mappings and reasoning performed upon ontological concepts;

3) our proposal leaves heterogeneous data repositories intact in terms of not changing their format and

semantics stored in them. Ontological layering enables us to deal with semantic conflicts on an ad-

hoc basis through ontological layers, by exploiting the meaning of user‟s requests for retrievals and

the knowledge of the environment where retrievals take place through inference mechanisms.

The layered SA which accommodates ontological layering is presented in section 4.1. We introduce SA

software architectural components, which are based on layered software architectural styles‟ principles,

taken from [286] and [287]. Ontological layering is in the core of the SA and different layers have

different purpose, i.e. they are generated through different reasoning mechanisms. The lowest layer is a

Local Ontological layer, which accommodates Local Ontologies {LOj | j = 1, ... n}, instantiated through

translations of the content and structure of heterogeneous Data Repositories {Repi | i = 1, ... m}. All other

ontological layers in our SA are dynamically generated from LOj through a set of specific ontological

mappings and reasoning performed upon ontological concepts. Consequently sections 4.1.1 - 4.1.3 detail

the way our ontological layers are created from LOj. Our core layering exists as a consequence of (a) the

 Chapter 4: Software Architecture for Supporting Ontological Layering 45

existence of semantically related concepts in Repi and conflicts triggered by them and (b) our reasoning

mechanisms for resolving semantic conflicts through ontological mappings alignment, integration and

merge. Section 4.2 lays out our theoretical foundations for classifying similarities between semantically

related concepts in heterogeneous Repi. We briefly review the term semantic proximity model, which

characterises similarities between related concepts as defined by Sheth and Kashyap [44] and use it in our

classification. Section 4.3 introduces the process for creating and deploying SA components which

consists of 8 steps. Steps 1-5 “prepare” the semantics essential for creating core ontological layers. Steps

6-8 illustrate the exact way of resolving semantic conflicts through core ontological layering. In section

4.3.2 we give a specific scenario which illustrates heterogeneities of Repi, user‟s involvements in the

retrievals across Repi and the way we generate core ontological layers for resolving semantic conflicts,

generated from similarities of semantically related concepts involved in particular retrievals. Subsections

4.3.3 and 4.3.4 strictly distinguish between the preparation of the semantics essential for creating

ontological layering (steps 1-5 of our process) and layering itself (steps 6-8 of our process).

4.1 The Proposal: Software Architecture for Ontological Layering

Figure 4.1 SA for resolving semantic conflicts through ontological layering

Figure 4.1 illustrates our layered SA which accommodates ontological layering and the Go-CID as its

final result. We distinguish between the:

 environment (shaded in grey) in which heterogeneous data repositories reside: Application Layer

which accommodates Software Applications {Appf | f = 1, ... r}; User Request Layer with User

Requests {Reqe | e = 1, ... s}; Reqi and heterogeneous Repi from the Persistence Layer and

 Chapter 4: Software Architecture for Supporting Ontological Layering 46

 core ontological layers: Local Ontologies LOj, Target Ontologies {TOk | k = 1, ... p}, Derived

Ontologies {DOg | g = 1, ... q} and Go-CID that are responsible for resolving semantic conflicts

which appear as a consequence of retrievals across Repi.

4.1.1 The Go-CID Environment

The Persistence Layer contains data repositories Repi that can be derived from a broad range of data

repositories, such as databases in database systems, web services available on the web, file systems, web

sites etc. Repi store data which are available for various retrievals across any particular domain; they may

be of any format/technological specification, plus they may be distributed across any number of locations

or computer network nodes. Repi have an impact on core ontological layering, because they instantiate

the LOj in the Local Ontological Layer through translations of Repi into LOj. As soon as repositories/data

providers subscribe to the environment in which heterogeneous data repositories reside the semantics

from Repi are transferred into LOj for the purpose of identifying and resolving semantic conflicts (if they

exist) during particular retrievals upon Repi .

Software applications Appf, which are either built upon Repi or need data which is stored in them,

are shown in the Application Layer in Figure 4.1. Their functionality may include retrievals across Repi

and their interfaces can capture user‟s involvements, i.e. user requests articulated through application

interfaces.

 User requests Reqe, as a part of user involvements in these environments, are shown in the User

Request Layer. Components from this layer are responsible for storing and interpreting the exact user‟s

involvements in the ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT ontologies. These

ontologies correctly interpret the semantics behind user involvements and consequently identify

semantically related concepts within Repi which (i) might be relevant to a particular user request Reqe and

(ii) have impact to the way core ontological layering is created. User‟s involvements are modeled

through their selection of Repi and possible Information Types {InfTyped | d = 1, …, t} stored within Repi.

InfTyped are actually groups of semantically related concepts which can be found across Repi and which

are being chosen by the user as a part of his/her request Reqe for retrievals.

4.1.2 Core Ontological Layers

Core ontological layers store ontologies Local Ontologies LOj, Target Ontologies TOk, Derived

Ontologies DOg and finally Go-CID. It is obvious that we are moving from the Local Ontological Layer

to the Go-CID Ontological Layer in order to:

 address user‟s request for retrievals across Repi , and

 resolve the different types of semantic conflicts as a consequence of user‟s request for retrievals

across Repi.

Core ontological layers contain software architectural components which house ontologies responsible for

resolving the different types of semantic conflicts. Each layer groups these components (i.e. ontologies)

according to the roles they play in resolving semantic conflicts. Therefore, different types of semantic

conflicts will dictate a specific set of ontological layers. In other words, the content of Repi and user

requests Reqe upon Repi, reveal where and which types of semantic conflicts we may have, and which

 Chapter 4: Software Architecture for Supporting Ontological Layering 47

ontologies within our core layers we have to create in order to resolve them. We have already mentioned

at the beginning of the chapter that we use layered software architectural styles‟ principles, taken from

[286] and [287]. Thus, our core “layering” means that components from a particular layer are “allowed to

use” any component from their adjacent layers [288]. Our creation of core ontological layers starts at LOj

and proceeds upwards to the Go-CID Ontological Layer. In exceptional situations we allow to skip a

layer, which depends on the exact Reqe placed upon a set of Repi. In other words, some types of semantic

conflicts can be resolved without using all core layers.

 However, the process of resolving semantic conflicts is based on ontology mapping. In other words,

our ontological layering is dependent on ontology mappings. We use the definition which says that:

“mapping one ontology onto another means that for each entity (concept C, relation R, or instance I)

in ontology O1, we try to find a corresponding match, which has the same meaning, in ontology O2”

[289].

The Semantic Web [139] terminology on ontology mappings [15, 247, 248, 249, 260, 266 and 267]

allows us to re-use, adapt and itemise ontology mappings [289] into alignment, integration and merge.

Therefore, in our ontological mappings, LOjs are aligned into TOks, TOks are integrated into DOgs

and DOgs are merged into the final Go-CID. The results of alignment(s) upon LOj are stored in TOk. The

alignment is triggered by the existence of „semantically related‟ concepts in LOj, which have been carried

forward from Repi. In other words, the alignment identifies overlapping semantics in „semantically

related‟ concepts in LOj and stores them in TOk. The results of integration(s) upon TOk are stored in DOg.

The integration(s) is (are) triggered by the existence of „semantically similar‟ concepts in TOk. In other

words, the integration identifies concepts with similar semantics in TOk and stores them in DOg. The

results of merge upon DOg are stored in Go-CID. The merge is triggered by the existence of „semantically

equivalent‟ concepts in DOg. In other words, the merge identifies concepts with identical semantics and

place them in the Go-CID Ontological Layer. Note: Go-CID concepts must become „real world‟

concepts as they have been initially stored in Repi.

4.1.3 Interactions between the Go-CID Environment and Core Ontological

 Layers

Interactions between layers vary because they have a specific purpose and may be bidirectional. They are

explained in bullets below, following their graphical presentation in Figure 4.1.

 The Application and the User Request Layer interact by transferring user‟s request; which has been

captured by application Graphical User Interfaces (GUIs) into ontological concepts within the User

Request Layer (i.e. they are stored in the USER_INP_ONT). This interaction is denoted as the

directional black arrow between layers.

 Interaction between the Persistence and the Local Ontological layer is done through a one way

automatic translation of the semantics from Repi into LOj. There are a number of available tools

which can be deployed to perform this translation [147 and 227]. This interaction is denoted as the

directional green arrow between layers.

 The results of reasoning upon ontological concepts in the USER_INP_ONT and the ENV_ONT,

stored within the User Request Layer, trigger core ontological layering by passing information on

 Chapter 4: Software Architecture for Supporting Ontological Layering 48

semantic conflicts from the User Request Layer to the Local Ontological Layer. Note: Interactions

between these layers are bidirectional and they are based on ontological reasoning which moves

ontological individuals between them. This interaction is denoted as the bidirectional blue arrow

between layers.

 Interactions between core ontological layers are characterised by ontology mappings alignment,

integration and merge which are all based on ontological reasoning. In other words, we match

ontological individuals through a variety of reasoning rules in order to reach the Go-CID

Ontological Layer and ultimately resolve all semantic conflicts. These interactions are denoted as

the directional orange arrows between layers.

 The final interaction between the Go-CID Ontological Layer and the Application Layer appears in

the form of “performing retrievals” of ontological concepts, including their individuals from Go-

CID, and displaying them in applications GUIs. This interaction is denoted as the directional red

arrow between layers.

4.2 Semantic Similarities versus Semantic Conflicts

Information retrievals in our research are concerned with identifying concepts in Repi which have to be

retrieved, but are semantically related. If these concepts are semantically related, then semantic conflicts

may exist between them, which in turn will have to be resolved through our ontological layering.

Semantically related concepts of Repi may model real world concepts, therefore it is expected that they

may have identical or overlapping meaning, which in turn may lead to a number of similarities between

them that generate semantic conflicts [10, 74 and 83]. Thus, similarities between Repi concepts are often

a good indication of whether the semantically related concepts refer to the same real world concepts they

model.

Accordingly, in Sheth and Kashyap [44] the term semantic proximity characterises the similarity

between a pair of objects in a database
33

. Given two objects O1 and O2, the semantic proximity between

them is based on three key elements: (i) the „context‟ in which two objects O1 and O2 are being compared

(i.e. the situation in which a particular semantic similarity holds true between two objects), (ii) the

„abstraction‟ in which two objects O1 and O2 are being related (i.e. the mechanism used to map the

domain of the objects to each other) and (iii) the „domain‟ in which objects O1 and O2 are being defined

(i.e. the sets of values from which the objects can take their definitions). Sheth and Kashyap emphasise

(i)-(iii) in order to highlight their contribution in identifying, representing and understanding the

similarities between related objects. Hence, we choose to use their „context‟, „abstraction‟ and „domain‟

elements of the semantic proximity in order to identify the existence of similarities between semantically

related data in Repi. The concept behind the „context‟, „abstraction‟ and „domain‟ elements are applied to

the User Request layer of our SA. Specifically:

 the choices of Repi and InfTyped stored within Repi, create a „context‟ in which semantically related

concepts from Repi are compared;

33 where database objects refer to objects in the model world (i.e. a representation or definition in a model world) as

opposed to an entity or a concept in the real world [18].

 Chapter 4: Software Architecture for Supporting Ontological Layering 49

 the ontological concepts in the ADDED_VAL_ONT create the „abstraction‟ which helps to show

that InfTyped concepts are related to each other. In other words, after instantiating LOj by converting

Repi and InfTyped into LOj, ontological reasoning groups semantically related concepts from LOj

into the ADDED_VAL_ONT. Our grouping is equal to creating „abstractions‟ because we map the

related concepts of InfTyped into the ADDED_VAL_ONT;

 ontological concepts in LOj store ontological individuals from which related concepts of InfTyped

(stored in the ADDED_VAL_ONT) take their values. Our ontological individuals in LOj is equal

to the „domain‟ because term “values” in [44] are equal to “ontological individuals” and their

instance values, which we group into concepts of the ADDED_VAL_ONT.

Consequently, the ontological individuals from LOj that have been grouped into ontological concepts in

the ADDED_VAL_ONT define (and guarantee) the existence of similarities between semantically related

concepts of Repi which in turn creates a situation in which a particular semantic similarity holds true

across InfTyped.

4.2.1 Categorising Semantic Conflicts

Similarities of semantically related concepts in Repi may generate a variety of semantic conflicts due to

the differences in either the:

 interpretation of semantically related data in respect to their meaning in a given context [20], or

 intended use of semantically related data within a given context [19], or

 way that semantically related data has been modeled in a universe of disclosure [21].

As various studies have demonstrated, it is difficult to resolve semantic conflicts across heterogeneous

data repositories without the categorisation of the different types of semantic conflicts which may exist

across them [44 and 49]. It was suggested in both works that the categorisation of semantic conflicts

involves making their types and similarities explicit.

Table 4.1 in Appendix A.1 summarises the types of semantic conflicts that our SA resolves through

core ontological layering. We place it in Appendix A.1 because of its length. Our types of semantic

conflicts in Table 4.1 are categorised according to Naming and Structural conflicts. Naming conflicts

occur when different names are used to represent semantically related concepts and often happen when

names are arbitrarily assigned to concepts. Structural conflicts occur when different systems use different

data organisation to represent semantically related concepts and apply to the structure of concepts which

may be determined by different perspectives and incompatible design specifications.

Naming conflicts are divided into the Mispelt/Case-sensative, Homonym, and Synonym types of

semantic conflicts. Structural conflicts are divided into the Generalisation, Specialisation, Isomorphism,

Union Incompatibility, and Aggregation types of semantic conflicts.

 The Mispelt semantic conflict refers to the difference in semantically related concepts because of

incorrect spellings to describe named concepts
34

.

The Case sensitive semantic conflict refers to the difference in semantically related concepts

because of upper and lower cased letters used to describe named concepts.

34

 See the Glossary for the definition of „named modeling concepts‟.

 Chapter 4: Software Architecture for Supporting Ontological Layering 50

The Homonym semantic conflict refers to the difference in semantically related concepts because of

a named concept sounding alike another named concept but having a different meaning to each other.

The Synonym semantic conflict refers to the difference in semantically related concepts because of a

named concept having the same or nearly the same meaning as another named concept.

The Generalisation semantic conflict refers to the difference in semantically related concepts

because of a named concept having a „super types‟ of their characteristics in terms of describing the same

meaning as another named concept.

The Specialisation semantic conflict refers to the difference in semantically related concepts

because of a named concept having a „super types‟ of their characteristics in terms of describing the same

meaning as another named concept. The Isomorphism semantic conflict refers to the difference in

semantically related concepts because of a named concept having a „different numbers‟ of their

characteristics in terms of describing the same meaning as another named concept.

The Aggregation semantic conflict refers to the difference in semantically related concepts because

of a named concept having a „different aspects‟ of their characteristics in terms of describing the same

meaning as another named concept.

The Union Incompatible semantic conflict refers to the difference in semantically related concepts

because of a named concept having a „different structures‟ of their characteristics in terms of describing

the same meaning as another named concept.

In Table 4.1 a number of examples are given to help better understand the concepts behind all these

kinds of conflicts.

4.2.2 Degrees of Semantic Similarities

In this section we describe our classification of semantically related concepts and the degree of similarity

between them. The degree of similarity between semantically related concepts is defined by a taxonomy

that judges the level of semantic proximity (section 4.2) between semantically related concepts that

generate different types of semantics conflicts. Subsequently, the various degrees of similarities are used

by our SA in order to compare the types of semantic conflicts during their resolution. Therefore, the

classification of semantically related concepts and the degree of semantic similarities between them is

necessary in judging the level of overlapping between semantically related concepts.

Our classification of semantically related concepts and the degree of similarity between them is

illustrated in Figure 4.2. It contains seven degrees of similarities (or levels of “overlapping”) that range

from „Semantic Disjoint (1)‟ to „Semantic Equivalence (7)‟. Semantically related concepts may belong to

the same degree of similarities depending on their level of “overlapping”. The „Semantic Disjoint (1)‟ has

the lowest level of similarity between semantically related concepts and the „Semantic Equivalence (7)‟

has the highest. However, we do not measure the degree of similarity between semantically related

concepts. We simply determine how far they are from „Semantic Disjoint (1)‟ and „Semantic

Equivalence (7)‟. In other words, to check the degree of similarity between semantically related concepts

we judge how close they are to their semantic equivalence. For example, concepts belonging to the

„Semantic Subset - contained within (5)‟ have a higher degree of semantic similarities than the concepts

 Chapter 4: Software Architecture for Supporting Ontological Layering 51

which belong to the „Semantic Likeness (3)‟. The definitions for each degree of similarity (1) – (7)

between semantically related concepts are given in the next paragraph.

Figure 4.2 Classification of semantically related concepts and the degree of similarity between them

Semantic Disjoint (1) is a degree of similarity between two concepts that do not resemble
35

 each

other and do not have any similarities in a given „context‟. Concepts that belong to Semantic Disjoint (1)

are not equivalent to each other and subsequently do not generate any semantic conflicts.

Semantic Equivalence (7) is a degree of similarity between two concepts that resemble each other

and are identical to each other in a given context. Concepts that belong to Semantic Equivalence (7)

share the exact same meaning. However, they may occasionally generate semantic conflicts because of

the Mispelt/Case-Sensitivenaming conflicts. For example, we may have two modeling concepts

‘MEDICAL_SUMMARY‟ and „MMMedical_Summary‟ which model a patient‟s summary of previous

treatments in both cases. Both concepts MEDICAL_SUMMARY‟ and „MMMedical_Summary‟

“resemble each other” (they are obviously Medical Summaries) PLUS have the same meaning: “patient‟s

summary of previous treatments”.

False Semantic Likeness (2) is a degree of similarity between two concepts that resemble each

other but have no similarities in a given context. Concepts that belong to Semantic False Likeness (2)

appear identical to each other but share different meaning and generate the Homonym based naming

conflict. For example, we may have a modeling concept called ‘REPORT‟ which models the

combinations of treatments and diagnosis per patient for a general practitioner, whereas „REPORT‟ might

also represent the list of patients who have positively reacted well to a particular treatment within a

hospital. Thus, „REPORT‟ has the same name in both environments: „general practitioner‟ and „hospital‟,

35

 „resemble‟ refers to one or more „characteristics‟ of the named modeling concept that may look alike.

 Chapter 4: Software Architecture for Supporting Ontological Layering 52

but these two modeling concepts „REPORT‟ do NOT have any similarities in respect to their meaning in

a given context (general practitioners‟ and „hospital‟).

Semantic Likeness (3) is a degree of similarity between two concepts that resemble each other and

have some similarities in a given context. Concepts that belong to Semantic Likeness (3) share some

similar meaning and generate the Synonym based naming conflict. For example, we may have a modeling

concept ‘ELECTRONIC_HEALTH_RECORD‟ that models the patient records for a general practitioner

and „COMPUTATIONAL_RECORD‟ which models the patient records for a hospital. Thus,

„ELECTRONIC_HEALTH_RECORD‟ and „COMPUTATIONAL_RECORD‟ have semantic similarities

between them, they both model patients‟ records. However they are NOT equivalent to each other

because they might model different aspects of patient records. A hospital patient record might have

different structures („characteristics‟) compared to a general practitioner patient record, for the same

patient.

Concepts that belong to Semantic Likeness (3) may also generate the Aggregation based structural

conflict. For example, we may have modeling concepts „PATIENT NAME‟, „PATIENT ADDRESS‟ and

„PATIENT CONTACT NO‟ that models patient personal details in a patient record for hospital, whereas

„PATIENT FIRST NAME‟, „PATIENT LAST NAME‟, „PATIENT ADDRESS‟ and „PATIENT

CONTACT NO‟ might also model patient personal details in a patient record for a clinic. Thus, the seven

modeling concepts have semantic similarities between them because they all model patient personal

details. However, it is obvious that there is some kind of “aggregation” between them in terms of their

meaning in respect to the context of their meaning. Therefore, they are NOT equivalent to each other

because they might model different aspects of patient demographics details (i.e. there is a difference

between the concepts „PATIENT_NAME‟ and „PATIENT FIRST NAME‟ and „PATIENT LAST

NAME‟ in both environments: „hospital‟ and „clinic‟). A hospital patient record might have different

structures („characteristics‟) compared to a clinic patient record, for the same patient.

Semantic Subset – contains (4) is a degree of similarity between two concepts that resemble each

other and have some similarities that are „super-types‟ between characteristics of the real world concepts

they model in a given context. Concepts that belong to Semantic subset - contains (4) share some similar

meaning in the generalisation of their characteristics and generate the Generalisation based structural

conflict. For example, we may have a modeling concept ‘SUMMARY_OF_TREATMENTS‟ that models

a patient‟s treatments over the last year in a general practitioner‟s environment, whereas

„PREVIOUS_TREATMENT_SUMMARY‟ and „CURRENT_TREATMENT_SUMMARY‟ models a

patient‟s treatments over the last six months in a clinic environment. Thus, the three modeling concepts

have semantic similarities between them because they all model patient treatments and may be available

for each patient. However, it is obvious that there is some kind of “generalisation” between them in

terms of their meaning in respect to the context of their meaning. „SUMMARY_OF_TREATMENTS‟ is

a super-type of „PREVIOUS_TREATMENT_SUMMARY‟ and

„CURRENT_TREATMENT_SUMMARY‟, i.e. SUMMARY_OF_TREATMENTS‟ is a concepts which

„contains‟ its subsets: „PREVIOUS_TREATMENT_SUMMARY‟ and

„CURRENT_TREATMENT_SUMMARY‟.

Semantic Subset – contained within (5) is a degree of similarity between two concepts that

resemble each other and have some similarities that are „sub-types‟ between characteristics of the real

 Chapter 4: Software Architecture for Supporting Ontological Layering 53

world concepts they model in a given context. Concepts that belong to Semantic subset – contained

within (5) share some similar meaning in the specialisation of their characteristics and generate the

Specialisation based structural conflict. For example, we may have a modeling concepts

„PREVIOUS_PRESCRIPTION_SUMMARY‟ and „CURRENT_PRESCRIPTION_SUMMARY‟ that

models a patient‟s prescriptions over the last six months in a clinic environment, whereas

‘SUMMARY_OF_PRESCRIPTIONS‟ might also models a patient‟s prescriptions over the last year in a

general practitioner‟s environment. Thus, the three modeling concepts have semantic similarities between

them because they all model patient prescriptions and may be available for each patient. However, it is

obvious that there is some kind of “specialisation” between them in terms of their meaning in respect to

the context of their meaning. „PREVIOUS_PRESCRIPTION_SUMMARY‟ and

„CURRENT_PRESCRIPTION_SUMMARY‟ are sub-types of ‘SUMMARY_OF_PRESCRIPTIONS‟ i.e.

„PREVIOUS_PRESCRIPTION_SUMMARY‟ and „CURRENT_PRESCRIPTION_SUMMARY‟ are

concepts which are „contained within‟ its super-type: ‘SUMMARY_OF_PRESCRIPTIONS‟.

Semantic Overlapping (6) is a degree of similarity between two concepts that resemble each other

and have similarities in a given context. Concepts that belong to Semantic Overlapping (6) share

overlapping meaning and generate the Isomorphism based structural conflict. For example, we may have

modeling concepts „LABTEST NAME‟, „LABTEST TYPE‟ and „LABTEST DATE‟ that models a

patient‟s lab test in a lab test records for a clinic, whereas „LABTEST NAME‟, „LABTEST TYPE‟,

„LABTEST DATA‟ and „LABTEST DATE‟ might also model a patient‟s lab test in a lab test records for

a hospital. Thus, the seven modeling concepts have semantic similarities between them because they all

model a patient‟s lab test and may be available for each patient. However, it is obvious that there is some

kind of “isomorphism” between them in terms of their meaning in respect to the context of their meaning

(i.e. there is a difference between the number of concepts that model a particular patient‟s lab test in both

environments: „clinic‟ and „hospital‟). A clinic lab test record might have different structures

(„characteristics‟) compared to a hospital lab test record, for the same patient.

Concepts that belong to Semantic Overlapping (6) may also generate the Union Incompatibility

based structural conflict. For example, we may have modeling concepts „MEDICATION NAME‟,

„MEDICATION DESCRIPTION‟ and „MANUFACTERING ADDRESS‟ that models a patient‟s

prescribed medication in a medical record for a hospital, whereas „MEDICATION NAME‟,

„MEDICATION DESCRIPTION‟ and „MANUFACTERING DESCRIPTION‟ might also model a

patient‟s prescribed medication in a medical record for a clinic. Thus, the six modeling concepts have

semantic similarities between them because they all model a patient‟s prescribed medicine. However, it

is obvious that there is some kind of “union incompatibility” between them in terms of their meaning in

respect to the context of their meaning (i.e. there is a difference between the concepts

„MANUFACTERING ADDRESS‟ and „MANUFACTERING DESCRIPTION‟ that model a particular

patient‟s prescribed medicine in both environments: „hospital‟ and „clinic‟).). A hospital medical record

might have different structures („characteristics‟) compared to a clinic medical record, for the same

patient.

 Chapter 4: Software Architecture for Supporting Ontological Layering 54

4.3 Resolving Semantic Conflicts through Ontological Layering

4.3.1 The Process for Resolving Semantic Conflicts

Our process for resolving semantic conflicts during retrievals across heterogeneous data repositories is

given in Figure 4.3. The process is tailored for our SA which accomadates ontological layering and

influenced by technologies‟ imperatives (component technologies and semantic web tools).

In Figure 4.3, steps 1-5 of our process prepare the semantics needed for creating ontological layers.

The preparation of semantics includes:

 transferring the semantics from heterogeneous Repi into LOj, and

 preparing the semantics taken from user involvements (request Reqe for retrievals of InfTyped

across Repi in terms capturing, storing and interpreting the meaning of user‟s involvements).

Steps 6-8 of our process perform ontology mappings alignment, integration or merge of semantically

related concepts. The mappings generate ontologies in the Target, Derived and Go-CID layers and

resolve semantic conflicts. The detailed description of each step is given in the paragraphs below.

Figure 4.3 The process for resolving semantic conflicts

Step 1: Translating Repi into LOj

The content of Repi (e.g. schemas and data values in cases of relational databases) are translated into

LOj. The Protégé 3.4 ontological editing toolkit environment [290] is used to generate LOj with OWL

DL [143]. Data translation techniques [227] are responsible for exporting data values from structured

database elements into LOj. Other types of data, such as images, audio and video data, or binary data

files (Word, Excel, PDF etc.) are considered to be atomic files with no internal structure, thus they are

described through pre-defined ontological concepts stored in the ENV_ONT.

 Chapter 4: Software Architecture for Supporting Ontological Layering 55

Step 2: Mirroring Meta-Data from Repi in the ENV_ONT

Metadata from Repi are mirrored within the ENV_ONT concepts. They are “schemas” of Repi available

for a particular retrieval. Thus, LOj (which contain translated Repi) and the ENV_ONT concepts have

the following characteristics: (i) the schemas in ENV_ONT give a list of InfTyped, and (ii) LOj store

ontological individuals which make up InfTyped. The Protégé 3.4 ontological editing toolkit

environment is used to create the ENV_ONT with OWL DL.

Step 3: Preparing lists of Repi and InfTyped

We prepare a list of all possible repositories Repi and InfTyped (metadata stored in the ENV_ONT)

through GUIs of software application Appf to enable users‟ involvements, i.e. securing the retrieval of a

particular InfTyped from a particular Repi. NetBeans 6.4 Interactive Development Environment

(NetBeans IDE)
36

 and SWING
37

 are used to provide a Java Application Programming Interface (Java

API) for creating GUIs.

Step 4: Capturing User Involvements

We deal with user‟s involvement by capturing user inputs through the application‟s GUI. Appf use

specific „computations‟ to populate ontological concepts in the USER_INP_ONT, according to a user‟s

inputs (i.e. captured user “clicks”) which is a result of user‟s choices made upon the list of Repi and

InfTyped. The Protégé 3.4 ontological editing toolkit environment is used to create the

USER_INP_ONT with OWL DL. The Protégé-OWL API library
 38

 is used to provide a Java API for

populating OWL DL ontologies.

Step 5: Storing and Interpreting User Involvements

We use the content of the USER_INP_ONT, which stored user‟s inputs (i.e. captured user “clicks”)

from the previous step and interpret them by creating concepts in the ADDED_VAL_ONT.

Interpreting user‟s clicks involves reasoning upon ontological concepts in the USER_INP_ONT and the

ENV_ONT at the same time, in order to group semantically related ontological concepts from local

ontologies LOj into the ADDED_VAL_ONT. Semantically related ontological concepts are grouped

according to the InfTyped relevant for a particular user request Reqe from the USER_INP_ONT. These

semantically related concepts may have a number of similarities, which consequently generate semantic

conflicts while retrieving from Repi. Therefore, grouped concepts in the ADDED_VALUE_ONT may

tell us when (“context”) and where (Repi and InfTyped) semantic conflicts exist. They may be at both

the metadata and data level, i.e. they can be naming and structural conflicts (see Table 4.1, Appendix

A.1). The SWRL is used to provide additional expressivity to the ontological concepts stored in the

ENV_ONT and USER_INP_ONT. The execution of SWRL rules produces deductive inference

capabilities for performing the grouping
39

 semantically related concepts from LOj into the

ADDED_VAL_ONT.

36

 www.netbeans.org/
37 http://www.netbeans.org/kb/trails/platform.html
38 http://protege.stanford.edu/plugins/owl/api/
39

 See the Glossary for the definition of „grouping‟ of ontological individuals.

http://www.netbeans.org/
http://www.netbeans.org/kb/trails/platform.html
http://protege.stanford.edu/plugins/owl/api/

 Chapter 4: Software Architecture for Supporting Ontological Layering 56

Step 6: Aligning Local Ontologies LOj

We align „semantically related‟ ontological individuals
40

 from LOj, which have been grouped into

ontological concepts of the ADDED_VAL_ONT in the previous step, into TOk. Aligning of ontological

individuals means establishing a „match‟
41

 between ontological individuals which generate semantic

conflicts. Establishing the match indicates that we have „semantically similar‟ ontological indviduals
42

,

thus we create a „semantic relation‟
43

 between them. The SWRL is used to provide additional

expressivity to the ontological indviduals of LOj. The execution of SWRL rules produces deductive

inference capabilities for performing the „Low-Level‟ reasoning mechanism
44

. Alignment
45

(s) may infer

either new ontological individuals
46

 from LOj into TOk or new axioms
47

 LOj into TOk. Alignments may

also transfer existing ontological individuals from LOj into TOk.

Step 7: Integrating Target Ontologies TOk

„Semantically similar‟ ontological individuals from TOk that have a „semantic relation‟ as a

consequence of their alignments are integrated into DOg. Integrating of ontological individuals from

TOk into DOg means establishing a „link‟
48

 between ontological individuals of TOk. Establishing the link

indicates that we have „semantically equivalent‟ ontological individuals
49

, thus we create a „semantic

correspondence‟
50

 between them. As in the previous step, the SWRL is used to provide additional

expressivity to the ontological indviduals stored in TOk. The execution of SWRL rules produces

deductive inference capabilities for performing the „High-Level‟ reasoning mechanism
51

. Integrations
52

may assert either existing ontological individuals from TOk into DOg or infer new axioms between

ontological individuals from TOk and DOg.

Step 8: Merging Derived Ontologies DOg

„Semantically equivalent‟ ontological individuals from DOg that have a „semantic correspondence‟ as a

consequence of their integrations; are merged into the final ontological classes of Go-CID. Merging of

ontological individuals from DOg into classes of Go-CID means establishing a „correlation‟ between

ontological individuals of DOg,. The „correlation‟
53

 in turn indicates that ontological individuals in Go-

CID classes have the same meaning in „real world‟ concepts from data repositories Repi. The SWRL is

used to provide additional expressivity to the ontological individuals stored in DOg. The execution of

SWRL rules produces deductive inference capabilities for performing the „Post-High-Level‟ reasoning

40

 See the Glossary for the definition of „semantically related‟ ontological individuals.
41

 See the Glossary for the definition of a „match‟ between aligned ontological individuals.
42

 See the Glossary for the definition of „semantically similar‟ ontological individuals.
43

 See the Glossary for the definition of a „semantic relation‟ between ontological individuals.
44

 See the Glossary for the definition of the „Low-Level‟ reasoning mechanism.
45

 See the Glossary for the definition of ontological „alignment‟.
46 See the Glossary for the definition of „NEW‟ ontological individual.
47

 See Glossary for the definition of an ontological „axiom‟.
48

 See the Glossary for the definition of a „link‟ between integrated individuals.
49

 See the Glossary for the definition of „semantically equivalent‟ ontological individuals.
50

 See the Glossary for the definition of a „semantic correspondence‟ between ontological individuals.
51

 See the Glossary for the definition of the „High-Level‟ reasoning mechanism.
52

 See the Glossary for the definition of ontological „integration‟.
53

 See the Glossary for the definition of a „correlation‟ between merged ontological individuals.

 Chapter 4: Software Architecture for Supporting Ontological Layering 57

mechanism
54

. Merge
55

 relocates ontological individuals from DOg into the final Go-CID. Appf retrieves

ontological concepts from the Go-CID ontology and display it within their GUIs as the output of the

requested retrievals. The Protégé-OWL API library is used to provide a Java API for retrieving and

displaying all ontological classes from OWL ontologies.

Figure 4.4 gives a complete illustration of:

a) where and when we resolve semantic conflicts in steps 1-8 of our process, and

b) how the classification of semantically related concepts and the degree of similarity between

them from Figure 4.2 are used in steps 1-8 of our process.

It must be noted that although the steps in our process are carried out in different places in our SA, each

step still follows a sequential order as in Figure 4.3.

Figure 4.4 Resolving different types of semantic conflicts generated by degrees of similarities between semantically

related concepts through steps 1-8

To summarise, in Figure 4.4, steps 1 and 2 resolve the Mispelt/Case-Sensitivesemantic conflicts that have

been generated by the existence of „Semantic Equivalence (7)‟. Translations of Repi into LOj and

mirroring LOj in the ontological concepts of the ENV_ONT resolve the Mispelt/Case-Sensitivesemantic

conflicts in the following way:

i) Mispelt semantic conflicts are resolved through the possibility of changing the names of

ontological concepts after their translation from Repi.

ii) Case-Sensitivesemantic conflicts are resolved through the option of choosing either lower or

upper case characters for the names of ontological concepts which are being translated from Repi.

Steps 3, 4 and 5 resolve the Hymonym semantic conflict that has been generated by the existence of

„Semantic False Likeness (2)‟. Capturing, storing and interpreting user involvements through reasoning

54

 See the Glossary for the definition of the „Post-High-Level‟ reasoning mechanism.
55

 See the Glossary for the definition of ontological „merge‟.

 Chapter 4: Software Architecture for Supporting Ontological Layering 58

upon the ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT ontological concepts, resolve

Hymonyms by creating a „context‟ within which a choice of Repi/InfTyped infers the semantics relevant to

the user request.

 Step 6 resolves the Synonym and Aggregation semantic conflicts that have been generated by the

existence of „Semantic Likeness (3)‟. This is done though the alignment (s) of LOj because it establishes a

„match‟ between ontological individuals in order to bring them to a state of being semantically similar to

each other.

 Step 7 resolves the Generalisation, Specialisation, Isomorphism and Union Incompatibility semantic

conflicts that have been generated by the existence of „Semantic Subset - contains (4)‟, „Semantic Subset

- contained within (5)‟ and „Semantic Overlapping (6)‟. The integration(s) of TOk resolves all four

conflicts through the establishment of a „correspondence‟ between ontological individuals in order to

bring them to a state of being semantically equivalent to each other.

 Step 8 relocates ontological individuals from DOg into the Go-CID, where ontological concepts Go-

CID reflect the „real world‟ concepts initially stored in Repi. Consequently, ontological concepts in Go-

CID do not contain semantic conflicts because they have been resolved through previous alignments and

integrations.

4.3.2 Example Scenario

Figure 4.5 Example scenario of a heterogeneous healthcare environment

We give a scenario from a healthcare domain which illustrates our proposal. Figure 4.5 shows a number

of heterogeneous data repositories (Repi) that are distributed across a number of locations such as

hospitals, clinics, primary health care surgeries or any other healthcare institution that provides healthcare

services.

The heterogeneous data repositories are defined in different formats, technological specifications,

they may contain data from structured databases, unstructured data from web, sensors/mobile devices

generated data and data created as a result of using semantic web technology. Retrievals across these data

 Chapter 4: Software Architecture for Supporting Ontological Layering 59

repositories are required by a number of health care professionals such as surgeons, doctors and nurses.

They issue requests (Reqe) upon these data repositories (Repi) and very often will require patient‟s

medical data/information scattered across them. Furthermore, health care professionals expect that all

relevant data repositories (Repi) are available for retrievals, and that all relevant medical data/information

is stored within them. Therefore, retrievals across these data repositories (Repi) start with identifying

semantically related concepts stored in them, and can not be correct if we do not resolve semantic

conflicts which may exist across them (heterogeneous data repositories).

For example, if a doctor wants to make a decision about a medical diagnosis for a particular patient,

then he/she may need to create the patient‟s health summary. He/she will have to retrieve relevant data,

from any of the available data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep, which generates the patient‟s health summary. However, apart from choosing a data

repository, the doctor will also have to choose which exact information (InfTyped), such as patient‟s

medical summaries, treatment summaries, and patient details, will make up a correct picture of the

patient‟s health summary.

 Furthermore, data which is relevant to medical summaries, treatment summaries, and patient_details

are scattered across data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep, and is very likely to contain identical or overlapping meaning. Thus, the data which:

 make up information (InfTyped) such as medical summaries, treatment summaries, and patient

details, and consequently

 are essential in creating a correct picture of a particular patient‟s health summary

are semantically related and may have a number of similarities, which may create semantic conflicts

when we try to create patient‟s health summary. Therefore we must resolve semantic conflicts which may

appear within information (InfTyped), such as medical summaries, treatment summaries, and patient

details if we wish to create the correct results (i.e. the correct health summary) of data retrievals.

The following subsections illustrate steps 1-8 of our process for resolving semantic conflicts by

using the scenario above.

4.3.3 Preparing Semantics for Ontological Layering

4.3.3.1 Translating Data Repositories into Local Ontologies

The purpose of step 1 is to transfer the content of data repositories GP_data_rep, Hospital_data_rep,

Clinic_1_data_rep and Clinic_2_data_rep, into local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2. If any of these repositories are in the “format” of a relational/post-relational databases, then

their corresponding local ontologies will describe their data values in terms of the „column names‟,

„attribute names‟ and „attribute values‟. If any of these data repositories are in the format of XML

documents, then their corresponding local ontologies will describe their data values in terms of their „xml

tag names‟, „child elements‟ and „root elements‟. Finally, if any of these data repositories are in the

format of RDF/OWL documents‟ their corresponding local ontologies will describe their data values in

terms of their „URI names‟, „RDF object, subject and predicate triples‟, „OWL classes‟, „OWL

instances‟, „OWL datatype and object properties‟ etc. At the end of step 1, local ontologies LO_gp,

 Chapter 4: Software Architecture for Supporting Ontological Layering 60

LO_hospital, LO_clinic_1 and LO_clinic_2 will store a number of ontological concepts that are generated

from relational databases, XML documents and RDF triples/OWL classes.

4.3.3.2 Mirroring of data Repositories into ENV_ONT

The purpose of step 2 is to mirror the metadata (schemas) from GP_data_rep, Hospital_data_rep,

Clinic_1_data_rep and Clinic_2_data_rep within the ENV_ONT (ontological) concepts.

Figure 4.6 An example of the ENV_ONT ontology from the User Request layer that stores ontological concepts that

represent the availability of heterogeneous data repositories {Repi | i = 1, …, m} from the Persistent layer

Figure 4.6 gives us the exact ENV_ONT hierarchies, which has two pre-defined parent ontological

classes TECHNOLOGY_SPECIFICATION and FORMATS. Both of them store ontological concepts that

are specific to the meta-data (schemas) of GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep. The TECHNOLOGY_SPECIFICATION class makes provisions for storing a

comprehensive list of all the possible technologies needed for environments where GP_data_rep,

Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep reside. We may have OWL_DOCUMENTS,

RDF_TRIPLES, RELATIONAL_SCHEMAS and XML_DOCUMENTS as examples of a variety of

technological specifications in our heterogeneous environments.

 Note: the sub hierarchy of the TECHNOLOGY_SPECIFICATION ontological class can be extended

by adding new concepts in order to accommodate other characteristics of heterogeneous data repositories.

For example, if data repository:

- Clinic_1_data_rep is a relational/post-relational database then ontological concepts stored in the

TECHNOLOGY_SPECIFICATION of ENV_ONT describe their meta-data in terms of the „database

name‟ and „table names‟ as shown in class clinic_1_database_schema and its subclass

db2-schema:Table_patient ;

- Hospital_data_rep is in a set of XML documents then ontological concepts stored in the

TECHNOLOGY_SPECIFICATION of ENV_ONT describe their meta-data in terms of the „xml file

names‟ and „xml declarations‟ (due to space restrictions we do not show this in Figure 4.2);

 Chapter 4: Software Architecture for Supporting Ontological Layering 61

- Clinic_2_data_rep is a set of RDF/OWL documents then ontological concepts stored in the

TECHNOLOGY_SPECIFICATION of ENV_ONT describe their meta-data in terms of the „URI

names‟ and „OWL classes‟ (due to space restrictions we do not show this in Figure 4.2);

The FORMATS parent ontological class in ENV_ONT makes provisions for storing a comprehensive list

of all possible formats of data, from data types exploited in traditional databases to user defined or

technology triggered types (images, audio, video, binary data files etc.). Consequently, the

ONTOLOGICAL, RELATIONAL, SOFTWARE_AS_SERVICE and WEB subclasses of ENV_ONT are

examples of possible formats we may deal with in our heterogeneous environments. Note: the sub

hierarchy of the FORMATS ontological class in the ENV_ONT can be extended by adding new concepts

in order to accommodate other characteristics of heterogeneous data repositories that are not covered by

technological specifications [291 and 292].

4.3.3.3 Preparing lists of Data Repositories and Information Types

The purpose of step 3 is to prepare a list of all possible repositories and information types which support

a particular retrieval, across heterogeneous repositories, through GUIs of software application Appf .The

GUIs of Appf may provide a number of radio buttons, by giving the list of {Repi | i = 1, …, m} data

repositories (in our scenario GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep) and information types {InfTyped | d = 1, …, t} (in our scenario medical summaries,

treatment summaries, and prescription summaries). Therefore, the doctor‟s choice of Repi/InfTyped will

define the nature of doctor‟s request Reqe.

Note: By giving a list of Repi/InfTyped we make provisions for the doctor‟s involvement in terms of

„clicking‟ appropriate radio buttons from the Appf GUIs. This will be doctor‟s input, as an important part

of the semantics behind user‟s involvements in retrievals across repositories and in understanding what it

expected from them [46]. We further detail the doctor‟s involvements in the next section.

4.3.3.4 Capturing User’s Involvements

The purpose of step 4 is to capture the doctor‟s inputs, through the Appf GUI, by populating ontological

concepts in the USER_INP_ONT ontology, according to the doctor‟s “clicks” on radio buttons in the

GUI. These “clicks” are actually doctor‟s choices of Repi (in our scenario GP_data_rep,

Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep) and InfTyped (in our scenario medical

summaries, treatment summaries, and patient details).

 Figure 4.7 gives us the exact USER_INP_ONT hierarchies, which has two pre-defined parent

ontological classes:

 the LIST_OF_DATA_REPOSITORIES class, which corresponds to a set of repositories {Repi | i =

1, …, m} made available for user‟s selection, and

 the LIST_OF_INFORMATION_TYPES class, which corresponds to information {InfTyped | i =

1, …, t}, available in each of and across these data repositories, which are made available for user‟s

selection.

It is obvious that the data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep (Repi) from our scenario will be modelled as subclasses of the

 Chapter 4: Software Architecture for Supporting Ontological Layering 62

LIST_OF_DATA_REPOSITORIES in USER_INP_ONT. The information types medical summaries,

treatment summaries and patient details (InfTyped) from our scenario will be modelled as subclasses of

the LIST_OF_INFORMATION_TYPES. However, the sub hierarchy of the

LIST_OF_DATA_REPOSITORIES and LIST_OF_INFORMATION_TYPES classes in the

USER_INP_ONT can be extended by adding new concepts in order to accommodate any number of

available data repositories.

Figure 4.7 An example of the USER_INP ontology from the User Request Layer that stores ontological concepts that

correspond to the available heterogeneous data repositories {Repi | i = 1, …, m} from the Persistent Layer

Figure 4.7 also shows that each subclass of LIST_OF_DATA_REPOSITORIES and

LIST_OF_INFORMATION_TYPES contains three further subclasses named SELECTION_xxx/yyy,

TRUTH_VARIABLE_xxx/yyy and USER_CLICK_xxx/yyy. “xxx/yyy” denotes the Repi/InfTypej to

which these three subclasses belong to, i.e. “xxx” may denote GP_data_rep, Hospital_data_rep,

Clinic_1_data_rep and Clinic_2_data_rep and “yyy” may denote medical summaries, treatment

summaries and patient details. These three subclasses SELECTION_xxx/yyy,

TRUTH_VARIABLE_xxx/yyy and USER_CLICK_xxx/yyy are essential for capturing and storing the

results of doctor‟s “clicks”.

 The ontological class USER_CLICK_xxx/yyy stores ontological individuals which have been

inserted by the application Appf, as we noted at the beginning of this section. Appf populates the

USER_CLICK_xxx/yyy class with an individual, which is equal to the doctor‟s “click” on a particular

radio button. For example, if the doctor clicks on the radio button which is placed next to

“Clinic_1_data_rep”, then ontological class USER_CLICK_xxx/yyy will be populated with an

ontological individual named “„USER_CLICK_clinic_1”.

 The role of ontological classes SELECTION_xxx/yyy and TRUTH_VARIABLE_xxx/yyy is

describe in the next subsection, because we use them for storing and interpreting doctor‟s inputs (in this

step we are ONLY capture doctor‟s inputs).

 Chapter 4: Software Architecture for Supporting Ontological Layering 63

4.3.3.5 Storing and Interpreting User Involvements

The purpose of step 5 is to use the content of the USER_INP_ONT in order to:

5a) store doctor‟s clicks in the SELECTION_xxx subclass of LIST_OF_DATA_REPOSITORIES

class and SELECTION_yyy subclass of LIST_OF_INFORMATION_TYPES class, and

5b) interpret doctor‟s clicks through reasoning upon the TRUTH_VARIABLE_xxx/yyy and

USER_CLICK_xxx/yyy classes in the USER_INP_ONT.

 In other words we store and interpret user involvements (i.e. user‟s clicks) through ontological reasoning.

The inference created is a result of running SWRL rules
56

 in order to:

- determine the doctor‟s selection of Repi and InfTyped , based on his/her captured clicks, and

- group semantically related concepts in a chosen InfTyped from the selection of Repi.

The inference, as a result of 5a) and 5b) above, guarantees correct semantics behind user involvements,

because it deduces which Repi and which InfTyped from these Repi contribute to a correct picture of a

particular patient‟s health summary.

Figure 4.8 An example of steps 5a and 5b in the process for resolving semantic conflicts

Figure 4.8 demonstrates our sub-steps 5a and 5b. We distinguish between them by naming step 5a as

“storing” and step 5b as “interpreting” the meaning of user‟s involvement. Note that the steps of storing

and interpreting user involvements in Figure 4.8 show where ontological concepts relevant for

Repi/InfTyped reside, and where the SWRL rules responsible for inference are run. Therefore, for step 5a

we run Selection rules and for step 5b we run Grouping rules. Furthermore, Selection and Grouping rules

are pre-defined and generated as part of our process for preparing semantics essential for creating core

ontological layering. They are both explained in the next two subsections.

4.3.3.5.1 Ontological Reasoning through Selection Rules

In step 5a of our process, ‘captured user clicks‟ are stored in the USER_CLICK_xxx subclasses of

LIST_OF_DATA_REPOSITORIES and the USER_CLICK_yyy subclasses of

LIST_OF_INFORMATION_TYPES in the USER_INP_ONT, where “xxx” denotes the chosen Repi,

and “yyy” denotes the chosen InfTyped. We run a set of Selection rules upon the user clicks captured in

56

 See Glossary for the definition of „SWRL rule‟.

 Chapter 4: Software Architecture for Supporting Ontological Layering 64

the USER_CLICK_xxx/yyy subclasses in order to confirm which Repi and InfTyped have been selected.

As the result of the running Selection rules we can store user clicks in the SELECTION_xxx/yyy

subclasses. For example, if the doctor clicks on the radio button which is placed next to

Clinic_1_data_rep then:

1. the USER_CLICK_clinic_1_rep subclass of the

DATA_REPOSITORY_AVAILABLE_clinic_1_rep class (see Figure 4.7) will be populated

with an ontological individual “USER_CLICK_clinic_1”.

2. the TRUTH_VARIABLE_clinic_1_rep subclass of the

DATA_REPOSITORY_AVAILABLE_clinic_1_rep (see Figure 4.7) class will contain an

ontological individual with a Boolean value set to „true‟,

3. the SELECTION_clinic_1_rep subclass of the

DATA_REPOSITORY_AVAILABLE_clinic_1_rep (see Figure 4.7) will store the result sets of

running Selection rules which checks:

a. if an ontological individual named “USER_CLICK_clinic_1” exists within the

USER_CLICKS_clinic_1_rep subclass, and

b. if an ontological individual named “TRUTH_VARIABLE_clinic_1” in the

TRUTH_VARIABLE_clinic_1_rep subclass has a range value set to „true‟.

If both atoms
57

 a. and b. equate to being TRUE, then the consequent (head of the SWRL rule) implies that

a particular „user selection‟ has been made, i.e. that the doctor has selected the data repository

Clinic_1_data_rep. Table 4.2 gives the SELECTION_RULEi, that applies to the selection of

Clinic_1_data_rep. However, a very similar rule can be run to store user clicks when other Repi and

InfTyped have been selected.

Table 4.2 SELECTION_RULEi

Figure 4.9 The process of storing user inputs and determining user selections

57

 See the Glossary for the definition of „atoms‟ of ontological individuals.

 Chapter 4: Software Architecture for Supporting Ontological Layering 65

Figure 4.9 illustrates step 5a as outlined in 1.- 3. above. „Clicki‟ and „Clickj‟ are examples of the

doctor‟s selection of Repi/InfTyped. Consequently, if no Repi/InfTyped have been selected, (i.e. NO User

Click), the running of SELECTION_RULEk would result in an empty result set of running a selection

rule (SWRL).

4.3.3.5.2 Ontological Reasoning through Grouping Rules

In step 5b of our process, we run a set of Grouping rules upon the SELECTION_xxx/yyy subclasses of

the USER_INP_ONT and ENV_ONT. Grouping rules move a selection of ontological individuals which

make up InfTyped from Repi (LOj), into ontological concepts of the ADDED_VAL_ONT. In other words,

our grouping is a mechanism of interpreting the doctor‟s clicks in terms of understanding which InfTyped

appears in which combinations of Repi selected by the doctor. We remind the reader that, when we run

grouping rules, we use a metadata from ENV_ONT, but we group actual data from LOj, which mirror

Repi.

Figure 4.10 An example of the USER_INP ontology from the User Request Layer that stores ontological concepts

that correspond to the available heterogeneous data repositories {Repi | i = 1, …, m} from the Persistent Layer

Figure 4.10 gives us the ADDED_VAL_ONT hierarchies, which stores the result of running Grouping

rules. The subclasses:

- MEDICAL_SUMMARIES_information_retrievals,

- PATIENT_DETAILS_information_retrievals, and

- TREATMENT_SUMMARIES_information_retrievals

will accommodate ontological individuals from LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2 that

make up information types medical summaries, patient_details and treatment summaries.

However, Figure 4.10 shows an excerpt from much longer list of subclasses in ADDED_VAL_ONT

hierarchy. It shows what the subclasses of MEDICAL_SUMMARIES_information_retrievals

would be. It is obvious that they mirror all possible combinations of repositories Repi where the chosen

InfTyped of medical_summaries can be found. If the doctor clicks the radio buttons next to

 Chapter 4: Software Architecture for Supporting Ontological Layering 66

Clinic_1_data_rep, GP_data_rep as the only sources of medical summaries, the doctor might be

interested in, then the corresponding subclass medical_summaries-FROM_gp--clinic_1_rep

of the MEDICAL_SUMMARIES_information_retrievals will be populated with ontological

individuals from both LO_gp and LO_clinic_1.

The symbol “--” in the naming convention for the subclasses of the

MEDICAL_SUMMARIES_information_retrievals class means that a combination of more than

one repository has been chosen by the doctor for a particular retrieval. Therefore in the

medical_summaries-FROM_gp--clinic_1_rep subclass we denote that medical_summaries

has been chosen as an information type from Clinic_1_data_rep and GP_data_rep.

Finally it is obvious that only ONE subclass of

MEDICAL_SUMMARIES_information_retrievals class can be populated at any instance of

running step 5b.

4.3.3.5.3 The Reasoning Mechanism behind Grouping Rules

Figure 4.11 The inference as a result of running Grouping rules in step 5b) of our process for resolving semantic

conflicts

It is obvious that Grouping rules secure inference in step 5b, which is graphically presented in Figure

4.11. Ontological individuals from Ontological Class1, Class2, and Class3, in LO1, LO2, LO3 are moved

into a „NEW‟ ontological class
58

 in the ADDED_VAL_ONT. The choice of ontological individuals

moved into the NEW ontological class depends on the doctor‟s clicks, i.e. his/her choice of Repi/InfTyped.

Consequently, Class4 from LO4 in Figure 4.11 has not been chosen by the doctor, therefore its individuals

have not been moved.

 Grouping is shown in our diagram as a black broken line between ontological classes and NOT

ontological individuals stored within them. This is because ontological individuals cannot exist without

their classes; therefore they are moved according to a set criteria
59

 which must be met by ontological

individuals in order to be moved into (or to belong to) a NEW ontological class in the

ADDED_VAL_ONT. Ontological individuals which cannot be moved between classes, remain in their

58 See the Glossary for the definition of „NEW‟ ontological class.
59 See Glossary for the definition of „set criteria‟ for class membership.

 Chapter 4: Software Architecture for Supporting Ontological Layering 67

original place, which is illustrated by a black zigzag shaped line, with NO direction (the case of

„Ontological Class4‟). Thus, ontological individuals of Class4 do not contribute to the grouping.

 The rationale for our reasoning described in Figure 4.11, which secures grouping through SWRL

Grouping rules is in bullets below:

 the direction of the movement is important (we use a black arrow). We must know where the

ontological individual is moved from and where it has to go to;

 ontological individuals can only be moved into a NEW ontological class if they meet the set criteria

for being a member of that NEW ontological class. In other words, a NEW ontological class may act

like a „secure space‟ in order to accommodate only ontological individuals that meet their set

criteria for a NEW class membership;

 if at least one ontological individual within a particular class (Class1, Class2, Class3 and Class4) does

not meet the set criteria for being grouped into a particular class, then no ontological individuals are

moved from that class. This is because all ontological indvdiuals must meet the set criteria in order

for grouping to be perfomed, i.e. all ontological indvdiuals must meet the set criteria in order to be

moved into a NEW ontological class;

 ontological individuals can be moved between ontological classes if there is an ontological

property
60

 between these classes which define their relationship in terms of specifying „domain‟ and

„range‟ values
61

 for ontological individuals of these classes. Note: we have to become technology

specific because our reasoning mechanism is dependent on the expressivity of OWL DL and SWRL.

Table 4.3 illustrates one example of a SWRL Grouping rule

Table 4.3 GROUPING_RULEi

. If it is confirmed that:

- SELECTION_gp_db subclass of the DATA_REPOSITORY_AVAILABLE_gp_db parent class,

- SELECTION_clinic_1_db subclass of the DATA_REPOSITORY _clinic_1_db

parent class, and

- SELECTION_medical_summaries subclass of the

INFORMATION_TYPE_AVAILABLE_medical_summaries parent class from the

60

 See Glossary for the definition of an „ontological property‟.
61 See the Glossary for the definition of „domain and range values‟ of ontological properties.

 Chapter 4: Software Architecture for Supporting Ontological Layering 68

USER_INP_ONT (Figure 4.7) contains „stored user clicks‟ as a consequence of running Selection

rules (section 4..4.2.5.1),

than the running of GROUPING RULEi in Table 4.3 will group and move:

- the ontological individuals MEDICATION, DIAGNOSIS, and TREATMENT from LO_gp,

- the ontological individuals CURRENT_SUMMARY, PRESCRIPTIONS and TREATMENT from

LO_clinic_1

into the medical_summaries-FROM_gp--clinic_1 subclass class of the

MEDICAL_SUMMARIES_information_retrieval class in the ADDED_VALUE_ONT.

Note: we hard code in GROUPING RULEi all the ontological individuals which are supposed to be

grouped as “medical summary” and moved into the ADDED_VALUE_ONT. In our full scale

implementation, we fully utilise the content of the results of running Selection rules in step 5a by using

ALL repositories {Repi | i = 1, …, m} and ALL information types {InfTyped | d = 1, …, t} which may

have been chosen by the doctor.

4.3.3.5.4 Technology-specific decisions for Grouping Rules

Creating and running Grouping rules is performed according to principles of Semantic Web technology.

Our ontologies are created as OWL files
62

 and are at the same time SWRL enabled.

 We use OWL restrictions, object properties and SWRL rules in order to perform groupings. OWL

restrictions are set up upon object properties
63

 of ontological classes, which in turn are specified as

relationships between ontological individuals. Thus, the technology-specific decisions in grouping of

ontological individuals are:

- OWL restrictions
64

 determine the set criteria for which classes are involved in a particular

„relationship‟ through an object properties „domain‟ and „range‟ values.

- the object property‟s „range‟ value is set to ontological Class1, Class2, and Class3 from Figure

4.11, in order to specify where to move ontological individuals from.

- the object property‟s „domain‟ value is set to the NEW ontological classes from Figure 4.11, in order

to specify where to move ontological individuals into.

- Grouping rules use object properties and names of ontological individuals to move ontological

individuals from Class1, Class2, and Class3.

Running Grouping rules infers that all the ontological individuals from Class1, Class2, and Class3

have been „classified‟
65

 as members of the NEW ontological class („class membership‟) and are grouped

into it. In other words, all the ontological individuals of a particular Ontological Class1, Class2, and

Class3 has meet the set criteria imposed through OWL restrictions. Note: we do not show object

properties in Figure 4.11 because the purpose of the diagram is not to show a mechanism of running

Grouping rules, but to show the inference it offers through the movement of ontological individuals
66

.

62

 See Glossary for the definition of an „OWL file‟.
63

 See Glossary for the definition of an ontological „object property‟.
64

 See Glossary for the definition of an „OWL restrictions‟.
65

 See Glossary for the definition of „classification‟ of ontological concepts.
66

 See the Glossary for the definition of „movement‟ of ontological individuals.

 Chapter 4: Software Architecture for Supporting Ontological Layering 69

4.3.3.6 Adding Value to User’s Inputs

Running Selection and Grouping rules in steps 5a and 5b has resulted in adding more value to the existing

semantics of Repi. This is achieved through reasoning upon user‟s inputs and grouping concepts of

LO_gp, LO_hospital, LO_clinic_1, and LO_clinic_2, according to the doctor‟s selection of Repi/InfTyped.

We can now understand the doctor‟s involvements and intent in terms of:

(i) knowing exactly which InfTypej the doctor wishes to retrieve across Repi and

(ii) identifying which semantically related concepts in InfTyped are present in Repi and relevant to this

retrieval.

We would also like to emphasise that ADDING VALUE to user‟s inputs creates a „context‟ in which a

particular request for a particular retrieval across Repi happens. We have to remind the reader that in

section 4.2 we clearly stated that:

 the choices of Repi and InfTyped stored within Repi, create a „context‟ in which semantically related

concepts from Repi are compared.

 the ontological concepts in the ADDED_VAL_ONT create the „abstraction‟ which helps to show

that InfTyped concepts are related to each other. In other words, after instantiating LOj by converting

Repi and InfTyped into LOj, ontological reasoning groups semantically related concepts from LOj

into the ADDED_VAL_ONT. Our grouping is equal to creating „abstractions‟ because we map the

related concepts of InfTyped into the ADDED_VAL_ONT;

 ontological concepts in LOj store ontological individuals from which related concepts of InfTyped

(stored in the ADDED_VAL_ONT) take their values. Our ontological individuals in LOj is equal

to the „domain‟ because term “values” in [44] are equal to “ontological individuals” and their

instance values, which we group into concepts of the ADDED_VAL_ONT.

This means that the impact of user‟s involvement is significant in terms of identifying semantically

related concepts in Repi and semantic conflicts which may exist between them. However, the most

important outcome from user‟s inputs (doctor‟s clicks) is that the content of ADDED_VAL_ONT

(ontological concepts and their individuals) trigger the core ontological layering which will in turn

resolve semantic conflicts between semantically related concepts in a particular “context”. Thus, the

ontological individuals moved into the concepts of the ADDED_VAL_ONT will trigger our core

ontological layering by passing information on semantic conflicts which exists in this particular context.

In the next section we deal with details of core ontological layering.

4.3.4 Core Ontological Layering

This section illustrates steps 6-8 of the process for resolving semantic conflicts. We perform core

ontological layering through different types of reasoning mechanisms in order to execute ontology

mappings: alignment, integration and merge.

Note: in this section we do NOT use examples from the scenario, given in section 4.3.2 for

illustrating our ontological layering. We describe alignment, integration and merge though abstract

concepts and their role in each reasoning mechanism that supports them. Their full illustration is given in

chapter 5, which uses the same example as in section 4.3.2. Ontology mapping in our core ontological

layering is always based on schemas and data from Repi and explanations of ontological schemas and

 Chapter 4: Software Architecture for Supporting Ontological Layering 70

individuals from LOj. They are both needed in the implementation of Go-CID software applications.

Therefore, it is not appropriate to overload this section with implementation details. Furthermore, for a

full understanding of our ontology mappings, we have also introduced a specific glossary in order to ease

the explanations of certain terms related to semantic conflicts. Therefore, we advise the reader, through

the footnotes 1-4 and 18-23 in this chapter, to consult the glossary for definitions of terms, which might

have had an ambiguous meaning otherwise. The glossary is also needed because of (i) overloads of

certain words (such as “semantic”) and (ii) we still do not have a clear consensus on what exactly is

“semantic relation”, “semantic similarity”, “match”, “correspondence”, etc. in the wider research

community. This problem has been exuberated with the arrival of Semantic Web technologies and their

numerous applications.

4.3.4.1 Reasoning Mechanisms in Core Ontological Layering

Figure 4.12 illustrates the Low-Level, High-Level and Post-High-Level reasoning mechanisms used in

core ontological layers of our SA [293]. The reasoning mechanisms use SWRL reasoning rules as an

extension to ontological expressivity in order to manipulate the semantics in ontologies LOj, TOk and DOg

[294]. Each reasoning mechanism differs according to the purpose of each ontological layer in terms of

which type of ontology mappings are being performed: alignment, integration or merge.

Figure 4.12 Levels of reasoning mechanisms in core ontological layering

Each reasoning mechanism in Figure 4.12 supports a specific ontological mapping, which results in the

creation of a particular ontological layer. In general, we:

 use the power of ontological modeling in order to capture the „meaning‟ behind semantically related

data and different types of semantic conflicts between them,

 Chapter 4: Software Architecture for Supporting Ontological Layering 71

 exploit ontological concepts that mirror semantically related data in Repi, through SWRL rules, in

order to judge their degree of similarity. Through SWRL rules we are able to see how equivalent

semantically related concepts are to each other, and

 achieve automation in terms running any number of SWRL rules in “a chain”, and

inferring/transferring ontological individuals as we create ontological layers.

The reasoning mechanisms used for ontology mappings, resolve different types of semantic conflicts. The

Low-Level reasoning executes the alignment of LOjs into TOks in step 6. The High-Level reasoning

executes the integration of TOks into DOgs in step 7. The Post-High-Level reasoning executes the merge

of DOgs into ontological concepts of Go-CID in step 8. The use of rule chaining, similar to [295] allows

the automatic „incremental inference‟ which enables us to“move” from Local Ontological layer towards

the final Go-CID layer.

4.3.4.2 Alignment of Local Ontologies

In step 6 of our process, we perform the Low-Level reasoning in order execute the ontological alignment

of „semantically related‟ ontological individuals from LOj into TOk. These semantically related

ontological individuals generate semantic conflicts, because they have been grouped into subclasses in

the ADDED_VAL_ONT in Step 5b of our process.

 However, the choice of SWRL rules in the Low-Level reasoning, which establishes a „match‟

between grouped ontological individuals, is dictated by our classification of semantically related concepts

and the degree of similarity between them, which was given in Figure 4.2 from section 4.3.1.

 The „match‟ indicates that certain ontological individuals are „semantically similar‟, thus we can

create a „semantic relation‟ between them. A „match‟ between „semantically related‟ ontological

individuals should happen/exist, because ontological individuals would not have been grouped into the

ADDED_VAL_ONT in the step 5b of our process for resolving semantic conflicts if they have not been

semantically related.

 The Low-Level reasoning creates inference, which is graphically presented in Figure 4.13. It infers

or transfers ontological individuals from two or more classes in LO1 and LO2 (Ontological Class1,

Class2 Class3, Class4, Class5, Class6, Class7 and Class8), which are matched into a CRADLE

ontological class
67

. This process of:

- creating a „semantic relation‟ as a consequence of establishing a „match‟ between two semantically

related ontological individuals, and

- transferring or inferring ontological individuals to a CRADLE ontological class

is called the alignment between ontological individuals.

 Ontological individuals that are matched are named „originals‟
68

. When „originals‟ are being

transferred into a CRADLE ontological class (where the CRADLE class belongs to TO1), they are

actually transferred as „duplicates‟
69

. Therefore, transferring ontological individuals
70

, as a consequence

of a „match‟, means that we do not move any of our ontological individuals. They remain as „originals‟

67

 See the Glossary for the definition of „CRADLE‟ ontological class.
68

 See the Glossary for the definition of „original‟ ontological individuals.
69

 See the Glossary for the definition of „duplicate‟ ontological individuals.
70

 See the Glossary for the definition of „transferring‟ of ontological individuals.

 Chapter 4: Software Architecture for Supporting Ontological Layering 72

within their original classes and are copied into the CRADLE class as „duplicates‟. However, when a

„match‟ does not result in transferring of ontological individuals, we say that we rather infer
71

 a new

individual into the CRADLE class. In this case individuals in the CRADLE class initially did not belong

to any of „originals‟ found in Ontological Class1 and Class2 from LO1 and LO2. Transferring of

ontological individuals is shown in our diagram as a black broken line between ontological individuals

and NOT ontological classes. This is because ontological individuals cannot be transferred without being

copied from their „originals‟ in Ontological Class3, Class4, Class5, Class6, Class7 and Class8.

Inferring of ontological individuals is shown in our diagram as a blue broken line between ontological

individuals and NOT Ontological Class1 and Class2 from LO1 and LO2.

Figure 4.13The inference as a result of running SWRL rules as part of the Low-Level reasoning which secures

ontology alignment

Note: before ontological individuals are being inferred into a CRADLE ontological class; we may run a

comparison
72

 between them. The comparison of ontological individuals is shown in our diagram as a

green broken line between ontological individuals and NOT ontological classes. This is because the

comparison will check if two particular ontological individuals satisfy OWL conditions
73

 which

determine the strength of the match that exists as a result of grouping of ontological individuals in step 5b

of our process. In other words, the result of comparison will give the „strength‟ of the match
74

 between

compared semantically related ontological individuals, which further generates the inferred ontological

individual/s (e.g. Classw of option 6a). Thus, in step 6 of our process for resolving semantic conflicts,

different alignment options can either:

71

 See the Glossary for the definition of the „inference‟ of ontological concepts.
72

 See the Glossary for the definition of „comparison‟ between ontological individuals.
73

 See Glossary for the definition of an „OWL conditions‟.
74

 See Glossary for the definition of „strength‟ of the match.

 Chapter 4: Software Architecture for Supporting Ontological Layering 73

6a) infer ontological individuals as a consequence of running a comparison between ontological

individuals,

6b) transfer ontological individuals without running a comparison between ontological individuals,

6c) infer axioms in the form of ontological properties between ontological individuals as a

consequence of running a comparison between ontological individuals or

6d) infer axioms in the form of ontological properties between ontological individuals without running

a comparison between ontological individuals.

6a)-6d) are our own set of options that we allow to be used, if we want to claim that we perform

alignment. We can not predict in advance which one of the options will be used in alignments of real life

examples. It will depend on the exact request for the retrieval and semantics (including semantic

conflicts) stored in Repi.

We expect that one of the options would be sufficient to perform alignment. However, there is a

possibility of choosing more than one option in Figure 4.13 and still claim that we perform alignment.

This depends on the exact level of similarities between semantically related concepts, which have been

classified in Figure 4.2 from section 4.2. In all our examples, option 6b) has always been sufficient for

performing alignment.

The rationale for our reasoning described in Figure 4.13, which secures alignment through SWRL

Low-Level rules is in bullets below:

 option 6a is an example where we do NOT transfer (the solid black lines without any direction)

ontological individuals into the Ontological Classw. Instead, we infer ontological individuals

(white diamonds), by placing them in Classw, as a consequence of comparing (green broken line)

ontological individuals from Ontological Class1 and Ontological Class2. SWRL rules, as a part

of the Low-Level reasoning mechanisms „decide‟ which ontological individuals have to be „inferred‟

(white diamonds) into the Ontological Classw i.e. these inferred individuals do NOT play the role

of „originals‟ or „duplicates‟;

 option 6b shows an example where we DO transfer (directional black arrows) ontological

individuals (red and dark orange diamonds) into the Ontological Classx, without running a

comparison between ontological individuals from Ontological Class1 and Ontological Class2. It

is obvious that there was a „match‟ between individuals, marked as red and dark orange diamonds in

option 6b, therefore they are transferred into Classx. Note: Ontological individuals in Classx are

actually „duplicates‟ copied from their „originals‟ in Ontological Class1 and Ontological Class2;

 option 6c shows an example where we DO transfer (one directional black arrows) ontological

individuals (red and dark orange diamonds) from Ontological Class1 and Ontological Class2

into the Ontological Classy. However, at the same time, we also infer (broken blue line) an

ontological property (red broken line) between ontological individuals from Ontological Class1

and Ontological Class2 as a consequence of running a comparison (broken green line) between

them. It is obvious that there was a „match‟ between individuals, marked as red and dark orange

diamonds in option 6c, therefore they are transferred into Classy. The inferred ontological

property strengthens the „match‟ and SWRL rules, as a part of Low-Level reasoning mechanism

 Chapter 4: Software Architecture for Supporting Ontological Layering 74

„decide‟ which ontological properties have to be „inferred‟ (broken blue line) into the Ontological

Classy;

 option 6d shows an example where we DO transfer (directional black arrows) ontological

individuals (red and dark orange diamonds) from Ontological Class1 and Ontological Class2

into the Ontological Classz. However, at the same time, we also infer (broken blue line) an

ontological property (red broken line) between ontological individuals from Ontological Class1

and Ontological Class2 WITHOUT running a comparison between them. It is obvious that there

was a „match‟ between individuals, marked as red and dark orange diamonds in option 6d, therefore

they are transferred into Classz.

In options 6a and 6c, running the comparison between ontological individuals may result in inferring (i.e.

shall we say that 6a and 6c guarantee the existence of) either:

- new ontological individuals (white diamond shapes) in Ontological Classw, or

- ontological property between ontological individuals (red and dark orange diamonds) in Ontological

Classy.

In options 6c and 6d we transfer individuals which are matched („originals‟) by creating a „duplicate‟ of

them in the Ontological Classz and Classx. This type of transferring individuals and creating an

ontological property between them strengthens the match between „duplicates‟.

In options 6b, 6c, 6d we must transfer (i.e. copy) „originals‟ that make „duplicates‟ of ontological

individuals into the CRADLE Ontological Classx, Classy and Classz. These are the cases where we

do NOT infer new ontological individuals. Consequently, not all ontological individuals are becoming

„originals‟, i.e. some ontological individuals may never have their „duplicates‟ created, which means that

they are never transferred into the CRADLE ontological class (as in option 6a).

4.3.4.3 Integration of Target Ontologies

In step 7 of our process, we perform the High-Level reasoning in order to execute the ontological

integration of „semantically similar‟ ontological individuals from TOk into DOg. These semantically

similar ontological individuals generate semantic conflicts, because they have been aligned into LOjs in

step 6 of our process. However, the choice of SWRL rules in the High-Level reasoning, which establishes

a „link‟ between similar individuals is dictated by our classification of semantically related concepts and

the degree of similarity between them, which was given in Figure 4.2 from section 4.3.1. The „link‟

indicates that some ontological individuals are „semantically equivalent‟, thus we create a „semantic

correspondence‟ between them. A „link‟ between „semantically similar‟ ontological individuals MUST

happen/exist, because these ontological individuals would not have been aligned into TOks if they were

not semantically related.

 The High-Level reasoning creates inference, which is graphically presented in Figure 4.14. It asserts

and transfers ontological individuals that are linked into a COMMON ontological class
75

 from two or more

ontological classes. This process of:

75

 See the Glossary for the definition of „COMMON‟ ontological class.

 Chapter 4: Software Architecture for Supporting Ontological Layering 75

- creating a „semantic correspondence‟ as a consequence of establishing a „link‟ between two

semantically similar ontological individuals, and

- asserting and transferring ontological individuals into a COMMON ontological class

is called the integration between ontological individuals.

When originals are being transferred into a COMMON ontological class (where the COMMON class

belongs to DO1), they are actually transferred as „duplicates‟. Therefore transferring ontological

individuals, as a consequence of a „link‟, means that we do not move any of our ontological individuals.

They remain as „originals‟ within their original classes and are copied into the COMMON class as

„duplicates‟. Asserting of ontological individuals
76

 is shown in our diagram as a black broken line

between ontological individuals and ontological classes. This is because ontological individuals have to

asserted by transferring their „duplicates‟ into the Ontological Classa, Classb, Classc, and Classd,

in TO1 and TO2.

Figure 4.14 The inference as a result of running SWRL rules as part of the High-Level reasoning which secures

ontology integration

Note: Before ontological individuals are being asserted, we may or may not perform a comparison

between them (the green broken line in option 7a and 7c) in terms of checking if two particular

ontological individuals satisfy conditions which guarantee their assertion into a COMMON ontological

class. Furthermore, we can say that the comparison is needed to determine the “equality” between two

ontological individuals that exists as a result of their „semantic correspondence‟. The result of the

comparison in options 7a and 7c is asserted ontological individuals in Classa of option 7a and in

Classc of option 7c. Thus, in step 7 different integration options can either:

76

 See the Glossary for the definition of „assertion‟ of ontological individuals.

 Chapter 4: Software Architecture for Supporting Ontological Layering 76

7a) assert and transfer ontological individuals as a consequence of running a comparison between

ontological individuals,

7b) assert and transfer ontological individuals without running a comparison between ontological

individuals,

7c) assert axioms in the form of ontological properties between ontological individuals as a

consequence of running a comparison between ontological individuals or

7d) assert axioms in the form of ontological properties between ontological individuals without

running a comparison between ontological individuals.

7a)-7d) are our own set of options that we allow to be used if we want to claim that we perform

integration. We cannot predict in advance which one of the options will be used in the integrations of

real life examples. It will depend on the exact request for the retrieval and semantics (including semantic

conflicts) stored in Repi. We expect that one of the options would be sufficient to perform integrations.

However, there is a possibility of choosing more than one option in Figure 4.14 and still claim that we

perform integrations. This depends on the exact level of similarities between semantically related

concepts, which have been classified in Figure 4.2 from section 4.2. In all our examples, option 7b) has

always been sufficient for performing integration.

The rationale for our reasoning described in Figure 4.14, which secures integration through SWRL

High-Level rules is in bullets below:

 option 7a is an example where we DO transfer (directional black arrows) and assert (black broken

line) ontological individuals (light orange and orange diamonds) into the Ontological Classa as a

consequence of running a comparison (green broken line) between ontological individuals from

Ontological Class1 and Ontological Class2;

 option 7b shows an example where we DO transfer (one directional black arrows) ontological

individuals (light orange and orange diamonds) into the Ontological Classb, without running a

comparison between ontological individuals from Ontological Class1 and Ontological Class2. It

is obvious that there was a „link‟ between individuals, marked as light orange and orange diamonds

in option 7b, therefore they are transferred into Classb. Note: Ontological individuals in Classb

are actually „duplicates‟ copied from their „originals‟ in Ontological Class1 and Ontological

Class2;

 option 7c shows an example where we DO transfer (one directional black arrows) ontological

individuals (light orange and orange diamonds) from Ontological Class1 and Ontological Class2

into the Ontological Classc. However, at the same time, we also assert (broken black line) an

ontological property (red broken line) between ontological individuals from Ontological Class1

and Ontological Class2 as a consequence of running a comparison (broken green line) between

them. It is obvious that there was a „linkh‟ between individuals, marked as light orange and orange

diamonds in option 7c, therefore they are transferred into Ontological Classc. The asserted

ontological property strengthens the „match‟ and SWRL rules, as a part of High-Level reasoning

mechanism „decide‟ which ontological properties have to be „inferred‟ (broken blue line) into the

Ontological Classc;

 Chapter 4: Software Architecture for Supporting Ontological Layering 77

 option 7d shows an example where we DO transfer (one directional black arrows) ontological

individuals (light orange and orange diamonds) from Ontological Class1 and Ontological Class2

into the Ontological Classd. However, at the same time, we also assert (broken black line) an

ontological property (red broken line) between ontological individuals from Ontological Class1

and Ontological Class2 WITHOUT running a comparison between them. It is obvious that there

was a „link‟ between individuals, marked as light orange and orange diamonds in option 7d,

therefore they are transferred into Classd.

In options 7a and 7c, running the comparison between ontological individuals may result in either:

- transferred ontological individuals in Ontological Classa, or

- ontological property between ontological individuals (orange and light orange diamond shapes) in

Ontological Classc.

In options 7c and 7d we transfer individuals which are linked („originals‟) by creating a „duplicate‟ of

them in the Ontological Classc and Classd. This type of transferring individuals and creating an

ontological property between them strengthens the link between „duplicates‟.

In options 7a, 7b, 7c, 7d we must transfer copy „originals‟ that make „duplicates‟ of ontological

individuals into the COMMON Ontological Classa, Classb, Classc and Classd.

 4.3.4.4 Merge of Derived Ontologies

In step 8 of our process, we perform the Post-High-Level reasoning in order to execute the ontological

merge of „semantically equivalent‟ ontological individuals from DOg into Go-CID. These semantically

equivalent ontological individuals do not generate semantic conflicts, because they have been previously

aligned into LOjs and integrated into TOks in steps 6 and 7 of our process. However, the choice of SWRL

rules in the Post-High-Level reasoning, which establishes a „correlation‟ between equivalent individuals

indicates that ontological individuals have the same meaning as in „real world‟ concepts from Repi. A

„correlation‟ between „semantically equivalent‟ ontological individuals should happen/exist, because

these ontological individuals would not have been integrated into DOg‟s in the previous step.

Figure 4.15 The inference as a result of running SWRL rules as part of the Post-High-Level reasoning which secures

ontology merge

 Chapter 4: Software Architecture for Supporting Ontological Layering 78

The Post-High-Level reasoning mechanism creates inference, which is graphically presented in Figure

4.15. It relocates and transfers ontological individuals that are correlated into a DISPLAY ontological

class
77

 from two or more ontological classes. This process of:

- establishing a „correlation‟ between equivalent individuals, and

- relocating and transferring ontological individuals into a DISPLAY ontological class

is called the merge between ontological individuals.

When originals are being transferred into a DISPLAY ontological class (where the DISPLAY class

belongs to Go-CID), they are actually transferred as „duplicates‟. Therefore by transferring ontological

individuals, as a consequence of a „correlation‟, means that we do not move any of our ontological

individuals. They remain as „originals‟ within their original classes and are copied into the DISPLAY

class as „duplicates‟. Relocating of ontological individuals is shown in our diagram as a black broken line

between ontological individuals and ontological classes. This is because ontological individuals are

relocated into DISPLAY ontological class that that reflect real-world concepts in terms of

accommodating ontological individuals that have achieved a semantic-equivalence between them, i.e.

ontological individuals that are ready to be retrieved by Appf in order to satisfy a particular retrieval

according to the user‟s selection of Repi/InfTyped.

The inference, as a result of running SWRL rules in the Post-High-Level reasoning mechanism in

Figure 4.15. transfers (directional black arrow) individuals (we call them „originals‟ marked as yellow

and light yellow diamonds), which are relocated, by creating a „duplicates‟ of them in Ontological

Classp and Classq.

4.3.4.5 Technology-specific decisions in Ontology Mappings

Creating and running Low-Level, High-Level and Post-High-Level rules are performed according to

principles of Semantic Web technology. Our ontologies are created as OWL files and are at the same time

SWRL enabled. It is important to draw reader‟s attention to the power of exploiting OWL modeling

constructs and the deployments of a range of SWRL rules in our reasoning. Please note that the text

below is very specific to OWL terminology and will require familiarity with OWL modeling constructs

and constraints, for its full understanding.

 In the Low-Level reasoning mechanism used to execute ontological alignment of LOj into TOk, OWL

conditions and SWRL rules are set up and run upon either object properties or/and datatype properties

defined upon ontological classes in LOj. The only way of transferring individuals into the CRADLE

ontological class in TOk is to use object properties or/and datatype properties as a mechanism for

describing the “conditions” under which a „semantic relation‟ can be created. Therefore, the technology-

specific decisions for ontology alignment in step 6 (options 6a, 6b, 6c and 6d) of our process are:

 OWL conditions upon ontological concepts are related to „allowed literal values’ that exactly

expresses the criteria for the establishment of a semantic relation. The OWL conditions can be set

between any „range‟ value for an ontological property. An object property‟s „range‟ value is set to

an ontological individual and a datatype property‟s „range‟ value is set to literal value;

77

 See the Glossary for the definition of „DISPLAY‟ ontological class.

 Chapter 4: Software Architecture for Supporting Ontological Layering 79

 the transferring of ontological individuals into a CRADLE ontological class in TOk is performed

through OWL Conditions upon object properties in options 6b, 6c and 6d in Figure 4.13. These

conditions are applied to the names of ontological individuals from LOj in the SWRL rules used for

Low-Level reasoning.

 an axiom (in the form of a ontological property) is always defined between ontological „duplicates‟

and „originals‟, where the „domain‟ is set as the CRADLE ontological class in TOk and the „range‟ is

set as either the class which contains “original” individuals (when using object properties) or a

particular literal value for the “originals” (when using data-type properties), i.e. LOj;

 the comparison of ontological individuals is performed through SWRL rules using an object

property or datatype property
78

 to compare their „range‟ values in options 6a and 6c;

 the inference of an ontological individual/property is performed through SWRL rules, using an

object property or datatype property and their „domain‟ and „range‟ values, as in options 6a and 6c.

 In the High-Level reasoning mechanism used for ontological integration of TOk into DOg, OWL

conditions and SWRL rules are set up and run upon either object properties or/and datatype properties

defined to ontological classes in TOk. The only way of asserting individuals into the COMMON ontological

class in DOg is to set up SWRL rules to run upon the result-sets, which is an output from previously run

SWRL rule/s, i.e. rule/s that have already been run during the ontological alignment process.

Figure 14.16 The incremental inference as a result of running SWRL rules as part of the Low-Level, High-Level and

Post-High-Level reasoning in ontology alignment, integration and merge

Figure 4.16 depicts where the inferred/transferred ontological individuals/axioms as a consequence of

ontological alignment are used in the antecedent of a SWRL rule in the High-Level reasoning mechanism

for ontology integration. It allows „rule chaining‟
79

, i.e. incremental inference through the implication of

the consequent in SWRL rule. Rule chaining exploits existing ontological individuals which are part of a

„semantic relation‟ that has been created through the alignment process. Usage of OWL conditions in the

integration process is the same as that described in the alignment process above. Therefore, the

technology-specific decisions for ontology integration in step 7 of our process are:

78

 See Glossary for the definition of an ontological „datatype property‟.
79

 See Glossary for the definition of „rule chaining‟.

 Chapter 4: Software Architecture for Supporting Ontological Layering 80

 the transferring of ontological individuals is performed through OWL Conditions upon object

properties in options 7a, 7b, 7c and 7d that are applied to the name of ontological individuals in

SWRL rules;

 an axiom (in the form of a ontological property) is always defined between ontological „duplicates‟

and „originals‟, where the „domain‟ is set as the COMMON ontological class in DOg and the „range‟ is

set as either the class which contains “original” individuals (when using object properties) or a

particular literal value for the “originals” (when using data-type properties), i.e. TOk;

 the comparison of ontological individuals is performed through SWRL Rules using datatype

property to compare their „range‟ values, as in options 7a and 7c;

 the assertion of an ontological individual/property is performed through SWRL Rules using object

property or datatype property and their „domain‟ and „range‟ values as in option 7a and 7c.

In the Post-High-Level reasoning mechanism, used to execute ontological merge of DOg into Go-CID,

SWRL rules are set up and run upon either object properties or/and datatype properties belonging to

ontological classes in DOg. Note: that NO OWL conditions are used in Post-High-Level reasoning

mechanism. Thus, the only way of relocating individuals into the DISPLAY ontological class in Go-CID

is to set up SWRL rules to run upon the result-sets, which are outputs from previously run SWRL rule/s,

i.e. rule/s that have already been run during the ontological integration process. Figure 4.16 depicts where

the asserted ontological individuals/axioms as a consequence of ontological integration are used in the

antecedent of a SWRL rule in the Post-High-Level reasoning for ontology merge. Rule chaining exploits

existing ontological individuals which are part of a „semantic correspondence‟ that has been created

through the integration process. Therefore, the technology-specific decisions for ontology merge in Step

8 of our process are:

 rule chaining in Post-High-Level reasoning is the only way of relocating individuals in the ontology

merge, where existing ontological individuals, which are part of a „semantic equivalence‟ (that has

been created through the integration process), are used;

 if for any reason we have skipped layers, i.e. if we skipped ontological alignment and/or integration,

then we can re-locate individuals in ontology merge, where existing ontological individuals are part

of „semantic relation‟ (see section 4.4.3.4) or „semantic „correspondence‟ (see section 4.4.3.5).

4.4 Summary

In this chapter we have defined our SA which accommodates ontological layering and Go-CID software

applications. It consists of core ontological layering and its environment, which accommodates a family

of ontologies, generated dynamically, in order to support retrievals from various data repositories and to

resolve semantic conflicts which arise from heterogeneities inherent in them. Each core ontological layer

contains a specific set of ontologies that are created for the purpose of resolving different types of

semantic conflicts which appear in our retrievals. We have adopted the Sheth and Kashyap‟s [44]

semantic proximity in our classification of semantically related concepts and the way we judge their

degree of similarities. Our classification of semantic similarities is used in the process for resolving

semantic conflicts, which was given in section 4.3.1. We summarise the main technical characteristics of

our SA as:

 Chapter 4: Software Architecture for Supporting Ontological Layering 81

 supporting heterogeneous environments and allowing any number of data repositories to be included

into any of it instances, but does not have to know in advance which repositories are needed in these

instances;

 including information from all original sources without the need for changing underlying data

repositories;

 core ontological layering is dynamic, i.e. a set of ontological layers are created as soon as a request

imposed on the heterogeneous environment has been issued. This means that the core of Go-CID is

changeable and corresponds to the semantics stored in the issued requests by applications;

 automation of core ontological layering is based on reasoning upon ontological concepts that

directly relate to user‟s requests for retrievals, thus, making provisions for addressing many issues in

heterogeneous environments: from resolving semantic conflicts to deriving more semantics to

answer requests.

 Chapter 5: Illustration of Ontological Layering 79

Chapter 5

Illustration of Ontological Layering

In this chapter we illustrate the SA by demonstrating the example of creating ontological layers through

mappings and associated reasoning. We use the same scenario from chapter 4, where a specific example

of retrievals of semantically related data, across heterogeneous repositories in healthcare domain,

generates semantic conflicts.

 In section 5.1 we enrich the scenario from chapter 4, section 4.3.2 in order to accommodate specific

details of (i) schemas for heterogeneous data repositories GP_data_rep, Hospital_data_rep,

Clinic_1_data_rep and Clinic_2_data_rep and (ii) semantically related data in information types medical

summaries, treatment summaries, and patient details. Section 5.2 highlights steps 1-5 of our process for

resolving semantic conflicts. They include (a) showing the results from the translations of the content and

structure of schemas from heterogeneous data repositories into Local Ontologies {LOj | j = 1, … n} and

the ENV_ONT (sections 5.2.1 and 5.2.2), and (b) storing user involvements in these retrievals within the

USER_INP_ONT and interpreting user‟s inputs in the ADDED_VAL_ONT (sections 5.2.4 and 5.2.5).

Section 5.3 highlights steps 6-8 of our process, which generates core ontological layering. They include

aligning LOj into Target Ontologies {TOk | k = 1, … p} in order to resolve synonym based naming

conflicts (section 5.3.1), integrating TOk into Derived Ontologies {DOg | g = 1, … q} in order to resolve

generalisation, specialisation, isomorphism and union incompatibility based structural conflicts (section

5.3.2), and finally merging DOg into the final Go-CID (section 5.3.3). In section 5.4 we describe our full

scale implementation of a Go-CID software application in terms of connecting GUIs through Java

Interactive Development Environments (NetBeans 6.4 IDE) with OWL ontologies and automatic

execution of SWRL rules, in order to perform ontology mappings and associated reasoning. We discuss

some technology-specific decisions in (section 5.5) and finally end the chapter with the summary of our

implementation (section 5.6).

5.1 Retrievals across Heterogeneous Healthcare Environments

Dr Smith has to create an ad-hoc health summary for his patient Mrs Jane Flee. He is aware that all

relevant data which may be used for created such a summary is scattered across various data repositories,

which he has permission to access. Therefore, he is in a position to choose which of these data

 Chapter 5: Illustration of Ontological Layering 80

repositories would be suitable for his retrieval, on this particular occasion. His choices are therefore

limited to four data repositories: Mrs Flee‟s GP database (GP_data_rep), a database from the hospital

where Dr Smith is employed and where Mrs Flee was treated (Hospital_data_rep), and two databases

from a clinic (Clinic_1_data_rep) and healthcare center (Clinic_2_data_rep), where Mrs Flee chose to

have all her regular lab test/s done. Dr Smith is aware of the existence of various medical records, which

belong to Mrs Flee, across all these four data repositories. At the same time Dr Smith becomes aware

that he will have to retrieve Mrs Flee‟s medical records from ALL four of them. Therefore, his job is to

confirm his own selection of data repositories for this particular retrieval.

 Furthermore, Dr Smith does not need Mrs Flee‟s complete medical records from each of these

repositories. He is now in a position to choose which exact information type {InfType | d = 1, … t}: Mrs

Flee‟s medical summaries, treatment summaries, and Mrs Flee‟s demographic and clinical data will

make up a correct picture of the Mrs Flee‟s health summary for this retrieval.

 The heterogeneous data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep, where we can find Mrs Flee‟s medical records are defined in the format of relational

databases, where the structures of their computational models are based on:

- relational tables (i.e. entities that denote the subject of interest in the real world which exists

physically or conceptually and can be distinctly identified), and

- a number of attributes describing the semantics contained within them (i.e. columns belong to the

tables).

We can expect that semantics of data relevant to Mrs Flee‟s medical records, available across all four of

these repositories, and consequently any type of health summaries we may have in them, can be in a

variety of database elements that share the same meaning, may be stored under different table/attribute

names and belong to different database structures.

5.1.1 Heterogeneous Relational Schemas

Relational schemas for data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep are in Figures 5.1-5.4. The SQL source code for each relational schema, including the

„insert‟ SQL statements for patient Mrs Jane Flee can be found in Appendix A.2. Note: In our relational

schemas, we have deliberately created database elements which show identical and overlapping database

elements as well as the complex nature of semantic conflicts that may be triggered by them (as introduced

in chapter 4, section 4.2.1).

Figure 5.1 Relational schema for the GP_data_rep

 Chapter 5: Illustration of Ontological Layering 81

Figure 5.1 shows the relational schema for the GP_data_rep. The PATIENT table contains semantics of

demographic and clinical data about patients (i.e. attributes that describe the entity PATIENT). The

PATIENT table contains semantics of demographic and clinical data about patients (i.e. attributes that

describe the entity PATIENT). In Figure 5.1 the PATIENT table is uniquely identified by the

PATIENT_ID attribute. The PRESCRIPTION table contains semantics of prescriptions given to

patients, and is uniquely identified by the PRESCRIPTION_ID attribute. It also contains the

PATIENT_ID attribute as a foreign key linking to the PATIENT table (i.e. the association between the

tables PATIENT and PRESCRIPTION). The MEDICATION table contains semantics of medications

given through prescriptions and is uniquely identified by the MEDICINE_NUM attribute. The

MEDICATION_PRESCRIBED is a look up table which connects PRESCRIPTION, and MEDICATION

tables. Therefore it has a compound identifier which consists of two foreign keys: PRESCRIPTION_ID

and MEDICINE_NUM. The TREATMENT table contains semantics of treatments associated to

medications prescribed for patients, and is uniquely identified by the TREATMENT_NO attribute. It has

also has two foreign keys PRESCRIPTION_ID‟and MEDICINE_NUM as a consequence of the „one to

many‟ relationship between MEDICATION PRESCRIBED and TREATMENT tables.

Figure 5.2 Relational schema for the Hospital_data_rep

Figure 5.2 shows the relational schema for the Hospital_data_rep. The patient table contains

semantics based on personal and clinical data about patients, and is uniquely identified by the

PATIENT_NO attribute. The TREATEMENT table contains semantics based on treatments for patients,

and is uniquely identified by the TREATMENT_NO attribute. The TREATMENT table also contains the

PATIENT_NO attribute as a foreign key linking to the patient table. The MEDICATION table

contains semantics based on given through prescriptions and is uniquely identified by the

MEDICINE_NO attribute. The MEDICATION_PRESCRIBED is a look up table which connects

TREATMENT, and MEDICATION tables. Therefore, it has a compound identifier which consists of two

foreign keys: TREATMENT_NO and MEDICINE_NO.

 Chapter 5: Illustration of Ontological Layering 82

Figure 5.3 The Relational schema for the Clinic_1_data_rep

Figure 5.3 shows the relational schema for the Clinic_1_data_rep. The PATIENT table contains

semantics based on personal and clinical data about patients, and is uniquely identified by the

PATIENT_NO attribute. The LABTEST table contains semantics based on lab test(s) for patients, and is

uniquely identified by the LABTEST_ID attribute. The LABTEST table also contains the PATIENT_NO

attribute as a foreign key linking to the PATIENT table.

Figure 5.4 Relational schema for the Clinic_2_data_rep

Figure 5.4 illustrates the relational schema for the Clinic_2_data_rep. The PATIENT table contains

semantics based on personal and clinical data about patients, and is uniquely identified by the

PATIENT_NO attribute. The LABTEST table contains semantics based on lab test(s) for patients, and is

uniquely identified by the LABTEST_ID attribute. The LABTEST table also contains the PATIENT_NO

attribute as a foreign key linking to the PATIENT table.

5.1.2 Types of Semantic Conflicts in Relational Schemas

We outline below the extent of identical and overlapping data in database elements for the GP_data_rep,

Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep. We concentrate on the number of on

similarities in semantically related data which belong to medical summaries, treatment summaries, and

patient details across GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep.

Semantically related data in medical summaries appear when Dr Smith requires retrieving data from:

- H_MEDICAL_SUMMARY, MAJOR_ILLNESS and CHRONIC_ILLNESS from the PATIENT table

in the Hospital_data_rep database,

- PREVIOUS_MEDICAL_SUMMARY, CURRENT_MEDICAL_SUMMARY, MAJOR_ILLNESS and

CHRONIC_ILLNESS from the patient table in the Clinic_1_data_rep database,

- LABTEST_TYPE, LABTEST_NAME, LABTEST_RESULTS, and DATE from the LABTEST table

in Clinic_1_data_rep database,

- MEDICAL_SUMMARY, MAJOR_ILLNESS and CHRONIC_ILLNESS from the PATIENT table in

the Clinic_2_data_rep database, and

 Chapter 5: Illustration of Ontological Layering 83

- LABTEST_OVERVIEW, LABTEST_DATA, LABTEST_TYPE, LABTEST_NAME,

LABTEST_RESULTS and DATE from the LABTEST table in the Clinic_2_data_rep database.

Note: In this example, we do not have data stored in GP_data_rep database which is related to medical

summaries.

We label in bullets (a) and (b) below, overlapping database elements in the information type medical

summaries across Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep databases. We indicate

the degree of similarity between them (as defined in chapter 4, section 4.2.2) and the types of semantic

conflicts they may generate (as defined in chapter 4, section 4.2.1) when retrieving medical summaries.

(a) The data stored in MEDICAL_SUMMARY from the PATIENT table in the Hospital_data_rep

database, models Mrs Flee‟s clinical data and medical summaries over the last year in the hospital

environment where Dr Smith works. The data stored in CURRENT_MEDICAL_SUMMARIES and

PREVIOUS_MEDICAL_SUMMARIES from the patient table in the Clinic_1_data_rep database,

contains Mrs Flee‟s clinical data and medical summaries over the past 6 months, while she was

taking various lab tests in a clinic. We could see through attribute naming, that the data stored in

MEDICAL_SUMMARY, CURRENT_MEDICAL_SUMMARIES and

PREVIOUS_MEDICAL_SUMMARIES are semantically related. They belong to the Semantic Subset

– contains (4) degree of similarity and may generate the Generalisation based structural conflict:

CURRENT_MEDICAL_SUMMARIES and PREVIOUS_MEDICAL_SUMMARIES from the

Clinic_1_data_rep database may have been seen by Dr Smith as “parts” of MEDICAL_SUMMARY

he would like to add to the Mrs Flee‟s medical summaries he holds within his Hospital_data_rep

database.

(b) The data stored in LABTEST_ID, PATIENT_NO, LABTEST_TYPE, LABTEST_NAME,

LABTEST_RESULTS, REPORT and DATE from the LABTEST table in the Clinic_1_data_rep

database, models Mrs Flee‟s lab test(s) carried out over the last two years in a clinic (clinic 1).

Their data is semantically related to the data stored in LABTEST_ID, PATIENT_NO,

LABTEST_OVERVIEW, LABTEST_DATA, LABTEST_TYPE, LABTEST_NAME,

LABTEST_RESULTS, REPORT and DATE from the LABTEST table in the Clinic_2_data_rep

database, which models Mrs Flee‟s lab test(s) carried out over the last two years in a healthcare

center (clinic 2). Data in these attributes have some semantic similarities, but they are not

semantically equivalent to each other. Hence, they belong to the Semantic Overlapping (6) degree of

similarity and may generate the Isomorphism based structural conflict.

Semantically related data in treatment summaries appear when Dr Smith requires retrieving data from:

- TREATMENT_OVERVIEW and DATE from the TREATMENT table in the GP_data_rep database,

- MEDICINE_NUM, MEDICINE_NAME, VENDOR and MNF_DESC from the MEDICATION table in

the GP_data_rep database,

- DOSAGE_AMOUNT from the MEDICTAION_PRESCRIBED table in the GP_data_rep database,

- TREATMENT_TYPE, TREATMENT_NAME and DATE from the TREATMENT table in the

Hospital_data_rep database,

 Chapter 5: Illustration of Ontological Layering 84

- MEDICINE_NO, VENDOR and MNF_ADDRESS from the MEDICATION table in the

Hospital_data_rep database, and

- DOSAGE_AMOUNT from the MEDICTAION_PRESCRIBED table in for the Hospital_data_rep

database.

Note: In this example, we do not have data stored in Clinic_1_data_rep and Clinic_2_data_rep databases

which is related to treatment summaries.

We label in bullets (c), (d) and (e) below, overlapping database elements in the information type

treatment summaries across GP_data_rep and Hospital_data_rep databases. We indicate the degree of

similarity between them and the types of semantic conflicts they may generate when retrieving treatment

summaries.

(c) The data stored in MEDICINE_NUM from the MEDICATION table in the GP_data_rep database, is

an identifier for a particular medicine in Mrs Flee‟s GP surgery. Its data is semantically related to

the data stored in MEDICINE_NO from the MEDICATION table in the Hospital_data_rep database,

which also identifies a particular medicine in this database. The data stored in MEDICINE_NUM and

MEDICINE_NO resemble each other and have semantic similarities. Both of them belong to

Semantic Likeness (3) as degree of similarity, and may generate the Synonym based naming conflict.

(d) The data stored in TREATMENT_TYPE, TREATMENT_NAME and TREATMENT_DATE from the

TREATMENT table in the Hospital_data_rep database, models Mrs Flee‟s treatments over the last

year in Dr Smith‟s hospital. Their data is semantically related to the data stored in

TREATMENT_OVERVIEW and TREATMENT_DATE from the TREATMENT table in the

GP_data_rep database, that models Mrs Flee‟s treatments over the last year in her GP surgery. We

could see through attribute naming, that the data stored in TREATMENT_TYPE,

TREATMENT_NAME and TREATMENT_OVERVIEW are semantically related. They belong to the

Semantic Subset – contained within (5) degree of similarity and may generate the Specialisation

based structural conflict: TREATMENT_OVERVIEW from the GP_data_rep database may have been

seen by Dr Smith as “parts” of TREATMENT_TYPE and TREATMENT_NAME he would like to add

to the Mrs Flee‟s treatment summaries he holds within his Hospital_data_rep database.

(e) The data stored in MEDICINE_NUM, MEDICINE_NAME, VENDOR, and MNF_DESC from the

MEDICATION table in GP_data_rep database, models a Mrs Flee‟s prescribed medicine in her GP

surgery. Its data is semantically related to the data stored in MEDICINE_NO, MEDICINE_NAME,

VENDOR, and MNF_ADDRESS from the MEDICATION table in the Hospital_data_rep database,

which also models Mrs Flee‟s medicine prescribed in Dr Smith‟s hospital. These two sets of

attributes contain semantically related data which and have semantic similarities because they all

model the same concepts: Mrs Flee‟s prescribed medicine. However, attributes MNF_DESC and

MNF_ADDRESS which belong to these two sets are NOT modelling the same semantics: one of

them stores data which describes the manufacturer of the prescribed medicine, and the other gives

the manufacturer‟s address. Consequently, data stored in these two sets of attributes belong to

Semantic Overlapping (6) degree of similarity and may generate the Union Incompatibility based

structural conflict.

 Chapter 5: Illustration of Ontological Layering 85

Semantically related data in patient details appear when Dr Smith requires retrieving data from:

- FIRST_NAME, LAST_NAME, SEX, DOB, ADDRESS, REGION, TELEFFONE, NEXT_OF_KIN,

EMERGENCY_CONTACT, NO_OF_CHILDREN, BMI and HEIGHT from the PATIENT table in the

GP_data_rep database,

- NAME, SEX, and DOB from the PATIENT table in the Hospital_data_rep database,

- NAME, SEX, TELEPHONE and DOB from the patient table in the Clinic_1_data_rep database,

and

- FIRST_NAME, LAST_NAME, SEX, and DOB from the PATIENT table in the Clinic_2_data_rep

database.

We label in bullets (f), (g), (h) and (i), overlapping database elements in the information type patient

details across the GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep databases.

(f) The data stored in TELEFONNE from the PATIENT table in the GP_data_rep database, models Mrs

Flee‟s demographic data in her GP surgery. It is semantically related to the data stored in

TELEPHONE from the patient table in the Clinic_1_data_rep database, that models the same

thing, but in the clinic environment. The data stored in TELEPHONE and TELEFONNE are identical,

because they store Mrs Flee‟s telephone number. They have the strongest similarity because they

are identical (they resemble each other wholly). Data stored in both attributes belong to Semantic

Equivalence (7) degree of similarity and may generate the Mispelt based naming conflict.

(g) The data stored in PATIENT_NO, NAME, SEX, DOB, H_MEDICAL_SUMMARY, MAJOR_ILLNESS

and CHRONIC_DISEASE from the patient table in the Hospital_data_rep database, models Mrs

Flee‟s demographic data over the last one year in Dr Smith‟s hospital. Their data is semantically

related to the data stored in PATIENT_NO, FIRST_NAME, LAST_NAME, SEX, DOB,

MEDICAL_SUMMARY, MAJOR_ILLNESS and CHRONIC_DISEASE of the PATIENT table in the

in the Clinic_2_data_rep database, that also models Mrs Flee‟s demographic clinical data over the

last one year in a healthcare center. The data in NAME, FIRST_NAME, and LAST_NAME attributes

do resemble each other (they store Mrs Flee‟s name and surname) but their attributes have different

structures. They belong to the Semantic Likeness (3) degree of similarity, and may generate the

Aggregation based structural conflict.

(h) The data stored in the patient table in Clinic_1_data_rep database, models demographic and

clinical details for Mrs Flee in a clinic environment. It is semantically related to the data stored in

PATIENT table within the GP_data_rep database, which also models Mrs Flee‟s demographic and

clinical details according to Mrs Flee‟s GP surgery. Data stored in the patient and PATIENT

tables belong to the Semantic Equivalence (7) degree of similarity and may generate the Case-

Sensitivebased naming conflict. (For the purpose of illustrating the case-sensitive based naming

conflict we look at possible conflicts at the level of table names).

The illustration of the Homonym based naming conflict, through data stored in REPORT from the

TREATMENT table in the Hospital_data_rep database, and data stored in REPORT from the LABTEST

table in the Clinic_1_data_rep database is labelled in bullet (i) below. However, data stored in these two

attributes might not appear in this particular creation of Mrs Flee‟s health summary by Dr Smith (i.e. they

might not belong to the information types medical summaries, treatment summaries and patient details).

 Chapter 5: Illustration of Ontological Layering 86

(i) The data stored in REPORT from the TREATMENT table in the Hospital_data_rep database, models

the combinations of prescriptions and treatments for Mrs Flee in Dr Smith‟s hospital. It may be

semantically related to the data stored in REPORT from the LABTEST table in the Clinic_1_data_rep

database. However, the Clinic_1_data_rep database decides to store in REPORT the number and

information on their patients who have normal lab tests (and Mrs Flee‟s data might not be there!)

Therefore, data stored in both „REPORT‟ may initially resemble each other but there is no semantic

similarity between them. They belong to the Semantic False Likeness (2) degree of similarity and

may generate the Homonym based naming conflict.

5.2 Example of Preparing the Semantics for Core Ontological

Layering

In the first five steps of our process of resolving semantic conflicts we have to prepare semantics, which

will ensure a correct way of creating core ontological layers. The preparation for ontological layering is

done by:

 translating relational database schemas and the content of their databases into local ontologies LOj

and ENV_ONT, and

 reasoning upon the content of user inputs stored in USER_INP_ONT, captured through application

GUI, and interpreted by creating new concepts in the ADDED_VAL_ONT.

In these five steps we do not intend to resolve any semantic conflicts, because we need to identify first

where semantically related data exist and which semantic conflicts they generate. However, by

identifying semantically related data through this preparation for ontological layering, we resolve

HOMONYMS because we are able to eliminate data or information, which is a consequence of False

Semantic Likeness. To be more precise, in this preparation, HOMONYMS are eliminated because

semantically related data are grouped together according to the exact meaning of user‟s input (i.e. choices

of data repositories {Repi | i = 1, … m} or information types {InfTyped | t = 1, … t} captured through

user‟s clicks).

Furthermore, at this stage, we are also able to identify if any of the semantically related data are

equivalent to each other, and hence resolve Mispelt and Case-Sensitivesemantic conflicts. This may

happen because of the existence of semantic equivalence and this identification is easy because (a)

DataMaster (Nylus 2007) changes all characters into lower-cases, thus eliminates Case-Sensitivesemantic

conflicts, and (b) we are able to inspect any possible Mispelt names of attributes and check the

equivalence of their data values, before we declare them semantically equivalent. In the following seven

subsections we describe each step in the preparation for ontological layering which ultimately shows the

way we identify semantically related data. Step 1 of our process is described in section 5.2.1, step 2 is in

section 5.2.2, steps 3 and 4 are in section 5.2.4 and step 5 is in section 5.2.5. .Section 5.2.3 deals with

Mispelt and Case-Sensitiveconflicts and section 5.2.6 deals with Homonyms.

 Chapter 5: Illustration of Ontological Layering 87

5.2.1 Step 1: Translating Relational Schemas into Local Ontologies

In Step 1, the content of GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep

databases are translated into local ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2. The

translation is performed through the Protégé 3.4 ontological editing toolkit environment (Knublauch et al.

2004) using the DataMaster plug-in that allows for the automatic translation of relational schema to OWL

ontology, i.e. it allows the importation of relational schema and the content of its tables/attributes (data

values) into Protégé via a Java Database/Open Database connector. After translating each database

GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep into local ontologies

LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2 we have their ontological hierarchies, associated data

type properties and their range values created by DataMaster.

 It is important to note that we chose one of three methods of translations offered by DataMaster.

Details of each method are available in [294 and 296]. The results of the translations are shown in

Figures 5.5, 5.8, 5.9 and 5.10. In all four figures “db”, “db1”, “db2” and “db3” denotes the ontological

version of the relational schemas for GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep respectively. Furthermore, all these ontological hierarchies from Figures 5.5, 5.8, 5.9

and 5.10 have an identical base parent class Local_ontological_layer and its subclasses LO_gp,

LO_hospital, LO_clinic_1 and LO_clinic_2. However, each of these subclasses has their

own hierarchies which are separately shown in each of these figures. Their names denote that each

subclass and its hierarchies belong to the local ontological layer of our SA.

 In this section we only give a detailed explanation of the way we created local ontology LO_gp. In

order to avoid repetitions in explaining the creation of other three local ontologies LO_hospital,

LO_clinic_1 and LO_clinic_2 we only give a short description of their hierarchies. The OWL source

code for all local ontologies LO_hospital, LO_clinic_1 and LO_clinic_2 LO_gp, can be found in

Appendix A.3 (Note: Appendix A.3 is stored on the CD-ROM due to its size - 153 pages long!)

Figure 5.5 Results from the translation of GP_data_rep database into the local ontology LO_gp

 Chapter 5: Illustration of Ontological Layering 88

In Figure 5.5 the five subclasses db:patient, db:prescription,

db:medication_prescribed, db:medication and db:treatment of the LO_gp parent

class are the direct output from the automatic translation of the PATIENT, PRESCRIPTION,

MEDICATION_PRESCRIBED, MEDICATION and TREATMENT tables in the GP_data_rep database

(see Figure 5.1) into the local ontology LO_gp through the DataMaster plug-in. The db:ForiegnKey

subclass contains a list of all the foreign keys from the GP_data_rep database. The automatic translation

of the PATIENT, PRESCRIPTION, MEDICATION_PRESCRIBED, MEDICATION and TREATMENT

tables also generates datatype properties that mirror the concept of column names and data values. For

example, if we have the PATIENT table in the GP_data_rep database, with the:

 column names (attributes): PATIENT_ID, FIRST_NAME, LAST_NAME, ADDRESS, REGION,

TELEFFONE, NEXT_OF_KIN, EMERGENCY_CONTACT, NO_OF_CHILDREN, BMI and HEIGHT,

and their

 data values relevant to Mrs Flee: P3344A, JANE, FLEE, 167_BOULEVARD_RD_W1W_5TU,

LONDON, 02075698899, NEMANJA_FLEE, 07965896456, 0, NORMAL, and

5_feet_8_inches,

then the automatic translation of PATIENT table into LO_gp translates each row of the PATIENT table

as an ontological individual db1:patient_Instance_1 belonging to the db:patient class.

Figure 5.6 Examples of datatype properties in the „db:patient‟ class generated as a result of translating the

GP_data_rep database into local ontology LO_gp

Figure 5.6 shows that column names (attributes) are translated into datatype properties

db1:patient.PATIENT_ID, db1:patient.FIRST_NAME, db1:patient.LAST_NAME

db1:patient.ADDRESS, db1:patient.REGION, db1:patient.TELEFFONE,

 Chapter 5: Illustration of Ontological Layering 89

db1:patient.NEXT_OF_KIN, db1:patient.EMERGENCY_CONTACT,

db1:patient.NO_OF_CHILDREN, db1:patient.BMI and db1:patient.HEIGHT. The

complete set of domain and range constraints for all the above datatype properties in the local ontology

LO_gp can be found in Table 5.1, Appendix A.4.

Note: for all datatype properties listed in Table 5.1 from Appendix A.4, the range values are set as

the “data types” of their corresponding column names (attributes) in the GP_data_rep database. In other

words, the data type “varchar” for data values JANE, FLEE and 167_BOULEVARD_RD_W1W_5TU in

the GP_rep_data database are translated as the ontological range values of type of “string literal” for a

datatype properties db1:patient.FIRST_NAME, db1:patient.LAST_NAME and

db1:patient.ADDRESS respectively.

Subsequently, the number of datatype properties generated as a consequence of translations,

correspond directly to the number of column names (attributes) within each table of a particular relational

schema. Thus, in our example scenario we gain a total of 81 datatype properties across the GP_data_rep,

Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep databases.

There are five subclasses in Figure 5.5 which are not a result of translations through DataMaster.

They are named as LO_gp-PATIENT_class, LO_gp-TREATMENT_class, LO_gp-

MEDICATION_class, LO_gp-PRESCRIPTION_class and LO_gp-

MEDICATION_PRESCRIBED_class. We had to create them because of the following reason.

Our dependence on Protégé 3.4 and DataMaster during the translation, has dictated that all database

elements are translated into ontological datatype properties, with their range values defined as string

literals. However, in order to perform ontological mapping, which will secure the creation of all

ontological layers, we need to manipulate ontological individuals, which are not available with datatype

properties generated by DataMaster. What we need, in order to ultimately perform reasoning within our

SA, are object properties with range values of ontological individuals. Consequently we have to convert

all the datatype properties in the local ontologies LO_gp, LO_hospital, LO_clinic_1, and LO_clinic_2

into object properties. Therefore each of these subclasses LO_gp-PATIENT_class, LO_gp-

TREATMENT_class, LO_gp-MEDICATION_class, LO_gp-PRESCRIPTION_class and

LO_gp-MEDICATION_PRESCRIBED_class (remember, we have 5 tables in the relational schema

for GP_ data_rep, see Figure 5.1) contains further two subclasses:

 one subclass for storing all the instances (data values) of attributes within a particular table (e.g. the

subclass named LO_gp-patient_instances), and

 one subclass for storing all the records, i.e. rows and columns (e.g. the subclass named LO_gp-

patient_records) of a particular table.

All the stored instances within a particular table in a database are modelled as ontological individuals. For

example, the data value 167_BOULEVARD_RD_W1W_5TU becomes the ontological individual named

167_BOULEVARD_RD_W1W_5TU stored in the subclass LO_gp-patient_instances of the

LO_gp-PATIENT_class class. All the stored records (i.e. rows) within a particular table in a

database are modelled as ontological individuals. For example, the ontological individual

db1:patient_Instance_1 is modelled to represent a particular row stored in PATIENT table in

the relational schema for the GP_data_rep and stored in the subclass LO_gp-patient_records of

 Chapter 5: Illustration of Ontological Layering 90

the LO_gp-PATIENT_class class. Additionally, in order to define the relationships between each row

of a table and its corresponding data values in the GP_data_rep database, object properties are modelled

between the classes LO_gp-patient_instances and LO_gp-patient_records of local

ontology LO_gp. For example, for PATIENT table in GP_data_rep database we had to create 11 object

properties in local ontology LO_gp.

Figure 5.7 Examples of object properties created as part of the relationships existing in between the classes ‘LO_gp-

patient_instances’ and ‘LO_gp-patient_records’ in local ontology LO_gp

Figure 5.7 shows a partial view of a few object properties which create the relationships between the

classes LO_gp-patient_instances and LO_gp-patient_records. The complete set of

domain and range constraints for the object properties in the local ontology LO_gp can be found in Table

5.2, Appendix A.5.

Figure 5.8 Results from the translation of Hospital_data_rep database into local ontology LO_hospital

 Chapter 5: Illustration of Ontological Layering 91

In Figure 5.8 the four subclasses db1:patient, db1:prescription,

db1:medication_prescribed, and db1:medication of the LO_hospital parent class are

the direct output from the automatic translation of the PATIENT, PRESCRIPTION, MEDICATION, and

MEDICATION_PRESCRIBED tables in the Hospital_data_rep database (see Figure 5.2) into the local

ontology LO_hospital through the DataMaster plug-in. The four subclasses LO_hospital-

PATIENT_class, LO_hospital-PRESCRIPTION_class, LO_gp-

MEDICATION_PRESCRIBED_class and LO_hospital-MEDICATION_class are created to

accommodate ontological individuals through object properties, as in the previous case (see page 89)

Figure 5.9 Results from the translation of Clinic_1_data_rep database into local ontology LO_clinic_1

In Figure 5.9 the two subclasses db2:patient and db2:labtest of the LO_clinic_1 parent

class are the direct output from the automatic translation of the PATIENT and LABTEST tables in the

Clinic_1_data_rep database (see Figure 5.3) into the local ontology LO_clinic_1 through the DataMaster

plug-in. The two subclasses LO_clinic_1-PATIENT_class and LO_clinic_1-

LABTEST_class are the consequence of modelling additional semantics through human intervention.

Figure 5.10 Results from the translation of Clinic_2_data_rep database into local ontology LO_clinic_2

In Figure 5.10 the two subclasses db3:patient and db3:labtest of the LO_clinic_2 parent

class are the direct output from the automatic translation of the PATIENT and LABTEST tables in the

Clinic_2_data_rep database (see Figure 5.4) into the local ontology LO_clinic_2 through the DataMaster

plug-in. The two subclasses LO_clinic_2-PATIENT_class and LO_clinic_2-

LABTEST_class are the consequence of modelling additional semantics through human intervention.

 Chapter 5: Illustration of Ontological Layering 92

After the translation of the GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep databases into local ontologies, their semantic similarities (i.e. semantically related

data) are naturally carried forward into the ontological concepts of LO_gp, LO_hospital, LO_clinic_1,

and LO_clinic_2. Table 5.3 in Appendix A.7 lists the semantic similarities between local ontologies, and

where semantic conflicts have been carried forward into ontological concepts. The number of similarities

between semantically related concepts in local ontologies remains the same as in their underlying

databases; hence, they keep the same classification of the degree of similarities as defined in section 5.1.2.

5.2.2 Step 2: Mirroring of Relational Schemas into ENV_ONT

In Step 2, the metadata from the GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep databases are mirrored within the predefined parent class

TECHNOLOGICAL_SPECIFICATION in the ENV_ONT, as explained in chapter 4, section 4.1

Figure 5.11 Results from the modelling of metadata in GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep databases into the ENV_ONT

The metadata from the GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep databases are shown in Figure 5.11 as subclasses of RELTIONAL_SCHEMAS. The

OWL source code for the ENV_ONT can be found in Appendix A.6. Note: Appendix A.6 is stored on the

CD-ROM due to its size. The child-classes in ontological hierarchies from Figure 5.11 show that:

 db:patient, db:prescription, db:medication_prescribed, db:medication

and db:treatment of the RELATIONAL_SCHEMA subclass, are the consequence of having five

tables in the GP_data_rep database,

 db1:patient, db1:prescription, db1:medication_prescribed and

db1:medication of the RELATIONAL_SCHEMA subclass, are the consequence of having four

tables in the Hospital_data_rep database,

 Chapter 5: Illustration of Ontological Layering 93

 db2:patient and db2:labtest of the RELATIONAL_SCHEMA subclass, are the consequence

of having two tables in the Clinic_1_data_rep database, and

 db3:patient and db3:labtest of the RELATIONAL_SCHEMA subclass, are the consequence

of having two tables in the Clinic_2_data_rep.

5.2.3 Resolving Mispelt and Case-Sensitive Semantic Conflicts

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Mispelt and Case-Sensitive attribute names, we discovered that:

- data stored in „TELEFONNE‟ from the PATIENT table in the GP_data_rep database, and

- data stored in „TELEPHONE‟ from the patient table in the Clinic_1_data_rep database,

exhibit Semantic Equivalence (7) as their degree of similarity. This is an example of Mispelt attribute

name, which is resolved during the translation. However, we are again dependent on DataMaster and its

mechanism of translating database elements into ontological concepts. As we mentioned earlier, in

section 5.2.2, we need object properties for our ontological mapping, therefore Mispelt conflict is

resolved by changing the name of the attribute TELEFONNE into the object property gp-

patient.TELEPHONE of the LO_gp-patient_class parent class

Similarly, having identified Case-Sensitive naming of database tables we have discovered that:

- the patient table in the Clinic_1_data_rep database, and

- the PATIENT table in the GP_data_rep database,

exhibit Semantic Equivalence (7) as their degree of similarity. We resolve the conflict by choosing lower

case characters to define the name of the patient table after its translation into LO_clinic_1-

patient_class ontological class.

5.2.4 Steps 3 and 4: Preparing Lists of Data Repositories and Capturing Dr

Smith’s Involvements

In step 3, we prepare a list of all four databases: GP_data_rep, Hospital_data_rep, Clinic_1_data_rep

and Clinic_2_data_rep, and information types available within them: medical summaries, treatment

summaries and patient details, as choices for Dr Smith‟s retrievals through the application‟s GUI.

Figure 5.12 Example of performing “clicks” on radio buttons offering data repositories Repi and information types

InfTyped

We assume that Dr Smith‟s involvements in step 3 are in the form of performing “clicks” on radio

buttons shown in the GUI from Figure 5.12. The scenario from section 5.1 indicates that Dr Smith is

 Chapter 5: Illustration of Ontological Layering 94

interested in retrieving data/information from all four databases and therefore he will have an opportunity

to click on radio buttons which determine the selection of these databases. However, more importantly

Dr Smith knows that he would like to create a heath summary for Mrs Flee, which can be only generated

from various information types available in these databases. Therefore, the GUI above also lists three

information types available for clicking: medical summaries, treatment summaries and patient details.

 As soon as Dr Smith clicks on radio buttons, we have to capture his clicks by populating ontological

individuals into the subclasses LIST_OF_DATA_REPOSITORIES and

LIST_OF_INFORMATION_TYPES of the USER_INP_ONT as explained in chapter 4, section 4.1. The

OWL source code for the USER_INP_ONT can be found in Appendix A.8. Note: Appendix A.8 is stored

on the CD-ROM.

Hence, let us assume that Dr Smith has selected all seven radio buttons and has entered the patient

name Jane Flee, in the text box of the application GUI. Therefore, in step 4, we populate subclasses of the

USER_INP_ONT (they are illustrated in Figure 5.13):

 DATA_REPOSITORY_AVAILABLE_gp_rep,

 DATA_REPOSITORY_AVAILABLE_hospital_rep,

 DATA_REPOSITORY_AVAILABLE_clinic_1_rep,

 INFORMATION_TYPE_AVAILABLE_medical_summaries,

 INFORMATION_TYPE_AVAILABLE_treatment_summaries,

 INFORMATION_TYPE_AVAILABLE_patient_details and

 PATIENT_AVAILABLE_jane_flee,

with ontological individuals, therefore:

- USER_CLICK_gp_rep class is populated with ontological individual named

“USER_CLICK_gp”, thus implying that Dr Smith has clicked on radio button placed next to the

GP_data_rep database;

- USER_CLICK_hospital_rep is populated with ontological individual named

“USER_CLICK_hospital”, thus implying that Dr Smith has clicked on radio button placed next to

the Hospital_data_rep database;

- USER_CLICK_clinic_1_rep is populated with ontological individual named

“USER_CLICK_clinic_1”, thus implying that Dr Smith has clicked on radio button placed next to

the Clinic_1_data_rep database;

- USER_CLICK_clinic_2_rep is populated with ontological individual named

“USER_CLICK_clinic_2”, thus implying that Dr Smith has clicked on radio button placed next to

the Clinic_2_rep database;

- USER_CLICK_medical_summaries is populated with ontological individual named

“USER_CLICK_medical_summaries”, thus implying that Dr Smith has clicked on radio button

placed next to the information type medical summaries;

- USER_CLICK_treatment_summaries is populated with ontological individual named

“USER_CLICK_treatment_summaries”, thus implying that Dr. Smith has clicked on radio button

placed next to the information type treatment summaries;

 Chapter 5: Illustration of Ontological Layering 95

- USER_CLICK_patient_details is populated with ontological individual named

“USER_CLICK_patient_details”, thus implying that Dr Smith has clicked on radio button placed

next to the information type patient details;

- „TEXT_ENTERED_jane_flee‟ is populated with ontological individual named

„TEXT_ENTERED_jane_flee‟, thus implying that Dr Smith has entered the patient name Jane

Flee.

Figure 5.13 Example of the classes we populate in the USER_INP_ONT

Populating ontological individuals into the subclasses of the classes LIST_OF_DATA_REPOSITORIES

and LIST_OF_INFORMATION_TYPES in the USER_INP_ONT (in Figure 5.13) is performed through

the Protégé OWL API library
 80

 to provide a Java API for populating OWL ontologies.

80 http://protege.stanford.edu/plugins/owl/api/

http://protege.stanford.edu/plugins/owl/api/

 Chapter 5: Illustration of Ontological Layering 96

5.2.5 Step 5: Storing and Interpreting Dr. Smith’s Involvements – Running

Selection and Grouping SWRL rules

In step 5, we use the content of the USER_INP_ONT, which stores Dr Smith‟s inputs (i.e. captured

“clicks”) from the previous step and interpret them by creating concepts in the ADDED_VAL_ONT as

explained in chapter 4, section 4.1. In other words, Dr. Smith‟s captured clicks based on his choice of

data repositories and information types are:

5c) stored in the „SELECTION_xxx/yyy/zzz‟ subclass of „LIST_OF_DATA_REPOSITORIES‟ and

„LIST_OF_INFORMATION_TYPES‟ in the USER_INP_ONT by running Selection rules

(where „xxx‟ denotes Dr Smith‟s choice of databases GP_data_rep, Hospital_data_rep,

Clinic_1_data_rep and Clinic_2_data_rep, „yyy‟ denotes information types medical summaries,

treatment summaries, and patient_details, and „zzz‟ denotes patient name Jane Flee), and

5d) interpreted through reasoning upon ontological concepts in the USER_INP_ONT and the

ENV_ONT as explained in chapter 4, section 4.1 at the same time, in order to group semantically

related ontological concepts from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2 into the ADDED_VAL_ONT by running Grouping rules .

Figure 5.14 Results of running Selection rules 1 – 8 against the Jess engine in the Protégé 3.4 ontological editing

toolkit environment

The Selection rules are created in the SWRL, and run through the SWRL-plug-in
81

 in Protégé 3.4, using

the Java Expert System Shell (Jess) reasoning engine
82

, which performs the:

(i) conversion of SWRL rule to Jess rules,

(ii) running of Jess rules against the Jess engine, and

(iii) inference of ontological individuals into specified ontological classes implied in the SWRL rules.

81

 protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
82 http://www.jessrules.com/

http://www.jessrules.com/

 Chapter 5: Illustration of Ontological Layering 97

Running Selection Rules (8 rules)

The results of running the Selection rules are shown in Figure 5.14, and are based on the assumption that:

- Dr Smith has made a choice of selecting all 7 radio buttons and entering the patient name Jane Flee

through the GUI in Figure 5.12, and

- relevant subclasses of the pre-defined parent ontological classes named

LIST_OF_DATA_REPOSITORIES and LIST_OF_INFORMATION_TYPES in the

USER_INP_ONT have been populated with ontological individuals (see section 5.2.4).

The SWRL source code for the Selection rules 1 – 8 in Figure 5.14 can be found in Appendix A.9. Screen

shots of the inference as a result of running Selection rules 1 – 8 in Appendix A.9 can be found Appendix

A.10. (Note Appendix A.10 is stored on the CD-ROM due to its size).

Figure 5.15 Example of inferring ontological individuals as a consequence of running SWRL Selection rules

Figure 5.15 shows the way of inferring individuals if Dr Smith has selected a certain set of radio buttons

on the application GUI. We give one example. The SELECTION_gp_rep subclass in the

USER_INP_ONT stores the result sets of running Selection rule 1, given in Appendix A.9, i.e. it stores

the ontological individual “truth_variable_1” (T in the Figure 5.15) that has been transferred into

SELECTION_gp_rep subclass, as a consequence of checking if both bullets below are correct:

 ontological individual “USER_CLICK_gp” exists within the USER_CLICKS_gp_rep subclass;

 ontological individual “truth_variable_1” in the TRUTH_VARIABLE_gp_rep subclass is set to

„true‟.

The same applies to any other subclass of the USER_INP_ONT as illustrated in Figure 5.14.

Running Grouping Rules (14, 15, 16, 17, 22, 23, 24, 29 and 30)

The Grouping rules are created in the SWRL and run through the SWRL-plug-in in Protégé 3.4, using the

Jess engine. The results of running the Grouping rules are stored in the subclasses of the:

- MEDICAL_SUMMARIES_information_retrievals,

- TREATMENT_SUMMARIES_information_retrievals and

 Chapter 5: Illustration of Ontological Layering 98

- PATIENT_DETAILS_information_retrievals classes

in the ADDED_VAL_ONT shown in Figures 5.16, 5.19, and 5.22. The ontological hierarchy of the

ADDED_VAL_ONT and its subclasses are created through Protégé 3.4, and are specific to the

combination of data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep and information types medical summaries, treatment summaries and patient details.

However, we wish to remind the reader that when we run Grouping rules we use metadata from

ENV_ONT and actual data from local ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2, i.e.

ontological individuals stored in the classes LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2. The OWL source code for the ADDED_VAL_ONT can be found in Appendix A.11.

The SWRL source code for the Grouping rules can be found in Appendix A.12. Screen shots of the

inference as a result of running Grouping rules Appendix A.12 can be found Appendix A.13. (Note

Appendix A.11 and A.13 is stored on the CD-ROM).

5.2.5.1 Grouping Semantically Related Data in Patient Details

Figure 5.16 Example of the „PATIENT_DETAILS_information_retreivals‟ class in the ADDED_VAL_ONT

In Figure 5.16 fifteen subclasses of the PATIENT_DETAILS_information_retrievals parent

class are created to store the results of running Grouping rules 14, 15, 16 and 17, specific to the

combination of GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep database,

and the information type patient details. We only give a detailed explanation for the subclass

 Chapter 5: Illustration of Ontological Layering 99

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep in order to avoid

repetition and to illustrate semantically related data across all four databases.

Grouping rules 14, 15, 16 and 17 in Appendix A.12 are run against the Jess engine. They use the

following set of object properties to group and move ontological individuals from classes in the local

ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2, defined in their range values:

 object properties gp-patient-FIRST_NAME, gp-patient-LAST_NAME, gp-patient-

SEX, gb-patient-DOB, gp-patient-ADDRESS, gp-patient-REGION, gp-patient-

TELEFFONE, gp-patient-NEXT_OF_KIN, gp-patient-EMERGENCY_CONTACT, gp-

patient-NO_OF_CHILDREN, gp-patient-BMI and gp-patient-HEIGHT, which are

defined upon the LO_gp-patient_instances class in local ontology LO_gp;

 object properties hospital-patient-NAME, hospital-patient-SEX, and hospital-

patient-DOB, which are defined upon the LO_hospital-patient_instances class in

local ontology LO_hospital;

 object properties clinic_1-patient-NAME, clinic_1-patient-SEX, clinci_1-

patient-TELEPHONE and clinic_1-patient-DOB, which are defined upon the

LO_clinic_1-patient_instances class in local ontology LO_clinic_1;

 object properties clinic_2-patient-FIRST_NAME, clinic_2-patient-LAST_NAME,

clinic_2-patient-SEX, and clinic_2-patient-DOB, which are defined upon the

LO_clinic_2-patient_instances class in local ontology LO_clinic_2.

Table 5.4 The results of running the Grouping rules 14, 15, 16 and 17

After running Grouping rules 14, 15, 16 and 17, we move 45 ontological individuals, listed in Table 5.4,

into patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep class. The

inference, as a result of running Grouping rules 14, 15, 16 and 17 is graphically shown in Figure 5.17.

 Chapter 5: Illustration of Ontological Layering 100

Figure 5.17 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type Patient details

We model the object property patient_details-treatment_summaries-FROM-gp--

hospital--clinic_1--clinic_2_rep in order to create a relationship between the

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class and the

classes of local ontologies LO_gp, LO_Hospital, LO_clinic_1 and LO_clinic_2. The domain for the

object property is set to the patient_details-FROM-gp--hospital--clinic_1--

clinic_2_rep ontological class, in order to specify where to move ontological individuals into. The

range for the object property is set to the names of the ontological classes in local ontologies LO_gp,

LO_Hospital, LO_clinic_1 and LO_clinic_2, in order to specify where to move ontological individuals

from (i.e. semantically related data that make up information type patient details).

Figure 5.18 shows a set of OWL restrictions applied to the object property criteria_for-

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep that determine the

set criteria for patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep class

membership.

Figure 5.18 OWL restrictions that determine the set criteria for „patient_details-FROM-gp--hospital--clinic_1--

clinic_2_rep‟ class membership in the ADDED_VAL_ONT

In Figure 5.18 the existential restriction is used to describe that the patient_details-FROM-

gp--hospital--clinic_1--clinic_2_rep ontological class has some ontological individuals

from local ontologies LO_gp, LO_Hospital, LO_clinic_1 and LO_clinic_2: LO_gp-

patient_instances, LO_gp-hospital_instances, LO_gp-clinic_1_instances, and

LO_gp-clinic_2_instances.

The universal restriction is used to describe that the patient_details-FROM-gp--

hospital--clinic_1--clinic_2_rep ontological class has only ontological individuals from

local ontologies LO_gp, LO_Hospital, LO_clinic_1 and LO_clinic_2: LO_gp-patient_instances,

LO_gp-hospital_instances, LO_gp-clinic_1_instances, and LO_gp-

clinic_2_instances.

 Chapter 5: Illustration of Ontological Layering 101

Both restrictions are made „necessary and sufficient‟ conditions to imply the concreteness of the

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep class.

5.2.5.2 Grouping Semantically Related Data in Medical Summaries

In Figure 5.19 fifteen subclasses of the MEDICAL_SUMMARIES_information_retrievals

parent class are created to store the results of running the Grouping rules specific to the combination of

GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep databases, and the

information type medical summaries. We only give a detailed explanation for the subclass

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep in order to avoid

repetition and to illustrate semantically related data across all four databases.

Figure 5.19 Example of the „MEDICAL_SUMMARIES_information_retreivals‟ class in the ADDED_VAL_ONT

Grouping rules 22, 23 and 24 in Appendix A.12 are run against the Jess engine. They use the following

set of object properties to group and move ontological individuals defined in their range values from the

classes in local ontologies LO_hospital, LO_clinic_1 and LO_clinic_2:

 object properties hospital-patient-MEDICAL_SUMMARY, hospital-patient-

MAJOR_ILLNESS and hospital-patient-CHRONIC_ILLNESS, which are defined upon

the LO_hospital-patient_instances class in local ontology LO_hospital;

 object properties clinic_1-patient-PREVIOUS_MEDICAL_SUMMARY, clinic_1-

patient-CURRENT_MEDICAL_SUMMARY, clinic_1-patient-MAJOR_ILLNESS and

 Chapter 5: Illustration of Ontological Layering 102

clinic_1-patient-CHRONIC_ILLNESS, which are defined upon the LO_clinic_1-

patient_instances class in local ontology LO_clinic_1;

 object properties clinic_1-labtest-LABTEST_TYPE, clinic_1-labtest-

LABTEST_NAME, clinic_1-labtest-LABTEST_RESULTS, and clinic_1-labtest-

DATE, which are defined upon the LO_clinic_1-labtest_instances class in local

ontology LO_clinic_1;

 object properties clinic_2-patient-MEDICAL_SUMMARY, clinic_2-patient-

MAJOR_ILLNESS and clinic_2-CHRONIC_ILLNESS, which are defined upon the

LO_clinic_2-patient_instances class in local ontology LO_clinic_2 ;

 object properties clinic_2-labtest-LABTEST_OVERVIEW, clinic_2-labtest-

LABTEST_DATA, clinic_2-labtest-LABTEST_TYPE, clinic_2-labtest-

LABTEST_NAME, clinic_2-labtest-LABTEST_RESULTS and clinic_2-labtest-

DATE, which are defined upon the LO_clinic_2-labtest_instances class in local

ontology LO_clinic_2.

Table 5.5 The results of running the Grouping rules 22, 23 and 24

The results of running Grouping rules 22, 23 and 24 move the 44 ontological individuals listed in Table

5.5, into medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class.

The inference created as a result of running Grouping rules 22, 23 and 24 is graphically shown in Figure

5.20.

 Chapter 5: Illustration of Ontological Layering 103

Figure 5.20 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type Medical summaries

We model the object property criteria_for-medical_summaries-FROM-gp--hospital--

clinic_1--clinic_2_rep in order to create a relationship between the medical_summaries-

FROM-gp--hospital--clinic_1--clinic_2_rep class and the classes of local ontologies

LO_Hospital, LO_clinic_1 and LO_clinic_2. The domain for the object property is set to the

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep ontological class,

in order to specify where to move ontological individuals into. The range for the object property is set to

the names of the ontological classes in local ontologies LO_hospital, LO_clinic_1 and LO_clinic_2, in

order to specify where to move ontological individuals from (i.e. semantically related data that make up

information type medical summaries).

Figure 5.21 OWL restrictions that determine the set criteria for „medical_summaries-FROM-gp--hospital--clinic_1--

clinic_2_rep‟ class membership in the ADDED_VAL_ONT

Figure 5.21 shows a set of OWL restrictions applied to the object property „criteria_for-

mecical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep‟ that determine

the set criteria for medical_summaries-FROM-gp--hospital--clinic_1--

clinic_2_rep class membership. The existential restriction is used to describe that the

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep ontological class

has some ontological individuals from local ontologies LO_hospital, LO_clinic_1 and LO_clinic_2:

LO_hospital-patient_instances, LO_clinic_1-patient_instances,

LO_clinic_1-labtest_instances, LO_clinic_1-patient_instances, and

LO_clinic_1-labtest_instances.

The universal restriction is used to describe that the medical_summaries-FROM-gp--

hospital--clinic_1--clinic_2_rep ontological class has only ontological individuals from

local ontologies LO_hospital, LO_clinic_1 and LO_clinic_2: LO_hospital-patient_instances,

LO_clinic_1-patient_instances, LO_clinic_1-labtest_instances,

LO_clinic_1-patient_instances, and LO_clinic_1-labtest_instances.

 Chapter 5: Illustration of Ontological Layering 104

Both restrictions are made „necessary and sufficient‟ conditions to imply the concreteness of the

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class.

5.2.5.3 Grouping Semantically Related Data in Treatment Summaries

In Figure 5.22 fifteen subclasses of the TREATMENT_SUMMARIES_information_retrievals

parent class are created to store the results of running the Grouping rules specific to the combination of

GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep databses, and the

information type treatment summaries. We only give a detailed explanation for the subclass

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep in order to

avoid repetition and to illustrate semantically related data across all four databases.

Figure 5.22 Example of the „TREATMENT_SUMMARIES_information_retreivals‟ class in the ADDED_VAL_ONT

Grouping rules 29 and 30 in Appendix A.12 are run against the Jess engine. They use the following set of

object properties to group and move ontological individuals defined in their range values from the classes

in local ontologies LO_gp and LO_hospital:

 object properties gp-treatment-TREATMENT_OVERVIEW and gp-treatment-DATE,

which are defined upon the LO_gp-treatment_instances class in local ontology LO_gp;

 object properties gp-medication-MEDICINE_NUM, gp-medication-MEDICINE_NAME,

gp-medication-VENDOR, and gp-medication-MNF_DESC, which are defined upon the

LO_gp-medication_instances class in local ontology LO_gp;

 Chapter 5: Illustration of Ontological Layering 105

 object property gp-medication_prescribed-DOSAGE_AMOUNT, which are defined upon

the LO_gp-medication_prescribed_instances class in local ontology LO_gp;

 object properties hospital-treatment-TREATMENT_TYPE, hospital-treatment-

TREATMENT_NAME and hospital-treatment-DATE, which are defined upon the

LO_hospital-treatment_instances class in local ontology LO_hospital;

 object properties hospital-medication-MEDICINE_NUM, hospital-medication-

MEDICINE_NAME, hospital-medication-VENDOR, and hospital-medication-

MNF_ADDRESS, which are defined upon the LO_hospital-medication_instances class

in local ontology LO_hospital;

 object property hospital-medication_prescribed-DOSAGE_AMOUNT, which are

defined upon the LO_hospital-MEDICATION_PRESCRIBED_class class in local ontology

LO_hospital.

Table 5.6 The results of running the Grouping rules 29 and 30

The results of running Grouping rules 29 and 30 move the 27 ontological individuals listed in Table 5.6,

into treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class.

The inference created as a result of running Grouping rules 29 and 30 is graphically shown in Figure 5.23.

Figure 5.23 Grouping ontological individuals from local ontologies LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2 into the concepts of ADDED_VAL_ONT that make up information type Treatment summaries

 Chapter 5: Illustration of Ontological Layering 106

Figure 5.24 OWL restrictions that determine the set criteria for „treatment_summaries-FROM-gp--hospital--clinic_1-

-clinic_2_rep‟ class membership in the ADDED_VAL_ONT

We model the object property criteria_for-treatment_summaries-FROM-gp--

hospital--clinic_1--clinic_2_rep in order to create a relationship between the

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class and the

classes of local ontologies LO_gp and LO_hospital. The domain for the object property is set to the

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep ontological

class, in order to specify where to move ontological individuals into. The range for the object property is

set to the names of the ontological classes in local ontologies LO_gp and LO_hospital, in order to specify

where to move ontological individuals from (i.e. semantically related data that make up information type

treatment summaries).

Figure 5.24 shows a set of OWL restrictions applied to the object property criteria_for-

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep that

determine the set criteria for treatment_summaries-FROM-gp--hospital--clinic_1--

clinic_2_rep class membership. The existential restriction is used to describe that the

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep ontological

class has some ontological individuals from local ontologies LO_gp and LO_hospital: LO_gp-

treatment_instances, LO_gp-medication_instances, LO_gp-

medication_prescribed_instances, LO_hospital-treatment_instances,

LO_hospital-medication_instances, and LO_hospital-

medication_prescribed_instances.

The universal restriction is used to describe that the „treatment_summaries-FROM-gp--hospital-

-clinic_1--clinic_2_rep‟ ontological class has only ontological individuals local ontologies LO_gp and

LO_hospital: LO_gp-treatment_instances, LO_gp-medication_instances, LO_gp-

medication_prescribed_instances, LO_hospital-treatment_instances,

LO_hospital-medication_instances, and LO_hospital-medication_prescribed_instances.

Both restrictions are made „necessary and sufficient‟ conditions to imply the concreteness of the

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep class.

To avoid repetition, we do not further describe the other subclasses shown in Figures 5.16, 5.19, and

5.22 in the ADDED_VAL_ONT. However, it is obvious that similar object properties, OWL restrictions

and Grouping rules are modelled and inferred as described above for the medical_summaries-

FROM-gp--hospital--clinic_1--clinic_2_rep, treatment_summaries-FROM-gp-

-hospital--clinic_1--clinic_2_rep and patient_details-FROM-gp--hospital-

-clinic_1--clinic_2_rep classes.

 Chapter 5: Illustration of Ontological Layering 107

5.2.6 Resolving Homonym Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Homonym semantic conflicts concerning attribute names, we discovered that:

- data stored in REPORT attribute from the TREATMENT table in the Hospital_data_rep database,

and

- data stored in REPORT attribute from the LABTEST table in the Clinic_1_data_rep database,

exhibit False Semantic Likeness (2) as their degree of similarity. This false likeness means that that we

may have originally thought that these two attribute names REPORT might model the same semantics but

it is obvious that there is have no semantic similarity between them (i.e. the Hospital_data_rep database,

models the REPORT as the combinations of prescriptions and treatments for Mrs Flee in Dr Smith‟s

hospital and the Clinic_1_data_rep database decides to store in REPORT the number and information on

their patients who have normal lab tests (and Mrs Flee‟s data might not be there!). We resolve the

Homonym conflict by defining the exact object properties that guarantees that the correct REPORT is

included in information types medical summaries, treatment summaries and patient details. In other

words we define the exact object properties in Grouping rules, i.e. the exact object properties would

associated to range values of the class that stores the correct REPORT.

 5.3 Example of Generating Core Ontological Layering

The first five steps of our process have resolved the Mispelt and Case-Sensitiveand Homonym semantic

conflicts. In the next three steps we have to resolve Aggregation, Synonym, Generalisation, Isomorphism,

Specialisation and Union Incompatibility through ontology mappings: alignment, integration and merge.

It is important to note, that ADDED_VAL_ONT contains information on which exact concepts from

LOj are „semantically related‟ and must be aligned into TOk. In other words, concepts from LOj are

aligned into TOk according to information stored in ADDED_VALUE_ONT. Alignments of LOjs into

TOk happen in step 6: we resolve Aggregation and Synonym (section 5.31).

The result set of alignments (TOi) indicates that there are „semantically similar concepts‟ in TOk

which must be integrated into DOg. Integration of TOk into DOg happens in step 7: we resolve

Generalisation, Isomorphism, Specialisation and Union Incompatibility (section 5.32).

The result set of integration (DOg) indicates that there are „semantically equivalent‟ concepts in DOg

that contain no semantic conflicts. Therefore DOg and any other concepts from DOg, which never exhibit

any semantic conflicts, are merged into concepts of Go-CID (section 5.3.3). They are in the format

suitable for the retrievals and will contain correct answers to Dr Smith‟s requests to obtain healthcare

summary for Mrs Flee by retrieving a particular InfTyped (medical summaries, treatment summaries and

patient details) across Repi (GP_data_rep, Hospital_data_rep, Clinic_1_data _rep and

Clinic_2_data_rep).

 Chapter 5: Illustration of Ontological Layering 108

5.3.1 Step 6: Aligning Local Ontologies

In step 6, we perform the Low-Level reasoning mechanism, which allows us to choose options 6a and 6b

(see chapter 4, section 4.4.3.2) to execute the ontological alignment of semantically related ontological

individuals stored in local ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2. Figure 5.25

shows exactly what happens in step 6.

Figure 5.25 Example of target ontologies {TOk | k =1 ...10 }

We align semantically related ontological individuals from local ontologies LO_gp, LO_hospital,

LO_clinic_1 and LO_clinic_2, listed in Table 5.4 from section 5.2.5.1, for the purpose of making Patient

details information type. We run four SWRL Low-Level rules 31 – 34 (available in Appendix A.14),

which in turn create target ontologies TO_1, TO_2, TO_3 and TO_4. These four Low-Level rules

enable us to create a match between semantically related ontological individuals and resolve the

Aggregation semantic conflict which has existed across LO_gp, LO_hospital, LO_clinic_1 and

LO_clinic_2, when retrieving Patient details. For the exact list of ontological individuals which store

Patient details and cause Aggregation conflict see Table 5.3 in Appendix A.7. The number of alignments,

i.e. the number of SWRL rules, (four in this particular case) depends on the number of concepts involved

in the Aggregation semantic conflict and the number of local ontologies in which these concepts reside.

Details on the exact alignments for resolving Aggregation and creating Patient details are given in section

5.3.1.1.

The same applies to the alignment of semantically related ontological individuals, listed in Table 5.5

from section 5.2.5.2, from local ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2, for the

purpose of making Medical summaries. We run three SWRL Low-Level rules 35 - 37, which in turn

create target ontologies TO_5, TO_6 and TO_7. With these alignments we create matches in order to

make up Medical summaries information type and we do not resolve any conflicts at this stage because

there are no ontological individuals, listed in Table 5.5 which exhibit Aggregation and Synonym semantic

 Chapter 5: Illustration of Ontological Layering 109

conflicts. Low-Level rules 35 - 37 are available in Appendix A.14. Details on the exact alignments of

target ontologies TO_5 - TO_7 individuals for creating Medical summaries are given in section 5.3.1.2.

The creation of information type Treatment summaries is again done through the alignment of

semantically related ontological individuals, listed in Table 5.6 from section 5.2.5.3, from local

ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2. We run three SWRL Low-Level rules 38 -

40, which in turn create target ontologies TO_8, TO_9 and TO_10. However, SWRL rule 38, which

results in the creation of TO_8 resolves the Synonym conflict. All other rules help to create Treatment

summaries at this level. Low-Level rules 38 - 40 are available in Appendix A.14. Details on the exact

alignments for resolving Synonym semantic conflict and creating Treatment summaries are given in

section 5.3.1.3.

It is important to note that all Low-Level rules for ontology alignments are run through the SWRL-

plug-in in Protégé 3.4, using the JESS engine. All classes in target ontologies TO_1 – TO_10 are

created through Protégé 3.4. Screen shots of the inference (e.g. ontological individuals stored in TO_1 –

TO_10), as a result of running Low-Level rules 31 - 40 can be found Appendix A.15. (Note: Appendix

A.15 is stored on the CD-ROM).

5.3.1.1 Aligning Semantically Related Data in Patient Details

Low-Level rule 31 transfers and infers the following set of semantically related ontological individuals

from the classes in local ontologies LO_gp and LO_hospital into TO_1:

 ontological individuals JANE, FLEE, FEMALE and JULY_04_1970 defined in the range values of

object properties:

- gp-patient-FIRST_NAME, gp-patient-LAST_NAME and gp-patient-DOB, which

are defined upon the LO_gp-patient_instances class in local ontology LO_gp;

 ontological individuals JANE_FLEE, Female and JULY_04_1970 defined in the range values of

the object properties:

- hospital-patient-NAME and hospital-patient-DOB, which are defined upon the

LO_hospital-patient_instances class in local ontology LO_hospital.

Low-Level rule 31 use option 6a in the Low-Level reasoning mechanism, to infer the new ontological

individuals JANE and FLEE through running a comparison between ontological individuals JANE,

FLEE-JANE_FLEE. The comparison is run using OWL conditions set upon datatype properties:

- has_same_FIRST_NAME allowed values JANE (i.e. literal value = JANE, Figure 5.26), and

- has_same_LAST_NAME allowed values FLEE (i.e. literal value = FLEE, Figure 5.27).

We model the datatype properties has_same_FIRST_NAME and has_same_LAST_NAME in order to

create a relationship between the TO_1 class and the allowed values of JANE and FLEE. The domain for

the datatype property is set to the TO_1 ontological class and the range is set to a string literal.

A match is established between the pair of ontological individuals: FEMALE-Female and the pair of

ontological individuals JULY_04_1970-JULY_04_1970 without running a comparison between the

ontological individuals.

 Chapter 5: Illustration of Ontological Layering 110

Figure 5.26 Example of OWL conditions set upon the datatype property „has_same_FIRST_NAME‟

Figure 5.27 Example of OWL conditions set upon the datatype property „has_same_LAST_NAME‟

Table 5.7 The results of running the Low-Level rule 31

After running Low-Level rule 31, 2 ontological individuals numbered 1. – 2. listed in Table 5.7 are

inferred into TO_1, and 4 ontological individuals numbered 3. – 6. listed in Table 5.7 are transferred into

TO_1 class, thus creating a „semantic relation‟ between them. The inference created as a result of running

Low-Level rule 31 is graphically shown in Figure 5.28. We use the same rational as mentioned in Figure

4.13 in chapter 4, i.e. inference of ontological individuals is as a blue broken line between ontological

individuals and NOT ontological classes. Comparison of ontological individuals is shown as a green

broken line between ontological individuals. Transference of ontological individuals is shown as a black

broken line between ontological individuals and NOT ontological classes.

 Chapter 5: Illustration of Ontological Layering 111

Figure 5.28 Transferring and inferring ontological individuals from local ontologies LO_gp and LO_hospital into the

TO_1 target ontology

Low-Level rule 32 in Appendix A.14 transfers and infers the following set of semantically related

ontological individuals from the classes in local ontologies LO_gp and LO_clinic_1 into TO_2:

 ontological individuals JANE, FLEE, FEMALE, JULY_04_1970 and TEL_02075698899

defined in the range values of object properties:

- gp-patient-FIRST_NAME, gp-patient-LAST_NAME, gp-patient-DOB and gp-

patient-TELEPHONE, which are defined upon the LO_gp-patient_instances class in

local ontology LO_gp;

 ontological individuals JANE_FLEE, Female, JULY_4_1970 and Tel_02075698899 defined

in the range values of the object properties:

- clinic_1-patient-NAME, clinic_1-patient-SEX, clinic_1-patient-DOB

and clinic_1-patient-TELEPHONE, which are defined upon the LO_clinic_1-

patient_instances class in local ontology LO_clinic_1.

Low-Level rule 32 use option 6a in the Low-Level reasoning mechanism, to infer the new ontological

individuals JANE and FLEE through running a comparison between ontological individuals JANE,

FLEE-JANE_FLEE. The comparison is run using OWL conditions set upon datatype properties:

- has_same_FIRST_NAME allowed values JANE (i.e. literal value = JANE, Figure 5.26), and

- has_same_LAST_NAME allowed values FLEE (i.e. literal value = FLEE, Figure 5.27).

A match is established between the pair of ontological individuals: FEMALE-Female, the pair of

ontological individuals: JULY_04_1970-JULY_04_1970 and the pair of ontological individuals:

TEL_02075698899-TEL_02075698899 without running a comparison between the ontological

individuals.

Table 5.8 The results of running the Low-Level rule 32

After running Low-Level rule 32, 2 ontological individuals numbered 1. – 2. listed in Table 5.8 are

inferred into TO_2, and 6 ontological individuals numbered 3. – 8. listed in Table 5.8 are transferred into

TO_2 class, thus creating a „semantic relation‟ between them. The inference created as a result of running

Low-Level rule 32 is graphically shown in Figure 5.29.

 Chapter 5: Illustration of Ontological Layering 112

Figure 5.29 Transferring and inferring ontological individuals from local ontologies LO_gp and LO_clinic_1 into the

TO_2 target ontology

Low-Level rule 33 in Appendix A.14 transfers and infers the following set of semantically related

ontological individuals from the classes in local ontologies LO_hospital and LO_clinic_2 into TO_3:

 ontological individuals JANE_FLEE, Female and JULY_04_1970 defined in the range values of

the object properties:

- hospital-patient-NAME and hospital-patient-DOB, which are defined upon the

LO_hospital-patient_instances class in local ontology LO_hospital;

 ontological individuals JANE, FLEE, Female and JULY_04_1970 defined in the range values of

the object properties:

- clinic_2-patient-FIRST_NAME, clinic_2-patient-LAST_NAME and

clinic_2-patient-DOB, which are defined upon the LO_clinic_2-

patient_instances class in local ontology LO_clinic_2.

Low-Level rule 33, use option 6a in the Low-Level reasoning mechanism, to infer the new ontological

individuals JANE and FLEE through running a comparison between ontological individuals JANE,

FLEE-JANE_FLEE. The comparison is run using OWL conditions set upon datatype properties:

- has_same_FIRST_NAME allowed values JANE (i.e. literal value = JANE, Figure 5.26), and

- has_same_LAST_NAME allowed values FLEE (i.e. literal value = FLEE, Figure 5.27).

A match is established between the pair of ontological individuals: Female - Female and the pair of

ontological individuals: JULY_04_1970-JULY_04_1970 without running a comparison between the

ontological individuals.

Table 5.9 The results of running the Low-Level rule 33

After running Low-Level rule 33, 2 ontological individuals numbered 1. – 2. listed in Table 5.9 are

inferred into TO_3, and 4 ontological individuals numbered 3. – 6. listed in Table 5.9 are transferred into

 Chapter 5: Illustration of Ontological Layering 113

TO_3 class, thus creating a „semantic relation‟ between them. The inference created as a result of running

Low-Level rule 33 is graphically shown in Figure 5.30.

Figure 5.30Transferring and inferring ontological individuals from local ontologies LO_hospital and LO_clinic_2

into the TO_3 target ontology

Low-Level rule 34 in Appendix A.14 transfers or infers the following set of semantically related

ontological individuals from the classes in local ontologies LO_clinic_1 and LO_clinic_2 into TO_4:

 ontological individuals JANE_FLEE, Female and JULY_4_1970 defined in the range values of

the object properties:

- clinic_1-patient-NAME, clinic_1-patient-SEX and clinic_1-patient-

DOB, which are defined upon the LO_clinic_1-patient_instances class in local

ontology LO_clinic_1;

 ontological individuals JANE, FLEE, Female and JULY_04_1970 defined in the range values of

the object properties:

- clinic_2-patient-FIRST_NAME, clinic_2-patient-LAST_NAME and

clinic_2-patient-DOB, which are defined upon the LO_clinic_2-

patient_instances class in local ontology LO_clinic_2.

Low-Level rule 34, use option 6a in the Low-Level reasoning mechanism, to infer the new ontological

individuals JANE and FLEE through running a comparison between ontological individuals JANE,

FLEE-JANE_FLEE. The comparison is run using OWL conditions set upon datatype properties:

- has_same_FIRST_NAME allowed values JANE (i.e. literal value = JANE, Figure 5.26.), and

- has_same_LAST_NAME allowed values FLEE (i.e. literal value = FLEE, Figure 5.27.).

A match is established between the pair of ontological individuals: Female-Female and the pair of

ontological individuals JULY_4_1970-JULY_04_1970 without running a comparison between the

ontological individuals.

Table 5.10 The results of running the Low-Level rule 34

 Chapter 5: Illustration of Ontological Layering 114

After running Low-Level rule 34, 2 ontological individuals numbered 1. – 2. listed in Table 5.10 are

inferred into TO_4, and 4 ontological individuals numbered 3. – 6. listed in Table 5.10 are transferred

into TO_4 class, thus creating a „semantic relation‟ between them. The inference created as a result of

running Low-Level rule 34 is graphically shown in Figure 5.31.

Figure 5.31 Transferring and inferring ontological individuals from local ontologies LO_clinic_1 and LO_clinic_2

into the TO_4 target ontology

5.3.1.1.1 Resolving Aggregation Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Aggregation semantic conflicts concerning attribute names, we discovered

that:

- data stored in the LAST_NAME and FIRST_NAME from the PATIENT table in the

Hospital_data_rep database, and

- data stored in the NAME attribute from the PATIENT table in the Clinic_2_data_rep database,

exhibit Semantic Likeness (3) as their degree of similarity. This is an example of Aggregation in attribute

names, which is resolved after the alignment of ontological individuals from local ontologies LO_hospital

and LO_clinic_2 into the TO_3 target ontology. Specifically, the conflict is resolved by inferring the new

ontological individuals JANE and FLEE into target ontology TO_3 as a consequence of running a

comparison against the OWL conditions set upon datatype properties has_same_FIRST_NAME =

JANE and has_same_LAST_NAME = FLEE. Ontological individuals JANE and FLEE will ultimately

be merged into the ontological concepts of Go-CID, i.e. the new ontological individuals JANE and FLEE

will be relocated into the FIRST_NAME and LAST_NAME classes of the Go-CID respectively.

5.3.1.2 Aligning Semantically Related Data in Medical Summaries

Low-Level rule 35 in Appendix A.14 transfers the following set of semantically related ontological

individuals from the classes in local ontologies LO_hospital and LO_clinic_1 into TO_5:

 ontological individuals:

Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_evid

ent_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_ac

ute_COPD_exacerbation, no_major_illness_evident and

„no_chronic_disease_evident defined in the range values of object properties:

 Chapter 5: Illustration of Ontological Layering 115

- hospital-patient-MEDICAL_SUMMARY, hospital-patient-MAJOR_ILLNESS

and hospital-patient-CHRONIC_ILLNESS, which are defined upon the

„LO_hospital-patient_instances‟ class in local ontology LO_hospital;

 ontological individuals:

Mrs_Flee_has_a_regular_cervical_smear_test_results_appear_normal,

Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fat

igue, none and none_found defined in the range values of the object properties:

- clinic_1-patient-PREVIOUS_MEDICAL_SUMMARY, clinic_1-patient-

CURRENT_MEDICAL_SUMMARY, clinic_1-patient-MAJOR_ILLNESS and

clinic_1-patient-CHRONIC_ILLNESS, which are defined upon the LO_clinic_1-

patient_instances class in local ontology LO_clinic_1.

A match is established between the set of ontological individuals: Mrs_Flee_complains_xxx-

Mrs_Flee_has_xxx-Mrs_Flee_has_xxx, pair of ontological individuals: no_major_xxx-none,

and the pair of ontological individuals: no_chro_xxx-none_xxx (where „xxx‟ denotes the full name

of the ontological individual mentioned above).

Table 5.11 The results of running the Low-Level rule 35

After running Low-Level rule 35, 7 ontological individuals listed in Table 5.11 are transferred into TO_5

class, thus creating a „semantic relation‟ between them. The inference created as a result of running Low-

Level rule 35 is graphically shown in Figure 5.32. We use the same rational is used as mentioned in

Figure 4.13 in chapter 4. The transference of ontological individuals is as a black broken line between

ontological individuals and NOT ontological classes.

Figure 5.32 Transferring ontological individuals from local ontologies LO_hospital and LO_clinic_1 into the TO_5

target ontology

 Chapter 5: Illustration of Ontological Layering 116

Low-Level rule 36 in Appendix A.14 transfers the following set of semantically related ontological

individuals from the classes in local ontologies LO_hospital and LO_clinic_1 into TO_6:

 ontological individuals:

Mrs_Flee_has_a_regular_cervical_smear_test_results_appear_normal,

Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fat

igue, none and none_found defined in the range values of the object properties:

- clinic_1-patient-PREVIOUS_MEDICAL_SUMMARY, clinic_1-patient-

CURRENT_MEDICAL_SUMMARY, clinic_1-patient-MAJOR_ILLNESS and

clinic_1-patient-CHRONIC_ILLNESS, which are defined upon the LO_clinic_1-

patient_instances class in local ontology LO_clinic_1;

 ontological individuals Mrs_Flee_complains_of_shortness_of_breath, no_MJ and

none_cd_found defined in the range values of the object properties:

- clinic_2-patient-MEDICAL_SUMMARY, clinic_2-patient-MAJOR_ILLNESS

and clinic_2-patient-CHRONIC_ILLNESS, which are defined upon the

LO_clinic_2-patient_instances class in local ontology LO_clinic_2.

A match is established between the set of ontological individuals: Mrs_xxx-Mrs_xxx-Mrs_xxx, the

pair of ontological individuals: none-no_MJ, and none_xxx-no_xxx, (where „xxx‟ denotes the full

name of the ontological individual mentioned above).

Table 5.12 The results of running the Low-Level rule 36

After running the Low-Level rule 36, 7 ontological individuals listed in Table 5.12 are transferred into

TO_6 class, thus creating a „semantic relation‟ them. The inference created as a result of running Low-

Level rule 36 is graphically shown in Figure 5.33.

Figure 5.33 Transferring ontological individuals from local ontologies LO_clinic_1 and LO_clinic_2 into the TO_6

target ontology

 Chapter 5: Illustration of Ontological Layering 117

Low-Level rule 37 in Appendix A.14 transfers the following set of semantically related ontological

individuals from the classes in local ontologies LO_hospital and LO_clinic_1 into TO_7:

 ontological individuals LT256_Smear_test, LT256_Cervical_Type_3, LT256_Normal,

LT256_16-01-08, LT123_Pathology, LT123_Blood_test_Type_4123,

LT123_anaemia_level_46 and LT123_16-02-08 defined in the range values of the object

properties:

- clinic_1-labtest-LABTEST_TYPE, clinic_1-labtest-LABTEST_NAME,

clinic_1-labtest-LABTEST_RESULTS, and clinic_1-labtest-DATE, which are

defined upon the LO_clinic_1-labtest_instances class in local ontology

LO_clinic_1;

 ontological individuals LL456_Used_to_identify_lung_diseases,

LL456_Radiation, LL456_Xray, LL456_fileID_wavelength908 and LL456_28-

04-09 defined in the range values of the object properties:

- clinic_2-labtest-LABTEST_OVERVIEW, clinic_2-labtest-LABTEST_DATA,

clinic_2-labtest-LABTEST_TYPE, clinic_2-labtest-LABTEST_NAME,

clinic_2-labtest-LABTEST_RESULTS and clinic_2-labtest-DATE, which are

defined upon the LO_clinic_2-labtest_instances class in the local ontology

LO_clinic_2.

A match is established between ALL the set of ontological individuals mentioned above.

Table 5.13 The results of running the Low-Level rule 37

After running the Low-Level rule 37, 13 ontological individuals in listed in Table .13 are transferred into

TO_7 class, thus creating a „semantic relation‟ between them. The inference created as a result of running

Low-Level rule 37 is graphically shown in Figure 5.34.

Figure 5.34 Transferring ontological individuals from local ontologies LO_clinic_1 and LO_clinic_2 into the TO_7

target ontology

 Chapter 5: Illustration of Ontological Layering 118

5.3.1.3 Aligning Semantically Related Data in Treatment Summaries

Low-Level rule 38 in Appendix A.14 infers the following set of semantically related ontological

individuals from the classes in local ontologies LO_gp and LO_hospital into TO_8:

 ontological individual M0031 defined in the range value of object property:

- gp-medication-MEDICINE_NUM, which is defined upon the LO_gp-

patient_instances class in local ontology LO_gp;

 ontological individuals M222p and M225i defined in the range values of the object property:

- hospital-medication-MEDICINE_NO, which is defined upon the LO_hospital-

patient_instances class in local ontology LO_hospital.

Low-Level rule 38 uses option 6a to infer the new ontological individuals M0031, M222p and M225i,

through running a comparison between existing ontological individuals M0031, M222p and M225i. The

comparison is run using OWL conditions set upon datatype properties:

- has_same_UNIQUE_IDENTIFIER1 with allowed values M0031 (literal value = M0031, Figure

5.35)

- has_same_UNIQUE_IDENTIFIER2 with allowed values M222p (literal value = M222p, Figure

5.36.), and

- has_same_UNIQUE_IDENTIFIER3 with allowed values M225i (literal value = M225i, Figure

5.37.)

We model the datatype properties has_same_UNIQUE_IDENTIFIER1,

has_same_UNIQUE_IDENTIFIER2 and „has_same_UNIQUE_IDENTIFIER3 in order to create a

relationship between the TO_8 class and the allowed values of M0031, M222p and M225i. The domain

for the datatype property is set to the TO_8 ontological class and the range is set to string literal.

Figure 5.35. Example of OWL conditions set upon the datatype property „has_same_UNIQUE_IDENTIFIER1‟

 Chapter 5: Illustration of Ontological Layering 119

Figure 5.36. Example of OWL conditions set upon the datatype property „has_same_UNIQUE_IDENTIFIER2‟

Figure 5.37. Example of OWL conditions set upon the datatype property „has_same_UNIQUE_IDENTIFIER3‟

Table 5.14 The results of running the Low-Level rule 38

After running the Low-Level rule 38, 3 ontological individuals listed in Table 5.14 are inferred into TO_8

class, thus creating a „semantic relation‟ between them. The inference created as a result of running Low-

Level rule 38 is graphically shown in Figure 5.38. We use the same rational is used as that mentioned for

Figure 4.13 in chapter 4, i.e. inference of ontological individuals is shown as a blue broken line between

ontological individuals and NOT ontological classes. Comparison of ontological individuals is shown as a

green broken line between ontological individuals.

 Chapter 5: Illustration of Ontological Layering 120

Figure 5.38 Inferring ontological individuals from local ontologies LO_gp and LO_hospital into the TO_8 target

ontology

Low-Level rule 39 in Appendix A.14 uses option 6b to transfer the following set of semantically related

ontological individuals from the classes in local ontologies LO_gp and LO_hospital into TO_9:

 ontological individuals:

T1989_Patient_is_suffering_from_aches_in_lower_limbs_and_has_minor_

swelling_to_ankle_pain_support_through_chronic_pain_recovery_is_sug

gested and TT1989_12-03-09 defined in the range values of the object properties:

- gp-treatment-TREATMENT_OVERVIEW and gp-treatment-DATE, which are defined

upon the LO_gp-treatment_instances class in local ontology LO_gp;

 ontological individuals T09851_COPD_Chronic_pain_recovery,

T09851_COPD_exacerbation and T09851_17-04-09 defined in the range values of the

object properties:

- hospital-treatment-TREATMENT_TYPE, hospital-treatment-

TREATMENT_NAME and hospital-treatment-DATE, which are defined upon the

LO_hospital-treatment_instances class in local ontology LO_hospital.

A match is established between ALL the set of ontological individuals mentioned above.

Table 5.15 The results of running the Low-Level rule 39

After running the Low-Level rule 39, 5 ontological individuals in listed in Table 5.15 are transferred into

TO_9 class, thus creating a „semantic relation‟ as between them. The inference created as a result of

running the Low-Level rule 39 is graphically shown in Figure 5.39.

 Chapter 5: Illustration of Ontological Layering 121

Figure 5.39 Transferring ontological individuals from local ontology LO_gp and LO_hospital into the TO_9 target

ontology

Low-Level rule 40 in Appendix A.14 uses option 6b to transfer the following set of semantically related

ontological individuals from the classes in local ontologies LO_hospital and LO_clinic_1 into TO_10:

 ontological individuals M0031_Capzasin, M0031_Xhing_Ltd and

M0031_China_pharmaceuticals defined in the range values of the object properties:

- gp-medication-MEDICINE_NAME, gp-medication-VENDOR and gp-

medication-MNF_DESC, which are defined upon the LO_gp-treatment_instances

class in local ontology LO_gp;

 ontological individual M0031_2_tablets_per_day defined in the range values of object

property:

- gp-medication_prescribed-DOSAGE_AMOUNT, which are defined upon the LO_gp-

treatment_instances class in local ontology LO_gp;

 ontological individuals M222p_NAPROXEN, M222p_Risedronate,

M222p_Andheri_east_India, M225i_EHOSUXIMIDE, M225i_Emeside,

M225i_South_coast_Canada defined in the range values of object properties:

- hospital-medication-MEDICINE_NAME, hospital-medication-VENDOR and

hospital-medication-MNF_ADD, which are defined upon the LO_hospital-

treatment_instances class in local ontology LO_hospital;

 ontological individuals M222p_1_or_2_tablets_to_be_taken_4_times_a_day, and

M225i_1_tablets_to_be_taken_4_times_a_day defined in the range values of the

object property:

- hospital-medication_prescribed-DOSAGE_AMOUNT , which are defined upon the

LO_hospital-treatment_instances class in local ontology LO_hospital;

A match is established between ALL the set of ontological individuals mentioned above.

Table 5.16 The results of running the Low-Level rule 40

 Chapter 5: Illustration of Ontological Layering 122

After running the Low-Level rule 40, 12 ontological individuals in listed in Table 5.16 are transferred into

TO_10 class, thus creating a „semantic relation‟ as between them. The inference created as a result of

running the Low-Level rule 40 is graphically shown in Figure 5.40.

Figure 5.40 Transferring ontological individuals from classes from local ontologies LO_gp and LO_hospital into the

TO_10 target ontology

5.3.1.3.1 Resolving Synonym Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, we have discovered that:

- data stored in the MEDICINE_NUM attribute from the MEDICATION table in the GP_data_rep

database, and

- data stored in the MEDICINE_NO attribute from the MEDICATION table in the Hospital_data_rep

database,

exhibit Semantic Likeness (3) as their degree of similarity. This is an example of Synonym semantic

conflict concerning attribute names, which is resolved after the alignment of ontological individuals from

local ontologies LO_gp and LO_hospital into the TO_8 target ontology. Specifically, the conflict is

resolved by inferring the new ontological individuals M0031, M222p and M225 into the target ontology

TO_8 as a consequence of running a comparison against the OWL conditions set upon datatype

properties has_same_UNIQUES_IDENTIFIER1 = M0031, has_same_UNIQUES_IDENTIFIER2

= M222p, and has_same_UNIQUES_IDENTIFIER3 = M225i. These three individuals will

ultimately be merged into the ontological concepts of Go-CID, i.e. the new ontological individuals

M0031, M222p and M225i will be relocated into the MEDICINE_NUMBER class of Go-CID.

5.3.2 Step 7: Integrating Target Ontologies

In step 7, we perform the High-Level reasoning mechanism, which allows us to choose option 7b (see

chapter 4, section 4.3.4.3) to execute the integration of semantically similar ontological individuals stored

in target ontologies TO_1 - TO_10 (created though alignment in the previous step). Figure 5.45 shows

exactly what happens in step 7.

It is obvious from ontological individuals listed in Tables 5.7 - 5.10 from section 5.3.1.1 that we

have no semantic conflicts within target ontologies TO_1, TO_2, TO_3 and TO_4, because we have

already resolved Aggregation conflict in the previous step when creating information type Patient details.

However, individuals contained in target ontologies TO_1 - TO_4 must be made semantically similar in

 Chapter 5: Illustration of Ontological Layering 123

order to establish their semantic equivalence (see section 4.3.4.3 in chapter 4). Therefore, in order to

establish semantic equivalence we integrate semantically similar individuals from target ontologies TO_1

- TO_4 by asserting them into derived ontologies DO_1, DO_2, DO_3, and DO_4. Assertion happens by

running four SWRL High-Level rules 41-44 (available in Appendix A16). The outcome of assertion is a

link between individuals in derived ontologies DO_1 - DO_4 which are semantically equivalent. We

also say that asserted ontological individuals (i) are integrated into derived ontologies DO_1 - DO_4, (ii)

exhibit „semantic correspondence‟ as a consequence of their integrations. Details on the exact integrations

target ontologies TO_1 - TO_4 individuals which create information type Patient details at this stage

(i.e. step 7) are given in section 5.3.2.1.

Figure 5.41 Example of derived ontologies {DOg | g =1 ...10}

When creating information type Medical summaries at this stage, we observe from Figure 5.41 that

Generalisation and Isomorphism semantic conflicts will be resolved. These two conflicts are found in

ontological individuals from target ontologies TO_5 and TO_8 respectively, which is listed in Tables

5.11 and 5.13 from section 5.3.1.2. We run SWRL High-level rule 35 (available in Appendix A16), to

resolve the Generalisation and SWRL High-level rules 38 (available in Appendix A16) to resolve the

Isomorphism. This is how we resolve them at this stage:

 we must integrate, into derived ontologies DO_5 and DO_8, ontological individuals which have

Generalisation (in target ontology TO_5) and Isomorphism (target ontology TO_8) semantic

conflicts, and which have been classified as „semantically similar‟ in step 6;

 we support integration by running High-level rules 35 and 38, in order to assert into derived

ontologies DO_5 and DO_8 semantically similar ontological individuals from target ontologies

TO_5 and TO_8. The outcome of assertion is a link between individuals in ontologies DO_5 and

DO_8, which do not exhibit Generalisation and Isomorphism any more.

However, information type Medical summaries are not completed after the elimination of Generalisation

and Isomorphism semantic conflicts. Figure 5.41 shows that we run extra two SWRL High-level rules,

 Chapter 5: Illustration of Ontological Layering 124

numbered as 46 and 47 (available in Appendix A16), which have the same role/purpose as SWRL High-

level rules 41-44, essential for creating information type Medical summaries. We need these two rules

for the assertion of semantically similar individuals in target ontologies TO_5 and TO_6, as listed in

Tables 5.11 and 5.13 from section 5.3.1.2, into derived ontologies DO_6 and DO_7. The assertion

happens by running High-level rules 46 and 47. The outcome of assertion is a link between ontological

individuals in derived ontologies DO_6 and DO_7, which are now semantically equivalent. Details on

the exact integrations for resolving Generalisation and Isomorphism for creating Medical summaries are

given in section 5.3.2.2.

When creating information type Treatment summaries, Specialisation and Union Incompatibility

semantic conflicts will be resolved. These two conflicts are found in ontological individuals from target

ontologies TO_9 and TO_10 respectively, which are listed in Tables 5.15 and 5.16 from section 5.3.1.2.

We run SWRL High-level rule 49 (available in Appendix A16), to resolve the Specialisation and SWRL

High-level rules 50 (available in Appendix A16) to resolve the Union Incompatibility. This is how we

resolve them at this stage:

 we must integrate, into derived ontologies DO_9 and DO_10, ontological individuals which have

Specialisation (in target ontology TO_9) and Union Incompatibility (target ontology TO_10)

semantic conflicts, and which have been classified as „semantically similar‟ in step 6;

 we support integration by running High-level rules 49 and 50, in order to assert into derived

ontologies DO_9 and DO_10 semantically similar ontological individuals from target ontologies

TO_9 and TO_10. The outcome of assertion is a link between individuals in ontologies DO_9 and

DO_10, which do not exhibit Specialisation and Union Incompatibility any more.

Details on the exact integrations for resolving Specialisation and Union Incompatibility for creating

Treatment summaries are given in section 5.3.2.3.

It is important to note that all High-Level rules are run through the SWRL-plug-in in Protégé 3.4,

using the Jess engine. All classes are created through Protégé 3.4. Screen shots of the inference (e.g.

ontological individuals stored in DO_1 - DO_10), as a result of running High-Level rules 41-50 can be

found Appendix A.17. (Note: Appendix A.17 is stored on the CD-ROM).

5.3.2.1 Integrating Semantically Similar Data in Patient Details

High-Level rule 41 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals JANE, JANE, JANE and JANE from the target ontologies TO_1, TO_2, TO_3 and TO_4 into

DO_1. A link is established between ALL the ontological individuals.

Table 5.17 The results of running the High-Level rule 41

After running High-Level rule 41, 2 ontological individuals listed in Table 5.17 are transferred into DO_1

class, thus creating a „semantic correspondence‟ between them. (The assertion of ontological individuals

into DO_1 eliminates the duplicate ontological individuals in TO_1, TO_2, TO_3 and TO_4). The

 Chapter 5: Illustration of Ontological Layering 125

inference created as a result of running the High-Level rule 41 is graphically shown in Figure 5.42. We

use the same rational is used as mentioned in Figure 4.14 in chapter 4, i.e. assertion of ontological

individuals is shown as a black broken line between ontological individuals and ontological classes.

Figure 5.42 Transferring ontological individuals from target ontologies „TO_1‟, „TO_2‟, „TO_3‟ and „TO_4‟ into the

DO_1 derived ontology

High-Level rule 42 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals FLEE, FLEE, FLEE and FLEE from the target ontologies TO_1, TO_2, TO_3 and TO_4 into

DO_2. A link is established between all four of the ontological individuals.

Table 5.18 The results of running the High-Level rule 42

After running High-Level rule 42, 2 ontological individuals in listed in Table 5.18 are transferred into

DO_2 class, thus creating a „semantic correspondence‟ between them. (The assertion of ontological

individuals into DO_2 eliminates duplicate ontological individuals in TO_1, TO_2, TO_3 and TO_4).

The inference created as a result of running the High-Level rule 42 is graphically shown in Figure 5.43.

Figure 5.43 Transferring ontological individuals from target ontologies „TO_1‟, „TO_2‟, „TO_3‟ and „TO_4‟ into the

DO_2 derived ontology

High-Level rule 43 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals FEMALE from the target ontologies TO_1, TO_2, TO_3 and TO_4 into DO_3. A link is

established between both ontological individuals FEMALE.

 Chapter 5: Illustration of Ontological Layering 126

Table 5.19 The results of running the High-Level rule 43

After running High-Level rule 43, 4 ontological individuals listed in Table 5.19 are transferred into DO_3

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 43 is graphically shown in Figure 5.44.

Figure 5.44 Transferring ontological individuals from target ontologies „TO_1‟, „TO_2‟, „TO_3‟ and „TO_4‟ into the

DO_3 derived ontology

High-Level rule 44 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals JULY_04_1970 from the target ontologies TO_1, TO_2, TO_3 and TO_4 into DO_4. A

link is established between all four of the ontological individuals.

Table 5.20 The results of running the High-Level rule 44

After running High-Level rule 44, 4 ontological individuals listed in Table 5.20 are transferred into DO_4

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 44 is graphically shown in Figure 5.45.

Figure 5.45 Transferring ontological individuals from target ontologies „TO_1‟, „TO_2‟, „TO_3‟ and „TO_4‟ into the

DO_4 derived ontology

 Chapter 5: Illustration of Ontological Layering 127

5.3.2.2 Integrating Semantically Similar Data in Medical Summaries

High-Level rule 45 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals: Mrs_Flee_complains_xxx, Mrs_Flee_has_come_xxx and

Mrs_Flee_complains_of_xxx (where „xxx‟ denotes the whole name of the ontological individuals)

from the target ontologies TO_5 and TO_6 into DO_5. A link is established between all the ontological

individuals.

Table 5.21 The results of running the High-Level rule 45

After running High-Level rule 45, 3 ontological individuals listed in Table 5.21 are transferred into DO_5

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 45 is graphically shown in Figure 5.46.

Figure 5.46 Transferring ontological individuals from target ontologies „TO_5‟ and „TO_6‟ into the DO_5 derived

ontology

High-Level rule 46 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals no_major_illness_evident, none and No_MJ from the target ontologies TO_5 and

TO_6 into DO_6. A link is established between ALL the ontological individuals mentioned above.

Table 5.22 The results of running the High-Level rule 46

After running High-Level rule 46, 3 ontological individuals listed in Table 5.22 are transferred into DO_6

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 46 is graphically shown in Figure 5.47.

 Chapter 5: Illustration of Ontological Layering 128

Figure 5.47 Transferring ontological individuals from target ontologies „TO_5‟ and „TO_6‟ into the DO_6 derived

ontology

High-Level rule 47 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals no_chronic_disease_evident, none_found and no_cd_found from the target

ontologies TO_5 and TO_6 into DO_7. A link is established between all the ontological individuals.

Table 5.23 The results of running the High-Level rule 47

After running High-Level rule 47, 3 ontological individuals listed in Table 5.23 are transferred into DO_7

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 47 is graphically shown in Figure 5.48.

Figure 5.48 Transferring ontological individuals from target ontologies „TO_5‟ and „TO_6‟ into the DO_7 derived

ontology

High-Level rule 48 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals LT256_Sm_xxx, LT256_Ce_xxx, LT256_No_xxx, LT256_16_xxx, LT123_Pa_xxx,

LT123_Bl_xxx, LT123_an_xxx, LT123_16_xxx, LL456_xxx, LL456_Xr_xxx, LL456_fi_xxx

and LL456_28_xxx (where „xxx‟ denotes the whole name of the ontological individuals) from the target

ontology TO_7 into DO_8. A link is established between all the ontological individuals.

Table 5.24 The results of running the High-Level rule 48

 Chapter 5: Illustration of Ontological Layering 129

After running High-Level rule 48, 12 ontological individuals listed in Table 5.24 are transferred into

DO_8 class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 48 is graphically shown in Figure 5.49.

Figure 5.49 Transferring ontological individuals from target ontologies „TO_7‟ into the DO_8 target ontology

5.3.2.2.1 Resolving Generalisation Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Generalisation semantic conflicts in attribute names, we discovered that:

- data stored in the MEDICAL_SUMMARY from the PATIENT table in the Hospital_data_rep

database, and

- data stored in the CURRENT_MEDICAL_SUMMARIES and PREVIOUS_MEDICAL_SUMMARIES

attributes from the patient table in the Clinic_1_data_rep database,

exhibit Semantic Subset - contains (4) as their degree of similarity. This is because the data stored in

CURRENT_MEDICAL_SUMMARIES and PREVIOUS_MEDICAL_SUMMARIES attributes may have

been seen by Dr Smith as “parts” of data needed for MEDICAL_SUMMARY, which he would like to add to

Mrs Flee‟s medical summaries Dr Smith holds within his Hospital_data_rep database. This is an example

of Generalisation, which is resolved after the integration of ontological individuals into from target

ontologies TO_5 and TO_6 into the DO_5 derived ontology. Specifically, the conflict is resolved by

asserting the ontological individuals: Mrs_Flee_complains_of_severe_xxx,

Mrs_Flee_has_come_xxx and Mrs_Flee_complains_of_xxx (where „xxx‟ denotes the whole

name of the ontological individuals) from the target ontologies TO_5 and TO_6, into the derived

ontology DO_5, and which will ultimately be merged into the concepts of Go-CID, i.e:

 ontological individuals Mrs_Flee_complains_of_severe_xxx and

Mrs_Flee_complains_of_shortness_of_breath will be relocated into the

SUMMARIES class of Go-CID, and

 ontological individual:

Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fat

igue will be relocated into the PREVIOUS_MEDICAL_SUMMARIES class of Go-CID.

 Chapter 5: Illustration of Ontological Layering 130

5.3.2.2.2 Resolving Isomorphism Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Isomorphism semantic conflicts concerning attribute names, we discovered

that:

- data stored in the LABTEST_ID, PATIENT_NO, LABTEST_TYPE, LABTEST_NAME,

LABTEST_RESULTS, REPORT and DATA from the LABTEST table in the Clinic_1_data_rep

database, and

- data stored in the LABTEST_ID, PATIENT_NO, LABTEST_OVERVIEW, LABTEST_TYPE,

LABTEST_NAME, LABTEST_RESULTS, REPORT and DATA from the LABTEST table in the

Clinic_2_data_rep database,

exhibit Semantic Overlapping (6) as their degree of similarity. This is an example of Isomorphism, which

is resolved after the integration of ontological individuals from the target ontology TO_7 into the DO_8

derived ontology. Specifically, the conflict is resolved by asserting ontological individuals

LT256_Sm_xxx, LT256_Ce_xxx, LT256_No_xxx, LT256_16_xxx, LT123_Pa_xxx,

LT123_Bl_xxx, „LT123_an_xxx, LT123_16_xxx, LL456_xxx, LL456_Xr_xxx, LL456_fi_xxx,

and LL456_28_xxx (where „xxx‟ denotes the whole name of the ontological individuals) from the target

ontology TO_7 into the derived ontology DO_8, which will ultimately be merged into the concepts of

Go-CID, i.e.:

 ontological individuals LT256_Smear_test, LL456_Radiation and

LT123_Blood_test_Type_4123 will be relocated into the class LABTEST_TYPE of Go-CID,

 ontological individuals LT256_Cervical_Type_3, LL456_Xray and LT123_Pathology

will be relocated into the class LABTEST_NAME of Go-CID,

 ontological individuals LT256_Normal, LT123_anaemia_level_46 and

LL456_fileID_wavelength908 will be relocated into the class „LABTEST_RESULTS‟ of

Go-CID,

 ontological individuals LT123_16-02-08, LT256_16-01-08 and LL456_28-04-09 will be

relocated into the LABTEST_DATE class of Go-CID, and

 ontological individuals LT123_16-02-08, LT256_16-01-08 and LL456_28-04-09 will be

relocated into the LABTEST_OVERVIEW class of Go-CID.

5.3.2.3 Integrating Semantically Similar Data in Treatment Summaries

High-Level rule 49 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals TT1989_12-03-09 and T09851_17-04-09 from the target ontology TO_9 into DO_9.

A link is established between both the ontological individuals.

Table 5.25 The results of running the High-Level rule 49

 Chapter 5: Illustration of Ontological Layering 131

After running High-Level rule 49, 2 ontological individuals listed in Table 5.25 are transferred into DO_9

class, thus creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 49 is graphically shown in Figure 5.50.

Figure 5.50 Transferring ontological individuals from target ontologies „TO_9‟ into the DO_9 derived ontology

High-Level rule 50 in Appendix A.16 asserts and transfers the semantically similar ontological

individuals M0031_C_xxx, M0031_X_xxx, M0031_2_xxx, M222p_N_xxx, M222p_R_xxx,

M225i_E_xxx, M225i_Em_xxx, M222p_1_xxx and M225i_1_xxx (where „xxx‟ denotes the whole

name of the ontological individuals) from the target ontology TO_10 into DO_10. A link is established

between all the ontological individuals.

Table 5.26 The results of running the High-Level rule 50

After running the High-Level rule 50, 9 ontological individuals listed in Table 5.26 are transferred into

DO_10 class, creating a „semantic correspondence‟ between them. The inference created as a result of

running the High-Level rule 50 is graphically shown in Figure 5.51.

Figure 5.51 Transferring ontological individuals from target ontologies „TO_10‟ into the DO_10 derived ontology

 Chapter 5: Illustration of Ontological Layering 132

5.3.2.3.1 Resolving Specialisation Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Specialisation semantic conflicts concerning attribute names, we discovered

that:

- data stored in the TREATMENT_TYPE, TREATMENT_NAME and TREATMENT_DATE from the

TREATMENT table in the Hospital_data_rep database, and

- data stored in the TREATMENT_OVERVIEW and TREATMENT_DATE attributes from the

TREATMENT table in the GP_data_rep database,

exhibit Semantic Subset – contained within (5) as their degree of similarity. This is because the data

stored in the TREATMENT_OVERVIEW and TREATMENT_DATE attributes may have been seen by Dr

Smith as “parts” of data which is stored in the TREATMENT_TYPE and TREATMENT_NAME attributes,

which Dr Smith would like to add to Mrs Flee‟s treatment summaries he holds within his

Hospital_data_rep database. This is an example of Specialisation semantic conflict, which is resolved

after the integration of ontological individuals from the target ontology TO_9 into the DO_9 derived

ontology. Specifically, the conflict is resolved by asserting ontological individuals TT1989_12-03-09

and T09851_17-04-09 from the target ontology TO_9 into derived ontology DO_9, and which will

ultimately be merged into the concepts of Go-CID, i.e.:

 ontological individual:

T1989_Patient_is_suffering_from_aches_in_lower_limbs_and_has_minor_sw

elling_to_ankle_pain_support_through_chronic_pain_recovery_is_sugge

sted will be relocated into the TREATMENT_OVERVIEW class of Go-CID., and

 ontological individual T09851_COPD_Chronic_pain_recovery will be relocated into the

TREATMENT_NAME class of Go-CID.

5.3.2.3.2 Resolving Union Incompatibility Semantic Conflict

Having identified, while looking at the possible types of semantic conflicts in relational schemas in

section 5.1.2, that there are Union Incompatibility semantic conflicts concerning attribute names, we

discovered that:

- data stored in the MEDICINE_NUM, MEDICINE_NAME, VENDOR, and MNF_DESC from the

MEDICATION table in GP_data_rep database, and

- data stored in the MEDICINE_NO, MEDICINE_NAME, VENDOR, and MNF_ADDRESS from the

MEDICATION table in the Hospital_data_rep database,

exhibit Semantic Overlapping (6) as their degree of similarity. This is an example of Union

Incompatibility, which is resolved after the integration of ontological individuals from the target ontology

TO_10 into the DO_10 derived ontology. Specifically, the Union Incompatibility conflict is resolved by

asserting ontological individuals M0031_C_xxx, M0031_X_xxx, M0031_2_xxx, M222p_N_xxx,

M222p_R_xxx, M225i_E_xxx, M225i_Em_xxx, M222p_1_xxx and M225i_1_xxx (where „xxx‟

denotes the whole name of the ontological individuals) from the target ontology TO_10 into the derived

ontology DO_10, and which will ultimately be merged into the concepts of Go-CID, i.e.:

 Chapter 5: Illustration of Ontological Layering 133

 ontological individuals M0031_Capzasin, M225i_EHOSUXIMIDE, and M222p_NAPROXEN

will be relocated into the MEDICINE_NAME class of Go-CID,

 ontological individuals M0031_Xhing_Ltd, M222p_Risedronate, and M225i_Emeside

will be relocated into the MEDICINE_DETAILS class of Go-CID, and

 ontological individuals:

M0031_2_tablets_per_day,

M222p_1_or_2_tablets_to_be_taken_4_times_a_day, and

M225i_1_tablets_to_be_taken_4_times_a_day will be relocated into the

DOSAGE_AMOUNT class of Go-CID.

5.3.3 Step 8: Merging Derived Ontologies

In step 8, we finally create the final Go-CID ontological layer by merging ontological individuals from

lower ontological layers. Ontological individuals stored in subclasses of Go-CID will (a) obviously

exhibit no semantic conflicts and (b) have been merged because they must become ontological

individuals, which correspond to „real world‟ concepts‟ originally modelled in and placed within data

repositories Repi (see chapter 4, section 4.3.4.4). In Figures 5.52 – 5.54 we illustrate exactly how we

merge concepts in order to create a final version of information types Patient details, Medical summaries

and Treatment summaries. To summarise:

 we have three figures because we allocate each figure to a separate information type Patient details,

Medical summaries and Treatment summaries,

 we perform “merge” of ontological individuals from lower ontological layers into Go-CID when

creating final formats of the information types requested by Dr Smith (i.e. in order to create a Health

Summary for Mrs Flee),

 we do NOT resolve semantic conflicts because they have been resolved through previous steps, and

 we run 28 SWRL Post-High-Level rules, as a part of Post-High-Level reasoning mechanism (see

chapter 4, section 4.3.4.4), which conduct this merge by relocating ontological individuals from

lower ontological layers into subclasses of Go-CID.

Therefore, ontological individuals stored in subclasses of Go-CID are not always the result of merge of

individuals from DOg. In Figures 5.52 – 5.54 we shade (i) in grey, rules which perform the merge upon

ontological individuals from LOj (Post-High-Level rules 55 to 61 in Figure 5.52) and (ii) in dark grey,

Post-High-Level rules which perform the merge upon ontological individuals from TOk (Post-High-Level

rules 69-71 in Figure 5.53 and Post-High-Level rules 76-79 in Figure 5.54).

 In Figure 5.52 through Post-High-Level rules 51-54 we merge semantically equivalent ontological

individuals from derived ontologies DO_1, DO_2, DO_3 and DO_4, listed in Tables 5.17 - 5.20 from

section 5.3.2.1, and re-locate them into subclasses FIRST_NAME, LAST_NAME, SEX and DOB of Go-

CID. Post-High-Level rules 55-61 merge semantically equivalent ontological individuals from LO_gp

(they are listed in the Appendix A.3 stored on CD-ROM) and relocate them into subclasses ADDRESS,

REGION, NEXT_OF_KIN, EMERGENCY_CONTACT, NO_OF_CHILDREN, BMI and HEIGHT of Go-

CID. These eleven Post-High-Level rules are available in Appendix A.18. Their number (eleven in this

particular case), depends on the numbers of concepts needed when creating final formats of information

 Chapter 5: Illustration of Ontological Layering 134

type Patient details requested by Dr Smith in order to create a health summary for Mrs Flee. Details on

the exact merges for creating Patient details in section 5.3.3.1.

Figure 5.52 Example of the „PATIENT_DETAILS‟ subclasses in Go-CID

In Figure 5.53 through Post-High-Level rules 62-68 we merge semantically equivalent ontological

individuals from derived ontologies DO_5, DO_6, DO_7 and DO_8, listed in Tables 5.21 - 5.24 from

section 5.3.2.2, and re-locate them into subclasses SUMMARIES, MAJOR_ILLNESS,

CHRONIC_DISEASE, LABTEST_TYPE, LABTEST_NAME, LABTEST_RESULTS and

LABTEST_DATE of Go-CID. Post-High-Level rules 69-71 merge semantically equivalent ontological

individuals from target ontologies TO_5 and TO_7 (they are listed Tables 5.11 and 5.13 from section

5.3.1.2) and relocate them into subclasses PREVIOUS_MEDICAL_SUMMARIES,

LABTEST_OVERVIEW, and LABTEST_DATA of Go-CID. These three Post-High-Level rules are

available in Appendix A.18. Their number (three in this particular case), depends on the numbers of

concepts needed when creating final formats of information type Medical summaries requested by Dr

Smith in order to create a health summary for Mrs Flee. Details on the exact merges for creating Medical

summaries in section 5.3.3.2.

 Chapter 5: Illustration of Ontological Layering 135

Figure 5.53 Example of the „MEDICAL_SUMMARIES‟ subclasses in Go-CID

In Figure 5.54 through Post-High-Level rules 72-75 we merge semantically equivalent ontological

individuals from derived ontologies DO_9 and DO_10, listed in Tables 5.25 and 5.26 from section

5.3.2.3, and re-locate them into subclasses TREATMENT_DATE, MEDICINE_NAME, VENDOR and

DOSAGE_AMOUNT of Go-CID. Post-High-Level rules 76-79 merge semantically equivalent ontological

individuals from target ontologies TO_8 and TO_10 (they are listed Tables 5.14 and 5.16 from section

5.3.1.3) and relocate them into subclasses MEDICINE_NUMBER, TREATMENT_OVERVIEW,

TREATMENT_NAME and MEDICATION_DETAILS of Go-CID. These four Post-High-Level rules are

available in Appendix A.18. Their number (four in this particular case), depends on the numbers of

concepts needed when creating final formats of information type Treatment summaries requested by Dr

Smith in order to create a health summary for Mrs Flee. Details on the exact merges for creating

Treatment summaries in section 5.3.3.3.

Figure 5.54 Example of the „TREATMENT_SUMMARIES‟ subclasses in Go-CID

 Chapter 5: Illustration of Ontological Layering 136

It is important to note that all Post-High-Level for ontology merges are run through the SWRL-plug-in in

Protégé 3.4, using the Jess engine. All classes in Go-CID are created through Protégé 3.4. Screen shots of

the inference (e.g. ontological individuals stored in subclasses FIRST_NAME, LAST_NAME, SEX, DOB,

ADDRESS, REGION, NEXT_OF_KIN, EMERGENCY_CONTACT, NO_OF_CHILDREN, BMI, HEIGHT,

SUMMARIES, MAJOR_ILLNESS, CHRONIC_DISEASE, LABTEST_TYPE, LABTEST_NAME,

LABTEST_RESULTS, LABTEST_DATE, PREVIOUS_MEDICAL_SUMMARIES,

LABTEST_OVERVIEW, and LABTEST_DATA TREATMENT_DATE, MEDICINE_NAME, VENDOR and

DOSAGE_AMOUNT, MEDICINE_NUMBER, TREATMENT_OVER, TREATMENT_NAME and

MEDICATION_DETAILS in Go-CID) as a result of running Post-High-Level rules can be found

Appendix A.19. (Note Appendix A.19 is stored on the CD-ROM).

5.3.3.1 Merging Semantically Equivalent Data in Patient Details

Post-High-Level rules 51, 52, 53 and 54 in Appendix A.18 relocates the semantically equivalent

ontological individuals JANE, FLEE, FEMALE and JULY_04_1970 from the derived ontologies DO_1,

DO_2, DO_3 and DO_4 into FIRST_NAME, LAST_NAME, SEX and DOB respectively.

Table 5.27 The results of running the Post-High-Level rules 51, 52, 53 and 54

After running Post-High-Level rules 51, 52, 53 and 54, 4 ontological individuals listed in Table 5.27 are

relocated into FIRST_NAME, LAST_NAME, SEX and DOB subclasses of Go-CID. The inference created

as a result of running Post-High-Level rules 51, 52, 53 and 54 is graphically shown in Figure 5.55. We

use the same rational as mentioned in Figure 4.15 in chapter 4, i.e. relocation of ontological individuals is

shown as a black broken line between ontological individuals and ontological classes.

Figure 5.55 Relocating ontological individuals from derived ontologies „DO_1‟, „DO_2‟, „DO_3‟ and „DO_4‟ into

the Go-CID

Post-High-Level rules 55, 56, 57, 58, 59, 60 and 61 in Appendix A.18 relocates the semantically

equivalent ontological individuals ADD_167_BOULEVARD_RD_W1W_5TU, LONDON,

NEMANJA_FLEE, TEL_07965896456, CHILDREN_0, NORMAL and H_5_feet_8_inches from

 Chapter 5: Illustration of Ontological Layering 137

the LO_gp_patient_instances class in local ontology LO_gp into ADDRESS, REGION,

NEXT_OF_KIN, EMERGENCY_CONTACT, NO_OF_CHILDREN, BMI and HEIGHT respectively.

Table 5.28The results of running the Post-High-Level rules 55, 56, 57, 58, 59, 60 and 61

After running Post-High- rules 55, 56, 57, 58, 59, 60 and 61, 7 ontological individuals listed in Table

5.28 are relocated into ADDRESS, REGION, NEXT_OF_KIN, EMERGENCY_CONTACT,

NO_OF_CHILDREN, BMI and HEIGHT subclasses of Go-CID. The inference created as a result of

running Post-High-Level rules 55, 56, 57, 58, 59, 60 and 61 is graphically shown in Figure 5.56.

Figure 5.56 Relocating ontological individuals from „LO_gp-patient_instances‟ in the LO_gp into the Go-CID

Note: in Figure 5.56 we skip the Target and Derived ontological layers because existing ontological

individuals stored in LO_gp-patient_instances subclass of local ontology LO_gp already share a

semantic correspondence (see section chapter 4, section 4.4.3.5).

5.3.3.2 Merging Semantically Equivalent Data in Medical Summaries

Post-High-Level rules 62, 63, 64, 65, 66, 67 and 68 in Appendix A.18 relocates the semantically

equivalent ontological individuals LT256_Sm_xxx, LT256_Ce_xxx, LT256_No_xxx,

LT256_16_xxx, LT123_Pa_xxx, LT123_Bl_xxx, LT123_an_xxx, LT123_16_xxx, LL456_xxx,

LL456_Xr_xxx, LL456_fi_xxx and LL456_28_xxx (where „xxx‟ denotes the whole name of the

ontological individuals) from the derived ontologies DO_5, DO_6, DO_7 and DO_8 into SUMMARIES,

MAJOR_ILLNESS, CHRONIC_DISEASE, LABTEST_TYPE, LABTEST_NAME, LABTEST_RESULTS

and LABTEST_DATE respectively.

 Chapter 5: Illustration of Ontological Layering 138

Table 5.29 The results of running the Post-High-Level rules 62, 63, 64, 65, 66, 67 and 68

After running Post-High-Level rules 62, 63, 64, 65, 66, 67 and 68, 17 ontological individuals listed in

Table 5.29 are relocated into SUMMARIES, MAJOR_ILLNESS, CHRONIC_DISEASE,

LABTEST_TYPE, LABTEST_NAME, LABTEST_RESULTS and LABTEST_DATE subclasses of Go-

CID. The inference created as a result of running Post-High-Level rules 62, 63, 64, 65, 66, 67and 68 is

graphically shown in Figure 5.57.

Figure 5.57 Relocating ontological individuals from derived ontologies „DO_5‟, „DO_6‟, „DO_7‟ and „DO_8‟ into

the Go-CID

Post-High-Level rules 69, 70 and 71 in Appendix A.18 relocates the semantically equivalent ontological

individuals Mrs_Flee_has_a_xxx, LL456_Used_xxx and LL456_data_xxx (where „xxx‟ denotes

the whole name of the ontological individuals) from the target ontologies TO_5 and TO_7 into

PREVIOUS_MEDICAL_SUMMARIES, LABTEST_OVERVIEW and LABTEST_DATA respectively.

Table 5.30 The results of running the Post-High-Level rules 69, 70 and 71

The result of running Post-High-Level rules 69, 70 and 71, 3 ontological individuals listed in Table 5.30

are relocated into PREVIOUS_MEDICAL_SUMMARIES, LABTEST_OVERVIEW and LABTEST_DATA

subclasses of Go-CID. The inference created as a result of running the Post-High-Level rules 69, 70 and

71 is graphically shown in Figure 5.58. Note: in Figure 5.58 we skip the Derived ontological layer

 Chapter 5: Illustration of Ontological Layering 139

because existing ontological individuals stored in TO_5 and TO_7 already share a semantic

correspondence (see section chapter 4, section 4.4.3.5).

Figure 5.58 Relocating ontological individuals from „TO_5‟and „TO_7‟ target ontologies into the Go-CID

5.3.3.3 Merging Semantically Equivalent Data in Treatment Summaries

Post-High-Level rules 72, 73, 74 and 75 in Appendix A.18 relocates the semantically equivalent

ontological individuals M0031_C_xxx, M0031_X_xxx, M0031_2_xxx, M222p_N_xxx,

M222p_R_xxx, M225i_E_xxx, M225i_Em_xxx, M222p_1_xxx and M225i_1_xxx (where „xxx‟

denotes the whole name of the ontological individuals) from the derived ontologies DO_9 and DO_10

into TREATMENT_DATE, MEDICINE_NAME, VENDOR and DOSAGE_AMOUNT respectively.

Table 5.31 The results of running the Post-High-Level rules 72, 73, 74 and 75

After running Post-High-Level rules 72, 73, 74 and 75, 11 ontological individuals listed in Table 5.31 are

transferred into TREATMENT_DATE, MEDICINE_NAME, VENDOR and DOSAGE_AMOUNT subclasses of

Go-CID. The inference created as a result of running Post-High-Level Level rules 69, 70 and 71 is

graphically shown in Figure 5.59.

Figure 5.59 Relocating ontological individuals from derived ontologies „DO_9‟ and „DO_10‟ into the Go-CID.

 Chapter 5: Illustration of Ontological Layering 140

Post-High-Level rules 76, 77, 78 and 79 in Appendix A.18 relocates the semantically equivalent

ontological individuals M0031, M222p, M225i, T1989_Patient_xxx, T09851_COPD_xxx,

T09851_COPD_ex_xxx, M222p_An_xxx, M225i_So_xxx and M0031_Chin_xxx (where „xxx‟

denotes the whole name of the ontological individuals) from the target ontologies TO_8, TO_9 and

TO_10 into MEDICINE_NUMBER, TREATMENT_OVER, TREATMENT_NAME and

MEDICATION_DETAILS respectively.

Table 5.32 The results of running the Post-High-Level rules 76, 77, 78 and 79

After running the Post-High-Level rules 76, 77, 78 and 79, 9 ontological individuals listed in Table 5.32

are relocated into MEDICINE_NUMBER, TREATMENT_OVER, TREATMENT_NAME and

MEDICATION_DETAILS subclasses of Go-CID. The inference created as a result of running Post-High-

Level rules 76, 77, 78 and 79 is graphically shown in Figure 5.60. Note: in Figure 5.60 we skip the

Derived ontological layer because existing ontological individuals stored in TO_8, TO_9 and TO_10

already share a semantic correspondence (see section chapter 4, section 4.4.3.5).

Figure 5.60 Relocating ontological individuals from „TO_8‟, TO_9‟ and „TO_10‟ target ontologies into the Go-CID.

5.4 Example of Software Application built upon Ontological

Layering

Figure 5.61 illustrates the architectural model for software application built upon ontological layering,

which takes Dr Smith‟s inputs and displays results of retrievals based on his request. The application

model in Figure 5.61 distinguishes between a front-end which manages Dr Smith‟s involvements through

the application GUI (i.e. USER_INPUTS/OUTPUTS), and a data centric back end (i.e. ONTOLOGICAL

LAYERS), which manages local ontologies LOj, target ontologies TOk, derived ontologies DOg and Go-

CID. The connection between the front-end and back-end consists of a set of application elements named

PRIMARY APPLICATION LAYER, CORE COMPUTATIONS, REASONING ENGINE and OWL API.

 Chapter 5: Illustration of Ontological Layering 141

Figure 5.61 Architectural elements of the software application built upon ontological layering

The PRIMARY APPLICATION LAYER in Figure 5.61, controls the management of the whole application

in terms of accepting Dr Smith‟s input from the application GUI and preparing the results of retrievals for

the GUI. It also decides which particular core computations will be executed at which stage.

The purpose of the CORE COMPUTATIONS is to create, manipulate, and retrieve ontologies local

ontologies LOj, target ontologies TOk, derived ontologies DOg and Go-CID, which may also include

either populating a particular ontology with individuals, modifying a particular ontology or deleting

content from a particular ontology. As a consequence of running CORE COMPUTATIONS, a connection

may be made to the REASONING ENGINE in order to run rules upon the ontologies in the

ONTOLOGICAL LAYER. The OWL API will be used to (i) link the CORE COMPUTATIONS to the

ONTOLOGICAL LAYER and (ii) connect to the Reasoning engine.

5.4.1 Illustrating Architectural Elements of the Software Application built

upon Ontological Layering

Figure 5.62 illustrates an example of the elements within software application derived from Figure 5.61

and according to (i) the scenario of the case study from section 5.1 and (ii) ontology mappings and their

reasoning described in sections 5.3.1, 5.3.3 and 5.3.5. We define a set of application GUIs that will allow

Dr Smith‟s inputs though USER_INPUTS. In other words, Dr. Smith will be allowed to click on radio

buttons available within the application GUI which will be his own selection of data repositories

GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep and information types

patient details, medical summaries and treatment summaries, relevant for his request for creating a health

summary for Mrs Flee.

OUTPUTS in Figure 5.62 are defined in terms of displaying the output of retrievals across data

repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep. Subsequently,

the APPLICATION MANAGER manages the GUIs in terms of deciding what CORE COMPUTATIONS

should be performed according to Dr. Smith‟s inputs. Thus, the APPLICATION MANAGER may trigger

from the CORE COMPUTATIONS elements which:

 Chapter 5: Illustration of Ontological Layering 142

- insert Dr. Smith‟s „clicks‟ into ontological concepts of the USER_INP_ONT, i.e. populate

ontological concepts that correspond to radio buttons selected (see section 5.2.5), or

- prepare the results of retrievals to fit the OUTPUTS in GUI, i.e. prepares for displaying all

ontological concepts available within the Go-CID, which are relevant to Dr Smith‟s request.

Figure 5.62 Example of illustrating the elements contained within the architectural model of the software

applications built upon ontological layering

We divide the computations which deliver the functionalities of the software application built upon

ontological layering in terms of creating:

- traditional or java based software code which may need NO SWRL rules for its execution (i.e.

Computations without Rules and

- SWRL rules which underpin the semantic aspects of such applications and would need reasoning

engines to perform them (i.e. Computations with Rules).

Thus, these two types of computations (Computations without Rules and Computations with Rules) may

share ontologies, they might be run upon each other‟s results of computations, and may be able to

accommodate reasoning rules, which in turn use the result set of reasoning created by another core

computation. For example, Computations without Rules will contain java based code that will populate

and update the USER_INP_ONT in the ONTOLOGICAL LAYER, and will not require the SWRL rules

for their execution. On the other hand, Computations with Rules will trigger the running of SWRL rules

upon the LOj, TOk, DOg and Go-CID in the ONTOLOGICAL LAYER. This is how ontological layers are

created in the first place.

 Chapter 5: Illustration of Ontological Layering 143

5.4.2. Technology-specific Design Decisions for the Software Application

Figure 5.62 also shows how the tools and languages used for implementing ontological layering have

influenced the way the software application has been designed. Therefore, the choice of tools and

languages play a significant role in the way we connect the elements of our application model in Figure

5.61. The same factors have impact on the flow of data and the order of computations carried out within

the software application, i.e. the numbering shown in Figure 5.62. Subsequently, we outline our choice of

tools and languages used in the implementation of the application (section 5.4.2.1.1), followed by the

explanations of the flow of data and the order of computations (section 5.4.2.1.2).

5.4.2.1 Tools and Languages

OWL DL is used to create the ontologies ENV_ONT, USER_INP_ONT, ADDED_VAL_ONT, LOi, TOi,

DOg and Go-CID, using the Protégé 3.4 ontological editing toolkit environment.

NetBeans 6.4 IDE is used to develop and implement the software application built upon ontological

layering as it provides extensible application development environments and the functionality of

uploading all the Protégé plug-ins (i.e. all the packages that make up the functionality of the Protégé 3.4

ontological toolkit environment). NetBeans 6.4 IDE allows its functionality to be extended by the

selection of Protégé-OWL API libraries in order to create, manipulate and serialise OWL ontologies.

NetBeans 6.4 IDE also includes the inbuilt swing package and provides a swing GUI builder.

Protégé-OWL API library is used to provide a Java API and reference implementation for creating

and manipulating OWL ontologies. Thus, the software application takes the help of Protégé-OWL API in

order to extend the functionality of abstract classes and methods for populating ontologies with

individuals, creating a bridge to a reasoning engine and running the SWRL rules. It must be noted that the

only way to manipulate ontologies created in Protégé 3.4 (i.e. the Protégé OWL model), is to convert

them, into a „Jena OWL reference model‟, in order to get a static snapshot of the ontological model at run

time. Thus, the „Jena OWL reference model‟ generated for each ontology in the ONTOLOGICAL_LAYER

behaves like a run-time copy so that the software application can manipulate them.

Jess reasoning engine is used to infer logical consequences from a set of asserted facts or axioms in

OWL ontolgies. The Jess reasoning engine is the preferred engine for running the SWRL rules as it

comes as an inbuilt package with Protégé 3.4 itself. Many of the other reasoning engines Bossam
83

,

Pellet
84

, RacerPro
85

 and Jena
86

 need to be imported externally while the others do not fully support the

SWRL rules. Thus, the software application connects to the Jess reasoning engine whenever it needs to

execute/run the SWRL rules.

SWRL Rule Engine Bridge
87

 from the OWL API library is extended to create an instance of a

bridge between the Jena OWL reference model (that include the SWRL rules) and the Jess reasoning

engine. Thus, the Jess reasoning engine opens the Jena OWL reference model and accesses SWR rules

within it, using the SWRL rule engine bridge. The SWRL rules are then imported onto the bridge from

83 http://bossam.wordpress.com/about-bossam/
84 http://clarkparsia.com/pellet/
85 http://www.racer-systems.com/products/racerpro/index.phtml
86 http://jena.sourceforge.net/
87 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLRuleEngineBridgeFAQ

http://bossam.wordpress.com/about-bossam/
http://clarkparsia.com/pellet/
http://www.racer-systems.com/products/racerpro/index.phtml
http://jena.sourceforge.net/
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLRuleEngineBridgeFAQ

 Chapter 5: Illustration of Ontological Layering 144

the Jena OWL reference model and are executed/run to generate the results. Therefore, the SWRL rule

engine bridge gives the software application the necessary infrastructure to incorporate the Jess reasoning

engine into the software application in order to provide a mechanism to:

- import the SWRL rules and relevant OWL classes, individuals and object/datatype properties in the

Jena OWL reference model and to write knowledge obtained from them, onto the Jess reasoning

engine,

- allow the Jess reasoning engine to perform inference and to assert its new knowledge back to the

bridge, and

- insert that asserted knowledge into the Jena OWL reference model.

Thus, the software application is capable of extracting information from the ontologies, running the

SWRL rules and storing back the results to the original ontologies.

5.4.2.2 Flow of Data and Order of Computations

The numbering in Figure 5.62 shows the flow of data and order of computations that are required to

deploy the elements contained within our architectural model of the software application built upon

ontological layering (Figure 5.61) Hence, the numbers:

 1a and 1b denote the collection of the user inputs through Dr. Smith‟s clicks, i.e. USER

CLICKS1,2,3,4 and USER CLICKS4,5,6;

 1c denotes the opening of ontologies USER_INP_ONT and ADDED_VAL_ONT, plus the

automatic creation of their Jena OWL Reference Models, i.e. the APPLICATION MANAGER

uses java technology to open the ontologies USER_INP_ONT and ADDED_VAL_ONT, which

upon opening, automatically creates Jena OWL reference models for them;

 1d denotes the creation of ontological individuals for the subclasses in the ontology

USER_INP_ONT according to Dr. Smith‟s captured clicks;

 2 denotes the passing of information to the APPLICATION MANAGER that confirms the

USER_INP_ONT has been successfully populated with ontological individuals and Computation

with Rules may start. Note: number 2 starts at the same time as number 1;

 3 denotes the establishment of a connection to the SWRL Rule Engine Bridge, i.e. preparing

activation of running the SWRL rules through the Core computations with Rules using the Jess

reasoning engine;

 4a denotes the running of SWRL Selection and Grouping rules using the SWRLJessBridge, i.e.

opening the LOj, USER_INP_ONT and ADDED_VAL_ONT Jena OWL reference models and

importing the Selection and Grouping rules onto the „SWRLJessBridge‟ in order to execute and

generate results of inference;

 4b denotes the running of SWRL Low-Level rules using the SWRLJessBridge, i.e. opening the

LOj Jena OWL reference model and importing Low-Level SWRL rules onto the „SWRLJessBridge‟

in order to execute and generate results of inference;

 4c denotes the running of SWRL High-Level rules using the SWRLJessBridge, i.e. opening the

TOk Jena OWL reference model and importing High-Level SWRL rules onto the „SWRLJessBridge‟

in order to execute and generate results of inference;

 Chapter 5: Illustration of Ontological Layering 145

 4d denotes the running of SWRL Post-High-Level rules using the SWRLJessBridge, i.e. opening

the DOg Jena OWL reference model and importing Post-High-Level SWRL rules onto the

„SWRLJessBridge‟ in order to execute and generate results of inference;

 5a denotes the update of the TO Jena OWL reference model by storing the results generated by

running Selection, Grouping and Low-Level SWRL rules in numbers 4a and 4b. The TOk Jena OWL

reference model is saved back as the TOk ontology in the ONTOLOGICAL LAYER, i.e. target

ontologies has been created;

 5b denotes the update of the DO Jena OWL reference model by storing the results generated by

running High-Level SWRL rules in number 4c. The DOg Jena OWL reference model is saved back

as the DOg ontology in the ONTOLOGICAL LAYER, i.e. derived ontologies has been created;

 5c denotes the update of the Go-CID Jena OWL reference model by storing the results generated

by running Post-High-Level SWRL rules in number 4d. The Go-CID Jena OWL reference model is

saved back as the final Go-CID in the ONTOLOGICAL LAYER, i.e. the final Go-CID ontology has

been created;

 6 and 7 denote retrieving classes from Go-CID and the transference of ontological concepts to the

APPLICATION MANAGER, i.e. uses java technology for retrieving ontological individuals from the

final result set of reasoning saved in the Go-CID ontology through Core computations without Rules;

 8 denotes the displaying of ontological individuals retrieved from Go-CID, i.e. the

APPLICATION MANAGER uses java technology for displaying ontological individuals from the

Go-CID in the OUTPUT GUI through Core computations without Rules.

The green dotted lines in Figure 5.62 (numbers 4a, 4b, 4c and 4d), mean that we conduct the

Computation with Rules through the Jess reasoning engine and upon the subclasses of the ontologies in

the ONTOLOGICAL LAYER. However, it is important to note these SWRL reasoning rules:

- run in a chain, i.e. they are executed immediately one after another (transparent to the user),

- may run upon a result set of a predecessor rule, and

- must conform in their purpose to the semantics of the results sets of the preceding rule.

Consequently, these green dotted lines in numbering 4a, 4b, 4c and 4d are „teamed-up‟ with blue lines

with arrow heads in numbering 5a, 5b and 5c which are directed towards subclasses of the ontologies

USER_INP_ONT, ADDED_VAL_ONT, LOj, TOk, DOg and Go-CID, which subsequently, represent

„classification‟, „inference‟ and „assertion‟ within the software application. Therefore, „classification‟,

„inference‟ and „assertion‟ (numbering 5a, 5b and 5c) are consequences of running the SWRL rules in

numbering 4a, 4b, 4c and 4d, and are responsible for creating/transferring new ontological individuals and

ontological properties within existing ontologies. The creation/transference of new ontological individuals

or ontological properties is seen as a „result set of a particular reasoning‟ which is made ready for further

reasoning through the SWRL rules.

 Chapter 5: Illustration of Ontological Layering 146

5.4.3 Examples of GUIs and Java Code of the Software Application

Figure 5.63 Example of the interface design used for the software application

Figure 5.63 illustrates the design of the GUI used in the software application for retrievals across

heterogeneous pervasive healthcare environments in section 5.1. The interface is designed such that the

number of available data repositories and information types can be selected from a set of radio buttons

offered. Hence, each radio button corresponds to:

- the „Selection of Environments‟ (which includes their available repositories: GP_data_rep,

Hospital_data_rep, Clinic 1_data_rep and Clinic 2_data_rep), and

- the „Selection of Information Types‟ (from available repositories in environments: medical

summaries, treatment summaries and patient details).

Figure 5.63 also shows a text box for allowing Dr. Smith to enter a Patients name (i.e. Jane Flee) and a

text box for displaying the results of his retrievals. Additional functionalities such as „Next‟, „Back‟ and

„Refresh‟ buttons are added for ease of use and navigation. The „Running‟ progress bar is displayed to

judge the running status of the Go-CID software application.

 Note: for testing purposes one interface is created to accomadate radio buttons offering the choice of

Repi and InfTyped and display of retrievals. The „GO_CID_Implementation.owl‟ file is created to store all

the OWL classes that belong to ontologies USER_INP_ONT, ADDED_VAL_ONT, LOj, TOk, DOg and

Go-CID, plus all Selection, Grouping, Low-Level, High-Level and Post-High-Level SWRL rules. This has

been done for experimentation and testing purposes in order to test the feasibility of triggering rule-

chaining across ontological layering and subsequently, resolving semantic conflicts through ontology

alignment, integration and merge.

 All the .jar files from the Protégé plug-in directory are imported into the Java application project

library. This is so that the Java program (the software application) can execute methods to work with the

„GO_CID_Implementation.owl‟ file. Thus, the first java code in our software application is responsible

for importing the packages from which we wish to use functions, methods and objects. The full Java

source code for the software application rules can be found in Appendix A.20. (Appendix A.20 is stored

on the CD-ROM, however, we show an excerpt from the code below). Note: from now onwards all Java

 Chapter 5: Illustration of Ontological Layering 147

code will be listed in the in blue text of font type „courier font‟ and comments will be made in

„/**…. /*‟ using „italic‟ black text of font type „times new roman‟.

import com.hp.hpl.jena.util.FileUtils;

import edu.stanford.smi.protege.exception.OntologyLoadException;

import edu.stanford.smi.protegex.owl.ProtegeOWL;

import edu.stanford.smi.protegex.owl.jena.JenaOWLModel;

import edu.stanford.smi.protegex.owl.model.OWLIndividual;

import edu.stanford.smi.protegex.owl.model.OWLModel;

import edu.stanford.smi.protegex.owl.model.OWLNamedClass;

import edu.stanford.smi.protegex.owl.model.RDFObject;

import edu.stanford.smi.protegex.owl.swrl.bridge.BridgeFactory;

import edu.stanford.smi.protegex.owl.swrl.bridge.SWRLRuleEngineBridge;

import

edu.stanford.smi.protegex.owl.swrl.bridge.exceptions.SWRLRuleEngineBridgeExcep

tion;

import edu.stanford.smi.protegex.owl.swrl.exceptions.SWRLRuleEngineException;

import edu.stanford.smi.protegex.owl.swrl.model.SWRLFactory;

The following sections describe the Java source code for the implementation of the computations required

to deploy architectural elements of the software application, i.e. description of java code according to the

order of computation specified in Figure 5.61.

 Collecting User Inputs

Dr. Smith‟s inputs through his USER CLICKS1,2,3,4 (corresponding to the selection of data repositories)

and USER CLICKS4,5,6 (corresponding to the selection of information types) are collected through

JFrames designed in the GUI, which is powered by swing components. Thus, a GUI consisting of

„jButtons‟, „jLabels‟ and „jTextField‟ is created by using the following Java code:

public class NewJFrame1 extends javax.swing.JFrame { /** Creates new form NewJFrame1 */
 public NewJFrame1() {

 initComponents();

 }

 private void initComponents() { /**This method is called from within the constructor to

initialize the form/*

 buttonGroup1 = new javax.swing.ButtonGroup(); /**assigns a new JButton()/*

 buttonGroup2 = new javax.swing.ButtonGroup();/**assigns a new JButton()/*

 buttonGroup3 = new javax.swing.ButtonGroup();/**assigns a new JButton()/*

 jFrame1 = new javax.swing.JFrame(); /**assigns a new JFrame()/*

 jFrame2 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jFrame3 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jFrame4 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jFrame5 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jFrame6 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jDialog1 = new javax.swing.JDialog();/**assigns a new JFrame()/*

 jFrame7 = new javax.swing.JFrame();/**assigns a new JFrame()/*

 jDialog2 = new javax.swing.JDialog();/**assigns a new JFrame()/*

 jRadioButton1 = new javax.swing.JRadioButton(); /**assigns a new JButton()/*

 jRadioButton2 = new javax.swing.JRadioButton();/**assigns a new JButton()/*

 jRadioButton3 = new javax.swing.JRadioButton();/**assigns a new JButton()/*

 jRadioButton4 = new javax.swing.JRadioButton();/**assigns a new JButton()/*

 jLabel1 = new javax.swing.JLabel(); /**assigns a new JLabel()/*

 jButton1 = new javax.swing.JButton();/**assigns a new JButton()/*

 jLabel2 = new javax.swing.JLabel();/**assigns a new JLabel()/*

 jLabel3 = new javax.swing.JLabel();/**assigns a new JLabel()/*

 jRadioButton5 = new javax.swing.JRadioButton(); /**assigns a new JRadioButton()/*

 Chapter 5: Illustration of Ontological Layering 148

 jRadioButton6 = new javax.swing.JRadioButton(); /**assigns a new JRadioButton()/*

 jRadioButton7 = new javax.swing.JRadioButton(); /**assigns a new JRadioButton()/*

 jTextField1 = new javax.swing.JTextField(); /**assigns a new JTextFeild()/*

 jInternalFrame1 = new javax.swing.JInternalFrame(); /**assigns a new

JInternalFrame()/*

 jScrollPane1 = new javax.swing.JScrollPane(); /**assigns a new JScrollpane()/*

 jTextArea1 = new javax.swing.JTextArea();/**assigns a new JTextArea()/*

 jButton2 = new javax.swing.JButton(); /**assigns a new JButton()/*

 jButton3 = new javax.swing.JButton(); /**assigns a new JButton()/*

 jButton4 = new javax.swing.JButton(); /**assigns a new JButton()/*

 jButton5 = new javax.swing.JButton(); /**assigns a new JButton()/*

 jProgressBar1 = new javax.swing.JProgressBar(); /**assigns a new JProgressBar()/*

 jButton6 = new javax.swing.JButton(); /**assigns a new JButton()/*

An „Action Listener‟ is added to each of the „jButtons‟ and „jTextField‟ which execute a piece of code to

perform an action. This is how the working of the Go-CID software application is invoked from the

interface. The code used to perform an action upon clicking the „jButtons‟ is:

 jButton1.addActionListener(new java.awt.event.ActionListener() { /**this is the

 text that appears on the button and can be modified/*
 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt); /**this code will run the “Action Performed” method upon a click,

 which is generally written by a user to tell the program what to do/*

Similar action events for the rest of the „jButtons‟ and „jTextFields‟ are defined in the Java

source code for the Go-CID software application in Appendix A.20.

Creating the Jena OWL Reference Model

The Jena OWL reference model from the „GO_CID_Implementation.owl‟ file is created by giving the

path of the ontology from the function:

„owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri)‟

using the string URI from the specified path of where the „GO_CID_Implementation.owl‟ file is stored:

“file:///Users/KAT/desktop/NetBeansProjects/Protegeowl/GO_CID_Implement

ation.owl”.

Creating individuals for OWL classes in the USER_INP_ONT

The „GO_CID_Implementation.owl‟ file is populated with OWL Individuals by attaching „action events‟

to each of the „jButtons‟ and „jTextFields‟. Thus, the code used to create an ontological

individual in the OWL class of the „GO_CID_Implementation.owl‟ file, if a particular „JButton‟ is

clicked is:

if (jRadioButton1.isSelected() == true) /**if the „jRadioButton1‟ is selected, then do

the following/*
{

 FileOutputStream fos = null;

 try {

 String uri =

"file:///c:/Users/Kat/Desktop/Protegeowl/GO_CID_Implementation2.owl";

 File openAs = new File("c:/netbeansproject/system_out.txt");

 Chapter 5: Illustration of Ontological Layering 149

 fos = new FileOutputStream(openAs);

 PrintStream ps = new PrintStream(fos);

 System.setOut(ps);

 OWLModel owlModel = null;

 owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri); /**the

 GO_CID_Implementation2 Jena OWL reference model is created/*

 String lot = "userinput1_1"; /**the name of the individual is entered into a string/*
 OWLNamedClass clientclass =

owlModel.getOWLNamedClass("USER_CLICK_gp_rep"); /**the GO_CID_Implementation2

Jena OWL reference model is queried to get the class that has the name USER_CLICK_gp_rep/*

 OWLIndividual ind = clientclass.createOWLIndividual(lot); /**an owl individual

 is created from the string lot into the class USER_CLICK_gp_rep/*

String filename = "GO_CID_Implementation2.owl"; /**file name is assigned with the

 name of the owl file/*

 Collection errors = new ArrayList(); /**errors are collected in a new array list/*

 ((JenaOWLModel) owlModel).save(new File(filename).toURI(), /**the

GO_CID_Implementation2 Jena OWL reference model is saved replacing the existing the

GO_CID_Implementation2.owl with a new „populated‟ OWL model /*
 FileUtils.langXMLAbbrev, errors);

 } catch (OntologyLoadException ex) {

 Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE,

null, ex);

 } catch (FileNotFoundException ex) {

 Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE,

null, ex);

 } finally {

 try {

 fos.close();

 } catch (IOException ex) {

Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

Similar „if‟ statements including the „OWLIndividual ind =

clientclass.createOWLIndividual(lot)‟ for the rest of the „jButtons‟ are specified in the

Java source code in Appendix A.20. The code used to create an individual in the OWL class of the

„GO_CID_Implementation.owl‟ file, if a particular „JTextfeild‟ is entered with text is below:

String x = jTextField1.getText();

if (x.equals("JANE FLEE")) /**if the text entered is equivalent to „JANE FLEE‟, then do the following/*

{
 {

 FileOutputStream fos = null;

 try {

 String uri =

"file:///c:/Users/Kat/Desktop/Protegeowl/GO_CID_Implementation2.owl";

 File openAs = new

File("c:/netbeansproject/system_out.txt");

 fos = new FileOutputStream(openAs);

 PrintStream ps = new PrintStream(fos);

 System.setOut(ps);

 OWLModel owlModel = null;

 owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri); /**creates the

 GO_CID_Implementation2 Jena OWL reference model/*

 String lot = "user_input8_1"; /**the name of the individual is entered into a string/*
 OWLNamedClass clientclass =

owlModel.getOWLNamedClass("TEXT_ENTERED_jane_flee"); /**the GO_CID_Implementation is

queried to get the class that has the name TEXT_ENTERED_jane_flee/*

 OWLIndividual ind = clientclass.createOWLIndividual(lot); /**an owl

 individual is created from the string lot into the class TEXT_ENTERED_jane_flee/*

 Chapter 5: Illustration of Ontological Layering 150

 String filename = "GO_CID_Implementation2.owl"; /**file name is

assigned with the name of the owl file/*

 Collection errors = new ArrayList();/**errors are collected in a new array list/*

 ((JenaOWLModel) owlModel).save(new File(filename).toURI(), /**the

GO_CID_Implementation2 Jena OWL reference model is saved replacing the existing the

GO_CID_Implementation2.owl with a new „populated‟ OWL model /*
FileUtils.langXMLAbbrev, errors);

 } catch (FileNotFoundException ex) {

Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE, null, ex);

 } catch (OntologyLoadException ex) {

Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

 try {

 fos.close();

 } catch (IOException ex) {

Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 }

}

Similar „if (x.equals)‟ statements including the „OWLIndividual ind =

clientclass.createOWLIndividual(lot)‟ for the „jTextFeilds‟ are specified in the Java

source code in Appendix A.20.

Establishing a SWRL Rule Engine Bridge

The SWRL rules are triggered through establishing a connection to the SWRL Rule engine bridge. The

code below is used to connect to the Jess reasoning engine through the extension of the Protégé-OWL

API library: „OWLModel‟ object and „BridgeFactory‟ abstract class (this piece of code assumes that the

owl model of a given ontology is already created):

SWRLFactory factory = new SWRLFactory(owlModel); //A SWRL factory is created from the

owlmodel//
SWRLRuleEngineBridge bridge = BridgeFactory.createBridge("SWRLJessBridge",

owlModel); // SWRL rule engine bridge called SWRLJessBridge is created, this returns a successful registration

of a bridge else throws an exception//.

Running SWRL rules using the SWRLJessBridge

The „SWRLJessBridge‟ is used to import all the SWRL rules present in the Jena OWL reference model

from the „GO_CID_Implementation.owl‟ file. They are loaded onto the bridge and then executed by the

Jess reasoning engine. The Method infer() contains sub methods which do the following:

 the reset() method, which clears all knowledge that is already present on the Jess reasoning engine;

 the importSWRLRulesAndOWLKnowledge() method, which imports all the SWRL rules (and

relevant OWL knowledge) from the Jena OWL reference model from the

„GO_CID_Implementation.owl‟ file into the „SWRLJessBridge‟ (all existing bridge rules and

knowledge must be cleared through the reset() method);

 the run() method, which invokes the Jess reasoning engine;

 Chapter 5: Illustration of Ontological Layering 151

 the writeInferredKnowledge2OWL() method, which transfers any information

classified/inferred/asserted by the Jess reasoning engine to the Jena OWL reference model from the

„GO_CID_Implementation.owl‟ file. Following is an example of the code describing this. (Note: the

results are also stored on the bridge until they are cleared).

 OWLModel owlModel = null;
 owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);

 /**creates the GO_CID_Implementation2 Jena OWL reference model/*
 SWRLFactory factory = new SWRLFactory(owlModel);
 SWRLRuleEngineBridge bridge =

BridgeFactory.createBridge("SWRLJessBridge", owlModel);

 try {

 bridge.infer(); /**runs the infer() method on the bridge/*
 } catch (SWRLRuleEngineException ex) {

Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE, null, ex);

 }

Updating the Jena OWL reference models

The „GO_CID_Implementation.owl‟ file is updated using the following piece of code. Subsequently, the

GO_CID_Implementation Jena OWL reference model is saved back as the

„GO_CID_Implementation2.owl‟ file.

((JenaOWLModel) owlModel).save(new File(filename).toURI(),

FileUtils.langXMLAbbrev, errors); (), /**the GO_CID_Implementation2 Jena OWL reference

model is saved replacing the existing the GO_CID_Implementation3.owl with a new OWL model with „classified /

inferred / asserted‟ result sets from running SWRL rules /*

Retrieving classes from Go-CID

Ontological classes from the final Go-CID ontology are retrieved by inserting the name of the OWL class.

Thus, we specify the following code:

OWLModel owlModel1 = null;

 try {

 owlModel1 = ProtegeOWL.createJenaOWLModelFromURI(uri1);

 /**creates the GO_CID_Implementation3 Jena OWL reference mode1, where „uri1‟ is specified as

GO_CID_Implementation3.owl/*
 } catch (OntologyLoadException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 Collection classes =

owlModel1.getUserDefinedOWLNamedClasses/**search through the GO_CID_Implementation3 Jena

OWL reference model until you find a class that is equivalent to „y‟, where „y‟ is specified as the „Go-

CID_ontological_layer‟ named class‟/*
 for (java.util.Iterator it = classes.iterator(); it.hasNext();) {

 OWLNamedClass cls = (OWLNamedClass) it.next();

 if (y.equals(cls.getBrowserText()))/**if a class is equivalent to „y‟, where „y‟ is

specified as the „Go-CID_ontological_layer‟ named class, then get the name of sublcasses in a string

format/*
 {

 System.out.println("Class " + cls.getBrowserText());

 Collection z = cls.getNamedSubclasses(true);

 for (java.util.Iterator pt = z.iterator();pt.hasNext();)

 {

 Chapter 5: Illustration of Ontological Layering 152

 OWLNamedClass cls1 = (OWLNamedClass) pt.next();

 if (cls1.getSubclassCount() == 0){

 System.out.println("-->" + cls1.getBrowserText());

 Collection instances = cls1.getInstances(true);

 for (java.util.Iterator jt = instances.iterator();

jt.hasNext();) {

 OWLIndividual individual = (OWLIndividual)

jt.next();

 System.out.println(" ---- " + ((RDFObject)

individual).getBrowserText());

 }

 }

 else

 {

 System.out.println("->" + cls1.getBrowserText());

 }

 }

 }

 }

Displaying the individuals retrieved from the Go-CID

The output of retrieving classes from Go-CID are generally displayed on the NetBeans 6.4 IDE. Thus, in

order to display the output of retrievals onto the text box (JFrame) for displaying the results in GUI, we

redirect the output of the computation above into a text file. We use the text file to print back the output

of computation to the „action event‟ associated to the JFrame. Thus, the text file acts as a buffer between

the NetBeans 6.4 IDE and the JFrame used in our interface. This text file can be cleared as soon as the

output is transferred to the interface. Below is an excerpt from the code to illustrate this:

 File openAs = new File("c:/netbeansproject/system_out.txt"); /**a new text

 file is created to hold the output/*

 fos = new FileOutputStream(openAs); /**a new output stream is created/*

 PrintStream ps = new PrintStream(fos); /**PrintStream is created from the

 FileOutputStream/*

 System.setOut(ps); /**The system output is set to the new PrintStream/*

The following code uses the text from the system_out.txt to redirect the output (i.e. the list of subclasses

and individuals between them) to the „jTextArea1‟ in the interface.

 File openAs1 = new File("c:/netbeansproject/system_out.txt"); /**opens the

 text file mentioned in the path/*

 FileReader in = null; /**creates a text file reader/*
 try {

 in = new FileReader(openAs1);

 } catch (FileNotFoundException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 try { /**reads the data in the text file to the jTextArea1 in the jFrame/*
 jTextArea1.read(in, openAs.toString());

 } catch (IOException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 FileOutputStream fop = null; /**creates the outputstream and clears the text

file/*
 try {

 fop = new

FileOutputStream("c:/netbeansproject/system_out.txt");

 Chapter 5: Illustration of Ontological Layering 153

 } catch (FileNotFoundException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 try {

 fos.write("".getBytes());

 } catch (IOException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 try {

 fos.close();

 } catch (IOException ex) {

Logger.getLogger(NewJFrame.class.getName()).log(Level.SEVERE, null, ex);

 }

 } catch (SWRLRuleEngineBridgeException ex) {

 Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE,

null, ex);

 } catch (OntologyLoadException ex) {

 Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE,

null, ex);

 } catch (FileNotFoundException ex) {

 Logger.getLogger(NewJFrame1.class.getName()).log(Level.SEVERE,

null, ex);

 }

}

 }

Note: in order to provide re-usability in terms of accommodating any combination of Dr Smith‟s choice

of data repositories and information types, the Go-CID software application uses two copies of the

„GO_CID_Implementation.owl‟ file. The first copy named „GO_CID_Implementation2.owl‟ is used to

accommodate the population of ontological individuals. The second copy named

„GO_CID_Implementation3.owl‟ is used to accommodate the results of running the SWRL rules. The

original copy remains as it is, and ise used for replacing copies „GO_CID_Implementation2.owl‟ and

„GO_CID_Implementation3.owl‟, if and when the „Refresh button is selected in the Go-CID software

application. Therefore, in order to revert the Go-CID software application to its original state, i.e.

reverting back to an empty ontology that contains no „classified/inferred/asserted‟ ontological individuals

as a consequence of running the SWRL rules, we run the following code that saves copy 1

(„GO_CID_Implementation2.owl‟ file) and copy 2(„GO_CID_Implementation3.owl‟ file) of the

„GO_CID_Implementation.owl‟ file to its original state by overriding it with the

„GO_CID_Implementation‟ Jena OWL reference model.

 private void jButton6ActionPerformed(java.awt.event.ActionEvent evt) {) /**if

 the „jButton6‟ is clicked, then do the following/*
 {
 FileOutputStream fos = null;

 try {

 String uri =

"file:///c:/Users/Kat/Desktop/Protegeowl/GO_CID_Implementation1.owl";

 File openAs = new

File("c:/netbeansproject/system_out.txt");

 fos = new FileOutputStream(openAs);

 PrintStream ps = new PrintStream(fos);

 System.setOut(ps);

 OWLModel owlModel = null;

 owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);

 Chapter 5: Illustration of Ontological Layering 154

 /**create the GO_CID_Implementation Jena OWL reference mode1, where „uri1‟ is

 specified as GO_CID_Implementation.owl/*
 String filename = "GO_CID_Implementation2.owl";

 Collection errors = new ArrayList();

 ((JenaOWLModel) owlModel).save(new File(filename).toURI(),

 /**the GO_CID_Implementation Jena OWL reference model is saved replacing the

 existing the GO_CID_Implementation2.owl with a new OWL model with NO

 „classified / inferred / asserted‟ result sets from running SWRL rules /*
FileUtils.langXMLAbbrev, errors);

 String filename1 = "GO_CID_Implementation3.owl";

 Collection errors1 = new ArrayList();

 ((JenaOWLModel) owlModel).save(new File(filename1).toURI(),

 /**the GO_CID_Implementation Jena OWL reference model is saved replacing the

 existing the GO_CID_Implementation3.owl with a new OWL model with NO „classified

 / inferred / asserted‟ result sets from running SWRL rules /*
FileUtils.langXMLAbbrev, errors);

5.6 Summary

In this chapter we have illustrated the implementation of our ontological and layered software architecture

through a specific example of retrievals of semantically related data across repositories in pervasive

healthcare environments. We have presented the heterogeneous relational schemas for the data

repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep, and have

described their semantically related data across information types medical summaries, treatment

summaries, and patient details plus the various types of semantic conflicts they may generate. To that end,

we exemplify the process for creating and deploying Go-CID software architectural components in order

to resolve semantic conflicts.

Specifically, we have detailed the preparation of semantics for our core ontological layers by (a)

translating the content and structure of data repositories into Local ontologies and the ENV_ONT and (b)

storing user involvements in the USER_INP_ONT and interpreting their inputs through the

ADDED_VAL_ONT. We have presented our results of running the Selection and Grouping SWRL rules

in order to group semantically related data pertained within information types medical summaries,

treatment summaries, and patient details. Hence, creating a context within which we can start comparing

and resolving semantic conflicts.

Subsequently, we have detailed our core ontological layers by exemplifying our ontology mappings:

alignment, integration and merge. We have presented our results of the running Low-level SWRL rules

that aligns LOjs into TOks, resolving synonym based naming conflicts in the process. We have presented

our results of running the High-level SWRL rules that integrates TOks into DOgs, resolving generalisation,

specialisation, isomorphism and union incompatibility based structural conflicts in the process. We have

also presented our results of running the Post-High-Level SWRL rules that merges DOgs into the final

Go-CID ontology.

Finally we have described our full scale implementation of a Go-CID software application that

successfully retrieves ontological concepts of Go-CID, ensuring semantic interoperability of

heterogeneous data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and

Clinic_2_data_rep.

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 155

Chapter 6

Case Study: Submissions of MA

Applications for Medicines

Our reasoning mechanisms, i.e. ontological mappings and groupings, which have been introduced and

used in the previous 2 chapters, proved to be a very effective way of managing semantically related data

in heterogeneous data repositories. When resolving semantic conflicts triggered by the existence of

semantically related data, we exploit the semantics stored in such data through a specific process. It

allows us to understand that semantic conflicts may appear only when requests for retrievals across data

repositories are issued by users. In other words, our process initially helps us to establish where to

identify which semantically related data exists. This will be the first indication that semantic conflicts

exist, when a request for data retrieval is issued. The process also enables the manipulation of existing

semantics in data repositories by inferring or asserting a set of ontological individuals, which exhibit no

semantic conflicts and produce correct results of retrievals, according to user‟s requests.

In this chapter we describe how the same reasoning mechanisms, which are either ontological

groupings or mappings, can be used in different problem domains and in environments where we need to

(i) establish if and when we have overlapping “semantics” which creates relationship between

data/information in such domains/environments, or/and

(ii) infer and/or assert a correct set of “semantics” which can support any decision making required in

such domains/environments.

We have conducted various case studies to see the effectiveness and feasibility of our ontological

reasoning in order to illustrate (i) and (ii) above. Therefore, our ontological mappings (i.e. alignment,

options 6a and 6c, see chapter 4, section 4.3.4.2) have been used to support decision making, when

addressing changes in business models/processes, which are expected to react to their environments and

which, consequently, have to respond to business models/processes‟ external/internal factors which

impose changes upon them [297 and 298]. We have also used ontological mappings (alignment option

6b and integration option 7b (see chapter 4, sections 4.3.4.2 and 4.3.4.3), when managing non-functional

requirements, in terms of making decisions on the content(s) and functionality(ies) of pervasive spaces

for remote patient monitoring [291 and 292]. Finally, the same ontological mappings (see chapter 4,

sections 4.3.4.2 and 4.3.4.3) has been used in supporting decision making when creating virtual learning

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 156

environments [299]. However, in this last example, we have exclusively experimented with data type

properties as a mechanism of matching ontological individuals in order to perform alignments.

All the examples above are available as separate publications, which carry detailed explanations on

the way we re-use our ontological mappings introduced in chapter 4. Due to space restrictions, we are not

in a position to include them in this thesis. Therefore, we invite readers to read all these publications in

order to build a better picture on re-usability of our reasoning mechanisms when we have to deal with

overlapping semantics in any problem domain.

In this chapter we choose to elaborate on only one case study (the shortest!) which is described in

section 6.1. We use ontological grouping as in (i) above (introduced in chapter 4, section 4.3.3.5.2 and

illustrated in chapter 5, section 5.25). The problem domain covers the submission of applications for

marketing authorisation (MA) of medicines, where we need to ensure that the correct set of PDF

documents has been submitted, according to requirements specified in the regulatory bodies‟ common

documentation [300]. This example is an obvious case where we can semantically relate the content of

each PDF document to a section of the application for MA where the PDF document should be located. In

other words, we ensure that PDF documents are never in the wrong place.

6.1 Problems with Submissions for Marketing Authorisation of

Medicines

In the current process of MA electronic submissions, the documentation required by government

regulatory agencies across the world is complex, and the amount of information supplied by

pharmaceuticals is multifaceted and voluminous. Each electronic submission must be done according to

the electronic Common Technical Document (eCTD), which is a common format and structure of the

submission document, which ensures that the correct data/information is supplied by pharmaceutical

companies. The eCTD consists of five modules:

- Module 1 refers to regional administrative information,

- Module 2 refers to quality, non-clinical and clinical summaries,

- Module 3 refers to quality, chemical, pharmaceutical and biological data,

- Module 4 refers to non-clinical reports, and

- Module 5 refers to the clinical study reports.

Each module contains a number of „sections‟ that mirror the structure of the eCTD (in the form of their

required sub headings), which in turn specifies the type of information required for each sub section of a

particular module. Each section further contains a number of „contents‟ that specifies the exact data

required in each module constituting the eCTD.

The structure of the eCTD is mirrored in a navigational structure available in the XML data file. PDF

documents containing the data required for each section in the module i.e. PDF documents which

constitute the eCTD, are linked together, by referencing an XML data file which positions them correctly

within eCTD, according to their content.

Current software support for managing MA submissions is limited and offers only a technical

validation mechanism of linking PDF files, by creating the XML data file (i.e. creating the eCTD

navigational structure). The software is able to check the file format (is it a PDF?), size, missing PDF

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 157

documents, and the existence of a valid eCTD navigational structure. However, it fails to check if the

content of each PDF document is correct and if it is correctly positioned within eCTD. In other words, it

fails to check if the „content‟ of each PDF document corresponds (is related) to a correct „section‟ of a

module within the eCTD. We interpret that there is a relationship between the „content‟ of each PDF

document and associated „section‟ where the PDF document belongs (i.e. within which we have to

position the PDF document). We can then claim that „content‟ and „section‟ are semantically related.

Therefore, in order to check the validity of the eCTD it becomes important to:

a) establish the number of semantically related „sections‟ and „contents‟ within the eCTD navigational

structure, because each module of eCTD has a different number of sections and each section is

associated with a particular „content‟.

b) guarantee the correct content of eCTD and its navigational structure i.e. avoid linking „contents‟ to

„sections‟ that may initially be seen as semantically related (“resemble each other”) but actually

have no similarity(ies) (errors when allocating PDF documents at a particular position within eCTD).

Figure 6.1 Example of linking ‘content’ of a PDF document to the (wrong) ‘section’ in the eCTD

Figure 6.1 gives an example where a „content‟ of a PDF document may be linked to the wrong „section‟

in the eCTD (X in the diagram). Modules 2 and 3 in the eCTD require a section on non-clinical and

clinical summaries. Therefore, we expect to have two different PDF documents for two different

modules, both dealing with non-clinical and clinical summaries. The naming of PDF documents is

usually dictated by the eCTD, but the user may violate any of the existing recommendations and name

both PDF documents as NON-CLINICAL_AND_CLINICAL_SUMMARIES. This is one of the most

common errors discovered in eCTD. Figure 6.1 illustrates that:

 in Module 2 of the eCTD, the section on non-clinical and clinical summaries may require to have

the following content: module 2.3 quality overall summary introduction and content, company name,

dosage forms, European Pharamcopoeia name of the drug substance, Proprietary name of the drug

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 158

substance, non-Proprietary name of the drug substance, route of the administration of the drug

substance, strength of the drug substance, and indications of the drug substance, and

 in Module 3 of the eCTD, the section on non-clinical and clinical summaries may require to have

the following content: module3.3 chemical summary, chemical data, pharmaceutical data, and

biological data.

Therefore, the PDF documents in Figure 6.1 have different contents, but their names are the same. We

also know that PDF 1 document should belong to Module 3 and PDF 2 document to module 2. However,

when trying to place these two PDF documents, both named as NON-

CLINICAL_AND_CLINICAL_SUMMARIES, at the correct place within eCTD, we have no mechanism of

ensuring that a correct PDF document is placed within Modules 2 (PDF 2) and Module 3 (PDF 1) in the

eCTD.

 It is obvious that there is a relationship between the content of PDF documents and their positioning

within the eCTD. We claim that the content of each PDF document, in this particular case two PDF

documents named as NON-CLINICAL_AND_CLINICAL_SUMMARIES, is semantically related to a

particular section within Module 2 and Module 3 (because their contents are “expected” within these two

modules). This is true for any other PDF documents: there is always a relationship between the content

of PDF document and section in the eCTD where we need to place it.

6.2 Reasoning Mechanisms for Creating a Correct eCTD

We propose to manipulate the semantics of eCTD, and the content of PDF documents which constitute

them, in order to solve the problem of positioning the wrong PDF documents within eCTD. We create

two ontologies, which describe separately eCTD and PDF documents, and use our grouping reasoning

mechanism (introduced in chapter 4, section 4.3.3.5.2 and illustrated in chapter 5, section 5.25), upon

ontological concepts stored in them, in order to ensure that a correct PDF document (i.e. PDF content) is

placed within Modules 2 and Module 3 in the eCTD.

Our grouping reasoning mechanism, exploited in the example which resolves semantic conflicts in

retrievals across heterogeneous sources, is re-usable in this case study. We mirror the role and purpose of

the:

 ENT_ONT ontology from chapter 5 in eCTD ontology, and

 Local Ontologies (LOj) from chapter 5 in the PDF ontology.

However, we also re-use the USER_INP_ONT ontology in this case study, but its purpose is slightly

different. We use the USER_INP_ONT ontology in order to trigger the grouping of ontological concepts

in order to place PDF documents in the correct place. Therefore, triggering grouping is equal in this case

study, to specifying a link between a PDF document and a particular section within eCTD where the

document belongs. Consequently, the ADDED_VAL_ONT ontology is re-used in this case study to store

results of running grouping rules. This means that the ADDED_VAL_ONT ontology contains

ontological individuals which are moved from the subclasses of the PDF ontology, according to grouping

rules that specify the exact (and expected) content of a particular section within eCTD.

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 159

Figure 6.2 The results of mirroring the eCTD navigational structure into the ENV_ONT

Figure 6.2 gives us the exact ENV_ONT hierarchies, which is self-explanatory. We mirror the current

XML-based eCTD navigational structure in the eCTD subclass of the XML_DOCUMENTS class of the

TECHNOLOGICAL SPECIFICATION parent class. The eCTD subclass contains a number of

subclasses that directly correspond to the navigation structure of the eCTD. The modelling behind the

eCTD is guided by the content of the eCTD navigational structure and the semantics of the guidance-

compliant contents of eCTD available in [301].

It is important to note that we correct our statement from bullets above. Our ENV_ONT ontology

from Figure 6.2 is almost identical to the ENV_ONT ontology introduced in chapter 4, Figure 4.6. The

only difference is that the ENV_ONT ontology in Figure 6.2 extends the hierarchies of XML

Documents class in order to accommodate the semantics of the eCTD navigational structure.

Figure 6.3 Example of the PDF_ONT created in order to exemplify semantics of PDF documents constituting the

eCTD

Figure 6.3 gives us the exact PDF_ONT hierarchies, which is created to mirror PDF documents and their

content in an ontological format. We exemplify the semantics of the PDF 2 document in Figure 6.1,

which belongs to Module 2 of the eCTD, as shown in Figure 6.1. Therefore, the subclass named NON-

CLINIC_AND_CLINIC_SUMMARIES denotes that there is a PDF document which is named NON-

CLINICAL_AND_CLINICAL_SUMMARIES and which should be linked to the correct section in Module

32 of the eCTD. The same ontological subclass contains a number of ontological concepts that denote the

„contents‟ of the PDF 2 document, i.e. it contains a number of ontological individuals that make up the

semantics of the „contents‟ in the PDF document.

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 160

Figure 6.4 Results of mirroring the list of „sections‟ for each module in the eCTD and the list of „contents‟ for each

module in the eCTD navigational structure into the USER_INP_ONT

Figure 6.4 gives us the exact USER_INP_ONT hierarchies, where we mirror the list of „sections‟ and the

list of „contents‟ for modules in the eCTD. The modelling behind the USER_INP_ONT is guided by the

eCTD („sections‟) and the content of a PDF document („contents‟). The LIST_OF_MODULES class and

the LIST_OF_SECTIONS class have the same role as hierarchies in the USER_INP_ONT ontology

from chapter 4, Figure 4.7. The only difference is that in Figure 6.4 we establish a LINK (we are not

dealing with user‟s clicks) which the user makes when creating eCTD (i.e. to connect PDF document to a

„section‟ in eCTD).

Figure 6.4 also shows that each subclass of the LIST_OF_MODULES and the LIST_OF_SECTIONS

subclasses contain three further subclasses named SELECTION_xxx/yyy, TRUTH_VARIABLE_xxx/yyy

and USER_LINK_xxx/yyy. “xxx/yyy” denotes the section/content to which these three subclasses

belong to, i.e. „xxx‟ may denote the modules: module 1, module 2, module 3, module 4, module 5, and

“yyy” may denote the sections: non-clinical and clinical summaries,

regional_administrative_information, and clinical_study_reports. These three subclasses

SELECTION_xxx/yyy, TRUTH_VARIABLE_xxx/yyy and USER_LINK_xxx/yyy are essential for

capturing and storing the results of “links” made by the user when trying to create eCTD.

Figure 6.5 Results of mirroring the eCTD navigational structure into the ADDED_VAL_ONT and the example of the

„non_clinical_and_clinic_summaries‟ subclass

Figure 6.5 gives us the exact ADDED_VAL_ONT hierarchies, which stores the subclasses MODULE_1,

MODULE_2, MODULE_3, MODULE_4 and MODULE_5. The modelling of the ADDED_VAL_ONT

concepts depends on the eCTD structure (modules) and the correct hierarchies behind each module. In

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 161

other words, the hierarchy behind MODULE_2 class should show that its subclasses are “semantically

related” to the position of Module 2 within the eCTD.

Table 6.1 Ontological individuals that make up the correct content of the section named non-clinical and clinical

summaries in module 2 of the eCTD

Furthermore, the non_clinical_and_clinical_summaries subclass of MODULE_2 will store

ontological individuals listed in Table 6.1, that make up the correct content of the section named non-

clinical and clinical summaries in module 2 of the eCTD. Note: the hierarchies of the MODULE_1,

MODULE_2, MODULE_3, MODULE_4 and MODULE_5 subclasses can be extended in order to

accommodate any „content‟ and „section‟ within listed modules of the eCTD.

Figure 6.6 Inter-relationships between ontologies ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT to secure

grouping of ontological individuals from PDF_ONT

Figure 6.6 shows the inter-relationships between all four ontologies. It is similar to Figure 4.8 from

chapter 4, except that we do not use Selection rules in this particular case study. However, in the full

scale implementation of submissions for MA of medicines, we are able to completely mirror the process

of capturing, storing and interpreting user‟s involvements, as described in chapters 4 and 5.

6.3 Grouping Semantically Related Ontological Individuals in

 Module 2 of the eCTD

Let us assume that a user has made a choice of working on a section within Module 2 of the eCTD, and

thus he/she is required to link a particular (and correct) PDF document with the section named non-

clinical_and_clinical_summaries. This means that the user has created the “link” between the PDF

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 162

document named NON-CLINICAL_AND_CLINICAL_SUMMARIES and the section non-

clinical_and_clinical_summaries in module 2 of the eCTD. The

non_clinical_and_clinical_summaries subclass of the MODULE_2 class in the

ADDED_VAL_ONT stores the results of running the Grouping rules specific to the combination of the

section named non-clinical_and_clinical_summaries in module 2.

Table 6.2 Grouping rule used to move ontological individuals into the „non_clinical_and_clinical_summaries‟

subclass of „Navigational Structure‟ class in PDF_ONT

The Grouping rule in Table 6.2 is run against the Jess engine. It uses the has_section and has

content object properties to group and move ontological individuals defined in their range values from

the content and section classes in PDF_ONT according to “semantically related data” indicated in

the non_clinical_and_clinical_summaries subclass (see above Table 6.1).

Table 6.3 The results of running the Grouping rule to move ontological individuals into the

non_clinical_and_clinical_summaries subclass

Figure 6.7 Grouping ontological individuals from classes „section‟ and „content‟ into the class

„non_clinical_and_clinical_summaries‟ in the ADDED_VAL_ONT

After running the Grouping rule in Table 6.2, 10 ontological individuals listed in Table 6.3 are moved

into the non_clinical_and_clinical_summaries subclass of MODULE_2 class in the

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 163

ADDED_VAL_ONT ontology. The inference created as a result of running the Grouping rule in Table

6.2 is graphically shown in Figure 6.7.

6.3.1 Object Properties for Securing the Correct Content in Module 2 of the

 eCTD

However, the grouping of ontological individuals from Figure 6.7 does not guarantee that the correct

„content‟ is placed under the correct „section‟ in the eCTD. We use the power of OWL restrictions which

allow us to create more constraints in order to secure the correct eCTD. Our set of OWL restrictions

determine the set criteria for which classes are involved in a particular „relationship‟ through an object

properties „domain‟ and „range‟ values. We are in the same situation as in chapter 4, section 4.3.3.5.3

where we say that:

 ontological individuals can only be moved into a NEW ontological class if they meet the set criteria

for being a member of that NEW ontological class;

 if at least one ontological individual within a particular class does not meet the set criteria for being

grouped into a particular class, then NO ontological individuals are moved from that class.

Therefore, in this case study, we model the object properties has_section and has_content in

order to create a relationship between the non_clinical_and_clinical_summaries class in the

ADDED_VAL_ONT ontology and the Section and Content classes of the PDF_ONT ontology.

The domain for both the object properties is set to the

non_clinical_and_clinical_summaries ontological class, in order to specify where to move

ontological individuals into. The range for the object property is set to the names of the Section and

Content classes, in order to specify where to move ontological individuals from (i.e. to move the exact

semantically related ontological individuals that make up the section named non-

clinical_and_clinical_summaries).

Figure 6.6 OWL restrictions that determine the set criteria for „non_clinical_and_clinical_summaries‟ class

membership in the ADDED_VAL_ONT

Figure 6.6 shows a set of OWL restrictions applied to both the object properties has_section and

has_content that determine the set criteria for non_clinical_and_clinical_summaries

class membership. We use two OWL restrictions:

 Chapter 6: Case Study: Submissions of MA Applications for Medicines 164

- the existential restriction is used to describe that the

non_clinical_and_clinical_summaries ontological class has some ontological

individuals from the Section and Content class.

- the universal restriction is used to describe that the

non_clinical_and_clinical_summaries ontological class has only ontological

individuals from the Section and Content class.

Both restrictions are made „necessary and sufficient‟ conditions to imply the concreteness of the

non_clinical_and_clinical_summaries class.

6.4 Summary

In this chapter we have illustrated how the ontologies ENV_ONT, USER_INP_ONT and

ADDED_VAL_ONT from our proposal, can be used in a completely different environment, when

managing the correct content of applications for MAs of medicines. We have reused our grouping

reasoning mechanism, defined in the process of resolving semantic conflicts in heterogeneous data

repositories, and applied it to a completely different purpose. However, the similarities are in the way we

(a) manipulate user‟s involvements and (b) run Grouping rules in order to create semantic relationships

between ontological individuals. The output of using the grouping reasoning mechanism in this case

study is that we can guarantee that the correct content of eCTD is submitted as a part of MAs procedures.

In other words we:

 establish the number of semantically related „sections‟ and „contents‟ within the eCTD through

user‟s involvements, and

 eliminate the numbers of errors occurring when submitting the wrong content of PDF document

within the eCTD, by using the grouping rules as a reasoning mechanism which connects the correct

content of PDF documents to their correct section within the eCTD modules.

 Chapter 7: Conclusions 165

Chapter 7

Conclusions

In this thesis, we have carried out research on resolving semantic conflicts, which arise from semantic

heterogeneities triggered by retrievals across heterogonous data repositories in PCEs. We touch upon

many topics, ranging from looking at the history of resolving semantic conflicts and problems associated

with interoperability in software systems since the early 90s, to the use of Semantic Web technologies

and OWL/SWRL enabled ontologies in particular, for the purpose of making the semantic of

heterogeneous data explicit. We were particularly interested in resolving semantic conflicts through the

power of OWL, mappings of their concepts and reasoning upon them through SWRL in order to achieve

semantic interoperability.

In retrospect to resolving semantic conflicts through generations of software systems, we have

become aware that achieving semantic interoperability in 2010 still remains a very complex task. Past

solutions to resolving semantic conflicts have either failed or been short lived. We have talked about

migrations, federations, global multi-database schemas, mediations and many other old fashioned

solutions to database interoperability, which very often sacrifice the autonomy of data centric software

systems (i.e. databases) and evolution of their individual elements. Loosing the autonomy of data

repositories in modern software systems and changing their original semantics are undesirable outcomes

when resolving semantic conflicts. This is because modern software systems rely on data created on an

ad-hoc basis, stored in unpredictable locations in various formats and hosted by wireless and mobile

technologies for securing their persistence. Autonomy and evolution of modern software systems cannot

be sacrificed for the sake of removing heterogeneities across them.

The emergence of Semantic Web technologies with ontologies/mappings/reasoning, has motivated

us to address semantic interoperability from a different perspective. We have streamlined our research

towards an ontology based and layered SA, which supports retrievals across pervasive software systems,

which are heterogeneous in their nature, and achieve semantic interoperability without sacrificing the

level of data sharing and autonomy of their individual participating data repositories.

We give an example of a software application which illustrates and tests the proposed SA. We

demonstrate the process for resolving semantic conflicts across heterogeneous data repositories and

achieving their semantic interoperability by using ontological layering. The SA is deployable within

environments created by component and Semantic Web technologies.

 Chapter 7: Conclusions 166

In this chapter we summarise the research of this thesis in section 7.1 and evaluate our proposal in

section 7.2. We look at the research objectives and comment on our results. We also highlight the

uniqueness of our ontological solution, highlight the additional research outcomes that have not been

anticipated in our research objectives and compare our solution to similar approaches. In section 7.3 we

reflect upon our research results by commenting on the complexity of computations in our proposal and

impact of technologies, which pose interesting challenges for future approaches to using OWL and

SWRL enabled ontologies in software engineering. Section 7.5 outlines our future works.

7.1 Research Summary

In chapter 2 we introduced the problem of resolving semantic conflicts that become an obstacle in

achieving interoperability in modern computational environments, characterised by their pervasiveness

and the need to share data and information available within them. We have agreed that semantic

heterogeneities are inherent in such systems, but if we really want to address the interoperability problem

in 2010, we have to go back 20 years, and analyse heterogeneities through various generations of

software systems, which have led towards recognition of semantic conflicts. We outline that semantic

heterogeneities trigger a variety of semantic conflicts that are concerned with the disagreements in the

implicit meanings, perspectives and assumptions made during the creation of computational models and

data repositories. This is still very much a problem in today‟s computational environments, regardless of

which type of data repositories we create today. The problem is further aggravated by the fact that we

need to guarantee meaningful data sharing across modern software systems, whilst preserving the

autonomy of participating data repositories. Therefore, Semantic Web technologies might hold the

answer if we wished to manipulate the meaning in our heterogeneous world. If Semantic Web

technology enables us to support machine processable meaning of information over the WWW by

providing a formal description of concepts, terms, and relationships within URLs, Web sources and their

content [234, 302 and 303] then, the same technology should be exploited in our attempts to guarantee

meaningful data sharing across modern software systems.

In chapter 3 we analyse all the works in resolving structural and semantic conflicts in the DB

interoperability field since the early 90s and outline their benefits and drawbacks. Most of these works

fail to address the complex nature of semantic conflicts, their impact on data sharing and the way they can

preserve autonomy of data repositories. However, methods and approaches to resolving semantic

conflicts based on the use of Semantic Web technologies do help us to move away from integration or

centralisation in DB systems and mediations in software systems which were prevalent in the 90s.

Therefore, we review examples of ontological modelling, mappings and reasoning in order to outline a

new era in resolving semantic conflicts. We expect that all these “ontological” solutions will preserve

the autonomy of data sources without affecting the level of data sharing and will ultimately achieve

semantic interoperability.

In chapter 4 we propose a SA based on ontological layering which supports retrievals from various

data repositories and resolves semantic conflicts which arise from heterogeneities inherent in them.

Ontological layering is in the core of our SA, which contains different software architectural components

in different layers. However, our core ontological layering is triggered by the semantic stored in the users

http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Terminology
http://en.wikipedia.org/wiki/Causality

 Chapter 7: Conclusions 167

request for retrievals across heterogeneous data repositories. Therefore, there is a significant difference

between core ontological layering, which generates Go-CID and ontologies stored within the User

Request layer of our SA solution, which are responsible for capturing, storing and interpreting user‟s

requests. They have different purposes in terms of:

(i) preparing semantics from the user‟s involvements in retrievals across heterogeneous data

repositories in order identify semantically related data in the User Request layer,

(ii) resolving semantic conflicts, as a consequence of the existence of semantically related data, through

ontological mappings in core ontological layering.

Each layer in the SA is generated through different reasoning mechanisms based on the execution of a

chain of SWRL rules which enable reasoning upon the result set of the reasoning in adjacent/lower layers.

However, the existence of semantically related data, points towards the complexities in identifying

semantic conflicts, their types and occurrences. To address all we use our own classification of

semantically related data and their degrees of similarities that generate particular types of semantic

conflicts. Therefore, ontology mappings used in (ii) are created through our specific reasoning

mechanisms, guided by our classification of semantically related data and categorisation of semantic

conflicts. The relationship between:

(a) the classification of semantically related data and their degrees of similarities, and

(b) the way we resolve semantic conflicts

are defined in our ontology mappings performed in the core ontological layering.

The process for resolving semantic conflicts consists of 8 steps. Steps 1-5, equivalent to (i) above,

“prepare” the semantics essential for creating and deploying core ontological layers. This includes

initiating the lowest ontological layer (Local Ontological layer) through the translations of the content

and structure of available heterogeneous Data Repositories {Repi | i = 1, ... m} into Local Ontologies {LOj

| j = 1, ... n}, and the ENV_ONT ontology. We also model user‟s involvements in the USER_INP_ONT

and ADDED_VAL_ONT ontologies. The role of these two ontologies is to interpret the user‟s request for

retrievals and create a context within which we can identify and resolve semantic conflicts. This allows a

user to specify what is expected from heterogeneous repositories and which information from them is

relevant for the retrieval.

Steps 6-8, equivalent to (ii) above, illustrate the exact way of resolving semantic conflicts through

core ontological layers, which are dynamically generated from LOj through a set of specific ontological

mappings and reasoning: Target Ontologies {TOk | k = 1, ... p} are generated through ontological

alignment; Derived Ontology {DOg | g = 1, ... q} through ontological integration and the final layer is a

consequence of a merging all DOgs into the final Go-CID. Thus, Go-CID ontological concepts do not

contain semantic conflicts, which have been carried forward from heterogeneous data repositories into

local ontologies LOj.

In chapter 5 we illustrate the implementation of our generic SA proposal from chapter 4 through a

case study in the domain of pervasive healthcare [304, 305, 306 and 307]. The advances of wireless and

mobile computing, and proliferation of pervasive healthcare technologies have made a huge impact on

how we create healthcare computational spaces and software applications in them. We depend on

enormous amounts of information and data stored in a variety of forms: from highly structured database

records to multimedia data streams of medical images, which are expected to be shared across various

 Chapter 7: Conclusions 168

operational environments. However, when performing retrievals of information and data across such

heterogeneous environments, we may face a number of semantic conflicts that may become an obstacle in

creating the correct results of retrievals. The healthcare domain appears to be one of the best examples of

heterogeneities in modern software systems, considering that records about patient(s) are created often on

an ad-hoc basis, outside the patient‟s GP environments, stored in data repositories which do not have to

be traditional databases and designed/modelled so differently that we may not be able to see that they

store data with the same meaning. One of the most common problems is „patient records‟ which may

have different meaning in different healthcare software systems and store different data about the same

patient. Therefore, we have had no problems in creating a healthcare environment in chapter 5 which

shows semantically related data with all degrees of similarities introduced in chapter 4. We have also

been able to show through the same case study all the types of semantic conflicts we categorise in chapter

4. Therefore, we have been in a position to illustrate and give a detailed description of the exact steps of

our process for resolving semantic conflicts in chapter 5.

We start with a request issued by a medical professional, which will require retrievals across

available data repositories GP_data_rep, Hospital_data_rep, Clinic_1_data_rep and Clinic_2_data_rep

in order to obtain healthcare summary for a particular patient. We give the content and structure of

semantics stored in data repositories, and the way we translate them into local ontologies LO_gp,

LO_hospital, LO_clinic_1, LO_clinic_2, which immediately resolves the Mispelt/Case-Sensitive

semantic conflicts, if they exist. We also demonstrate how the medical professional‟s input in terms of

specifying what he/she needs for obtaining a healthcare summary for a particular patient will help us to

find out exactly where other semantic conflicts exist, and how we will resolve them. By interpreting the

medical professional‟s input through our Grouping reasoning mechanism, we resolve the Homonym

semantic conflict. The Aggregation and Synonym semantic conflicts are resolved through aligning local

ontologies LO_gp, LO_hospital, LO_clinic_1, LO_clinic_2 into target ontologies TO_1-TO_10. The

Generalisation, Specialisation, Isomorphism and Union Incompatibility semantic conflicts are resolved by

integrating target ontologies TO_1-TO_10 into derived ontologies DO_1-DO_10. Finally, we merge

derived ontologies DO_1-DO_10 into the final Go-CID in order to prepare data for retrieving a healthcare

summary for a patient, which contains no semantic conflicts.

We test our proposal through a full scale implementation of a software application built in NetBeans

6.4 IDE, which manages the retrievals and triggers ontology mappings and reasoning. We use Oracle for

creating healthcare databases and the DataMaster plug-in in the Protégé 3.4 ontological development

environment for translating databases into OWL ontologies. We also use Protégé 3.4 for the creation of

ontological concepts. We use the SWRL tab plug-in in Protégé 3.4 for creating SWRL rules and the JESS

engine for running computations (SWRL rule chaining – connection created through the SWRL rule

bridge in OWL API). We use OWL API for connecting to Protégé 3.4 from NetBeans 6.4 IDE and JSP

and Servlets used for managing the software application.

In chapter 6 we give another case study which illustrates how a section of our process for resolving

semantic conflicts can be used in a completely different domain of managing submissions for MA of

medicines [300]. Therefore, we use ontologies ENV_ONT, USER_ONT and ADDED_VAL_ONT from

our SA proposal and deploy our Grouping reasoning mechanism [46] to ensure that correct content of a

PDF document has been placed at the correct position within the eCTD for MAs. The evidence of

 Chapter 7: Conclusions 169

reusability of our ontologies and Grouping reasoning mechanism, which manipulate the meaning of

user‟s involvements when resolving semantic conflicts, is striking. The role of the user in this case study

is the same as in our example for resolving semantic conflicts. We capture, store and interpret user‟s

involvements in both case studies in the same way/manner, PLUS we use the same Grouping reasoning

mechanism and type of OWL restrictions to move semantically related ontological individuals in both

case studies. In this chapter we also list 3 more case studies, from another set of domains [292, 292, 297,

298 and 299], which show a high level of re-usability of our SA and its reasoning mechanisms,

introduced in chapter 4 and illustrated in chapter 5.

7.2 Evaluation

7.2.1 Achieving Research Objectives

In this research, developments have been made towards the:

 understanding of the complex nature of semantic heterogeneities in software systems and the

analysis of limitations of past and current approaches to resolving semantic conflicts when

addressing the problem of semantic interoperability;

 investigating the importance of ontologies, their mappings and reasoning when using OWL/SWRL

enabled ontologies as an instrument in resolving semantic conflicts;

 creating and implementing a SA and a specific SA style based on ontological layering which secures

the implementation of our proposal and resolves semantic conflicts.

Therefore, the major part of the research has been dedicated to building ontological and layered software

architectural components. Their main purpose is to accommodate a software solution which will resolve

semantics conflicts, triggered by the existence of semantically related data when performing retrievals

across heterogeneous data repositories. Our first research objective has been realised in chapter 3: we

have come to a conclusion that ontology mappings and reasoning mechanisms defined upon ontological

concepts are feasible and deployable within our architectural layers by using Semantic Web technologies.

Our second research objective has been met through the proposed ontological layering in chapter 4.

Our SA which accommodates ontological layering and Go-CID, as its final result, supports retrievals in

modern software systems and resolves semantic conflicts which arise from heterogeneities inherent in

them.

The third research objective has been satisfied in chapter 5 through a detailed case study of

retrievals across data repositories in pervasive healthcare environments. We have proved that it is feasible

to achieve semantic interoperability through the proposed ontological layering in our SA. We deploy our

software architectural components and its ontological layering to build a software application upon it,

using Semantic Web technology and NetBeans 6.4 IDE. However, in chapter 6, we show that there are

extensions to our research results, which we have not anticipated in the research objectives. We have

discovered a high level of reusability of our ontological reasoning mechanisms, which are either

ontological groupings or mappings, and which can be used in different problem domains and in

environments, in cases when we need to:

 Chapter 7: Conclusions 170

(i) establish if and when we have overlapping “semantics” which creates relationship between

data/information in such domains/environments, and/or

(ii) infer and/or assert a correct set of “semantics” which can support any decision making required in

such domains/environments.

The uniqueness of our SA which accommodates ontological layering is in:

 Using the ontologies ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT in manipulating the

understanding of the environments where heterogeneous data repositories reside and using the

power of user‟s involvement in retrievals across these repositories. Subsequently, the ontologies

ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT create the context of the interoperability

being attempted and determine what actual ontology mapping is left to the core ontological layering

of Go-CID.

 Using the core ontological layering which is based on a set of specific ontological mappings and

reasoning performed upon ontological concepts from LOj, TOk, DOg, and Go-CID, in resolving

semantic conflicts and achieving data sharing and semantic interoperability in any heterogeneous

environment.

 Leaving the heterogeneous data repositories intact in terms of not changing their format and

semantics stored in them, i.e. preserving their autonomy, and dealing with semantic conflicts on an

ad-hoc basis through ontological layers, by exploiting the meaning of user‟s requests for retrievals

and the knowledge of the environment where retrievals take place through inference mechanisms.

7.2.2 Contribution

The main contribution of this research is in five areas:

1. Gaining knowledge and awareness of the complexity of the interoperability problem, which is still

prevalent in software systems today, characterised by pervasiveness of computing environments and

heterogeneities inherent in them. It has also become evident that we should strive for

heterogeneities in modern software systems and achieving a high level of interoperability by using

traditional approaches such as federation, mediation and global schema solutions, might not be

desirable software solutions for data intensive the software systems in the 21
st
 century.

2. Mastering the modelling and implementation of software applications, based on a specific software

architectural style which accommodates ontological layering. This means that the building of a new

era of software applications dependent on OWL/SWRL enabled ontologies allows us to understand

and manipulate the semantics of and meaning stored within heterogeneous data repositories, and

thus achieving our ultimate goal of resolving semantic conflicts when performing retrievals across

them.

3. Delivering a unique approach to addressing the problem of semantic conflicts (Semantic

Interoperability!) in modern software applications through our own specific way of creating

semantic models (ontological layering) and imposing reasoning (SWRL rule chaining) upon their

modelling concepts in order to identify and resolve semantic conflicts.

4. Classifying the way of creating and manipulating concepts stored in OWL/SWRL enabled

ontologies in order to perform ontological mappings and store/manipulate the inference created

 Chapter 7: Conclusions 171

within them. We use our own way of classifying semantically related concepts for the purpose of

identifying different types of semantic conflicts and our own way of classifying reasoning

mechanisms for the purpose of resolving the identified semantic conflicts.

5. Delivering a novel approach of exploiting the meaning of user‟s requests for retrievals across

heterogeneous data repositories for the purpose of understanding expectations of the user, and

triggering ontological layering. In other words, users inputs, in the form of their requests, dictates

the context in which semantically related concepts from data repositories are compared in order to

identify and resolve semantic conflicts through ontological layering. Consequently, the manipulation

of the meaning of users request becomes essential for the managing of software applications which

secure correct results of retrievals across heterogeneous data repositories.

7.2.3 Comparison to Similar Approaches

The comparison of our solution with similar approaches available in academia and industry is divided

into two parts. We firstly look at old fashioned approaches to the interoperability problem which have

existed since the early 90s and compare them with our own SA solutions for resolving semantic conflicts.

Secondly, we look at the solutions in the ontological world and approaches which use ontologies for

explicitly dealing with the problem of resolving semantic conflicts and ontological mismatches. We

compare them to our own way of ontological mapping and reasoning.

The issue of interoperability in software systems has been in the focus of the software engineering

and database communities since the late 80s. It is important to note that the interoperability problem does

not exist per se, i.e. it is always triggered by heterogeneities which exist within and between software

systems. In other words, we can not talk about interoperability if we do not specify exactly what is

heterogeneous. Consequently, heterogeneous data structures, data models and technologies in the

database communities of the late 80s initiated research on semantic interoperability because they were

concerned with conflicting data in databases and interpretations of their meaning [10, 19, 20, 21, 22, 32,

44, 77, 78, 79, 80, 81, 82 and 83]. A direct answer to this initiative appeared to be federated [13 and 73]

and global schema approaches [177, 252, 256 and 257, 232] which had in mind a certain level of

integration of either data structures or data models in order to remedy heterogeneities. Furthermore, the

emergence of object technologies in the early 90s highlighted different types of heterogeneities which

were consequences of technology impact on database communities and software engineering in

general. We witnessed various migrations between database systems [25, 26 and 27] because we faced

different types of interfaces and query languages, different platforms within which database systems

operated, on top of the traditional problems of heterogeneities at the data and schema level, which

persisted since the 80s.

All these solutions, federations, global conceptual schemas and migrations, which were trying to

address the issue of interoperability, had always ended with a certain level of integration of either data

structures or data models in order to remedy heterogeneity. This means that even in flexible federated

database systems, we ended up with solutions which sacrifice autonomy of databases and systems we

built around them, in order to have a global or integrated view of heterogeneous and conflicting

data. This is a serious drawback, because the database autonomy plays a very important role in database

 Chapter 7: Conclusions 172

systems. Consequently, there were not too many commercially available federated database management

systems which had been adopted by the database community and industry in the 90s.

The ideas of mediation in software systems [17, 28, 29, 30, 31, 32, 33, 34 and 258] and the impact

of middleware and component based software development (CORBA
88

, JEEE
89

, DCOM
90

) have given a

slightly different approach to resolving heterogeneities in software systems. They do not always offer

integration of conflicting data as the answer to their heterogeneity. However, the problem of having

heterogeneities at the data and schema a level, so prevalent in database systems from the late 80s

onwards, has now escalated to all other dimensions of computing environments, and the issue of

semantic conflicts across heterogeneous data repositories has been slightly marginalised since the late

90s. Therefore, component based and service oriented software architectures [10, 74 and 75] have been

dealing mostly with heterogeneities of platforms, applications, interfaces, data accessing mechanisms,

programming procedures, software components and similar.

We have learned from the research results in the interoperability field and accompanied solutions

from industry since the early 90s that we will have to:

1) avoid any type of integration in our solution because we need to maintain the autonomy of data

repositories and structures which store important semantics and meaning of real world concepts

they model;

2) allow the evolution of heterogeneous repositories at the place where they originate, therefore any

changes in structures and content of data repositories should happen independently from any

interoperability solution;

3) keep original data sources and their structures intact and built component based solutions on the top

of them which will deal with every type of heterogeneities we may have;

4) allow user impact, i.e. empower users to specify what they expect from heterogeneous systems and

participating data repositories and exploit user‟s requests, their knowledge and inputs when trying to

resolve conflicting data in heterogeneous data repositories and interpretations of their meaning.

None of the existing examples in our related works (chapter 3, section 3.2.1) exhibit characteristics listed

in 1) - 4) above. However, in our solution we have decided to use some of the ideas from Sheth and

Kashyap [44] in order to classify semantically related data and their degrees of similarities, for the

purpose of identifying and resolving semantic conflicts, as described in chapter section 4, section 4.2.

We have also decided to propose a specific SA style based on components and layering, which has

proved to address the complexity of modern systems and deal with certain types of heterogeneities which

are prevalent now, in the 21
st
 century [10, 74, 75, 286 and 287]. Consequently, our main principles behind

our proposal are in a)-d) below:

a) Our SA proposal and its particular layered architectural styles secures flexibility in terms of

isolating data repositories and semantic conflicts which exist across them, from the software

solution which resolves them. This means that we can build an “n” number of solutions upon the

same set of repositories in order to address a different set of semantic conflicts, which are associated

88 http://www.corba.org/
89 http://www.oracle.com/technetwork/java/javaee/tech/index.html
90 http://www.microsoft.com/com/

http://www.corba.org/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.microsoft.com/com/default.mspx

 Chapter 7: Conclusions 173

with the way we issues request for retrievals across these repositories, which in turn become

independent from the software solutions built upon them.

b) The layering in our SA secures a mechanism of addressing different types of semantic conflicts at a

different layer, i.e. we systemise the way we resolve semantic conflicts through layering, which is

given by layered SA style. The benefits are twofold: we will always know which conflicts will be

resolved at which layer – thus we will be allowed to choose and skip layers if needed, and we will

always know in advance which mechanism for resolving conflicts are available. Our solution is not

a “bundle” which is static and sits on the top of heterogeneous data repositories. It is a dynamic

solution implemented through different layers and different instances of layering, dependent on the

nature of user‟s requests for retrievals. Without such layering we would not be able to achieve

flexibility and address a variety of user‟s requests.

c) User‟s request for retrievals dictates a context in which conflicting data in heterogeneous data

repositories, and different interpretations of their meaning, may occur. Therefore, these requests are

a driving force behind a particular instance of layering in our SA. In other words the user has a

significant impact on the way we identify and choose to resolve semantic conflicts though a

particular instance of our layering.

d) Our SA consists of software components which are generated ad-hoc, i.e. as soon as requests for

retrieval have been issued. This means that a set of layering is created every time when request

appears and the set of layering from the previous retrievals is deleted as soon as its results have been

displayed (i.e. Go-CID‟s content becomes reverted to its previous “empty” state). This means that

there is no burden on the existing repositories or the application built upon them, in terms of

remembering or storing any intermediary results when resolving semantic conflicts.

e) Our SA does not include any integration of the original data sources (structures and values) into any

other format. This means that they remain intact – to allow for database autonomy and evolution to

take place. We create mirrored copies of database schemas, or any other types of repositories, and

their contents in order to exploit their semantics they store and resolve possible semantic conflicts!

Therefore our base SA layer i.e. the bottom most layer, consists of a set of ontologies which are

translation from underlying data repositories, mirroring all underlying persistent data and their

structures.

In the late 90s, at the same time as the Semantic Web initiative took off, ontologies came again into the

focus of interest of research communities in terms of providing formal explicit specification of a shared

conceptualisation. Apart from using formal ontologies in order to create shared vocabularies and shared

domain models, we started witnessing the creation of ontological solutions which try to address semantic

interoperability between heterogeneous software systems. With the standardisation of RDFs and

OWL/SWRL we have discovered the enormous power of semantic Web Technologies in terms of

providing a means to deal explicitly with the problem of semantic conflicts [151, 153, 170, 172, 173, 174

and 175].

There were two pre-dominate ontological approaches to addressing heterogeneities in database and

information systems, used by software engineers and database communities.

The first approach relied on the use of a single ontology in the form of either: a global schema [15,

142 and 251] or a shared vocabulary [47, 48, 49 and 50]. It is obvious that global ontological schema

 Chapter 7: Conclusions 174

approach requires integrating either data structures or data models into a single ontological schema in

order to provide a homogenous view of conflicting data. This is very similar to Global Schema

approaches in databases from t he early 90s, but without ontologies! Shared vocabularies required the

explicit description and resolution of semantic conflicts through the use of domain specific knowledge,

and mapping knowledge, or rules, into a single ontological schema which becomes a shared vocabulary.

In both cases we deal with single ontologies which require either (a) a certain level of integration in order

to mask heterogeneity or (b) additional mappings between ontological ontologies and heterogeneous

systems. In both cases, we end up in highly specialized translations, which address a range of

heterogeneities from all databases into a single ontology, thus being not flexible and expensive solution in

terms of both time and money.

The second ontological approach relied on the use of multiple ontologies in terms of describing each

databases though its own ontology, commonly referred to as source/local ontology. Semantic conflicts

were resolved through either the process of ontology based semantic matching between source ontologies

[153 and 173], or the process of ontology based semantic mapping of source ontologies into a domain (or

upper) ontology [51 and 52]. By using multiple ontologies (i.e. the use of source/local ontologies to

represent underlying heterogeneous databases), software engineers and database communities were able

to avoid the complexity and overheads of integrating databases. However, the manipulation of multiple

ontologies proved to be a difficult job, because it was extremely difficult to deal with heterogeneities,

which were transferred from local repositories into their ontologies. At the same time the problem of

ontological mismatches and their semantic interoperability (as a consequence of the development of

Semantic Web) became evident once again. However, this time it was not within the software

engineering and databases communities, but within the ontological engineering world because they were

concerned with heterogeneous ontological descriptions, ontological models and technologies and

ontological interpretations of their meaning [54, 69, 247, 248, 249, 250 and 251]. To that end, the process

of ontology mapping is based on any of the following three mappings [57, 59, 249, 262 and 263]:

- schema mapping between heterogeneous ontologies,

- instance mapping between heterogeneous ontologies, or

- hybrid mapping that uses a combination of both schema and instance based ontology mappings.

However, the need to consider multiple ontologies in environments in which different views and

interpretations of ontological data (e.g. different aggregation and granularity of the ontology concepts)

raise the question of semantic similarities between ontological concepts, which brings forward semantic

conflicts in ontologies, as it did in any type of heterogeneous databases in the late 80s.

Our proposal uses multiple ontologies when resolving semantic conflicts and their concepts are

manipulated through ideas given in schema and instance mappings. However, we had to systemise and

customise mapping mechanisms in order to (i) resolve different types of semantic conflicts at different

ontological layers and (ii) follow our own classification of semantic conflicts and their degrees of

similarities. Furthermore, we exploit the power of OWL/SWRL enabled ontologies which in turn had also

dictated the way of performing the ontology mappings by creating an instance of our layering through

SWRL rule chaining.

 Chapter 7: Conclusions 175

We have not found in the research community and industry any solution which uses both:

ontological layering, as a core structure of a SA style for resolving semantic conflicts and SWRL rule

chaining to perform ontology mapping which eventually will resolve semantic conflicts.

Furthermore, sources like [57, 59, 249, 262 and 263] rely always on natural language processing

techniques, algorithms and knowledge bases to create logical inferences in their ontologies and never

exploit the power of SWRL rule chaining to achieve a flexible solution in terms of the manipulating

ontological individuals, which is very powerful and available mechanism in OWL/SWRL enabled

ontologies. The same sources also tend to use formal ontologies which have no place within our

ontological layers. This is because our ontological layers are created on an ad-hoc bases, for a particular

purpose (user‟s requests), they are very short lived and controlled by a software application, i.e. we offer

a software engineering solution based on OWL/SWRL enabled ontologies, dictated and controlled by

user‟s requests for retrievals. Our ontologies are very often small, automatically generated though SWRL

rule chaining and easily accessible by any software application generated from our proposed SA.

However, the deployment of software components from the proposed SA is dictated by technologies from

NetBeans IDE, to its bridges to the JESS reasoning engine and Protégé ontological editor through the

OWL API library.

At the time of writing this thesis, we have also not found any published work which exploits the

power of OWL/SWRL ontologies by deploying them through component based technologies and their

IDEs. However, the performance of our software applications generated from the proposed SA is

satisfactory from the software engineering perspective, which has opened doors for commercial

exploitation of our solution to resolve semantic conflicts in heterogeneous data repositories.

Finally, during the course of this research we had an opportunity to juxtapose our SA to one

completely different architectural model named Context-Aware Data Retrieval Architecture (CADRA)

which was designed for a similar purpose: sharing data and information across heterogeneous e-health

systems [313]. It appeared that, when summarising the main technical characteristics of CADRA and our

SA which accommodates Go-CID, we could see how the differences in creating CADRA and our core

ontological layers, and similarity/differences of computations and communications within them, paved

the way towards two completely different solutions, which are addressing the same problem in the e-

health domain. However our solution compared to CADRA supports heterogeneous environments and

allows any number of data repositories to be included into any instance of our SA. Our ontological

solution is also dynamic, i.e. a set of ontological layers is created as soon as a request is issued for the

retrievals across the heterogeneous data repositories. Therefore our core ontological layering is constantly

changeable and responds to the semantics stored in user‟s requests, as a part of user‟s involvements in

retrievals across heterogeneous software environments.

In summary, there are no published research in academia and industry which can be compared with

our idea of using a specific SA style based on ontological layering, and performing SWRL rule chaining,

for the purpose of creating ontological layers, which in turn will resolve semantic conflicts as the result of

request for retrievals across heterogonous data repositories.

7.2.4 Lessons Learnt

 Chapter 7: Conclusions 176

We would like to point towards a few limitations or concerns which are results of our research. We

itemise them in paragraphs below.

Automation in our ontology mappings

We wish to draw reader‟s attention to the way we automate the creation of ontological layering, i.e.

mappings and reasoning. Automatically deriving ontology mapping at runtime, without having human

involvements, is generally considered impossible [250 and 312]. Therefore, one of the biggest challenges

in our work has been to identify a process that will maximize the automation of ontology mappings at

runtime. To that end, we have a runtime solution that uses user‟s involvements (through reasoning upon

the ontologies ENV_ONT and USER_INP_ONT and ADDED_VAL_ONT) to define a specific set of

core ontological layers, i.e. creation of LOj, TOk, DOg, and the final Go-CID. However, though we have

demonstrated the potential power of ontologies in performing automated resolution of semantic conflicts,

the automation is still based on the following factors:

 the availability of participating heterogeneous data repositories that are willing to expose their

semantics, i.e. subscribe to our SA which supports retrievals accommodates ontological layering and

Go-CID software applications;

 the enumeration of every possible combination of available data repositories and information types

stored within them in the ontologies ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT;

 the level of human intervention in identifying semantically related concepts and semantic conflicts

triggered by them, during steps 1-5 in our process for resolving semantic conflicts, i.e. the amount

of human intervention in preparing semantics for core ontological layering.

Classification of semantically related concepts and their identification

By placing the classification of semantically related concepts, and the various types of semantic conflicts

they trigger, outside our SA layering ensures the dynamic resolution of semantic conflicts. This means

that, our SA does not use an ontology that describes the semantic conflicts; instead it uses a classification

of semantically related data to identify semantic conflicts and ultimately guide us in the creation of

ontology mappings (including the assumptions modelled into SWRL rules). However, the preparation of

semantics for core ontological layering relies heavily on human intervention and a number of

technological dependencies, all of which suggest potential deficiencies in our approach. We list them

below:

 The question of identifying semantically related data and the various types of semantic conflicts

they trigger remains to be a manual process in our approach. The use of our classification of

semantically related data is dependent on obtaining an understanding of the semantics contained

within underlying heterogeneous data repositories and the semantics carried forward from

ontological schema and their content (i.e. ontological classes, properties and individuals), in order to

judge how semantically equivalent overlapping concepts are. Therefore, our approach can be seen to

create a burden on the developer with regards to the following three tasks:

- The task of understanding and identifying semantically related data. Notably, attempts in

automating this process may involve additional extraction mechanisms, that similar to

 Chapter 7: Conclusions 177

algorithms that can determine semantic similarity and natural language techniques that perform

ontology matching. Subsequently, such extraction mechanisms may reduce the time it takes in

understanding overlapping ontological semantics. However, the need for human intervention still

suggests an ongoing commitment to building tools and wizards such as Cupid [58] and Chimaera

[61] to ease the process for identifying overlapping semantics.

- The way in which our approach uses the degrees of similarity. Our classification of semantically

related data and various semantic conflicts they trigger, give rise to deficiencies in similarity

thresholds, i.e. how much is necessary to qualify as enough to ignore, tolerate or resolve

semantic conflicts. Again, as the dependency lies on the human understanding of semantics

carried forward into local ontologies, similarity thresholds are not clear and have yet to be

determined. Similarities thresholds such as weighted keyword proximity where the „subject‟ of a

word is mapped to a similar concept can help to guarantee that degrees of similarity can be

measured according to the nature of overlapping semantics.

- The dependency on ontology translations techniques. Translation techniques such as DR2Q

mapping [226] or Datamaster [227] dictate the way semantics from heterogeneous data

repositories are mirrored in the ontological world. Although, we always have the option of

adding additional semantics to local ontologies, once they have been generated as a result of

translations, we are still be faced with the issue of burdening the developer with regards to the

task of understanding original semantics, and the prospect of how they could be mirrored in the

constraints of ontological models. The option of creating universal ontology translation

techniques is a daunting task and will have to be considered in order to produce desired results of

these translations.

Finally, as generic observations, users of our ontological and layered SA are diverse and prone to

changing interests rapidly, therefore it is impractical for our SA to capture all possible data expectations

of the end users. However, by addressing our concerns in the paragraphs above we will probably achieve

a balance between the semantics stored in various data repositories and user requests which actually

trigger the problem of semantic heterogeneities.

In the next section we continue with the evaluation of our work, by reflecting upon aspects of our

solution which shows a pathway of the development of our solution, and our experiments which have had

an impact on the final version of our SA. We also reflect upon the impact of technologies on our proposal

and solution, and address the reader‟s interest in how well the solution may perform in terms of its

complexity and computational power.

7.3 Reflections

In our early attempts to create a generic SA which can accommodate our ontological layering for

resolving semantic conflicts, we concentrated on the final layer, named Go-CID, more than on anything

else [308]. This was in early 2007. We were more concerned if the “context awareness” [182] has an

equal role and power as data sharing and interoperability within PCEs. Therefore, we insisted on taking

“context awareness” into account at any stage of the process of achieving interoperability, when

performing retrievals across heterogeneous data repositories. However, it had become very obvious in

 Chapter 7: Conclusions 178

2008 that we had to replace “context” with “situations” in modern computing [309, 310, and 311]. This is

because all our ontological layers which were created on an ad-hoc basis, generated nothing else but a

“SITUATION”, once a request for retrievals across heterogeneous data repositories had been issued.

Therefore, there was no need to insist on modelling “context awareness” as a separate dimension of either

our SA or retrievals it supports. However, we kept “C” within the name of Go-CID to remind the reader

that we have managed to replace the explicit modelling of context awareness, with a “situation” through

our ontological layering. In other words an instance of ontological layers in our SA is equivalent to a

“situation” in PCEs.

- The names of ontological concepts in Go-CID, which is the final result of layering (i.e. the result

which contains no semantic conflicts), will always correspond to „real world‟ concepts which have

been modelled initially in heterogeneous data repositories. Our rationale for such naming is to

retain the maximum number of concepts from original data repositories and avoid the creation of

new concepts while resolving semantic conflicts.

- In our case study in chapter 5, we use relational databases as examples of heterogeneous data

repositories. However, our SA, ontological concepts and reasoning mechanisms (i.e. layering) are

fully capable of accommodating any type and format of heterogeneous data repositories, i.e. XML

and HTML documents, Web services, data repositories that store sensor derived data, and many

more. We have given examples of relational databases because they have proven to be the easiest

way of showing semantic conflicts in heterogeneous data. However, pervasive healthcare today

depends on a range of data repositories, which are still very likely to be relational, but created on ad-

hoc basis and accommodating various types of data through a range of devices and computers.

What is important to note is that all these data repositories might exhibit various levels of

persistence, they might not be stored at „fixed‟ locations at all, they can even find their space on

mobile devices which collects and processes data. This is what the pervasiveness of modern

healthcare is about: we have to agree that data is generated “as we go”, stored at the most

convenient “places” and processed by any device which happens to be available. If we need to

exploit such data repositories, we have to have a mechanism of performing meaningful retrievals

across them.

We are not aware of any new research that comprehensively looks at the problem of managing

semantic heterogeneities and resolving semantic conflicts in order to achieve semantic interoperability,

which could enable us to evaluate our SA which accommodates ontological layering further. We have

examples of using ontologies within software frameworks to provide data sharing, because the ontologies

provided similar functionalities as that of a middleware layer or federated schema between heterogeneous

computing environments/underlying data repositories. Thus, allowing ontologies to behave like a

mechanism that can mask heterogeneities provides a means to deal explicitly with semantic

interoperability challenges. We are not aware of any other work that uses ontological and layered

software architectural styles for resolving semantic conflicts and achieving semantic interoperability in

heterogeneous data repositories.

 After evaluating our research and summarising its contribution, a number of new issues that pose

interesting challenges to the results of this research have arisen. Some will be the subject of future

 Chapter 7: Conclusions 179

research, but some need to be reflected upon to outline our concerns and views resulting from this

research.

7.3.1 Complexity of Computations

We have already addressed the feasibility of implementing our proposal from this research as a

component based software application derived from our SA, using NetBeans IDE and bridges to OWL

API. In this section we would like to summarise its main characteristics by itemising the issues of

complexity in our solution, and commenting on the nature of computations stored in our software

components. Both of them are summarised from three different perspectives: software engineering,

reasoning rules and technology used.

Complexity of our solution from the software engineering point of view is minimal because our:

 Ontological layers and set of ontologies which store them are generated ad-hoc, as a consequence of

the request for retrievals.

 Ontologies are generated automatically according to the semantics of user‟s request, but reasoning

upon each ontological layer creates a new ontological layer which contains a smaller number of

ontological concepts and individuals than the layer before. Therefore, the number of individuals in

our ontologies decreased as we proceed towards the final layer.

 Ontologies are dynamically created for a particular user‟s request. This means that they are deleted,

i.e. they seize to exist when the results of retrievals are displayed on the screen. There is no need to

save any ontological layer (including ontological concepts and individuals) and make them

persistent because they are tailored for a particular moment.

 Software applications built upon our ontological layers are responsible for reverting ontologies back

to their original status (empty state!) after the results of retrievals have been displayed. This means

that no ontological individuals are stored in any of the ontological layers and ontologies within them

after the retrieval, thus they are ready to accept a new set of individuals which will be populating

ontologies as soon as the new request for retrieval is issued.

 The issue of the number of ontologies created and mapped to one another does not affect the

complexity of the solution because of its strict layering. Please note that the issue of layering in

software architectures [286 and 287] directly reduces the level of complexity of software solutions

built upon layered architectures, thus making them more flexible and reusable and less complex.

 The issue of storing intermediary results of our ontological layering while reasoning and creating

new layers does not impose any burden on the storage and management of our ontologies. This is

because the number of local ontologies will probably never exceed the number which would affect

the performance of our application and the initial number of Local Ontologies. If we take into

account that we work in the healthcare domain, which exhibits almost the highest level of

heterogeneities today, then how likely is it that patient records (about the same person) will be

stored across 50-100 databases at the same time? Furthermore, translations of such repositories into

Local Ontologies are parts of the preparation for our layering and it does not influence the reasoning

process at all. At the moment the automated translation through well know tools of 4 databases,

 Chapter 7: Conclusions 180

which contain a substantial amount of records, into Local Ontologies takes no more than four

minutes.

 Preparing the semantics for the reasoning and layering can be complex to a certain extent in terms of

understanding the user‟s requests, choosing appropriate repositories and data in them relevant for

the request, and discovering semantic conflicts which may appear as the result of the request.

However, we have a very strict process which distinguishes between the preparation of semantics

for ontological layering and layering itself. The preparation, which is provided through the specific

ontologies (ENV_ONT, USER_INP_ONT and ADDED_VAL_ONT) reduces the complexity of

reasoning and layering later, by providing a correct taxonomical structures needed for reasoning and

core layering. These three ontologies always exist in the same format, i.e. their format is not

influenced by the type of user‟s request. However, the content is dependent on our interpretation of

user‟s request.

Complexity of our solution from the reasoning rules point of view:

 In the thesis we illustrate the proposal of resolving all 9 semantic conflicts (Appendix A.1, Table

4.1) in one single example of seriously heterogeneous set of 4 databases in the healthcare domain. In

the example all possible heterogeneities, number of SWRL rules (79), and number of LOjs, TOks,

DOgs and Go-CID (which is 21 in total) are managed by the software application which runs on a

moderate size machine (laptop) in 3 minutes and 55 seconds. This must be considered as good

“application performance” considering that we have never had any proper hardware environment

available for out testing.

 Our example mimics one of the most complex cases of heterogeneities, which is resolved in its

entirety! The likeliness that we will constantly have all 9 semantics conflicts present in all retrievals

across heterogeneous repositories in our modern applications is remote! Aggregation, Union

Incompatibility and Isomorphism are the most common semantic conflicts, and they are probably

always considered to be the main reasons for detecting structural conflicts in general [10]. Therefore,

in reality we will always have fewer semantic conflicts than in our main example which will reduce

dramatically the number of rules and ontological individuals moved around our layers. More

importantly we might be able to reduce the number of rules in a) and b) above, if the type of

semantic conflict will not require any alignment or integration (see chapter 4, section 4.1.2 and

section 4.3.4.5).

Complexity of our solution dictated by the technology used:

 Expressivity of OWL is a double-edge sword! The freedom OWL offers might be an obstacle in

creating the desired representation of heterogeneous data structures/values in OWL models when

translating database relational schemas, and exploiting OWL models through additional

constraints/reasoning mechanisms at the level of and between ontological classes, properties and

individuals. However, our strict software layering, which houses all ontologies, is dependent on

formally defined steps and tasks in our process of resolving semantic conflicts, that nay violation of

the software engineering process might not give an adequate result. Furthermore, by having a well-

 Chapter 7: Conclusions 181

defined process in software engineering you automatically reduce complexities and utilise the

technology you need to its maximum.

 Ontology mapping is performed through SWRL rules and because the rules are there to move

ontological individuals in order to create the result of retrievals according to user‟s request.

However, the rules perform mapping of ontologies which are not formal ontologies which are

dependent on persistence (we do not wish to save anything!) or ontologies which are overburden

with heavy logic! Our ontologies and their concepts are simple for the sake of mirroring underlying

heterogeneous repositories and semantic conflicts we discovered within them therefore they cannot

have any additional constraints modeled with them. This is one of the most important software

engineering principles when resolving complex problems and achieving reusability and

maintainability.

 Our ontologies are not formal ontologies and therefore certain issue of computational complexity is

immaterial in the SE world. This is particularly true in this research because we use the power of

semantic technologies for achieving software engineering solutions. Our computational complexity

has been resolved through:

(i) systemising semantic conflicts and their degrees of similarity,

(ii) defining and creating software architectural layers,

(iii) systemising the process of creating layers and resolving conflicts, and

(iv) defining a reasoning mechanism where each layer is generated through a strictly defined

ontological mapping (i.e. ontological alignment, integration and merge).

In light of (i)-(iv) above, the computational complexity of our solution is minimal: we have java

code which is lean, small and highly re-usable, effective connection from Java IDE with external engines

(JESS) in order to trigger the creation of ontological layering and running SWRL rules and finally

effective user interfaces which disseminate user‟s input and results of retrievals, which use data from

heterogeneous data repositories in an adequate manner! The total running of 79 rules within such an

application architecture in less than 4 minutes, which resolve all possible 9 semantic conflicts is more

than impressive. It is feasible because we reduce the computational complexity though (i)-(iv) above.

7.3.2 Impact of Technology

We use a software engineering method, which is our process for identifying and resolving semantic

conflicts across heterogonous data repositories which range from databases to XML documents and web

pages. The techniques used within the process are our reasoning mechanisms which perform ontological

grouping, alignment, integration and merge. However, modern software architectures cannot be deployed

without specifying the technology used for the deployment in the first place. Therefore, the technology

dictates the way we exercise techniques create implementations from our architectural models. Note: we

cannot talk about techniques (ii) above) before we choose a technology for the deployment of our

architecture.

Technology used in the thesis is a part of Semantic Web technology stack, which dictates the

deployment of our software architectural components and the application built from them. Therefore, our

 Chapter 7: Conclusions 182

technology dictates that our reasoning mechanisms are performed upon OWL/SWRL enable ontologies

and no other!

7.3.2.1 OWL DL Versus OWL Full

In this research we use OWL DL as the language for creating and manipulating ontological concepts.

OWL DL provides maximum expressiveness while retaining computational completeness (i.e. all

conclusions in ontologies and reasoning rules are guaranteed to be computable) and decidability (i.e. all

computations will finish in finite time) [42].

However, OWL DL is not the only sub language of OWL. OWL Lite supports a simple

classification hierarchy and constraints, and OWL Full provides maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees [42]. Therefore, OWL Full allows free

mixing of OWL with RDF Schema modelling constructs and subsequently, like RDF schemas, it does not

enforce a strict separation of ontological classes, properties and individuals. This freedom may result in:

1. the desired representation of heterogeneous data structures/values in OWL models when translating

database relational schemas and data values within a database into ontological concepts (the same

applies to any other format of data repositories including XML), and

2. exploiting OWL models through additional constraints/reasoning mechanisms at the level of and

between ontological classes, properties and individuals.

OWL Full may ultimately provide more „semantic power‟ in the ontological world because it allows us to

manipulate any concepts in the OWL model across all and between levels: classes / individuals /

properties. However, using OWL Full may have a severe implication towards the consistency of OWL

models, and subsequently, affect the reasoning rules we run upon them [314 and 315]. Having too much

freedom, in terms of adding constraints at any level within OWL models, may result in rigid ontological

solutions, which show (a) no flexibilities in accommodating changes in problem domains and ultimately

(b) weak consistencies, which can make OWL model unsuitable for retaining computational

completeness. Furthermore, we have experienced that reasoning engines in general cannot handle OWL

models overloaded with constraints at all levels.

From the discussion above, we can see that we should strike a balance between:

(i) utilising the power of OWL Full and the freedom it gives us in exploiting the semantics of OWL

models, as itemised in 1. and 2. above, and

(ii) ensuring the consistency of OWL models which may guarantee successful reasoning mechanisms

for the purpose of creating inference as itemised in (b) above.

With respect to 1. above, we have to emphasise that when translating relational schemas into ontological

concepts, we use tools, such as DataMaster [227] which enable automatic representations of relational

concepts within the ontological world. However, as soon as we start using a software tool, we become

dependent on functionalities offered by the tool and the subsets of OWL available within the tool (which

is always the decision made by developers of such tools). In our research, the use of DataMaster dictated

the following choices:

 we had to use option 2 (out of three) when translating data repositories into local ontologies, offered

by DataMaster [294 and 296]. This is because we have found and reported errors in the logical

consistency of the ontologies produced through translation option 3 (available at:

 Chapter 7: Conclusions 183

http://www.nabble.com/DataMaster:-OWL-models-generated-from-Relational-schemas-to2191).

Option 3 would deliver for us the desired representation of relational schemas within ontologies, as

outlined in 1 above, and unfortunately could not be used. Option 1 required frame-based modelling

in accordance to the Open Knowledge Base Connectivity
91

 and it was automatically eliminated

because it is not OWL based;

 option 2 in DataMaster is based on OWL DL in terms of dictating the way modeling constructs from

relational databases are translated within ontological world. In other words we cannot assume that

we will have a desired representation of heterogeneous data structures/values in OWL models as

outlined in 1 above, when using option 2.

Therefore, in our research we use OWL DL. However, this is not the only reason of “preferring” OWL

DL over OWL full.

With respect to 2. above, OWL DL requires constraints on disjointness of ontological classes,

properties and individuals, which in turn validates the consistency of OWL models and guarantees

reasoning mechanisms upon OWL modeling constructs. These constraints are essential if we expect

OWL DL to comply with DL [316] and hence, allowing a reasoning engine (e.g. Jess) to make decisions

that “OWL modelling constructs are decidable” [213]. This means that we can:

 decide whether an ontological individual IS of a particular class,

 check object and data type properties between ontological classes,

 check if a an ontological class is a subset of another class

 check if an OWL ontological model is consistent.

None of the bullets above can be done with OWL Full, because we will have to use SWRL rules for

securing “decidability” (see the bullets above). Additionally SWRL rules will not be successful if OWL

models are inconsistent, because they will not be able to guarantee successful reasoning mechanisms for

the purpose of creating inference.

Finally, we have to draw the reader‟s attention to the role of SWRL rules in our proposal, in order to

justify the use of OWL DL further. We use SWRL rules in order to:

a. establish semantically related data in heterogeneous data repositories (i.e. grouping reasoning

mechanism);

b. execute ontology mappings (alignment, integration and merge) to resolve semantic conflicts, which

automatically generates ontological layering;

c. provide domain-specific ontological solutions (e.g. resolving semantic conflicts in healthcare);

d. avoid overloading of OWL models with built-in semantics, because SWRL rules can add

expressivity to and strengthen the semantics of OWL models;

e. leave local ontologies LOj intact while resolving semantic conflicts, i.e. preserving the original

semantics in local ontologies LOj carried forward from data repositories Repi. In other words

semantic conflicts detected within local ontologies LOj are carried forward in and resolved through

ontological layering;

f. add expressivity to OWL models in terms of modeling CWA, i.e. define assumption in which

everything that is not derivable from the OWL model is assumed to be false (see chapter 3, section

91

 http://www.ai.sri.com/~okbc/

http://www.nabble.com/DataMaster:-OWL-models-generated-from-Relational-schemas-to2191

 Chapter 7: Conclusions 184

3.3.2), in order to retain computational completeness of OWL models and reduce the level of OWA

(i.e. assumption in which conclusions cannot be derived from an ontological model (see chapter 3,

section 3.3.2)). For example, the names of range values or ontological individuals in our SWRL

rules are categorised as CWA that guarantee right inferences/assertions at the right place in our

ontological layering.

Therefore, in our research, striking a balance between the freedom of utilising the power of OWL Full

and ensuring the consistency of OWL models, means that we have to trade-off and sacrifice the freedom

of exploiting semantics across and between all levels of OWL models in OWL Full, in order to secure

reasoning mechanisms (running SWRL rules upon OWL DL model), which ultimately generate

ontological layering and resolve semantic conflicts.

7.3.2.2 Reasoning Rules and Hard Coding

When reflecting upon the nature of our SWRL rules used in a. and b. above, we can argue that we “hard

code” the way we resolve semantic conflicts. “Hard coding” per se may:

- restrict the level of „re-usability‟ of Low-Level, High-Level and Post-High-Level reasoning

mechanisms (i.e. our reasoning mechanism may be seen as being “specific” to the problem of

resolving semantic conflicts, which appear within a particular retrievals across heterogeneous data

repositories),

- have impact on how generic our ontological layering is (i.e. it is most likely that ontologies are too

domain specific), and

- increase the number of SWRL rules used in in our reasoning mechanisms.

The alternative to our way of using SWRL rules could be to create additional constraints within our OWL

models instead of creating SWRL rules, which add expressivity to them. However, this would have a

severe impact on autonomy of our data repositories and the semantics carried forward to our local

ontologies. Our proposal is based on the decision to keep data repositions INTACT (autonomous) and a

build a solution which resolves semantic conflicts in ontological layering, without changing concepts and

semantics of data repositories.

Therefore, we promote “hard coding” through the names of range values or ontological individuals

in our SWRL rules because it allows us to:

 express and strengthen the semantics stored in heterogeneous data repositories by fully exercising

SWRL rules,

 resolve semantic conflicts through SWRL rules and NOT through additional constraints modeled

within OWL models and

 provide re-usability in our solution in terms of using the same set of local ontologies across various

user‟s requests for retrievals imposed on them. Hence, the whenever the user issue a request for a

different retrieval, the only aspect of our proposal which changes is a set of SWRL rules. In other

words, each request for a retrieval will result in a different set of ontology mappings which are

generated according to the types of semantic conflicts we try to resolve and NOT according to the

semantics stored in local ontologies. Hence, different ontology mappings can be used through

different set of SWRL rules without changing the semantics of data repositories.

 Chapter 7: Conclusions 185

7.3.2.3 Computations in Java Versus SWRL rules

In chapter 5, section 5.4, we describe a software application which manages user‟s requests and triggers

ontological layering which ultimately resolves semantic conflicts. It is obvious that we had to use

integrated development environments which secures front end GUI and access to the results of our

ontological layering. (NetBeans 6.4 IDE and JSP, OWL API), Therefore, we must ask how much we

should rely on Java in future and how much we can overload SWRL to do computations. Thus, our idea

to distinguish between computations created in Java and computations that rely on execution of SWRL

rules though reasoning engines has become important because we wanted to achieve:

 a high level of level of automation when creating ontological layering,

 reduction in the amount java code which manipulates data from repositories

 isolation of reasoning rules from the main stream computations (java) to allow us to run any number

and combination of SWRL rules, upon constantly changing ontological individuals stored in

ontological layers.

There are no restrictions in using methods from OWL API libraries when using NetBeans, therefore our

choice to import methods from OWL API libraries is dictated by their roles in:

 accessing and manipulating ontological concepts and

 triggering reasoning mechanisms upon ontological concepts.

The co-existence of NetBeans 6.4 IDE and Protégé 3.4 has helped us to generate the software application

built upon ontological layering and decide exactly where “computations” (Java versus SWRL) should

take place.

 By relying on the power of SWRL and flexibility of our OWL models we have minimized java coding

and created a software application which in its back-end manipulates semantics of data stored in

ontologies and NOT in classical (relational?) data repositories. Furthermore our java code remains intact

regardless which request is being issued upon heterogeneous repositories. This might be the first step

towards the creation of semantic software applications which manipulate ontological concepts.

A list of future works applicable solely to the example of retrievals of semantically related data

across repositories in pervasive healthcare environments is below.

7.4 Future Research

We give below a list of future works which will either enhance or evaluate our proposal further.

1. We have not experimented with all of the sub-options in our Low-level and High-level reasoning

mechanisms outlined in chapter 4 and illustrated in chapter 5, when creating matches/links between

ontological individuals and moving/transferring them to a different ontological class (pages 56, 71

and 74). In other words, we have used sub-options 6a, 6b, 6c and 7b but have had no opportunity to

experiment with other sub-options 6d, 7a, 7c and 7d (see chapter 4. section 4.3.4.2-4.3.4.3). The

reasons for this are twofold. Firstly, the sub-options we used have proven to be sufficient to

establish semantically related data and resolve all 9 semantic conflicts they generate. Secondly, the

semantic richness of the data in repositories and consequently in local ontologies did not require the

use off all the sub-options in our reasoning mechanisms. However, unused sub-options are there for

 Chapter 7: Conclusions 186

any other situation where we may use our ontological layering, i.e. use our reasoning mechanisms

across domains and case studies. If for any reason we are in future faced with new types of semantic

conflicts then our reasoning mechanisms will have provisions for handling them through all unused

sub-options. Therefore, problem domains where unused matching/linking options can be illustrated,

remains to be found.

2. We have elaborated in section 7.2.4, that the level of automation in our proposal depends on our

classification of semantically related data and their degree of similarities. We use the classification

to identify semantic conflicts and perform ontology mappings in order resolve semantic conflicts.

Thus, the next step would be to build an new ontology for our classification of semantically related

data and their degrees of similarities, which in turn can be used for:

i. mappings between the ontology and core ontological layering in order to fully automate the

process for identifying and resolving semantic conflicts, and

ii. adding semantic weightings to each degree of similarity through OWL annotations in order to

evaluate if our degrees of similarities are an acceptable measure for identifying semantic

conflicts.

3. We are currently extending our categorisation of semantic conflicts in order make provisions for

other types of semantic heterogeneities in modern computational environments. However, we

should deal in future with ontology mismatches in terms of the differences in the number of

restrictions applied to ontological concepts, and the number of properties used in restrictions.

Consequently, the most challenging task would be to concentrate on semantic heterogeneities of

completely unstructured data!

4. We have managed to create layered ontologies capable of building machine interpretable knowledge.

However, our ontological solution is NOT there to build a knowledge base. Our ontological layering

is a software engineering mechanism for resolving semantic conflicts, which exists only for the

purpose of retrievals across heterogeneous data repositories. Therefore, we should open doors to

anyone who is ready to (re)use our reasoning mechanisms for creating a knowledge-base (in any

domain and for any purpose). Furthermore, the inference in our ontological solution is based on

ontological mappings which move/transfer ontological individuals through ontological layers. It

would be not appropriate for us to “keep” the content of these ontological layers in any format of

persistence. More research should be done in order to see which type of knowledge-base we could

generate through our reasoning mechanisms.

5. We have tested the performance of our software application built upon ontological layering, in terms

of the time it takes to run the request for retrievals across heterogeneous data repositories. However,

we are aware that we can increase performance by saving/distributing SWRL rules across

several .owl files, hence adhering to Tbox and Abox philosophy in DL
92

.

6. We have not used RDF for resolving semantic conflicts because of the nature of data repositories

and heterogeneities we carry forward in our ontological layering. It is obviously easier to mirror

structures and semi-structures of data repositories such as databases in ontological concepts than in

RDF triples. However, we leave for future works the possibility of building ontologies at the RDF

92 http://www.w3org/2001/sw/

http://www.w3org/2001/sw/

 Chapter 7: Conclusions 187

level in order to support the Semantic Web Stack (introduced in chapter 2, section 2.5) and

guarantee machine interpretable knowledge.

7. We have to draw the reader‟s attention to our own list of future works applicable solely to the

problem domain of pervasive healthcare and technologies used in such environments. They are

itemised below:

a. Component based solution and MVC pattern - although we have demonstrated that we are

capable of running SWRL rules within an .owl file, we must analyse technologies which can

support and manage the persistence of .owl files so that ontological concepts within such

solutions can correspond to the “model” of the MVC pattern
93

.

b. The power of users – although we deliver rich user interfaces to medical professionals who are

using our software application described in section 5.4, we have to evaluate the possibility of

giving them more freedom in specifying the exact data required in retrievals across

heterogeneous data repositories, e.g. the choice of more radio buttons in order to select the exact

data that constitutes information types. However, this will naturally imply an increase in the

number of SWRL Grouping rules used in order to group semantically related data in information

types specified in retrievals, as a consequence of storing and interpreting user requests.

Consequently, we must investigate the impact of these additional rules on the performance of our

software application.

c. Methods within OWL API library – although our choice of library methods works perfectly well

in all our experiments, we have to consider, for the purpose of improving the functionality of our

application from section 5.4, which other „methods‟ within the OWL API library may be more

suitable than the current ones.

93

 http://www.oracle.com/technetwork/java/mvc-140477.html

http://www.oracle.com/technetwork/java/mvc-140477.html

 Appendices 188

Appendices

Appendix A.1

Table 4.1 Different types of semantic conflicts based on Naming and Structural conflicts that our SA

resolves through core ontological layering.

Types of Naming

based conflicts:

Definition: Example:

MISSPELT/

CASE-SENSITIVE

semantic conflict.

Incorrect spellings/

Upper and lower

cased letters used to

describe named

concepts.

Consider the example of two concepts called

MEDICAL_SUMMARY and MMMedical_Summary

that model a patient‟s summary of previous diagnosis

in a general practitioner and hospital environment

respectively. The MEDICAL_SUMMARY and

MMMedical_Summary concepts are semantically

related and have the same meaning, i.e. they both

model a patient‟s summary of previous diagnosis.

However, there is a conflict between them due to the

difference in their spelling and case sensitivity of

characters.

HOMONYM

semantic conflict.

A named concept that

sounds alike another

named concept but

have different

meanings to each

other.

Consider the example of a concept called Report

that models the combinations of treatments and

diagnosis per patient for a general practitioner

environment, and a concept called Report that

represents the list of patients who have positively

reacted to a particular treatment within a hospital

environment. The concepts Report have the same

name in both environments, and appear to be

semantically related. However, there is a conflict

between them due to the difference in their meaning,

i.e. these two concepts do not have any similarities in

respect to their interpretation in a given context.

SYNONYM based

semantic conflict.

A named concept

having the same or

nearly the same

meaning as another

named concept.

Consider the example of a concept called

Electronic health record that models a

patient‟s health summary in a general practitioner

environment and a concept called Computational

record that models the same patient‟s health

summary in a hospital environment. Both concepts

Electronic health record and

Computational record are semantically related

and have semantic similarities between them as they

model the same patient‟s health summary. However,

there is a conflict between them due to the difference

in their intended use, i.e. a hospital patient semantics

might have different structures compared to a general

practitioner‟s patient semantics.

 Appendices 189

Types of Structural

based conflicts:

Definition: Example:

GENERALISATION

semantic conflict.

A named concept

having a „super types‟

of their

„characteristics‟ in

terms of describing

the same meaning as

another named

concept.

Consider the example of a concept called Summary

of treatments that models a patient‟s treatments

over the six months in a general practitioner‟s

environment and the concepts called Previous

treatment summaries and Current

treatment summaries that model the same

patient‟s treatments over the last year in a clinic

environment. The three concepts are semantically

related and have semantic similarities because they all

model the same patient‟s treatments. However, there

is a conflict between them due to the difference in

their structures. The Summary of treatments

concept is a super-type of Previous treatment

summaries and Current treatment

summaries concepts, i.e. Summary of

treatments is a generalized concept which

contains subsets of both concepts Previous

treatment summaries and Current

treatment summaries.

SPECIALISATION

semantic conflict.

A named concept

having a „sub types‟

of their

„characteristics‟ in

terms of describing

the same meaning as

another named

concept.

Consider the example of concepts called Previous

prescription summary and Current

prescription summary that model a patient‟s

prescription over the last six months in a hospital

environment, and a concept called Summary of

prescription that also models the same patient‟s

prescription over the last year in a general

practitioner‟s environment. The three concepts are

semantically related and have semantic similarities

because they all model the same patient‟s

prescriptions. However, there is a conflict between

them due to the difference in their structures. The

Previous prescription summary and

Current prescription summary concepts

are sub-types of the Summary of

prescription concept i.e. Previous

prescription summary and Current

prescription summary are specialized

concepts which are contained within‟ the Summary

of prescription concept.

ISOMORPHISM

semantic conflict.

A named concept

having a „different

numbers‟ of their

„characteristics‟ in

terms of describing

the same meaning as

another named

concept.

Consider the example of concepts called Labtest

name, Labtest type and Labtest date that

model a patient‟s lab tests in a hospital environment,

and the concepts called Labtest name, Labtest

type, Labtest data and Labtest date that

also model the same patient‟s lab test in a clinic

environment. The seven concepts are semantically

related and have semantic similarities because they all

model the same patient‟s lab tests results. However,

there is a conflict between them due to the difference

in the number of structures, i.e. concepts in the clinic

 Appendices 190

environment have a different number of

„characteristics‟
94

 compared to the concepts in the

hospital environment (Labtest data exists only in

the hospital environment).

UNION

INCOMPATIBILITY

semantic conflict.

A named concept

having a „different

structures‟ of their

„characteristics‟ in

terms of describing

the same meaning as

another named

concept.

Consider the example of concepts called

Medication name, Medication

description and Manufacturing address

that models a patient‟s prescribed medications in a

hospital environment, and the concepts called

Medication name, Medicine description

and Manufacturing description that also

model the same patient‟s prescribed medications in a

clinic environment. These six concepts are

semantically related and have semantic similarities

because they all model the same patient‟s prescribed

medicine. However, there is a conflict between them

due to the difference in their structures, i.e. the

hospital environment uses the concept

Manufacturing address and the clinic

environment uses the concept Manufacturing

description to cover the same meaning.

AGGREGATION

semantic conflict.

A named concept

having a „different

aspects‟ of their

„characteristics‟ in

terms of describing

the same meaning as

another named

concept.

Consider the example of concepts called Patient

name, Patient address and Patient

contact number that model a patient‟s personal

details in a hospital environment, and the concepts

called Patient first name, Patient last

name, Patient address and Patient

contact number that also models the same

patient‟s personal details in a general practitioners

environment. These seven concepts are semantically

related and have semantic similarities because they all

model the same patient‟s personal details. However,

there is a conflict between them due to the difference

in their structures, i.e. patient‟s demographic data are

modeled differently because the hospital environment

uses the concept Patient name and the clinic

environment uses the concepts Patient first

name and Patient last name. The aggregation

of the two concepts from the clinic environment will

create a concept equivalent to Patient name in the

hospital environment.

94

 „characteristics‟ of the concept may be either: „labels/titles‟ given to concepts, „data structures‟ that make up

concepts, or „data instances/values‟ of concepts in any data model, schema or meta-data levels.

 Appendices 191

Appendix A.2

The relational schemas for the data repositories GP_Rep, Hospital_Rep, Clinic_2_Rep, and Clinic_2_Rep,

including the „insert‟ SQL statements for patient „JANE FLEE‟ in the Persistent layer of the software

architecture for Go-CID software applications:

Relational schema for GP_Rep

Create statement for GP.Patient table:
CREATE TABLE GP_DB.PATIENT (

PATIENT_ID VARCHAR (6),

FIRST_NAME VARCHAR (10),

LAST_NAME VARCHAR (20),

SEX CHAR(1) CHECK (Gender IN ('M', 'F')),

DOB VARCHAR(20),

ADDRESS VARCHAR (100),

REGION VARCHAR (100),

TELEFFONNE VARCHAR (20),

NEXT_OF_KIN VARCHAR (30),

EMERGENCY_CONTACT VARCHAR (100),

NO_OF_CHILDREN VARCHAR (10),

BMI VARCHAR (20),

HEIGHT VARCHAR (30),

PRIMARY KEY (PATIENT_ID)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for GP.Patient table:
INSERT INTO GP_DB.PATIENT VALUES ('P3344A', 'JANE', 'FLEE', 'F',

'JULY_04_1970', '167_BOULEVARD_RD_W1W_5TU', 'LONDON', '02075698899',

'NEMANJA_FLEE', '07965896456', '0', 'NORMAL', '5_feet_8_inches');

INSERT INTO GP_DB.PATIENT VALUES ('P2255B', 'JULIA', 'FOX', 'F',

'JUNE_17_1971', '27_HANGER_LANE_RD_N1E_6SU', 'LONDON', '02078691369',

'PETER_FOX', '07949538498', '1', 'NORMAL_PER_BMI', '5_feet_4_inches');

SELECT * FROM GP_DB.PATIENT;

Create statement for GP.Prescription table:
CREATE TABLE GP_DB.PRESCRIPTION (

PRESCRIPTION_NO VARCHAR (6),

PATIENT_ID VARCHAR (6),

PRESCRIPTION_DATE DATE,

PRIMARY KEY (PRESCRIPTION_NO),

FOREIGN KEY (PATIENT_ID) REFERENCES PATIENT(PATIENT_ID)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for GP.Prescription table:
INSERT INTO GP_DB.PRESCRIPTION VALUES('PP1245', 'P3344A', '12-03-09');

INSERT INTO GP_DB.PRESCRIPTION VALUES('PP4569', 'P2255B', '14-03-09');

SELECT * FROM GP_DB.PRESCRIPTION;

Create statement for GP.Medication table:
CREATE TABLE GP_DB.MEDICATION(

MEDICINE_NUM VARCHAR (6),

MEDICINE_NAME VARCHAR (30),

VENDOR VARCHAR (100),

MNF_DESC VARCHAR (100),

PRIMARY KEY (MEDICINE_NUM)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

 Appendices 192

Insert values for GP.Medication table:
INSERT INTO GP_DB.MEDICATION VALUES('M0031', ' M0031_Capzasin',

'M0031_Xhing_Ltd', ' M0031_China_pharmaceuticals');

SELECT * FROM GP_DB.MEDICATION;

Create statement for GP.Medication_Prescribed table:
CREATE TABLE GP_DB.MEDICATION_PRESCRIBED (

PRESCRIPTION_NO VARCHAR (6),

MEDICINE_NUM VARCHAR (6),

MEDICATION_DESC VARCHAR (200),

DOSAGE_AMOUNT VARCHAR(200),

PRIMARY KEY (PRESCRIPTION_NO, MEDICINE_NUM),

FOREIGN KEY(PRESCRIPTION_NO) REFERENCES PRESCRIPTION(PRESCRIPTION_NO),

FOREIGN KEY(MEDICINE_NUM) REFERENCES MEDICATION(MEDICINE_NUM)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for GP.Medication_Prescribed table:
INSERT INTO GP_DB.MEDICATION_PRESCRIBED VALUES('PP1245', 'M0031',

'M0031_Pain killer_Perindopril', ' M0031_2_tablets_per_day');

INSERT INTO GP_DB.MEDICATION_PRESCRIBED VALUES('PP4569', 'M0031',

'M0031_Pain killer_Perindopril_Ebrumine', ' M0031_3_tablets_per_day');

SELECT * FROM GP_DB.MEDICATION_PRESCRIBED;

Create statement for GP.Treatment table:
CREATE TABLE GP_DB.TREATMENT (

TREATMENT_NO VARCHAR(6),

PRESCRIPTION_NO VARCHAR (6),

MEDICINE_NUM VARCHAR (6),

TREATMENT_OVERVIEW VARCHAR (200),

DATE VARCHAR(20),

PRIMARY KEY (TREATMENT_NO),

FOREIGN KEY(PRESCRIPTION_NO) REFERENCES PRESCRIPTION(PRESCRIPTION_NO),

FOREIGN KEY(MEDICINE_NUM) REFERENCES MEDICATION(MEDICINE_NUM)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for GP.Treatment table:
INSERT INTO GP_DB.TREATMENT VALUES ('TT1989', 'PP1245', 'M0031',

'TT1989_Patient_is_suffering_from_aches_in_lower_limbs_and_has_minor_swell

ing_to_ankle_pain_support_through_chronic_pain_recovery_is_suggested',

'TT1989_12-03-09');

INSERT INTO GP_DB.TREATMENT VALUES('TT4563', 'PP4569', 'M0031',

'TT4563_Patient_is_suffering_from_pains_in_lower_limbs_and_has_minor_swell

ing_to_ankle_see_prescription_given', 'TT4563_14-03-09');

SELECT * FROM GP_DB.TREATMENT;

Relational schema for Hospital_Rep

Create statement for Hospital.Patient table:
CREATE TABLE HOSPITAL_DB.PATIENT (

PATIENT_NO VARCHAR (6),

NAME VARCHAR (10),

SEX CHAR(1) CHECK (Gender IN ('M', 'F')),

DOB DATE,

H_MEDICAL_SUMMARY VARCHAR (200),

MAJOR_ILLNESS VARCHAR (100),

CHRONIC_DISEASE VARCHAR (100),

PRIMARY KEY (PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

 Appendices 193

Insert values for Hospital.Patient table:
INSERT INTO HOSPITAL_DB.PATIENT VALUES ('P0001', 'JANE_FLEE', 'F', '1970-

07-04',

'Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_evident_an

d_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_COPD_exac

erbation', 'no_major_illnness_evident', 'no_chronic_disease_evident');

INSERT INTO HOSPITAL_DB.PATIENT VALUES ('P0002', 'JULIA FOX', 'F', '1971-

06-17',

'Mrs_Fox_complains_of_severe_pain_in_left_ankle_and_xrays_taken_admitted_a

s_overnight_stay_and_found_to_have_acute_COPD_exacerbation',

'no_major_illnness', 'no_chronic_disease');

SELECT * FROM HOSPITAL_DB.PATIENT;

Create statement for Hospital.Treatment table:
CREATE TABLE HOSPITAL_DB.TREATMENT (

TREATMENT_NO VARCHAR (6),

PATIENT_NO VARCHAR (6),

TREATMENT_TYPE VARCHAR (100),

TREATMENT_NAME VARCHAR (100),

REPORT VARCHAR (100),

DATE VARCHAR (20),

PRIMARY KEY (TREATMENT_NO),

FOREIGN KEY(PATIENT_NO) REFERENCES PATIENT(PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Hospital.Treatment table:
INSERT INTO HOSPITAL_DB.TREATMENT VALUES ('T09851', 'P0001',

'T09851_COPD_Chronic_pain_recovery', 'T09851_COPD_exacerbation',

‘file_24456tt’, 'T09851_17-04-09');

INSERT INTO HOSPITAL_DB.TREATMENT VALUES ('T01245', 'P0002',

'T01245_COPDT_Chronic_pain_recovery', 'T01245_COPDT_exacerbation',

‘file_24466tt’, 'T01245_18-04-09');

SELECT * FROM HOSPITAL_DB.TREATMENT;

Create statement for Hospital.Medication table:
CREATE TABLE HOSPITAL_DB.MEDICATION(

MEDICINE_NO VARCHAR (6),

MEDICINE_NAME VARCHAR (30),

VENDOR VARCHAR (100),

MNF_ADDRESS VARCHAR (100),

PRIMARY KEY (MEDICINE_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Hospital.Medication table:
INSERT INTO HOSPITAL_DB.MEDICATION VALUES('M222p', 'M222p_NAPROXEN', '

M222p_Risedronate', ' M222p_Andheri_east_India');

INSERT INTO HOSPITAL_DB.MEDICATION VALUES('M225i', 'M225i_EHOSUXIMIDE',

'M225i_Emeside', 'M225i_South_coast_Canada');

SELECT * FROM HOSPITAL_DB.MEDICATION;

Create statement for Hospital.Medication_Prescribed table:
CREATE TABLE HOSPITAL_DB.MEDICATION_PRESCRIBED (

TREATMENT_NO VARCHAR (6),

MEDICINE_NO VARCHAR (6),

MEDICATION_DESC VARCHAR (200),

DOSAGE_AMOUNT VARCHAR(200),

PRIMARY KEY (TREATMENT_NO, MEDICINE_NO),

 Appendices 194

FOREIGN KEY(TREATMENT_NO) REFERENCES HOSPITAL_DB.TREATMENT(TREATMENT_NO),

FOREIGN KEY(MEDICINE_NO) REFERENCES HOSPITAL_DB.MEDICATION(MEDICINE_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Hospital.Medication_Prescribed table:
INSERT INTO HOSPITAL_DB.MEDICATION_PRESCRIBED VALUES('T09851', 'M222p', '

M222p_Anti_inflammatory_drugs', '

M222p_1_or_2_tablets_to_be_taken_4_times_a_day');

INSERT INTO HOSPITAL_DB.MEDICATION_PRESCRIBED VALUES('T09851', 'M225i', '

M225i_Anti_convulsant_drugs', '

M225i_1_tablets_to_be_taken_4_times_a_day');

INSERT INTO HOSPITAL_DB.MEDICATION_PRESCRIBED VALUES('T01245', 'M225i',

'M225i_Anti_convulsant', 'M225i_1_tablets_to_be_taken_2_times_a_day');

SELECT * FROM HOSPITAL_DB.MEDICATION_PRESCRIBED;

Relational schema for Clinic_1_Rep

Create statement for Clinic_1.Patient table:
CREATE TABLE CLINIC_1_DB.patient (

PATIENT_NO VARCHAR (6),

NAME VARCHAR (10),

SEX CHAR(1) CHECK (Gender IN ('M', 'F')),

TELEPHONE VARCHAR (20),

DOB DATE,

PREVIOUS_MEDICAL_SUMMARY VARCHAR (200),

CURRENT_MEDICAL_SUMMARY VARCHAR (200),

MAJOR_ILLNESS VARCHAR (100),

CHRONIC_DISEASE VARCHAR (100),

PRIMARY KEY (PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Clinic_1.Patient table:
INSERT INTO CLINIC_1_DB.PATIENT VALUES ('PP9985', 'JANE_FLEE', 'F',

'02075698899', '1970-07-04',

'Mrs_Flee_has_a_regular_cervical_smear_test_results_appear_normal',

'Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatigue',

'none_found', 'none');

INSERT INTO CLINIC_1_DB.PATIENT VALUES ('PP1125', 'JULIA FOX', 'F',

'02078691369', '1971-06-17',

'Mrs_Fox_has_a_regular_cervical_smear_test_results_appear_normal',

'Mrs_Fox_has_come_into_the_clinic_for_a_blood_test_complains_of_fatigue',

'no_trace', 'no');

SELECT * FROM CLINIC_1_DB.PATIENT;

Create statement for Clinic_1.Labtest table:
CREATE TABLE CLINIC_1_DB.LABTEST (

LABTEST_ID VARCHAR (6),

PATIENT_NO VARCHAR (6),

LABTEST_TYPE VARCHAR (100),

LABTEST_NAME VARCHAR (100),

LABTEST_RESULTS VARCHAR (100),

REPORT VARCHAR (100),

LABTEST_DATE VARCHAR(20),

PRIMARY KEY (LABTEST_ID),

FOREIGN KEY(PATIENT_NO) REFERENCES PATIENT(PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

 Appendices 195

Insert Values for Clinic_1.Labtest table:
INSERT INTO CLINIC_1_DB.LABTEST VALUES ('LT256', 'PP9985',

'LT256_Smear_test', 'LT256_Cervical_Type_3', 'LT256_Normal',

'LT256_file_0066', 'LT256_16-01-08');

INSERT INTO CLINIC_1_DB.LABTEST VALUES ('LT123', 'PP9985',

'LT123_Pathology', 'LT123_Blood_test_Type_4123', 'LT123_anaemia_level_46',

'LT123_file_0098', 'LT123_16-02-08');

INSERT INTO CLINIC_1_DB.LABTEST VALUES('LT659', 'PP1125',

'LT659_Smear_test_1', 'LT659_Cervical_T2', 'LT659_Normal_ABt',

'LT659_file_0000', ' LT659_16-01-08');

SELECT * FROM CLINIC_1_DB.LABTEST;

Relational schema for Clinic_2_Rep

Create statement for Clinic_2.Patient table:
CREATE TABLE CLINIC_2_DB.PATIENT (

PATIENT_NO VARCHAR (6),

LAST_NAME VARCHAR (10),

FIRST_NAME VARCHAR (10),

SEX CHAR(1) CHECK (Gender IN ('M', 'F')),

DOB DATE,

MEDICAL_SUMMARY VARCHAR (200),

MAJOR_ILLNESS VARCHAR (100),

CHRONIC_DISEASE VARCHAR (100),

PRIMARY KEY (PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Clinic_2.Patient table:
INSERT INTO CLINIC_2_DB.PATIENT VALUES ('Pt8895', 'FLEE', 'JANE', 'F',

'1970-07-04',

'Mrs_Flee_complains_of_shortness_of_breath_and_feels_intervals_of

pain_in_chest_area', 'No_MJ.', 'no_cd_found');

INSERT INTO CLINIC_2_DB.PATIENT VALUES ('Pt1123', 'FOX', 'JULIA', 'F',

'1971-06-17',

'Mrs_Fox_complains_of_shortness_of_breath_and_feels_intervals_of

pain_in_chest_area', 'MJ_not_found.', 'CD_not_found');

SELECT * FROM CLINIC_2_DB.PATIENT;

Create statement for Clinic_2.Labtest table:
CREATE TABLE CLINIC_2_DB.LABTEST (

LABTEST_ID VARCHAR (6),

PATIENT_NO VARCHAR (6),

LABTEST_OVERVIEW VARCHAR (200),

LABTEST_DATA VARCHAR (200),

LABTEST_TYPE VARCHAR (100),

LABTEST_NAME VARCHAR (100),

LABTEST_RESULTS VARCHAR (100),

REPORT VARCHAR (100),

LABTEST_DATE VARCHAR(20),

PRIMARY KEY (LABTEST_ID),

FOREIGN KEY(PATIENT_NO) REFERENCES PATIENT(PATIENT_NO)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Insert values for Clinic_2.Labtest table:
INSERT INTO CLINIC_2_DB.LABTEST VALUES('LL456', 'Pt8895',

'LL456_Used_to_identify_lung_diseases', ‘LL456_data_aa2’,

'LL456_Radiation', 'LL456_Xray', 'LL456_fileID_wavelength908',

'LL456_file_0001', 'LL456_28-04-09');

 Appendices 196

INSERT INTO CLINIC_2_DB.LABTEST VALUES('LLl4569', 'Pt1123',

'LLl4569_Used_to_identify_Pneumonia_lung_cancer_fluid_collection_the_lungs

', ‘LL14569_data_aa1’, ' LLl4569_Radiation_143', ' LLl4569_X_ray', '

LLl4569_fileID_wavelength203', ' ‘LLl4569_file_1401', ' LLl4569_29-03-

09');

SELECT * FROM CLINIC_2_DB.LABTEST;

Appendix A.3

Can be found on CD-ROM attached to thesis.

Appendix A.4

Table 5.1 The complete set of domain and range constraints for the datatype properties in local ontology

LO_gp.

Datatype Property: Domain Value:

(Class name and associated

ontological indvidual)

Range Value:

(Literal values)

db1:patient.PATIENT_ID ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

 P3344A

db1:patient.FIRST_NAME ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

 JANE

db1:patient.LAST_NAME ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

FLEE

db1:patient.ADDRESS ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

167_BOULEVARD_

RD_W1W_5TU

db1:patient.REGION ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

LONDON

db1:patient.TELEFFONNE ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

02085698899

db1:patient.NEXT_OF_KIN ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

NEMANJA_FLEE

db1:patient.EMERGENCY_CONT

ACT

ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

07965896456

db1:patient.NO_OF_CHILDREN ontological individual:

db:patient_Instance_1 of the:

db1:patient ontological class.

0

db1:patient.BMI ontological individual:

 db:patient_Instance_1 of the:

db1:patient ontological class.

NORMAL

db1:patient.HEIGHT ontological individual:

 db:patient_Instance_1 of the:

db1:patient ontological class.

5_feet_8_inche

s

 Appendices 197

Appendix A.5

Table 5.2 The complete set of domain and range constraints for the object properties in local ontology

LO_gp.

Datatype Property: Domain Value:

(Class name and associated

ontological indvidual)

Range Value:

(Literal values)

gp-patient-

PATIENT_ID

ontological individual:

gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

P3344A of the:

LO_gp-patient_instances

ontological class.

gp-patient-

FIRST_NAME

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

JANE of the:

LO_gp-patient_instances

ontological class.

gp-patient-

LAST_NAME

ontological individual:

 gp-patient_Instance_1 of

the:
LO_gp-patient_records

ontological class.

the ontological individual:

FLEE of the:
LO_gp-patient_instances

ontological class.

gp-patient-

ADDRESS

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:
167_BOULEVARD_RD_W1W_5T

U of the:
LO_gp-patient_instances

ontological class.

gp-patient-

REGION

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

LONDON of the:

LO_gp-patient_instances

ontological class.

gp-patient-

TELEPHONE

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

02085698899 of the:

LO_gp-patient_instances

ontological class.

gp-patient-

NEXT_OF_KIN

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

NEMANJA_FLEE of the:

LO_gp-patient_instances

ontological class

gp-patient-

EMERGENCY_CONTAC

T

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

07965896456 of the:

LO_gp-patient_instances

ontological class.

gp-patient-

NO_OF_CHILDREN

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

0 of the:

LO_gp-patient_instances

ontological class.

gp-patient-BMI ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

NORMAL of the:

LO_gp-patient_instances

ontological class.

 Appendices 198

gp-patient-

HIEGHT

ontological individual:

 gp-patient_Instance_1 of the:

LO_gp-patient_records

ontological class.

the ontological individual:

5_feet_8_inches of the:

LO_gp-patient_instances

ontological class.

Appendix A.6

Can be found on CD-ROM attached to thesis.

Appendix A.7

Table 5.3. Examples of semantic similarities and conflicts that have been carried forward into the

ontological concepts of the local ontologies LO_gp, LO_hospital, LO_clinic_1 and LO_clinic_2.

Semantic similarities carried forward into ontological

concepts of local ontologies LO_gp, LO_hospital, LO_clinic_1

and LO_clinic_2:

Type of semantic

conflicts:

Degrees of

similarity:

The attribute MEDICINE_NUM from the MEDICATION table in

the relational schema for the GP_Rep and the attribute

MEDICINE_NO from the MEDICATION table in the relational

schema for the Hospital_Rep have been carried forward into:

- object property gp-medication-MEDICATION_NUM of

LO_gp-medication_instances ontological class in

the local ontology LO_gp, and

- object property hospital-medication-

MEDICATION_NO of LO_hospital-

medication_instances ontological class in the local

ontology LO_hospital.

Both object properties resemble each other and do have some

semantic similarities between them.

The domain (i.e.

ontological individuals)

of the object properties

may generate the

SYNONYM based

naming conflict in the

retrievals of medical

summaries.

Semantic

Likeness

(3)

The attribute NAME from the PATIENT table in the relational

schema for the Hospital_Rep and the attributes FIRST_NAME,

and FIRST_NAME from the PATIENT table in the relational

schema for the Clinic_2_Rep have been carried forward into:

- object property hospital-patient-NAME of the
LO_hospital-patient_instances ontological class

in the local ontology LO_hospital, and

- object properties clinic_2-patient-FIRST_NAME

and clinic_2-patient-LAST_NAME of

LO_clinic_2-patient_instances ontological class

in the local ontology LO_clinic_2.

All the object properties resemble each other and there is some

kind of aggregation between them, i.e. the aggregation of the

object properties clinic_2-patient-FIRST_NAME, and

clinic_2-patient-LAST_NAME may create a concept

equivalent to hospital-patient.NAME object property.

The domain (i.e.

ontological individuals)

of the object properties

may generate the

AGGREGATION based

structural conflict in the

retrievals of patient

details.

Semantic

Likeness

(3)

The attribute MEDICAL_SUMMARY from the PATIENT table in

the relational schema for the Hospital_Rep and the attributes

CURRENT_MEDICAL_SUMMARIES and the

PREVIOUS_MEDICAL_SUMMARIES from the patient table in

The domain (i.e.

ontological individuals)

of the object properties

may generate the

GENERALISATION

Semantic

Subset -

contains

(4)

 Appendices 199

the relational schema for the Clinic_1_Rep have been carried

forward into:

- object property hospital-patient-

H_MEDICAL_SUMMARY of the LO_hospital-

patient_instances ontological class in local ontology

LO_hospital, and

- object properties clinic_1-patient-

CURRENT_MEDICAL_SUMMARIES and the clinic_1-
patient-PREVIOUS_MEDICAL_SUMMARIES of

LO_clinic_1-patient_instances ontological class

in the local ontology LO_clinic_1.

All object properties have semantic similarities through the

generalisation of their characteristics, i.e. the object property

hospital-patient-H_MEDICAL_SUMMARY is a super-

type for the object properties clinic_1-patient-

CURRENT_MEDICAL_SUMMARIES and the clinic_1-

patient-PREVIOUS_MEDICAL_SUMMARIES.

based structural conflict

in the retrievals of

medical summaries.

The attributes TREATMENT_TYPE, TREATMENT_NAME and

TREATMENT_DATE from the TREATMENT table in the

relational schema for the Hospital_Rep and the attributes

TREATMENT_OVERVIEW and TREATMENT_DATE from the

TREATMENT table in the relational schema for the GP_Rep have

been carried forward into:

- object properties hospital-treatment-

TREATMENT_TYPE and hospital-treatment-

TREATMENT_NAME of LO_hospital-

treatment_instances ontological class in the local

ontology LO_hospital, and

- object properties ‘gp-treatment-

TREATMENT_OVERVIEW’ and ‘gp-treatment-DATE‟

of the „LO_gp-treatment_instances’ ontological

class in the local ontology LO_gp.

All object properties have semantic similarities through the

specialisation of their characteristics, i.e. the object properties

hospital-treatment-TRETAMENT_TYPE and

hospital-treatment-TREATMENT_NAME are sub-types

for the object property gp-treatment-

TREATMENT_OVERVIEW.

The domain (i.e.

ontological individuals)

of the object properties

may generate the

SPECIALISATION

based structural conflict

in the retrievals of

treatment summaries.

Semantic

Subset -

contained

within (4)

The attributes MEDICINE_NUM, MEDICINE_NAME, VENDOR,

and MNF_DESC from the MEDICATION table in the relational

schema for the GP_Rep and the attributes MEDICINE_NO,

MEDICINE_NAME, VENDOR, and MNF_ADDRESS from the

MEDICATION table in the relational schema for the

Hospital_Rep have been carried forward into:

- object properties gp-medication-MEDICINE_NUM,

gp-medication-MEDICINE_NAME, gp-

medication-MNF_DESC and gp-medication-

MNF_DESC of LO_gp-medication_instances

ontological class in the local ontology LO_gp, and

- object properties hospital-medication-

MEDICINE_NO, hospital-medication-

MEDICINE_NAME, hospital-medication-VENDOR

and hospital-medication-MNF_DESC of

The domain (i.e.

ontological individuals)

of the object properties

may generate the

UNION

INCOMPATIBILTY

based structural conflict

in the retrievals of

medical summaries.

Semantic

Overlappin

g (6)

 Appendices 200

LO_hospital-medication_instances ontological

class in the local ontology LO_hospital.

All object properties resemble each other and have some semantic

similarities between them, but are not semantically equivalent to

each other, i.e. modelling of medication results in having two

different structures.

The attributes LABTEST_ID, PATIENT_NO, LABTEST_TYPE,

LABTEST_NAME, LABTEST_RESULTS, REPORT and DATE

from the LABTEST table in the relational schema for the

Clinic_1_Rep and the attributes LABTEST_ID, PATIENT_NO’,

„LABTEST_OVERVIEW, LABTEST_DATA, LABTEST_TYPE,

LABTEST_NAME, LABTEST_RESULTS, REPORT and DATE

from the LABTEST table in the relational schema for the

Clinic_2_Rep have been carried forward into:

- object properties clinic_1-labtest-LABTEST_ID,

clinic_1-labtest-PATIENT_NO, clinic_1-

labtest-LABTEST_OVERVIEW, clinic_1-

labtest-LABTEST_TYPE, clinic_1-labtest-

LABTEST_NAME and clinic_1-labtest-

LABTEST_RESULTS of LO_clinic_1-

labtest_instances ontological class in the local

ontology LO_clinic_1, and

- object properties clinic_2-labtest-LABTEST_ID,

clinic_2-labtest-PATIENT_NO, clinic_2-

labtest-LABTEST_OVERVIEW, clinic_2-

labtest-LABTEST_DATA, clinic_2-labtest-

LABTEST_TYPE, clinic_2-labtest-

LABTEST_NAME and clinic_2-labtest-

LABTEST_RESULTS of LO_clinic_2-

labtest_instances ontological class in the local

ontology LO_clinic_2.

All object properties resemble each other but the number of object

properties used to describe lab tests carried out for a particular

patient are different, i.e. the object property clinic_2-

labtest-LABTEST_DATA does NOT belong to the

LO_clinic_1-labtest_instances ontological class in

the local ontology LO_clinic_1.

The domain (i.e.

ontological individuals)

of the object properties

may generate the

ISOMORPHISM based

structural conflict in the

retrievals of treatment

summaries.

Semantic

Overlappin

g (6)

The attribute REPORT from the TREATMENT table in the

relational schema for the Hospital_Rep and the LABTEST table in

the relational schema for the Clinic_1_Rep have been carried

forward into :

- object property hospital-treatment-REPORT of

LO_hospital-treatment_instances ontological

class in the local ontology LO_hospital, and
- object property clinic_1-treatment.REPORT of

LO_clinic_1-treatment_instances ontological

class in the local ontology LO_clinic_1.

Both object properties have the similar names, but actually model

different subjects.

The domain (i.e.

ontological individuals)

of the object properties

may generate the

HYMONYM based

naming conflict.

Semantic

False

Likeness

(2),

 Appendices 201

Appendix A.8

Can be found on CD-ROM attached to thesis.

Appendix A.9

The SWRL Selection rules 1-8 for storing the results user involvements in the USER_INP_ONT ontology

in the User Request layer of the software architecture for Go-CID software applications:

Selection rule 1:

USER_CLICK_gp_rep(?A) ∧ TRUTH_VARIABLE_gp_rep(?B)

→ SELECTION_gp_rep(?B)

Selection rule 2:

USER_CLICK_hospital_rep(?A) ∧ TRUTH_VARIABLE_hospital_rep(?B)
→ SELECTION_hospital_rep(?B)

Selection rule 3:

USER_CLICK_clinic_1_rep(?A) ∧ TRUTH_VARIABLE_clinic_1_rep(?B)
→ SELECTION_clinic_1_rep(?B)

Selection rule 4:

USER_CLICK_clinic_2_rep(?A) ∧ TRUTH_VARIABLE_clinic_2_rep(?B)
→ SELECTION_clinic_2_rep(?B)

Selection rule 5:

USER_CLICK_patient_details(?A) ∧ TRUTH_VARIABLE_patient_details(?B)

→ SELECTION_patient_details(?B)

Selection rule 6:

USER_CLICK_patient_details(?A) ∧ TRUTH_VARIABLE_patient_details(?B)

→ SELECTION_patient_details(?B)

Selection rule 7:

USER_CLICK_treatment_summaries(?A) ∧

TRUTH_VARIABLE_treatment_summaries(?B)

→ SELECTION_treatment_summaries(?B)

Selection rule 8:

TEXT_ENTERED_jane_flee(?A) ∧ TRUTH_VARIABLE_jane_flee(?B)

→ SELECTION_jane_flee(?B)

Appendix A.10

Can be found on CD-ROM attached to thesis.

 Appendices 202

Appendix A.11

SWRL Grouping rules 10-30 used for interpreting Dr. Smith‟s involvements (i.e. clicks) within the

ADDED_VAL_ONT ontology in the User Request layer of our software architecture for Go-CID

software applications:

Grouping rule 10:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_patient_details(?B) ∧ has_variable_patient_details(?B, true) ∧

gp-patient-FIRST_NAME(?C, ?D) ∧ gp-patient-LAST_NAME(?E, ?Ff) ∧

gp-patient-SEX(?G, ?H) ∧ gp-patient-DOB(?I, ?J) ∧

gp-patient-ADDRESS(?K, ?L) ∧ gp-patient-REGION(?M, ?N) ∧

gp-patient-NEXT_OF_KIN(?O, ?P) ∧ gp-patient-EMERGENCY_CONTACT(?Q, ?R) ∧

gp-patient-NO_OF_CHILDREN(?S, ?T) ∧ gp-patient-BMI(?U, ?V) ∧

gp-patient-HEIGHT(?W, ?X) ∧ gp-patient-TELEFFONNE(?Y, ?Z)

→ patient_details-FROM-gp_rep (?D) ∧ patient_details-FROM-gp_rep(?Ff) ∧

patient_details-FROM-gp_rep(?H) ∧ patient_details-FROM-gp_rep(?J) ∧

patient_details-FROM-gp_rep(?L) ∧ patient_details-FROM-gp_rep(?N) ∧

patient_details-FROM-gp_rep(?P) ∧ patient_details-FROM-gp_rep(?R) ∧

patient_details-FROM-gp_rep(?T) ∧ patient_details-FROM-gp_rep(?V) ∧

patient_details-FROM-gp_rep(?X) ∧ patient_details-FROM-gp_rep(?Z)

Grouping rule 11:

SELECTION_hospital_rep(?A) ∧ has_variable_hospital_rep(?A, true) ∧

SELECTION_patient_details(?B) ∧ has_variable_patient_details(?B, true) ∧

hospital-patient-NAME(?C, ?D) ∧ hospital-patient-SEX(?E, ?Ff) ∧

hospital-patient-DOB(?G, ?H) ∧

→ patient_details-FROM-hospital_rep(?D) ∧ patient_details-FROM-

hospital_rep(?Ff) ∧ patient_details-FROM-hospital_rep(?H)

Grouping rule 12:

SELECTION_clinic_1_rep(?A) ∧ has_variable_clinic_1_rep(?A, true) ∧

SELECTION_patient_details(?B) ∧ has_variable_patient_details(?B, true) ∧

clinic_1-patient-NAME(?C, ?D) ∧ clinic_1-patient-SEX(?E, ?Ff) ∧

clinic_1-patient-TELEPHONE(?G, ?H) ∧ clinic_1-patient-DOB(?I, ?J) ∧

→ patient_details-FROM-clinic_1_rep(?D) ∧

patient_details-FROM-clinic_1_rep(?Ff) ∧

patient_details-FROM-clinic_1_rep(?H) ∧
patient_details-FROM-clinic_1_rep ?J)

Grouping rule 13:

SELECTION_clinic_2_rep(?A) ∧ has_variable_clinic_2_rep(?A, true) ∧

SELECTION_patient_details(?B) ∧ has_variable_patient_details(?B, true) ∧

clinic_2-patient-LAST_NAME(?C, ?D) ∧

clinic_2-patient-FIRST_NAME(?E, ?Ff) ∧

clinic_2-patient-SEX(?G, ?H) ∧ clinic_2-patient-DOB(?I, ?J)

→ patient_details-FROM-clinic_2_rep(?D) ∧

patient_details-FROM-clinic_2_rep(?Ff) ∧

patient_details-FROM-clinic_2_rep(?H) ∧
patient_details-FROM-clinic_2_rep(?J)

Grouping rule 14:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_patient_details(?E) ∧ has_variable_patient_details(?E, true) ∧

gp-patient-FIRST_NAME(?fF, ?G) ∧ gp-patient-LAST_NAME(?H, ?I) ∧

 Appendices 203

gp-patient-SEX(?J, ?K) ∧ gp-patient-DOB(?L, ?M) ∧

gp-patient-ADDRESS(?N, ?O) ∧ gp-patient-REGION(?P, ?Q) ∧

gp-patient-NEXT_OF_KIN(?R, ?S) ∧ gp-patient-EMERGENCY_CONTACT(?T, ?U) ∧

gp-patient-NO_OF_CHILDREN(?V, ?W) ∧ gp-patient-BMI(?X, ?Y) ∧

gp-patient-HEIGHT(?Z, ?a) ∧ gp-patient-TELEPHONE(?b, ?c)

→ patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?M) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?O) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?Q) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?S) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?U) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?W) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?Y) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?a) ∧
patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?c)

Grouping rule 15:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_patient_details(?E) ∧ has_variable_patient_details(?E, true) ∧

hospital-patient-NAME(?fF, ?G) ∧ hospital-patient-SEX(?H, ?I) ∧
hospital-patient-DOB(?J, ?K)

→ patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧
patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?K)

Grouping rule 16:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_patient_details(?E) ∧ has_variable_patient_details(?E, true) ∧

clinic_1-patient-NAME(?fF, ?G) ∧ clinic_1-patient-SEX(?H, ?I) ∧

clinic_1-patient-TELEPHONE(?J, ?K) ∧ clinic_1-patient-DOB(?L, ?M)

→ patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧
patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?M)

Grouping rule 17:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_patient_details(?E) ∧ has_variable_patient_details(?E, true) ∧

clinic_2-patient-LAST_NAME(?fF, ?G) ∧

clinic_2-patient-FIRST_NAME(?H, ?I) ∧

clinic_2-patient-SEX(?J, ?K) ∧ clinic_2-patient-DOB(?L, ?M)

→ patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧
patient_details-FROM-gp--hospital--clinic_1--clinic_2_rep(?M)

Grouping rule 18:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_medical_summaries(?B) ∧

 Appendices 204

has_variable_medical_summaries(?B, true) ∧ NO_information_retrievals(?C)
→ medical_summaries-FROM-gp_rep(?C)

Grouping 19:

SELECTION_hospital_rep(?A) ∧ has_variable_hospital_rep(?A, true) ∧

SELECTION_medical_summaries(?B) ∧

has_variable_medical_summaries(?B, true) ∧

hospital-patient-MEDICAL_SUMMARY(?C, ?D) ∧

hospital-patient-MAJOR_ILLNESS(?E, ?Ff) ∧
hospital-patient-CHRONIC_DISEASE(?G, ?H)

→ medical_summaries-FROM-hospital_rep(?D) ∧

medical_summaries-FROM-hospital_rep(?Ff) ∧
medical_summaries-FROM-hospital_rep(?H)

Grouping rule 20:

SELECTION_clinic_1_rep(?A) ∧ has_variable_clinic_1_rep(?A, true) ∧

SELECTION_medical_summaries(?B) ∧

has_variable_medical_summaries(?B, true) ∧

clinic_1-patient-PREVIOUS_MEDICAL_SUMMARY(?C, ?D) ∧

clinic_1-patient-CURRENT_MEDICAL_SUMMARY(?E, ?Ff) ∧

clinic_1-patient-MAJOR_ILLNESS(?G, ?H) ∧

clinic_1-patient-CHRONIC_DISEASE(?I, ?J) ∧

clinic_1-labtest-LABTEST_TYPE(?K, ?L) ∧

clinic_1-labtest-LABTEST_NAME(?M, ?N) ∧

clinic_1-labtest-LABTEST_RESULTS(?O, ?P) ∧
clinic_1-labtest-LABTEST_DATE(?Q, ?R)

 → medical_summaries-FROM-clinic_1_rep(?D) ∧

medical_summaries-FROM-clinic_1_rep(?Ff) ∧

medical_summaries-FROM-clinic_1_rep(?H) ∧

medical_summaries-FROM-clinic_1_rep(?J) ∧

medical_summaries-FROM-clinic_1_rep(?L) ∧

medical_summaries-FROM-clinic_1_rep(?N) ∧

medical_summaries-FROM-clinic_1_rep(?P) ∧
medical_summaries-FROM-clinic_1_rep(?R)

Grouping rule 21:

SELECTION_clinic_2_rep(?A) ∧ has_variable_clinic_2_rep(?A, true) ∧

SELECTION_medical_summaries(?B) ∧

has_variable_medical_summaries(?B, true) ∧

clinic_2-patient-MEDICAL_SUMMARY(?C, ?D) ∧

clinic_2-patient-MAJOR_ILLNESS(?E, ?Ff) ∧

clinic_2-patient-CHRONIC_DISEASE(?G, ?H) ∧

clinic_2-labtest-LABTEST_OVERVIEW(?I, ?J) ∧

clinic_2-labtest-LABTEST_TYPE(?K, ?L) ∧

clinic_2-labtest-LABTEST_NAME(?M, ?N) ∧

clinic_2-labtest-LABTEST_RESULTS(?O, ?P) ∧

clinic_2-labtest-LABTEST_DATE(?Q, ?R) ∧
clinic_2-labtest-LABTEST_DATA(?S, ?T)

→ medical_summaries-FROM-clinic_2_rep(?D)

∧ medical_summaries-FROM-clinic_2_rep(?Ff) ∧

medical_summaries-FROM-clinic_2_rep(?H) ∧

medical_summaries-FROM-clinic_2_rep(?J) ∧

medical_summaries-FROM-clinic_2_rep(?L) ∧

medical_summaries-FROM-clinic_2_rep(?N) ∧

medical_summaries-FROM-clinic_2_rep(?P) ∧

medical_summaries-FROM-clinic_2_rep(?R) ∧
medical_summaries-FROM-clinic_2_rep(?T)

 Appendices 205

Grouping rule 22:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_medical_summaries(?E) ∧

has_variable_medical_summaries(?E, true) ∧

hospital-patient-MEDICAL_SUMMARY(?fF, ?G) ∧

hospital-patient-MAJOR_ILLNESS(?H, ?I) ∧
hospital-patient-CHRONIC_DISEASE(?J, ?K)

→ medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧
medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?K)

Grouping rule 23:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_medical_summaries(?E) ∧

has_variable_medical_summaries(?E, true) ∧

clinic_1-patient-PREVIOUS_MEDICAL_SUMMARY(?fF, ?G) ∧

clinic_1-patient-CURRENT_MEDICAL_SUMMARY(?H, ?I) ∧

clinic_1-patient-MAJOR_ILLNESS(?J, ?K) ∧

clinic_1-patient-CHRONIC_DISEASE(?L, ?M) ∧

clinic_1-labtest-LABTEST_TYPE(?N, ?O) ∧

clinic_1-labtest-LABTEST_NAME(?P, ?Q) ∧

clinic_1-labtest-LABTEST_RESULTS(?R, ?S) ∧
clinic_1-labtest-LABTEST_DATE(?T, ?U)

→ medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?M) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?O) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?Q) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?S) ∧
medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?U)

Grouping rule 24:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_medical_summaries(?E) ∧ has_variable_medical_summaries(?E, true)
∧
clinic_2-patient-MEDICAL_SUMMARY(?fF, ?G) ∧

clinic_2-patient-MAJOR_ILLNESS(?H, ?I) ∧

clinic_2-patient-CHRONIC_DISEASE(?J, ?K) ∧

clinic_2-labtest-LABTEST_OVERVIEW(?L, ?M) ∧

clinic_2-labtest-LABTEST_TYPE(?N, ?O) ∧

clinic_2-labtest-LABTEST_NAME(?P, ?Q) ∧

clinic_2-labtest-LABTEST_RESULTS(?R, ?S) ∧

clinic_2-labtest-LABTEST_DATE(?T, ?U) ∧
clinic_2-labtest-LABTEST_DATA(?V, ?W)

→ medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?M) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?O) ∧

 Appendices 206

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?Q) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?S) ∧

medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?U) ∧
medical_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?W)

Grouping 25:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_treatment_summaries(?B) ∧

has_variable_treatment_summaries(?B, true) ∧

gp-medication-MEDICINE_NAME(?C, ?D) ∧ gp-medication-VENDOR(?E, ?Ff) ∧

gp-medication-MNF_DESC(?G, ?H) ∧

gp-medication_prescribed-DOSAGE_AMOUNT(?I, ?J) ∧

gp-treatment-TREATMENT_OVERVIEW(?K, ?L) ∧ gp-treatment-DATE(?M, ?N) ∧
gp-medication-MEDICINE_NUM(?O, ?P)

→ treatment_summaries-FROM-gp_rep(?D) ∧

treatment_summaries-FROM-gp_rep(?Ff) ∧

treatment_summaries-FROM-gp_rep(?H) ∧

treatment_summaries-FROM-gp_rep(?J) ∧

treatment_summaries-FROM-gp_rep(?L) ∧

treatment_summaries-FROM-gp_rep(?N) ∧
treatment_summaries-FROM-gp_rep(?P)

Grouping 26:

SELECTION_hospital_rep(?A) ∧ has_variable_hospital_rep(?A, true) ∧

SELECTION_treatment_summaries(?B) ∧

has_variable_treatment_summaries(?B, true) ∧

hospital-medication-MEDICATION_NAME(?C, ?D) ∧

hospital-medication-VENDOR(?E, ?Ff) ∧

hospital-medication-MNF_ADDRESS(?G, ?H) ∧

hospital-medication_prescribed-DOSAGE_AMOUNT(?I, ?J) ∧

hospital-treatment-TREATMENT_TYPE(?K, ?L) ∧

hospital-treatment-TREATMENT_NAME(?M, ?N) ∧

hospital-treatment-DATE(?O, ?P) ∧ hospital-medication-MEDICINE_NO(?Q, ?R)
→ treatment_summaries-FROM-hospital_rep(?D) ∧

treatment_summaries-FROM-hospital_rep(?Ff) ∧

treatment_summaries-FROM-hospital_rep(?H) ∧

treatment_summaries-FROM-hospital_rep(?J) ∧

treatment_summaries-FROM-hospital_rep(?L) ∧

treatment_summaries-FROM-hospital_rep(?N) ∧

treatment_summaries-FROM-hospital_rep(?P) ∧
treatment_summaries-FROM-hospital_rep(?R)

Grouping rule 27:

SELECTION_clinic_1_rep(?A) ∧ has_variable_clinic_1_rep(?A, true) ∧

SELECTION_treatment_summaries(?B) ∧

has_variable_treatment_summaries(?B, true) ∧ NO_information_retrievals(?C)
→ treatment_summaries-FROM-clinic_1_rep(?C)

Grouping 28:

SELECTION_clinic_2_rep(?A) ∧ has_variable_clinic_2_rep(?A, true) ∧

SELECTION_treatment_summaries(?B) ∧

has_variable_treatment_summaries(?B, true) ∧ NO_information_retrievals(?C)
→ treatment_summaries-FROM-clinic_2_rep(?C)

Grouping rule 29:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_treatment_summaries(?E) ∧

 Appendices 207

has_variable_treatment_summaries(?E, true) ∧

gp-medication-MEDICINE_NAME(?fF, ?G) ∧ gp-medication-VENDOR(?H, ?I) ∧

gp-medication-MNF_DESC(?J, ?K) ∧

gp-medication_prescribed-DOSAGE_AMOUNT(?L, ?M) ∧

gp-treatment-TREATMENT_OVERVIEW(?N, ?O) ∧ gp-treatment-DATE(?P, ?Q) ∧
gp-medication-MEDICINE_NUM(?R, ?S)

→ treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?M) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?O) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?Q) ∧
treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?S)

Grouping rule 30:

SELECTION_gp_rep(?A) ∧ has_variable_gp_rep(?A, true) ∧

SELECTION_hospital_rep(?B) ∧ has_variable_hospital_rep(?B, true) ∧

SELECTION_clinic_1_rep(?C) ∧ has_variable_clinic_1_rep(?C, true) ∧

SELECTION_clinic_2_rep(?D) ∧ has_variable_clinic_2_rep(?D, true) ∧

SELECTION_treatment_summaries(?E) ∧

has_variable_treatment_summaries(?E, true) ∧

hospital-medication-MEDICATION_NAME(?fF, ?G) ∧

hospital-medication-VENDOR(?H, ?I) ∧

hospital-medication-MNF_ADDRESS(?J, ?K) ∧

hospital-medication_prescribed-DOSAGE_AMOUNT(?L, ?M) ∧

hospital-treatment-TREATMENT_TYPE(?N, ?O) ∧

hospital-treatment-TREATMENT_NAME(?P, ?Q) ∧

hospital-treatment-DATE(?R, ?S) ∧ hospital-medication-MEDICINE_NO(?T, ?U)

→ treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?G) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?I) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?K) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?M) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?O) ∧

treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?Q) ∧
treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?S) ∧
treatment_summaries-FROM-gp--hospital--clinic_1--clinic_2_rep(?U)

Appendix A.12

Can be found on CD-ROM attached to thesis.

Appendix A.13

Can be found on CD-ROM attached to thesis.

Appendix A.14

SWRL Low-Level rules 31- 40 used for aligning semantically related data into Target Ontologies in the

Target ontological layer of our software architecture for Go-CID software applications:

Low-level reasoning rule 31:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

 Appendices 208

LO_gp-patient_instances(JANE) ∧ LO_gp-patient_instances(FLEE) ∧

LO_gp-patient_instances(FEMALE) ∧ LO_gpatient_instances(JULY_04_1970) ∧

LO_hospital-patient_instances(JANE_FLEE.)∧

LO_hospital-patient_instances(Female....) ∧

LO_hospital-patient_instances(JULY_04_1970..) ∧

has_same_FIRST_NAME(?fF, "JANE") ∧ has_same_LAST_NAME(?G, "FLEE")

→ TO_1(JANE) ∧ TO_1(FLEE) ∧ TO_1(FEMALE) ∧ TO_1(JULY_04_1970) ∧

TO_1(Female....) ∧ TO_1(JULY_04_1970..)

Low-level reasoning rule 32:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_gp-patient_instances(JANE) ∧ LO_gp-patient_instances(FLEE) ∧

LO_gp-patient_instances(FEMALE) ∧

LO_gppatient_instances(JULY_04_1970) ∧

LO_gp-patient_instances(TEL_02075698899) ∧

LO_clinic_1-patient_instances(JANE_FLEE) ∧

LO_clinic_1-patient_instances(Female......) ∧

LO_clinic_1-patient_instances(JULY_4_1970) ∧

LO_clinic_1-patient_instances(Tel_02075698899.) ∧

has_same_FIRST_NAME(?fF, "JANE") ∧ has_same_LAST_NAME(?G, "FLEE")

→ TO_2(JANE) ∧ TO_2(FLEE) ∧ TO_2(FEMALE) ∧ TO_2(JULY_04_1970) ∧

TO_2(TEL_02075698899) ∧ TO_2(Female......) ∧ TO_2(JULY_4_1970) ∧
TO_2(Tel_02075698899.)

Low-level reasoning rule 33:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_hospital-patient_instances(JANE_FLEE.) ∧

LO_hospital-patient_instances(Female....) ∧

LO_hospital-patient_instances(JULY_04_1970..) ∧

LO_clinic_2-patient_instances(JANE.) ∧

LO_clinic_2-patient_instances(FLEE.) ∧

LO_clinic_2-patient_instances(FEMALE...) ∧

LO_clinic_2-patient_instances(July_04_1970...) ∧

has_same_FIRST_NAME(?fF, "JANE") ∧ has_same_LAST_NAME(?G, "FLEE")

→ TO_3(JANE.) ∧ TO_3(FLEE.) ∧ TO_3(Female....) ∧ TO_3(JULY_04_1970..)

∧ TO_3(FEMALE...) ∧ TO_3(July_04_1970...)

Low-level reasoning rules 34:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_clinic_1-patient_instances(JANE_FLEE) ∧

LO_clinic_1-patient_instances(Female......) ∧

LO_clinic_1-patient_instances(JULY_4_1970) ∧

LO_clinic_2-patient_instances(JANE.) ∧

LO_clinic_2-patient_instances(FLEE.) ∧

LO_clinic_2-patient_instances(FEMALE...) ∧

LO_clinic_2-patient_instances(July_04_1970...) ∧

 Appendices 209

has_same_FIRST_NAME(?fF, "JANE") ∧ has_same_LAST_NAME(?G, "FLEE")

→ TO_4(JANE.) ∧ TO_4(FLEE.) ∧ TO_4(Female......) ∧

TO_4(JULY_4_1970) ∧ TO_4(FEMALE...) ∧ TO_4(July_04_1970...)

Low-level rule 35:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_hospital-

patient_instances(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_sw

elling_evident_and_xrays_taken_admitted_as_overnight_stay_and_found_to_hav

e_acute_COPD_exacerbation) ∧

LO_hospital-patient_instances(no_major_illnness_evident) ∧

LO_hospital-patient_instances(no_chronic_disease_evident) ∧
LO_clinic_1-

patient_instances(Mrs_Flee_has_a_regular_cervical_smear_test_results_appea

r_normal) ∧
LO_clinic_1-

patient_instances(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_compl

ains_of_fatigue) ∧

LO_clinic_1-patient_instances(none) ∧
LO_clinic_1-patient_instances(none_found)

→

TO_5(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_eviden

t_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_COPD_

exacerbation ∧

TO_5(Mrs_Flee_has_a_regular_cervical_smear_test_results_appear_normal) ∧
TO_5(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧ TO_5(no_major_illnness_evident) ∧ TO_5(no_chronic_disease_evident) ∧

TO_5(none) ∧ TO_5(none_found)

Low-level rule 36:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_clinic_1-

patient_instances(Mrs_Flee_has_a_regular_cervical_smear_test_results_appea

r_normal) ∧
LO_clinic_1-

patient_instances(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_compl

ains_of_fatigue) ∧

LO_clinic_1-patient_instances(none) ∧

LO_clinic_1-patient_instances(none_found) ∧

LO_clinic_2-patient_instances(Mrs_Flee_complains_of_shortness_of_breath) ∧

LO_clinic_2-patient_instances(No_MJ.) ∧
LO_clinic_2-patient_instances(no_cd_found)

→ TO_6(Mrs_Flee_has_a_regular_cervical_smear_test_results_appear_normal)∧
TO_6(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧

TO_6(Mrs_Flee_complains_of_shortness_of_breath) ∧

TO_6(none) ∧ TO_6(none_found) ∧ TO_6(No_MJ.) ∧ TO_6(no_cd_found)

Low-level rule 37:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

 Appendices 210

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_clinic_1-labtest_instances(LT256_Smear_test) ∧

LO_clinic_1-labtest_instances(LT256_Cervical_Type_3) ∧

LO_clinic_1-labtest_instances(LT256_Normal) ∧

LO_clinic_1-labtest_instances(LT123_16-02-08) ∧

LO_clinic_1-labtest_instances(LT123_Pathology) ∧

LO_clinic_1-labtest_instances(LT123_Blood_test_Type_4123) ∧

LO_clinic_1-labtest_instances(LT123_anaemia_level_46) ∧

LO_clinic_1-labtest_instances(LT256_16-01-08) ∧

LO_clinic_2-labtest_instances(LL456_Used_to_identify__lungs_diseases) ∧

LO_clinic_2-labtest_instances(LL456_Radiation) ∧

LO_clinic_2-labtest_instances(LL456_X_ray) ∧

LO_clinic_2-labtest_instances(LL456_fileID_wavelength908) ∧

LO_clinic_2-labtest_instances(LL456_28-04-09) ∧
LO_clinic_2-labtest_instances(LL456_data_aa2)

→ TO_7(LT256_Smear_test) ∧ TO_7(LT256_Cervical_Type_3) ∧

TO_7(LT256_Normal) ∧ TO_7(LT123_16-02-08) ∧

TO_7(LT123_Pathology) ∧ TO_7(LT123_Blood_test_Type_4123) ∧

TO_7(LT123_anaemia_level_46) ∧ TO_7(LT256_16-01-08) ∧

TO_7(LL456_Used_to_identify__lungs_diseases) ∧ TO_7(LL456_Radiation) ∧

TO_7(LL456_X_ray) ∧ TO_7(LL456_fileID_wavelength908) ∧

TO_7(LL456_28-04-09) ∧ TO_7(LL456_data_aa2)

Low-level rule 38:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_gp-medication_instances(M0031) ∧

LO_hospital-medication_instances(M222p) ∧

LO_hospital-medication_instances(M225i) ∧

has_same_UNIQUE_IDENTIFIER1(?fF, "M0031") ∧ has_same_UNIQUE_IDENTIFIER2(?G,

"M222p") ∧ has_same_UNIQUE_IDENTIFIER3(?H, "M225i")

→ TO_8(M0031) ∧ TO_8(M222p) ∧ TO_8(M225i)

Low-level rule 39:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-

treatment_instances(TT1989_Patient_is_suffering_from_aches_in_lower_limbs_

and_has_minor_swelling_to_ankle_pain_support_through_chronic_pain_recovery

_is_suggested) ∧

LO_gp-treatment_instances(TT1989_12-03-09) ∧

LO_hospital-treatment_instances(T09851_COPD_Chronic_pain_recovery) ∧

LO_hospital-treatment_instances(T01245_COPDT_exacerbation) ∧
LO_hospital-treatment_instances(T09851_17-04-09)

→

TO_9(TT1989_Patient_is_suffering_from_aches_in_lower_limbs_and_has_minor_s

welling_to_ankle_pain_support_through_chronic_pain_recovery_is_suggested)

∧ TO_9(TT1989_12-03-09) ∧ TO_9(T09851_COPD_Chronic_pain_recovery) ∧

TO_9(T01245_COPDT_exacerbation) ∧ TO_9(T09851_17-04-09)

Low-level reasoning rule 40:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

 Appendices 211

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

LO_gp-medication_instances(M0031_Capzasin) ∧

LO_gp-medication_instances(M0031_Xhing_Ltd) ∧

LO_gp-medication_instances(M0031_China_pharmaceuticals) ∧

LO_gp-medication_prescribed_instances(M0031_2_tablets_per_day) ∧

LO_hospital-medication_instances(M222p_Andheri_east_India) ∧

LO_hospital-medication_instances(M225i_EHOSUXIMIDE) ∧

LO_hospital-medication_instances(M225i_Emeside) ∧

LO_hospital-medication_instances(M225i_South_coast_Canada) ∧

LO_hospital-medication_instances(M222p_NAPROXEN) ∧

LO_hospital-medication_instances(M222p_Risedronate) ∧
LO_hospital-

medication_prescribed_instances(M222p_1_or_2_tablets_to_be_taken_4_times_a

_day) ∧
LO_hospital-

medication_prescribed_instances(M225i_1_tablets_to_be_taken_4_times_a_day)

→ TO_10(M0031_Capzasin) ∧ TO_10(M0031_Xhing_Ltd) ∧

TO_10(M0031_China_pharmaceuticals) ∧ TO_10(M0031_2_tablets_per_day) ∧

TO_10(M222p_Andheri_east_India) ∧ TO_10(M225i_EHOSUXIMIDE) ∧

TO_10(M225i_Emeside) ∧ TO_10(M225i_South_coast_Canada) ∧

TO_10(M222p_NAPROXEN) ∧ TO_10(M222p_Risedronate) ∧

TO_10(M222p_1_or_2_tablets_to_be_taken_4_times_a_day) ∧
TO_10(M225i_1_tablets_to_be_taken_4_times_a_day)

Appendix A.15

Can be found on CD-ROM attached to thesis.

Appendix A.16

SWRL High-Level rules 41-50 used for integrating semantically similar data into Derived Ontologies in

the Derived ontological layer of our software architecture for Go-CID software applications:

High-level reasoning rule 41:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_1(JANE) ∧ TO_2(JANE) ∧ TO_3(JANE.) ∧ TO_4(JANE.)

→ DO_1(JANE) ∧ DO_1(JANE) ∧ DO_1(JANE.) ∧ DO_1(JANE.)

High-level reasoning rule 42:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_1(FLEE) ∧ TO_2(FLEE) ∧ TO_3(FLEE.) ∧ TO_4(FLEE.)

→ DO_2(FLEE) ∧ DO_2(FLEE) ∧ DO_2(FLEE.) ∧ DO_2(FLEE.)

High-level reasoning rule 43:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

 Appendices 212

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_1(FEMALE) ∧ TO_1(Female....) ∧ TO_2(FEMALE) ∧

TO_2(Female......) ∧ TO_3(FEMALE...) ∧ TO_3(Female....) ∧

TO_4(FEMALE...) ∧ TO_4(Female......)

→ DO_3(FEMALE) ∧ DO_3(Female....) ∧ DO_3(FEMALE) ∧ DO_3(Female......) ∧

DO_3(FEMALE...) ∧ DO_3(Female....) ∧

DO_3(FEMALE...) ∧ DO_3(Female......)

High-level reasoning rule 44:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_1(JULY_04_1970) ∧ TO_1(JULY_04_1970..) ∧ TO_2(JULY_04_1970) ∧

TO_2(JULY_4_1970) ∧ TO_3(JULY_04_1970..) ∧ TO_3(July_04_1970...) ∧

TO_4(JULY_4_1970) ∧ TO_4(July_04_1970...)

→ DO_4(JULY_04_1970) ∧ DO_4(JULY_04_1970..) ∧ DO_4(JULY_04_1970) ∧

DO_4(JULY_4_1970) ∧ DO_4(JULY_04_1970..) ∧ DO_4(July_04_1970...) ∧

DO_4(JULY_4_1970) ∧ DO_4(July_04_1970...)

High-level reasoning rule 45:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
TO_5(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_eviden

t_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_COPD_

exacerbation) ∧
TO_5(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧
TO_6(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧
TO_6(Mrs_Flee_complains_of_shortness_of_breath)

 →

DO_5(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_eviden

t_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_COPD_

exacerbation) ∧
DO_5(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧
DO_5(Mrs_Flee_complains_of_shortness_of_breath)

High-level reasoning rule 46:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_5(no_major_illnness_evident) ∧ TO_5(none) ∧ TO_6(none) ∧
TO_6(No_MJ.)

→ DO_6(no_major_illnness_evident) ∧ DO_6(none) ∧ DO_6(none) ∧
DO_6(No_MJ.)

High-level reasoning rule 47:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

 Appendices 213

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_5(no_chronic_disease_evident) ∧ TO_5(none_found) ∧

TO_6(none_found) ∧ TO_6(no_cd_found)

→ DO_7(no_chronic_disease_evident) ∧ DO_7(none_found) ∧

DO_7(none_found) ∧ DO_7(no_cd_found)

High-level reasoning rule 48:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_7(LT256_Smear_test) ∧ TO_7(LT256_Cervical_Type_3) ∧

TO_7(LT256_Normal) ∧ TO_7(LT123_16-02-08) ∧ TO_7(LT123_Pathology) ∧

TO_7(LT123_Blood_test_Type_4123) ∧ TO_7(LT123_anaemia_level_46) ∧

TO_7(LT256_16-01-08) ∧ TO_7(LL456_Radiation) ∧ TO_7(LL456_X_ray) ∧

TO_7(LL456_fileID_wavelength908) ∧ TO_7(LL456_28-04-09)

→ DO_8(LT256_Smear_test) ∧ DO_8(LT256_Cervical_Type_3) ∧

DO_8(LT256_Normal) ∧ DO_8(LT123_16-02-08) ∧ DO_8(LT123_Pathology) ∧

DO_8(LT123_Blood_test_Type_4123) ∧ DO_8(LT123_anaemia_level_46) ∧

DO_8(LT256_16-01-08) ∧ DO_8(LL456_Radiation)∧ DO_8(LL456_X_ray) ∧

DO_8(LL456_fileID_wavelength908) ∧ DO_8(LL456_28-04-09)

High-level reasoning rule 49:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_9(TT1989_12-03-09) ∧ TO_9(T09851_17-04-09)

→ DO_9(TT1989_12-03-09) ∧ DO_9(T09851_17-04-09)

High-level reasoning rule 50:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_10(M0031_Capzasin) ∧ TO_10(M0031_Xhing_Ltd) ∧

TO_10(M0031_2_tablets_per_day) ∧ TO_10(M225i_EHOSUXIMIDE) ∧

TO_10(M225i_Emeside) ∧ TO_10(M222p_NAPROXEN) ∧

TO_10(M222p_Risedronate) ∧

TO_10(M222p_1_or_2_tablets_to_be_taken_4_times_a_day) ∧
TO_10(M225i_1_tablets_to_be_taken_4_times_a_day)

→ DO_10(M0031_Capzasin) ∧ DO_10(M0031_Xhing_Ltd) ∧

DO_10(M0031_2_tablets_per_day) ∧ DO_10(M225i_EHOSUXIMIDE) ∧

DO_10(M225i_Emeside) ∧ DO_10(M222p_NAPROXEN) ∧

DO_10(M222p_Risedronate) ∧

DO_10(M222p_1_or_2_tablets_to_be_taken_4_times_a_day) ∧
DO_10(M225i_1_tablets_to_be_taken_4_times_a_day)

Appendix A.17

Can be found on CD-ROM attached to thesis.

 Appendices 214

Appendix A.18

SWRL Post-High-Level rules 51-61 used for merging semantically equivalent into Go-CID in the Go-

CID ontological layer of our software architecture for Go-CID software applications:

Post-High-Level rule 51:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_1(JANE)

→ FIRST_NAME(JANE)

Post-High-Level rule 52:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_2(FLEE)

→ LAST_NAME(FLEE)

Post-High-Level rule 53:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_3(FEMALE)

→ SEX(FEMALE)

Post-High-level rule 54:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_4(JULY_04_1970)

→ DOB(JULY_04_1970)

Post-High-level rule 55:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(ADD_167_BOULEVARD_RD_W1W_5TU)

→ ADDRESS(ADD_167_BOULEVARD_RD_W1W_5TU)

Post-High-level rule 56:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(LONDON)

→ REGION(LONDON)

 Appendices 215

Post-High-Level rule 57:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(NEMANJA_FLEE)

→ NEXT_OF_KIN(NEMANJA_FLEE)

Post-High-level rule 58:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(TEL_07965896456)

→ EMERGENCY_CONTACT(TEL_07965896456)

Post-High-level rule 59:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(CHILDREN_0)

→ No_OF_CHILDREN(CHILDREN_0)

Post-High-level rule 60:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(NORMAL)

→ BMI(NORMAL)

Post-High-level rule 61:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
LO_gp-patient_instances(H_5_feet_8_inches)

→ HEIGHT(H_5_feet_8_inches)

Post-High-level rule 62:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_5(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_eviden

t_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_COPD_

exacerbation) ∧
DO_5(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue) ∧ DO_5(Mrs_Flee_complains_of_shortness_of_breath)
→

SUMMARIES(Mrs_Flee_complains_of_severe_pain_in_left_ankle_Minor_swelling_e

vident_and_xrays_taken_admitted_as_overnight_stay_and_found_to_have_acute_

COPD_exacerbation) ∧

 Appendices 216

SUMMARIES(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_

fatigue) ∧ SUMMARIES(Mrs_Flee_complains_of_shortness_of_breath)

Post-High-level rule 63:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_6(no_major_illnness_evident)

→ MAJOR_ILLNESS(no_major_illnness_evident)

Post-High-level rule 64:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
DO_7(no_chronic_disease_evident)

→ CHRONIC_DISEASE(no_chronic_disease_evident)

Post-High-level rule 65:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_8(LT123_Blood_test_Type_4123) ∧ DO_8(LL456_Radiation) ∧
DO_8(LT256_Smear_test)

 → LABTEST_TYPE(LT123_Blood_test_Type_4123) ∧

LABTEST_TYPE(LL456_Radiation) ∧ LABTEST_TYPE(LT256_Smear_test)

Post-High-level rule 66:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_8(LT123_Pathology) ∧ DO_8(LT256_Cervical_Type_3) ∧ DO_8(LL456_X_ray)

→ LABTEST_NAME(LT123_Pathology) ∧ LABTEST_NAME(LT256_Cervical_Type_3) ∧
LABTEST_NAME(LL456_X_ray)

Post-High-level rule 67:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_8(LL456_fileID_wavelength908) ∧ DO_8(LT123_anaemia_level_46) ∧
DO_8(LT256_Normal)

→ LABTEST_RESULTS(LL456_fileID_wavelength908) ∧

LABTEST_RESULTS(LT123_anaemia_level_46) ∧ LABTEST_RESULTS(LT256_Normal)

Post-High-level rule 68:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

 Appendices 217

DO_8(LL456_28-04-09) ∧ DO_8(LT123_16-02-08) ∧ DO_8(LT256_16-01-08)

→ LABTEST_DATE(LL456_28-04-09) ∧ LABTEST_DATE(LT123_16-02-08) ∧
LABTEST_DATE(LT256_16-01-08)

Post-High-level rule 69:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
TO_5(Mrs_Flee_has_come_into_the_clinic_for_a_blood_test_complains_of_fatig

ue)

→

PREVIOUS_MEDICAL_SUMMARIES(Mrs_Flee_has_come_into_the_clinic_for_a_blood_t

est_complains_of_fatigue)

Post-High-level rule 70:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
TO_7(LL456_Used_to_identify__lungs_diseases)

→ LABTEST_OVERVIEW(LL456_Used_to_identify__lungs_diseases)

Post-High-level rule 71:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
TO_7(LL456_data_aa2)

→ LABTEST_DATA(LL456_data_aa2)

Post-High-level rule 72:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_9(T09851_17-04-09) ∧ DO_9(TT1989_12-03-09)

→ TREATMENT_DATE(T09851_17-04-09) ∧ TREATMENT_DATE(TT1989_12-03-09)

Post-High-level rule 73:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_10(M222p_NAPROXEN) ∧ DO_10(M225i_EHOSUXIMIDE) ∧ DO_10(M0031_Capzasin)

→ MEDICINE_NAME(M222p_NAPROXEN) ∧ MEDICINE_NAME(M225i_EHOSUXIMIDE) ∧
MEDICINE_NAME(M0031_Capzasin)

Post-High-level rule 74:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_10(M225i_Emeside) ∧ DO_10(M222p_Risedronate) ∧ DO_10(M0031_Xhing_Ltd)

 Appendices 218

→ VENDOR(M225i_Emeside) ∧ VENDOR(M222p_Risedronate) ∧
VENDOR(M0031_Xhing_Ltd)

Post-High-level rule 75:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

DO_10(M0031_2_tablets_per_day) ∧

DO_10(M225i_1_tablets_to_be_taken_4_times_a_day) ∧
DO_10(M222p_1_or_2_tablets_to_be_taken_4_times_a_day)

→ DOSAGE_AMOUNT(M0031_2_tablets_per_day) ∧

DOSAGE_AMOUNT(M225i_1_tablets_to_be_taken_4_times_a_day) ∧
DOSAGE_AMOUNT(M222p_1_or_2_tablets_to_be_taken_4_times_a_day)

Post-High-level rule 76:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_8(M0031) ∧ TO_8(M225i) ∧ TO_8(M222p)

→ MEDICINE_NUMBER(M0031) ∧ MEDICINE_NUMBER(M225i) ∧ MEDICINE_NUMBER(M222p)

Post-High-level rule 77:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧
TO_9(TT1989_Patient_is_suffering_from_aches_in_lower_limbs_and_has_minor_s

welling_to_ankle_pain_support_through_chronic_pain_recovery_is_suggested)

→

TREATMENT_OVERVIEW(TT1989_Patient_is_suffering_from_aches_in_lower_limbs_a

nd_has_minor_swelling_to_ankle_pain_support_through_chronic_pain_recovery_

is_suggested)

Post-High-level rule 78:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_9(T01245_COPDT_exacerbation) ∧ TO_9(T09851_COPD_Chronic_pain_recovery)

→ TREATMENT_NAME(T01245_COPDT_exacerbation) ∧
TREATMENT_NAME(T09851_COPD_Chronic_pain_recovery)

Post-High-level rule 79:

SELECTION_jane_flee(?A) ∧ has_variable_jane_flee(?A, true) ∧

SELECTION_gp_rep(?B) ∧ has_variable_gp_rep(?B, true) ∧

SELECTION_hospital_rep(?C) ∧ has_variable_hospital_rep(?C, true) ∧

SELECTION_clinic_1_rep(?D) ∧ has_variable_clinic_1_rep(?D, true) ∧

SELECTION_clinic_2_rep(?E) ∧ has_variable_clinic_2_rep(?E, true) ∧

TO_10(M222p_Andheri_east_India) ∧ TO_10(M225i_South_coast_Canada) ∧
TO_10(M0031_China_pharmaceuticals)

→ MEDICATION_DETAILS(M222p_Andheri_east_India) ∧

MEDICATION_DETAILS(M225i_South_coast_Canada) ∧
MEDICATION_DETAILS(M0031_China_pharmaceuticals)

 Appendices 219

Appendix A.19

Can be found on CD-ROM attached to thesis.

Appendix A.20

Can be found on CD-ROM attached to thesis.

 References 220

References

[1] WEISER, M. (1993) “Some computer science problems in ubiquitous computing”, Communications of the

ACM, 36(7), pp. 75–84.

[2] ABOWD, G.D. (1999) “Software Engineering Issues for Ubiquitous Computing”, In: Proceedings of the

21
st
 International Conference on Software Engineering, (LA, USA, May 16-22), pp. 75-84.

[3] SATAYANARAYAN, M. (2001) “Pervasive Computing: Vision and Challenges”, IEEE Personal

Communications, 8(4), pp. 10–17.

[4] GUPTA, P.; MOITRA, D. (2004) “Evolving a pervasive IT infrastructure: a technology integration

approach”, Journal of Personal and Ubiquitous Computing, 8(1), pp. 31–41.

[5] FUENTES, L.; JIMENEZ, D.; PINTO, M. (2004) “Towards the development of ambient Intelligence

Environments using Aspect-Oriented techniques”, In: Proceedings of International Conference on Aspect-

Oriented Software Development, Workshop in Aspects, Components, and Patterns for Software Infrastructure,

(Lancaster, UK, March 22-26), pp. 22-26.

[6] HAGRAS, H. (2007) “Embedding Computational Intelligence in Pervasive Spaces”, IEEE Pervasive

Computing, 6(3), pp. 85-89.

[7] HELLENSCHMIDT, M. (2006) “Some Issues on Requirements for Pervasive Software Infrastructures”, In:

Fraunhofer-Instistute for Computer Graphics, (Darmstadt, Germany), available at

http://www.igd.fhg.de/igd-a1/RSPSI/papers/RSPSI-Hellenschmidt.pdf, [accessed June 2009].

[8] BECKER, M.; KARSHMARA, A.; LAMM, R.; NEHMER, J. (2006) “Living Assistance Systems – An

Ambient Intelligence Approach”, In: Proceeding of the International Conference on Software Engineering,

(Shanghai, China, May 20-28), pp. 43-50.

[9] CABRI, G.; FERRARI, L.; LEONARDE, L.; ZANBONELI, F. (2005) “The LAICA Project: Supporting

Ambient Intelligence via Agents and Ad-Hoc Middleware”, In: Proceedings of the 14
th
 IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise, (Sweden, June 13-15), pp.

39-44.

[10] SHETH A.P. (2003) “Changing Focus on Interoperability in Information Systems: From System, Syntax,

Structure to Semantics”, Interoperating Geographic Information Systems, M. Goodchild, M. Egenhofer, R.

Fegeas, and C. Kottman (eds.), Kluwer Academic Publishers: Norwell, MA, pp. 5-30.

[11] GARLAN, D.; SIEWIOREK, D.P.; SMAILAGIC, A.; STEENKISTE, P. (2002) “Project Aura: toward

distraction free pervasive computing”, IEEE Pervasive Computing, 1(2), pp. 22-31.

[12] HURSON, A. R.; BRIGHT, M. W.; PAKZAD, S. H. (1994) “Multidatabase Systems: an advanced

solution for global information sharing”, IEEE Computer Society Press, USA.

[13] SHETH, A.P.; LARSON, J.A. (1990) “Federated Database Systems for Managing Distributed,

Heterogeneous and Autonomous Databases”, ACM Computing Surveys, 22(3), pp. 183-236.

[14] SCHEUERMANN, P.; YU, C.; ELMAGARMIND, A.; GARCIA-MOLINA, H.; MANOLA, F.;

MCLEOD, D.; ROSENTHAL, A.; TEMPLETON, M. (1990) “Report on the workshop on heterogeneous

database systems held at Northwestern University Evanston, Illinois, December 11-13, 1989 sponsored by

NSF”, ACM SIGMOD Record, 19(4) pp.23-31.

[15] WACHE, H.; VOEGELE, T.; VISSER, U‟; STUCKENSCHMIDT, H.; SCHUSTER, G.; NEUMANN, H.;

HUEBNER, S. (2001) “Ontology-based integration of information - a survey of existing approaches”. In:

http://www.igd.fhg.de/igd-a1/RSPSI/papers/RSPSI-Hellenschmidt.pdf

 References 221

Proceedings of the International Joint Conferences on Artificial Intelligence, Workshop on Ontologies and

Information Sharing, (Seattle, Washington, USA, Aug 4–5), pp. 108-117.

[16] BISHR Y.A.; PUNDT H.; KUHN W.; RDWAN M. (1999) “Probing the Concepts of Information

Communities – A First Step Towards Semantic Interoperability”, M. Goodchild, M. Egenhofer, R. Fegeas, and

C. Kottman (eds.), Interoperating Geographic Information Systems, Kluwer Academic Publishers: Norwell,

MA, pp. 55-70.

[17] WIEDERHOLD, G.; (1999) “Mediation to deal with Heterogeneous Data Sources”, Interoperating

Geographic Information Systems, LNCS 1580, pp. 1-16.

[18] SHETH, A.; KASHYAP, V. (1996) “Semantic and schematic similarities between database objects: A

context based approach”, Very Large Database Journal, 5(4), pp. 276-304.

[19] HULL, R. (1997) “Managing Semantic Heterogeneity in Databases: A Theoretical Perspective”, In:

Proceedings of the ACM Symposium on Principles of Database Systems, (Tucson, USA, May 12-14), pp. 51-61.

[20] HAMMER, J.; MCLEOD, D. (1993) “An Approach to Resolving Semantic Heterogeneity in a Federation

of Autonomous, Heterogeneous DB Systems”, International Journal of Intelligent and Cooperative Information

Systems, 2(1), pp. 51-83.

[21] KIM, W.; CHOI, I.; GALA, S.; SCHEEVEL, M. (1993) “On Resolving Schematic Heterogeneity in

Multidatabase Systems”, Distributed and Parallel Databases, 1(3), pp. 251-279.

[22] CERCONE, N.; MORGENSTERN, M.; SHETH, A.; LITWIN, W.; (1990) “Resolving semantic

heterogeneity”, In: 6
th
 International Conference on Data Engineering (panel), (Los Angeles, California,

February).

[23] BATANI, C.; LENZERINI, M.; NAVATHE, S.B. (1986) “A comparative analysis of methodologies for

database schema integration”, ACM Computing Surveys, 18(4), pp.323-364.

[24] ZIEGLER, P.; DITTRICH, R, K. (2004) “User-Specific Semantic Integration of Heterogeneous Data: The

SIRUP Approach”, Semantics of a Networked World,LNCS 3226, pp. 44-46.

[25] REDDY, M. P.; PRASAD, B. E.; REDDY, P. G.; GUPTA, A. (1994) “A methodology for integration of

heterogeneous databases”, IEEE Transactions on Knowledge Data Engineering, (6)6, pp. 920–933.

[26] SHETH, A.P.; GALA, S.K.; NAVATHE, S.B. (1993) “On automatic reasoning for schema integration”,

International Journal on Intelligent and Cooperative Information Systems 2(1), pp. 23–50.

[27] HAYNE, S.; RAM, S. (1990) “Multi-user view integration system (MUVIS): An expert system for view

integration”, In: Proceedings of the 6th International Conference on Data Engineering (Los Angeles, CA, Feb.

5–9), pp. 402–409.

[28] OUKSEL, A.M. (1999) “A framework for a scalable agent architecture of cooperating heterogeneous

knowledge sources”, Intelligent Information Agents: Cooperative, Rational and Adaptive

Information Gathering in the Internet. M. Klusch (Ed.) Springer, Berlin, Germany, pp. 100–124.

[29] GENESERETH, M.R.; KELLER, A.M.; DUSCHKA, O.M.; (1997) “Infomaster: An information

integration system”, In: Proceedings of the ACM SIGMOD International Conference on Management of Data

(Tucson, USA, May 13–15), pp. 39–542.

[30] LEVY, A.Y.; RAJARAMAN, A.; ORDILLE, J.J. (1996) “Querying Heterogeneous Information Sources

Using Source Descriptions”, In: Proceedings of the 22
nd

 International Conference on Very Large Data Bases,

(Mumbai, India), pp. 251–262.

[31] PAPAKONSTANTINOU, Y.; GARCIA-MOLINA, H.; ULLMAN, J. (1996) “Medmaker: A mediation

system based on declarative specifications”, In: Proceedings of the 12
th
 IEEE International Conference on

Data Engineering (New Orleans, LA, Feb. 26–March 1), pp. 132–141.

[32] CAREY, M.J.; HAAS, L.M.; SCHWARZ, P.M.; ARYA, M.; CODY, W.F.; FAGIN, R.; FLICKNER, M.;

LUNIEWSKI, A.; NIBLACK, W.; PETKOVIC, D.; THOMAS, J.; WILLIAMS, J.H.; WIMMERS, E.L. (1995)

“Towards Heterogeneous Multimedia Information Systems: The Garlic Approach”. In: Proceedings of the 5
th

http://www.ijcai.org/
http://www.springerlink.com/content/978-3-540-23609-2/
http://www.springerlink.com/content/0302-9743/

 References 222

Workshop on Research Issues in Data Engineering-Distributed Object Management, (Taipei, Taiwan, March

6-7), pp. 124–131.

[33] CHAWATHE, S.; GARCIA-MOLINA, H.; HAMMER, J.; IRELAND, K.; PAPAKONSTANTINOU, Y.;

ULLMAN, J.; WIDOM, J. (1994) “The TSIMMIS Project: Integration of Heterogeneous Information

Sources”, In: Proceedings of Information Processing Society of Japan Conference, (Tokyo, Japan, October),

pp. 7-18.

[34] WIEDERHOLD, G. (1992) “Mediators in the Architecture of Future Information Systems”, IEEE

Computer, 25(3), pp. 38-49.

[35] JURIC, R.; BEUS-DJUKIC, L. (2005) “COTS components and DB interoperability”, In: Proceedings of

the 4
th
 International Conference COTS-based software systems, (Bilbao, Spain, February 7-11), pp. 77-89.

[36] JURIC, R.; KULJIS, J.; PAUL, R. (2004) “Software Architecture to Support Interoperability in Multiple

Database Systems”, In: Proceedings of the 22
nd

 International Conference on Software Engineering, (Innsbruck,

Austria, February 11-14), pp. 71-77.

[37] JURIC, R.,; KULJIS, J.; PAUL, R. (2004a) “Software Architectural Style for Interoperable Databases”, In:

Proceedings of the 26
th
 International Conference on Information Technology Interfaces, (Croatia, June 7-10),

pp. 159-166.

[38] JURIC, R.; KULJIS, J.; PAUL, R. (2004b) “Contextualising components when addressing database

interoperability”, In: Proceedings of the 8
th
 International Conference on Software Engineering and

Applications, (MIT, Cambridge, MA, USA, November 9-11), pp. 690-695

[39] FISH, D.A. (2006) “An Emergent Perspective on Interoperation in Systems of Systems”, Technical Report,

CMU/SEI-2006-TR-003, ESC-TR-2006-003, available at, http://www.sei.cmu.edu/reports/06tr003.pdf,

accessed January 2009].

[40] MORRIS, E.; LEVINE, L.; MEYERS, C.; PLACE, P.; PLAKOSH, D. (2004) “System of Systems

Interoperability (SOSI): Final Report”, Technical Report, CMU/SEI-2004-TR-004, ESC-TR-2004-004,

available at, http://www.sei.cmu.edu/reports/04tr004.pdf, accessed January 2009].

[41] GRIMM, R.; DAVIS, J.; LEMAR, E.; MACBETH, A.; SWASON, S.; GRIBBLE, S.; ANDERSON, T.;

BERSHAD, B.; BORRIELLO, G.; WETHERALL, D. (2001), “Programming for Pervasive Computing

Environments”, University of Washington, available at http://one.cs.washington.edu/papers/tr01-06-01.pdf,

[accessed in March 2009].

[42] MCGUINESS, D.; HARMELEN, F. (2004) “OWL Web Ontology Overview/Guide”, W3C

Recommendation, available at http://www.w3.org/TR/owl-features/, [accessed January 2009].

[43] HORROCKS, I.; PATEL-SCHNEIDER, P. F.; BOLEY, H.; TABET, S.; GROSOF, B.; Dean, M. (2004)

“SWRL: Semantic Web Rule Language- Combining OWL and RuleML Overview and Guide”, W3C Member

Submission, available at http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, [accessed June 2009].

[44] SHETH, A.; KASHYAP, V. (1992) “So far (schematically) yet so near (semantically)”, In: Proceedings of

the Conference on Semantics of Interoperable Database Systems, (Lome, Australia, November 16-20), pp. 238-

312.

[45] SCIORE, E.; SIEGAL, M.; ROSENTHAL, A. (1994) “Using Semantic Values to Facilitate

Interoperability Among Heterogeneous Information Systems”, ACM Transactions on Database Systems, 19(2),

pp.254-290.

[46] KATARIA, P.; JURIC, R. (2010) “Creating Semantics From User Inputs Through Ontological

Reasoning”, In: Proceedings of the 15
th
 International Conference on System Design and Process Science,

(Texas, Dallas, US, June 6-11), CD-ROM.

[47] LIU. Q.; HUANG. T.; LIU, S.H.; ZHONG., H. (2007) “An Ontology-Based Approach for Semantic

Conflict Resolution in Database Integration”. Journal of Computer Science and Technology, 22(2), pp.218-227.

[48] TRINH, Q.; BARKER, K.; and ALHAJJ, R. (2007) “Semantic Interoperability Between Relational

Database Systems”, In: Proceeding of the 11
th
 International Database Engineering and Applications

Symposium, (Banff, Alberta, Canada, September 6-8), pp. 208-215.

http://westminsterresearch.wmin.ac.uk/906/
http://westminsterresearch.wmin.ac.uk/1003/
http://westminsterresearch.wmin.ac.uk/1003/
http://www.sei.cmu.edu/reports/06tr003.pdf
http://www.sei.cmu.edu/reports/04tr004.pdf
http://one.cs.washington.edu/papers/tr01-06-01.pdf
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

 References 223

[49] RAM, S.; PARK, J. (2004) “Semantic Conflict Resolution Ontology (SCROL): An Ontology for

Detecting and Resolving Data and Schema-Level Semantic Conflicts”, IEEE Transactions on Knowledge and

Data Engineering, 16(2), pp.189-202.

[50] GOH, C.H, (1997) “Representing and Reasoning about Semantic Conflicts in Heterogeneous Information

Sources”, Ph.D. thesis, Massachusetts Institute of Technology, Sloan School of Management, available at

http://web.mit.edu/smadnick/www/wp/1997-01.pdf, [accessed in March 2009].

[51] HAJMOOSAEI, A.; ABDUL-KAREEM, S. (2007) “An ontology-based approach for resolving semantic

schema conflicts in the extraction and integration of query-based information from heterogeneous web data

sources”, In: Proceedings of the 3
rd

 Australasian Ontology Workshop, (Gold Coast, Australia, December 2-6),

pp.35-43.

[52] STOIMENOV, L.; STANIMIROVIC, A.; DJORDJEVIC-KAJAN, S. (2006) “Discovering mappings

between ontologies in semantic integration process”, In: Proceedings of the 9th AGILE International

Conference on Geographic Information Science, (Visegrád, Hungary, April 19-22), pp. 213-219.

[53] WANG, C.; LU, J.; ZHANG, G. (2006) “Integration of Ontology Data through Learning Instance

Matching”, In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, (Hong Kong,

December 18-22), pp. 536-539

[54] BREITMAN, K. K.; FELICISSIMO, C. H.; CYSENEIROS, L. M. (2003) “Semantic Interoperability by

Aligning Ontologies”, World Energy Research supported in part by CNPq under contract ESSMA-

552068/2002-0, by Faperj under Student Grade 10 scholarship and by CAPES, available at http://wer.inf.puc-

rio.br/WERpapers/artigos/artigos_WER03/karin_breitman.pdf, [accessed January 2009].

[55] THANH-LE, B.; DIENG-KUNTZ R.; GANDON, F. (2004) “On Ontology Matching Problems: for

building a corporate Semantic Web in a multi-communities organization”, In: Proceedings of the 6
th

International Conference on Enterprise Information Systems, (Porto, Portugal, April 14-17), pp. 236-243.

[56] GIUNCHIGLIA, F.; SHVAIKO P. (2003) “Semantic Matching”, The Knowledge Engineering Review,

18(3), pp.265-280.

[57] DOAN, A.; MADHAVAN, J.; DOMINGOS, P.; HALEVY, A. (2003) “Learning to map ontologies on the

semantic web”, In: Proceedings of the 11
th
 International World Wide Web Conference (Honolulu, Hawaii, USA,

May 7-11), pp. 662–673.

[58] MADHAVAN, J.; BERNSTEIN, P. A.; RAHM, E.; (2001) “Generic Schema Matching with Cupid”, In:

Proceedings of the 27
th
 Conference on Very Large Databases, (Roma, Italy, September 11-14), pp. 49-58.

[59] EHRIG, M.; STAAB, S. (2004) “QOM: Quick ontology mapping”, In: Proceedings of the 3
rd

International Semantic Web Conference, (Hiroshima, Japan, November 7-11), pp. 683–697.

[60] NOY, N.F.; MUSEN, M. A.; (2004) “Ontology Versioning in an Ontology-Management Framework”,

IEEE Intelligent Systems, 19(4), pp. 6-13.

[61] MCGUINESS, D.L.; FIKES, R.; RICE, J.; WILDER, S. (2000) “The chimaera ontology environment”, In:

Proceedings of the 17
th
 National Conference on Artificial Intelligence, (Austin, Texas, July 30-August 3), pp.

1123-1124.

[62] GRANATIR, N.; JURIC, R.; KULJIS, J.; TESANOVIC, I. (2007) “Supporting Interoperability

Frameworks in the UK Public Sector”, In: Proceedings of the 10
th

International Conference on Integrated

Design and Process Technology, (Antalya, Turkey, June 3-8, 2007), CD-ROM.

[63] WILLIAMS, S.; JURIC, R.; MILLIGAN, P. (2005) “Design patterns for automation of marketing

authorisations in pharmaceutical industry”, In: Proceedings of the 27
th
 International Conference on

Information Technology Interfaces,(Cavtat, Croatia, June 20-23), pp. 565-570.

[64] JURIC, R.; SLEVIN, L.; SHOJANOORIE, R.; WILLIAMS, S. (2005) “Software support in automation of

medicinal product evaluations”, In: Studies in health technology and informatics, Bos, Lodewijk and

Laxminarayan, Swamy and Marsh, Andy, (eds.) Medical and care compunetics, 2(114), pp. 298-306.

http://web.mit.edu/smadnick/www/wp/1997-01.pdf
http://crpit.com/confpapers/CRPITV85Hajmoosaei.pdf
http://crpit.com/confpapers/CRPITV85Hajmoosaei.pdf
http://crpit.com/confpapers/CRPITV85Hajmoosaei.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER03/karin_breitman.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER03/karin_breitman.pdf
http://westminsterresearch.wmin.ac.uk/1000/
http://westminsterresearch.wmin.ac.uk/1000/
http://westminsterresearch.wmin.ac.uk/1002/
http://westminsterresearch.wmin.ac.uk/1002/

 References 224

[65] BUSSE, S.; KUTSCHE, R.D.; LESER, U.; WEBER, H. (1999) “Federated Information Systems: Concept,

Terminology and Architectures”, Technical report No 99-9, Technische Universität (TU) Berlin, Germany,

available at http://citeseer.ist.psu.edu/busse99federated.html, [accessed in March 2009].

[66] GARCIA-MOLINA, H.; YEMENI, R., (1999) “Coping with Limited Capabilities of Sources”, In:

Proceedings of the 8
th
 GI Facht-agung Datenbamksysteme (Verlag, Buero, Frieburg, Germany), pp. 1-19.

[67] TORK, M.; ROTH, P.; SCHWARZ, M. (1997) “Don‟t Scrap it, Wrap it – A Wrapper Architecture for

Legacy Data Sources”, In: Proceedings of the 23
rd

 International Conference on Very Large Databases, (Athens,

Greece, August 25-29), pp. 266-275.

[68] TURKER, C.; SAAKE, G.; CONRAD, S. (1997) “Modelling Federations in Terms of Evolving Agents”,

In: Poster Proceedings of the 10
th
 International Symposium on Methodologies for Intelligent Systems,

(Charlotte, North Carolina, US, October 15-18), pp. 197-208.

[69] VISSER, P.R.S.; JONES, D.M.; BENCH-CAPON, T.J.M.; SHAVE, M.J.R. (1997) “An Analysis of

Ontology Mismatches; Heterogeneity Versus Interoperability”, In: Proceedings of the American Association

for Artificial Intelligence (AAAI) Spring Symposium on Ontological Engineering (California, US, March 24-

26), pp.164-172.

[70] GRUBER, T.R. (1995) “Toward principles for the Design of Ontologies Used for Knowledge Sharing”,

International Journal of Human-Computer Studies, 43(5-6), pp. 907-928.

[71] FAGIN, R. (1996) “Combining Fuzzy Information from Multiple Systems”, In: Proceedings of ACM

Symposium on Principles of Database Systems, (Montreal, Canada, June 3-5) pp. 216-226.

[72] SAMET, H.; AREF, W.G. (1995) “Spatial Data Models and Query Processing”, Addison Wesley, Reading,

MA, US, pp. 338-360.

[73] COLOMB, R. M. (1997) “Impact of Semantic Heterogeneity on Federated Databases”, Computer Journal,

40(5), pp. 235-244.

[74] O‟SULLIVAN, D.; POWER, R. (2003) “Bridging heterogeneous, autonomous, dynamic knowledge at

runtime”, In: Proceedings of the 1
st
 International Workshop on Managing Ubiquitous Communications and

Services, (Waterford, Ireland, December 11), available at

http://www.m-zones.org/deliverables/d234_2/papers/1-02-tcd-bridging-knowledge.pdf, [accessed January

2007].

[75] DECKER, S.; MELNIK, S.; VAN-HARMELEN, F.; FENSAL, D.; KLIEN, M.; BROEKSTRA, J.;

ERDMANN, M.; HORROCKS, I. (2000) “The Semantic Web: the roles of XML and RDF”, IEEE Internet

Computing, 4(5), pp.63-73.

[76] CHUNG, J.Y.; LIN, K.J.; MATHIEU, R.G. (2003) “Web Services Computing: Advancing Software

Interoperability”, IEEE Computer, 36(10), pp.35-37.

[77] HALEVY, A. Y. (2005) “Why Your Data Won‟t Mix: Semantic Heterogeneity”. Que, feature Q focus:

semi-structured data, 3(8), pp. 50-58.

[78] ABDULLA, K. (1998) “A new approach to the integration of heterogeneous databases and information

systems”, Ph.D. thesis, University of Miami, Florida.

[79] GOH, C. H.; MADNICK, S. E.; SIEGAL, M. D. (1994) “Context inter-change: overcoming the challenges

of large-scale interoperable database systems in a dynamic environment”, In: Proceeding of the International

Conference on Information and Knowledge Management, (New Orleans, Louisiana, USA, November 2-8),

pp.337-346.

[80] MILLER, R. J. (1998) “Using schematically heterogeneous structures”, ACM SIGMOD Record, 27(2),

pp.189-200.

[81] GARCIA-SOLACE, M.; SALTOR, F.; CASTELLANOUS, M. (1996) “Semantic Heterogeneity in

Multidatabase Systems”, In: O. A. Burkhres and A. K. Elmagarmid, editors, Object Orientated Multidatabase

Systems, Prentice-hall, pp.129-202.

http://citeseer.ist.psu.edu/busse99federated.html
http://www.m-zones.org/deliverables/d234_2/papers/1-02-tcd-bridging-knowledge.pdf

 References 225

[82] HOLOWCZAK, R.D.; LI, W.S. (1996) “A survey on attribute correspondence and heterogeneity metadata

representation”, In: Proceedings of the 1
st
 IEEE Metadata Conference, (April 16-18), available at

http://www.computer.org/conferences/meta96/li/paper/html, [accessed in March 2009].

[83] CERI, S.; WIDOM, J. (1993) “Managing Semantic Heterogeneity with Production Rules and Persistent

Queues”, In: Proceedings of the 19
th
 Very Large Databases Conference (VLDB 1993), (Dublin, Ireland, August

24-27), pp. 108-119.

[84] WEISER, M. (1991). “The Computer for the 21st Century”, The Scientific American, 265(3), pp.94-104.

[85] WEISER, M.; BROWN, J.S. (1997) “The coming of calm technology”. Xerox PARC, Beyond calculation:

the next fifty years, available at www.johnseelybrown.com/calmtech.pdf, [accessed January 2009].

[86] WEISER, M. (1993a) “Hot Topics: Ubiquitous Computing”, IEEE Computer, available at

http://www.ubiq.com/hypertext/weiser/UbiCompHotTopics.html, [accessed January 2009].

[87] WEISER, M.; BROWN, J.S.(1996) “Designing Calm Technology”, Powergrid Journal, 1(1), pp. 75 -85.

[88] GRIMM, R.; DAVIS, J.; HENDRICKSON, B.; LEMAR, E.; MACBETH, A.; SWANSON, S.;

ANDERSON, T.; BERSHAD, B.; BORRIELLO, G.; GRIBBLE, S.; WETHERELL, D. (2001) “Systems

Directions for Pervasive Computing”, In: Proceedings 8
th
 Workshop on Hot Topics in Operating System,

(Elmau, Oberbayern, Germany, May 20-23), pp.147-151.

[89] SMAILAGIC, A; SIEWIOREK, D. (2002) “Application design for wearable and context-aware

computers”, IEEE Pervasive Computing, 1(4), pp. 20-29.

[90] MIDKIFF, S.F. (2002) “Mobile and wireless networks and applications”, IEEE Pervaisve Computing,

1(4), pp. 9-11.

[91] BANAVAR, G.; BECK, J.; GLUZBERG, E.; MUNSON, J.; SISSMAN, J.; ZUKOWSKI, D. (2000)

“Challenges: An application Model for Pervasive Computing”, In: Proceedings of 6th Annual International

Conference on Mobile Computing and Networking (MOBICOM 2000), (Boston, Massachusetts, United States,

August 6-11), pp. 266-274.

[92] HELAL, S.; MANN, W.; EL-ZABADANI, H.; KING, J.; KADDOURA Y.; JANSEN, E. (2005). “The

Gator Tech Smart House: A Programmable Pervasive Space”, IEEE Computer Society, 38(3), pp. 50-60.

[93] LEE, C.; NORDSTEDT, D.; HELAL, S. (2003) “Enabling Smart Spaces with OSGi”, IEEE Computer

Society, 2(3), pp. 89- 94.

[94] MEYER, S.; RAKOTONIRAINY, A. (2003) “A Survey of Research on Context-Aware Homes”, In:

Proceedings of the Workshop Conference on Wearable, Invisible, Context-Aware, Ambient, Pervasive and

Ubiquitous Computing, (Adelaide, South Australia, February 5), pp.159-168.

[95] INTILLE, S.S. (2002) “Designing a Home of the Future‟ MIT School of Architecture and Planning”,

IEEE Educational Activities Department, 1(2), pp. 76 – 82.

[96] KUMAR, M.; SHIRAZI, B.A.; DAS, S.K.; SUNG, B.Y.; LEVINE, D.; SINGHAL, M. (2003) “PICO: a

middleware framework for pervasive computing”, IEEE Pervasive Computing, 2(3), pp.72-79.

[97] PHILIPOSE, M.; FISHKIN, K.P.; PATTERSON, D.J.; FOX, D.; KAUTZ, H.; HAHNEL, D. (2004)

“Inferring activities from interaction with objects”, IEEE Pervasive Computing, 3(4), pp. 50-57.

[98] BECKWITH, R. (2003) “Design for ubiquity: the perception of privacy”, IEEE Pervasive Computing,

2(2), pp.40 – 46.

[99] SENGERS, P.; KAYE, J.; BOEHNER, K.; FAIRBANK, J.; GAY, G.; MEDYBSKIY, Y.; WUCHE, S.

(2004) “Culturally embedded computing”, IEEE Pervasive computing, 3(1), pp. 14-21.

[100] BURRELL, J.; BROOKE, T.; BECKWITH, R. (2004) “Vineyard computing: sensor networks in

agricultural production”, IEEE Pervasive computing, 3(1), pp. 38-45.

[101] KELLER, I.; VAN-DER-HOOG, W.; STAPPERS, P.J. (2004) “Gust of me: reconnecting mother and

son”, IEEE Pervasive Computing, 3(1), pp. 22-27.

http://www.computer.org/conferences/meta96/li/paper/html
http://www.ubiq.com/hypertext/weiser/UbiCompHotTopics.html
http://www.ubiq.com/hypertext/weiser/UbiCompHotTopics.html
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7756

 References 226

[102] JOSEPH, A.D. (2004) “Work in progress- Gaming, fine art, and familiar strangers”, IEEE Pervasive

Computing, 3(1), pp. 35-37.

[103] HAUPTMANN, A.G.; GAO, J.; YAN, R.; QI, Y.; YANG, J.; WACTLAR, H.D. (2004) “Automated

analysis of nursing home observations”, IEEE Pervasive computing, 3(2), pp. 15-21.

[104] YAU, S.S.; HUANG, D.; GONG, H.; SETH, S. (2004) “Development and runtime support for

situation-aware application software in ubiquitous computing environments”, In: Proceedings of the 28th

Annual International Conference on Computer Software and Applications, (Hong Kong, September 28-30), pp.

452-457.

[105] ASHBROOK, D.; LYONS, K.; CLAWSON, J. (2006) “Capturing Experiences Anytime, Anywhere”,

IEEE Pervasive Computing, 5(2), pp.8-9.

[106] ISLAM, N. (2004) “From smart to autonomous phone”, IEEE Pervasive Computing, 3(3), pp. 102-104.

[107] EAGLE, N.; PENTLAND, A. (2005) “Social serendipity: mobilizing social software”, IEEE Pervasive

Computing, 4(2), pp. 28-34.

[108] BEALE, R. (2005) “Supporting social interaction with smart phones”, IEEE Pervasive Computing, 4(2),

pp. 35-41.

[109] CABITZA, F.; SARINI, M.; DAL-SENO, B. (2005) “DJess – A Context-Sharing Middleware to

Deploy Distributed Inference Systems in Pervasive Computing Domains”, In: Proceedings of the IEEE

International Conference on Pervasive Services (ICPS 2005), (Santorini, Greece, July 11- 14), pp. 229-238.

[110] DAVIES, N.; LANDAY, J.; HUDSON, S.; SCHMIDT, A. (2005) “Introduction: Rapid Prototyping for

Ubiquitous Computing”, IEEE Pervasive Computing, 4(4), pp. 15-17.

[111] DAVIES, N.; FRIDAY, A.; STORZ, O. (2004) “Exploring the grid‟s potential for ubiquitous

computing”, IEEE Pervasive Computing, 3(2), pp.74-75.

[112] YAU, S.; KARIM, F. (2004) “An Adaptive Middleware for Context-Sensitive Communications for Real-

Time Applications in Ubiquitous Computing Environments”, Real-Time Systems, 26(1), pp.29-61.

[113] GU, T.; XHANG, D.Q. (2003) “Towards an OSGI based Infrastructure for Context aware Applications”,

IEEE Pervasive Computing, 3(4), pp. 66-74.

[114] YAU, S.S.; KARIM, F.; YU. W.; BIN, W.; GUPTA, S.K.S. (2002) “Reconfigurable context-sensitive

middleware for pervasive computing”, IEEE Pervasive Systems, 1(3), pp.33-44.

[115] GRIMM, R.; DAVIS, J.; HENDRICKSON, B.; LEMAR, E.; MACBETH, A.; SWANSON, S.;

ANDERSON, T.; BERSHAD, B.; BORRIELLO, G.; GRIBBLE, S.; WETHERELL, D. (2004) “System

support for pervasive applications”, ACM Transactions on Computer Systems, 22(4), pp. 421-486.

[116] JOHANSON, B.; FOX, A.; (2002), “The Event Heap: a coordination infrastructure for interactive

workspaces”, In: Proceedings of the 4
th
 IEEE Workshop on Mobile Computing Systems and Applications,

(Callicoon, New York, 20-21 June), pp. 83-93.

[117] ROMAN, M.; HESS, C. K.; CERQUEIRA, R.; RANGANTHAN, A.; CAMPBELL, R. H.;

NAHRSTEDT, K. (2002) “Gaia: A Middleware Infrastructure to Enable Active Spaces”, IEEE Pervasive

Computing, 1(4), pp. 74-83.

[118] SOUSA, J. P.; GARLAN, D. (2002) “Aura: an Architectural Framework for User Mobility in Ubiquitous

Computing Environments”, In: Proceedings of the 3
rd

 Working IEEE/IFIP Conference on presented at

Software Architecture: System Design, Development, (Montreal, Canada, August 25-30), pp. 29-43.

[119] FOK, C.L. (2009) “Adaptive Middleware for resource Constrained Mobile Ad Hoc and Wireless Sensor

Network”, Ph.D. Thesis, Washing University in St Louis, School of Engineering and Applied Sciences,

Department of Computer Science and Engineering, available at

http://cse.wustl.edu/Research/Lists/Technical%20Reports/Attachments/905/fok_dissertation.pdf, [accessed in

March 2009].

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
http://cse.wustl.edu/Research/Lists/Technical%20Reports/Attachments/905/fok_dissertation.pdf

 References 227

[120] RIVA, O. (2007) “Middleware for Mobile Sensing Applications in Urban Environments”, Academic

Dissertation, Faculty of Science, University of Helsinki, Finland. Available at

http://www.doria.fi/bitstream/handle/10024/27194/middlewa.pdf?sequence=1, [accessed January 2009].

[121] HADIM, S.; MOHAMED, N. (2006) “Middleware for wireless sensor networks: A survey”, In:

Proceedings of the 1
st
 International Conference on Communication System Software and Middleware, (Delhi,

India, January 8-12), pp. 1-7.

[122] BYUN, H.E.; CHEVEREST, K. (2003) “Supporting Proactive „Intelligent‟ Behaviour: The Problem of

Uncertainty”, In: Proceedings of the Workshop on User Modeling for Ubiquitous Computing (UM03),

(Pittsburgh, PA, USA, June 22-23), available at http://www.di.uniba.it/~ubium03/byun-8.pdf, [accessed

January 2009].

[123] ESTRIN, D.; CULLER, D.; PPSITER, K.; SUKHATME, G. (2002) “Connecting the Physical World

with Pervasive Networks”, IEEE Pervasive Computing, 1(1), pp. 59-69.

[124] WANT, R. (2007), “Sensor-Driven Computing Comes of Age”, IEEE Pervasive Computing, 6(2), pp. 4-

6.

[125] BAEK, S.H.; CHOI, E.C.; HUH, J.D. (2007) “Design of Information Management Model for Sensor

Based Context-Aware Service in Ubiquitous Home”, In: Proceedings of the International Conference on

Convergence Information Technology (ITCS 2007), (Gyeongju, Korea, November 21-23), pp.1040-1047.

[126] MA, J.; YANG, L.T.; APDUHAN, B.O.; HUANG, R.; BAROLLI,L.; TAKIZAWA, M.; SHIH, T.K.

(2005) “A Walkthrough from Smart Spaces to Smart Hyperspaces towards a Smart World with Ubiquitous

Intelligence”, In: Proceeding of the 11
th
 International Conference on Parallel and Distributed Systems,

(Fuduoka, Japan, July 22), pp. 370-376.

[127] SIXSMITH, A; JOHNSON, N. (2004) “A smart sensor to detect the falls of the elderly”, IEEE Pervasive

Computing, 3(2), pp.42-47.

[128] BALAZINSKA, M.; DESHPANDE, A.; FRANKLIN, M.J.; GIBBONS, P.B.; GRAY, J.; NATH, S.;

HANSEN, M.; LIEBHOLD, M. (2007) “Data Management in the Worldwide Sensor Web”, IEEE Pervasive

Computing, 6(2), pp. 30-40.

[129] COOK, D.J. (2007) “Making Sense of Sensor Data”, IEEE Pervasive Computing, 6(2), pp. 105-108.

[130] SCHMOHL, R.; BAUMGARTEN, U. (2008) “A Generalized Context-aware Architecture in

Heterogeneous Mobile Computing Environments”, In: Proceedings of the 4
th
 International Conference on

Wireless and Mobile Communications, (Athens, Greece, July 27-August 1), pp.118-124.

[131] KOWALSKI,G.; MAYBURY, M.T. (2000) “Information Storage and Retrieval Systems - Theory and

Implementation”, 2nd ed. Kluwer Academic Publishers.

[132] BAEZA-YATES, R.; and RIBEIRO-NETA, B. (1999), “Modern information retrieval”, New York,

ACM Press.

[133] BONTO-KANE, M.V.A;; CHIN, A.; MCCARTHY, S.; SRIKULWONG, M.; TIMMINS, P.J. (2007)

“Pervasive 2007: It‟s about the User”, IEEE Pervasive Computing, 6(4), pp. 95-96.

[134] MOSTOWFI, F.; FOTOUHI, F.; ARISTAR, A. (2005) “Ontogloss: an ontology-based annotation tool”,

In: Proceedings of the Electronic Metastructure for Endangered Languages Data Workshop on

Morphosyntactic Annotation and Terminology, (Boston, USA, July 1-3), pp.11.

[135] GANESH, S.; JAYARAJ, M.; KALYAN, V.; MURTHY, S.; AGHILA, G. (2004) “Ontology-based web

crawler”, In: Proceedings of the International Conference on Information Technology: Coding and Computing,

(Las Vegas, Nevada, April 5-7), pp. 337–341.

[136] ERDMANN, M.; MAEDCHE, A.; SCHNURR, H. P.; STAAB, S. (2001) “From manual to

semiautomatic semantic annotation”, In: Proceedings of the 18
th
 International Conference on Computational

Linguistics Workshop on Semantic Annotation and Intelligent Content (COLING 01), (Luxembourg, August 5-

6), available at http://www.aifb.uni-karlsruhe.de/WBS/sst/Research/, [accessed in March 2009].

http://www.doria.fi/bitstream/handle/10024/27194/middlewa.pdf?sequence=1
http://www.di.uniba.it/~ubium03/byun-8.pdf
http://www.aifb.uni-karlsruhe.de/WBS/sst/Research/Publications/erdmannetal_semann2000.pdf

 References 228

[137] VARGRAS-VERA, M.; DOMINGUE, J.; MOTTA, E.; SHUM, S.B.; LANZONI, M. (2001)

“Knowledge extraction by using an ontology-based annotation tool”. In: Proceedings of Workshop on

Knowledge Markup & Semantic Annotation, held in association with the 1
st
 International Conference on

Knowledge Capture, (Victoria Canada, October 21-23), pp. 5-12.

[138] CHATTERJEE, A.; SEGEV, A. (1995) “Rule-based joins in heterogeneous databases” Decision Support

Systems, 13(3-4), pp. 313-333.

[139] BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. (2001) “The Semantic Web”, Scientific American,

284(5), pp. 34-43.

[140] CHEN, H.; FININ, T.; JOSHI. A. (2003) “Semantic Web in a Pervasive Context Aware Architecture”,

In: Proceedings of the Artificial Intelligence in Mobile System Conference, (Seattle, USA, October 12-15), pp.

33-40.

[141] LU, H.; OOI, B.C.; GOH, C.H. (1992) “On global multidatabase query optimization”, ACM SIGMOD

Record, 20(4), pp. 6-11.

[142] USCHOLD, M.; GRUNINGER, M. (2004), “Ontologies and Semantics for Seamless Connectivity”,

SIGMOD Record, 33(4), pp. 58-64.

[143] HITZLER, P.; KROTZSCH, M.; PARSIA, B.; PATEL-SCHNEIDER, P.F.; RUDOLPH, S. (2009)

“OWL 2 Web Ontology Language Primer”, W3C Working Draft 2009, available at

http://www.w3.org/TR/2009/WD-owl2-primer-20090421/, [accessed June 2009].

[144] WONGTHONGTHAM, P.; CHANG, E.; SOMMERVILLE, I. (2006) “Software Engineering Ontology

for Software Engineering Knowledge Management in Multi-site Software Development Environment”, Journal

of Systems Architecture: the EUROMICRO Journal - Special issue: AGILE methodologies for software

production, 52 (11), pp. 640 – 653.

[145] GRUBER, T.R. (2003) “Collective Knowledge Systems: Where the Social Web meets the Semantic

Web”, Journal of Web Semantics, 6(1), pp. 4-13.

[146] PEIGUANG, L.; XU, R.; LY, C.; ZHANG, N. (2008) “An Ontology-based and Distributed Service for

EG”, In: Proceedings of the International Conference on Internet Computing in Science and Engineering,

(Harbin, China, January 28-29), pp.485-491.

[147] BICER, V.; LALECI, G.B.; DOGAC, A.; KABAK, Y. (2005) “Providing Semantic Interoperability in

Healthcare Domain through Ontology Mapping*”, In: Proceedings of the eChallenges 2005, (Ljubljana,

Slovenia, October 19-21), available at

www.srdc.metu.edu.tr/.../2005healthcareSemanticInteroperability.doc, [accessed January 2009].

[148] JAMADHVAJA, M.; SENIVONGSE, T. (2005) “An Integration of Data Sources with UML Class

Models Based on Ontological Analysis”, In: Proceedings of the 1
st
 International Workshop on Interoperability

of Heterogeneous Information Systems, associated to the Conference on information and Knowledge

Management, (Bremen, Germany, October 31-November 5), available at

http://portal.acm.org/citation.cfm?id=1096967.1096969, [accessed in March 2009].

[149] BRAUNER, D.F.; CASANOVA, M.A.; LUCENA, C.J.P.; (2004) “Using Ontologies as Artifacts to

Enable Databases Interoperability”, University of Hamburg, Germany, available at

http://swt-www.informatik.uni-hamburg.de/conferences/oopsla%202004%20-

%20accepted/20040815_Brauner_OOPSLA_oopsla_2004_DFB.pdf, [accessed January 2009].

[150] OBERLE, D.; EBEHERT, A.; STAAB S.; VOLZ, R. (2004) “Developing and Managing Software

Components in an Ontology-based Application Server”, In: Proceedings of the 5
th
 International Conference

Middleware, (Toronto, Ontario, Canada, October 18-22), pp. 459-478.

[151] PARK, J.; RAM, S. (2004) “Semantic Conflict Resolution Ontology (SCROL): An Ontology for

Detecting and Resolving Data and Schema-level Semantic Conflicts”, IEEE Transactions on Knowledge and

Data Engineering, 16(2), pp.189-201.

[152] SIDHU, A.S.; CHANG, E.; SIDHU, B.S. (2005) “Protein Ontology: Vocabulary for Protein Data”, In:

Proceedings of the 3
rd

 International Conference on Information Technology and Applications, (Sydney,

Australia, July 4-7), pp.465-469.

http://www.w3.org/TR/2009/WD-owl2-primer-20090421/
http://tomgruber.org/writing/collective-knowledge-systems.htm
http://tomgruber.org/writing/collective-knowledge-systems.htm
http://www.srdc.metu.edu.tr/.../2005healthcareSemanticInteroperability.doc
http://portal.acm.org/citation.cfm?id=1096967.1096969
http://swt-www.informatik.uni-hamburg.de/conferences/oopsla%202004%20-%20accepted/20040815_Brauner_OOPSLA_oopsla_2004_DFB.pdf
http://swt-www.informatik.uni-hamburg.de/conferences/oopsla%202004%20-%20accepted/20040815_Brauner_OOPSLA_oopsla_2004_DFB.pdf

 References 229

[153] DOU, D.; LEPENDU, P.; KIM, S.; QI, P. (2006) “Integrating Databases into the Semantic Web through

an Ontology-based Framework”, In: Proceedings of the 22
nd

 International Conference on Data Engineering

Workshops, (Atlanta, Georgia, USA, April 3-7), pp. 54.

[154] ALANI, H.; KIM, S.; MILLARD, D.E.; WEAL, M. J.; HALL, W.; LEWIS, P. H. SHADBOLT, N. R.

(2003) “Automatic Ontology-Based Knowledge Extraction from Web Documents”, IEEE Intelligent Systems,

18(1), pp. 14-21.

[155] RAZMERITA, L.; ANGENHRN, A.; MAEDCHE, A. (2003) “Ontology-based User Modeling for

Knowledge Management Systems”, User Modeling, LNCS 2702, pp. 213- 217.

[156] CORAZZON, R. (2007) “Formal ontology: ONTOLOGY”, A Resource for Philosophers, available at

http://www.formalontology.it/, [accessed in March 2009].

[157] BORST, W. N. (1997) “Construction of Engineering Ontologies”. PhD thesis, Center for telematica and

information technology, University of Tweently, Enschede, NL, available at

doc.utwente.nl/17864/1/t0000004.pdf, [accessed January 2009].

[158] GRUBER, T. R. (1993) “A translation approach to portable ontology specifications”, Knowledge

Acquisition, 5(2), pp.199–220.

[159] MCCARTHY, J. (1980) “Circumscription - A Form of Non-Monotonic Reasoning”, Artificial

Intelligence, 5(13), pp. 27-39.

[160] GRUBER, T.R. (2003) “It Is What It Does: The Pragmatics of Ontology”, In: invited talk at

International Conference on Sharing the Knowledge, CIDOC CRM Symposium, (Washington, DC, March 26-

27), available at http://tomgruber.org/writing/cidoc-ontology.htm, [accessed in March 2009].

[161] SOWA, J.F. (2007) “Building, Sharing, and Merging Ontologies”, available at

http://www.jfsowa.com/ontology/ontoshar.htm, [accessed January 2009].

[162] HUI, B.; YU, E. (2005) “Extracting conceptualizations from specialized documents”, Data and

Knowledge Engineering, 54(1), pp. 29-55.

[163] FENSEL, D. (2002) “Ontology based Knowledge Management” IEEE Computing, 35(11), pp. 56-59.

[164] STOJANOVIC, L.; MAEDCHE, A.; MOTIK, B.; STOJANOVIC, N. (2002) “User-Driven Ontology

Evolution Management”, Knowledge Engineering and Knowledge Management: Ontologies and the Semantic

Web, LNCS 2473, pp. 285–300.

[165] LENAT, D. B.; GUHA, R. V. (1990) “Building Large Knowledge Bases”, Addison-Wesley, Reading,

MA.

[166] NECHES, R.; FIKES, R. E.; FININ, T.; GRUBER, T. R.; PATIL, R.; SENATOR, T.; SWARTOUT,

W.R. (1991), “Enabling technology for knowledge sharing”, AI Magazine, 12(3), pp. 16-36.

[167] HUMPHREYS, B.L.; LINDBERG, D. A. (1998) “The Unified Medical Language System: an

informatics research collaboration”, Journal of American Medical Association, 5(1), pp. 1-11.

[168] FENSAL, D.; ANGELE, J.; DECKER, S.; ERDMANN, M.; SCHNURR, H.P.; STAAB, S.; STUDER,

R.; WITT, A. (1999) “On2broker: Semantic-based access to information sources at the www”, . In: Proc. of the

World Conference on the WWW and Internet, (Honolulu, Hawaii, USA, October 24-30), pp.7.

[169] HESSE, W. (2006) “Ontologies in the Software Engineering Process”, Faculty of Mathematics and

Informatics, University of Marburg, available at

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.5229&rep, [accessed June 2009].

[170] APARICIO, A.S.; FARIS, O.L.M.; DOS-SANTOS, N. (2005) “Applying Ontologies in the Integration

of Heterogeneous Relational Databases”, In: Proceedings of the Australian Ontology Workshop (AOW 2005),

(UTS, Sydney, Australia, December 6), pp. 11-16.

[171] LUBTYE, L. (2007) “Reusing Relational Sources for Semantic Information Access”, In: Proceedings of

the ACM first Ph.D. workshop in the Conference on Information and Knowledge Management, (Lisbon,

Portugal, November 6-10), pp. 9-16.

http://www.springerlink.com/content/978-3-540-40381-4/
http://www.springerlink.com/content/978-3-540-40381-4/
http://www.formalontology.it/
http://tomgruber.org/writing/cidoc-ontology.htm
http://www.jfsowa.com/ontology/ontoshar.htm
http://www.springerlink.com/content/?Author=Ljiljana+Stojanovic
http://www.springerlink.com/content/?Author=Alexander+Maedche
http://www.springerlink.com/content/?Author=Boris+Motik
http://www.springerlink.com/content/?Author=Nenad+Stojanovic
http://www.springerlink.com/content/978-3-540-44268-4/
http://www.springerlink.com/content/978-3-540-44268-4/

 References 230

[172] PARK, J.; RAM, S. (2004a) “Information Systems interoperability: What Lies Beneath?”, ACM

Transactions on Information Systems, 22(4), pp. 595-632.

[173] SUNG, S.; MCLEOD, D. (2006) “Ontology-Driven Semantic Matches between Database Schemas”, In:

Proceedings of the 22
nd

IEEE International Conference on Data Engineering Workshops, (Atlanta, GA, USA,

April 3-7), pp. 6.

[174] HAKIMPOUR, F.; GEPPERT, A. (2001) “Ontologies: an Approach to Resolve Semantic Heterogeneity

in Databases”, project funded by Swiss national science Foundation (SNSF), Project number 2100-053995,

available at http://www.ifi.uniz.zh/dbtg/Projects/MIGI, [accessed June 2009].

[175] HAKIMPOUR, F.; TUMPF, S. (2001) “Using Ontologies for Resolution of Semantic Heterogeneities in

GIS”, In: Proceedings of the 4
th
 AGILE Conference in Geographic Information Science, (Brno, Czech Republic,

April 19-21), pp. 385-395.

[176] MASUOKA, R.; PARSIA, B.; LABROU, Y. (2003) “Ontology-Enabled Pervasive Computing

Applications”, IEEE Intelligent Systems, 18(5). pp. 68-72.

[177] STRIZH, I.G. (2006) “Ontologies for data and knowledge sharing in biology: plant ROS signalling as a

case study”, BioEssays Wileys Periodicals Inc, 28(2), pp. 199-210.

[178] JOSHI, H.; SEKER, J.; BAVRAK, C.; RAMASWAMY, S.; CONNELLY, J.B. (2007) “Ontology for

Disaster Mitigation and Planning”, In: Proceedings of the summer computation simulation conference, (San

Diego, California, July 15-18), Article No. 6.

[179] GARDENER, S.P. (2005) “Ontologies and Semantic data integration”, Drug Discovery Today, 10(14),

pp. 1001-1007.

[180] ESTRELLA (2004) “The European project for Standardized Transparent Representations in order to

Extend Legal Accessibility”, available at http://www.estrellaproject.org/index.php/Main_Page, [accessed in

March 2009].

[181] MORK, P.; HALEVY, A.; TARCZY-HORNOCH, P. (2001) “A Model for Data Integration Systems of

Biomedical Data Applied to Online Genetic Databases”, In: Proceedings of the Symposium of the American

Medical Informatics Association, (Washington DC, May 23), pp. 473-477.

[182] DEY, K. A. (2001) “Understanding and Using Context”, Personal and Ubiquitous Computing, 5(1), pp.

4-7.

[183] ABOWD, G.D.; DEY, K. A.; BROWN, J. P.; DAVIES, N.; SMITH, M.; STEGGLES, P. (1999)

“Towards a Better understanding of Context and Context-Awareness”, Handheld and Ubiquitous Computing,

LNCS 1707, pp. 304-304.

[184] BU, Y.; CHEN, S.; LI, J.; TAO, X.; LU, J. (2006) “Context Consistency Management Using Ontology

Based Model”, Trends in Database Technology, LNCS 4254, pp. 741-755.

[185] SCHIMIDT, A. (2006) “Ontology-Based User Context Management: The Challenges of Imperfection

and Time-Dependence”, On the Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE,

LNCS 4275, pp. 995-1011.

[186] YING, X.; FU-YAUN, X. (2006) “Research on Context Modeling Based on Ontology”, In: Proceedings

of the International Conference on Computational Intelligence for Modelling Control and Automation, and

International Conference on Intelligent Agents, Web Technologies and Internet Commerce, (Sydney, Australia,

November 28-December 1), pp. 188-188.

[187] TROUG, B.A.; LEE, Y.K.; LEE, S.Y. (2005) “Modeling Uncertainty in Context-Aware Computing”, In:

Proceedings of the 4
th
 Annual ACIS International conference on Computer and Information Science, (Jeju,

Korea, July 14-16), pp. 676- 681.

[188] STRANG, T.; LINNHOFF-POPIEN, C.; FRANK, K.; (2004) “CoOl: A Context Ontology Language to

enable Contextual Interoperability”, Distributed Applications and Interoperable Systems, LNCS 2893, pp. 236-

247.

http://www.ifi.uniz.zh/dbtg/Projects/MIGI
http://portal.acm.org/citation.cfm?id=1137237.1137378
http://portal.acm.org/citation.cfm?id=1137237.1137378
http://www.sciencedirect.com/science/journal/13596446
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235020%232005%23999899985%23601684%23FLA%23&_cdi=5020&_pubType=J&_auth=y&_acct=C000009979&_version=1&_urlVersion=0&_userid=121712&md5=96ba9a1e18106ca48889824698812561
http://www.estrellaproject.org/index.php/Main_Page
http://www.springerlink.com/content/978-3-540-46788-5/
http://www.springerlink.com/content/978-3-540-48287-1/

 References 231

[189] CROWLEY, J.L.; COUTAZ, J.; REY, G.; REIGNIER, P. (2002) “Perceptual Components for Context

Aware Computing”, In: Proceedings of the 4th International Conference on Ubiquitous Computing (UbiComp

2002), (Gvteborg, Sweden, September 29-October 1), pp. 117-134.

[190] FLURY, T.; PRIVAT, G.; RAMPARANY, F. (2004) “OWL-based location ontology for context aware

services”, In: Proceedings of the Artificial Intelligence in Mobile Systems, (Nottingham, UK,September 7), pp.

52-57

[191] BERNERS-LEE, T. (2009) “Linked Data”, the TED conference 2009, The Great Unveiling in Long

Beach, CA, USA, available at http://www.ted.com/index.php/talks/tim_berners_lee_on_the_next_web.html,

[accessed January 2009].

[192] BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. (2001a) “The Semantic Web: A New Form of Web

Content that is meaningful to Computers Will Unleash a Revolution of New Possibilities”, available at

http://www.informatics-review.com/thoughts/semantic.html, [accessed January 2009].

[193] BERNERS-LEE, T. (1998) “Semantic web road map”, available at

http://www.w3.org/DesignIssues/Semantic.html, [accessed January 2009].

[194] JANEV, V.; VRANES, S. (2009) “Semantic Web Technologies: Ready for Adoption?” IEEE IT

Professional, 11(5), pp. 8-16.

[195] GRUBER, T.R. (2009) “Ontology in the Encyclopedia of database Systems”, Ling Liu and M. Tamer

Özsu (Eds.), Springer-Verlag, 2009.

[196] DOBSON, G.; SAWYER, P. (2006) “Revisiting Ontology based Requirements Engineering in the Age

of Semantic Web” In: International Seminar on Dependable Requirements Engineering of Computerised

Systems at NPPs, (Halden, Norway, November 27-29), available at

http://www.comp.lancs.ac.uk/~dobsong/papers/dre06, [accessed in March 2009].

[197] SHETH, A.; RAMAKRISHNAN, C. (2003) “Semantic (Web) Technology in Action: Ontology Driven

Information Systems for Search, Integration and Analysis”, IEEE Data Engineering Bulletin, Special issue on

Making the Semantic Web Real, 26(4), pp. 40-48.

[198] CHAARI, T.; EJIGU, D.; LAFOREST, F.; SCUTURICI, V.M. (2006) “Modeling and Using Context in

Adapting Applications to Pervasive Environments”, In: Proceedings of the International Conference on

Pervasive Services (ICPS 2006), (Lyon, France, June 26-29), pp. 111-120.

[199] STRANG, T.; LINNHOFF-POPIEN, C.; FRANK, K.; (2004a) “Applications of a Context Ontology

Language”, In: Proceedings of International Conference on Applications of a Context Ontology Language

Software, Telecommunications and Computer Networks, (Split, Croatia, October 10-13), pp 14-18.

[200] CHRISTOPOULOU, E.; GOUMOPOULOS, C.; ZAHARAKIS, I.; KAMEAS, A. (2004) “An Ontology-

based Conceptual Model for Composing Context Aware Applications”, In: Proceedings of the 6
th
 International

Conference on Ubiquitous Computing (UbiComp 2004), Workshop on Advanced Context Modeling, Reasoning

and Management, (Nottingham, England, September 7-10), available at:

http://pace.dstc.edu.au/cw2004/Paper26.pdf, [accessed in March 2009].

[201] TRIFAN, M.; IONESCU, B.; IONESCU, D.; PROSTEAN, O.; PROSTEAN, G. (2008) “An Ontology

based Approach to Intelligent Data Mining for Environmental Virtual Warehouses of Sensor Data”, In:

Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and

Measurement Systems, (Istanbul, Turkey, July 14-16), pp.125 – 129.

[202] HONG, C.S.; KIM, H.; KIM, H.S.; LEE, H.C. (2006) “An Approach for Configuring ontology-Based

Application Context Model”, In: Proceedings of the ACS/IEEE International Conference of Pervasive Services,

(Lyon, France, June 26-29), pp. 337- 340.

[203] WANG, X.; DONG, J.S.; CHIM, C.Y.; HETTIARACHCHI, S.R.; ZHANG, D. (2004) “Semantic Space:

An Infrastructure for Smart Spaces”, IEEE Computer Society, 3(3), pp. 32-39.

[204] WANG, X. H;, GU, T;, ZHANG, D.Q.; PUNG, H. K. (2004a), “Ontology Based Context Modelling and

Reasoning using OWL”, In: Proceedings of the IEEE International Conference on Pervasive Computing and

Communication Workshop on Context Modelling and Reasoning, (Orlando, Florida, March 14), pp. 18-24.

http://www.ted.com/index.php/talks/tim_berners_lee_on_the_next_web.html
http://www.informatics-review.com/thoughts/semantic.html
http://www.w3.org/DesignIssues/Semantic.html
http://pace.dstc.edu.au/cw2004/Paper26.pdf

 References 232

[205] CURINO, C.; QUINTARELLI, E.; TANCA, L. (2006) “Ontology based information tailoring”, In:

Proceedings of the 22
nd

 International Conference on Data Engineering Workshops (ICDE 2006), (Atlanta,

Georgia, USA, March 14-17), pp. 5.

[206] RACK, C.; ARBANOWSKI, S.; STEGLICH, S. (2005) “Context-aware, Ontology-based

Recommendations”, In: Proceedings International Symposium on Applications and the Internet Workshop,

(San Diego, CA, USA, January 23-27), pp. 7-104.

[207] CHEN, H.; FINN, T.; PERICH, F.; JOSHI, A. (2004) “SOUPA: Standard ontology for Ubiquitous and

Pervasive applications”, In: Proceedings of the 1
st
 Annual International Conference on Mobile and Ubiquitous

Systems: Networking and Services (MobiQuitous 2004), (Boston, Massachusetts, USA, August 22-26), pp. 258-

267.

[208] XU. Y.; XU F. (2004) “Research on Context modeling Based on Ontology”, In: Proceedings of the

International Conference on Intelligent Agents, Web Technologies and Internet Commerce, (Gold Coast,

Australia, July 12-14), pp. 188.

[209] CHEN, H.; FININ, T.; JOSHI. A. (2003a) “An Ontology for Context-Aware Pervasive Computing

Environments”, The Knowledge Engineering Review, 18(3), pp. 197-207.

[210] O‟SULLIVAN, D.; LEWIS, D. (2004) “Semantically Driven Service Interoperability for Pervasive

Computing”, In: Proceedings of the 3
rd

 ACM International Workshop on Data Engineering for Wireless and

Mobile Access, (San Diego, CA, US, September 19), pp. 17–24.

[211] OU, S.; GEORGALAS, N.; AZMOODEH, M.; YANG, K.; SUN, X. (2006) “A Model Driven

Integration Architecture for Ontology-Based Context Modelling and Context-Aware Application

Development”, Model Driven Architecture – Foundations and Applications, LNCS 4066, pp. 188-197.

[212] CONNOLLY, D.; HARMELEN, F.; HORROCKS, I.; MCGUINESS, D. L.; PATEL-SCHEIDER, P.;

STEIN, L.A.; (2001) “DAML+OIL Reference Description”, W3C Recommendation, available at

http://www.w3.org/TR/daml+oil-reference, [accessed in March 2009].

[213] HORROCKS, I.; PATEL-SCHNEIDER, P. F. (2004) “A proposal for an owl rules language”. In:

Proceedings of the 13
th
 International World Wide Web Conference, (New York, USA, May 17-20), pp. 723–731.

[214] KIFER, M. (2008) “Rule Interchange Format: The Framework”, In: Proceedings of the 2
nd

 International

Conference on Web Reasoning and Rule Systems, (Karlsruhe, Germany, 31 October - 1 November), pp. 1-11.

[215] BOLEY, H.; HALLMARK, G.; KIFER, M.; PASCHKE, A.; POLLERES, A.; REYNOLDS, D. (2010)

“RIF Core Dialect”, W3C Recommendation, available at http://www.w3.org/TR/rif-core/, [accessed January

2009].

[216] BECKETT D.; MCBRIDE, B. (2004) “RDF/XML Syntax Specification (Revised)”, W3C

Recommendation, available at http://www.w3.org/TR/REC-rdf-syntax/, [accessed January 2009].

[217] BRICKLEY, D.; GUHA, R.V. (2004) “RDF Vocabulary Description Language 1.0: RDF Schema”,

W3C Recommendation, available at http://www.w3.org/TR/rdf-schema/, [accessed January 2009].

[218] PRUD‟HOMMEAUX, E.; SEABOURNE, A. (2008), “SPARQL Query Language for RDF”, W3C

Recommendation, available at http://www.w3.org/TR/rdf-sparql-query/, [accessed January 2009].

[219] SURE, Y.; ERDMANN, M.; ANGELE, J.; STAAB, S.; STUDER, R.; WENKE, D. (2002) “OntoEdit:

Collaborative Ontology Engineering for the Semantic Web”, The Semantic Web, LNCS 2342, pp. 221-235.

[220] HAARSLEV, V.; MOLLER, R. (2003), “Racer: A core inference engine for the semantic web”. In:

Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools, Sure, Y., Corcho, O.

(eds.), pp. 27–36.

[221] HA, Y. G.; SOHN, J.C.; CHO, Y.J. (2005) “Owler: a semantic web ontology inference engine”, In:

Proceedings of the 7
th
 International Conference on Advanced Communication Technology, (Phoenix Park,

Republic of Korea, February 21-23), pp. 1077-1080.

[222] DENNY, M. (2002) “Ontology Building: A Survey of Editing Tools”, XML Editing Ontologies,

available at http://www.xml.com/pub/a/2002/ 11/06/ontologies.html, [accessed in March 2009].

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10556
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10556
http://www.springerlink.com/content/978-3-540-35909-8/
http://www.w3.org/TR/daml+oil-reference
http://www.springerlink.com/content/e7v2802743688216/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/
http://www.springerlink.com/content/978-3-540-43760-4/
http://www.xml.com/pub/a/2002/

 References 233

[223] KIFER, M.; LAUSEN, G.; WU, J. (1995) “Logical Foundations of Object Orientation and Frame-Based

Languages”, Journal of Association for Computing Machinery, 42(4), pp 741-843.

[224] HORRIDGE, M. (2010) “Protégé: OWL viz”, Protégé Wiki, available at

http://protegewiki.stanford.edu/index.php/OWLViz, [accessed June 2009].

[225] STOREY, M. A.; MUSEN, M.; SILVA, J.; BESTI, C.; ERNST, N.; FERGERSON, R.; NOY, N. (2001)

“Jambalaya: Interactive visualization to enhance ontology authoring and knowledge acquisition in Protégé”, In:

Workshop on Interactive Tools for Knowledge Capture, (Victoria B.C., Canada, October 2001), available at:

http://www.csr.uvic.ca/~mstorey/research/../papers, [accessed January 2009].

[226] BIZER, C. (2007) “D2RQ V0.5 - Treating Non-RDF Databases as Virtual RDF Graphs”, Freie

Universitat Berlin, available at http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/, [accessed January 2009].

[227] NYLUS, C.; O‟CONNOR, M.; TU, S. (2007), “Datamaster – a Plug-in for Importing Schemas and Data

from Relational Databases into Protégé”, In: Proceedings of 10
th
 International Protégé Conference, (Budapest,

Hungary, July 15-18), available at

http://protege.stanford.edu/conference/20& 07/presentations/10.01_Nyulas.pdf, [accessed January 2009].

[228] GOLBREICH, C.; ZHANG, S. BODENREIDER, O. (2006) “The foundational model of anatomy in

OWL: Experience and perspectives”, Journal of Web Semantics, 4(3), pp. 181-195.

[229] DERRIERE, S.; RICHARD, A.; PREITE-MARTINEZ, A. (2006) “An ontology of astronomical object

types for the virtual observatory”, Highlights of Astronomy, 14, pp. 603-603.

[230] GOODWIN. J. (2005) “Experiences of using OWL at the ordnance survey”, In: Proceedings of the 1
st

OWL Experiences and Directions Workshop, (Galway, Ireland, November 11-12), available at

http://www.ordnancesurvey.co.uk/oswebsite/partnerships/research/publications/docs/2005/experiencesofusing

OWL_JGoodwin_sem.pdf, [accessed in March 2009].

[231] LACY, L.; AVILES, G.; FRASER, K.; GERBER, W.; MULVEHILL, A.; GASKILL. R. (2005)

“Experiences using OWL in military applications”, In: Proceedings of the 1
st
 OWL Experiences and Directions

Workshop, (Galway, Ireland, November 11-12), available at

http://www.mindswap.org/2005/OWLWorkshop/sub27.pdf, [accessed January 2009].

[232] SIDHU, A.; DILLON, T.; CHANG, E.; SIDHU. B.S. (2005) “Protein ontology development using

OWL”, In: Proceedings of the 1
st
 OWL Experiences and Directions Workshop, (Galway, Ireland, November

11-12), available at

 http://sunsite.informatik.rwth-aachen.de/PublicationDBLP, [accessed January 2009].

[233] SOERGEL, D.; LAUSER, B.; LIANG, A.; FISSEHA, F.; KEIZER, J.; KATZ. S. (2004) “Reengineering

thesauri for new applications: The AGROVOC example”, Journal of Digital Information, 4(4), available at

http://journals.tdl.org/jodi/article/viewarticle/112/www4.fao.org/asfa, [accessed January 2009].

[234] FENSEL, D. (2008) “Semantic Technology - More Than Just an Appendix of the Web?”. Semantic

Technology Institute (STI), available at

 http://www.sti-innsbruck.at/fileadmin/documents/Semantic_Technology.pdf, [accessed in March 2009].

[235] SPACCAPIETRA, S.; PARENT, C.; DUPONT, Y. (1992) “Model independent assertions for integration

of heterogeneous schemas”, Very Large Database Journal, 1(1), pp. 81-126.

[236] FANG, D.; HAMMER, J.; MCLEOD, D. (1992) “An approach to behavior sharing in federated database

systems”, In: Proceedings of the International Workshop on Distributed Object Management, (Edmonton,

Alberta, Canada, August 19-21), pp. 334-346.

[237] OUKSEL, A.M.; NAIMAN, C. (1992) “Towards the design of a semantic communication protocol”, In:

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, (Chicago, IL, USA, 18-

21 October 18-21), pp. 1271 – 1276.

[238] KIM, W.; SEO, J. (1991) “Classifying schematic and data heterogeneity in multidatabase systems”, IEEE

Computer, 24(12), pp.12.

http://protegewiki.stanford.edu/index.php/OWLViz
http://www.csr.uvic.ca/~mstorey/papers/kcap2001.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/
http://protege.stanford.edu/conference/20&%2007/presentations/10.01_Nyulas.pdf
http://www.ordnancesurvey.co.uk/oswebsite/partnerships/research/publications/docs/2005/experiencesofusingOWL_JGoodwin_sem.pdf
http://www.ordnancesurvey.co.uk/oswebsite/partnerships/research/publications/docs/2005/experiencesofusingOWL_JGoodwin_sem.pdf
http://www.mindswap.org/2005/OWLWorkshop/sub27.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-188/sub35.pdf
http://citeseerx.ist.psu.edu/viewdoc/redirect?doi=10.1.1.142.7040&label=DBLP
http://journals.tdl.org/jodi/article/viewarticle/112/www4.fao.org/asfa
http://www.sti-innsbruck.at/fileadmin/documents/Semantic_Technology.pdf

 References 234

[239] KRISHNAMURTHY, R.; LITWIN, W.; KENT, W. (1991) “Language features for interoperability of

databases with schematic discrepancies”, ACM SIGMOD Record, 20 (2) pp. 40 – 49.

[240] NAIMAN, C.F; OUSKEL, A. M. (1995) “A classification of semantic conflicts in heterogeneous

database systems”, Journal of Organizational Computing, 5(2), pp. 167-193.

[241] BITTNER, T.; DONNELLY, M.; WINTER, S. (2005) “Ontology and semantic interoperability”. Large-

Scale 3D Data Integration: Problems and Challenges, CRC Press, Boca Raton, pp. 37-48.

[242] CRUZ, I.; XIAO, H. (2005) “The Role of Ontologies in Data Integration”, Journal of Engineering

Intelligent Systems, 13(4), available at http://www.cs.uic.edu/~advis/publications/dataint/, [accessed in March

2009].

[243] OBRST, L. (2003) “Ontologies for semantically interoperable systems”, In: Proceedings of the 12
th

International Conference on Information and Knowledge Management, (New Orleans, LA, USA, November 5-

10), pp. 366-369.

[244] PARTRIDGE, C. (2002) "The role of ontology in integrating semantically heterogeneous databases",

Technical Report 05/02, National Research Council, Institute of Systems Theory and Biomedical Engineering

(LADSEB-CNR), available at

http://74.125.155.132/scholar?q=cache:wlYO3nNGHbkJ:scholar.google.com/+The+role+of+ontology+in+inte

grating+semantically+heterogeneous+databases&hl=en&as_sdt=2000&as_vis=1, [accessed January 2009].

[245] CHATTERJEE, N.; KRISHNA, M. (2007) “Semantic Integration of Heterogeneous Database on the

Web”, In: Proceedings of the International Conference on Computing: Theory and Applications (ICCTA 2007),

(Kolkata, India, March 5-7), pp.325-329.

[246] BARRESI, S.; REZGUI, Y.; LIMA, C.; MEZANIE, F.; (2005) “Architecture to Support Semantic

Resources Interoperability”, In: Proceedings of the 1
st
 International Workshop on Interoperability of

Heterogeneous Information Systems (IHIS 2005), (Oldenburg, Germany, November 4), pp. 79-82.

[247] CHOI. N.; SONG, I.Y.; HAN, H. (2006) “A Survey on Ontology Mapping - Deals with ontology

mapping between heterogeneous ontologies”, ACM SIGMOD Record, 35(3), pp. 34-41.

[248] SALEEM, A. (2006) “Semantic Web Vision: survey of ontology mapping systems and evaluation

progress”, Masters Thesis, Intelligent Software Systems, Thesis No:MCS-2006:13, Blekinge Institute of

Technology, Sweden, available at:

http://www.bth.se/fou/cuppsats.nsf/all/a72fe543e31b0cb7c125722c007edcc8/$file/MCS-2006-13.pdf,

[accessed January 2009].

[249] KALFOGLOU, Y.; SCHORELMMER, M. (2003), “Ontology Mapping: The State of the Art”, The

Knowledge Engineering Review, 18(1), pp. 1-31.

[250] KLEIN, M. (2001) “Combining and Relating Ontologies: An Analysis of Problems and Solutions”, In:

Proceedings of the 17
th
 International Joint Conference Artificial Intelligence Workshop on Ontologies and

Information Sharing, (Seattle, WA, April 4-5), pp. 53–62.

[251] DING, L.; KOLARI, P.; DING, Z.; AVANCHE, S.; FININ, T., JOSHI, A. (2005) “Using Ontologies in

the Semantic Web: A Survey”, in TR-CS-05-07 (2005) UMBC

[252] TEMPLETON, M.; BRILL, D.; CHEN, A.; DAO, S.; LUND, E.; MACGREGOR, R.; WARD. P. (1987)

“Mermaid - a front-end to distributed heterogeneous databases”, In: IEEE Special issue on distributed database

issues, 75(12), pp. 695 - 708.

[253] JACOBSEN, G.; PIATETSKY-SHAPIRO, G.; LAFOND, C.; RAJNIKANTH, M.; HERNANDEZ, J.;

CALIDA, A. (1988) “Knowledge-based System for Integrating Multiple Heterogeneous Databases”, In:

Proceedings of the 3
rd

 International Conference on Data and Knowledge Bases, (Jerusalem, Israel, June 28-

30), pp. 3-18.

[254] LITWIN, W.; ABDELLATIF, A.; (1986) “Multidatabase Interoperability”, IEEE Computer, 19(12), pp.

10-18.

http://www.cs.uic.edu/~advis/publications/dataint/eis05j.pdf
http://74.125.155.132/scholar?q=cache:wlYO3nNGHbkJ:scholar.google.com/+The+role+of+ontology+in+integrating+semantically+heterogeneous+databases&hl=en&as_sdt=2000&as_vis=1
http://74.125.155.132/scholar?q=cache:wlYO3nNGHbkJ:scholar.google.com/+The+role+of+ontology+in+integrating+semantically+heterogeneous+databases&hl=en&as_sdt=2000&as_vis=1
http://www.bth.se/fou/cuppsats.nsf/all/a72fe543e31b0cb7c125722c007edcc8/$file/MCS-2006-13.pdf

 References 235

[255] RAM, S.; RAMESH, V. (1999) “Schema Integration: Past, Current and Future, Management of

Heterogeneous and Autonomous Database Systems”, San Francisco: Morgan Kaufmann, A. Elmagarmid, M.

Rusinkeiwicz, and Amit P. Sheth, ed., pp. 119-155.

[256] LITWIN, W.; (1985) “An overview of the Mutidatabase System”, In: Proceedings of the ACM annual

Conference on the Range of Computing: mid-80's perspective, (Denver, Colorado, United States), pp. 524 -

533.

[257] AHMED, R.; DESMEDT, P.; DU, W.; KENT, W.; KETABCHI, M.; LITWIN, W.; RAFII, A.; SHAN,

M.C. (1991) “The Pegasus Heterogeneous Multidatabase System”, 24(12), pp. 19-27.

[258] CHIRATHANJAREE, C. (2008) “A Data Model for Heterogeneous Data Sources”, In: Proceedings of

the IEEE International Conference on e-Business Engineering (ICEBE 2008), (Xi‟an, China, October 22-24),

pp.121-127.

[259] DONELSON, L.; TARCZY-HORNOCH, P.; MORK, P.; DOLAN, C.; MITCHELL, J.A.; BARRIER,

M.; MEI, H. (2004) “The BioMediator System as a Data Integration Tool to Answer Diverse Biologic Queries”,

MEDINFO, M. Fieschi et al. (Eds), Amsterdam: IOS Press, pp. 768-72, available at

http://www.biomediator.org/publications/donelson-2004-medinfo-data_integration_tool.pdf, [accessed in

March 2009].

[260] NOY, N.F. (2004) “Semantic integration: A Survey of Ontology Based Approaches”, In: Proceedings of

the ACM SIGMOD International Conference on Management of Data, (Paris, France, June 13-18), pp. 65-70.

[261] NOY, N.F.; MCGUINESS D.L. (2001) “Ontology Development 101: A Guide to Creating your first

Ontology”. Technical Report Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and

Stanford Medical Informatics Technical Report SMI-2001-0880, Stanford University, available at

http://protege.stanford.edu/publications/ontology_development/ontology101.pdf, [accessed January 2009].

[262] EHRIG, M.; SURE, Y. (2004) “Ontology mapping - an integrated approach”, The Semantic Web:

Research and Applications, Springer LNCS 3053, pp. 76–91.

[263] SHVAIKO, P.; EUZENAT, J. (2004) “A Survey of Schema based Matching Approaches”, Technical

Report DIT-04-087, Informatica e-Telecomunicazioni, University of Trento, available at

http://www.dit.unitn.it/~p2p/RelatedWork/Matching/JoDS-IV-2005_SurveyMatching-SE.pdf, [accessed

January 2009].

[264] VAPNIK, V.N. (1999) “The nature of statistical learning theory”, Statistics for engineering and

information science. New York, 2nd edition, Springer.

[265] WANG, J.T.L.; SHAPIRO, B.A.; SHASHA, D.; ZHANG, K.; CURREY, K.M. (1998) “an Algorithm for

Finding the Largest Approximately Common Substructures of Two Trees”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(8), pp. 889-895.

[266] MARQUES, D. (2005) “A Survey of Recent Research in Ontology Mapping”, Simon Fraser University,

school of Interactive Arts and Technology, available at

http://www.sfu.ca/~mhatala/iat881/2005/DM-OntologyMapping.pdf, [accessed January 2009].

[267] MADHAVAN, J.; BERNSTEIN. P. A.; DOMINGOS. P.; HALEVY, A.H. (2002) “Representing and

Reasoning about Mappings between Domain Models”, In: Proceedings of the 18
th
 International Conference on

Artificial intelligence, (Edmonton, Alberta, Canada, July 28-August 1), pp. 80-86.

[268] GREINER, R.; DARKEN, C.; SANTOSO, I. “Efficient reasoning”, Computing Surveys, 33(1), pp. 30.

[269] STRACCIA, U. (2008) “Managing Uncertainty and Vagueness in Description Logics, Logic Programs

and Description Logic Programs”, Reasoning Web, LNCS 5224, pp. 54-103.

[270] BOLEY, H.; KIFER, M.; PATRANJAN, P.L.; POLLERES, A. (2007), “Rule Interchange on the Web”,

Reasoning Web, LNCS 4636, pp. 269-309.

[271] EITER, T.; IANNI, G.; POLLERES, A.; SCHINDLAUER, R.; TOMPITS, H. (2006) “Reasoning with

rules and ontologies”, Reasoning Web, LNCS 4126, pp. 93-127.

http://www.biomediator.org/publications/donelson-2004-medinfo-data_integration_tool.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://www.springerlink.com/content/978-3-540-21999-6/
http://www.springerlink.com/content/978-3-540-21999-6/
http://www.springerlink.com/content/0302-9743/
http://www.dit.unitn.it/~p2p/RelatedWork/Matching/JoDS-IV-2005_SurveyMatching-SE.pdf
http://www.sfu.ca/~mhatala/iat881/2005/DM-OntologyMapping.pdf
http://www.springerlink.com/content/x3769k11535v/#section=232963
http://www.springerlink.com/content/x3769k11535v/#section=232963

 References 236

[272] ROSATI, R. (2006) “Integrating Ontologies and Rules: Semantic and Computational Issues”, Reasoning

Web, LNCS 4126, pp. 128–151.

[273] EITER, T.; IANNI, G.; POLLERES, A.; SCHINDLAUER, R.; TOMPITS, H. (2008) “Rules and

Ontologies for the Semantic Web”, Reasoning Web, LNCS 5424, pp. 1-53.

[274] LUTHER, M.; MROHS, B.; WAGNER, M.; STEGLICH, S.; KELLERER, W. (2005) “Situation

reasoning - a practical OWL use case”, In: Proceedings of the International Symposium on Autonomous

Decentralized, (Chengdu, China, April 4-8), pp. 461-468.

[275] SHOJANOORI, R.; JURIC, R.; LOHI, M. (2010) “Towards Balanced Distribution of Computations

through Automated Reasoning”, In: Proceedings of the 15
th
 International Conference on System Design and

Process Science, (Dallas, US, June 6-11), CD-Rom.

[276] OGNYANOV, D.; KIRYAKOV, A. (2002) “Tracking Changes in RDF(S) Repositories”, Knowledge

Engineering and Knowledge Management: Ontologies and the Semantic Web, LNCS 2473, pp. 373– 378.

[277] HEFLIN, J.; HENDLER, J. (2000) “Dynamic Ontologies on the Web”, In: Proceedings of the 17
th

National Conference on Artificial Intelligence, (Austin, Texas, USA, July 30-August 3), pp. 443–449.

[278] MAEDCHE, A.; MOTIK, B.; STOJANOVIC, L.; STUDER, R.; VOLZ, R. (2002) “Managing Multiple

Ontologies and Ontology Evolution in Ontologging”, In: Proceedings of the 17th Conference on Intelligent

Information Processing (Montréal, Québec, Canada, August 25-30), pp. 51–63.

[279] ARPIREZ, J.C.; CORCHO, O.; FERNANDEZ-LOPEZ, M.; GOMEZ-PEREZ, A. (2001) “WebODE: A

scalable ontological engineering workbench”, Knowledge Engineering and Knowledge Management:

Ontologies and the Semantic Web, LNCS 2473 pp. 295-310.

[280] NOY, N.F.; FERGERSON, R. W.; MUSEN, M. A. (2000) “The knowledge model of Protege-2000:

Combining interoperability and flexibility” In: Proceedings of the 12
th
 International Conference on Knowledge

Engineering and Knowledge Management, (Juan-les-Pins, France), pp. 69-82-82.

[281] EKLUND, P.; ROBERTS, N.; GREE, S. (2002) “OntoRama: Browsing RDF Ontologies using a

Hyperbolic-style Browser”, In: Proceedings of the 1
st
 International Symposium on Cyber Worlds, (Tokyo,

Japan, November 6-8), pp. 405 – 411.

[282] SWARTOUT, B.; PATIL, R.; KNIGHT, K.; RUSS, T. (1996) “Towards Distributed use of large-scale

ontologies”, In: Proceedings of the 10
th
 Banff Knowledge Acquisition for Knowledge-Based Systems

Workshop, (Banff, Canada, November 9-14), pp. 138-145.

[283] FARQUHAR, A.; FIKES, R.; RICE, J. (1997) “The Ontolingua Server: A Tool for Collaborative

Ontology Constructions”, International Journal of Human-Computer Studies, 46(6), pp. 707-728.

[284] AHMAD, M.N.; COLOMB, R.M. (2007) “Overview of Ontology Server Research”, Journal of

Webology 4(2), pp. 1-7.

[285] VISSER, P.R.S.; CUI, Z. (1998) “Heterogeneous ontology structures for distributed architectures”, In:

Proceedings of the 13
th
 European Conference on Artificial Intelligence, Workshop on Applications of

Ontologies and Problem-Solving-Methods, (Brighton, England, August 24-25), pp. 112–119.

[286] BASS, L.; CLEMENTS, P.; KAZMAN, P. (2003) “Software Architecture in Practice”, Addison and

Wesley, 2
nd

 Edition, SEI Series in Software Engineering.

[287] CLEMENTS, P.; KAZMAN, R.; KLIEN, M. (2001) “Evaluating Software Architectures: Methods and

Case Studies”, Addison and Wesley, SEI Series in Software Engineering.

[288] BASS, L.; KAZMAN, R. (1999) “Architecture-Based Development”, Technical Report, CMU/SEI-99-

TR-007, ESC-TR-99-007, available at http://www.sei.cmu.edu/reports/99tr007.pdf, [accessed January 2009].

[289] MARC, E.; STEFFEN, S. (2004) “QOM- Quick Mapping”, The Semantic Web, LNCS 3298, pp. 683-

697.

[290] KNUBLAUCH, H.; FERGERSON, R.W.; NOY, N.; MUSEN, A.; (2004) “The Protégé OWL Plugin: An

open Development Environment for Semantic Web Applications”, Stanford Medical Informatics, Stanford

http://www.springerlink.com/content/978-3-540-44268-4/
http://www.springerlink.com/content/978-3-540-44268-4/
http://www.springerlink.com/content/978-3-540-44268-4/
http://www.springerlink.com/content/978-3-540-44268-4/
http://www.sei.cmu.edu/reports/99tr007.pdf
http://www.springerlink.com/content/978-3-540-23798-3/

 References 237

School of Medicine, available at: http://protege.stanford.edu/plugins/owl/publications/ISWC2004-protege-

owl.pdf, [accessed January 2009].

[291] KOAY, N.; KATARIA, P.; JURIC, R. (2010) “Semantic Management of Non-Functional Requirements

in e-Health Systems”, Telemedicine and e-Health Journal, 16(4), pp. 461-471.

[292] KOAY, N.; KATARIA, P.; JURIC, R.; TERSTYANSKY, G.; OBERNDORF, P. (2009) “Ontological

Support for Managing Non-Functional Requirements in Pervasive Healthcare”, In: Proceedings of the 42
nd

Hawaii International Conference on System Science, (Waikoloa, Big Island, Hawaii, January 5-8), pp. 1-10.

[293] KATARIA, P.; JURIC, R. (2010a) “Automated Reasoning in Resolving Semantic Conflicts across

Heterogeneous Repositories”, In: Proceedings of the 17
th
 Automated Reasoning Workshop - – Bridging the gap

between theory and practice, (University of Westminster, Harrow, Middlesex, UK, March 30-31), available at

http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html, [accessed January 2009].

[294] KATARIA, P.; JURIC, R. (2009) “Sharing Healthcare Data by Manipulating Ontological Individuals”,

In: Proceedings of the 12
th
 International Conference System Design and Process Science, (Montgomery,

Alabama, US, November 1-5), CD-ROM.

[295] GEGOV, A. (2009) “Complex systems modelling by rule based networks”, In: Proceedings of the 8
th

World Scientific and Engineering Academy and Society International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases, (Cambridge, UK, February 21-23), pp.122-127.

[296] SHOJANOORI, R.; NEMITSAS, P.; KRISHNAMURTH, A. (2008), “Generation of Ontologies from

Relational Databases: An Experience”, In: Proceedings of the 11
th
 International Conference on Integrated

Design and Process Technology, (Taichung, Taiwan, June 1-6), CD-ROM.

[297] JAKIMAVICIUS, T.R.; KATARIA, P.; JURIC, R. (2009) “Semantic Support for Dynamic Changes in

Enterprise Business Models”, In: Proceedings of the 12
th

International Conference on Integrated Design and

Process Technology, (Alabama Montgomery, USA, November 1-5), CD-ROM.

[298] FILIP, E.A.; KATARIA, P.; JURIC, R. (2009) “Intelligent Business Process Improvement”, In:

Proceedings of the 12
th

International Conference on Integrated Design and Process Technology, (Alabama

Montgomery, USA, November 1-5), CD-ROM.

[299] FILIP, E.A.; KATARIA, P.; JURIC, R. (2009) “Intelligent Business Process Improvement”, In:

Proceedings of the 12
th

International Conference on Integrated Design and Process Technology, (Alabama

Montgomery, USA, November 1-5), CD-ROM.

[300] SAAIDI, S.R.; KATARIA, P.; JURIC, R. (2009), “Semantic Management of the Submission Process for

Medicinal Products Authorisation”, In: Proceedings of the 12
th

International Conference on Integrated Design

and Process Technology, (Alabama Montgomery, USA, November 1-5), CD-ROM.

[301] OVEREND, G.E. (2008), “Introduction to eCTD and first principles. TOPRA”, The Organisation for

Professionals in Regulatory Affairs, available at http://www.topra.org/files/focus1_0.pdf, [accessed January

2007].

[302] BRATT, S. (2007) “Semantic Web and other Technologies to Watch”, W3C, available at

http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(2), [accessed December 2009].

[303] FENSEL, D.; MUSEN, M.A. (2001) “The Semantic Web: A Brain for Humankind”, IEEE Intelligent

Systems, 16(2), p.24-25.

[304] KATARIA, P.; JURIC, R. (2010b) “Sharing Healthcare Data through Ontological Layering” In:

Proceedings of the 43
rd

 Annual Hawaii International Conference on System Sciences, (Kauai, Hawaii, January

5-8), pp. 1-10.

[305] KATARIA, P.; KOAY, N.; JURIC, R.; MADANI, K.; TESANOVIC, I. (2008) “Ontology for

Interoperability and Data Sharing in Healthcare”, In: Proceedings of the 4
th
 International Conference on

Advances in Computer Science and Technology (Langkawi, Malaysia, April 2-4), CD-ROM.

http://protege.stanford.edu/plugins/owl/publications/ISWC2004-protege-owl.pdf
http://protege.stanford.edu/plugins/owl/publications/ISWC2004-protege-owl.pdf
http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html
http://www.topra.org/files/focus1_0.pdf

 References 238

[306] KATARIA, P.; JURIC, R.; PAUROBALLY, S.; MADANI, K. (2008b) “Implementation of Ontology for

Intelligent Hospital Wards”, In: Proceedings of the 41
st
 Hawaii International Conference on System Science,

(Hawaii, Big Island, January 7-10), pp.1-8.

[307] KATARIA, P.; JURIC, K.; MADANI, K.; CROFT, J. (2007) “Building Ontology for Intelligent

Software Applications in Hospitals”, In: Proceedings of the 10
th

International Conference on Integrated Design

and Process Technology, (Antalya, Turkey, June 3-8), CD-ROM.

[308] KATARIA, P.; JURIC, K.; MADANI, K.; (2007a) “Go-CID: Generic Ontology for Context Aware,

Interoperable and Data Sharing Applications”, In: Proceedings of the 11
th
 International Conference on

Software Engineering Applications (Cambridge, MA, US, November 19-21), CD-ROM.

[309] KATARIA, P.; MACFIE, A.; JURIC, K.; MADANI, K.; (2009) “Ontology for Supporting Context

Aware Applications for the Intelligent Hospital Ward”, Transaction of Integrated Design & Process Science

Tran-Disciplinary International Journal, 12 (3), pp. 35-44.

[310] BAHRAMI, A.; YUAN, J.; SMART, P.R.; SHADBOLT, N. R. (2007) “Context-Aware Information

Retrieval for Enhanced Situation Awareness”, In: Military Communications Conference (MILCOM 2007),

(Orlando, Florida, USA, October 29-31), pp. 29-31.

[311] Gauvin, M.; Boury-Brisset A.; Auger, A. (2004) “Context, Ontology and Portfolio: Key Concepts for a

Situational Awareness Knowledge Portal”, In: Proceedings of the 37
th
 Hawaii International Conference on

System Sciences (HICSS 37), (Big Island, HI, USA, January 5-8), pp.10.

[312] O‟SULLIVAN, D.; LEWIS, D.; WADE, V. (2004), “Enabling Adaptive Semantic Interoperability for

Pervasive Computing”, Knowledge and Data Engineering Group, Trinity College Dublin, available at

http://www.scss.tcd.ie/Dave.Lewis/files/04m.pdf, [accessed January 2009].

[313] GANGULY, S.; KATARIA, P.; JURIC, R.; ERTAS, A.; TANIK, M. M. (2009) “Sharing Information

and Data across Heterogeneous e-Health Systems”, Tele-Medicine and e-Health Journal, 15(5), pp. 454-464.

[314] PARSIA, B.; SIRIN, E.; KALYANPUR, A. (2005) “Debugging OWL Ontologies”, In: Proceedings of

the 14
th
 International Conference on World Wide Web, (Chiba, Japan, May 10-14), pp. 633 – 640.

[315] HOHAN, A.; HARTH, A.; POLLERES, A.; (2008) “Scalable Authoritative OWL Reasoning on a

Billion Triples”, In: Proceedings of 7
th
 International Semantic Web Conference, Billion Triple Semantic Web

Challenge (Karlsruhe, Germany, October 26-30), available at

http://sw.deri.org/~aidanh/docs/saor_billiontc08.pdf, [accessed January 2009].

[316] HORROCKS, I. (2002) “DAML+OIL: a description logic for thesemantic web”, IEEE Data Engineering

Bulletin, 25(1), pp. 4–9.

http://www.scss.tcd.ie/Dave.Lewis/files/04m.pdf
http://www.liebertonline.com/toc/tmj/15/5?cookieSet=1
http://www.liebertonline.com/toc/tmj/15/5?cookieSet=1
http://www.liebertpub.com/products/product.aspx?pid=54
http://aidanhogan.com/docs/saor_billiontc08.pdf
http://aidanhogan.com/docs/saor_billiontc08.pdf
http://sw.deri.org/~aidanh/docs/saor_billiontc08.pdf

 Index 239

Index

A

autonomy .. iii, 5, 10, 11, 12, 18, 19, 28, 32, 33, 35,

36, 41, 178, 179, 180, 184, 186, 187, 188, 202

B

business models 8, 11, 167

business processes ... 8, 11

C

computational models 6, 13, 20, 28, 80, 179

computational spaces 1, 14, 181

computations .. 1, 2, 15, 16, 57, 150, 152, 154, 155,

156, 158, 182, 195, 199, 202, 203

context models .. 13, 23, 24

D

data integration 22, 35, 37, 248

data model 3, 21, 32, 34, 38, 208

data repositories ... iii, viii, ix, 2, 3, 5, 6, 7, 8, 9, 10,

11, 10, 11, 13, 17, 18, 19, 21, 23, 24, 28, 27, 32,

41, 45, 44, 46, 50, 55, 58, 61, 62, 63, 64, 65, 69,

87, 79, 80, 87, 95, 98, 100, 141, 151, 152, 157,

158, 164, 165, 166, 167, 176, 178, 179, 180,

181, 182, 183, 184, 185, 187, 188, 191, 192,

193, 194, 195, 198, 199, 200, 201, 202, 203,

204, 205, 209

database.. ix, xiii, 3, 6, 9, 10, 11, 21, 27, 28, 29, 30,

32, 33, 34, 35, 36, 41, 46, 49, 56, 63, 80, 82, 83,

84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96,

101, 110, 119, 128, 136, 137, 139, 140, 178,

181, 186, 187, 188, 189, 197, 199, 238, 239,

240, 242, 249, 252, 253

database systems 3, 9, 33, 34, 46, 186, 187, 238,

242, 252

datatype properties . ix, xix, 84, 85, 86, 89, 90, 113,

114, 116, 117, 118, 119, 124, 128, 154, 214

Derived ontological layer 147, 149, 229

devices 1, 11, 13, 14, 15, 16, 18, 21, 23, 61, 194

F

federations 4, 9, 12, 27, 32, 33, 45, 178, 186

G

global schema 33, 35, 185, 186, 189

Go-CID ontological layer.......................... 141, 232

Grouping rules .. 67, 69

H

hardware 2, 11, 12, 179, 197

High-Level rules vii, viii, 10, 81, 84, 129, 131, 141,

142, 143, 144, 145, 146, 147, 148, 149, 155,

229, 232

I

inference ... ix, 9, 24, 26, 43, 44, 57, 58, 66, 67, 70,

72, 75, 76, 80, 83, 85, 99, 100, 102, 105, 109,

113, 115, 116, 117, 119, 121, 122, 123, 125,

127, 128, 131, 132, 133, 134, 135, 136, 138,

139, 144, 145, 146, 147, 148, 149, 154, 155,

156, 175, 185, 199, 200, 204,251

L

Low-Level rules 10, 78, 112, 113, 155, 226

M

mediation 4, 28, 32, 185, 187, 239

meta-data xviii, 11, 13, 27, 28, 35, 45, 63, 208

migrations ... 4, 178, 186

O

object properties . ix, xix, 40, 62, 72, 84, 85, 86, 90,

91, 92, 95, 101, 102, 104, 105, 108, 110, 113,

115, 117, 118, 120, 121, 122, 123, 126, 127,

174, 175, 176, 215, 216, 217, 218, 219

ontological concepts.. iii, viii, ix, xv, xvi, xviii, xix,

5, 7, 8, 10, 11, 31, 32, 37, 38, 40, 41, 43, 44, 45,

48, 49, 50, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68,

69, 73, 75, 84, 87, 93, 95, 98, 119, 129, 152,

155, 166, 170, 171, 181, 182, 183, 184, 190,

194, 195, 196, 198, 199, 203, 204, 205, 216

ontological engineering 7, 8, 190, 254

ontological individuals .. viii, x, xi, xii, xiii, xv, xvi,

xvii, xviii, xix, 49, 50, 56, 57, 58, 60, 65, 68, 69,

70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83,

84, 85, 86, 90, 92, 96, 97, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116,117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129,

130, 131, 132, 133, 134, 135, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145, 146, 147,

148, 149, 150, 154, 155, 156, 164, 167, 168,

170, 172, 173, 174, 175, 176, 183, 190, 196,

197, 201, 202, 203, 204, 216, 217, 218, 219

ontological layering . iii, viii, ix, xii, 5, 7, 8, 10, 11,

27, 41, 44, 45, 44, 45, 46, 47, 48, 49, 50, 55, 67,

73, 75, 87, 79, 87, 150, 151, 152, 153, 157, 179,

180, 181, 183, 184, 185, 190, 191, 192, 193,

194, 195, 196, 198, 200, 201, 202, 203, 204,

205, 206

ontological mismatches 30, 31, 32, 39, 40, 186,

189

ontological modelling 9, 27, 180

ontological models 7, 8, 32, 39, 44, 190, 193

ontological properties................ 78, 79, 81, 82, 156

ontologyiii, viii, ix, x, xi, xii, xiii, xvi, xvii, xviii, 5,

6, 7, 9, 10, 11, 20, 21, 22, 25, 26, 27, 30, 31, 32,

33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 55, 59, 63, 64, 65, 69, 73, 74, 75, 76,

80, 83, 84, 85, 86, 79, 87, 88, 89, 90, 91, 92, 93,

101, 102, 104, 105, 108, 111, 113, 115, 116,

117, 118, 119, 120, 121, 122, 123, 124, 126,

127, 128, 130, 131, 132, 133, 134, 135, 136,

137, 138, 139, 140, 144, 145, 146, 151, 153,

154, 155, 157, 159, 161, 162, 164, 165, 170,

171, 172, 175, 179, 181, 182, 183, 184, 189,

190, 191, 192, 193, 200, 202, 204, 214, 215,

 Index 240

216, 217, 218, 219, 220, 240, 241, 245, 247,

249, 250, 251, 252, 253, 255

ontology alignment .. ix, xvi, 31, 40, 42, 76, 84, 85,

157

ontology integration ix, xvi, 80, 85

ontology mapping 7, 10, 27, 31, 39, 41, 42, 46, 47,

184, 190, 191, 241, 252

ontology merge ix, xvi, 83, 86

open/closed world reasoning 10

OWLvi, x, xi, xiii, xiv, xv, xvi, xvii, xviii, xix, xxii,

5, 9, 25, 26, 27, 43, 44, 46, 56, 57, 59, 62, 63,

71, 72, 84, 85, 86, 79, 87, 88, 94, 96, 97, 100,

103, 106, 109, 110, 113, 114, 116, 117, 118,

119, 124, 125, 128, 150, 151, 153, 154, 155,

157, 159, 160, 161, 162, 164, 165, 175, 176,

178, 179, 182, 183, 185, 189, 190, 191, 195,

197, 198, 199, 200, 201, 202, 203, 204, 205,

240, 246, 249, 250, 251, 254, 255, 256, 257

OWL conditions .. x, xi, xvii, xviii, 84, 85, 86, 113,

114, 116, 117, 118, 119, 124, 125, 128

OWL restrictions x, xiii, xvi, xviii, xix, 72, 103,

106, 109, 110, 175, 176, 183

P

PCEs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18,

19, 23, 24, 28, 41, 178, 193

Post-High-Level rules 10, 141, 142, 143, 144, 146,

147, 149

R

RDF .. xiv, xvi, xviii, 5, 7, 25, 26, 62, 63, 199, 205,

242, 250, 251, 254

reasoning mechanism .. xvi, xvii, 11, 58, 59, 71, 73,

74, 75, 79, 82, 83, 84, 85, 86, 111, 113, 116,

117, 118, 129, 141, 170, 176, 177, 182, 183,

198, 200, 201

reasoning rules . 8, 49, 74, 152, 156, 195, 196, 198,

199, 203, 227

S

Selection rules x, 67, 71, 98, 99, 173, 219

semantic conflicts . iii, viii, ix, xvii, xviii, 3, 4, 5, 6,

7, 8, 9, 10, 11, 18, 19, 21, 24, 28, 29, 27, 28, 29,

30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 59,

60, 61, 62, 66, 70, 73, 74, 75, 76, 77, 78, 79, 81,

82, 87, 79, 80, 83, 84, 87, 93, 94, 110, 111, 112,

119, 128, 129, 130, 131, 136, 137, 139, 140,

141, 157, 165, 167, 170, 176, 178, 179, 180,

181, 182, 183, 184, 185, 186, 187, 188, 189,

190, 191, 192, 193, 194, 196, 197, 198, 200,

201, 202, 203, 204, 205, 206,216, 252

semantic heterogeneity iii, 3, 12, 18, 19, 28, 239

semantic information retrievals 14, 15, 17, 24

semantic interoperabilityiii, 2, 3, 4, 8, 9, 10, 11, 13,

14, 18, 19, 20, 21, 23, 24, 28, 29, 34, 37, 41,

166, 178, 179, 180, 183, 184, 186, 189, 194,

252

semantic interoperation ... 2

semantic similarities... 8, 19, 52, 53, 54, 55, 87, 84,

85, 93, 190, 206, 207, 208, 216, 217

Semantic Web . iii, iv, v, viii, xiv, xxii, 4, 5, 6, 7, 8,

9, 11, 18, 22, 23, 24, 25, 26, 27, 39, 40, 41, 43,

45, 48, 72, 74, 84, 178, 179, 180, 184, 189, 190,

198, 205, 240, 241, 242, 246, 247, 249, 251,

252, 253, 254, 255, 256, 257

semantically related data . iii, 2, 3, 4, 5, 6, 8, 11, 17,

28, 49, 50, 75, 79, 82, 85, 87, 93, 101, 103, 104,

106, 107, 109, 165, 167, 174, 180, 181, 182,

183, 187, 192, 200, 203, 204, 205, 226

sensor driven computing 10, 16, 23

services 1, 11, 13, 17, 20, 21, 22, 23, 39, 46, 61,

194, 249

software... iii, xii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 23, 24, 28, 44, 45, 47,

56, 64, 74, 87, 79, 150, 151, 152, 153, 154, 156,

157, 158, 159, 164, 165, 166, 168, 178, 179,

180, 181, 182, 183, 184, 185, 186, 187, 188,

189, 190, 191,194, 195, 196, 197, 198, 199,

202, 203, 204, 205, 209, 219, 220, 226, 230,

232, 239, 243, 244, 246

software applicationsiii, 4, 10, 11, 14, 16, 185, 203,

209, 219, 220, 226, 230, 232

software systems . iii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 18, 19, 28, 178, 179, 180,

182, 183, 184, 185, 186, 187, 189, 239

SWRL vi, ix, x, xiv, xv, xvi, xvii, xviii, xix, xxii, 5,

9, 10, 11, 26, 27, 43, 57, 58, 66, 67, 68, 70, 71,

72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86,

79, 98, 99, 100, 112, 113, 129, 130, 131, 141,

144, 152, 153, 154, 155, 156, 157, 161, 162,

164, 165, 178, 179, 180, 182, 183, 185, 189,

190, 191, 192, 196, 197, 198, 200, 201, 202,

203, 205, 219, 220, 226, 229, 232, 240

SWRL rules . ix, xv, xvi, xvii, xviii, 10, 26, 43, 57,

58, 66, 72, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86,

79, 98, 99, 112, 152, 153, 154, 155, 156, 157,

161, 162, 164, 165, 180, 182, 192, 196, 197,

198, 200, 201, 202, 203, 205

T

Target ontological layer 226

U

ubiquitous computing.. 1, 14, 15, 28, 237, 243, 244

UoD ... xiv, 2, 6, 13, 18, 29

users 1, 2, 3, 5, 6, 12, 13, 14, 15, 16, 17, 19, 23, 25,

30, 33, 34, 35, 36, 37, 38, 44, 56, 167, 180, 185,

187, 193, 205

V

vocabularies 9, 21, 27, 35, 45, 189

W

W3C 24, 240, 246, 250, 256

web repositories .. 22, 37

WWW ... xiv, 4, 5, 8, 11, 12, 13, 18, 22, 23, 27, 39,

180, 247

X

XML xvi, xviii, 5, 12, 13, 17, 26, 27, 37, 62, 63,

168, 171, 194, 198, 199, 242, 250, 251

