

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Foundations of efficient virtual appliance based service
deployments.

Gabor Kecskemeti

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2011.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

F O U N D AT I O N S O F E F F I C I E N T V I RT U A L
A P P L I A N C E B A S E D S E RV I C E D E P L O Y M E N T S

gabor kecskemeti

A thesis submitted in partial fulfilment of the requirements of
the University of Westminster for the degree of Doctor of

Philosophy

December 2011

A B S T R A C T

The use of virtual appliances could provide a flexible solution to services
deployment. However, these solutions suffer from several disadvantages: (i)
the slow deployment time of services in virtual machines, and (ii) virtual ap-
pliances crafted by developers tend to be inefficient for deployment purposes.
Researchers target problem (i) by advancing virtualization technologies or
by introducing virtual appliance caches on the virtual machine monitor hosts.
Others aim at problem (ii) by providing solutions for virtual appliance con-
struction, however these solutions require deep knowledge about the service
dependencies and its deployment process.

This dissertation aids problem (i) with a virtual appliance distribution
technique that first identifies appliance parts and their internal dependen-
cies. Then based on service demand it efficiently distributes the identified
parts to virtual appliance repositories. Problem (ii) is targeted with the Auto-
mated Virtual appliance creation Service (AVS) that can extract and publish
an already deployed service by the developer. This recently acquired vir-
tual appliance is optimized for service deployment time with the proposed
virtual appliance optimization facility that utilizes active fault injection to
remove the non-functional parts of the appliance. Finally, the investigation
of appliance distribution and optimization techniques resulted the definition
of the minimal manageable virtual appliance that is capable of updating and
configuring its executor virtual machine.

The deployment time reduction capabilities of the proposed techniques
were measured with several services provided in virtual appliances on three
cloud infrastructures. The appliance creation capabilities of the AVS are com-
pared to the already available virtual appliances offered by the various on-
line appliance repositories. The results reveal that the introduced techniques
significantly decrease the deployment time of virtual appliance based de-
ployment systems. As a result these techniques alleviated one of the major
obstacles before virtual appliance based deployment systems.

ii

A C K N O W L E D G E M E N T S

First and foremost, I would like to thank Dr. Gabor Terstyanszky, my director
of studies, for his support throughout the past seven years I have known him.
During this period first, he supervised me as a foreign exchange student at
the University of Westminster. Then, he approached me with an offer that
launched my scientific career with a job and a PhD position at the university.
This dissertation would never exist without his extremely detailed comments
on my research papers and this dissertation.

Next, I would like to thank Prof. Peter Kacsuk, my third supervisor, for
offering me a job in the MTA-SZTAKI, Hungary. Even though I left the UK,
this job allowed me to still work on my PhD studies and frequently visit the
University of Westminster in the early stages of my research.

Afterwards, I would like to express my gratitude to Prof. Stephen Winter
(my second supervisor) and Dr. Zsolt Nemeth (a colleague in MTA-SZTAKI).
They both largely contributed to my scientific writing skills. Without the
support of Zsolt Nemeth, this dissertation would have taken twice the time
to write.

Then, I appreciate the support of Dr. Laszlo Kovacs from the University
of Miskolc, Hungary. He introduced me to the scientific methodologies and
gave me three years leave from my teaching job at the university to fast track
my PhD studies.

I would like to acknowledge the countless hours the infrastructure team of
the Centre of Parallel Computing has spent on preparing the various testbed
requirements I have asked for. I would like to emphasize the assistance of
Zsolt Lichtenberger who has spent months of his precious time to prepare
and support my Eucalyptus testbed.

Finally, I would like to thank my wife, my mother and my grandmother
their encouragement throughout my research and writing up periods that
lead to this thesis.

London, December 2011

Gabor Kecskemeti

iii

C O N T E N T S

abstract ii
acknowledgements iii
Contents iv
List of Figures vii
List of Tables x
Notation Index xi
Glossary xviii

i research overview 1

1 Introduction 2

1.1 Service deployment overview 4

1.1.1 The appliance model 5

1.2 Requirements for Automating Service Deployment 8

1.2.1 Taxonomy of Related Deployment Systems 9

1.3 Contributions 11

1.3.1 Approach for initial Virtual Appliance creation
(C1) 12

1.3.2 Parallel Algorithm for Virtual Appliance Size Optimiz-
ation (C2) 12

1.3.3 Distributed virtual appliance storage and delivery
(C3) 13

1.3.4 Minimal Manageable Virtual Appliance (C4) 13

1.4 The structure of the thesis 13

2 Related Works 15

2.1 Infrastructure as a service clouds 15

2.2 Service Deployment overview 17

2.3 Virtual appliance size optimization 21

2.4 Virtual appliance distribution optimization 23

ii achievements 25

3 Overview of the Architecture 26

3.1 Introduction 26

3.2 Virtual Appliance Management 28

3.3 Basic system definitions 29

3.3.1 Package types and relations 31

4 Automatic Virtual Appliance Creation Service 39

iv

contents v

4.1 Introduction 39

4.2 The AVS Client Interface 41

4.2.1 Virtual Appliance extraction 41

4.2.2 Playground operations 43

4.2.3 The upload operation 45

4.3 The Infrastructure as a Service System Interface 48

4.4 Repository Interface and Metadata Collection 50

4.4.1 Virtual Appliance Representation 51

5 Virtual Appliance Size Optimization Facility 55

5.1 Virtual Appliance Optimization Principles 55

5.1.1 The Virtual Appliance Optimization Facility 56

5.1.2 Appliance Contents Removal 58

5.2 Implementation of Virtual Appliance Optimization 62

5.2.1 Implementation of the Item Selection 62

5.2.2 Parallel Validation 68

5.2.3 Virtual Machine Management Strategy 71

6 Partial Virtual Appliance Replication 75

6.1 Introduction 75

6.2 Active Repository Functionality 76

6.2.1 Package decomposition 77

6.2.2 Package merging 80

6.2.3 Package replication 83

6.2.4 Package destruction 88

6.3 Virtual Appliance Rebuilding 91

6.3.1 Rebuilding scenarios and algorithm 91

6.3.2 Rebuilding in active repositories 95

6.3.3 Rebuilding in the IaaS system 99

6.3.4 Reconstructing the virtual appliance 100

7 The Minimal Manageable Virtual Appliance 102

7.1 Introduction 102

7.2 Definition of the manageable virtual appliance 103

7.2.1 Maintaining the Management Capabilities of Virtual
Appliances 105

7.2.2 Minimal Manageable Virtual Appliances 106

7.3 Architectural developments 109

7.3.1 Effects on the rebuilding algorithms 109

7.3.2 MMVA based virtual appliance transformation 114

7.3.3 MMVA and the Optimization facility 116

iii analysis 121

8 Methodology 122

contents vi

8.1 Introduction 122

8.2 Appliance classification 124

8.3 Correctness of the architecture 125

8.4 Basic deployment efficiency 128

8.4.1 Baseline and post-optimization deployments 129

8.4.2 Deployments with rebuilding 130

8.4.3 Deployments utilizing the MMVA 131

8.5 Estimating the cost of the architecture 131

8.5.1 Evaluating the optimization time 132

8.5.2 The cost of initial upload 132

9 Testbed 134

9.1 Introduction 134

9.2 The generic testbed 135

9.3 Testbed with Nimbus 138

9.4 Testbed with Eucalyptus 140

9.5 My proprietary testbed 143

9.6 Summary 144

10 Evaluation 147

10.1 Used virtual appliances 147

10.2 The cost of applying the architecture 148

10.2.1 The cost of initial upload 149

10.2.2 Evaluating the cost of size optimization 150

10.3 The influence of the AVS architecture on deployment 157

11 Conclusions 161

11.1 Future research directions 164

12 publications during research 166

bibliography 168

iv appendix 176

a virtual appliance definitions 177

a.1 The SSH Virtual Appliance 178

a.2 The Apache Virtual Appliance 179

a.3 The GEMLCA Virtual Appliance 180

L I S T O F F I G U R E S

Figure 1.1 Relations of deployment tasks 4

Figure 1.2 Basic layout of a virtual appliance and the way it en-
capsulates a software system 6

Figure 1.3 Generic view of an IaaS system 7

Figure 1.4 The process of appliance based deployment on an IaaS
system 8

Figure 1.5 Effects of the different contributions on the service de-
ployment time 11

Figure 3.1 Architectural connections of the Automatic Virtual ap-
pliance creation Service 27

Figure 3.2 Hypothetical dependency graph of 6 services 32

Figure 3.3 Possible rebuilding paths of σ6 from Figure 3.2 33

Figure 3.4 Basic package relations 35

Figure 3.5 Virtual appliance package relations 36

Figure 4.1 Use cases and relations of the AVS subsystem 40

Figure 4.2 Virtual appliance extraction scenarios 42

Figure 4.3 Different states of a Virtual Appliance playground in
the local AVS repository 44

Figure 4.4 Options on initiating format transformation of virtual
appliances 48

Figure 4.5 The virtual appliance representation of the AVS 51

Figure 5.1 Basic appliance optimization technique 58

Figure 5.2 Overview of the proposed optimization tech-
nique 63

Figure 5.3 Average grouping failure rate of the directory based
grouping algorithm during optimization 65

Figure 5.4 Parallelism in the validation process 69

Figure 5.5 Number of groups formed from the available items
during the optimization of the Apache appliance (see
Sections 8.5.1 and A.2) 70

Figure 5.6 Handling virtual machine instances 71

Figure 5.7 Virtual machine management states 72

Figure 6.1 The lifecycle of a virtual appliance with the use of active
repositories 76

Figure 6.2 Splitting graph of two virtual appliances 78

Figure 6.3 Basic steps of package replication 83

vii

List of Figures viii

Figure 6.4 Identifying unused packages 89

Figure 6.5 Activity diagram of the first phase of package destruc-
tion 90

Figure 6.6 Options on embedding the rebuilding algorithm 92

Figure 6.7 Rebuilding algorithm utilizing both IaaS systems and
active repositories 94

Figure 6.8 Package availability in a specific repository 95

Figure 6.9 Example repository layout with availability information
and stored packages 97

Figure 6.10 Virtual appliance rebuilding options 100

Figure 7.1 Minimal interfaces of a manageable virtual appli-
ance 103

Figure 7.2 Interfacing between MMVAs and the AVS architec-
ture 107

Figure 7.3 Deployment client using an MMVA during VA rebuild-
ing 109

Figure 7.4 Transformation applied only on MMVAs 114

Figure 7.5 Handling virtual machine instances of MMVA enabled
virtual appliances 118

Figure 7.6 Virtual machine management states with virtual appli-
ances embedding an MMVA 119

Figure 8.1 Classification and relationship of the evaluation scen-
arios 123

Figure 8.2 Correctness checking scenario of the architecture 125

Figure 8.3 Basic deployment measurements 128

Figure 9.1 The generic testbed used for evaluating the AVS service
and its components 136

Figure 9.2 Nimbus based testbed 139

Figure 9.3 Eucalyptus based testbed 141

Figure 9.4 The proprietary testbed 143

Figure 10.1 Comparison of initial upload phases with and without
using Algorithm 4.1 149

Figure 10.2 The process of optimization demonstrated on the size
of the appliance 151

Figure 10.3 Effect of intermediate virtual appliance creation in the
optimization facility 152

Figure 10.4 Comparing the stability of the remaining and reduction
completion conditions – see Section 5.2.1.4 153

Figure 10.5 Effects of remaining size exit condition on execution
time 154

Figure 10.6 Effects of MMVA usage during optimization 155

List of Figures ix

Figure 10.7 The number of future deployments required before size
optimization becomes profitable 156

Figure 10.8 Deployment phases 158

Figure 10.9 Effects of rebuilding 160

L I S T O F TA B L E S

Table 2.1 Classification of the different deployment solu-
tions 18

Table 4.1 Size comparison of virtual appliances and item
hashes 46

Table 4.2 Comparison of basic transformation initiators 49

Table 5.1 Size dependent virtual appliance start timings 55

Table 6.1 Collected availability information 96

Table 6.2 Evaluation of the rebuilding options for p1 98

Table 7.1 Comparison of the introduced rebuilding scen-
arios 111

Table 7.2 Comparison of all proposed transformation initiat-
ors 115

Table 9.1 Comparison of the testbed infrastructures 146

Table 10.1 Basic virtual appliance properties of the experimental
appliances 148

Table 10.2 Deployment times [in seconds] before and after the op-
timization process 157

Table 10.3 Basic virtual appliance properties of the optimized ex-
perimental appliances 158

Table 11.1 Comparison of the proposed architecture to related
works 162

x

N O TAT I O N I N D E X

Notation Description

α(i9) The aging coefficient of item i9
baseva(p14) True, if p14 is a base virtual appliance
BW(h3, h4) Network bandwidth between hosts
BWP(p33, r12) The bandwidth required serving the requests for

package p33 from repository r12

BWR(p34, r16) The bandwidth utilized while serving the quer-
ies for package p34 of repository r16

Cϕ The set of IaaS services in ϕ

c A particular IaaS service
con f igurator(p23) The configurator component of package p23

contents(r1) The set of packages stored in a particular repos-
itory – r1

correct(p25, ϕ) Checks whether p25 can be correctly extracted,
optimized, decomposed and rebuilt by the archi-
tecture in infrastructure ϕ

correlated(p30, r2) The set of packages that are downloaded in cor-
relation with p30 from r2

dep(p4) The direct package dependency set of package
p4

delta(p13) Evaluates if package p13 is a delta package
D(p6, n) The nth dependency set of package p6

Dcon(p48, h8) The construction path: the dependency set of
package p48 that offers the smallest total rebuild-
ing time on host h8

DG(p31) The group of packages with the common an-
cestor p31

executable(X) Evaluates to true when the virtual appliance im-
age X ∈ Iϕ can be executed on the service-based
system

evaluate(f , arg) Evaluates the function f with arguments arg

xi

notation index xii

Notation Description

ext(P3, r28) Defines the subset of P3 with those elements that
are not available in the contents(r28)

F The set of supported virtual appliance formats
f A particular virtual appliance format
γ(i10) The prior group participation coefficient of item

i10

h A host in a service-based system
hAVS The host of an AVS service
hcli The host of the deployment client
hs,q2 The source host of the download query q2

H(p21) The hash values of all items in package p21

hash(i1) The calculated hash value of a particular item
hosted(ξ1) The set of virtual machines hosted on a particu-

lar virtualization-enabled host of an IaaS system
Iϕ The set of possible items in a particular service-

based system – ϕ

i A single item – the smallest building block of a
virtual appliance

IE(r11) The combined non-optimality value of reposit-
ory r11

ieed(r9) The non-optimality value of external dependen-
cies required for packages in r9

ie f r(r8) The non-optimality value of frequently reques-
ted content of r8

iensc(r5) The non-optimality value of non-stored content
of r5

X ∈ Y Set Y contains element X
items(p1) The set of items that form package p1

Iϕ The set of possible virtual appliance images in a
particular service-based system – ϕ

im(p12, f1) Defines the virtual appliance image stored in
package p12 with the format f1

initVM(p17, ϕ) Initiates a virtual machine with the virtual appli-
ance provided by p17 in the service based system
ϕ

notation index xiii

Notation Description

jeos(p19, p20) True, if p19 contains the support environment of
p20

κ(i8) The previous removal success rate of i8 accord-
ing to the knowledge base

l(h1, h2) Network latency between hosts
latgroup(ε, r, rs) Defines a group from the users of rs, who share

similar connection properties as r
M(i5) The number of validated siblings of item i5
M f aulty(i6) The number of successfully validated siblings of

item i6
Msuccess(i7) The number of faulty validated siblings of item

i7
measure(X(Y)) The median execution time of function X with

arguments Y
manageable(p49) Determines the if package p49 offers manage-

ment interfaces
n The index of the possible dependency sets
Ndep(p27, ϕ) The number of deployments needed to over-

come the cost of optimization
NF(i14) The number of unsuccessful removal attempts

of item i14 prior a given size optimization opera-
tion

NT(i15) The total number of removal attempts on item
i15 prior a given size optimization operation

∅ The empty set
online(vm1) True, if vm1 is executed currently
optimalsize(p18) Determines if the given package (p18) is minimal
Φ The set of service-based systems
ϕ A particular service-based system
℘(X) Power set of X
Pϕ The set of all available packages in a service-

based system
p A single package
pβ A base virtual appliance

pc(r14) The package selected for replication from repos-
itory r14

notation index xiv

Notation Description

p∆ A delta package
pσ A service package
pΩ A self-contained package
pΩ,common The common parts of two virtual appliance

packages after applying the decomposition al-
gorithm on them

p∗Ω,nm A non-manageable self-contained virtual appli-
ance package

preq,q4 The package downloaded as a result of down-
load query q4

PC(p7) The number of possible rebuilding paths start-
ing from package p7

pkgsize(p3) The size of the package p3

pkg f orms(p22) The set of appliance image formats available in
package p22

Qϕ The set of download queries in the service-based
system ϕ

q1 An arbitrary download query
Qamg(r6, r7) The set of queries where repository r7 was re-

quested to download a package from repository
r6

QAll(r3) The set of queries where repository r3 behaves
as the requested repository

QEx(r4) The set of queries where repository r4 behaves
as the query source

Qlatg The set of queries that were initiated by the
users of a specific latency group

Qpac(p34, r13) The set of queries that request package p13 from
repository r13

Rϕ The set of repositories in ϕ

Rdep(p45, n) The set of repositories that contain parts of the
dependency set D(p45, n)

r A specific repository in the service-based system
rAVS The virtual appliance playground storage
rc The assumed repository for the biggest latency

group

notation index xv

Notation Description

rext(p43, r26) The repository that offers the minimal external
rebuilding time for p43 when the package was
originally requested from r26

rler(p35, r18) The least expensive location for rebuilding pack-
age p35 in a repository if the requested reposit-
ory was r18

rreq,q3 The repository that serves the download query
q3

rs The repository selected as the source for replica-
tion

rt The repository selected as the target for replica-
tion

related(i3, P1) Defines the subset of packages P1 ∈ Pϕ that con-
tain the item i3

S(p26, ϕ) The speedup on deployment time achieved by
the architecture after the optimization of p26 for
size or delivery

sN(X) Sample standard deviation of function X
SD(p8, X) The index of the element in the direct depend-

ency set of p8 used by the Xth rebuilding path
sel f contained(p10) Evaluates to true if p10 is a self-contained pack-

age
servicepkg(p15) True, if package p15 contains the target function-

ality for the users
size(i2) Size of a specific item – i2
stsize(p50) The storage size of package p50

tcomp(p40, h7) The time of applying the composition rule on
p40 and its dependency set on the host of h7

texr(p42, r24, r25) The external rebuilding time of package p37
when the rebuilding is accomplished by reposit-
ory r24 even though the package was originally
requested from r25

t f ,q6 The time the download query q6 has completed

tIUBL The baseline measurement for initial upload
time

tIUOpt The optimized initial upload time

notation index xvi

Notation Description

toplor(p36, r19) The total optimal rebuilding time of the self-
contained package (∑D(p36, x)) if it is rebuilt en-
tirely in r19

topexr(p37, r20) The minimal external rebuilding time of pack-
age p37 when the rebuilt package is requested
by r20

topreb(p41, r23) The minimal local rebuilding time of package
p41 when the rebuilt package is requested by r23

toir(p46, ξ2) The minimal IaaS based rebuilding time of pack-
age p46 on execution host ξ2

treb(p38, r21, h5) The rebuilding time of p38 on the host of h5
when the package is downloaded from r21

ts,q5 The time the download query q5 was received
Tar

totreb(p44, n, r27) The total rebuilding time of package p44 when
r27 selects the rebuilding location for every pack-
age in the dependency set of D(p44, n)

Tiaas
totreb(p47, n, ξ3) The total rebuilding time of package p47 when

ξ3 downloads and rebuilds every package in the
dependency set of D(p47, n)

ttrans(p39, r22, h6) The transfer time of p39 to the host of h6 from
repository r22

tTS(i16) The number of the last optimization iteration in
which item i16 was evaluated for removal

τ The pre-transfer measurement threshold
Θ(p9) All possible dependency sets of p9

X ∩Y Intersection of two sets
X ∪Y Union of two sets
X/Y The set of those elements in X that are not

present in Y
∣X∣ The cardinality of set X
Uϕ The service users of the system ϕ

u A single service user
used(r1, P2) Filters the package set P2 to contain only those

packages that were downloaded from repository
r1

notation index xvii

Notation Description

unused(r15) Specifies the set of packages that were not
downloaded from repository r15 within a pre-
specified time period

va(p11) Determines whether p11 is a virtual appliance
that can be instantiated in a virtual machine

VA f orms(c2) The set of the virtual appliance formats suppor-
ted by IaaS servcie c2

valid(p16, hx) Evaluates the validators of p16 on host hx

validator(p24) The validator component of package p24

vm An arbitrary virtual machine in the service-
based system

vms(c3) The set of virtual machines managed by IaaS ser-
vice c3

w(i4, p26) The evaluated value of weight function w for
item i4 in package p26

wA(i11, p27) The weight function for volatile item i11

wP(i12, p28) The pattern matching weight function of i12

wS(i13, p29) The basic, size based, weight function of i13 in
package p29

Ξϕ(c1) The set of virtualization-enabled hosts managed
by a specific IaaS service – c

ξ The target host for deployment where the de-
sired virtual appliance is instantiated

G L O S S A RY

A

amazon machine image (AMI) Amazon’s proprietary virtual appliance
format, p. 15.

application content service (ACS) An Open Grid Forum standard pro-
posal for application repositories in Grids, p. 134.

automated virtual appliance creation service (AVS) The proposed solu-
tion to create and optimize virtual appliances, p. 26.

D

domain (Dom) Single virtual machine provided by Xen, p. 7.

E

elastic compute cloud (EC2) The IaaS offering of Amazon, p. 15.

H

hypervisor (HV) The Virtual machine monitor of xen virtual machines,
p. 7.

I

infrastructure as a service (IaaS) A cloud computing platform offering
the outsourcing of hardware resources, p. xviii.

J

just enough operating system (JeOS) All the support system of an ap-
plication – including the OS, but excluding the application itself,
p. 28.

xviii

glossary xix

M

minimal manageable virtual appliance (MMVA) A size optimized em-
beddable virtual appliance with management capabilities, p. 107.

O

open grid services architecture (OGSA) The vision of the Open Grid
Forum about the service grid concept, p. 19.

open virtual machine format (OVF) A standard proposed by Distributed
Management Task Force (DMTF) for unified representation of Vir-
tual Machine states, p. 39.

P

platform as a service (PaaS) A cloud computing platform offering the
outsourcing of software platforms, p. 2.

S

simple storage service (S3) Amazon’s repository implementation, primar-
ily referred as a virtual appliance repository in this dissertation,
p. 15.

software appliance The software system is packaged and delivered with
the software environment supporting its execution (including the
OS and the necessary libraries and third parties), p. xix.

software as a service (SaaS) A cloud computing platform offering the
outsourcing of applications, p. 2.

V

virtual appliance (VA) A software appliance prepared for virtualized en-
vironments, p. 26.

virtual machine (VM) Virtualization of hardware resources of an entire
computer, p. 6.

virtual machine monitor (VMM) Offers virtual machine management
and execution capabilities, p. xviii.

glossary xx

virtual workspace service (VWS) The IaaS offering of the Nimbus project,
p. 39.

W

web services resource framework (WSRF) A group of OASIS standards
for unified state management of Web Services, p. 11.

X

xen virtual machines (Xen) A hardware virtualization solution proposed
in [7], p. xviii.

Part I

R E S E A R C H O V E RV I E W

1
I N T R O D U C T I O N

Services abstract system functionalities from the applied technology and they
enable the access of these functionalities through predefined interfaces. In
service-based systems [25] these interfaces, defined by service descriptions,
allow the users to access the services transparently without knowing the ex-
act details of the used service instance. The vision of these service-based
systems incorporates highly dynamic environments [23] where service in-
stances are deployed, utilized, and decommissioned on demand. Service de-
ployment [78] prepares the service code on the infrastructure of the service
provider for later usage. Dynamism in the service-based systems requires
the automation of the service deployment process.

Cloud computing [5, 14, 31, 85, 86] promises a simple and cost effective
outsourcing of applications (Software as a Service – SaaS), software plat-
forms (Platform as a Service – PaaS) or hardware resources (Infrastructure as
a Service – IaaS). PaaS and IaaS systems can be used to extend service-based
systems by deploying services on their resources. On PaaS cloud systems the
services are developed specially for the given platform. In contrast, IaaS sys-
tems use hardware virtualization to support a wider variety of applications.
These systems require the encapsulation of the services in virtual appliances.
Therefore, services are deployed by instantiating a virtual machine in the
IaaS system.

Virtual appliances combine services and their support environment in a
form executable by virtual machines (see Figure 1.2). In current IaaS systems
users either apply virtual appliances already published in a virtual appli-
ance marketplace [20, 53, 56, 82] or they have to create the required virtual
appliance on their own. However, these newly created virtual appliances are
not specifically designed with their frequent deployments in mind and this
seemingly minor issue can seriously hinder exploiting the dynamic features
of the system. For example some IaaS systems charge for the network usage
during deployment, therefore, improperly created virtual appliances entail
hidden deployment costs for their users. Hence, one of the main aspects of

2

introduction 3

this research is providing the appliance developers an automated mechanism
and support for creating virtual appliances.

In highly dynamic service environments a service request might impose
a service deployment before the request can be executed (pre-execution de-
ployment). However, the inclusion of the deployment has a negative effect
on the apparent execution time of the request. Current appliance based de-
ployment systems (e.g. [74]) try to reduce the effect of pre-execution deployment
by replicating the virtual appliances within the IaaS system. However, IaaS
systems regularly charge for the extra storage needs of the owner of the rep-
licated virtual appliance. The other main aspect of this work means to reduce
turnaround time of service requests and to keep deployments transparent to
the users.

In this dissertation, I propose the automated virtual appliance creation
service (AVS) that supports the service developers in the virtual appliance cre-
ation and publication process. This service supports most of the deployment
tasks (except selection that is the most independent task of the deployment
and I have discussed it outside of the scope of this dissertation in [44, 45, 46]).
The service also offers solutions for acquiring, distributing and optimizing
virtual appliances. The AVS creates the service’s virtual appliance based on
an already operable service installation on the developer’s system. After the
initial virtual appliance is created the developer can request the service to
prepare and publish the appliance for execution in various IaaS systems.

This dissertation also introduces an optimization facility that aims to min-
imize the size of the virtual appliances before they are published for wide-
spread use. The smaller sized appliances allow faster deployment than the
initially created virtual appliances, therefore, this technique targets the reduc-
tion of the effect of pre-execution deployment. The facility requires the appliance
developer to specify validator algorithms for the virtual appliance, these al-
gorithms are intended for automated use and they test the functionality of
the service encapsulated in the appliance. If these algorithms are present,
then the facility iteratively removes parts of the initial virtual appliance and
after each iteration it ensures the success of the removal by validating the
now smaller appliance.

I also present active repositories as another approach for reducing the ef-
fect of pre-execution deployment. These repositories automatically decompose
the stored virtual appliances to smaller parts, thus they allow the partial
replication of the appliances. The proposed approach only replicates virtual
appliance parts that are common in the stored virtual appliances. As a con-
sequence to decomposition, my solution incorporates a set of rebuilding al-
gorithms for reconstructing the original virtual appliances on the target site
of the deployment.

1.1 service deployment overview 4

Software maintenance

Initial Deployment

Selection

Installation Configuration

Activation

Deactivation

Adaptation

Update

Decomission

Figure 1.1: Relations of deployment tasks

Finally, this dissertation presents the concept of minimal manageable vir-
tual appliances. These special virtual appliances can form the base of the
future appliances. If the appliance developers decide to incorporate these
virtual appliances into theirs, then the proposed architecture – based on the
AVS service, the size optimization facility and the active repositories – util-
izes the management capabilities of the appliance. I reveal that based on
these capabilities the architecture becomes more widely adoptable and more
effective in reducing the effect of pre-execution deployment.

The rest of this chapter introduces the basic concepts on which this thesis
is based. First introducing the process of service deployment in highly dy-
namic service environments, then identifying the requirements of an archi-
tecture supporting service deployments and provides a taxonomy for the
classification of the related works.

1.1 service deployment overview

Service deployment [78] is the process of making a service instance available
for the users. I define deployment as a complex process that is composed
of following deployment tasks (see Figure 1.1): selection, installation, con-
figuration, activation, adaptation, deactivation, update, and decommission.
Systems that offer at least the triplet of installation-configuration-activation
are referred as service deployment systems. The next paragraphs detail the pur-
pose of these tasks.

First, the Selection task chooses the appropriate (hardware and software)
target system to deploy the service on. Then the Installation task manages

1.1 service deployment overview 5

the addition of the new software components to the target system. These
components include the service itself and its dependencies that are described
in [9, 26, 70]. The installed components are adjusted to fit the target system’s
specific needs with the Configuration task [47, 78]. During the Activation task
the deployment system makes the service available for the users, and usually
executes it.

The remaining deployment tasks are directly related to software mainten-
ance. While the target system is still running and serving requests, its pre-
viously installed and configured software components are fitted with the
Adaptation task to its current needs. Then the Deactivation task enables those
maintenance related operations that cannot operate on an active service. The
Update task replaces previously installed software components and initiates a
reconfiguration on them. Finally, the Decommission task removes the service’s
software components from the target system, and then issues a reconfigura-
tion task for the remaining software systems.

I have identified three types of service deployment systems that can ac-
complish the previously mentioned deployment tasks: (i) manual service
deployment systems, (ii) container based deployment systems and (iii) ap-
pliance based deployment systems. Manual deployment systems require con-
tinuous user interaction during the deployment process, therefore, they are
not suitable in highly dynamic service environments. Container based sys-
tems (e.g. [15, 62]) predefine an execution platform for the services that in-
cludes the deployment system. Therefore, services have to be developed for
this specific platform and they are not portable between the different con-
tainer based deployment systems. Finally, appliance based deployment sys-
tems (e.g. [42, 44, 48, 63]) require the encapsulation of the deployable services
and their specific support environments in virtual appliances. Thus, service
deployment is achieved by instantiating a virtual machine that executes the
virtual appliance with the service. The next section elaborates the concept of
virtual appliances.

1.1.1 The appliance model

During their life cycle, software systems may have several versions and sub-
versions. The diversity of their different installations means their vendors
have to support an unforeseen number of software environments. These soft-
ware environments are built up from several software components interfaced
with each other. However, the fact that they are installed on the same system
means they could also interfere with each other. In several cases, the soft-
ware vendor cannot identify the cause of an irregular situation because the

1.1 service deployment overview 6

Support

Environment

(Libs
+

OS)

Software
System

Vi
rtu

al
 A

pp
lia

nc
e

Figure 1.2: Basic layout of a virtual appliance and the way it encapsulates a software
system

vendor is not capable of reproducing the exact same software environment
its software components were deployed in.

To reduce the irregularities in deployments the vendor maintains a spe-
cialized environment, and the software system is executed in this controlled
environment only. There are two distinct ways to offer this environment:

software as a service [18] approach allows the vendor to deploy and
maintain the software system within the administrative domain of the
vendor. Users access the functionality of the software through well-
defined interfaces over the network. Depending on the target audience,
this could mean a web based user interface or a service interface, etc.
Since the software is deployed and maintained internally by the de-
veloper, this scenario is not discussed further in this thesis.

software appliance [3] model requires the vendor to package the soft-
ware system and its specialized support environment (including the OS
and the necessary libraries), and then the model expects the vendor to
offer the previously packaged system with specific hardware require-
ments. By buying the appliance, the user gets all the necessary licenses
for the included software packages (for the OS, also the libraries and
the offered high level software system). The resulting appliance (i) sim-
plifies the support for the service vendor by constraining the service’s
environment and (ii) it also allows easy installation, update and decom-
mission of the service. For example, when the appliance is provided on
a hard disk drive then the installation of the service only requires its
connection to the machine that meets the predefined requirements.

Virtual appliances (or VAs - [71]) are software appliances prepared to run in
virtualized environments. A virtual appliance defines a virtual machine (VM)
state that contains the software system and its support environment (see Fig-
ure 1.2). Virtualized environments [76] range from software to full hardware

1.1 service deployment overview 7

Host

VMM

Host

VMM

Host

VMM

Host

VMM Host

VMM

Host

VMM

Host

VMM

Host

VMM Host

VMM

Host

VMM

Host

VMM

Host

VMM

Host

VMM

Host

VMM

Host

VMM

Host

VMM Host

VMM

Host

VMM

Host

VMM

Host

VMM Host

VMM

Host

VMM

Host

VMM

Host

VMM

IaaS System

Figure 1.3: Generic view of an IaaS system

virtualization. Software virtualization encapsulates the software appliance
and isolates its execution from the OS by concealing its interfaces (e.g. the
Wine project [2] provides virtual Windows API on top of UNIX systems).
As an opposite, hardware virtualization offers virtual machines limiting the
utilized resources (e.g. maximum processing power, network bandwidth) by
the software installed on them. VMs can also provide different instruction
sets as the host hardware. Hardware virtualization is provided by virtual
machine monitors (VMM – [1, 7, 11]) that offer virtual machine management
functionalities, including their creation, start up and shutdown procedures
on their hosting machines.

In the scope of this thesis, a good example for hardware virtualization is
Xen [7] that uses the hypervisor as its VMM. In Xen terminology, a virtual
machine is called a domain that represents a part of the physical machine (or
a subset of physical resources). Domains are numbered, and the number 0

domain is a privileged domain that can control the hypervisor. Xen specific
virtual appliances are prepared to run in one of the Xen domains, therefore,
they store all the information required to instantiate a domain. If a software
system is installed, configured and activated in a domain, then saving the
state of that particular domain will result a Xen specific virtual appliance of
the software system.

Cloud computing [5, 14] is an emerging concept that is based on the Soft-
ware as a Service paradigm. Thus cloud computing provides services that are
managed centrally by software vendors. Infrastructure as a service clouds (IaaS)
provide services to remotely access VMM functionalities (see Figure 1.3). IaaS
systems offer the functionality to create, manage and destroy virtual ma-

1.2 requirements for automating service deployment 8

Host

VMMVA Support

Environment

(Libs
+

OS)

Software
System

Vi
rtu

al
 A

pp
lia

nc
e

IaaS System

Host

VMMVA

Host

VMMVA

Host

VMMVA

Appliance delivery

(a) Appliance delivery

Host

VMMVA

IaaS System

Host

VMMVA

Host

VMMVA

Host

VMMVA

VM

Support

Environment

(Libs
+

OS)

Software
System

Vi
rtu

al
 A

pp
lia

nc
e

Instan-
tiate

(b) Virtual Machine instantiation

Figure 1.4: The process of appliance based deployment on an IaaS system

chines on multiple host machines. On creation, the user provides a virtual
appliance (see Figure 1.4a) that the IaaS system uses to instantiate a virtual
machine (see Figure 1.4b). This appliance therefore has to be created taking
into account the requirements set by the virtual machine provided by the
IaaS. Therefore, the developer of the appliance has to prepare its software
system as a software appliance that can run on the virtual machines of the
IaaS system.

1.2 requirements for automating service deployment

I have assessed the related works (later detailed in the next Chapter) to
identify the approaches, issues, common requirements and deployment tasks
they implemented. This section distills these requirements and forms a tax-
onomy based on them. To define the requirements, first, I have collected the
possible actors who would need automation from the deployment system.
These actors include service brokers, orchestrators, composition engines, ser-
vice containers, etc.

Afterwards, I have identified the requirements an automated deployment
system planning to support these actors should comply with: (i) externally
controllable deployment tasks, (ii) scalability with the size of the service-
based system, (iii) reduced data storage, (iv) minimal deployment time,
(v) minimal disruption of the other services in the service-based system.
The next paragraphs discuss these requirements in detail.

First, automation of service deployment requires that the various deploy-
ment tasks (see Section 1.1) should be exposed with their interfaces to the
outside world (allowing their external control and manipulation). As a result,

1.2 requirements for automating service deployment 9

even those components (e.g. service brokers) that are not directly related (or
external) to the deployment system of the service-based system can influence
the entire deployment process.

Service-based systems are massively distributed environments, thus the
deployment system should be able to scale to the size of the service-based
system. For example, larger sized service-based systems involve more fre-
quent deployments. However, the increase in the number of deployments
should not affect the normal operation of the system.

Frequent deployments intensify the amount of data transferred to the tar-
get sites that could affect the network connections of already deployed ser-
vices. Large-scale service-based systems involve a large number of deploy-
able services that are stored in repositories. The deployment system should
reduce the size of the deployable service components in order to achieve their
effective storage and transfer.

Highly dynamic service environments require the deployment system to
frequently perform service deployments and decommissions. Service deploy-
ment often precedes a service call to the newly deployed service instance,
because the controlling components of the service-based system regularly
instantiate deployments when the timely execution of a service call requires
it. The deployment system should minimize the deployment time in order to re-
duce the total time of the service call on the newly deployed service instance.

Finally, new service deployments should not disrupt the service-based sys-
tem’s overall behavior. The newly deployed service should not be able to
obstruct the ongoing tasks of the previously deployed services.

1.2.1 Taxonomy of Related Deployment Systems

To provide further details on the requirements of the proposed deployment
system I established the following categorization for service deployment sys-
tems: (i) isolation level defines the separation between services installed on
the same host; (ii) repository support enables the storage of the code of the
available services for deployment; (iii) universal service support increases
the number of deployable services in the system; (iv) non-invasiveness re-
quires no modifications on the service code in order to support deployment;
finally, (v) state transfer enables the newly deployed system to resume from
the state of a remote service.

Service deployment solutions are categorized depending on their isolation
level that defines the level of service separation during the deployment on a
host already offering services. The lowest isolation level means all the other
services are stopped and their states are lost. The highest isolation level does
not decrease the turnaround time of the other service invocations during

1.2 requirements for automating service deployment 10

and after deployment or even when malicious code gets activated with a
newly deployed service. There are two main approaches to tackle the isol-
ation problem. The first built on the fact that service containers offer basic
isolation, however service containers do not separate the services entirely
(e.g. newly deployed services can exhaust system resources, thus degrading
the previously deployed services). The second approach provides isolation
with virtualization that offers the highest isolation levels. Isolation ensures
that improper deployment decisions do not influence the overall system per-
formance, therefore, virtualization based isolation is a key requirement for an
automated deployment system.

Service deployment solutions are also categorized depending on their sup-
port of repositories. Repositories could act as the primary source of trust if
they enclose security information (e.g. a signature of the service’s developer)
or enforce different registration policies – for example they require the valid-
ation of services. Without repositories, service code has to be collected before
every deployment operation. This gets even worse when the same service has
to be collected and deployed several times, instead of downloading it from an
already prepared location – the repository. The continuous repetition of the
expensive service code collection tasks reduces the overall performance of
the service-based system even though deployments were initiated to avoid
performance drop. Therefore, repositories are required for the automation of
deployment by acting as the sources of deployable services.

The next categorization is the universality of the deployment solution that
defines the generality of the deployment solution with regards to the deploy-
able services. Specialized service deployment solutions are optimized for a
specific service. They can support all the deployment tasks from installation
towards adaptation and decommission; however, to simplify the deployment
problem they specialize these tasks for a given service. Container based isol-
ation techniques jeopardize universality by supporting services only com-
patible with the chosen container. In service-based systems, every service is
represented with its interface that cannot be used to differentiate between
deployable and non-deployable services. With specialized deployment solu-
tions only few services are deployable, therefore, highly dynamic service en-
vironments require universal deployment solutions that are not differentiating
the services in the service-based system.

Another categorization is based on the level of invasiveness the deployment
solution enforces on service developers. Invasive systems require the service
code to be modified to support the service’s deployment. E.g., these systems
require the service to implement an additional interface or they require the
use of special libraries and solutions that enable further deployments. As

1.3 contributions 11

an opposite, non-invasive systems are more compatible with the existing
service-based systems, therefore, a non-invasive deployment solution is required.

Finally, there are deployment solutions with state transfer capabilities. State
transfer in service-based systems require that a service suspended on a site
can be resumed on a different one. In this case, the whole process depends
on the state representation of the service [59]. The deployment system might
introduce new interfaces for state transfer, it might require the developer
to implement the state transfer mechanisms for its own system, and finally,
it could use a standardized state representation mechanism (like the Web
Services Resource Framework – WSRF – [6]).

1.3 contributions

D - Download
 I - Initialization
S - Startup
C - Configuration
A - Activation

D I S C AInitial Appliance - C1

Size optimized
Appliance - C2 D I S C A

Time

 Size optimized &
distributed Appliance C AD SI D D SI I

C4

C3
In

st
al

la
tio

n

Figure 1.5: Effects of the different contributions on the service deployment time

This chapter highlights my contributions to the knowledge. Figure 1.5
gives an overview on the effects and relations of my contributions. The figure
presents the various deployment tasks that are affected by my contributions.
As this research is mainly focused on the installation deployment task, I
have identified three subtasks that can be used to present the results of this
dissertation.

Installation time is composed of three separate components. The first one
is the download time (see “D” in Figure 1.5) required for transferring the
virtual appliance from the repository to the target host. This time mainly de-
pends on the size of the virtual appliance. The second one is the initialization
time (see “I” in Figure 1.5) needed for the IaaS provider to instantiate a vir-
tual machine that hosts the transferred virtual appliance. The initialization
time only depends on the IaaS provider. Finally, the third one is the startup
time (see “S” in Figure 1.5) spent during the initial startup of the initiated vir-

1.3 contributions 12

tual machine (until the service is ready for configuration). It mainly depends
on the virtual appliance developer.

The figure reveals that my initial contribution allows the creation of the ini-
tial virtual appliance (with the help of my first contribution). This initial vir-
tual appliance and the service that allows its creation are used as the baseline
for my later research. My second contribution targets the size optimization
of the initial virtual appliance in order to allow shorter deployment time.
My third contribution offers a technique to automatically decompose and
replicate appliance contents among repositories. The third row of Figure 1.5
reveals the effects of the rebuilding algorithms used during the installation
task by showing the repeated execution of the download and initialization
subtasks during a single deployment. Finally, my last contribution offers the
concept of minimal manageable virtual appliances that can be used to in-
crease the efficiency of the rebuilding and size optimization techniques.

1.3.1 Approach for initial Virtual Appliance creation (C1)

My initial contribution facilitates the virtual appliance creation process by
allowing the developer of the virtual appliance to work in the environment
they are used to. Therefore, I have defined an architecture and a methodology
for creating virtual appliances. I have presented this methodology through
a scenario that introduces the three cornerstones of this contribution. First, I
have designed two approaches for the initial creation of the virtual appliance.
Then, I have contributed with the identification of the metadata supporting
the deployment time optimization processes (see contributions C2-C3). Fi-
nally, I have contributed the initial upload algorithm that automatically se-
lects, decomposes and uploads the acquired virtual appliance to a repository
with the shortest estimated upload time.

1.3.2 Parallel Algorithm for Virtual Appliance Size Optimization (C2)

My research revealed that reducing the service’s encapsulating virtual appli-
ance could significantly influence the service deployment time. Consequently,
my second contribution provides a parallel active fault injection based al-
gorithm that reduces the size of a virtual appliance. The algorithm removes
sections of the virtual appliance while it ensures the target functionality of
the encapsulated service is still provided by the remainder of the appliance.
I reveal that the proposed algorithm is independent from the applied virtual
appliance sectioning. The foundations of the algorithm are the removable se-
lection algorithms and the gradually increasing granularity of the removable
parts during the optimization process.

1.4 the structure of the thesis 13

1.3.3 Distributed virtual appliance storage and delivery (C3)

The third contribution offers a method for storing virtual appliances dis-
tributed among repositories. My research shows that appliances stored in
repositories could have common components and elaborates an algorithm to
identify, separate and replicate them depending on the demand of the differ-
ent appliances. I have defined the metadata to be shared among repositories
in order to allow automated selection of the target sites for the replicas. I
have identified the role of the active repository that autonomously organizes
its contents with the help of the previous algorithms. Finally, I have defined
various algorithms that rebuild the decomposed appliances before deploy-
ment.

1.3.4 Minimal Manageable Virtual Appliance (C4)

My final contribution provides the foundation for virtual appliance delivery
and size optimization techniques by increasing their efficiency. First, I have
elaborated the requirements for the management capabilities that a virtual
appliance should meet to support these techniques. Then, I have defined
an algorithm that captures the substance of virtual appliances matching the
requirements. This algorithm creates the minimal manageable virtual appli-
ance (MMVA) that can act as the base for developer provided appliances.
This research also reveals a methodology for the developers to incorporate
the MMVA in their own appliances to enable the previously mentioned de-
ployment tasks.

1.4 the structure of the thesis

The rest of the thesis is organized as follows. First, in Chapter 2, I discuss the
related works in the context of the requirements and taxonomy discussed
in Section 1.2. Throughout the related works I present those research res-
ults that are directly related to my contributions. Next, the thesis is sub-
divided into two parts: the achievements and the analysis. In these parts,
every chapter starts with a short overview aligning its contents with my re-
search results. Chapters finish with a short summary that reveals their most
important achievements. The next paragraphs discuss the chapters about the
two main parts of the thesis.

Throughout the achievements part, I reveal the research background (see
Chapter 3) of my findings including the outline of the proposed architecture
and the theoretical basis for later chapters. Afterwards, I have dedicated a
chapter for each of my contributions. First, a detailed description my first

1.4 the structure of the thesis 14

contribution can be found in Chapter 4. Next, I reveal the research results
about my Parallel algorithm for Virtual Appliance optimization in Chapter 5.
Then, my third contribution (with the principal topics on active repositories
and virtual appliance rebuilding) is detailed in Chapter 6. Finally, Chapter 7

discusses my contribution on minimal manageable virtual appliances and
how they affect the behavior of my proposed architecture.

In the analysis part, I present the evaluation of the proposed architecture
in three chapters then I conclude the thesis with the last chapter. The three
chapters that are dedicated to evaluation first start with the discussion on the
applied methodology in Chapter 8. This methodology provides an overview
on the evaluation scenarios used in later parts of the thesis. Chapter 9 utilizes
the proof of concept scenario and evaluates the architecture from infrastruc-
ture independence by providing independent implementations on three dif-
ferent testbed infrastructures. Finally, evaluation concludes with Chapter 10,
where I present my measurements on the testbed to reveal the cost effects
and deployment time reduction capabilities of the proposed architecture.

2
R E L AT E D W O R K S

This chapter aims at discussing the various research areas that can be asso-
ciated with the contributions of this dissertation. First, the chapter discusses
several IaaS systems that can form the basis of the architecture introduced
in Chapter 3. Later, some of these IaaS systems are used as the basic fabric
on which my findings are demonstrated. Next, this chapter also discusses
the research efforts related to the topic of grid and web service deployment.
In this chapter, I also analyzed the identified deployment systems based on
their support for the different deployment tasks and classified them accord-
ing to the taxonomy I have revealed in the previous sections (see Sections 1.1
and 1.2.1). Finally, the current approaches for virtual appliance delivery and
size optimization are revealed in Sections 2.3 and 2.4.

2.1 infrastructure as a service clouds

One of the most established and widespread commercial infrastructure as a
service cloud provider is Amazon. They offer a wide range of web services
based on their Elastic Compute Cloud (EC2 – [50]). This service offers SOAP
and http query interfaces to handle basic virtual machine management func-
tionalities such as creation, registration, termination, restart and firewall con-
figuration. EC2 supports the creation of virtual machines from Amazon Ma-
chine Images (AMIs) – the Amazon notation for Virtual Appliances. These
AMIs are stored in Amazon’s own repository service called Simple Storage
Service or S3. Advanced users can publish AMIs [53], however the creation
of the AMIs is really left to the developers themselves, because Amazon only
provides basic facilities to upload an already prepared Amazon compatible
disk image as an AMI. The lack of support for AMI creation reveals that
Amazon’s primary concern is serving already available appliances to large
user communities.

Several open-source solutions implement Amazon’s IaaS interfaces. First,
Eucalyptus [58] has implemented the EC2 and S3 services as Cloud Control-
ler and Walrus respectively. The second implementation is Nimbus [42] that

15

2.1 infrastructure as a service clouds 16

has been used for service deployments with manually created virtual appli-
ances as described in [63]. However, Nimbus provides multiple interfaces on
its IaaS functionality (one based on Amazon EC2 and one on their own pro-
prietary WSRF service). Finally, OpenNebula [29] offers only EC2 interfaces
and no repository (S3) implementation; as a result, it cannot be used as fully
compatible open source replacement for Amazon’s IaaS system. OpenNeb-
ula’s Amazon API implementation is partial, however they support virtual
machine management on top of various VMMs and other IaaS systems. Cur-
rent IaaS systems offer the ways to reach the infrastructure, however they
lack the tools to effectively create virtual appliances to utilize their services.

Eucalyptus [58] is an open source implementation of the public Amazon
EC2 and S3 interfaces. Their EC2 implementation is referred as Cloud Con-
troller, while their S3 implementation is Walrus. Eucalyptus is capable to
build a hierarchical infrastructure where a single cloud controller can control
multiple clusters hosting basic Eucalyptus services. In this hierarchy, each
cluster runs a cluster controller service that acts as the single point of entry
to the cluster’s virtual machine monitors. Cluster controllers are also respons-
ible for the most distinguishing feature of Eucalyptus: they can form virtual
networks to separate the virtual machines of different users. Finally, each
VMM is exposed through the node controller service that is capable of the
basic virtual machine management functionalities on individual hosts. The
virtual appliance creation tools of Eucalyptus do not differ from Amazon’s,
because Eucalyptus uses the client software Amazon provides.

Nimbus [54] was developed as an incubator project for the Globus Toolkit.
From the early stages [43] of its development, Nimbus was designed to sup-
port multiple types of virtual machine monitors (for example Xen [7] or kvm).
In [63] they have also demonstrated that their service is capable of deploy-
ing services packaged as virtual appliances. They provide an Amazon EC2

compatible interface and one that is inherited from the Globus Toolkit 4 –
WSRF. Later on their focus moved towards the contextualization or deploy-
ment time configuration of virtual clusters [41]. Until recently the Nimbus
service was supporting local clusters only, however with the current devel-
opments [42] locally formed cloud infrastructure services can be intercon-
nected as meta-cloud services similarly to the Cloud Controller feature of
Eucalyptus. Similarly to Eucalyptus, Nimbus also offers an S3 implement-
ation (called Cumulus). However, their repository support is not restricted
to this implementation, since they also provide generic interfaces to support
third party repositories. Nimbus recommends the use of third party virtual
appliance creation tools; as a result, they leave the delivery optimization for
those tools.

2.2 service deployment overview 17

VMPlants [48] goes a step further with appliance-based deployment and
offers faster delivery of the virtual appliances by constructing it on site with
the help of directed acyclic deployment graphs. These deployment graphs
let the deployment system build the service from smaller parts coming from
a distributed repository called VM Warehouse. Analogous to Nimbus it has
two main interfaces, one for managing the virtual machine itself (VMPlant)
and one for creating a new one (VMShop). Inside the VMPlant the VM Ware-
house component operates a cache for virtual machine construction. Mean-
while the VMShop’s main task is to estimate the cost of deployment on a
given system and with this information it decides which machine should ini-
tiate the new VMPlant for the requested service. VMPlants defines a frame-
work for the management of virtual machines that includes techniques for
representing VM configurations in a flexible manner, for efficient instantiat-
ing of VM clones, and for composition of services to support the synchron-
ous creation of large number of VMs. The performance results encourage the
use of this technique for on-demand provisioning of VMs, showing that these
flexible execution environments can be dynamically cloned often in less than
a minute. As an extra over the virtual workspace service updating a service
is simple with the deployment graphs, because the service is updated with
only the portion of the code that really needs change.

2.2 service deployment overview

This section gives an overview on the related works in deployment. First, I
start with the two overview Tables (2.1a and 2.1b). These tables review the
various service deployment solutions according to the taxonomy and the
service deployment tasks discussed in the previous chapter (see Sections 1.1
and 1.2.1 in particular).

Infrastructure as a service systems were not developed for service deploy-
ment, however it has been demonstrated (e.g. in [63]) that they are also cap-
able for deploying services packaged as virtual appliances. Their isolation
level is high since they support hardware virtualization. Service repositories
are not necessarily part of an IaaS system. For example, Amazon and Euca-
lyptus support only their own internal repositories. In contrary, Nimbus offers
a generic and extensible way to download virtual appliances before initiat-
ing VMs. Because of the nature of the virtual appliances, IaaS systems do
not have a limitation on the supported services (they meet the universality
criterion). They only require the service to be fitted into a single appliance
executable in the IaaS system. IaaS systems currently do not generally sup-
port state transfer by migrating virtual machines among hosts. As for the de-
ployment tasks, the IaaS systems are not generally targeted for deployment,

2.2 service deployment overview 18

D
ep

lo
ym

en
t

Sy
st

em
s

Is
ol

at
io

n
R

ep
os

it
or

y
su

pp
or

t
U

ni
ve

rs
al

it
y

N
on

In
va

si
ve

ne
ss

St
at

e
tr

an
sf

er
su

pp
or

t

Ia
aS

sy
st

em
s

V
ir

tu
al

is
ed

√
√

√
—

H
ot

D
ep

lo
ym

en
t

Se
rv

ic
e

C
on

ta
in

er
—

√
√

—

H
A

N
D

C
on

ta
in

er
—

√
√

—

W
SP

ee
rs

C
on

ta
in

er
—

√
√

—

D
yn

ag
ri

d
C

on
ta

in
er

—
√

—
√

C
D

D
LM

im
pl

em
en

ta
ti

on
s

N
/A

—
—

—
—

(a) Requirement based
classification according
to the taxonomy in
Section 1.2.1

D
ep

lo
ym

en
t

Sy
st

em
s

Se
le

ct
io

n
In

st
al

la
ti

on
C

on
fig

ur
e

A
ct

iv
at

e
A

da
pt

D
ea

ct
iv

at
e

U
pd

at
e

D
ec

om
m

is
si

on

Ia
aS

sy
st

em
s

[4
0

,4
8

,5
8
]

—
√

—
√

—
√

—
√

H
D

S
[7

5
]

—
√

Pa
rt

ia
l

√
—

√
—

√

H
A

N
D

[6
2
]

—
√

Pa
rt

ia
l

√
—

√
—

√

W
SP

ee
rs

[3
5
]

√
√

Pa
rt

ia
l

√
—

√
—

√

D
yn

ag
ri

d
[1

5
]

√
√

Pa
rt

ia
l

√
—

√
—

√

C
D

D
LM

[8
1

]
—

√
√

√
√

√
—

√

(b) Deployment task
based classification
(see Section 1.1 for
details)

Table 2.1: Classification of the different deployment solutions

2.2 service deployment overview 19

therefore, they cannot support the selection and configuration related tasks.
Most IaaS systems allow little configuration options on prepared virtual ma-
chines – e.g. they can configure network interfaces and other hardware con-
straints for them. Configuration is a recent research topic in this field and
frequently referred as virtual machine contextualization [41].

IaaS systems allowed the rise of the appliance based deployment. In con-
trast, container based deployment systems existed before the cloud comput-
ing era. In cloud computing terminology, these systems are close to the Plat-
form as a Service (PaaS – [37, 38, 85]) concept: these systems provide a uni-
fied software environment for the services building on top of them. PaaS
systems are frequently encapsulating a container based deployment system
in a virtual appliance, then allow the instantiation of these virtual appliances
that can encapsulate user provided services. However, the properties and
features of the various container based deployment systems are inherently
different, because every system provides its unique platform. Therefore, the
following paragraphs analyze the various container-based systems based on
the requirements and taxonomy identified in Section 1.2. As a result, the soon
identified differences between the container-based deployment systems are
highlighted in the comparison Tables 2.1a and 2.1b.

Hot Deployment Service (HDS – [75]) introduces a new service for the
Open Grid Services Architecture (OGSA – [30]) based service containers.
This new service is called ServiceFactory and it enables the dynamic de-
ployment model on the otherwise static containers. With this extension, their
system is capable to deploy and decommission services while the service con-
tainer is still running. With HDS, the service container needs to be changed
(at configuration level) to support the operations for new service registration
and class loading. This solution ensures inter-service security by running
each service in its own java sandbox in order to make sure they do not have
direct access to the running code of other services. This means the isolation
level is low, since the execution of a malicious service can interfere with the
other one by modification of its underlying files or just simply consuming
more CPU or network than the others. The HDS allows the deployment of
any service code from any source (no repository support) if the code is re-
ceived from a trusted party. They use grid security infrastructure to identify
the user of the deployment request that usually incorporates the service’s
code itself. The deployment solution they propose is universal as long as
the service can be deployed within their chosen OGSA container – this prac-
tically reduces the universality criteria to Java-based services. The Service-
Factory does not depend on the deployed service’s behavior therefore this
solution is non-invasive. State transfer is not addressed even in case of OGSA
compliant services. As for deployment tasks, the HDS supports Web Service

2.2 service deployment overview 20

Deployment Descriptor that allows the configuration of the service before
activation. HDS handles the service’s code as a black box therefore it is not
possible to update parts of it.

Highly Available Dynamic Deployment Infrastructure (HAND – [62]) dis-
cusses isolation issues occurring while a newly deployed service is activated.
HAND extends the Java web service core container of the Globus Toolkit 4

[32] with a thin layer responsible for deployment. Thus, they require the con-
tainer to be delivered with extra services not available in the Globus distribu-
tion. In the original Globus web services core container services are delivered
in a gar file encapsulating both the service’s code and configuration details.
Therefore, the original solution only supports deployment time configura-
tion. For reconfiguration it requires the decommission and redeployment of
the service. In contrast, HAND supports several deployment approaches and
provides two deployment solutions called HAND-C (container level solu-
tion that requires the container to be restarted after a service injection), and
HAND-S (a service level solution that leaves all other services unaffected
during deployment). Between HAND and HDS the only difference is that
HAND supports the latest Web Services Resource Framework (WSRF – [6])
container and offers container and service level deployment. The more ad-
vanced service level approach is matching the capabilities of the HDS and
therefore fulfils the deployment requirements on the same level.

WSPeer [35] defines a message-oriented interface for service registration,
deployment, discovery, and invocation. The authors introduce two imple-
mentations; one for regular web services based software and other for P2P
Simplified protocol. The deployment in the WSPeer system is accomplished
by passing a class file to the WSPeer service that registers this class as a web
service, or in a more complicated case, the WSPeer automatically generates
a proxy for a given service used by the clients. This second case is used to
interface the WSPeer environment with the Triana workflow environment.
Because the WSPeer uses a lower level service paradigm than the previously
mentioned solutions, this increases the universality of the solution; however
it still requires that services should use Java technologies. The P2P techno-
logy applied in WSPeer enables the deployment task of selection. With the
P2P selection solution, the WSPeer can identify possible deployment targets
in localized environment.

Dynagrid [15] offers an all in one solution for deployment that covers all
the aspects of WSRF service deployment on some level and even reaches out
of the boundaries of deployment. It offers a solution for a unified invocation
interface (called ServiceDoor), and with the help of the ServiceDoor, the sys-
tem even offers service state transfers. Deployments are done with the help
of the dynamic service launcher (DSL) components that need to be deployed

2.3 virtual appliance size optimization 21

in all the WSRF containers (similarly to HDS and HAND). With DSL they
also get a unified service interface, so all the services are hidden behind the
invokeMethod function of the DSL service. This approach implies the most
changes in the current service-based systems but offers scheduling, migra-
tion and invocation support over the deployment capabilities.

Finally, [10] summarizes the development and standardization activit-
ies about Configuration Description Deployment and Lifecycle Manage-
ment (CDDLM) that is a collection of standard proposals from the Open
Grid Forum (OGF) focusing on service deployment and management. The
CDDLM API provides management and deployment interfaces and the CDL
language [79] offers a generic way to configure the deployed application. Ac-
cording to the final report of the CDDLM working group [81], there are four
available implementations (two open source, two closed source). For instance,
the implementation called SmartFrog from HP Labs provides a framework
to create deployment solutions for specific software components. The other
implementations only implement parts of the CDDLM recommendation. The
flexibility of the CDDLM is shown by the Softcity implementation that is not
even using java. Because there are multiple implementations, the isolation
level varies in every one of them, however the CDDLM specifications allow
even virtualization-based isolation. The generic nature of the CDL language
does not allow universal implementations, every service will have its own ex-
tensions for the CDL and therefore the deployment solution should be exten-
ded for every service it plans to support. In case of CDDLM, the invasiveness
criterion of deployment is reflected to the deployment service itself, because
the deployment system might need to be updated to support the new kinds
of services. The CDDLM remains in the scope of the traditional deployment
tasks therefore it does not support the state transfer of services. Selection is not
a traditional task for deployment systems, and therefore CDDLM does not
support it even though the automation of the entire deployment process is
not possible without its support. The update task is also problematic because
even the deployment system could need changes to support the updated
service’s new configuration details (result of the reflected invasiveness).

2.3 virtual appliance size optimization

Several solutions optimize virtual appliance distribution by reducing the appli-
ance size. Based on their input requirements these solutions use two dis-
tinct approaches for the optimization procedure. First, the pre-optimizing ap-
proach requires the appliance developer to provide the application and its
known dependencies that should be offered by the appliance. Second, the

2.3 virtual appliance size optimization 22

post-optimizing approach uses already existing virtual appliances and optim-
izes their size by altering and removing their contents.

With pre-optimizing algorithms, the dependencies of the user applications
are prepared as reusable virtual appliance segments. Appliance developers
select from these segments so that they can form the base of their planned
service. These algorithms then form the virtual appliance with the selected
virtual appliance segments and the service’s code itself. This algorithm is
used by rBuilder [68] with an extension that supports the creation of custom
virtual appliances by building from the application source codes.

The extreme case of pre-optimizing algorithms follows a minimalist pre-
optimizing approach that offers optimized virtual appliances with known
software environments. To support this approach several OS and reusable
application vendors offer the minimalist version of their product packaged
together with their just-enough operating system (JeOS – [34]) in virtual ap-
pliances [20, 53, 56, 82]. For example, there are several virtual appliances
available prepared to host a simple LAMP (Linux, apache, MySQL, php)
project. However, this approach requires the appliance developer to manu-
ally install its application to a suitable optimized virtual appliance. The ad-
vantage of these algorithms is the fast creation of the appliances with the
price that the developer has to trust the optimization attempt of the used vir-
tual appliance’s vendor. If the appliance is not well optimized, or the vendor
offers a generic appliance for all uses then the descendant virtual appliances
cannot be optimal without further effort.

Other pre-optimizing algorithms determine dependencies within the vir-
tual appliance by using its source code. Software clone [8] and depend-
ency [70] detection techniques identify all of the required underlying soft-
ware components by analyzing the sources. Once the dependencies are de-
tected, these algorithms leave only those components that are required for
serving the target functionality of the virtual appliance. Optimizing a virtual
appliance with these techniques require the source code of all the software
encapsulated within the appliance. Thus, they also need to analyze the under-
lying systems (e.g. the operating system) of the application. Unfortunately,
this last requirement renders these techniques unfeasible in most cases.

The most widely used post-optimizing algorithms [16, 49, 55] are optimizing
the free space in the disk images of the virtual appliance. If virtual appli-
ances are created from previously used software systems then their disk im-
ages contain their available free space fragmented throughout the entire im-
age. Before publication, virtual appliances are usually compressed for easier
transfer. However, the fragmented free space is harder to compress because it
might contain leftover data from previously erased content. Therefore, these
kinds of post optimizing algorithms analyze the available free space and

2.4 virtual appliance distribution optimization 23

first they fill their content with easily compressible data. Next, they offer
their users the option to defragment the disk images. As a result, these disk
images can be shrunk so they are not only more compressible but they do
not even store the free space in the disk image if they are not required. The
advantage of this algorithm is that it can operate on any virtual appliances
so long it can understand and use its file system.

2.4 virtual appliance distribution optimization

Virtual appliances frequently require large storage space, thus, their pre-
deployment transfer can be optimized by replicating their content in the vari-
ous repositories of the service-based system. However, in a highly-dynamic
service environment there could be thousands of virtual appliances so their
replication is not feasible. To overcome this issue researchers try to minimize
the storage requirements of these virtual appliances with the help of data
de-duplication algorithms, e.g. [73]. De-duplication algorithms came from the
field of data mining. These algorithms identify the data entries that represent
the same items in the various virtual appliances. As a result, systems apply-
ing data de-duplication only store partial virtual appliances and they only
recover the appliances if a specific appliance is requested. In the field of disk
image distribution, there are several approaches for the identification of the
common parts of virtual appliances. These approaches are mainly coming
from system administration issues like how to install and maintain almost
identical machines and their software configurations or how to efficiently
store full system backups.

First, [87] discusses the concepts of the disk-based de-duplication storage as
a new-generation storage system for enterprise data protection. This article
uses de-duplication to remove redundant data portions to compress data
into a highly compact form. The newly introduced disk based de-duplication
algorithms are analyzed from the perspective of performance. The new al-
gorithms are aimed at providing efficient de-duplication by optimizing the
memory usage of the proposed system.

Next, [66] introduces algorithms for partition cloning and partition repos-
itories. The article proposes techniques to handle the evolution of software
installations and the customization of installed systems independently from
the applied operating systems. The partitions can be replicated and trans-
ferred to a large number of PCs with the Dolly cloning tool. The various
distribution strategies applied during the replication phase are discussed in
[65].

Later, [72] introduces the so-called capsules to build hierarchies of the
virtual appliance images. The article introduced techniques to reduce the

2.4 virtual appliance distribution optimization 24

amount of data sent over the network while migrating capsules: copy-on-
write disks track just the updates to capsule disks, “ballooning” eliminates
the unused memory, demand paging fetches only needed blocks, and hash-
ing avoids sending blocks that already exist at the remote end. As a result,
efficient capsule migration improves the user mobility and system manage-
ment.

Afterwards, [57] discusses the Virtual Cluster Installation System for provid-
ing virtual clusters that scale with the number of applied virtual machines.
This approach allows fine-grained virtual machine customization with the
help of virtual appliance repositories. The proposed system allows the cre-
ation and customization of virtual machines on the fly. To improve scalability
the installation system pipelines the data transfers and caches the virtual ap-
pliances to save software installation time.

Finally, [24] identifies the main problem of current virtual appliance dis-
tribution solutions as the lack of customization. The article proposes a new
framework that reduces the provisioning time of customized virtual appli-
ances by staging them on in a repository near the customer. As a result, the
new framework calculates an optimal staging schedule, according to network
bandwidth, pending reservations, and customer value.

Part II

A C H I E V E M E N T S

3
O V E RV I E W O F T H E A R C H I T E C T U R E

chapter overview. This chapter provides the first insight of the archi-
tecture proposed in this dissertation. Then offers a short overview of the
inner workings of virtual appliance management with the architecture in or-
der to offer a foundation for the later chapters. Finally, the chapter outlines
the formal background of the thesis.

3.1 introduction

This chapter discusses the different components of my proposed virtual ap-
pliance creation architecture – automated virtual appliance creation service
(AVS). This architecture contributes to an appliance based, universal and non-
invasive deployment system that supports all deployment tasks (outlined in
Figure 1.1) on Infrastructure as a Service cloud systems. The deployment
tasks supported by the architecture are represented with interface lollipops
in Figure 3.1 and presented in the conclusions Chapter in Table 11.1. The
proposed components of the architecture are presented in Figure 3.1. These
components all target the ultimate goal of this dissertation to minimize the
time and cost of virtual appliance based service deployments. This chapter
gives a general overview and discusses the relationships between the differ-
ent components.

Virtual appliances are extracted and managed with the help of the automated
virtual appliance creation service (AVS). The service’s main functionality extracts
virtual appliances from donor systems maintained by the service developers.
The service also supports the following virtual appliance management tasks:
(i) transformation of the appliance between various virtual machine formats,
(ii) size optimization of virtual appliances (called the optimization facility –
see Chapter 5 for details) and (iii) initial upload of a new virtual appliance
to a repository. The general properties and behavior of the AVS are discussed
in Chapter 4.

26

3.1 introduction 27

Automatic Virtual
Appliance

Creation Service

Virtual Appliance
Optimization

Facility

Installation

Minimal
Manageable

Virtual
Appliances

Configuration

Adaptation Update

Deactivation

Active
Repository

Infrastructure as
a Service Cloud

uses

Decommission ActivationDeactivation

uses

Figure 3.1: Architectural connections of the Automatic Virtual appliance creation
Service

In related works, repositories are represented as local file-systems or file
servers (e.g. FTP, HTTP). The only task of today’s repositories is to safely
store and provide access to their entries for authorized parties. Therefore,
they act passively and only user actions change their contents. To minimize
the download time of repository entries during the installation task I pro-
pose the extension of these repositories with automated entry management
algorithms. In the proposed architecture, virtual appliances are stored in act-
ive repositories that are defined in Section 6.2. These repositories are active
because they optimize the delivery of their contents by (i) decomposing the
virtual appliances to smaller parts and (ii) replicating the commonly used
portions of the stored virtual appliances to other repositories.

The last component is the minimal manageable virtual appliance (MMVA) that
is a special virtual appliance designed to be embedded into the service’s ap-
pliance in order to allow the management of the service and its software
environment. These embedded appliances enable several advanced features
of the proposed system: (i) the online reconstruction of decomposed or par-
tially available virtual appliances, (ii) the reuse of the successfully validated

3.2 virtual appliance management 28

virtual machines during size optimization, (iii) reducing the need for appli-
ance type transformations. The details of these features and the definition of
the MMVAs are discussed in Chapter 7.

3.2 virtual appliance management

I have identified five basic operations for virtual appliance management:
(i) extraction of the appliances from preinstalled donor systems, (ii) publica-
tion of the extracted appliances to allow their deployments, (iii) optimization
of the appliances for faster delivery on arbitrary IaaS systems (iv) decomposi-
tion of the published appliances to optimize their storage and replicate their
highly demanded parts, (v) rebuilding of the decomposed appliances to allow
their faster delivery to the target site before deployment.

Extracting the virtual appliance is the first task in every appliance based
deployment system. The automated virtual appliance creation service (AVS)
is designed to support the process of extraction and publication. Compared
to the frequent deployment requests virtual appliance creation is a rare task,
therefore, earlier systems leave it as a manual task. With the help of the
AVS, the deployable virtual appliance is automatically extracted from the
developer’s system. This operation is further discussed in Section 4.2.1.

The AVS also supports the publication of the extracted appliances in repos-
itories as it is discussed in Section 4.2.3. After the virtual appliance is extrac-
ted, it is stored in a repository to enable further deployments. Repositories
accept virtual appliances using different policies, for example they require
third party validation of the uploaded content (e.g. user rating) or reposit-
ory owners manually select the publicly available appliances. If automated
deployments occur, target sites decide on allowing deployments by includ-
ing the acceptance policies of the repositories in their decision, e.g. they only
allow the deployment of highly rated appliances.

Virtual appliance delivery is a sub-task of the installation deployment
step (see Section 1.1). The delivery time is measured between the time of
the initial request to the IaaS system and the time when the entire virtual
appliance is available for initiation of the virtual machine for the service.
Transferring a virtual appliance requires more time than its configuration
and activation (see Table 5.1). The system aims to optimize the delivery time by
minimizing the size of the virtual appliance in a way that it is still capable of
serving its target functionality; however, with a lower footprint. The result-
ing VA is offered as a single entity that only holds the required service and
its support system (the just enough operating system (JeOS)). This technique is
detailed in Chapter 5.

3.3 basic system definitions 29

Virtual appliances are large by nature. Thus, my approach prefers to down-
load them from a high bandwidth and low latency party. Higher bandwidth
is achieved by decomposing the virtual appliance to smaller portions, then
the commonly used parts are spread widely allowing their parallel down-
load and consequently faster delivery time. This decomposition algorithm is
detailed in Section 6.2.1.

Finally, initiating a virtual machine is straightforward only if its state –
the virtual appliance – is available entirely. However, due to decomposition,
virtual appliances are no longer available in a single package. Therefore, they
have to be rebuilt before they are used to instantiate a virtual machine. This
technique is detailed in Section 6.3.

3.3 basic system definitions

The proposed architecture will be applicable on various service-based sys-
tems (or infrastructures). The set of these systems are represented with Φ ∶=

{ϕ1, ϕ2, . . . }. Throughout this thesis a particular service-based system (ϕ ∈ Φ)
is represented with its interacting hosts (ϕ ∶= {h1, h2, . . . }). Each one of these
hosts (hx ∈ ϕ) is a networked entity and their relationships can be described
with network latency (l ∶ ϕ2 → R) and bandwidth (BW ∶ ϕ2 → R) between
them. The latency and bandwidth functions are the result of measurements
taken to evaluate the network relationship properties of the hosts in the
current service-based system. The network latency is measured as the time
between the first message is sent from the one host (hi ∈ ϕ) and received at
the another (hj ∈ ϕ). The bandwidth is measured as the maximum amount of
data that can be sent between the same hosts in a given time period. If hi = hj
then these functions are evaluated as follows:

l(h, h) ∶= 0 (3.1)
BW(h, h) ∶= local storage bandwidth (3.2)

Where local storage bandwidth represents the bandwidth the actual host can
reach its persistent storage. Depending on the host configuration the local
storage bandwidth is evaluated differently. For example, hosts with local
disk drives will use the bandwidth of their disk I/O subsystem for local
storage bandwidth. Alternatively, hosts with networked storage options will
use the bandwidth they reach their networked file system.

In case of appliance based service deployment, I have identified five dif-
ferent types of hosts: (i) the IaaS services, (ii) service users, (iii) deploy-
ment clients, (iv) repositories, and (v) the deployment hosts. First, IaaS ser-
vices (Cϕ ∶= {c1, c2, . . . }) offer the management of virtual infrastructures –
Ξϕ ∶ Cϕ → ℘(ϕ). Where Ξϕ(c) represents the virtualization-enabled hosts in

3.3 basic system definitions 30

the service-based system – ϕ – accessible through a particular IaaS service –
c.

On these virtualization-enabled hosts the IaaS service can host a fixed
set of virtual machines – vmsϕ ∶ Cϕ → ℘(ϕ). However, these virtual ma-
chines (vm ∈ vmsϕ(c)) are executed occasionally, therefore, when they are not
running (online ∶ vmsϕ(c) → {true, f alse}) their network relationship proper-
ties are evaluated as follows:

if online(vm) = f alse
then ∀h ∈ ϕ ∶ (l(vm, h) =∞)
and ∀h ∈ ϕ ∶ (BW(vm, h) = 0)

The currently executed virtual machines of a specific virtualization enabled
host are defined as: hosted ∶ Ξϕ(c)→ ℘(vmsϕ(c)). The host of the IaaS service
and its managed infrastructure together forms an IaaS system – (c ∪Ξϕ(c)∪
vmsϕ(c)) ⊂ ϕ.

The IaaS system hosts various services processing the requests of the ser-
vice users (Uϕ ∶= {u1, u2, . . . } where ux ∈ ϕ represents the host of a particular
service user). If the current set of services cannot fulfil the actual demand
then the users or the system can initiate the deployment of new service in-
stances with the help of a deployment client – hcli ∈ ϕ. The deployment client
looks up the virtual appliance that encapsulates the target service. Then the
client requests the IaaS service – c – to instantiate a virtual machine based
on a virtual appliance available in a particular repository (Rϕ ∶= {r1, r2, . . . }
where Rϕ ⊂ ϕ is the set of all available repositories in the service-based sys-
tem). Finally, the virtual appliance is instantiated and run on the deployment
host – ξ ∈ Ξϕ(c).

Repositories store virtual appliances in one or more packages (p ∈ Pϕ),
where Pϕ represents all the available packages in a service-based system.
Each repository stores an arbitrary subset of all the available packages that
can be described with the contents ∶ Rϕ → ℘(Pϕ) function. Consequently, the
set of available packages in the service-based system can be defined as:

Pϕ ∶= ⋃
∀r∈Rϕ

contents(r) (3.3)

Package content is derived from items (i ∈ Iϕ where Iϕ symbolizes all pos-
sible items in the service-based system). The function items ∶ Pϕ → ℘(Iϕ)

provides the set of items offered by a particular package. In this thesis,
items are described with their hash value (hash ∶ Iϕ → N) and their storage
size (size ∶ Iϕ → N). The hash value of each item has to be unique in the en-
tire service-based system, therefore, this thesis uses hash(i) interchangeably
with the item – i – itself when other properties of the item are not important.

3.3 basic system definitions 31

The findings of this dissertation are indifferent from the chosen hash value if
they fulfill the requirements later discussed in Section 4.4.1.3. Finally, I have
defined the hash set (H ∶ Pϕ → ℘(N)) of a particular package as follows:

H(p) ∶= ⋃
i∈items(p)

hash(i) (3.4)

Items are also used to identify relations between packages. Therefore, items
can be used to filter package sets to define the set of related (related ∶ I ×
℘(Pϕ)→ ℘(Pϕ)) packages as:

related(i, P) ∶= {∀p ∈ P ∶ i ∈ items(p)} (3.5)

I have derived the size of packages (pkgsize ∶ ℘(Pϕ) → N) from the size of
their individual items:

pkgsize(Ps) ∶= ∑
p∈Ps

∑
i∈items(p)

size(i)

where Ps ⊂ Pϕ

(3.6)

Package content can be represented in multiple forms depending on the
virtual appliance format (f ∈ F where F depicts the set of supported appli-
ance formats). The items of a package can form virtual appliance images
based on the appliance format:

im ∶ Pϕ × F → Iϕ

Where Iϕ represents the possible virtual appliance images in the service-
based system. The supported formats of a particular IaaS service are de-
scribed with VA f orms ∶ Cϕ → ℘(F). The supported formats of a particular
package are described with pkg f orms ∶ Pϕ → ℘(F).

3.3.1 Package types and relations

Virtual appliances can be stored in multiple packages because of the act-
ive repository functionalities of the architecture (see Section 6.2). This thesis
uses the set of direct package dependencies – dep ∶ Pϕ → ℘(Pϕ) – to specify
the related packages. Therefore, dep(p) defines the package alternatives on
which p is directly dependent. Consequently, before deployment, p requires
the presence of one of the packages from dep(p) in the same virtual machine
host. This dissertation represents direct package dependencies as directed
edges in its Figures. The edges are directed from the dependent package – p
– towards its direct dependency set – dep(p):

∀px ∈ dep(p1) ∶ p1
** px

3.3 basic system definitions 32

Ω1

σ1

β2

Δ1

Δ3Δ10

Δ11 Δ7

Δ9

Δ8

Δ5 Δ6

Δ4

Δ2

σ2 σ4 σ5 σ3 σ6

β2
Base

Virtual Appliance

Δ2
Delta

Package

Ω1
Self-Contained

Package

Service
Package

σ6

Figure 3.2: Hypothetical dependency graph of 6 services

Figure 3.2 depicts a hypothetical package hierarchy revealing the possible
package types in the system and their direct package dependencies.

Direct package dependencies are used to identify possible ways to com-
pose two packages as defined with the following rule:

p3 ∶= p1 + p2 where p2 ∈ dep(p1)

therefore
items(p3) ∶= items(p1)∪ items(p2)

dep(p3) ∶= dep(p2)

(3.7)

In this equation, the dependency package (p2) is an arbitrary choice from
dep(p1). This equation also reveals that a package (p3) can be defined by
specifying its items (items(p3)) and its direct dependencies (dep(p3)).

The composition rule can be applied repeatedly with the composed pack-
ages (shown as p3 in the previous equation) and their direct package de-
pendencies until the last composed package (p′3) has no further direct de-
pendencies: dep(p′3) = ∅. The dependency packages, selected throughout the
repeated composition, describe a possible rebuilding path of the package p1.
Figure 3.3 reveals all possible rebuilding paths of package σ6 (introduced in
Figure 3.2).

This dissertation describes a particular rebuilding path with a depend-
ency set that contains all packages required to form a self-contained package
based on a specific package. For each rebuilding path I have assigned an
identifier (n). As a first step towards the dependency set definition, I have

3.3 basic system definitions 33

β2

Δ6

Δ4

Δ2

σ6

(a) n = 0

β2

Δ5

Δ4

Δ2

σ6

(b) n = 1

Ω1

Δ1

Δ5

Δ4

Δ2

σ6

(c) n = 2

Figure 3.3: Possible rebuilding paths of σ6 from Figure 3.2

identified the maximal value for the identifier as the possible rebuilding path
count for a specific package – PC ∶ Pϕ →N:

PC(p) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
px∈dep(p)

PC(px) if dep(p) ≠ ∅

1 otherwise

Then, I have calculated the PC(p) values for several example packages in
Figure 3.2:

PC(β2) = 1 PC(∆2) = 3 PC(∆5) = 2
PC(∆11) = 1 PC(σ5) = 3 PC(σ6) = 3

Next, I have defined the selection rule of the dependency packages based
on the rebuilding path identifier (0 ≤ n < PC(p)). This rule assumes that
direct dependency sets are totally ordered (e.g. they can be ordered by the
cumulative hash values of their items). Consequently, the function SD ∶ Pϕ ×

N→N returns the index of the selected dependency package:

SD(p, n) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

n if ∣dep(p)∣ < n
i otherwise

and (3.8)

i ∶= min
i
(

i−1
∑
j=1

PC(pj) ≤ n)

Where 0 < i ≤ ∣dep(p)∣ and pj ∈ dep(p). Accordingly, the SD(p, n) function
selects the smallest dependency package identifier – i – that offers the largest

3.3 basic system definitions 34

cumulative path count still smaller than n. Consequently, I have defined the
dependency set (D ∶ Pϕ ×N→ ℘(Pϕ)) using the selection rule as follows:

D(p, n) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

p ∪D(pi, n −∑i−1
j=1 PC(pj)) if dep(p) ≠ ∅∧ n ≤ PC(p)

p if dep(p) = ∅
(3.9)

Where i ∶= SD(p, n) and pi, pj ∈ dep(p).
Finally, I have defined the set (Θ ∶ Pϕ → ℘(℘(Pϕ))) of all possible depend-

ency sets for a given package in order to allow later operations to select an
arbitrary dependency set:

Θ(p) ∶= {D(p, i) ∶ 0 ≤ i < PC(p)} (3.10)

Dependency sets extend the package composition rule as follows:

if p3 ∶= p1 + p2 where ∃D(p1, x) ∈ Θ(p1) ∶ (p2 ∈ D(p1, x))
then D(p2, y) ∶= D(p2, z) ∈ Θ(p2) ∶

((D(p2, z)∩D(p1, x))/D(p1, x) = ∅)
D′(p1, x) ∶= D(p1, x)/D(p2, y)

items(p3) ∶= ⋃
p∈D′(p1,x)

items(p)

dep(p3) ∶= dep(p2)

(3.11)

Using the example presented in Figure 3.2, the resolution of the various
dependency sets of package σ6 can be calculated as follows:

Θ(σ6) = {{σ6, ∆2, ∆4, ∆6, β2}
´¹¹¹¸¹¹¹¶

D(σ6,0)

,{σ6, ∆2, ∆4, ∆5, β2}
´¹¹¹¸¹¹¹¶

D(σ6,1)

,{σ6, ∆2, ∆4, ∆5, ∆1, Ω1}
´¹¹¹¸¹¹¹¶

D(σ6,2)

}

These dependency sets are also presented in Figure 3.3.
Based on the package dependency sets (D(p, n)) I have identified the follow-

ing package types:

self-contained packages (pΩ) are those packages that are not depend-
ent on other packages (see Figure 3.4a):

sel f contained(p) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

true if dep(p) = ∅
f alse otherwise

(3.12)

Self-contained packages not necessarily store virtual appliances there-
fore, their contents have to be evaluated if they can be used to instanti-
ate a virtual machine:

va(pΩ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

true ∃ f ∈ F ∶ (executable(im(pΩ, f)) = true)
f alse otherwise

(3.13)

3.3 basic system definitions 35

Ω4Ω2

Δ12 Δ13

Ω3

Δ14 Δ15 Δ16

(a) Self-contained packages

β3

Δ17
Δ19

Ω5

Δ18

Δ17

(b) Delta packages

Figure 3.4: Basic package relations

Where executable ∶ Iϕ → {true, f alse} evaluates if an appliance image
can be used to instantiate a virtual machine. This definition does not
mean that the virtual appliances of self-contained packages provide the
target services for the users.

Repositories service self-contained packages immediately without any
processing on the package contents. However, these kinds of packages
are larger than delta packages introduced below.

delta packages (p∆) are dependent on other packages, consequently, they
cannot function without deploying their dependencies first – see Fig-
ure 3.4b:

delta(p) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

true if dep(p) ≠ ∅
f alse otherwise

(3.14)

base virtual appliances (pβ) are self-contained virtual appliance pack-
ages that are used as dependencies by other packages – see Figure 3.5a.

baseva(p) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

true sel f contained(p) = true
∧va(p) = true
∧∃px ∈ Pϕ ∶ (p ∈ dep(px))

f alse otherwise

(3.15)

3.3 basic system definitions 36

β4

Δ20 Δ21 Δ22

(a) Relations of the base virtual
appliance

σ10

Ω6

σ9

β5

Δ23
σ7

σ8

(b) Relations of the service package

jeos(β7,σ12)

jeos(Δ24+Δ25+ β6,σ11)

σ11 β6Δ24 Δ25

σ12 β7

(c) Packages of the just enough op-
erating systems

Figure 3.5: Virtual appliance package relations

If a base virtual appliance is composed with one of its dependent pack-
ages (pβ ∈ dep(px)) then the composite package will maintain the prop-
erties of base virtual appliances:

if p′ = pβ + px

then baseva(p′) = true (3.16)

service packages (pσ) provide the target functionality for the users. Other
packages do not refer to these packages as their dependencies – see Fig-
ure 3.5b:

servicepkg(p) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

true if ∄px ∈ Pϕ where p ∈ dep(px)

f alse otherwise
(3.17)

Composing all the dependencies of a service package results in a self-
contained virtual appliance that contains all necessary data for the exe-
cution of a service incorporated in the appliance:

if p′ = ∑
px∈D(pσ,n)

px

then servicepkg(p′) = true ∧ va(p′) = true
∧sel f contained(p′) = true (3.18)

3.3 basic system definitions 37

Where 0 ≤ n < PC(pσ) refers to an arbitrary rebuilding path. Two re-
built service packages are said to be equivalent if they meet with the
following requirements:

if valid(p1, initVM(p2, ϕ)) = true ∧ valid(p2, initVM(p1, ϕ)) = true

then p1 ≡ p2

(3.19)

Where function initVM ∶ P×Φ → ϕ returns with a newly created virtual
machine (vm ∈ ϕ) in the service-based system (ϕ ∈ Φ) that executes the
virtual appliance described by package p ∈ Pϕ. The virtual machine is
managed by one of the IaaS services of ϕ:

vm ∈ ⋃
c∈Cϕ

vms(c)

Then, the valid ∶ P× ϕ → {true, f alse} evaluates if the execution host (vm)
offers the target functionality of a service package p.

Finally, a self-contained service package is optimally sized when there
are no items in its image that can be dropped without losing the target
functionality for the users:

optimalsize(p) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true ∄i ∈ items(p) where

sel f contained(p) = true

∧servicepkg(p) = true

∧items(px) = items(p)/i
∧valid(p, initVM(px, ϕ))

f alse otherwise

(3.20)

just enough operating system . When composition rule (see Equation
3.16) is applied on decomposed and size optimized virtual appliances,
then the largest base virtual appliance, which still does not behave as
a service package, is the Just enough Operating System (JeOS – see
Figure 3.5c).

jeos(p, pσ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true baseva(p) = true
∧p ∈ dep(pσ)

∧servicepackage(pσ) = true
∧delta(pσ) = true
∧optimalsize(∑

px∈(D(pσ,n))
px) = true

f alse otherwise

(3.21)

3.3 basic system definitions 38

Where n refers to an arbitrary rebuilding path and p specifies the just
enough operating system (or the support environment) of the service
package pσ.

chapter summary. This chapter revealed the main components of the
proposed architecture and shortly discussed their high level connections.
Then the chapter progressed through the introduction of the fundamental
usage scenarios of the proposed architecture (appliance extraction, publica-
tion, optimization, decomposition and rebuilding). The chapter provided the
foundation of the later chapters by offering the formal representation of the
relevant IaaS and deployment system components and their relations to pack-
age delivery and representation. Finally, the chapter identified several types
of packages that are later frequently referred and utilized: self-contained, delta,
base virtual appliance, service and just enough operating system.

4
A U T O M AT I C V I RT U A L A P P L I A N C E C R E AT I O N S E RV I C E

chapter overview. Only the basic functionality of the automated vir-
tual appliance creation service (AVS) is discussed here in detail. In this
chapter, I present the extraction scenarios and algorithms that are initially
creating a virtual appliance. I also cover the metadata collected during the
extraction process. Later, I summarize the various operations the AVS is cap-
able of executing on the extracted appliances. In this chapter, I detail the ap-
pliance transformation and initial upload procedures of the AVS service. The
package and delivery optimization subsystems of the service are discussed
later (see Chapters 5, 6 and 7).

4.1 introduction

The task of the AVS service is to extract a virtual appliance from a virtualized
host and package it for later deployments. This package is stored in a virtual
appliance (VA) repository. Therefore, the AVS (hosted on hAVS ∈ ϕ) has to
interact with the three main actors from the outside world (see Figure 4.1):
(i) the client actor (hcli), (ii) the IaaS system actor (via one of the IaaS services
– c ∈ Cϕ) and (iii) the repository actor (r ∈ Rϕ).

For the AVS client actor the AVS offers an interface that exposes the VA
extraction functionality. The AVS has to be installed on the same host as
the virtual machine monitor (VMM) to ensure the AVS accesses the virtual
machine control functionality of the VMM (see Section 1.1.1). Therefore, on
client request, the AVS acquires the state of a virtual machine to form a
virtual appliance.

For the IaaS system actor the AVS offers two actions. First, the AVS enables
the transformation of a VMM specific virtual appliance format (that can be
used to instantiate a virtual machine on a specific VMM) to a platform inde-
pendent one (e.g. the open virtual machine format (OVF) specification of the
Distributed Management Task Force (DMTF) [52] or the Workspace metadata
of virtual workspace service [40]). This functionality is used when the IaaS

39

4.1 introduction 40

Automated Virtual Appliance Creation Service

Playground operations

Extraction operations

AVS
client

Extract Upload

Manage
Tests

Optimize
Appliance

Decompose
Appliance

Transform
Appliance

<uses>

<uses>

From OVFTo OVF

<extends><extends> IaaS
System

Repository

Create
Playground

<uses>

Figure 4.1: Use cases and relations of the AVS subsystem

system receives a request to deploy a virtual appliance that is not supported
by the current VMM. The second, create playground, operation for the IaaS
system is initiated by the AVS itself when it optimizes the virtual appliances
with the optimization facility (see Chapter 5).

Finally, the AVS uses a package repository actor. The AVS uploads the pack-
aged VA in the repository specified by the appliance developer and then the
package replicates it to several other repositories on request. Next, it is cap-
able to search through multiple repositories to find similarities between a
VA package and the appliances stored in the given repositories. These simil-
arities form the basis of the decomposition functionality of the architecture
detailed in Chapter 6.

4.2 the avs client interface 41

4.2 the avs client interface

The AVS has two basic functionalities (see Figure 4.1). First, it provides an op-
eration to extract and publish an initial virtual appliance from a running sys-
tem (Extraction operation). Second, it provides further operations on just cre-
ated or previously available (created by third parties) virtual appliances (Play-
ground operations). The playground operations either use a previously created
virtual appliance or one that the extraction operation has just created.

4.2.1 Virtual Appliance extraction

The extract operation creates the initial virtual appliance by taking a snapshot
of the developer specified machine (either virtual or physical). If a virtual ma-
chine is specified as the source of the virtual appliance then the extraction
operation can create a snapshot of both running and stopped virtual ma-
chines. The operation creates the virtual appliances with the file-systems of
the specified virtual machine and optionally with the memory state of the
running virtual machines.

The extract operation supports different virtual machine monitors and vir-
tual machine representations, therefore, it requires the identification of the
specific virtual machine to be extracted. If an entire site uses the same vir-
tual machine monitor on all of its nodes then a single AVS service handles
the entire site. Therefore, the VM under extraction is identified with a data
triplet: (i) the host that runs the VMM (ξ ∈ Ξϕ(c)), (ii) the type (f ∈ F) of
the VMM the AVS should interface with, and finally, (iii) the virtual ma-
chine (vm ∈ hosted(ξ)) identifier in a format specific to the VMM.

In dynamic service environments [23], the caller of the service is not aware
if a deployment precedes the service call. Therefore, the startup time of the
virtual appliance is critical because it is added to the time of the first service
invocation on the newly deployed service instance. Virtual machines are star-
ted up differently depending on the content of the previously created virtual
appliance: (i) appliances of running VMs are resuming their previous state
by loading their system memory from the appliance, (ii) in contrast, appli-
ances of stopped VMs execute the entire boot procedure before the activation
of the embedded service in the appliance. The last step of the extraction al-
gorithm temporarily creates two virtual appliances (one with memory state
and one without it). Then it measures the startup time of both virtual appli-
ances and only publishes the appliance with faster startup time.

Depending on the location of the execution of the extraction operation, I
have defined two scenarios that the AVS has to support (i) the central extrac-

4.2 the avs client interface 42

riaas
vm

Service

AVS
Central Extraction Service

3

IaaS - c

VA
developer

r

Service's
VA

1

2 4

(a) Centrally managed

Appliance developer's system

Service
AVS

VA
developer

r

Service's
VA

1

2

3

4Extractor

(b) Decoupled

Figure 4.2: Virtual appliance extraction scenarios

tion service and (ii) the decoupled extractor component. These scenarios are
detailed in Figure 4.2 and discussed in the following two sections.

4.2.1.1 Central extraction service

As depicted in Figure 4.2a, central extraction service provides a unified inter-
face for all virtual appliance developers. In this scenario, first, they request
a virtual machine where they can prepare a service instance as the base for
the virtual appliance to be published. Next, appliance developers deploy and
configure their service (in step 1) so it can operate as a standalone application
without any further adjustments. If the service is participating in a service
composition or the service requires configuration during deployment, then
appliance developers have to design configuration algorithms that can ad-
apt the service’s deployment with as little information as the IP address of
the newly created virtual machine. Finally, the appliance developer has to
give the extraction order (see step 2) to the AVS that resides in the same IaaS
system as the prepared service’s virtual machine.

As a result, in step 3, the AVS orders the IaaS system to suspend the ser-
vice’s VM and acquires its suspended state from the IaaS system. Altern-
atively, if the disk image of the VM is stored in the repository of the IaaS

4.2 the avs client interface 43

system then the appliance developer has the option to offer the link to the
image to be used as the initial virtual appliance. Finally, the appliance de-
veloper can decide on applying transformation or optimization operations
on the initial appliance (see Section 4.2.2) before publishing it in step 4.

4.2.1.2 Decoupled extractor component

As a drawback of the central extraction service, the appliance developer has
to deploy a service instance on a third party’s site. To overcome this issue
the AVS offers a decoupled extractor component that can be executed on the
appliance developer’s own system (as seen in Figure 4.2b). This component
is capable of uploading the initial virtual appliance to an arbitrary repository
or to the AVS’s local repository (rAVS) – as a result, it creates a playground
for further appliance operations.

If the appliance developer plans to use the decoupled extractor, then before
contacting the AVS service, he prepares his own service development system
to offer the instance of the service that should be deployed later on. Then,
if necessary, the appliance developer prepares the same configurator scripts
as he would with the central service. Next, the developer contacts the AVS
service for the extractor component in step 1. The AVS prepares an extractor
component that is a bootable single purpose system capable of connecting
to the Internet and uploading the content of the development system’s disk
images. Before the AVS allows its download (see step 2) for the appliance
developer, the extractor component is preconfigured to upload the initial vir-
tual appliance to the same AVS service where the extractor was downloaded
from. The AVS also provides a list of available repositories for the extractor
to enable its multi repository upload functionality. After the extractor com-
ponent is downloaded from the AVS, the appliance developer executes it.
Therefore, it calculates the hash values for all the items on the development
system and creates a repository package ready for upload (see step 3-4).

4.2.2 Playground operations

The AVS provides a local repository (rAVS ≡ hAVS and rAVS ∈ Rϕ) in order to
support its operations. Packages are temporarily created in this repository
for the duration of the AVS operations. After the AVS finishes its tasks on
these packages and publishes them in a third party repository, these pack-
ages are automatically removed from the local repository (rAVS). I refer to
these temporary packages as the playground for virtual appliances. The dif-
ferent uses of the playground are depicted in Figure 4.3 and discussed in the
following paragraphs and subsections.

4.2 the avs client interface 44

Transforming

StagedOptimizing Decomposing

Publication

Downloading Under
Extraction

Legend
Create

Manage

Publish

destruct

publish

Create package

Optimize

Create package Create package

Transform
Create image

Decompose

Fetch Extract

publish

Figure 4.3: Different states of a Virtual Appliance playground in the local AVS re-
pository

At the end of the extraction process, the AVS directly publishes the ex-
tracted appliance in a repository or alternatively it creates a playground for
further optimization of the extracted virtual appliance. The playground can
be created as a result of the VA extraction process (“under extraction” state),
or alternatively it can be created from an appliance downloaded from a re-
mote repository (“downloading” state). The AVS supports the optimization
of already published virtual appliances by this second creation operation.
After the playground has been created it is “staged” for the three manage-
ment operations: (i) optimization, (ii) decomposition and (iii) transformation.

4.2.2.1 The optimization operation

The optimization operation (while the playground is in the “optimizing”
state, see Figure 4.3) is accomplished in two phases. First, in the test case
upload phase, the appliance developer has to add the validation methods for
the virtual appliance it plans to optimize, and then the optimization phase
can proceed. Figure 4.1 depicts these two phases with the “manage tests” and
“optimize appliance” use cases.

The manage tests use case enables the virtual appliance developer to spe-
cify the validation methods and the means of their execution. The AVS
provides an extensible interface to support different validation algorithms.
E.g. in the current implementation the AVS allows the appliance developer
to specify shell scripts or validator virtual appliances. Simple stand-alone
test cases are evaluated with shell scripts. However, AVS supports complex
test scenarios with validator virtual appliances that can be instantiated while

4.2 the avs client interface 45

initializing the optimization procedure. This procedure is discussed in detail
in Chapter 5.

4.2.2.2 The decompose operation

The decompose operation (see the “decomposing” state of the playground in
Figure 4.3) splits the appliance to smaller parts to allow the delivery op-
timization of the virtual appliance (this operation is further detailed in Sec-
tion 6.2.1). Using the search interfaces of the repositories (r ∈ Rϕ) packages
with similar dependency patterns or file contents are looked up. Then, the
decomposition operation uses these similarities to form packages of the com-
mon parts and allow their wider distribution in order to lower the future de-
ployment times. This operation usually relies heavily on the network; there-
fore, it is advised to use it when lower network usage is guaranteed.

4.2.2.3 The transformation operation

Next, the two transformation operations (fromOVF and toOVF) enable the AVS
service to operate on VMM specific appliance representations by applying
the Open Virtualization Format (OVF – [52]) as an intermediary. The play-
ground is in “transforming” state (see Figrue 4.3) while executing these op-
erations. The use of these operations are detailed in Section 4.3.

4.2.3 The upload operation

Finally, after all operations were executed on the playground of the virtual
appliance, the AVS offers the upload operation (see the “publication” stage in
Figure 4.3). The upload process has two objectives: (i) distribute the contents
of the playground to single or multiple repositories for permanent storage
and (ii) optimize the bandwidth utilized during the upload operation.

Efficient content distribution increases the accessibility of the initially up-
loaded virtual appliance. The AVS handles the upload process to the first
selected repository. Further distribution of the created package is a well-
discussed topic, and existing replica managers [17, 36] can handle the task.
Therefore, the scope of this thesis does not extend in this direction.

As a result, I aim at optimizing the bandwidth utilization of the initial
upload process. The AVS optimizes the bandwidth usage during the upload
process (i) by decreasing the size of the uploaded package (pnew) and (ii)
by selecting the target repository (rtg) with the highest bandwidth. I propose
to target these two optimization tasks in parallel by Algorithm 4.1. This al-
gorithm is based on two assumptions: (a) all the public repository packages
contain the pre-calculated hash values of the items encapsulated in them,

4.2 the avs client interface 46

Algorithm 4.1 Initial upload
Require: overhead, minSize
Require: pnew ∈ contents(rAVS) ∶ (va(pnew) = true)

1: H(pnew)← calculateHashes(pnew)

2: hashes ← compHashes ← compress(H(pnew))

3: if f ilesize(compHashes) < minSize then
4: hashes ← createFile(H(pnew))

5: end if
6: maxRepos ← overhead⋅size({pnew})

f ilesize(hashes)
7: Rnom ← discoverRepos(maxRepos)
8: for all r ∈ Rnom do
9: H(p∗r)← H(pnew)⋂ (⋃

p∈contents(r)
H(p))

10: items(pdi f f ,r)← {∀i ∈ items(pnew) ∶ (hash(i) ∉ H(p∗r))}

11: estTime(r, pnew)← ∑
i∈items(pdi f f ,r)

size(i)
BW(rAVS, r)

12: end for
13: rtg ← r ∈ Rnom ∶ (estTime(r, pnew) = min

rx∈Rnom
(estTime(rx, pnew))

14: dep(pdi f f ,rtg)← {p
∗
rtg}

15: upload(rtg, pdi f f ,rtg)

Compressed size
Name Appliance Item hashes

SSH 122580kB 328kB
Apache 168932kB 440kB
Gemlca 308692kB 636kB
SSH’ 6872kB 4kB
Apache’ 12356kB 16kB

Table 4.1: Size comparison of virtual appliances and item hashes

and (b) repositories offer an operation to identify the intersections between
a hash set received from a third party repository and the hash values of all
their stored content.

The algorithm starts with the calculation of the item hashes (hash(i) ∈

H(pnew)) of the initial virtual appliance (pnew). In order to identify the com-
mon contents of the repositories (r ∈ Rϕ) and the initial appliance, the AVS
has to upload the hash set (H(pnew)) of the appliance to the repositories for
evaluation. The hash set upload operation is utilized to measure the band-

4.2 the avs client interface 47

width (BW(rAVS, r)) between the AVS and the repositories. As bandwidth
measurement requires larger sized data transfers, the AVS tries to send hash-
sets with a minimum size (“minSize”). If the hash-set is smaller than min-
Size the AVS sends it uncompressed, otherwise the hash-set is sent out in a
compressed form. Smaller values for minSize will result more unpredictable
bandwidth estimations. Therefore, according to my measurements, minSize
should be equivalent to the amount of data transferrable in two seconds
based on the outgoing bandwidth of the network interface in rAVS. The lar-
ger the value the less impact it has on the behavior of the algorithm. Because
even uncompressed hashes require small amount of storage compared to the
actual size of a package under initial upload.

The size of item hashes is negligible compared to the size of the virtual ap-
pliance itself (see Table 4.1), therefore, the algorithm can send the item hashes
to several candidate repositories (Rnom) where the AVS plans the initial upload.
The algorithm determines the number of candidate repositories (maxRepos)
based on a system administrator defined maximal overhead value. This value
is used by the discoverRepos operation that filters the set of available repos-
itories (Rϕ) based on the latency between the local repository (rAVS) and the
remote ones. Consequently, Rnom forms the set of repositories with the lowest
latencies.

Next, the initial upload algorithm uploads the hash sets to the candidate re-
positories. The repositories compare the received hash values to the already
stored ones – ⋃p∈contents(r)(H(p)) – and return with the hash set of the hy-
pothetical package (p∗r). This package is not jet created by the repositories,
they only return its hash set. The algorithm uses this hash set to identify
those items of the package that are not part of the repositories. For every
candidate repository the algorithm calculates the set of items (items(pdi f f , r))
that are not present in the repositories. Then the algorithm estimates the
time (estTime ∶ Rϕ × Pϕ → N) required to upload these unique items to the
actual candidate repository.

Finally, the AVS determines the target repository (rtg) by minimizing the
estimated upload times for the various item sets. Next, the AVS forms the
package pdi f f ,rtg with the items not present in the target repository and with
a direct package dependency on the hypothetical package p∗rtg . This newly
formed package is uploaded to the repository rtg instead of pnew. When the
repository receives the package pdi f f ,rtg then it automatically creates the p∗rtg

also.

4.3 the infrastructure as a service system interface 48

AVS

IaaS* - c

Transformer

1 2

4,5

5
3

6

Deploy Client r
preq

imf2
imf1

4

(a) IaaS initiates

AVS

IaaS - c

Transformer

1
2

4,5

53

6

Deploy Client r*
preq

imf2
imf1

4

(b) Active repository initiates

AVS

IaaS - c

Transformer

1,6
2

4,5

53

7

Deploy
Client* r

preq

imf2
imf1

4

(c) Deployment client initiates

Figure 4.4: Options on initiating format transformation of virtual appliances

4.3 the infrastructure as a service system interface

The result of the extract operation (see Section 4.2) is a virtual appliance in
a format specific to a virtual machine monitor. The AVS service utilizes the
Open Virtualization Format (OVF – [52]) as a generic intermediary form
between the different VMM specific appliance formats. The transformation
between the different virtual appliance formats has been solved by several
systems (e.g. VMWare – [1], QEMU – [11]). The AVS uses the functionality
of the QEMU allowing the use of the different IaaS systems during deploy-
ments.

If a deployment request is made for a package (preq) not supported by the
target IaaS system (pkg f orms(preq)⋂VA f orms(c) = ∅), then the deployment
system should support the transformation of the stored appliance images to
the IaaS supported form. In Figure 4.4, I have identified three actors (marked
with an asterisk in the figures) that can initiate these transformations with
the AVS system: (i) the IaaS system, (ii) the active repository and finally,
(iii) the client program of the deployment system.

First, if the IaaS system is capable to initiate the transformation, then the
IaaS is allowed to receive requests to deploy non-supported virtual appli-

4.3 the infrastructure as a service system interface 49

IaaS Repository Client

User transparency
√ √ √

No IaaS change – ∼
√

Table 4.2: Comparison of basic transformation initiators

ances (see step 1 in Figure 4.4a). After such a request, the IaaS system first
recognizes the transformation need in step 2. Next, in step 3 it queries the AVS
service to transform the non-supported appliance to a supported format. As
a result the AVS publishes the transformed appliance in the same repository
where the non-supported appliance is located (see steps 4-5), then notifies the
IaaS system to allow its further progression with the deployment in step 6.

Second, if the active repository is the initiator of the transformation then the
IaaS is still allowed to receive deployment requests for non-supported appli-
ances (see step 1 in Figure 4.4b). However, in this case the IaaS is not aware of
the various non-supported appliance formats. Therefore, in step 2 it queries
the repository for preq even though its image im f1 is not supported. During
the request the repository determines the supported appliance format (f2)
of the query source (the IaaS system). Then, the repository contacts the AVS
service for image transformation in step 3. The virtual appliance request is
delayed (see step 6) until the AVS publishes the transformed appliance (see
steps 4-5).

Finally, if the deployment client is the initiator (see Figure 4.4c), then the IaaS
system will not receive deployment requests with non-supported appliances.
To avoid using non-supported VAs, the client identifies the format of the
requested package and the supported formats by the IaaS system in steps
1-2. After the client realizes the need for transformation, the AVS is ordered
to transform the requested package in step 3-5. When the transformation is
completed, the client requests the IaaS to deploy the now supported package
storing the new image (see steps 6-7).

Table 4.2 highlights the analysis of the different initiators. The major draw-
back of the IaaS based solution that it has to be implemented for every IaaS
system planning to support the AVS architecture. The repository-initiated
transformation cannot be applied when repositories are centrally managed
by the IaaS systems (e.g. Amazon EC2). Therefore, in these centrally man-
aged repositories the transformation has to be applied before publishing the
appliance. Consequently, only the deployment client can enable the use of
the transformed images without changing the infrastructure. All three solu-
tions consume the same amount of storage by publishing entire transformed
virtual appliances. Therefore, the AVS’s typical transformation requestor is
the deployment client.

4.4 repository interface and metadata collection 50

4.4 repository interface and metadata collection

Repositories store arbitrary artifacts with their metadata description. How-
ever, throughout this dissertation I only consider storing virtual appliances
or parts of the virtual appliances in the repositories. Therefore, from the re-
pository point of view, I define a virtual appliance as a storage artifact that
encapsulates the disk and the optional memory image of a virtual machine
in a VMM specific format. Before storing disk images, the AVS optimizes
them for compression by defragmenting them then erasing their unused por-
tions. The appliance is stored as several compressed file-systems and a swap-
like area containing the memory state of the virtual machine just before the
image was extracted. This subsection defines the metadata the AVS service
assigns to the appliances to enable the deployment tasks using the stored
appliances.

The repository package is defined as an artifact encapsulated with the cor-
responding metadata. Different repository package formats use different
metadata descriptions, however they always include the following items:
(i) Dependency description to specify other packages required to successfully
configure and run the virtual appliance packaged together with the descrip-
tion, (ii) Configuration description, used by the configuration task, specifies
the series of configuration and decision steps that result in an executable
service, (iii) Human readable description to support searching and indexing of
the software packages within repositories, (iv) Version information to support
exchangeability tests between different repositories.

Since the repositories are not aware of the kind of artifacts they store, the
AVS defines the structure of the repository package that will be used for later
deployments (see Section 4.4.1). The appliance developer of the AVS service
defines the configuration description, the human readable description and
version information for the repository package manually. During extraction,
the AVS automates the collection of the installation task related information,
e.g. (i) the first VMM specific image of the virtual appliance and also (ii)
the item details as a result of the itemization procedure (later introduced in
Sections 5.1.2.1 and 5.2.1.1).

In earlier systems, virtual appliances were offered as stand alone packages.
Therefore, there was no need to couple them with dependency information.
A typical example can be seen in the open virtual machine format (OVF)
specification [52] that covers all the relevant metadata mentioned before,
except dependencies. However, the AVS automates the dependency related
metadata collection during the decomposition operation.

Based on the encapsulated dependency description I have defined two cat-
egories of repository packages: (i) the self-contained virtual appliance packages

4.4 repository interface and metadata collection 51

Configurator
Validator
Extensions

Virtual appliance
package

ItemLocation
Hash
Extensions

Content
Description

ImageType
TypeSpecificData
Image

Appliance
Content

D
epends

Figure 4.5: The virtual appliance representation of the AVS

and (ii) the delta packages. A self-contained virtual appliance package encapsu-
lates deployment related metadata and a virtual appliance readily usable
for immediate VM creation without further modifications. The delta package
holds parts of a virtual appliance and is dependent either on other delta
packages, or on a self-contained package. The decomposition algorithm auto-
matically creates delta packages and identifies their dependencies (detailed
in Section 6.2). Virtual appliances are reconstructed from delta packages with
the VA rebuilding algorithm that is discussed in Section 6.3.

During the virtual appliance extraction operation, the AVS service collects
metadata supporting the installation task. The collected metadata defines the
VMM, the virtualized hardware and network requirements for the virtual
machine hosting the virtual appliance. This metadata is also used by the
selection task of the deployment systems. During selection, deployment sys-
tems could rank the different IaaS systems based on their support for the re-
quirements of the virtual appliance. Later, the installation task is performed
by the IaaS system using the previously collected requirements available in
the repository.

4.4.1 Virtual Appliance Representation

To allow the efficient storage and delivery of virtual appliances the AVS
defines each virtual appliance with the virtual appliance packages defined
in Figure 4.5. These packages are capable to support the different deploy-
ment tasks and the advanced functionalities of the AVS (e.g. optimization

4.4 repository interface and metadata collection 52

or decomposition). The basic building blocks of these packages are (i) the
package specific metadata (dependencies, configurators and validators), (ii) the
appliance contents and (iii) their detailed description (content description).

4.4.1.1 Package Specific Metadata

The AVS identifies the direct package dependencies (dep(p) see “Depends” in
Figure 4.5) by the initial upload and decomposition algorithms discussed in
Sections 4.2.3 and 6.2.1 respectively. Based on the package types (defined in
Section 3.3.1) the AVS handles the package construction blocks differently.

The virtual appliance developer has to define the configurator as a compon-
ent that accomplishes the configuration deployment task (see Section 1.1).
In related works [41, 48], configuration is either executed before the instan-
tiation of the virtual appliance (by altering its contents on the host of the
VMM) or by runtime contextualization (where the instantiated appliance con-
tacts a specific service that can define the runtime context for the VM, see
Section 2.2). As only the first option requires repository side storage thus this
paragraph focuses on it exclusively. In order to enable the optimization facil-
ity, the modification of the software environment in the deployed services is
not allowed for configurators. Without this restriction, the optimization facil-
ity should be executed for all possible software environment configurations
of the virtual appliance. Configurators are allowed to be defined for all pack-
age types. However, during extraction the AVS attaches the configuration to
the service package. The configurator of a package can be accessed with the
function: con f igurator(p).

The validator component specifies the test cases and algorithms required to
utilize all use cases of the target functionality of the virtual appliance. Appli-
ance developers have to define validators for their service packages if they
plan to use the optimization facility. The further requirements and uses of the
validator component are detailed among the discussion of the optimization
facility, see Sections 5.1.2.2 and 5.2.2. The validator component is used during
the evaluation of the valid(p, vm) function defined in Section 3.3.1. The valid-
ator algorithm of a package can be accessed with the function: validator(p).

4.4.1.2 Appliance Contents

Appliance data represents the body of the stored virtual appliance. This data
holds the actual contents of the appliance in the Image component (im(p, f)).
The AVS allows multiple appliance data entries for a single appliance pack-
age. The ImageType (f ∈ F) attribute differentiates between these data entries
and allows the AVS to support different VMM specific appliance formats or
different IaaS solutions.

4.4 repository interface and metadata collection 53

In case of self-contained packages, the ImageType attribute defines the VMM
the Image is usable with. However, for delta packages I have defined two spe-
cial Image types based on the two basic approaches a virtual appliance can
be rebuilt before deployment (see Section 6.3).

First, the offline reconstruction strategy (see Section 6.3.4) requires the de-
ployment system to understand the Image contents, therefore, the AVS also
specifies the algorithm the ApplianceData can be used for the extension of the
partially reconstructed appliance. For example, the ApplianceData can specify
a TypeSpecific so called “algorithm” attribute of the Image as patching, merging
or appending the Image contents to the already existing data.

Second, the delta packages might build on top of a minimal manageable
virtual appliance (MMVA – see Chapter 7), therefore, the online reconstruc-
tion strategy can be applied. In such cases, the used MMVA downloads and
installs the Image contents on an already running virtual machine. Therefore,
the AVS has to identify that the package will be handled externally by the
MMVA.

4.4.1.3 Content description

Even though a virtual appliance could be stored in different image formats
(∣pkg f orms(p)∣ > 1), after instantiation, the differences between the various
formats disappear because they all represent a virtual machine with the same
functionality. The AVS service uses the itemization technique discussed in
Section 5.2.1.1 to identify the different parts of the virtual appliance inde-
pendently from the image format. After the items (i ∈ items(p)) are identified
by their locations (see ItemLocation in Figure 4.5) in the appliance, the AVS col-
lects temporal and permanent metadata about them. The temporal metadata
collection is applied before the application of the various algorithms intro-
duced later (like size optimization). This metadata is not stored in the re-
pository packages because of their inexpensive collection method and their
specific usage.

However, the AVS collects and stores metadata permanently in the repos-
itories if they are utilized in the entire deployment system or when their col-
lection is non-repeatable or too expensive. Currently the AVS only collects
item hash (hash(i) ∈ H(p)) values for permanent storage to enable their use
during dependency detection between different virtual appliances. The AVS
is independent from the hashing function used; however, to ensure the com-
patibility of the different AVS functionalities and services, the same hashing
function has to be used throughout the entire service-based system. Since
these hash values are used for dependency detection, they have to be cal-
culated with a function with low collision probability [51]. In the current
implementations of the AVS service, I have used SHA1 [28].

4.4 repository interface and metadata collection 54

These hash values require expensive calculations on the entire content of
the Image (im(p, f)), therefore, they are collected before the initial upload.
Even though the calculation lengthens the upload process, it has several
advantages e.g. (i) repository independence (the system is not bound to a
particular hashing algorithm), (ii) distributed calculation (the hashes are cal-
culated on the site of extraction) and (iii) early availability – the hashes can
be used even during the initial upload procedure, and afterwards by the
decomposition algorithm of the active repository functionality.

chapter summary. This chapter first presented the use cases of the
AVS architecture. These use cases were discussed from the point of view
of the main actors in the system. During the discussion, I first revealed the
two approaches for virtual appliance extraction. Then, I revealed that virtual
appliances could reside in the AVS repository after extraction via the play-
ground operations: optimization, decomposition and transformation. Next, the
chapter provided the definition and detailed description of the initial upload
algorithm that enables appliance developers to reduce their bandwidth us-
age while publishing their appliances in multiple repositories. Finally, the
chapter concluded with the definition of the published virtual appliance
packages (including the required metadata to be collected).

5
V I RT U A L A P P L I A N C E S I Z E O P T I M I Z AT I O N FA C I L I T Y

chapter overview. This chapter introduces a technique that can optim-
ize the size of virtual appliances. First, the chapter identifies the download
time as most influential part of the various deployment tasks. Then proposes
the use of active fault injection to remove contents of the appliance that are
suspected to be unnecessary. The chapter discusses the use of various weight
functions to identify the contents that are more likely removable. The pro-
posed technique validates reduced appliances with the appliance developer
provided validator algorithms. Finally, the chapter reveals a method to paral-
lelize the removal and validation processes in order to decrease the apparent
execution time of the virtual appliance size optimization process.

5.1 virtual appliance optimization principles

As the first step towards the optimization algorithm, this section starts with
the identification of the deployment time reduction options for services en-
capsulated in virtual appliances. The deployment time is defined as the time
between the deployment decision was made and the service was activated
on the selected host. Therefore, deployment time is the sum of the execution
times of the various deployment tasks required to activate the service. As

Table 5.1: Size dependent virtual appliance start timings

Appliances
Operation SSH Apache Optimization party

Download 24.06s 33.68s Size optimizer
Initialization 0.5s 0.5s IaaS
Startup 1.69s 1.9s Developer
Activation 1.12s 0.82s Developer

55

5.1 virtual appliance optimization principles 56

it was defined in Section 1.1 these tasks include the installation, the config-
uration and finally, the activation. Within these tasks, the installation is the
most time consuming thus it is subdivided into several subtasks according
to Section 1.3. The time required for these tasks and subtasks can be seen in
Table 5.1, the different virtual appliances used in the table are discussed in
Section 10.1.

It can be observed in Table 5.1 that installation time mainly depends on the
download time of the virtual appliance from the repository to the selected
host. This time can be optimized in two ways: (i) minimizing the size of
the virtual appliance while still maintaining its target functionality and (ii)
storing the virtual appliance in a repository with the smallest latency and
largest transfer rate to the selected host. This chapter only aims at the first
option because it supports a wider range of IaaS systems; later, Chapter 6

will focus on the second option.
Throughout this chapter, I did not make any assumptions on the IaaS beha-

vior; therefore, this approach is applicable to any IaaS system. This approach
modifies the virtual appliance in a way that it is still capable of serving its tar-
get functionality, however, with a smaller size. A virtual appliance contains a
disk image and if present a memory snapshot. However, the volatile nature
of memory snapshots makes them undesirable for optimization. As a result,
an optimal virtual appliance holds a disk image of two basic components: the
Just-enough Operating System (JeOS) and the service itself. These compon-
ents are distinguished only in theory. Appliance optimization is done by the
VA optimization facility that is a subsystem of the AVS service (previously
discussed in Chapter 4).

5.1.1 The Virtual Appliance Optimization Facility

Active fault injection uses fault injection approaches [4, 19, 80] that generate
hardware and software level faults to test the fault tolerant behavior of the
software. However, for virtual appliance optimization, the system does not
really test for fault tolerant behavior. Instead, the optimization facility uses
fault injection to determine those components of the original appliance (pσ ∈

Pϕ ∶ (servicepkg(pσ) = true ∧ va(pσ) = true)) that are not needed for the target
functionality of the appliance.

Therefore, first, I define the faults that can be injected in order to achieve
size reduction. Having a virtualized environment enables the simulation of
both software and hardware level faults. Software level faults can be the mis-
behavior of the file system – e.g. simulating the corruption of the file system
by removing a file or some of its portions. Hardware faults can be the mis-
behavior of the memory or the disk subsystem. Simulating hardware faults

5.1 virtual appliance optimization principles 57

require the modification of the virtual machine monitors. Thus, a hardware
fault based optimization facility should ship with modified virtual machine
monitors for all the supported virtualization platforms. This requirement
seriously decreases the adaptability of the optimization algorithm; therefore,
this work only considers software fault injection.

After the injection of a software fault the facility creates the temporarily re-
duced virtual appliance (for the conclusive definition of these virtual appliances
see Section 5.1.2.2). The optimization facility requires a set of validation al-
gorithms in order to ensure the reduced appliance still offers the target func-
tionality of the original appliance. The optimization facility initiates a virtual
machine based on the reduced virtual appliance. Validation algorithms have
to evaluate these virtual machines (validate ∶ ϕ → {true, f alse}), whether they
provide the target functionality. As it was defined in Section 4.4.1.1, every
virtual appliance is accompanied with its own validation algorithm, there-
fore this dissertation does not aim to define validation algorithms, it is the
task of the appliance developers to do so. Software development may involve
unit and integration tests that can be also used as the validation algorithm.
However, it is required that these algorithms evaluate the entire functionality
of the appliance, therefore they can be used by the valid(p, vm) function as
follows:

valid(p, vm) ∶= evaluate(validator(p), vm)

Where the validator algorithm of package p is evaluated with the argument
vm.

During fault injection, the removable parts could have arbitrary granular-
ity (e.g. software packages, files). If a software package manager (e.g. the
debian package manager [12] – dpkg) is present in the appliance, then the
optimization facility utilizes it to remove those packages that are independ-
ent from the target functionality of the appliance. Later on, when the facility
cannot purge more packages from the VA with the manager, it switches to
file level removal. During this level, the facility even drops the software pack-
age manager itself if the appliance can be validated without it.

Virtual appliance providers may offer updates to the original appliances
being not aware that their appliance has been already optimized. The optim-
ization facility avoids the re-optimization of the entire appliance by identify-
ing the updates and reusing the previous optimization results. The facility
takes snapshots of the optimization process that create intermediate appliances.
When an update has to be propagated to the optimized virtual appliance
the facility selects an intermediate appliance that can accept the updates.
Therefore, only the snapshots taken after this intermediate appliance are lost
because of the update.

5.1 virtual appliance optimization principles 58

Storage

Initial VA

Reduced
VA

Selection

Removal Validation

[Target missed]

<<decisionInput>>:
Check optimi-
zation target

Figure 5.1: Basic appliance optimization technique

5.1.2 Appliance Contents Removal

This section describes the basic algorithm of the optimization procedure that
is split into three distinct tasks as seen in Figure 5.1. The first task is the selec-
tion of the virtual appliance’s removable parts. The selection task is the most
complex and critical task of the optimization approach presented here. This
task analyzes the package (pσ ∈ Pϕ) of the virtual appliance (va(pσ) = true)
and proposes how to partition the appliance. The proposed partitioning is
based on the knowledge base and the relations and properties of the different
parts of the appliance. The selection task also assigns a weight value to each
part of the appliance. Parts with the highest weights are temporarily dropped
by the removal task from the appliance. Finally, the third and last task is the
validation of the modified appliance. With an appliance developer provided
test, this last task decides whether the dropped parts should be permanently
removed from the VA. Later, I refer to the triplet of selection, removal and val-
idation as the optimization iteration (see the bold arrows in Figure 5.1). The al-
gorithm decides on initiating further optimization iterations if the appliance
developer provided optimization target constraints have not been achieved
after validation. After the final iteration, the algorithm publishes the optim-
ized appliance without the successfully removed parts. These three tasks are
further outlined in the next sub-sections.

5.1.2.1 Selection

As it was discussed previously, the main task of selection is to identify parts
to be removed. From the selection point of view the granularity of the parts
in the VA is not important. The only requirement is that the selection al-

5.1 virtual appliance optimization principles 59

gorithm has to use the same kind of VA parts that the removal task uses.
Virtual appliance parts can range from single bytes, sectors, file contents,
files to even directories or software packages. Later on, the removal task tries
to drop all these parts from the virtual appliance. The identification of the
different parts and their metadata is called itemization. Different itemization
algorithms use different kinds of parts as items. Items (i ∈ items(pσ)) are the
internal representation of the virtual appliance parts with metadata. Items
are the smallest entities handled by the selection and removal algorithms. In
the implementation the currently used itemization algorithm partitions the
virtual appliance on file boundaries.

The second subtask of the selection is weighting that prioritizes the dif-
ferent items. There are three basic kinds of items in the appliance: (i) the
core items – ic ∈ coreitems(pσ) –, (ii) the volatile items – iv ∈ volatileitems(pσ)

– and finally, (iii) the fuzzy items – i f ∈ f uzzyitems(pσ). Those items that
the selection algorithm does not have any prior knowledge about are called
volatile and weighted regularly. In contrast to volatile items, the core and
fuzzy items are identified by the knowledge base of the selection task. The
core items are those that cannot be removed from an appliance under any
circumstances (e.g. the init application in SystemV compatible UNIX sys-
tems); these items are predefined in the knowledge base of the selection task.
Initially no fuzzy items are defined; they are identified by the algorithm
when volatile items are repeatedly validated unsuccessfully. These items are
weighted low but are available for removal if the optimization target cannot
be reached without trying their removal (weight values assigned for volatile
items are always higher than the largest weight for fuzzy items).

Weight functions (w ∶ I × Pϕ → V) assign weight values (V = {∀v ∈ R ∶

(0 ≤ v < 1)}) for each item of the virtual appliance under optimization (i ∈
items(pσ)). The higher the weight value the more undesired the actual item is
in the virtual appliance. Weight functions are utilizing the various metadata
available about the items; therefore, details on the collected metadata and on
the used weigh functions are discussed in Section 5.2. However, the optimiz-
ation facility handles them independently of the utilized metadata.

The optimization facility decides on the use of the various weight func-
tions based on the time and cost constraints specified in the optimization
target criterion. The facility can even decide whether to use a single or mul-
tiple weight functions throughout the optimization process. If the facility
decides on using multiple weight functions then their values are combined
as follows: wcombined(i, p) ∶= w1(i, p) ⋅w2(i, p). Alternatively, different weight
functions can be used during the different stages of the optimization pro-
cess. This strategy ensures that the more expensive and more precise weight

5.1 virtual appliance optimization principles 60

calculations are only used if their use would result faster reduction of the
appliance size.

The facility also applies different weight functions depending on the kind
of the item (core, fuzzy and volatile). Core items (ic) always evaluated with
the constant 0 weight value (w(ic) = 0), therefore the system only has to
identify them. These items are either manually defined in the knowledge
base or the optimization facility could also apply the technique of runtime
item usage detection. Fuzzy items (i f) are defined based on the knowledge
base or using the pattern matching weight function. Volatile items (iv) are
those items that are subject to active fault injection and their weight func-
tions are discussed in Section 5.2. For any combination of core, fuzzy and
volatile items the following statement is always true for their weight func-
tion evaluations:

0 = w(ic, p) < w(i f , p) < w(iv, p) (5.1)

Core items are detected with the technique of item usage detection. This
technique requires the initiation of the original appliance prior the weight
function evaluation – vm = initVM(pσ, ϕ). Then the resulting virtual ma-
chine is passed through validation (valid(pσ, vm)). During validation, this
technique collects the list of items utilized in the virtual machine to accom-
plish the target functionality of pσ. Later, the facility uses this item list to
specify the core items of the original virtual appliance. However, to detect
the used items the virtual machine monitor has to be modified, therefore
this detection technique is not used in this dissertation.

Fuzzy items are identified by the optimization facility with pattern match-
ing that is an extension of an arbitrary weight function. It requires a set
of sample virtual appliances that are fully optimized (Psample ∶= {∀p ∈ Pϕ ∶

optimalsize(p)}), thus no further optimization is possible on them. These
samples are either the results of previous optimizations or vendor provided
pre-optimized appliances (see Section 2.3). The items found in fully optim-
ized appliances were unsuccessfully removed before, therefore, the algorithm
handles them as fuzzy items (I f uzzy ∶= {∀i ∈ Iϕ ∶ (∃p ∈ Psample ∶ (i ∈ items(p))}).
The pattern matching weight function uses the inverse appearance frequency
(fa ∶ I → R) of the items within the fully optimized appliances as the base
weight value and adjusts the basic weight provided by the active fault injec-
tion technique:

fa(i) ∶=
1

1−
∣related(i,Psample)∣

∣Psample∣
(5.2)

wP(i, p) ∶= fa(i) ⋅min
j∈I
(w(j, p)) (5.3)

5.1 virtual appliance optimization principles 61

The weight calculation with pattern matching is accomplished in two phases.
First, before any optimization request could arrive, the optimization facility
calculates the inverse appearance frequencies for every fuzzy item (i ∈ I f uzzy).
Then during the optimization process it utilizes the pre-calculated fa(i) val-
ues to evaluate the weight function of pattern matching. For the definition
of the related function see Equation 3.5. Selecting the minimum value of
the regular weight function (w(j, p)) as the maximum value for the pattern
matching ensures that the calculated weight value will classify the item un-
der evaluation as a fuzzy item (i ∈ f uzzyitems(pσ)) according to Equation 5.1.

5.1.2.2 Removal and validation

The removal action sorts the items according to their weights and it removes
the item with the highest weight from the virtual appliance. For the removal
operation, the optimization facility has to understand the contents of the
appliance to be able to remove the selected item. This is achieved with the
removal technique – called pre-execution removal – that operates on the con-
tents of the virtual appliance while it is not running. The reduced virtual appli-
ance (pred) is created (pred ∈ contents(rAVS)) before its execution by removing
the highest weighted items (ihw) from the original virtual appliance:

ihw ∶= i ∈ items(pσ) ∶ (w(i) = max
j∈items(pσ)

w(j))

items(pred) ∶= items(pσ)/{ihw}

After removal, validation instantiates the reduced appliance in a vir-
tual machine (vm) and all the developer-supplied validation algorithms –
validator(pσ) – are executed on the service it offers. If any of these algorithms
fail, then the validation procedure is non-successful – valid(pσ, vm) = f alse.

Non-successful validation leads to the restoration of the original virtual
appliance and the optimization facility starts a new optimization iteration
with the exclusion of the items that cannot be removed – ihw ∈ coreitems(pσ).
Successful validation is followed by a new iteration using the reduced ap-
pliance (pσ = pred). The reduced appliance is created with two approaches:
(i) before the next validation starts, the original appliance is reduced with
all the successfully validated parts, or (ii)when the cost of the intermediate ap-
pliance creation (see Section 5.1.1) allows, the reduced appliance is created as
a snapshot of the optimization process and later this intermediate appliance
is used instead of the original one.

Before starting a new optimization iteration, the facility decides if it has
already reached the target that was set through the optimization request by
the appliance developer. The optimization target is used to limit the resource

5.2 implementation of virtual appliance optimization 62

usage of the optimization algorithm and leads to a virtual appliance with
suboptimal size.

5.2 implementation of virtual appliance optimization

Before discussing the implementation of the optimization facility, I define
the constraints of the optimization facility and system. The optimization fa-
cility is based on the algorithms I designed and described in this chapter.
It is implemented as a web service that resides on a single host within the
optimization system. The system also includes all the dependencies of the pro-
posed algorithms. Depending on its configuration, the optimization system
spreads to multiple hosts (hx ∈ ϕ) within a single administrative domain (or
an IaaS system controlled by c), where these nodes all host a virtual machine
monitor for virtual machine management – hx ∈ Ξϕ(c).

In the coming parts of this section, first, I present the overall optimization
algorithm focusing on the problems raised by the selection task (see Sec-
tion 5.2.1). Then I discuss the parallelization of the removal and validation
steps by utilizing several validator virtual machines simultaneously (see Sec-
tion 5.2.2). Finally, I present the virtual machine management features of the
optimization facility (see Section 5.2.3).

5.2.1 Implementation of the Item Selection

Figure 5.2 depicts the entire optimization process, however it gives details
of the selection related operations only. The other operations are discussed
in the next sections. I have defined the optimization iteration as a single step
in the loop that starts with item pooling task and ends with the target check
operation.

5.2.1.1 Virtual Appliance Itemization

When the optimization facility receives a request for minimizing a virtual
appliance (pσ), it first fetches the appliance from the repository. As a result, it
mounts the disk image (im(pσ, f)) of the virtual appliance on the host of the
optimization facility. The mount point is passed to the file based itemization al-
gorithm that reads the file system and identifies the items (files in the current
implementation) of the virtual appliance. The itemization procedure also col-
lects and passes the following metadata for each file: (a) the item size (size(i)),
(b) dependencies representing item relations (e.g. inclusion, parent/child re-
lationships), (c) creation and modification timestamps. The metadata that is

5.2 implementation of virtual appliance optimization 63

Ite
m

iz
at

io
n

Q
ue

ue
in

g

Ite
m

po

ol
in

g

Ite
m

gr

ou
pi

ng

R
em

ov
e

ite
m

 fr
om

po

ol

G
ro

up

w
ei

gh
tin

g

Ad
ju

st

w
ei

gh
ts

R
es

to
re

re

m
ov

ed

ite
m

s

Va
lid

at
e

ne
w

 V
A

R
em

ov
e

gr
ou

p
fro

m

VA

Ta
rg

et

ch
ec

k

Kn
ow

le
dg

e
ba

se

R
ep

os
ito

ry

Fe
tc

h
in

iti
al

 V
A

Pu
bl

is
h

fin
al

 V
A

St
or

ag
e

Se
le

ct
io

n
Va

lid
at

io
n

R
em

ov
al

[T
ar

ge
t n

ot
 m

et
]

[V
al

id
at

io
n

Fa
ile

d]

Figure 5.2: Overview of the proposed optimization technique

5.2 implementation of virtual appliance optimization 64

used by later phases of the algorithm is extensible, however it has to be col-
lected in the itemization phase.

The optimization facility contains an item pool used as a metadata cache
that avoids frequent queries on the appliance’s file system in the later stages
of the optimization algorithm. This pool stores metadata for all items that are
ready for grouping and validation. The item queue is used as an intermediary
between the file system and the item pool. The queue is the source to fill the
unused item capacity of the pool. The length of this queue is automatically
determined by estimating the amount of removable items during a single
iteration. The maximum value is the same as the number of virtual machines
used for validation as discussed in Section 5.2.3. If the queue is full, then the
itemization procedure is blocked until the algorithm removes items from the
pool. Therefore, item queue remains full while the itemization processes all
parts of the appliance.

5.2.1.2 Grouping

The file-based itemization algorithm produces so many items (∣items(pσ)∣ >>

1000) from a virtual appliance (see Table 10.1) that creating a virtual ma-
chine for each item’s removal and validation is not feasible. Therefore, the
proposed algorithm groups these items together in order to decrease the
number of removal and validation operations. The grouping algorithms have
two common tasks: (i) form groups from items that are more likely to be re-
moved together and (ii) aggregate the metadata attached to the individual
items and present them as group metadata.

Item grouping forms groups from the items available in the pool. The al-
gorithm waits until the pool is either full or the itemization has completed.
As a result, the grouping algorithm always handles the maximum amount of
items. If the removal of a group has failed then the group is split into smaller
ones. The previous groupings of an item are also marked in its metadata sec-
tion allowing the weight functions to adjust their weights on an even more
detailed level.

I measure the efficiency of a grouping algorithm with the grouping failure
rate that I defined as ratio between the number of groups successfully passing
validation and the total number of groups that were validated in a specific
iteration (see Figure 5.3). For example, when I have optimized the Apache
Appliance (see Section A.2 for details) the facility validated 130 groups in
total after the first iteration; among these, 26 groups did not pass the valid-
ation, therefore the grouping failure rate in this specific case is 20%. I only
consider grouping failure rates for a specific algorithm comparable with oth-
ers, after the number of groupings with that algorithm reaches a predefined
threshold.

5.2 implementation of virtual appliance optimization 65

10%	

12%	

14%	

16%	

18%	

20%	

22%	

24%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Gr
ou

pi
ng
	 F
ai
lu
re
	 R
at
e	

Itera1on	

Figure 5.3: Average grouping failure rate of the directory based grouping algorithm
during optimization

The first grouping algorithm is based on the directory structure in the appli-
ance. Thus, items with the same parent directory are represented in a single
group. This grouping algorithm is based on the assumption that files (for a
given purpose) are located in the same folder.

The second grouping algorithm is based on creation time proximity. This
algorithm assumes that files for a given purpose are placed on the file system
during the same time period. Thus items within a given ∆t time interval
belong to a single group. The start of the time interval is selected in order to
minimize the number of groups. The value of ∆t is either a constant set up
prior the execution of the grouping algorithm, or alternatively the system can
calculate one for each appliance (e.g. ∆t is set to a value that maximizes the
sample standard deviation of the resulting group sizes). The implemented
algorithm for time proximity uses 5 minutes as ∆t.

The current implementation mainly uses the directory structure-based al-
gorithm. However, I also use the creation time proximity based algorithm for
appliances with high grouping failure rate (over 30%) for the directory-based
algorithm.

Based on my experiments failure rates tend to be high in the early stages
of the optimization procedure then sharply decrease afterwards. This can be
observed in the grouping failure rate graph in Figure 5.3 that presents the
average failure rates in every iteration for all the optimization procedures I
have executed to present the findings of this thesis.

5.2 implementation of virtual appliance optimization 66

5.2.1.3 Item Weight Calculation

After grouping, I define group weighting that is one of the crucial steps in the
selection phase. This step was already introduced in Section 5.1.2.1. Here I
only describe the implemented weight calculation algorithm that is a com-
posite of a base weight function and several coefficients:

wA(i, p) = γ(i)κ(i)wS(i, p) (5.4)

Where wA ∶ I × Pϕ → V is the composite weight function of volatile items to
be used with active fault injection, that is based on wS ∶ I × Pϕ → V the size
based weight function. The facility alters the wS(i, p) value with the prior
group participation (γ ∶ I → V) coefficient for a given item that prefers items
with successfully validated group siblings. The κ ∶ I → V coefficient uses the
knowledge base to prefer items with high removal success rates.

First, I define the base weight function that assigns weights based only on
the item size metadata (size(i)). This weight function forces the optimization
facility to prefer the items that have larger impact on the overall appliance
size:

wS(i, p) =
size(i)

max
j∈items(p)

(size(j))
(5.5)

Therefore, without further coefficients the validation progresses from the
largest items towards the smaller ones. The advantage of this weight value
is that it can be calculated in every stage of the optimization.

The first coefficient uses the information about prior group participation.
With this coefficient, items that were improperly grouped together affect
each other’s weight values. Previous groupings of an item are stored in the
metadata with all group siblings. If an item already participated in a wrong
grouping and some of its previous group siblings were already validated,
then I propose the use of their validation success rate to alter the base weight
function:

γ(i) =
⎧⎪⎪
⎨
⎪⎪⎩

M(i) > 0 min(1, 1+
Msuccess(i)−M f aulty(i)

M(i))

M(i) = 0 1
(5.6)

Where M ∶ I → N defines the number of already validated siblings in a
previously faulty grouping where the current item was a member. M f aulty ∶

I →N specifies the number of those siblings that already failed the validation
phase. Consequently Msuccess ∶ I →N is the number of successfully validated
siblings.

The second coefficient alters the base weight value with previous removal
success rate of the individual items. As a prerequisite, previous validation

5.2 implementation of virtual appliance optimization 67

results of the items in other virtual appliances are stored in and restored
from the knowledge base. With the help of the knowledge base, this coeffi-
cient encourages the removal of those items that were previously removed
successfully.

κ(i) = 1− α(i)
NF(i)
NT(i)

(5.7)

Where α ∶ I → V is the aging coefficient to be discussed in the following
paragraph, NF ∶ I → N is the number of unsuccessful removals of a given
item, and NT ∶ I →N is the number of trials made on the item.

Finally, the aging coefficient prevents the overestimation of the importance
of past experiences. For example, in some cases, an important software lib-
rary receives a replacement and later on, it is placed in software distributions
for compatibility reasons. Thus as the virtual appliances evolve the original
library loses its fuzzy state. I calculate the aging with the following formula:

α(i) = 1−
tnow − tTS(i)

tnow
(5.8)

Where tnow is the current number of optimizations requested, and tTS ∶ I →
N is the number of the last optimization iteration this item was tested for
removal. These values are also stored in the knowledge base. If α(i) reaches
a certain level I remove the stored NF(i), NT(i) and tTS(i) values from the
knowledge base.

5.2.1.4 Final Steps of the Optimization Iteration

The removal and validation phases take place right after the evaluation of
the weight functions for all current groups. Figure 5.2 reveals that the steps
after validation are independent from the implementation of the removal
and validation algorithms, therefore first, I discuss the remaining tasks re-
lated to the selection phase in the optimization algorithm. The removal and
validation phases are detailed in Section 5.2.2.

In case of validation failure, the previously removed items are restored (this
step is further detailed in Section 5.2.3). In parallel to the restoration oper-
ation, the algorithm adjusts the weight of the removed item or group. If the
adjustment process receives a group then the algorithm ungroups the items
and marks them in order to prevent their entire regrouping. These markings
are also used by weight functions to calculate the prior group participation
coefficient (γ). If the adjustment process receives an individual item then it
saves the metadata of the item as a negative example in the knowledge base.
Later, this knowledge base entry helps the calculation of the removal success
rate coefficient (κ) during the optimization of other appliances.

5.2 implementation of virtual appliance optimization 68

Successful validation is followed by a decision whether to continue the op-
timization process. This task is accomplished by the target check action. Ap-
pliance developers can specify the completion criterion of the optimization
iteration by making an arbitrary conditional expression based on five met-
rics: (i) the number of optimization iterations executed, (ii) the current size of
the virtual appliance (pkgsize({pred})), (iii) the size reduction achieved by the
individual optimization iterations – (pkgsize({pred})/pkgsize({pσ}) – , (iv)
the wall time for the entire optimization process and (v) the size of the remain-
ing (or not validated) items of the virtual appliance – remaining ∶ Pϕ ×Pϕ →R.

remaining(pred, pσ) =

∑
i∈(items(pred)/coreitems(pσ))

size(i)

pkgsize(pσ)
(5.9)

If the optimization completion criterion is not met, then the algorithm
prepares another optimization iteration. As a result, the validated items or
groups of items are removed from the item pool. The success of the removal
process is also stored in the knowledge base for all group members and
individual items. At the end of this step, the optimization system is ready
for the next optimization iteration starting with the item pooling task.

The optimization process concludes with the publication of the final virtual
appliance when the completion criterion is met or there are no more items to
remove from the appliance. During this step, the optimization facility first
fetches the original virtual appliance from the repository. Then facility at-
taches the appliance’s image to the host machine allowing the optimization
algorithm to remove the successfully validated items from the appliance. Fi-
nally, it uploads the locally altered appliance to the repository as an optim-
ized version of the original one.

5.2.2 Parallel Validation

Based on Figure 5.4 this section provides a detailed description on how the
item removal and validation is executed and parallelized. First, I discuss the
item removal technique of the current implementation, and then I progress
towards parallelization of the proposed technique.

The applied itemization technique determines the kinds of the items that
the removal operation should handle, because removal techniques should
erase the highest weighted items from the original virtual appliance. This
dissertation uses a file-based itemization technique; therefore, the later intro-
duced removal operations should also be capable of removing files from the
virtual appliance images.

5.2 implementation of virtual appliance optimization 69

Selection of
items with the
highest weight

Runs on
all the VMs
in the pool

Multiple
selection

[F
ai

le
d]

«parallel»

Removal

Validate

Removable
Item or group

[F
ai

le
d]

Set of
successful

items or
groups

Remove all
succeeded

Final
validation

Mark all
successful

Mark best
successful

Figure 5.4: Parallelism in the validation process

As it was discussed in Section 5.1.2.2, the proposed optimization algorithm
removes the appliance contents with the pre-execution removal technique. Pre-
execution removal attaches the disk images of the original virtual appliance to
the optimization facility’s host, and removes the files with the highest weight.
Then the validation algorithm uses this modified appliance to initiate a vir-
tual machine and check the functionality of the appliance. IaaS systems like
Amazon EC2 only initiate virtual machines with virtual appliances stored
in their repositories. This requirement forces the pre-execution algorithm to
upload the reduced virtual appliance to the repository of the IaaS system
before the execution of the validation task. Therefore, I apply this removal
technique if the used IaaS can initiate virtual machines from trusted locations
like the host of the virtual appliance playground (rAVS).

5.2.2.1 Parallelism

Figure 5.5 presents the effects of optimization on the available items and
the groups formed from these items. During the individual iterations, the
removal action has had more than 400 candidate groups for selection. With
the previously presented removal and validation algorithms, each group re-
quires an individual virtual machine for its validation. The most expensive
operation in the algorithm is this virtual machine creation step (see Table
10.2 for deployment times of the original virtual machines). Therefore, I in-
troduced the parallel execution of the removal and validation tasks.

As a result, the optimization system is required to be deployed on a cluster
that is able to execute several virtual machines in parallel (see the “«parallel»”
block in Figure 5.4). The removal and validation tasks are parallelized using
these virtual machines. The parallelism in the algorithm starts after assigning
the weight values. First, the system selects the highest weighted groups or

5.2 implementation of virtual appliance optimization 70

0	

200	

400	

600	

800	

1000	

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Gr
ou

ps
	

Ite
m
s	 (
th
ou

sa
nd

s)
	

Itera2on	 Items	 Groups	

Figure 5.5: Number of groups formed from the available items during the optimiza-
tion of the Apache appliance (see Sections 8.5.1 and A.2)

items, and for each one of them it initiates a removal and validation task in
a dedicated virtual machine (see the “multiple selection” action in Figure 5.4).
As a result, the facility receives the success reports on several validation tasks
in parallel.

However, these validation reports are independent from each other. In
order to avoid dependencies between the removed items the proposed al-
gorithm creates a group that contains the union of each successfully re-
moved item. This group is removed from the original appliance and val-
idated again (final validation in Figure 5.4). Successful final validation en-
sures that there are no dependencies between all the previously successful
removals. If the final validation is successful, all successful items and groups
are removed from the item pool and the appliance.

If the final validation fails, the facility selects the highest weighted success-
ful item or group for permanent removal. Other successfully validated items
remain in the item pool with a successful validation marker. This enables
their revalidation with the highest weighted element already removed from
the appliance.

However, this selection approach leads to a suboptimal solution only. For
the optimal selection, the optimization facility should evaluate all possible
combinations of the successfully validated removals and mark the combin-
ation with the highest cumulative weight. The cost of evaluating the pos-
sible combinations renders the optimal selection procedure too expensive
and therefore the proposed algorithm never applies it.

5.2 implementation of virtual appliance optimization 71

[Target not met]

Virtual
Appliance
Repository

Selection

Target check

Remove
selected

Init VM
Acquire VM for

optimization

Validation

Create
Intermediate VA

Figure 5.6: Handling virtual machine instances

5.2.3 Virtual Machine Management Strategy

The objective of the virtual machine management strategy is to enable the
efficient parallel processing of validation tasks. Parallel validation requires
multiple virtual machines ready to be validated. These VMs should be all
initialized with partially optimized virtual appliances. However, initializ-
ing a virtual machine requires substantial amounts of bandwidth and time
(see Tables 10.1 and 10.2 for details). Therefore, the proposed management
strategy attempts to pre-initialize a pool of virtual machines before the val-
idation process starts. As a result, the system executes the pre-initialization
procedure while the optimization facility executes the initial itemization (un-
til the item pool is first filled), grouping and weighting algorithms (see Fig-
ure 5.2). The algorithm determines the size of the virtual machine pool by
the number of available virtualized CPUs in the optimization system (e.g.
∣vms(c)∣). If the optimization system shares the underlying IaaS system with
other services then the system administrator of the optimization facility can
set up a maximum number and a maximum usage share from the entire
system’s resources.

Figure 5.6 presents the three main tasks during the management of avail-
able virtual machines for the optimization system (acquire VMs, remove con-
tents, init VMs). The first task is to acquire as many VMs as possible from the
IaaS system for the optimization.

Before the virtual appliances are instantiated, the system creates the tem-
porary virtual appliances for each instantiation. The optimization facility
downloads the virtual appliance under optimization from the repository.
Subsequently, the system removes the item or group that has been selected for
the current removal. Finally, the facility offers this temporarily created virtual
appliance for the IaaS system to enable the initiation of the virtual machine

5.2 implementation of virtual appliance optimization 72

Cancel VM

Prepare VM
Init VM

(pending
state)

Conform-
ance check Free

Configure AcquiredDownload
VA

Remove
selected

Validate

Defunct

Config
needed

Failed

Frequent
Failures

Terminate

Figure 5.7: Virtual machine management states

for validation. In order to lower the network usage, the facility primarily
uses a virtual appliance playground (see Section 4.2.2) to offer the temporary
virtual appliance. If the IaaS requires virtual appliances to be stored in its
own repository, then the optimization facility publishes the temporary vir-
tual appliance in the required repository before the instantiation of a virtual
machine.

After the virtual machine is instantiated, the system continues its initiation
procedure with the configuration task. This step handles internal configura-
tion provided by the appliance developer, then it also manages the external
network configuration of the virtual machine (e.g. setting up the firewall).
After the VMs are initialized, they are ready to be used for the validation
task (detailed in Section 5.2.2).

To allow later validations on the infrastructure, the virtual machine is ter-
minated after its validation task is finished. The parallel branches of the
validation algorithm compete with each other for the now available VM slot.
To increase the effectiveness of the next optimization iteration the manager
creates an intermediate VA by removing the successfully validated items or
groups from the appliance. As a result, the system reduces the time required
for future virtual machine initiations. In other words, the optimization fa-
cility utilizes the effects of optimization before reaching the final optimized
virtual appliance.

5.2.3.1 Individual Virtual Machine Handling

Virtual machines are pooled to support parallel validation, however indi-
vidual virtual machines are not controlled by the algorithm discussed in the
previous Section (see Figure 5.6). The instantiation, management and usage
of individual virtual machines progress through different states that are dis-
cussed in detail in the following paragraphs.

5.2 implementation of virtual appliance optimization 73

Figure 5.7 defines the list of virtual machine management states a virtual
machine passes through during its lifecycle. Before each validation could
start, a new virtual machine has to be created with the virtual appliance
according to the current group selection. A pool of virtual machines is cre-
ated to support the various parallel group selections and removals from the
virtual appliance under optimization. If the pool is not full and the current
optimization iteration has not been completed, then the system automatic-
ally initiates new virtual machines. The first virtual machine management
state – Prepare VM – acknowledges that the optimization facility started the
process of creating a virtual machine for validation.

If the virtual machine pool requires a new VM, then the management
algorithm starts with the download of the virtual appliance. If the virtual ma-
chine reached this state then the optimization facility already received the
appliance under optimization from the repository. Next, the facility removes
the item or group selected for removal and validation. The VM management
state switches to remove selected state when the facility has finished the re-
moval operation and already offers the temporary appliance for the IaaS
system.

Afterwards, the management strategy requests a virtual machine instanti-
ated with the temporary appliance. Subsequently, the virtual machine passes
to the initialization state when the IaaS accepts the request. After the IaaS re-
ports the availability of the requested virtual machine, its management state
switches to conformance check. During this state the virtual machine handler
checks the firewall setup of the virtual machine instance. The inspection of
the firewall on the running virtual machine is essential to confirm the access-
ibility of the deployed service. This last inspection step avoids false failure
reports on improperly initialized virtual machines when fault injection (item
removals) could also cause failures. It ensures the validator will not falsely
fail on improper initialization of the service’s virtual machine.

If the conformance check fails, the virtual machine handler terminates the
unusable virtual machine (Cancel VM state), and returns to the virtual ma-
chine preparation phase. In rare cases, the IaaS system might have troubles
providing an accessible virtual machine that fulfils the minimal requirements
of the service in the virtual appliance under optimization. The current virtual
machine handler stops returning to the initialization phase after configurable
amount of retries.

If the conformance check succeeds, then, if the appliance developer defined
configurators (con f igurator(p) ≠ ∅), the handler configures the newly de-
ployed service residing in the virtual machine. Finally, the virtual machine
becomes free when the virtual machine already runs an activated service us-
able for the validation processes.

5.2 implementation of virtual appliance optimization 74

The later states of the virtual machine all represent a state in the valid-
ation process. First, the acquired state designates the VM’s participation in
the procedure. This phase binds a validator and a virtual machine. Finally,
comes the actual validation state. While in this state the optimization facility
executes the test cases that validate the slightly modified service instance.
After all test cases are executed, the validator reports the results to the fa-
cility then terminates the virtual machine. Finally, the virtual machine gets
defunct and – if necessary – the manager initiates the creation of a new VM
replacing the defunct one.

chapter summary. This chapter first revealed that virtual appliance
size heavily affects virtual appliance instantiation time. Next, I suggested
that active fault injection techniques could be applied on the virtual appli-
ance size optimization problem. Afterwards, the chapter provided the gen-
eral overview of the optimization iteration (including removable item selection,
removal and validation) on an extensible way. I have also revealed the first
implementation of the size optimization algorithm utilizing a pre-execution
removal technique. Later, with the introduction of the minimal manageable
virtual appliance concept, the optimization iteration can be further extended
by utilizing the technique of execution during removal (see Section 7.3.3 for
details).

6
PA RT I A L V I RT U A L A P P L I A N C E R E P L I C AT I O N

chapter overview. This chapter focuses on the discussion of my third
contribution (distributed virtual appliance storage and delivery). The chapter
starts from the assumption that large-scale IaaS systems could store virtual
appliances in several repositories, therefore deployment time could heavily
vary depending on the connection properties of the repository storing the
appliance and the virtualization enabled machine that will host the instan-
tiated appliance. Thus the chapter aims at reducing the variance in deploy-
ment time by introducing of the concept of active repositories and appliance
rebuilding.

6.1 introduction

This chapter aims at revealing my findings about the applicable techniques
and strategies to optimize the virtual appliance delivery time from the repos-
itories to the IaaS system. I have achieved the delivery optimization through
rearranging and replicating the content of the repositories so that they serve
their users more efficiently. During the optimization process, I also aim at
maintaining the smallest impact on the storage requirements of the affected
repositories.

As a result, I propose that similarly to [48] virtual appliances should not
be handled as monolithic entries, but should be decomposed into smaller
packages. Contrary to the previously mentioned solution I propose an auto-
matic decomposition algorithm that defines the different building blocks of
virtual appliances. Then I introduce several algorithms that increase the stor-
age and delivery efficiency of the newly created packages. These algorithms
are dependent on the bandwidth available between the repository and the
executor host of the algorithm. Therefore, I present them as an integral part
of each repository. Later on, I refer to repositories with these new capabilities
as active repositories.

75

6.2 active repository functionality 76

Delta
package

Base
Virtual

Appliane

Delta
package
Delta

package

Base
Virtual

Appliane

Base
Virtual

Appliane

Virtual Appliance

Service
package

Delta
package

Delta
package

Base
Virtual

Appliance

D
ecom

pose

Rebuild

D
ecom

pose

Dependency

Dependency

Dependency

Replicas

Replicas

Replica

Figure 6.1: The lifecycle of a virtual appliance with the use of active repositories

Consequently, of these algorithms, repositories not only store stand-alone
virtual appliances but they might also store some of their fragments. There-
fore, I propose an algorithm that rebuilds the fragmented virtual appliances
just before they are deployed on an IaaS system.

Finally, as it can be observed in Figure 6.1, the previously mentioned al-
gorithms draw the entire lifecycle of a virtual appliance from the reposit-
ory point of view. The following sections discuss how the appliance passes
between these phases.

6.2 active repository functionality

Repositories capable of automatic entry management are active entities in
the service-based system because they automatically (i) create, (ii) merge,
(iii) destruct and (iv) replicate their entries (the self-contained or delta re-
pository packages). New entries are created with the proposed decomposition
algorithm. Entries downloaded by the same appliance rebuilding process are
merged to reduce the repository connections required during the rebuilding
process. Low usage of the automatically created or merged entities initiates

6.2 active repository functionality 77

their destruction. Finally, frequently used entities are replicated to other repos-
itories. All four active repository functionalities are executed as low priority
background processes by repositories during low demand periods. The fol-
lowing sections discuss the automation of these management functions.

Active repository functionalities are aimed at minimizing the rebuilding
time of the stored packages while minimizing the stored content in the vari-
ous repositories in the service-based system. The four proposed automated
functionalities are not capable to fulfil these aims on their own, however,
their composite effect satisfies these aims.

6.2.1 Package decomposition

The goal of the decomposition algorithm is the identification of virtual ap-
pliance parts that can be effectively replicated between the different repos-
itories. This algorithm is the core of the active repository functionality. The
algorithm identifies the dependencies and the virtual appliance parts that
can be shared between the different virtual appliances. The proposed tech-
nique defines the shared parts in repository packages to be used as building
blocks for virtual appliances (for an example see Figure 6.2). Identification of
the shared parts – future packages – can be done on several levels of granu-
larity: sector, file and file content. The decomposition algorithm always uses
the same level of granularity as the AVS and the optimization facility used
for itemizing (see Sections 4.4.1.3 and 5.2.1.1) the virtual appliance during
extraction.

The major challenge of this approach is that the virtual appliances are
not necessarily available as self-contained packages, therefore, before their
deployment they have to be rebuilt. Section 6.3 discusses this rebuilding al-
gorithm, meanwhile Section 6.2.2 reveals a method to support the rebuilding
process by merging the unnecessarily split packages prior to their deploy-
ment.

Active repositories host and apply the decomposition algorithm them-
selves. Alternatively, if the modification of a repository’s code is not possible
then the algorithm is offered as an external component (residing in the AVS).
However, the extensive amount of download operations for content analysis
requires this component to be installed on a host with high bandwidth con-
nection towards the repository under analysis.

First, the decomposition algorithm (see Algorithm 6.1) starts processing right
after a new package (pnew ∈ contents(r)) is added to the repository (r ∈ Rϕ).
Then, based on the various hash sets (e.g. Hpnew) in the repository, the al-
gorithm identifies the package (pold) that shares the most common content
with pnew. Next, the algorithm determines the hash set of the hypothetical

6.2 active repository functionality 78

Service1's VA

Service 1 JeOS
VA

Service1 delta

Service2's VA

Service 2 JeOS
VA

Service2 delta

Service 1&2
Common VA

Service 1
JeOS delta

Service 2
JeOS delta

Base Virtual
Appliance

Service 1&2
common

delta

Split1

Split2

Dep1

Dep2

Split3

Split4
Dep4

Dep4

Dep3

Dep3

Split5

Dep5

Dep5

Dep5

Dep5

Dep5

Figure 6.2: Splitting graph of two virtual appliances

package (H(p∗)) that stores the common contents between the two packages.
If the algorithm could find common items, then it defines the package for
storing them as pcommon. The algorithm ensures that pold shares common
roots with pnew in line 5. Therefore, the direct package dependency set of
pcommon is inherited from pold in line 13. Finally, if the package storing the
common items can still form a base virtual appliance (see Equation 3.15),
then two delta packages (p∆,old and p∆,new) and the common package is pub-
lished in the repository.

The publication of these three new packages (pcommon, p∆,new, p∆,old) trig-
gers the execution of the decomposition algorithm on all three of them (e.g.
p∆,old will behave as pnew next time). As a result, when a new virtual appli-
ance is added to the repository, the algorithm will be repeatedly executed

6.2 active repository functionality 79

Algorithm 6.1 The proposed decomposition algorithm
Require: r ∈ Rϕ

Require: pnew ∈ contents(r)
1: H(pΩ,new)← ⋃

p∈D(pnew,1)
H(p)

2: H(p∗)← ∅

3: for all p1 ∈ contents(r) ∶ (H(p1)∩ H(pnew) ≠ ∅) do
4: H(pΩ,1)← ⋃

p∈D(p1,1)
H(p)

5: H(p∗1)← H(pΩ,new)∩ H(pΩ,1)

6: if (va(p∗1) = true)∧ (∣H(p∗1)∣ > ∣H(p
∗)∣) then

7: H(p∗)← H(p∗1)
8: pold ← p ∈ Pϕ ∶ (∄px ∈ Pϕ ∶ (p ∈ dep(px)∧ (H(px)∩ H(p∗)) ≠ ∅))
9: end if

10: end for
11: if H(p∗) ≠ ∅ then
12: items(pcommon)← {∀i ∈ items(pnew) ∶ (hash(i) ∈ H(p∗))}
13: dep(pcommon)← dep(pold)

14: pΩ,common = ∑
p∈D(pcommon,1)

p

15: if baseva(pΩ,common) = true then
16: items(p∆,new)← items(pnew)/items(pcommon)

17: copyPackageSpeci f icMetadata(pnew, p∆,new)

18: items(p∆,old)← items(pold)/items(pcommon)

19: copyPackageSpeci f icMetadata(pold, p∆,old)

20: dep(p∆,new)← dep(p∆,old)← {pcommon}

21: publishPackages(r, pcommon, p∆,new, p∆,old)

22: end if
23: end if

until no more common items are found between the already existing repos-
itory packages and the newly created packages. The algorithm also stops
creating new packages when a common package cannot be used to initiate
a virtual appliance. This last condition is applied to enable the online recon-
struction strategy introduced in Section 7.3.1.2.

Finally, I present a simple example using Figure 6.2 to demonstrate the
behavior of the algorithm. The demonstration starts with a repository that
already stores packages “Service 2 JeOS VA” (pold) and “Service 2 delta”.
Next, the package “Service 1 JeOS VA” (pnew) is added to the repository. As
a result, the repository applies the decomposition algorithm on this newly
added package. Consequently, the algorithm identifies the common portions
of the two VA packages and creates it as pcommon or “Service 1&2 Common

6.2 active repository functionality 80

VA” (see “split 3-4” in Figure 6.2). Lastly, the algorithm creates the delta
packages from the previous virtual appliance packages: “Service 1-2 JeOS
delta”.

6.2.2 Package merging

This section details the proposed package merging algorithm that decreases the
virtual appliance rebuilding time by offering multiple repository packages in
a single merged package. The architecture also applies merging to conserve
repository storage space. Consequently, the algorithm finds the previously
unnecessarily decomposed repository packages and merges them. Unneces-
sary decomposition is recognized when the decomposed packages are barely
used individually.

The proposed merging algorithm aims to maximize the size of the merged
packages. Before the system proceeds to package merging, it collects the ne-
cessary information for the merging decisions. Active repositories log their
download queries and describe them with the following five parameters: (i)
the source host of the query – hs,qi ∈ ϕ –, (ii) the requested repository – rreq,qi ∈

Rϕ –, (iii) the requested package – preq,qi ∈ contents(rreq,qi) –, (iv) the start
time of the download query processing – ts,qi ∈ N –, and finally, (v) the finish-
ing time of the download query – t f ,qi

∈ N. A single query is denoted with the
five parameters enclosed in brackets: qi ∶= (hs,qi , rreq,qi , preq,qi , ts,qi , t f ,qi

). Con-
sequently, parameters refer to their queries through their subscripts (e.g. hs,qi

is the source host of query qi). Therefore, the set of queries (Qϕ ∶= {q1, q2, . . . })
contain all queries occurred in the service-based system (ϕ) up to the present.
The query set enables the calculation of various derivative information used
by the different techniques and algorithms introduced later in this section.
In this subsection, the set of Qϕ is used to identify correlated package down-
loads from a given repository.

To allow determining correlations, I have identified the function used ∶ Rϕ ×

℘(contents(r)) → ℘(contents(r)). This function defines the first derivative
information of the query set used by the algorithms introduced later. This
function lists all the packages from package set (P ⊂ contents(r)) that were
downloaded from the repository by any user:

used(r, P) ∶= {∀p ∈ P ∶ (∃qi ∈ Qϕ ∶ (∃u ∈ Uϕ ∶ (hs,qi ∈ Uϕ ∧ preq,qi ∈ P)))} (6.1)

Next, I have defined Algorithm 6.2 to find the group of packages that
are downloaded from a given repository in a specific sequence by mul-
tiple users. In lines 1-8 of the Algorithm 6.2, all those correlated package
sets (corrgroup(GU, p, r, n) ⊂ D(p, n) – shortened as “CG” in the algorithm
description) are identified that include packages downloaded by multiple

6.2 active repository functionality 81

Algorithm 6.2 Algorithm to find package correlations
Require: r ∈ Rϕ

Require: Tcorr ∈ N

Require: p ∈ contents(r)
Ensure: correlated(p, r) ⊂ Pϕ

1: getters(p, r)← {∀u ∈ Uϕ ∶ (∃qi ∈ Qϕ ∶ (hs,qi ∈ Uϕ))}

2: getgroups(p, r)← {∀GU ∈ ℘(getters(p, r)) ∶ (∣GU∣ ≥ 2)}
3: tDL,o(p, r)←∞

4: correlated(p, r)← ∅

5: for n = 0 to PC(p) do
6: for all GU ∈ getgroups(p, r) do
7: corrgroup(GU, p, r, n)← {∀px ∈ used(r, D(p, n)) ∶

(∀u ∈ GU ∶ (∣ts(u, r, p)− ts(u, r, px)∣ < Tcorr))}

8: CG ← corrgroup(GU, p, r, n)
9: ps(GU, p, r, n)← px ∈ CG ∶ (∀py ∈ CG ∶

(∄u1, u2 ∈ GU ∶ (ts(u1, r, px) > ts(u2, r, py))))

10: pb(GU, p, r, n)← px ∈ CG ∶ (∀py ∈ CG ∶

(∄u1, u2 ∈ GU ∶ (t f (u1, r, px) < t f (u2, r, py))))

11: tDL(GU, p, r, n)← ∑
u∈GU

t f (r,pb(GU,p,r,n),u)−ts(r,ps(GU,p,r,n),u)
∣GU∣

12: end for
13: tDL,m(p, r, n)← min

GUx∈getgroups(p,r)
tDL(GUx, p, r, n)

14: if tDL,m(p, r, n) < tDL,o(p, r) then
15: tDL,o(p,r) ← tDL,m(p,r,n)
16: corrGU(p, r, n)← GU ∈ getgroups(p, r) ∶

(tDL(GU, p, r, n) = tDL,m(p, r, n))
17: correlated(p, r)← corrgroup(corrGU(p, r), p, r, n)
18: end if
19: end for

users (GU ⊂ Uϕ) in a particular sequence within a predefined time inter-
val (Tcorr ∈ N). The time interval Tcorr, in which the download sequences
are looked for, is set up by the repository administrator depending on the
average download speed of the typical user of its managed repository. In or-
der to simplify the algorithm description, I have assumed that the triplet of
(hs,qi , rreq,qi , preq,qi) uniquely identifies a single download. Therefore, I intro-

6.2 active repository functionality 82

Algorithm 6.3 The proposed merging algorithm
Require: r ∈ Rϕ

1: for all p ∈ used(r, contents(r)) do
2: CPR ← correlated(p, r)
3: if CPR ≠ ∅ then
4: pmerged ← ∑

px∈CPR
px

5: publishPackages(r, pmerged)

6: nodeps(p, r)← {∀px ∈ CPR ∶ (∄py ∈ CPR ∶ (px ∈ dep(py)))}

7: for all px ∈ Pϕ ∶ ((dep(px)∩ nodeps(p, r)) ≠ ∅) do
8: dep(px)← dep(px)∪ {pmerged}

9: end for
10: end if
11: end for

duced the ts ∶ ϕ × Rϕ × Pϕ → N and t f ∶ ϕ × Rϕ × Pϕ → N functions to specify
the download timings for the triplet:

ts(hs,qi , rreq,qi , preq,qi) ∶= ts,qi t f (hs,qi , rreq,qi , preq,qi) ∶= t f ,qi

Then in its second part, the Algorithm 6.2 calculates the average down-
load time interval (tDL ∈ N) for each correlated package set. The calcula-
tion is based on the package with the earliest download start time (ps ∈

corrgroup(GU, p, r, n)) and on the package with the latest download finish
time (pb ∈ corrgroup(GU, p, r, n)). Next, I define the final correlated package
set as correlated(p, r) that represents the correlated package set with the min-
imal download time (tDL,o) within all possible user and dependency sets for
a given package – p ∈ contents(r).

Finally, I define the package merging algorithm (see Algorithm 6.3) us-
ing the final correlated package sets. First, in line 4, the merging algorithm
employs the package composition rule (defined in Equation 3.11) on every
member of the final correlated package set (referred as correlated(p, r), or in
its short form “CPR”). Then after publishing the merged package (pmerged),
the algorithm updates the direct package dependencies of the delta pack-
ages (nodeps(p, r)) that were dependent on the correlated packages. For ex-
ample, in Figure 6.2 “Service1 delta” and “Service 1 JeOS delta” can be
merged if other – not shown – packages are not dependent on them.

The two last tasks of the merge operation enables the later evaluation of
the merging decision by the package destruction technique introduced in
Section 6.2.4.1. First, the merging algorithm does not destroy the individual
packages of the final correlated package set. Therefore, these packages are

6.2 active repository functionality 83

Identify
Replication

source

Identify
Replicable
packages

Identify
Target

Repository

Replicate

Identify
Replication

need

[no replication]

[need identified
 by repository]

[need identified
by third party]

[high user
demand]

[high repository
demand]

Figure 6.3: Basic steps of package replication

still available as individual downloads; as a result, they could became un-
used by the time the analysis for package destruction is executed. Second,
the merging algorithm marks the merged packages so they can be recognized
as automatically created packages by the package destruction technique in-
troduced later.

6.2.3 Package replication

This section introduces a technique that increases the availability of various
repository packages in multiple repositories before their download. The pro-
posed technique is based on the assumption that repository users download
from the repository that offers their required packages with the highest band-
width.

The proposed replication technique is executed in four phases (see Fig-
ure 6.3). First, it identifies the situations and repositories where there is room
for improvement for increased efficiency in user downloads. Second, it iden-
tifies those packages that cause these situations. Later, my technique determ-
ines the ideal repositories in which the identified packages should have been
located in order to avoid the non-efficient downloads. Finally, the proposed
technique arranges the replication of the packages to the desired repositories.
I am not discussing this last step because there are several already existing
solutions that tackle the problem of data replication [17, 36]. Therefore, the
following sub-sections detail the first three phases (marked with gray back-
ground in Figure 6.3).

6.2 active repository functionality 84

6.2.3.1 Identification of the replication need and source

In this section, I discuss a method to classify different repositories based on
their suitability to become replication sources. Therefore, first, I define rep-
lication sources as those repositories that are storing the least-efficient set
of packages. The inefficiency of the repository content storage is identified
through three cases: (i) when a repository is frequently queried for non-stored
content, (ii) when a repository receives frequent third party queries to down-
load parts of the stored appliances and by doing so it degrades its through-
put for other queries, (iii) when there are external dependencies causing laten-
cies for rebuilding virtual appliances.

non-stored content. If a locally available repository package is de-
pendent on an externally available (i.e. non-stored) one, then its local re-
building requires the download of the external package. The repository mon-
itors the external package queries. Then it calculates the inefficiency for non-
stored content (iensc ∶ Rϕ → R) as the percentage of the external package
queries (QEx ∶ Rϕ → ℘(Qϕ)) from all downloads (QAll ∶ Rϕ → ℘(Qϕ)) in a
given repository:

QAll(r) ∶= {∀qi ∈ Qϕ ∶ (rreq,qi = r)}
QEx(r) ∶= {∀qi ∈ Qϕ ∶ (hs,qi = r)}

iensc(r) ∶=
∣QEx(r)∣
∣QAll(r)∣

(6.2)

frequent third party queries . Repositories (r1) log the source of the
query for each download. If the query source is another repository (r2), then
I assume replicating the requested package could optimize the contents of
the repositories in the service-based system. I defined the queries between
two repositories with the function Qamg ∶ R2

ϕ → ℘(Qϕ). If a specific repository
frequently queries packages from another one then this is a sign for ineffi-
cient package distribution. As a result, the sample standard deviation of the
Qamg sets can be used to identify if there are repositories that are frequently
requesting specific content (ie f r ∶ Rϕ →R).

Qamg(r1, r2) ∶= {∀qi ∈ (QAll(r1)⋂QEx(r2))} (6.3)

ie f r(r) ∶=
¿
ÁÁÀ 1
∣Rϕ∣− 1

∑
rx∈Rϕ

(∣Qamg(r, rx)∣−
1
∣Rϕ∣

∑
ry∈Rϕ

∣Qamg(r, ry)∣)
2

external dependencies . I have defined dependency groups (DG ∶

Pϕ → ℘(Pϕ)) using all packages with a common ancestor (p):

DG(p) ∶= {∀px ∈ Pϕ ∶ (p ∈ dep(px)∨ p ∈ DG(px))} (6.4)

6.2 active repository functionality 85

As a result, a dependency group can be defined for each package. Con-
sequently, self-contained packages form a dependency group with all the
service packages dependent on them, while, service packages form empty
dependency groups. Active repositories use dependency groups to estimate
the completeness of each virtual appliance accessible from the repository.
Therefore, in each dependency group, repositories look for the external ref-
erences – ext ∶ ℘(Pϕ)× Rϕ → ℘(Pϕ):

ext(P, r) ∶= {∀p ∈ P ∶ (p ∉ contents(r))} (6.5)

The factor of inefficiency for external dependencies (ieed ∶ Pϕ → R) is ex-
pressed by the number of external references (∣ext(DG(p), r)∣) within the
different dependency groups:

ieed(r) ∶=
1

∣contents(r)∣ ∑
p∈contents(r)

∣ext(DG(p), r))∣
∣DG(p)∣

(6.6)

Finally, based on all the previously defined inefficiency values, each re-
pository is assigned with a combined inefficiency value (IE ∶ Rϕ → R) that
incorporates all the previously measured inefficiency values:

IE(r) ∶= iensc(r) ⋅ ie f r(r) ⋅ ieed(r) (6.7)

The replication need can be identified by (i) third parties (e.g. the AVS) and
by (ii) the repositories themselves. In case of the AVS, the service investigates
the global state of the repositories by evaluating the inefficiency value for all
repositories. Then it calculates the sample standard deviation sN(IE(r)) of
the value set O by assuming its uniform distribution. If sN(IE(r)) exceeds a
predefined threshold, the AVS initiates the replication process on the repos-
itory with the highest inefficiency value. Later, I will refer to this repository
as the source repository (rs):

rs ∶= r ∈ Rϕ ∶ (IE(r) = max
rx∈Rϕ

IE(r)) (6.8)

As part of the active repository functionality, the repositories themselves
initiate the replication process locally (they can become source repositories –
rs). I propose that they maintain a historical database for their inefficiency
values. Using this database the repository can evaluate the possible trends
of its inefficiency values. If the repository identifies a specific trend, then
they predict their future inefficiency values based on the identified trend.
Next repositories use the predicted values to recognize the replication need
if the inefficiency values reach a threshold specified by the repository admin-
istrator. In order to avoid the frequent rearrangement of repositories, changes
on the repository content result in the reset of the historical inefficiency value
database.

6.2 active repository functionality 86

6.2.3.2 Locating the replicable packages

After the replication source repository has been selected, the system pro-
ceeds with the selection of the packages causing the inefficiency in the source
repository. Unevenly downloaded packages are the main causes for ineffi-
ciency, therefore, the proposed technique measures the download frequency
for each requested package. Then it estimates the required bandwidth (BWP ∶

Pϕ × Rϕ → R) for each package, and uses this bandwidth information as the
base measure to differentiate the optimality of a given package:

Qpac(p, r) ∶= {∀qi ∈ Qϕ ∶ ((preq,qi = p)∧ (rreq,qi = r))}

BWP(p, r) =
size(p) ⋅ ∣Qpac(p, r)∣

max
qi∈Qpac(p,r)

t f ,qi
− min

qj∈Qpac(p,r)
ts,qi

(6.9)

Where Qpac ∶ Pϕ × Rϕ → ℘(Qϕ) defines the set of queries for a given package
downloaded from a specific repository.

I propose to maintain a historical database of these bandwidth estimations
for the packages of the repository. This database allows the detection of de-
mand growth on a specific package by calculating the approximated gradi-
ent of the bandwidth estimation function. The replication should start on a
package with steep increase on its demand. The list of proposed packages is
established by sorting the current gradient values and selecting the package
with maximal value (pc ∶ Rϕ → Pϕ):

pc(r) ∶= p ∈ contents(r) ∶ (
∆BWP(p, r)

∆t
= max

px∈contents(r)
∆BWP(p, r)

∆t
) (6.10)

6.2.3.3 Determining the target repositories

Then, in its last detailed phase, the package replication technique (see Fig-
ure 6.3) collects the request sources for all proposed packages. The request
source is either another repository (Rrs ∈ Rϕ) or a user (u ∈ Uϕ) accessing
the repository with an IaaS system. In order to equally handle repository
and user requests, I propose to transform the user requests to equivalent
candidate repositories. The candidate repository selection attempts to locate
repositories that are more suitable for users downloading a specific package.
Suitability is based on the behavior of current replica location algorithms
(e.g. [64]) that choose repositories offering the user requested packages with
higher bandwidth and lower latency than the source repository.

In order to estimate the available bandwidth and latency between the dif-
ferent repositories and the users, each repository measures and stores the
network latency and bandwidth towards their query sources (hs,qi). There-
fore, active repositories approximate the location of the users and the remote

6.2 active repository functionality 87

repositories by the network latency between the replication source reposit-
ory (rs) and the remote hosts: l(rs, hs,qi).

The collected network latency values are used to group (called latency
groups – latgroup ∶ R × Pϕ × R2

ϕ → ℘(Uϕ)) the different users and repositor-
ies based on their latency differences. For each repository a latency group is
formed by the user hosts with small latency differences to the given reposit-
ory:

latgroup(ε, r, rs) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∅ if pc(rs) ∈ contents(r)

∀u ∈ Uϕ ∶ (l(rs, r)− l(rs, u) < ε) otherwise
(6.11)

Later, the size of the latency groups is used to propose candidate repositories,
therefore, the selection of ε is crucial. In order to provide the best selection
ε is automatically selected so it produces the highest sample standard devi-
ation for the cardinalities of the different latency groups:

ε ∶= k ∈ R ∶ (sN(∣latgroup(k, r, rs)∣) = max
kx∈R

sN(∣latgroup(kx, ri, rs)∣)) (6.12)

The proposed technique determines the replication candidate repository
by selecting the repository with the largest latency group:

rc ∶= r ∈ Rϕ ∶ (∣latgroup(ε, r, rs)∣ = max
rx∈Rϕ

∣latgroup(ε, rx, rs)∣) (6.13)

After the candidate repository is selected, it is added to the set of the
request source repositories (rc ∈ Rrs). Next, in order to estimate the effect
of the replication, the system calculates the required bandwidth for each
request source repository (BWR ∶ Rrs →R):

Qlatg ∶= {∀qi ∈ Qϕ ∶ ((hs,qi ∈ latgroup(ε, rc, rs))

∧ (rreq,qi = rc)∧ (preq,qi = pc(rs)))}

BWR(p, r) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

size(p)∣Qlatg∣

max
qi∈Qlatg

t f ,qi
− min

qi∈Qlatg
ts,qi

if r = rc

BWP(p, r) otherwise

(6.14)

Where Qlatg denotes the set of queries initiated by the users in the latency
group of rc.

Based on the calculated bandwidth requirements the target repository is
defined as follows:

rt = r ∈ Rrs ∶ (BWR(pc(rs), r) = max
rx∈Rrs

BWR(pc(rs), rx)) (6.15)

Finally, all required information is available for the replication task, so the
system orders the replication of the package pc(rs) from the repository rs to
the repository rt.

6.2 active repository functionality 88

6.2.4 Package destruction

The proposed package destruction technique is the garbage collector of the
active repository functionality. Package destruction frees up the repository
storage of unused but automatically created packages. The active repository
administrator can predefine a time interval (TU) on which the unused cri-
terion is defined. Using this constant, I have defined packages as unused
(pU) if they were not downloaded at all within the TU interval:

unused(r) ∶= {∀p ∈ contents(r) ∶ (6.16)

(∄qi ∈ Qϕ ∶ ((preqqi
= p)∧ (ts,qi < NOW − TU)))}

Where NOW specifies the current timestamp in the system. Small TU val-
ues (e.g., within a day) will result almost immediate disk cleanup in the
repositories but will demand more bandwidth if the repository has to host
the removed package again soon after deletion. Larger values will allow re-
positories to handle their disk space more gently thus the repository admin-
istrator have to decide the ideal TU value depending on the available band-
width and disk space for the repository. Throughout my experiments I have
used 2 weeks for the value of TU.

6.2.4.1 Causes of unused packages

Before proceeding with the package removal, I have investigated the possible
causes of unused repository packages created by the active repository func-
tionality. As proposed before, there are three automated ways for creating
new packages in the repositories (see Figure 6.4): by decomposing a virtual
appliance, by merging two packages, by replicating a package of an external
repository. Any of these methods could falsely create a package that later on
only consumes the storage space of the repository. During the investigation,
I have identified the following five causes for unused packages:

1. Successful decomposition might lead to diminishing demand for the de-
composed virtual appliance packages (see pnew ∈ r1 in Figure 6.4). The de-
mand decreases when virtual appliance rebuilding uses some of the
decomposed packages from third party sources. In particular cases, the
rebuilding algorithm does not choose the package containing the entire
original appliance. Consequently, these situations render the original VA
unused. Rebuilding decisions are further detailed in Section 6.3.

2. After the decomposition algorithm is applied, it splits two virtual ap-
pliances into three pieces (see Section 6.2.1 for details). If a decomposed

6.2 active repository functionality 89

Legend

p pUsed package Unused package

Operation

r1

pΔ,new

pnew

pcommon

Decompose

r2

poldpnew

pΔ,oldpΔ,new pcommon

Decompose

r3

pΔ,1 pΔ,2

pΔ,merged

Merge

r4

pΔ,1 pΔ,2

pΔ,merged

Merge

r5

p1

r6

p1

R
eplicate

Figure 6.4: Identifying unused packages

virtual appliance attracts less demand (see p∆,old ∈ r2 in Figure 6.4) then the
other appliance might be undesirably decomposed (see p∆,new, pcommon ∈

r2). As a result, the three packages created during the decomposition
become unused.

3. If the merging algorithm (see Section 6.2.2) successfully identifies cor-
relations then it creates merged packages. After creating the merged
package, the correlated packages (see correlated(p∆,1, r3) = {p∆,1, p∆,2}

in Figure 6.4) still remain in the system to allow their individual access.
However, in some situations there is no demand on the individual packages,
making them unused.

4. In contrary to the previous case, merged packages lose their demand when
the appliance rebuilding algorithm starts to choose an external repos-
itory for an element in the correlated package set (e.g. p∆,2 ∈ r4 in Fig-
ure 6.4). The merged package (p∆,merged ∈ r4) becomes unused when the
external selection becomes a usual practice for rebuilding.

5. Finally, replicated packages (see p1 ∈ r6 in Figure 6.4) are created based
on past experience. If the demand patterns change soon after the replication
took place then the local copy of the package (p1 ∈ r5) can easily become
unused.

6.2 active repository functionality 90

Check creator of
unused package

[Merge]

[Decomposition]

[Replication]

Successful
merge?

[no]

[yes]

Mark merged
package

Remove marked

[Downloads only for the
 decomposed]

[One of the participating
VAs is not

downloaded anymore]

Mark original VA

Original VA
removed?

Mark all
decomposed

[no]

[yes]

Mark replicated

Mark members
of correlated(p,r)

Remerge
decomposed

Figure 6.5: Activity diagram of the first phase of package destruction

6.2.4.2 Two phased destruction

Packages are removed from the repository in two phases: first, the system
removes appliance contents only (see Figure 4.5), and then it removes all package
metadata including the package definition. Appliance contents removal starts
with the marking of removable packages.

The system starts the first phase of destruction by marking the identified
unused packages (pU) based on their cause. The proposed technique directly
proceeds with the removal if the cause of the unused package is the original
virtual appliance (cause 1 in Section 6.2.4.1 – “Mark original VA” step in
Figure 6.5), merging (cause 3-4 – “Mark members of correlated(p, r)” and
“Mark merged package” steps in Figure 6.5) or replication (cause 5 – “Mark
replicated” step in Figure 6.5).

If a decomposed virtual appliance attracts less demand (cause 2) then, depend-
ing on the availability of the original virtual appliances, the repository be-
haves differently. If the original appliances are not available, then the reposit-
ory reconstructs them by merging all the necessary (“decomposed”) repository
packages. Reconstruction brings the repository to the same state as if the ori-
ginal appliances would have been existed in parallel with the decomposed
packages. The system marks the decomposed packages for removal after the ori-
ginal virtual appliances are available in the repository.

After the marking step, the appliance contents removal phase finishes with
the removal action itself. The system removes the marked appliance contents, and
places an expiration marker (tExp(p)) in the package specific metadata of the
package. The technique leaves all other metadata intact in order to allow their
later reuse. If the system identifies that a previous merging or decomposition

6.3 virtual appliance rebuilding 91

decision should be taken again, then it is able to reuse the already specified
packages. Therefore, their appliance contents are added again according to
the metadata description. Hence, the system can save the often expensive
metadata creation operations.

The second metadata removal phase is executed independently from the
first phase. The system periodically (weekly in the current implementation)
checks for packages (pWoC) without appliance contents. The package defini-
tions and all related metadata are destroyed when the actual time has past
the expiration marker tExp(pWoC).

6.3 virtual appliance rebuilding

After applying the decomposition algorithm introduced in Section 6.2.1, vir-
tual appliances are stored in multiple repository packages. The individual
decomposed parts of a virtual appliance are not suitable for initiating a vir-
tual machine. E.g. if the JeOS was separated from the service package (sim-
ilarly to “split 1” in Figure 6.2) then the former could be used to initiate a
virtual machine but without the target functionality for the users, even more,
the service package cannot even function without the JeOS.

This section discusses the algorithm that rebuilds the original appliance
before deployment if the appliance is offered as multiple packages. When
a delta package is requested (preq,qi ∈ contents(rreq,qi)) in a query (qi ∈ Qϕ)
from repository rreq,qi , then the rebuilding algorithm collects all packages
the requested package depends on. As a result, when a service package is
requested, its deployment will be preceded by the rebuilding of the entire
virtual appliance from the collected packages.

6.3.1 Rebuilding scenarios and algorithm

Similarly to the transformation algorithm introduced in Section 4.3, the pro-
posed rebuilding algorithm can also be embedded in three different parties
of the service-based system: (a) in the active repository, (b) in the IaaS system
and (c) in the deployment client. All three embedding situations are presented
in Figure 6.6. The components that incorporate the rebuilding functionality
are emphasized in the figure with an asterisk.

The differences between the embedding situations are highlighted with a
rebuilding scenario, where the deployment client requests a service deploy-
ment on the specific IaaS system. The specifics of the different rebuilding
scenarios are discussed in the following paragraphs. The scenarios are based
on the following four basic assumptions: (i) the selection task of the deploy-
ment has already completed, (ii) the IaaS system has the highest bandwidth

6.3 virtual appliance rebuilding 92

IaaS
VA

r1*
r2*

rM*

Deploy
Client

p1

p2

pN

VA

1

2

3 3

3

4

(a) Active Repository

r1 r2 rM

IaaS*
Deploy
Client

p1 p2 pN

VA1

2

2
2

(b) IaaS

r1 r2
rM

IaaSDeploy
Client*

p1 p2

pN

VA

3

4

1 1 1

2

VA

VA

(c) Deployment Client

Figure 6.6: Options on embedding the rebuilding algorithm

connection towards r2, (iii) at the beginning of the scenario the virtual ap-
pliance is not available in a self-contained package, and finally, (iv) only the
component that embeds the rebuilding algorithm changes (see the starred
components in Figure 6.6). The rebuilding algorithms introduced later are
general and they are not built on these assumptions.

In case of active repositories, the IaaS receives the deployment request with
the service package’s identifier (see step 1 in Figure 6.6a). Therefore, the
IaaS system only requests the service package before deployment (see step
2). However, the active repository does not allow the direct download of
the service package. Instead, the repository collects the required packages
to rebuild the virtual appliance of the service (see step 3). Finally, when the
rebuilding has completed, the repository offers the rebuilt virtual appliance
for download instead of the requested service package (see step 4).

If the IaaS system embeds the rebuilding algorithm, then it still receives
the deployment request with the service package’s identifier (see step 1 in
Figure 6.6b). However, contrary to the previous solution, the IaaS directly

6.3 virtual appliance rebuilding 93

collects all the dependencies of the service package and rebuilds its virtual
appliance on the executor site (see step 2).

Finally, the deployment client could also embed the rebuilding algorithm.
The client proceeds with the deployment with an entirely different approach.
In step 1 (see Figure 6.6c), it downloads all required packages to its host
to rebuild them. Then, in step 2, it publishes the rebuilt appliance in the
repository with the highest bandwidth connection towards the target IaaS
system. Afterwards, it requests the deployment of the service in step 3 by
requesting the IaaS to initiate a VM with the rebuilt appliance. Finally, in
step 4 the IaaS system downloads the rebuilt VA and deploys the service.

Even though the deployment client requires no modifications on the IaaS
systems or on the repositories, the overhead of several extra transfers would
make the rebuilding algorithm ineffective (assuming the client has low band-
width connections). Therefore, later sections only discuss the first two em-
bedding situations. Ideally, the IaaS systems should embed the rebuilding
algorithm. However, they are usually commercially controlled, therefore, the
introduction of active repositories is the most feasible extension on the cur-
rent systems. Preferably, both IaaS systems and active repositories embed the
rebuilding algorithm, and the system would choose between the rebuilding
location based on package availability and network context.

6.3.1.1 Basic rebuilding algorithm

Figure 6.7 presents the overview of the proposed rebuilding algorithm. The
figure follows the installation deployment task (see Section 1.1) from the
request until the requested virtual appliance is ready for instantiation. The
presented algorithm is applicable in all service-based systems indifferently
from the entity that embeds the rebuilding algorithm. Therefore, an unmodi-
fied IaaS system could participate in the execution of the algorithm, because
the algorithm utilizes the behavior of the IaaS systems – they request the
packages to be deployed from an active repository that embeds the rebuild-
ing algorithm.

The algorithm is composed of five stages: (i) rebuilding location selection,
(ii) identification of the possible construction paths, (iii) selection of the
ideal construction path, (iv) download of the required packages and (v) re-
construction of the virtual appliance.

During the rebuilding location selection (including actions marked with gray
boxes in Figure 6.7), the algorithm decides between the IaaS system based
rebuilding and the Active repository based one. If both the IaaS system and
the active repository embed the rebuilding algorithm, then the system evalu-
ates whether the IaaS system or an active repository has the higher bandwidth
connections to transfer all required packages. If an external repository can

6.3 virtual appliance rebuilding 94

Actions of RepositoryActions of IaaS

[yes]

[no]

[no]

IaaS receives deploy
request - preq,qi

Repository embeds
rebuilding?

Higher bandwidth
connections?

IaaS embeds
rebuilding?

Determine construction
paths (Θ(preq,qi

))

Evalute all
Ttotreb(D(preq,qi

,n))

Download from optimal
repositories

Reconstruct VA

Request rebuilding
from repository rreq,qi

Determine construction
paths (Θ(preq,qi

))

Evalute all
Ttotreb(D(preq,qi

,n),rreq,qi
)

Download external
packages

Reconstruct VA

[no] [yes]

[yes]
ariaas

Figure 6.7: Rebuilding algorithm utilizing both IaaS systems and active repositories

rebuild the virtual appliance and deliver it to the executor site faster than
the IaaS system would, then the system rebuilds the appliance in the reposit-
ory. In every other case, the system rebuilds the appliance locally in the IaaS
system.

Construction paths are identified by populating the set of Θ(preq,qi). The
system calculates the possible dependency sets (D(preq,qi , n) ∈ Θ(preq,qi)) ac-
cording to Equation 3.9. Each dependency set is equivalent to a construction
path taking into consideration the dependencies among the packages in the
set. Virtual appliance construction paths depict the reconstruction order of
the original appliances, therefore, it is in reverse order of the dependencies
starting from the self-contained package (pΩ ∈ D(preq,qi , n)) of the set and
finishing with the service package (preq,qi).

The core functionality of a rebuilding algorithm is the selection of the ideal
construction path. The system computes rebuilding time estimates for each
dependency set (∀n < PC(preq,qi) ∶ D(preq,qi , n) – shown with dashed boxes
in Figure 6.7). These calculations are dependent on the location of embed-
ding and are discussed in Sections 6.3.2 and 6.3.3. Afterwards, the selection
of the ideal construction path, the download of the required packages and
the reconstruction of the appliance are all independent from the location of
rebuilding, therefore they are discussed separately in Section 6.3.4.

6.3 virtual appliance rebuilding 95

preq,qi
p1 p3 pN...p2

Legend

p pLocally available
package External package

Dependency

D(preq,qi
,n)

ext(D(preq,qi
,n),rreq,qi

)

Figure 6.8: Package availability in a specific repository

6.3.2 Rebuilding in active repositories

The first discussed rebuilding technique utilizes the replication and mer-
ging functionalities of active repositories. The repositories incorporating the
rebuilding algorithm always deliver self-contained packages. As a result,
when a delta package (preq,qi ∈ contents(rreq,qi)) is requested then the repos-
itory (rreq,qi ∈ Rϕ) resolves its dependencies and automatically creates a self-
contained package including the delta package and its dependencies. How-
ever, to spare storage space the repository does not publish this newly cre-
ated self-contained package automatically. The merging algorithm (detailed
in Section 6.2.2) manages the publication of these self-contained packages.

The algorithm attempts to use the locally available packages first. In order
to determine the local packages usable during rebuilding, the algorithm dis-
tinguishes all external dependencies (ext(D(preq,qi , n), rreq,qi)) of the reques-
ted delta package (for the definition of the dependency sets, see Equation
3.9). Figure 6.8 depicts the members of an example external dependency
set (ext(D(preq,qi , n), rreq,qi) ⊂ D(preq,qi , n)) with gray boxes. As seen in Fig-
ure 6.8, external dependencies (p1 and p3) could be scattered in the depend-
ency set of the requested package. Therefore, the rebuilding algorithm de-
cides between downloading the individual dependencies and reconstructing the
entire self-contained package locally or requesting the external dependencies
from other active repositories allowing their external rebuilding.

When the rebuilding technique reaches an external dependency (pext ∈

ext(D(preq,qi , n), rreq,qi)) the algorithm estimates the cost of rebuilding loc-
ally (toplor ∶ Pϕ × Rϕ → R) – the optimal local rebuilding time) and extern-
ally (topexr ∶ Pϕ × Rϕ → R – the optimal external rebuilding time). Based on
the values of toplor and topexr, the system selects the least expensive rebuild-

6.3 virtual appliance rebuilding 96

Availability info Collected for the following

size(p) ∀p ∈ D(preq,qi , n)
BW(r, rreq,qi) ∀r ∈ Rϕ ∶ ((ext(D(preq,qi , n), rreq,qi)∩ contents(r)) ≠ ∅)

l(r, rreq,qi) ∀r ∈ Rϕ ∶ ((ext(D(preq,qi , n), rreq,qi)∩ contents(r)) ≠ ∅)

Table 6.1: Collected availability information

ing location (rler ∶ Pϕ × Rϕ → R) for the external dependency and the rest of
the dependency set – ∃m < PC(pext) ∶ (D(pext, m) ⊂ D(preq,qi , n)):

rler(pext, rreq,qi) ∶=
⎧⎪⎪⎨⎪⎪⎩

rreq,qi if toplor(pext, rreq,qi) < topexr(pext, rreq,qi)
rext(pext, rreq,qi) otherwise

(6.17)

The following section discusses the two ways of rebuilding time estima-
tion and also identifies the repository (rext – see Equation 6.22) used for the
external rebuilding of the rest of the dependencies.

6.3.2.1 Estimating rebuilding time

Estimating the rebuilding cost requires the repositories to collect the avail-
ability information (see Table 6.1) on all packages in the used dependency
set (p ∈ D(preq,qi , n) ∶ n < PC(preq,qi)). Figure 6.9 presents the availability in-
formation collected for several example repositories, their connections and
the packages stored in them (the dependencies of the packages are shown in
Figure 6.8). In the current system, the cost is approximated by the estimated
time required for rebuilding. In general, rebuilding time (treb ∶ Pϕ × Rϕ × ϕ →

R) has two basic components, the transfer time – ttrans ∶ Pϕ × Rϕ × ϕ → R – of
the package to the location of rebuilding and the time – tcomp ∶ Pϕ × ϕ → R –
required to apply the package composition rule on the transferred package
and its dependencies.

ttrans(p, r, h) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

l(r, h)+ size({p})/BW(r, h) if r ≠ h

0 otherwise

tcomp(p, h) ∶= size({p})/BW(h, h)
treb(p, r, h) ∶= ttrans(p, r, h)+ tcomp(p, h) (6.18)

Where ttrans(p, r, h) specifies the transfer time of package p from repository
r to the rebuilding host h. In case the package under rebuilding is available
locally then the transfer time is ignored. Next, tcomp(p, h) defines the com-
position time of package p in the rebuilding host h. For the estimation of

6.3 virtual appliance rebuilding 97

l:40ms
 BW:20MB/s

l:7
0m

s
BW

:5
0M

B/
s

l:25ms
BW:100MB/s

l:210ms

BW:5.5MB/s

l:5ms
BW: 20MB/s

l:10ms

BW:10MB/s
r2

BW(r,r):120MB/s

p2preq,qi

r1
BW(r,r):60MB/s

p2

p3 pN

preq,qi

rM
BW(r,r):30MB/s

p1

p3 pN

preq,qi

rreq,qi

BW(r,r):50MB/s
p2

pN

preq,qi

Package size(p)
preq,qi 5MB

p1 12MB
p2 230MB
p3 70MB
pN 25MB

Figure 6.9: Example repository layout with availability information and stored pack-
ages

the composition time, the local storage bandwidth of the rebuilding host –
BW(h, h) – is used to represent the speed of the rebuilding host while it ap-
plies the composition rule on a delta package and a self-contained package
using the package composition rule (see Equation 3.11).

local rebuilding . Based on the previously defined rebuilding time val-
ues, the system calculates the optimal rebuilding time (topreb ∶ Pϕ × Rϕ → R)
for a single package:

topreb(p, rreq) ∶= min
r∈Rϕ∶(p∈contents(r))

treb(p, r, rreq) (6.19)

Where the equation presents the optimal rebuilding time of package p in the
repository rreq.

Then the system aggregates the optimal rebuilding times for the remaining
dependencies in order to estimate the total local optimal rebuilding time – toplor ∶

Pϕ × Rϕ →R:

toplor(p, r) ∶=
∃n<PC(p)∶(px∈D(p,n))

∑
px∈Pϕ

topreb(px, r) (6.20)

6.3 virtual appliance rebuilding 98

p1 p2treb(ms) pNp3preq,qi
- 4600rreq,qi 500-100
- -r1 -14103-
- -r2 ---

1004 -rM -5873-

p1 p2treb(ms) pNp3preq,qi
- 16140rreq,qi --100
- 6158r1 ---
- 24926r2 ---

400 -rM 8332333-

tlor=11977ms

topexr=26574ms

rler=rreq,qi

Table 6.2: Evaluation of the rebuilding options for p1

external rebuilding . For each external package (pext) the system eval-
uates the external rebuilding time as follows:

texr(pext, r, rreq) ∶= l(r, rreq)+
∃n<PC(pext)∶(px∈D(pext,n))

∑
p∈Pϕ

(size({p})
BW(r, rreq)

+ topreb(p, r))

topexr(pext, rreq) ∶= min
r∈Rϕ ∶(pext∈contents(r))

texr(pext, r, rreq) (6.21)

External rebuilding requires pext to be reconstructed in a remote repository,
therefore, the rebuilt package has to be transferred to the repository of the
user request. Consequently, texr is calculated in two parts: (i) the download
time estimation of the rebuilt package (the bandwidth dependent part –
BW), and (ii) the rebuilding time of the package at the remote repository –
topreb(p, r). Similarly to topreb, topexr specifies the optimal rebuilding time for
an external package if it is rebuilt entirely in the external repository (rext).

The system offers the most suitable repository for external rebuilding (rext ∶

Pϕ × Rϕ → Rϕ) as:

rext(pext, rreq) ∶= r ∈ Rϕ ∶ (texr(pext, r, rreq) = topexr(pext, rreq)) (6.22)

Table 6.2 offers the example evaluation of the toplor(p1) and topexr(p1) val-
ues based on the availability information discussed in Figure 6.9. The bold
arrows in Table 6.2 represent the decisions made between the different re-
positories before the reconstruction of p1. The remaining arrows represent
the decisions made before the algorithm was processing p1. Therefore, the
algorithm in the example arrives to the conclusion that the least expensive
rebuilding location for p1 is the repository that received the query (rreq,qi).

6.3 virtual appliance rebuilding 99

Finally, the total rebuilding time for the requested package is calculated
with the following formulae (Tar

totreb ∶ Pϕ ×N× Rϕ →R):

Tar
totreb(p, n, r) ∶= min

px∈ext(D(p,n),r)
(topexr(px, r)+ ∑

ploc∈(D(p,n)/DG(px))
treb(ploc, r, r)) (6.23)

As a result, the system calculates the total rebuilding time based on the ex-
ternal packages. For each external package, the system calculates its external
rebuilding time and the time required to apply the composition rule with
the locally available packages.

6.3.3 Rebuilding in the IaaS system

This rebuilding algorithm constructs the original virtual appliance on the ex-
ecution site (ξ ∈ Ξϕ(c) and c ∈ Cϕ) using a self-contained package and several
delta packages according to the dependency set of the requested package
in the deployment query (D(preq,qi , n)). All packages are downloaded from
the various remote repositories directly to the executor site, where they are
reconstructed. The IaaS system collects the list of repositories offering all de-
pendent packages (p ∈ D(preq,qi , n)), and determines their accessibility (their
latency – l(r, ξ) – and bandwidth – BW(r, ξ)). The accessibility information
is collected prior the application of the rebuilding algorithm. The IaaS only
initiates the virtual machine to host the virtual appliance after all packages
in the dependency set are downloaded and the appliance is rebuilt on the
execution site.

During the repository selection phase, the proposed IaaS based rebuilding
algorithm first identifies all required packages and the repositories offering
them (Rdep(p, n) ∶= {∀r ∈ Rϕ ∶ (D(p, n) ∩ contents(r) ≠ ∅)}). The algorithm
identifies the repository offering the package with maximum bandwidth by
estimating the rebuilding time (treb(p, r, ξ)) on the execution site for each
package (p ∈ D(preq,qi , n)) in the dependency set of preq,qi . As a result, the
proposed technique computes the optimal download time for each pack-
age (toir ∶ Pϕ × ϕ →R) as:

toir(p, ξ) ∶= min
r∈Rϕ

treb(p, r, ξ) (6.24)

Using the values of toir(p, ξ) function the algorithm calculates the total
rebuilding time in the IaaS system with the following method (Tiaas

totreb ∶ Pϕ ×

N× Rϕ →R):

Tiaas
totreb(p, n, ξ) ∶= ∑

px∈D(p,n)
toir(p, ξ) (6.25)

6.3 virtual appliance rebuilding 100

Rebuilding Algorithm
Service1's original

VA

(Base+common(1&2)+JeOS
+service delta)

Service1 deltaService 1
JeOS delta

Base Virtual
Appliance

Service 1&2
common

delta

Service 1&2 common
Virtual Appliance

Service 1 and
JeOS delta

Executable Virtual ApplianceExample Merge 1

Example Merge 2

M
ul

tip
le

 re
po

si
to

ry
 p

ac
ka

ge
s

Legend: Construction paths

#4
#1 #3
#2

Figure 6.10: Virtual appliance rebuilding options

6.3.4 Reconstructing the virtual appliance

Figure 6.10 reveals that after several merge operations the repositories could
contain the following packages: (i) packages representing the optimal de-
composition (shown in Figure 6.2), (ii) packages resulted from previous
merge operations (“example merge 1-2”) and (iii) the original virtual ap-
pliance itself. Based on these packages and their dependencies (represented
as arrows in Figure 6.10) repository selection algorithms should evaluate
their selection procedures on all possible construction paths (the different
dependency sets – D(preq, n) ∈ Θ(preq) – of a specific package) starting from
the decomposed packages and finishing at the rebuilt virtual appliance. Fi-
nally, because of package merging and destruction, there are several ways to
construct a decomposed virtual appliance, therefore, the selection algorithm
chooses the construction path (Dcon ∶ Pϕ × ϕ → Θ(preq)) with the lowest cumu-
lative rebuilding cost.

Dcon(preq, hreb) ∶= D(preq, n) ∈ Θ(preq) ∶ (∀n, m < PC(preq) ∶ (6.26)

(Ttotreb(p, n, hreb) ≤ Ttotreb(p, m, hreb)))

The system uses the Ttotreb function according to the rebuilding location
(e.g. in case of the IaaS system based rebuilding the function Tiaas

totreb is used).
During the evaluation of Ttotreb, the host of the rebuilding is depicted with
hreb ∈ ϕ.

After the algorithm selects the ideal reconstruction path, it executes the
reconstruction in two steps. First, it downloads the packages that are not

6.3 virtual appliance rebuilding 101

present at the location of rebuilding. In case of repositories, only packages in
the ext(D(preq, n), rreq) and their dependencies are considered for download-
ing (see Section 6.3.2 for details). However, if the rebuilding is applied by the
IaaS system then all packages in the dependency set are downloaded.

6.3.4.1 Reconstruction of the ideal reconstruction path

The last phase of rebuilding is the reconstruction of the virtual appliance
based on all the packages in the dependency set (Dcon). The proposed offline
reconstruction strategy downloads and constructs the original virtual appli-
ance prior it is used for initiating a virtual machine. The strategy creates
a disk image with the service’s base virtual appliance (see Section 3.3.1 on
page 35) and adds the contents of the delta packages to the image. Then the
metadata of the original virtual appliance is attached to the disk image in
order to allow its local deployment.

Delta packages could be added to the base virtual appliance’s disk image
on two levels. If the delta packages are stored as extensions of the disk image
in the base virtual appliance then the system could apply low-level addition
procedures where the base virtual appliance’s disk image is extended with
the contents of the delta package. Therefore, the system does not need to
understand the file system of the base virtual appliance. However, the pre-
paration of these kinds of base and delta packages would require special
decomposition algorithms that are not discussed in this thesis.

Therefore, the current system applies a high level addition procedure that
mounts the base package’s file system on the rebuilding machine’s host, then
copies the files coming from the delta packages. This way the format of the
delta packages is different from the format of the base packages, since the
base packages contain a virtual appliance with a disk image. In contrast, the
delta packages are simple file archives (e.g. zips).

chapter summary. This chapter argued about the need for active repos-
itories that are special repositories behaving and controlling their contents
autonomously. I defined the autonomous behavior through the introduction
of package decomposition, merging, destruction and replication. However,
as a result of the autonomous behavior, appliances are no longer available
in self-contained packages. The chapter has concluded by proposing an ap-
pliance rebuilding technique that ensures appliances are always received by
the deployment host in a self-contained package.

7
T H E M I N I M A L M A N A G E A B L E V I RT U A L A P P L I A N C E

chapter overview. This chapter focuses on the discussion of my fourth
contribution. The chapter finds that the possible modification of virtual ma-
chine contents after deployment is an essential for efficient virtual appliance
delivery and size optimization. Thus first it proposes a new concept (the min-
imal manageable virtual appliance – MMVA) that offers runtime appliance
content modification options for the appliances embedding the MMVA. Then
the chapter finishes with the discussion of how these new kind of appliances
can be more efficiently rebuilt, transformed and how MMVAs streamline the
appliance optimization technique introduced in Chapter 5.

7.1 introduction

For the last contribution (see Section 1.3.4) of this dissertation I have identi-
fied two challenges that were not targeted previously: (i) enable more wide
spread adaptation of the proposed techniques by reducing the invasiveness
of the AVS service on the already existing infrastructure and (ii) increase the
effectiveness of the previously proposed algorithms by exploiting the capab-
ilities of the deployed virtual appliances. Wider adaptation can be achieved
by substantially extending the deployment clients. These extensions were
discussed in Section 4.3 for appliance transformation and in Section 6.3.1 for
embedding rebuilding algorithms. However, as it was revealed in the afore-
mentioned sections, applying these extensions would raise serious efficiency
issues in the system (e.g., require the transfer of entire transformed virtual
appliances).

The optimization facility (introduced in Chapter 5) has raised two un-
answered issues. First, the removal of an item from a virtual appliance might
imply the upload of the modified virtual appliance (see Section 5.2.2 for de-
tails) before the system could proceed to validation. Second, as it was dis-
cussed in Section 5.2.3.1, virtual appliances cannot be modified after their

102

7.2 definition of the manageable virtual appliance 103

Advanced
Deployment

Client

Install
Package

Download
To Execute

Remove
File

Manageable
Virtual Appliance

vm

(a) Basic interfaces

Deployment
Client

Combined
Manageable

Virtual Appliance

Execute
Remove

File

Advanced
Manageable

Virtual Appliance

Install
Package Configure

Remove
Item

Install
Package

vm2vm1

(b) Combined & Advanced interfaces

Figure 7.1: Minimal interfaces of a manageable virtual appliance

instantiation, therefore, the system must create a new virtual machine for
every proposed item removal.

Manageable virtual appliances offer a handful of operations that allow the
modification of the virtual machine that executes the deployed appliances.
In this chapter, I reveal that these special virtual appliances could solve the
efficiency issues of the deployment clients and the bottlenecks in the optim-
ization facility. Because of the increased efficiency of the deployment clients,
these special virtual appliances enable the techniques proposed in this dis-
sertation to be applied in already existing infrastructures (like the Amazon
EC2).

7.2 definition of the manageable virtual appliance

Manageable virtual appliances (MVA) can be defined in various ways. How-
ever, my virtual appliance creation architecture only requires that these vir-
tual appliances are capable of (i) installing a package from a remote repos-
itory – required for rebuilding and transformation –, (ii) configuring the
virtual machine according to the configuration deployment task (see Sec-
tion 1.1) – required for all AVS operations –, and (iii) erasing items from the

7.2 definition of the manageable virtual appliance 104

virtual machines based on them – required for size optimization. Instantiat-
ing a manageable virtual appliance results in a manageable virtual machine
that allows the modification of its contents and state.

Based on these prerequisites, I have defined three interface sets (see Fig-
ure 7.1) for the manageable virtual appliances. Other interfaces could also
meet these prerequisites (e.g. allowing the runtime adaptation of the service
in the virtual appliance). However, this thesis only considers these three sets,
because they are already capable of supporting the proposed architecture:

basic interfaces offer the minimal required operations to accomplish
the prerequisites. These interfaces require an advanced deployment cli-
ent capable of transforming the high level prerequisites of the archi-
tecture to the low level operations provided by the manageable appli-
ances. Consequently, the client should be fully aware of the contents of
the virtual appliance, and it should be capable of managing the appli-
ance on file system level. As depicted in Figure 7.1a, these interfaces
allow the following operations: (i) downloading a single file from a pro-
tocol restricted URL (e.g. only rsync, http URLs are allowed) to a des-
ignated location in the executor virtual machine, (ii) executing a config-
uration script in the virtual machine and (iii) removing a file from one
of the file systems used by the executor virtual machine. The “Down-
load To” operation introduces a bottleneck in the system, as it requires
the advanced deployment client to download and itemize repository
packages before they can be uploaded as files through the interface.
Consequently, advanced deployment clients would require the double
download of the packages – first between the repository and the host
of the deployment client (hcli), then between hcli and the host of the
manageable virtual appliance (vm ∈ vms(c) ∶ c ∈ Cϕ).

advanced interfaces realize the prerequisites on an AVS conform ap-
proach. Therefore, these interfaces can download packages from re-
positories, can process install and configure these packages, and can
operate on the same item type the AVS implementation is using. Fig-
ure 7.1b displays the advanced virtual appliance approach with the fol-
lowing operations: (i) “InstallPackage” downloads a repository pack-
age from an arbitrary repository, then unpacks the downloaded content
and places the arrived items on their designated locations; (ii) “Con-
figure” enables the virtual appliance to be configured through in an
appliance specific way; finally, (iii) the “RemoveItem” operation drops
a single or multiple items from the executor virtual machine.

combined interfaces are the mixture of the advanced and basic inter-
faces (see Figure 7.1b). Combined interfaces are designed to allow the

7.2 definition of the manageable virtual appliance 105

simplest implementation of the manageable virtual appliances with
the use of regular deployment clients. Previously, I have identified the
“Download To” operation of the basic interface as its bottleneck. There-
fore, the combined interfaces replace the“Download To” operation of
the basic interfaces with the “InstallPackage” operation of the advanced
interfaces.

7.2.1 Maintaining the Management Capabilities of Virtual Appliances

The more advanced the MVAs become the higher their impact on the overall
size of their appliance. However, Section 5.1 already revealed that the size
of the appliance heavily influences the deployment time of the encapsulated
service. As the management interfaces require new functionality of the vir-
tual appliances, they inevitably increase the deployment time of the service,
therefore, it is preferred to choose the smallest possible MVAs for each ser-
vice. Manageable virtual appliances with combined interfaces provide the
smallest sized virtual appliances that are still versatile enough for the op-
timal behavior of the AVS architecture. As the architecture tries to decompose
and optimize the size of the virtual appliances, it might break the manage-
ment functionality. Therefore, the following paragraphs discuss the built-in
defense mechanisms of the AVS service.

To achieve the smallest possible MVAs the proposed architecture could
optimize the size of the MVAs with the optimization facility. In order to avoid
the removal of the management interfaces from the MVAs the validation of
these appliances requires their service packages (see Figure 4.5 and Equation
3.17) to contain the test for the management interfaces (manageable(pσ) ∶

Pϕ → {true, f alse}).
The test of a combined interface is defined in the Algorithm 7.1 – for the

operations of the interface see Section 7.2 on page 104. The algorithm tests
whether the virtual appliance of pσ incorporates the previously defined man-
agement capabilities for the AVS architecture. First, in lines 1-3, the algorithm
selects a reference service package (pre f) that can be installed in the virtual
machine (vm ∈ ⋃c∈Cϕ vms(c)) instantiated from pσ. Next, it installs pre f in the
vm using the management interfaces in pσ. As a result, if the management
interfaces are available in the virtual machine then vm should successfully
pass the validation in line 8. Afterwards, the items of pre f are removed from
the vm to test its removeFile interface. Consequently, the vm should not pass
the validation in line 12. Finally, the algorithm only accepts the management
capabilities of pσ if the first validation of pre f succeeds and the last fails.

7.2 definition of the manageable virtual appliance 106

Algorithm 7.1 The test for the management capabilities
Require: ϕ ∈ Φ
Require: pσ ∈ Pϕ ∶ (servicepkg(pσ) = true)

1: Pre f s ← {∀p ∈ Pϕ ∶ (∃n < PC(p) ∶ ((D(p, n)/p) ⊂ Θ(pσ)

∧servicepkg(p) = true))}
2: vm ← initVM(pσ, ϕ)

3: pre f ← p ∈ Pre f s ∶ ((pkgsize(D(p, 0)) = min
px∈Pre f s

pkgsize(D(px, 0)))

∧valid(p, vm) = f alse)
4: for all p ∈ D(pre f , 0) do
5: installPackage(vm, p)
6: executeOn(vm, con f igurator(p))
7: end for
8: be f ore ← valid(pre f , vm) = true
9: for all i ∈ items(pre f) ∶ (type(i) = “ f ile′′) do

10: removeFile(vm, i)
11: end for
12: a f ter ← valid(pre f , vm) = true
13: return manageable(pσ)← be f ore ∧¬a f ter

manageable base virtual appliances are those base virtual appli-
ances that offer one of the previously discussed management interfaces (see
Section 7.2). These kinds of base virtual appliances are later used for the
online reconstruction strategy (detailed in Section 7.3.1.2). Consequently, the
system should stop applying the decomposition algorithm (introduced in
Section 6.2.1) on manageable virtual appliances before the loss of manage-
ment capabilities. Therefore, Algorithm 6.1 has to be extended to ensure
base appliances always offer the management interfaces in order to allow
their online reconstruction. The extension replaces the condition statement
in Line 15 of Algorithm 6.1 with the following:

(baseva(pΩ,common) = true)∧ (manageable(pΩ,common) = true) (7.1)

7.2.2 Minimal Manageable Virtual Appliances

The management interfaces affect the deployment time of the virtual appli-
ances they are embedded in. In case of optimally sized self-contained service
packages these interfaces are not used during deployment. Therefore, the in-
terfaces only increase the size and deployment time of the appliances. As an
opposite, manageable virtual appliances stored in multiple packages could

7.2 definition of the manageable virtual appliance 107

+InstallPackage
+Configure
+RemoveItem

ManageableVM

Concrete
ManageableVM +InstallPackage

+Execute
+RemoveFile

Combined
Manageable

VM

Offered
by the
MMVA
vendor

AVS:
Transformation

Active
Repository:

Decomposition,
Rebuilding

Optimization
facility:

Removal, VM
management

Figure 7.2: Interfacing between MMVAs and the AVS architecture

utilize their management interfaces to reconstruct the virtual appliances on
site. This rebuilding technique could lower the deployment time. In both
cases, the size of the management interfaces influences the deployment time
of the encapsulating virtual appliances. Therefore, these interfaces are re-
quired to occupy minimal size from their hosting appliance. To ensure min-
imal impact on their hosts I propose to create predefined template virtual
appliances exclusively for the management interfaces.

These template virtual appliances need to be delivered with the appliance
creation service. Therefore, they could form the basis of the services pub-
lished later with the AVS. I propose to call these templates “Minimal Manage-
able Virtual Appliances” or in short form MMVAs.

Minimal manageable virtual appliances (pµ) are size optimized base virtual
appliance packages that offer management interfaces only:

mmva(p) ∶= (baseva(p) = true)∧ (manageable(p) = true)
∧ (optimalsize(p) = true) (7.2)

MMVAs are special base virtual appliances that are delivered with a valid-
ator (e.g. with the one defined in Algorithm 7.1) – for the details of packaging
see Section 4.4.1. Consequently, the optimization facility can be used to create
such virtual appliances from manageable base virtual appliances.

Since it is possible to define multiple minimal manageable virtual appli-
ances, the appliance creation service has to offer a common way to interface

7.2 definition of the manageable virtual appliance 108

with them. This common interface is detailed in Figure 7.2. The first row of
the figure depicts the components of the AVS architecture and those function-
alities that could be dependent on minimal manageable virtual appliances.
Before these components use the MMVA, they always initiate a virtual ma-
chine based on it. The AVS architecture provides an abstract interface of
this virtual machine called ManageableVM. This interface behaves as the com-
mon interface between the AVS and the various MMVAs by providing the
advanced management interfaces specified in Section 7.2. The AVS allows
the implementation of this common interface by third parties to support con-
crete manageable virtual machines. This implementation should translate the
requests of the AVS components towards the manageable VM to a vendor de-
pendent form. For example, the last row of the figure depicts my combined
management interface set as the target of the AVS requests.

7.2.2.1 Creating virtual appliances based on an MMVA

The use of minimal manageable virtual appliances changes the system’s in-
vasiveness on the infrastructure to the invasiveness towards the virtual ap-
pliances. As a result, appliance developers should prepare their initial appli-
ances to incorporate MMVAs.

I have identified two basic methods of creating an MMVA based virtual
appliance. First, the appliance developers could extend the MMVAs by utiliz-
ing them as the foundation for their own services. Alternatively, they could
append the files of the image in the MMVA (im(pµ, f)) to extend their virtual
appliance with the minimal management interfaces.

If developers decide in favor of the MMVA extension, then they should first
find a suitable MMVA to extend. To determine the most suitable MMVA, ap-
pliance developers investigate the offered functionality and contents of the
various available MMVAs and select one that requires the least effort for ex-
tension. Then, they should instantiate a virtual machine with the selected
MMVA. During instantiation, they should ensure that the new virtual ma-
chine could host both their service and the selected MMVA. Afterwards, they
proceed with the installation of the service inside the newly created virtual
machine as if they would do with the central extraction service (discussed in
Section 4.2.1.1).

In case of the second scenario (previously referred as “append”), developers
prepare their services for extraction as they prefer. Consequently, before
progressing further they could already create the initial virtual appliance
without management interfaces – I refer to this hypothetical appliance as
p∗Ω,nm. However, as a final step before the appliance creation, appliance de-
velopers download and itemize a suitable MMVA – pµ. As a result, they
receive the items (items(pµ)) that ensemble the MMVA. Finally, they append

7.3 architectural developments 109

r1 r2
rM

IaaS
Deploy
Client*

p1 p2

pN

1

4 4 4

3
MM
VA

MM
VA

2

Figure 7.3: Deployment client using an MMVA during VA rebuilding

these items to their already prepared service and then proceed with the ini-
tial appliance (pΩ) creation:

items(pΩ) ∶= items(p∗Ω,nm)∪ items(pµ)

In this second scenario, appliance developers have to choose an MMVA that
can operate in the hosting environment of their initial service installation:
manageable(pΩ) = true. If the AVS detects that the MMVA is not successfully
appended (manageable(pΩ) = f alse) then it cancels the publication of the
initial virtual appliance allowing the appliance developer to select a more
suitable MMVA.

7.3 architectural developments

This section discusses the differences and extensions of the architecture when
it is handling (rebuilds, transforms or optimizes) a manageable virtual appli-
ance. As the system supports both manageable and non-manageable virtual
appliances, the architecture automatically chooses between the previously
presented solutions (in case of non-manageable VAs) and the new solutions
introduced in this section.

7.3.1 Effects on the rebuilding algorithms

An embedded MMVA, in the virtual appliance of the service (preq) under
deployment, opens the feasibility of the deployment client based rebuild-
ing (initially discussed in Section 6.3.1). As it is depicted in Figure 7.3, the
deployment client can use the MMVA for its advantage and initiate it on
the target IaaS system (see step 1). Afterwards, during step 2, the IaaS sys-
tem downloads the MMVA from the repository r2 then creates a virtual ma-
chine (vm ∈ {⋃c∈Cϕ vms(c)}) based on the MMVA. Next, in step 3, the client

7.3 architectural developments 110

Algorithm 7.2 Estimating connectivity details between the repositories and
the virtual machine of an MMVA
Require: timeout, 0 < τ < 1, awaitedbw, maxtestsize
Require: vm ∈ {⋃c∈Cϕ vms(c)}
Require: preq ∈ Pϕ

Require: pµ ∈ Pϕ ∶ (mmva(pµ) = true

∧(∃D(preq, x) ∈ Θ(preq) ∶ (pµ ∈ D(preq, x))))

1: for all r ∈ Rϕ ∶ (∃D(preq, x) ∈ Θ(preq) ∶ (contents(r)∩D(preq, x) ≠ ∅)) do
2: l(r, vm)← measure(latency(r, vm), timeout)
3: BW(r, vm)← 0
4: end for
5: trans f ersize ← pkgsize(D(preq, 0))− pkgsize({pµ})

6: uptimeout ← trans f ersize/awaitedbw
7: R′ ← Rϕ

8: bwmeasures ← τ
trans f ersize
maxtestsize

9: for i = 0 to bwmeasures do
10: rml ← r ∈ R′ ∶ (l(r, vm) = min

ry∈R′
l(ry, vm))

11: R′ ← R′/rml
12: Pm ← {∀p ∈ contents(rml) ∶ (pkgsize({p}) < maxtestsize)}
13: pdummy ← p ∈ Pm ∶ (pkgsize({p}) = max

px∈Pm
pkgsize({px}))

14: BW(rml, vm)← measure(downloadbw(pdummy, rml), uptimeout)
15: end for

requests the MMVA to download the entire construction path (Dcon(preq, vm))
of the service package. Later, the MMVA rebuilds the service package accord-
ing to the requests of the deployment client (see step 4). Finally, the deploy-
ment client restarts the virtual machine in order to activate the now rebuilt
service.

In order to determine the rebuilding path, the deployment client uses a
similar approach to the IaaS based rebuilding strategy discussed in 6.3.3.
As opposed to the IaaS based strategy, the deployment client cannot store
any connectivity history for the new virtual machine (vm = initVM(pµ, ϕ))
and the different repositories (r ∈ Rϕ). Therefore, the connectivity data is
estimated with Algorithm 7.2. The developer or the administrator of the de-
ployment client can customize the behavior of the presented algorithm with
the following constraints: (i) the maximum acceptable latency (timeout), (ii)
the maximum amount of data used for bandwidth measurements (called the
pre-transfer measurement threshold – τ), (iii) the minimal bandwidth between

7.3 architectural developments 111

IaaS Repository Client
alone MMVA

Measurements prior prior during during
No IaaS change –

√ √ √

No repository change
√

–
√ √

Arbitrary VAs
√ √ √

–
Transfers 1 1+ E 3+ τ 1+ τ + M

Table 7.1: Comparison of the introduced rebuilding scenarios

the repository and the virtual machine (awaitedbw) and finally, (iv) the max-
imum size of the package used for bandwidth estimation (maxtestsize).

Using this algorithm, the deployment client measures the latencies of the
various repositories – l(r, vm). Next, it estimates the number of bandwidth
measurements (bwmeasures) the algorithm can make before reaching the pre-
transfer measurement threshold. Then selects the repositories (rml ∈ (Rϕ/R′))
with the lowest latencies to measure their bandwidth towards the host of the
MMVA. Using these measurements all the data is available for the deploy-
ment client to estimate the construction path (Dcon(preq, vm)) that would have
been chosen by the IaaS system (see Equations 6.25 and 6.26). As opposed
to the IaaS based rebuilding solution, this algorithm can only use estimated
construction paths because the connection details are not available for all the
repositories in the service-based system (Rϕ).

The algorithm is heavily dependent on the value of the pre-transfer meas-
urement threshold (τ) that describes the amount of data used for bandwidth
measurements expressed relative to the size of the required package (preq).
On one hand, values closer to zero reduce the amount of measurements
the algorithm can make to estimate the bandwidth between the deployed
MMVA and the various repositories in the system. On the other hand, in-
creasing the value could reduce the effectiveness of the algorithm because it
scarifies more time on finding the most suitable repository to download the
required package from. Based on my initial experiments, the value of 0.1 of-
fers a good balance between the two extremes. Several example deployments
can be seen with this value in Section 10.3.

7.3.1.1 Comparison of the rebuilding scenarios

Table 7.1 compares the previously detailed rebuilding scenarios (see Sec-
tions 6.3.1 and 7.3.1) from five point of views: (i) “Measurements” denote
if the system takes the measurements independently from the rebuilding
process; (ii) “No IaaS change” depicts the approaches that does not re-

7.3 architectural developments 112

quire changes in the available IaaS systems for their operation; similarly (iii)
“No repository change” describes the solutions independent of the repos-
itory implementation; (iv) “Arbitrary VAs” present if an algorithm is not
dependent on a specific type of virtual appliance; finally, (v) “Transfers”
represent the amount of data (expressed relative to the size of the appli-
ance: reltsize ∶= tsize/pkgsize(D(preq, 0))) required for the reconstruction of
the VA on the execution host.

Analyzing the table reveals that the IaaS and active repository based solu-
tions can take measurements prior the actual rebuilding process starts, there-
fore, they do not require extra transfers to determine the latency and band-
width values. These systems can measure and monitor the connection prop-
erties for previous transfers between the different parties of the service-based
system. As an opposite, deployment client based solutions use extra transfers
to estimate the connection properties just before the rebuilding takes place.
However, according to Algorithm 7.2, these extra transfers are limited by the
pre-transfer measurement threshold value (τ).

The final comparison of Table 7.1 is based on the total size of transfers. The
table unveils the superiority of the IaaS based solution, where the virtual ap-
pliance is transferred directly to the execution host. Active repositories lose
to IaaS based solutions because they have to transfer the external packages
first to the repository (rreq) of the requested package (preq) then, after rebuild-
ing, the entire virtual appliance to the IaaS system. I have identified the size
of the required transfers for active repositories (tsizeAR, reltsizeAR) as follows:

tsizeAR ∶=

transfer externals
³¹¹·¹¹µ
pkgsize(ext(D(preq, n), rreq))+

transfer rebuilt
³¹¹¹·¹¹µ
pkgsize(D(preq, n)

reltsizeAR ∶= 1+
pkgsize(ext(D(preq, n), rreq))

pkgsize(D(preq, n))

consequently:

E =
pkgsize(ext(D(preq, n), rreq))

pkgsize(D(preq, n))
(7.3)

Deployment clients introduced in Figure 6.6c first estimate connection prop-
erties (τ), and then download all packages for rebuilding on the client’s
host (this is the first time the entire appliance is transferred). Later, the re-
built appliance is published (second transfer from the client to a repository).
Finally, the IaaS is requested to instantiate the published appliance, resulting
the third and final transfer during deployment. As a result, I have defined

7.3 architectural developments 113

the size of the required transfers for deployment clients (tsizeDC, reltsizeDC)
with the following equations:

tsizeDC =

measure
³¹¹¹·¹¹µ
τ ⋅ pkgsize(D(preq, n))+

rebuild
³¹¹·¹¹µ

∑
p∈D(preq,n)

pkgsize({p}) (7.4)

+ pkgsize(D(preq, n))
´¹¹¹¸¹¹¶

publish

+ pkgsize(D(preq, n))
´¹¹¹¸¹¹¶

deploy

reltsizeDC = τ + 3 (7.5)

As an opposite, deployment clients utilizing MMVAs (pµ) first instantiate the
MMVA (the entire MMVA is transferred), then estimate connection proper-
ties using the MMVAs management interfaces (τ). Finally, after the client
evaluates the optimal reconstruction path, the MMVA is requested to in-
stall the packages according to Dcon(preq, vm). The size of the required trans-
fers (tsizeVM, reltsizeVM) by the MMVA based rebuilding solution is defined
as:

tsizeVM =

init
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
pkgsize({pµ})+

measure
³¹¹¹·¹¹µ
τ ⋅ pkgsize(D(preq, n))

+ pkgsize(D(preq, n))− ∑
i∈(items(pµ)∩items(p∗Ω,nm))

size(i)

´¹¹¸¹¹¶
reconstruct

reltsizeVM = 1+ τ +
pkgsize({pµ})−∑i∈(items(pµ)∩items(p∗Ω,nm)) size(i)

pkgsize(D(preq, n))

therefore:

M =
pkgsize({pµ})−∑i∈(items(pµ)∩items(p∗Ω,nm)) size(i)

pkgsize(D(preq, n))
(7.6)

Where M represents the data that would not be transferred without the use
of the MMVA, because, the non-manageable original virtual appliance (p∗Ω,nm)
did not use them.

7.3.1.2 Online reconstruction strategy

I have extended the rebuilding algorithm to include two virtual appliance re-
construction strategies that are applied either before (offline) or after (online)
the appliance’s hosting virtual machine is initiated. The algorithm decides
on the strategy based on the capabilities of the base virtual appliance. If the
base appliance offers management interfaces to install, configure and update

7.3 architectural developments 114

IaaS - c

ξ vmµ

r
pµ
imfimfimf

pΔ
imfµ

dep

1

5

8

Deploy
Client*

7 4

6

AVS
2*

3*

Figure 7.4: Transformation applied only on MMVAs

components of a virtual machine then the algorithm chooses the online re-
construction strategy, otherwise it uses the offline reconstruction strategy. The
offline strategy was discussed in Section 6.3.4.1.

The online reconstruction strategy follows a new approach that requires the
base virtual appliance (pβ ∈ Dcon(preq, vm)) to comply with the requirement
of exposing management interfaces (e.g. its image contains an embedded
MMVA – manageable(pβ) = true). This base virtual appliance is used to ini-
tiate a virtual machine (vm = initVM(pβ, ϕ)) that is transformed by the new
reconstruction strategy to host the original virtual appliance. The rebuilding
algorithm uses the management interfaces to install the required delta pack-
ages according to the reconstruction path (Dcon(preq, vm)) on the running
virtual machine. Therefore, most of the installation task is executed within
the virtual machine that is going to host the deployed service by the end of
this procedure.

7.3.2 MMVA based virtual appliance transformation

When an IaaS system receives a deployment request for a virtual appli-
ance (p∆) that is stored in a non-supported format, then an appliance trans-
formation should be applied before the deployment could take place. I have
introduced three basic transformation techniques in Section 4.3. This section
introduces a new method for handling virtual appliance format transforma-
tion.

If a stored virtual appliance is based on a minimal manageable virtual appli-
ance, then only the MMVA have to be transformed (see Figure 7.4). When
the transformed MMVA is instantiated, the differences between the stored
virtual appliances disappear because of the virtualized hardware (see Sec-
tion 4.4.1.3). Therefore, the system stores all delta repository packages solely

7.3 architectural developments 115

IaaS Repository Client MMVA

User transparency
√ √ √ √

No IaaS change – ∼
√ √

Minimized storage – – –
√

Arbitrary VAs
√ √ √

–

Table 7.2: Comparison of all proposed transformation initiators

in an appliance format agonistic way. However, it is required that one of the
MMVAs with the installPackage interface should be able to handle the image
format (fµ) of the delta packages.

In case a deployment request is received for an MMVA based appliance,
then as seen in step 1 in Figure 7.4, the system checks whether one of the im-
ages of the MMVA (pµ) can be used with the target IaaS system – c. If there
is no matching image (pkg f orms(pµ) ∪ VA f orms(c) = ∅), then in steps 2

∗
and 3

∗, the system initiates the transformation on the MMVA only – for
details see the deployment client initiated transformation scenario in Sec-
tion 4.3. To lower the need for transformations before deployment, the AVS
checks for MMVAs in the repository and automatically transforms them to
all the frequently used appliance formats.

If there is an image of the MMVA that is in the desired format, then the
system instantiates a virtual machine (vmµ ∈ hosted(ξ) ∶ (ξ ∈ Ξϕ(c))) in the
IaaS system for pµ – see steps 4-6 in Figure 7.4. Next, in steps 7-8, the de-
ployment client uses the management interfaces of vmµ to install one of the
dependency sets of p∆ inside the newly instantiated VM.

Table 7.2 compares the MMVA based transformation to the previously
discussed basic options. Previously identified transformation approaches re-
quired to store the virtual appliances in their IaaS system specific format
even after decomposition. Consequently, previous approaches store the ap-
pliances in multiple instances if they need to be stored in multiple appliance
formats. In contrast, minimal manageable virtual appliances allow the use
of VMM format agonistic packages according to Section 4.4.1.2. As a result,
only the MMVAs have to be stored in the various appliance formats of the
service-based system (F). Consequently, MMVA based transformation minim-
izes the storage requirements of the AVS according to the following example:

p1 = p ∈ Pϕ ∶ (mmva(p) = true)

Fp1 = {∀ f ∈ F ∶ (∃im(p1, f))}

p2 = p ∈ Pϕ ∶ (∄z < PC(p) ∶ (manageable(∑
px∈D(p,z)

px) = true))

Fp2 = {∀ f ∈ F ∶ (∃im(p2, f))} (7.7)

7.3 architectural developments 116

p3 = p ∈ Pϕ ∶ (p1 ∈ D(p, x) ∶ (x < PC(p)))

stsize(p3) = (∣Fp1 ∣− 1)pkgsize({p1})+ pkgsize(D(p3, x))
stsize(p2) = ∣Fp2 ∣pkgsize(D(p2, 1))

Where stsize ∶ Pϕ →N depicts the storage size requirements of a given pack-
age according to the multiple images stored within the package and its de-
pendencies. As depicted in the definition of p3 in the previous equation, the
MMVA based solution cannot function on arbitrary virtual appliances, because
this transformation technique cannot be applied to non-manageable virtual
appliances (e.g. p2 in the previous example).

7.3.3 MMVA and the Optimization facility

The optimization facility (introduced in Chapter 5) increases its efficiency if
there is an embedded minimal manageable virtual appliance in the VA under
optimization. When the facility meets such an appliance then it enables a
new removal algorithm and a different virtual machine management strategy.
The following sections discuss the differences between the already discussed
optimization process and the one based on the use of MMVAs.

7.3.3.1 Removal during virtual machine execution

First, an embedded MMVA enables a new removal technique, called removal
during execution. This approach starts up the original virtual appliance before
the removal action takes place. Then, removes the highest weighted items or
groups by utilizing the management capabilities of the virtual machine un-
der optimization. Consequently, the reduced virtual appliance (pred) is cre-
ated right inside its hosting virtual machine.

This technique removes contents from already instantiated virtual ma-
chines. Therefore, this removal technique could optimize the virtual appli-
ances until they would never boot again (because the memory of such sys-
tems contains some of the removed contents). However, this requires storing
not just the disk state of the virtual machine but the virtual appliance should
also include the entire memory state of the virtual machine. Therefore, this
algorithm is not optimal, unless the management interfaces plus the saved
memory state is smaller than the overall size of all the removed items.

The proposed technique avoids this problem by restarting the virtual ma-
chine after the removal action. This step simulates the boot procedure of a
virtual machine with the reduced appliance. If the restart is unsuccessful
the validation automatically fails, otherwise the validation algorithms are ex-
ecuted using this already running virtual machine. As a result, this technique
cancels effects of the virtual machine’s memory.

7.3 architectural developments 117

The issue with this new removal technique is the requirement of the em-
bedded MMVA in the original virtual appliance. As a result, after the optim-
ization finishes, the reduced virtual appliance still offers the management in-
terfaces among the target functionality. To reach the optimal size the facility
offers the appliance developer the option to remove the MMVA functionality
and their dependencies with the pre-execution method (for details see Sec-
tion 5.2.2). However, this option is only recommended for use in appliance
based deployment systems not capable of utilizing the embedded MMVA
(e.g. in systems without online virtual appliance reconstruction capabilities).

The algorithm also offers two major advantages over pre-execution removal:

• This approach is the only realistic solution in IaaS systems (see Sec-
tion 2.1) similar to Amazon EC2 [50] where the sole virtual appliance
source is their internal repository (e.g. S3 in case of Amazon). With this
approach, the removal of an item or group does not require the system
to publish the appliance with the removed contents for the time of the
validation task.

• Removal during execution also enables the use of a different virtual
machine management strategy that does not terminate the virtual ma-
chines after every validation (introduced in the following section).

7.3.3.2 MMVA based Virtual Machine Management Strategy

An embedded MMVA enables the repeated use of the removal algorithm
on a single virtual machine, because, virtual machines that successfully pass
the validation phase can be reused. As a result, the optimization facility does
not need to initiate new virtual appliances for every validation. The following
virtual machine management strategy manages the virtual machine instances
and allows their reuse.

In contrast to the previous strategy (introduced in Section 5.2.3), this new
strategy initializes pool of virtual machines with the same partially optim-
ized virtual appliance. Then the MMVA based strategy uses the previously
introduced removal algorithm to remove one of the highest weighted items
or groups from the running VM and prepare it for validation. Therefore, the
tasks of the new management strategy do not stop at preparing the VMs for
validation.

Figure 7.5 presents the three main tasks (allocate, recover or synchronize
VMs) during the management of available virtual machines for the optim-
ization system. The first task is to allocate as many VMs as possible for the
optimization (the actions of this task are circled with a dashed line in Fig-
ure 7.5). Each acquired virtual machine is instantiated with the appliance
under optimization. Then the appliances are configured to run inside their

7.3 architectural developments 118

Virtual
Appliance
Repository

Communi-
cation with
the IaaS

Initially there
are no
marked items

<<decisionInput>>:
VM got de-
funct after
removal?

[Defunct VM]

[Target
not met]

Selection can
start while
the VM is not
ready

Selection Target
check

Remove all
marked

Init VM

Acquire VM for
optimization

Removal &
Validation

Allocation Recovery

Figure 7.5: Handling virtual machine instances of MMVA enabled virtual appliances

hosting VMs (as discussed in Section 5.2.3). After the VMs are initialized,
they are ready to be used for the removal and validation tasks. The initial
allocation of the available virtual machines is executed in parallel with the
itemization, item pooling, grouping and weighting process (see Figure 5.2).

If the optimization facility detects an unsuccessful validation, then the af-
fected virtual machine becomes defunct. This leads towards the second task
of the management. The recovery of the defunct VM could imply the addi-
tion of the previously removed content. However, this step would require
the revalidation of the entire restored virtual machine. Therefore, instead
of trying to heal the defunct VM, the manager uses the following recovery
strategy (the actions of the strategy are circled with a dotted line in Fig-
ure 7.5). It simply terminates the current instance and initiates a new VM
with the appliance in it. Then the manager synchronizes the previously suc-
cessfully removed content in the initialized VM. During recovery, the parallel
validation branches compete with each other for the available VMs.

Instead of the intermediate virtual appliance creation task of the previous
management strategy, this strategy solves the content unification of the differ-
ent virtual machines with the synchronization of the removed content. After
each optimization iteration, the final task of the manager synchronizes the
content of all the available VMs with the remove all marked operation (marked
with a gray box in Figure 7.5). Each of these virtual machines has one of the
previously selected items or groups removed from them. To allow the next
iteration of the validation procedure the manager synchronizes all still func-

7.3 architectural developments 119

Suc-
cessPrepare VM

Init VM
(pending

state)
Conform-

ance check

Cancel VM

Free

Configure Acquired Remove all
marked

Remove
highest

weighted
Validate

Defunct

Config
needed

Failed

Frequent
Failures

Terminate

Failed

Figure 7.6: Virtual machine management states with virtual appliances embedding
an MMVA

tional VMs by removing the successfully validated items or groups from
them.

Because of these three new tasks, the strategy based on the use of man-
agement interfaces consumes less bandwidth and utilizes smaller amount of
virtual machines during the entire optimization process.

individual virtual machine handling . Because of minimal man-
ageable virtual appliances, individual virtual machines are also handled dif-
ferently compared to the original algorithm introduced in Section 5.2.3.1.
Figure 7.6 defines the list of virtual machine management states a virtual
machine passes through during its extended lifecycle. These states are highly
similar to the ones previously introduced. Therefore, I have highlighted the
differences with bold arrows and gray states. This section only discusses
the differences; for the non-highlighted actions please have a look at Sec-
tion 5.2.3.1.

Virtual machines in the pool are created in two cases. First, when optimiz-
ation facility has just started the optimization and the initial pool of virtual
machines are under construction. Second, one of the virtual machines in the
pool become defunct and a replacement has to be created by the virtual ma-
chine handler.

If a virtual machine passes to the initialization state, then the IaaS was re-
quested to create a virtual machine using the original virtual appliance (pnew).
The use of the original appliance avoids the necessity to publish intermediate
virtual appliances in the repository.

After the free state of the virtual machine, all states represent a phase in the
validation process. First, the acquired state designates the VM’s participation
in the procedure. During this phase the virtual machine handler generates
the list of removal requests for the highest weighted removable items or
groups. Then the contents of the VM are synchronized with the other VMs

7.3 architectural developments 120

in the pool, while it is in remove all marked state. As a result, the VM will rep-
resent the intermediate virtual appliance. Before the actual validation takes
place, the VM handler arranges the execution of the removal requests that
were generated during the acquired state. The VM stays in the remove highest
weighted state while the actual virtual machine executes the generated re-
moval requests.

Finally, the VM enters the actual validation state that starts by checking the
success of the VM synchronization and the success of the requests for the
removal of the highest weighted items. Then the virtual machine handler
restarts the VM. Next, the handler evaluates the validation algorithms in the
slightly modified service instance. If both the evaluation of the validation
algorithms and the removal checks were successful then the virtual machine
becomes free again. Otherwise, the VM gets defunct and the handler initiates
the creation of a new VM replacing the defunct one.

chapter summary. This chapter provided three possible options for
defining management interfaces on appliances (basic, combined, advanced)
and came to the conclusion that combined interfaces are the most suitable
to support the AVS functionality. Then the chapter defined an algorithm
for checking the management capability of an existing appliance. Based on
this algorithm I have introduced a technique to create minimal manage-
able virtual appliances using the optimization facility (my second contribu-
tion). The chapter then offered two approaches for extending already exist-
ing or planned appliances with management interfaces using the previously
defined MMVAs. Finally, the chapter offered an analysis on the effects of
applying the MMVA concepts to the rebuilding, transformation and size op-
timization techniques introduced in the previous chapters of this work.

Part III

A N A LY S I S

8
M E T H O D O L O G Y

chapter overview. This chapter offers the grounds for evaluating the
findings and contributions of this thesis. It provides the evaluation scenarios
and use cases that are used in later Chapters. These scenarios are defined so
they can directly support my contributions. It also outlines the dependencies
and requirements about the evaluation system and testbed that can support
the execution of the evaluation scenarios.

8.1 introduction

Throughout this chapter, I intend to introduce the evaluation methodology
of the proposed architecture. This methodology investigates the following
four main areas:

correctness . Independently from the applied optimization and active re-
pository functionalities, the AVS architecture should always create vir-
tual appliance packages that after rebuilding behave as the original
service of the appliance developer. Detailed in Section 8.3.

infrastructure independence . The AVS architecture and its effects
on deployment time should be independent from particular infrastruc-
tures. Discussed in Section 8.3.

deployment efficiency. The virtual appliance packages created by the
architecture should result in faster deployment times for the encapsu-
lated services. Introduced in Section 8.4.

cost. The cost of the application of the proposed techniques should be
lower than the estimated gain of future faster deployments. For details,
see Section 8.5.

122

8.1 introduction 123

Architecture Active Repository

AVS

Rebuilding

Optimization Facility

5. Proof of
concept 6. Upload Time

4. Size
Optimization

10.
Decomposition

7. Baseline

9. Deployment

2. Optimization
Time

1. With MVA

3. No MVA

8. IaaS

11. Active
Repository

12. Deployment
Client & MMVA

Figure 8.1: Classification and relationship of the evaluation scenarios

Figure 8.1 shows the relations of the evaluation scenarios with each other
and with the proposed architecture. The figure depicts the four basic meas-
urement groups with gray colored boxes: (i) the proof of concept checks the
correctness of the proposed architecture; then (ii) upload time checks the effi-
ciency of the initial upload algorithm discussed in Algorithm 4.1; next, (iii)
optimization time measures the required time to reach the optimalsize(pσ) cri-
terion on a service package – pσ; finally, (iv) the effectiveness of deployment is
measured with various rebuilding and optimization scenarios compared to
the baseline deployment time measurement made right after measuring the
initial upload time.

Figure 8.1 represents the various measurements to evaluate the architec-
ture with the numbered boxes (later the measurements are referred by their
numbers). The dependencies of the different measurements are depicted
with arrows (the direction of the arrows reveal the dependent scenarios). By
circling the various measurement options, the figure also presents those com-
ponents of the architecture (the optimization facility, AVS, active repository
and rebuilding algorithms) that are evaluated by a given measurement (see
the dashed and dotted lines around the measurement boxes). The effects of
the minimal manageable virtual appliance are targeted on the optimization
facility and the rebuilding; therefore, the MMVA related measurements are
depicted with bold boxes.

8.2 appliance classification 124

Throughout this chapter, measurements are represented with the function
measure ∶ F → R. This function evaluates its arguments (F that stands for
an arbitrary function and a specific parameter set) repeatedly and measures
the execution time (tev) for each individual evaluation. Measurements are
executed until the sample standard deviation (sN) of the tev values becomes
stable, thus the value of two subsequent standard deviation calculations are
within 1%:

sN(tev)− sN+1(tev)

sN(tev)
< 0.01 where N ≥ 2 (8.1)

After reaching a stable deviation value, the measure function returns with
the median of all the measured execution time values.

In the next sections, I present the appliance classes considered during the
evaluation scenarios. Then, I introduce the evaluation of correctness and ef-
ficiency respectively. The methodology introduced in this chapter supports
the evaluation of the proposed architecture. First, in Chapter 9, I discuss the
use of the correctness criteria (defined in Equation 8.6) to assess the infra-
structure independence of the AVS services. Afterwards, in Chapter 10, I use
deployment efficiency (see Section 8.4) and cost (see Section 8.5) estimation
to present the positive effects of the proposed architecture on IaaS systems.

8.2 appliance classification

The different evaluation scenarios require different virtual appliances. In or-
der to allow the generic definition of the scenarios, I have investigated several
virtual appliances and identified a classification that can be used to specify
generic requirements. Based on the required network and service configura-
tion I have classified virtual appliances into three complexity classes:

minimal complexity appliances cannot be decomposed into more than
two packages (∣D(p)∣ = 2): the MMVA and the service package. The
service package holds a single executable that incorporates the target
functionality for the users; this functionality is accessed through the ex-
ecution interface of the MMVAs. Consequently, this service instance re-
quires the same network configuration as the MMVA service. Examples:
SSH (see Section A.1), TINKER [46] appliances.

medium complexity appliances are built on multiple packages – ∣D(p)∣ ≥
2. These appliances do not need to incorporate an MMVA, because their
service packages offer the activation of their target functionality after
the instantiation of the appliance in a virtual machine. After the deploy-
ment of these virtual appliances, their target functionality is externally

8.3 correctness of the architecture 125

Virtual Appliance Rebuilding

IaaS request for
new VM

Download &
rebuild VA from

repository

New Virtual
Machine url

returned

Start Stop

AVS demonstration

Init AVS Extract
VA

VM
Select

Extract specified
virtual machine

Active Repository

Repository
Select

Store & Decompose
Appliance in
repository

AVS & rebuilding
Test deployed

service

Optimization Facility

Optimize Appliance

Figure 8.2: Correctness checking scenario of the architecture

available through appliance specific interfaces. As a result, the network
configuration of these service instances needs to take into consideration
of the appliance specific interfaces. Examples: Apache web server [67]
(see Section A.2), LAMP (Linux, Apache, MySQL, PHP) projects [84].

high complexity appliances are composed of multiple delta packages
after decomposition – ∣D(p)∣ > 2. After deployment, these appliances
require configuration because they depend on externally available ser-
vices. On top of the network requirements of the previous classes, the
network configuration of these service instances also expects the con-
nectivity towards their external dependencies. Examples: GEMLCA ser-
vice [22] (see Section A.3), Gridway broker [60].

8.3 correctness of the architecture

Figure 8.2 presents the proof of concept (see measurement 5 in Figure 8.1) eval-
uation scenario that utilizes all major functionalities of the proposed archi-
tecture. With the requirement set below, this scenario ensures that there is
no such package constellation that could result an invalid virtual appliance
after applying the various techniques introduced with the architecture.

Before discussing the scenario itself, the following paragraphs list the re-
quirements against a particular testbed infrastructure (ϕ). First, the scenario

8.3 correctness of the architecture 126

requires the following minimal set of repositories in the infrastructure that
should store the below detailed contents:

Rϕ ∶= {r1, r2, r3}

Pϕ ∶= {pµ, p1, p3}

contents(r1) ∶= {p3}

contents(r2) ∶= {p1}

contents(r3) ∶= {pµ}

Θ(p1) ∶= {{p1, pµ}}

mmva(pµ) ∶= true

(8.2)

For the demonstration of the architecture, a highly complex web service has
to be selected. This web service will be extracted (to the initial self-contained
package p2, where sel f contained(p2) = true ∧ va(p2) = true ∧ servicepkg(p2) =

true). The creation of the initial self-contained package is depicted with the
operation “Extract specified virtual machine” in Figure 8.2. Then, p2 will be
minimized with the size optimization facility until it reaches its optimal
size (in the package that I later refer to as p′2, where sel f contained(p′2) =
true ∧ va(p′2) ∧ servicepkg(p′2) = true ∧ optimalsize(p′2) = true). This phase of
the demonstration is depicted as “Optimize Appliance” in Figure 8.2. In or-
der to enable the demonstration of the initial upload, decomposition and
rebuilding algorithms of the architecture, the p2 has to be prepared so that
its optimized appliance (p′2) has common items (I2,1, I2,µ ∈ Iϕ) with the previ-
ously defined contents of the repositories as follows:

I2,1 ∶= items(p′2)∩ items(p1) ≠ ∅

I2,µ ∶= items(p′2)∩ items(pµ) ≠ ∅

and ∑ix∈I2,1
size(ix) > ∑iy∈I2,µ

size(iy)

(8.3)

Because of these requirements, the initial upload operation should find
repository r2 more desirable (see step “Repository select” in Figure 8.2), and
publish the extracted and optimized virtual appliance of the service in there.
When the repository receives the optimized package (p′2) it should automat-

8.3 correctness of the architecture 127

ically apply the decomposition algorithm on it resulting the common (p4)
and delta parts (p′1, p′′2) of the packages as follows:

contents(r2) = {p1, p′1, p′′2 , p4,}
items(p′′2) = items(p′2)/items(p1)

items(p4) = I2,1

items(p′1) = items(p1)/items(p4)

dep(p′′2) = {p4}

dep(p′1) = {p4}

dep(p4) = dep(p1) = {pµ}

Θ(p′′2) = {{p′′2 , p4, pµ}}

(8.4)

This step of the proof of concept scenario is revealed as “Store & Decompose
Appliance in repository” in Figure 8.2.

Consequently, the AVS should return the URL of p′′2 to the appliance de-
veloper. Using this URL, the validation scenario advances to the deployment
phase. At this stage, the deployment client is manually requested to deploy
the service package (p′′2) in an IaaS system (see step “IaaS request for new VM”
in Figure 8.2). As a result, the IaaS system initiates a virtual machine us-
ing the minimal manageable virtual appliance package (pµ) referred by the
service package. Then the online reconstruction strategy (see Section 7.3.1.2)
downloads and configures the dependency set (D(p′′2) ∈ Θ(p′′2)) inside the
newly created virtual machine to install and configure the entire p′′′2 appli-
ance supposedly with the original highly complex web service:

p2
optimize
ÐÐÐÐÐ→ p′2

decompose
ÐÐÐÐÐÐ→ p′′2

rebuild
ÐÐÐÐ→ p′′′2

p2
?
≡ p′′′2

(8.5)

At the end of this procedure the deployment client should return the IP
address of the newly created virtual machine with the activated web service
running inside. Finally, the correctness (correct ∶ (Pϕ, Φ) → true, f alse) of the
evaluated testbed infrastructure is proven when the validation of the initial
virtual appliance (p2) is successful on the new virtual machine:

p′′′2 ∶= ∑
p∈D(p′′2 ,x)

p

where 0 < x < PC(p′′2) and x ∈ N (8.6)
correct(p2, ϕ) ∶= valid(p2, initVM(p′′′2 , ϕ))

The successful execution of the entire proof of concept evaluation scenario
ensures the correctness of the proposed architecture by using all the AVS

8.4 basic deployment efficiency 128

r

IaaSDeploy
Client

4 6

5

pσ
Optimization

Facility

1,7

pσ'

2,8

39

(a) Efficiency of size optimization

r1*

IaaS

Deploy
Client

1

2

pσ

Decompose

4

5

pσ'' pΔ
r2*
pβ

3

6

7

(b) Efficiency of delivery optimization

r2
pμ

r1

Deploy
Client

1

2

pσ

Decompose
4

5

6

pσ''pΔ'
3

IaaS
pμ 7

(c) MMVA’s effect on the efficiency

Figure 8.3: Basic deployment measurements

related functionality: (i) the AVS can extract functional virtual appliances –
p2 –, (ii) the optimization facility still returns valid optimized appliances – p′2
–, (iii) the decomposition finds the common parts of the different appliances –
p4 – and (iv) the decomposed virtual appliances are still functional after
rebuilding (p′′′2).

The evaluation of the proof of concept scenario on multiple implementa-
tions of the proposed architecture provides the evidence on reaching infra-
structure independence – for the objectives of the methodology see page 122.

8.4 basic deployment efficiency

This section discusses the measurement group associated with appliance de-
ployments (depicted as measurement 9 in Figure 8.1). During the evaluation

8.4 basic deployment efficiency 129

section, I calculate the efficiency of the various optimization algorithms with
the speedup function – S ∶ (P, Φ)→R:

S(pσ, ϕ) =

baseline
³¹¹¹·¹¹¹µ
measure(initVM(pσ, ϕ))

measure(initVM(p′σ, ϕ))
´¹¹¹¸¹¹¹¶

optimized

(8.7)

Where the system calculates the ratio (speedup – S(pσ, ϕ)) of the measured
deployment times of a service package before (pσ) and after (p′σ) the optim-
ization was applied. This speedup value can be used to express the effects
of the optimization facility, the decomposition and replication algorithms
(distributed delivery optimization) and the MMVA based rebuilding. The
currently tested optimization algorithm is successful and the system reached
its target for efficient deployments – for the objectives of the methodology
see page 122 – if it meets the following requirement:

S(pσ, ϕ) > 1 (8.8)

8.4.1 Baseline and post-optimization deployments

The baseline measurement (measure(initVM(pσ, ϕ))) for the speedup values
is presented in step 1-3 in Figure 8.3a and in measurement 7 of Figure 8.1.
During this measurement, I used the deployment client to request the IaaS
system for the initialization of the pσ virtual appliance in a virtual machine.

To evaluate speedup values the testbed system has to be prepared specific-
ally for the optimization algorithm. Therefore, Figure 8.3 reveals the testbed
setup and evaluation scenario for the three basic efficiency measurements –
measure(initVM(p′σ, ϕ)).

Figure 8.3a displays that after the baseline measurement has completed,
the optimization facility is ordered to optimize the original virtual appli-
ance (see step 4). Then the optimization facility creates a virtual appliance
playground (see Section 4.2.2) for pσ in step 5. Next, the resulting package (p′σ)
of the optimization algorithm (see Section 5.2) is stored in the repository (see
step 6). Finally, the testbed is ready to evaluate the speedup of the optimiza-
tion by measuring the deployment time of p′σ as in steps 7-9. This measure-
ment is also depicted in the Figure 8.1 as measurement 4 and it is independent
from the complexity of the initial appliance (pσ).

8.4 basic deployment efficiency 130

8.4.2 Deployments with rebuilding

Figure 8.3b highlights the two-phased evaluation of the decomposition and
rebuilding algorithms. This figure represents measurements 8, 10 and 11 in
Figure 8.1. In order to measure the efficiency of the rebuilding algorithm
this evaluation scenario requires a virtual appliance (pσ) that can be decom-
posed and rebuilt throughout the scenario. Therefore, the encapsulated ser-
vice in pσ has to form a medium complexity appliance and should meet the
following minimal requirements: servicepkg(pσ) = true ∧ sel f contained(pσ) =

true ∧ va(pσ) = true.
In order to allow the decomposition of pσ the measurement requires at

least two extra packages (pE,1, pE,2) to be present in the repository where the
pσ is going to be uploaded. These packages are needed to allow the decom-
position of the pσ into three pieces. The contents of the various packages are
not relevant for the current measurements as long as they are related to each
other as specified by these requirements:

items(pβ) ∶= items(pE,1)∩ items(pE,2) ≠ ∅

items(pβ) ⊂ items(pσ)

baseva(pβ) = true
items(p∆) = (items(pE,1)∩ items(pσ))/items(pβ) ≠ ∅

(8.9)

Next, before starting the measurements, the extra packages have to be
published in the available repositories (see r∗1 and r∗2 in Figure 8.3b). Their
publication will result their decomposition in the repositories as follows:

contents(r∗1) ∶= {pE,1, pE,2, pβ, p′E,1, p′E,2}

contents(r∗2) ∶= {pE,1, pE,2, pβ, p′E,1, p′E,2}

where
items(p′E,1) ∶= items(pE,1)/items(pβ) (8.10)

dep(p′E,1) ∶= {pβ}

items(p′E,2) ∶= items(pE,2)/items(pβ)

dep(p′E,2) ∶= {pβ}

Before taking the actual measurements, the last step (shown as step 1 in
Figure 8.3b) of the preparations requires the publication of pσ in reposit-
ory r1. The figure shows the packages created as a result of the decomposi-
tion (steps 2-3) focusing only on the packages relevant for the rebuilding of

8.5 estimating the cost of the architecture 131

pσ. In the following equation, I list all the packages that are present at the
final stage of the measurement:

contents(r∗1) ∶= {pσ, p′σ, p∆, p′′E,1, pE,1, pE,2, pβ, p′E,1, p′E,2}

contents(r∗2) ∶= {pE,1, pE,2, pβ, p′E,1, p′E,2}

items(p′′E,1) ∶= items(p′E,1)/items(p∆)

items(p′σ) ∶= items(pσ)/(items(p∆)∩ items(pβ)) (8.11)

dep(p′′E,1) ∶= {p∆}

dep(p′σ) ∶= {p∆}

dep(p∆) ∶= {pβ}

Finally, the rebuilding measurements can take place after initiating the de-
ployment request for p′σ in steps 4-5. As a result, the system selects the re-
building location (see step 6) according to Figure 6.7 and rebuilds the original
medium complexity virtual appliance. Then, the measurement completes
after the requested service package gets instantiated in a virtual machine
in step 7.

8.4.3 Deployments utilizing the MMVA

Figure 8.3c represents the evaluation scenario when the deployment client
manages the rebuilding of the decomposed virtual appliances with the help
of an MMVA. Figure 8.1 depicts this scenario with the measurements 10 and
12. This scenario requires that the base virtual appliance of the original vir-
tual appliance should be a minimal manageable virtual appliance (this spe-
cial appliance is presented in the Figure as pµ). The decomposition require-
ments of this scenario are not different from the previously discussed Equa-
tions 8.9 and 8.11. However, the rebuilding (shown as step 4-7 in Figure 8.3c)
is handled by the deployment client through an initially deployed pµ accord-
ing to the online reconstruction strategy introduced in Section 7.3.1.

8.5 estimating the cost of the architecture

The active repository functionality is executed during the idle time of the re-
positories. As a result, its cost is negligible for the appliance creators. There-
fore, I only define the cost of the proposed architecture while the appliance
developer initially uploads or optimizes the size of a virtual appliance. These
algorithms are evaluated with measurements 1, 2, 3 and 6 in Figure 8.1 and
targeted at the cost of applying the architecture – for the objectives of the
methodology see page 122.

8.5 estimating the cost of the architecture 132

8.5.1 Evaluating the optimization time

Optimization time (see measurement group 3 in Figure 8.1) is measured with
steps 4-6 in Figure 8.3a. These measurements are all independent from the
complexity of the virtual appliance they are operating with. Depending on
the management capability of the original virtual appliance (pσ), the evalu-
ation results in measurement 1 or 2:

if manageable(pσ) =

⎧⎪⎪
⎨
⎪⎪⎩

true then measurement 1

f alse then measurement 2

(8.12)

This evaluation scenario aims at estimating the cost of the architecture.
Therefore, I calculate the number of future deployments (Ndep) required to
overcome the cost of the virtual appliance size optimization:

Ndep(pσ, ϕ) ∶=
measure(optimize(pσ))

measure(initVM(pσ,ϕ))−measure(initVM(p′σ,ϕ))
where servicepkg(pσ) = true

and p′σ ← optimize(pσ)

(8.13)

The optimize operation is defined in Figure 5.2. By default, the optimiz-
ation – and therefore the measurement – is executed until p′σ reaches its
optimal size:

optimalsize(p′σ) = true (8.14)

8.5.2 The cost of initial upload

Finally, the last evaluation scenario covers measurement 6 in Figure 8.1. This
evaluation scenario uses a medium complexity virtual appliance (pσ) and
starts right after the extraction of the appliance from its original hosting
system.

In order to estimate the cost of the initial upload algorithm (introduced in
Section 4.2.3) I first take a baseline measurement (tIUBL) by uploading the
extracted virtual appliance to one of the following empty repositories:

Rϕ ∶= {r1, r2, r3}

Pϕ ∶= ∅

contents(r1) ∶= contents(r2) ∶= contents(r3) ∶= ∅

tIUBL ∶= measure(uploadVA(pσ))

(8.15)

During the measurement the repositories are always cleared after a single
upload operation in order to maintain the initial requirements throughout
the entire baseline evaluation.

8.5 estimating the cost of the architecture 133

Next, in order to determine the effects of the initial upload algorithm, I
upload several packages to the repositories according to the requirements
defined by Equations 8.2 and 8.3. These requirements allow the initial upload
algorithm to optimize the upload process by analyzing the original virtual
appliance (pσ) in order to find the most suitable repository that can host the
appliance with minimal upload. Therefore, I measure the time spent during
the initial upload operation with the new repository layout to take the optim-
ized timings (tIUOpt). As a result, the initial upload algorithm is economically
applicable when tIUOpt < tIUBL.

chapter summary. This chapter revealed the ways future Chapters are
evaluating my contributions. First, the chapter systematically lists the eval-
uation scenarios and links them to the appropriate subsystem of the AVS
architecture. Next, based on their complexity, I have identified the kinds of
appliances (minimal-, medium- and high complexity) needed for the complete
evaluation of my research results. Afterwards, the chapter presents an elabor-
ate scenario that not only involves all parts of the architecture, but it checks
the correctness of the various components through extracting, size optimizing,
decomposing and rebuilding a high complexity appliance. Finally, I have also
included the use cases that are directly testing the performance of the various
AVS subsystems.

9
T E S T B E D

chapter overview. Building on the methodology defined in the previ-
ous chapter, this chapter evaluates the proof of concept scenario and proves
the infrastructure independence of the architecture. To do so the chapter
defines several testbed infrastructures, details their implementations and
provides the evaluation of the proof of concept scenario on them.

9.1 introduction

This chapter has two main objectives: (i) introduce the testbed infrastruc-
tures (Nimbus, Eucalyptus, Proprietary) that can be used to execute the ex-
perimental measurements defined in Chapter 8, and (ii) demonstrate the in-
frastructure independence of the architecture by evaluating the proof of concept
scenario (see Section 8.3) on the various infrastructures. These infrastruc-
tures all provide the required functionality for the proposed architecture,
however they approach it from different perspectives: (i) adapting existing
open source projects to support the AVS; (ii) using an existing infrastructure
without modifications; finally, (iii) providing a new minimal implementation of
an IaaS and a repository system that are fully aware of the AVS services.

First, to demonstrate how an existing open source IaaS system can be ad-
apted for the use of the architecture, I have evaluated several available open
source IaaS systems (Nimbus, OpenNebula, Eucalyptus) that could use the
appliance rebuilding functionality with the smallest modifications (see Fig-
ure 6.6b and Section 6.3.3). I have chosen Virtual Workspace Service (VWS
– [40]) offered by the Nimbus project [54], because it was not bound to a
specific repository implementation. Therefore, I have extended the VWS ser-
vice to support accessing and rebuilding appliances from an active reposit-
ory implementation. For the active repository functionality, I supervised an
MSc project that has extended and implemented the application content ser-
vice (ACS – [33, 77]) – a proposed recommendation of the Open Grid Forum.
This recommendation offers extensible metadata definition (requirements

134

9.2 the generic testbed 135

defined in Section 4.4), various metadata search operations (required for the
appliance rebuilding and decomposition algorithms detailed in Chapter 6)
and seamless integration to web-service based systems.

Second, I am discussing an implementation based on Eucalyptus, because
of its three advantages: (i) Eucalyptus supports the basic requirements of the
proposed architecture without extensions or modifications, (ii) Eucalyptus
could be easily replaced with Amazon EC2 to present the viability of the
proposed architecture on a commercial IaaS cloud system, finally, (iii) the
implementation can avoid Grid Security Infrastructure and Web Services Re-
source Framework [6] that was a requirement while I was using the Virtual
Workspace Service based testbed.

Finally, I have implemented a prototype IaaS system with an active repos-
itory to enable the evaluation of the proposed architecture to its full extent.
This implementation only focuses on those IaaS and repository functionalit-
ies that are used by the various components of the architecture, but it still
maintains the main characteristics of traditional IaaS systems and repositor-
ies.

9.2 the generic testbed

Before detailing the different implementations, I introduce the generic test-
bed aimed at supporting the different evaluation scenarios discussed in the
applied methodology (see Chapter 8). Then, I detail the mapping of the proof
of concept scenario (see Section 8.3) to this generic testbed. Afterwards, the
specific testbed implementations are discussed through highlighting the be-
havioral differences and challenges compared to the generic testbed presen-
ted in this section.

Figure 9.1 reveals the generic testbed infrastructure required to accomplish
the proof of concept evaluation scenario. This scenario involves all compon-
ents of the proposed architecture; therefore, the system requirements of the
components have to be met by the infrastructure. In the figure, the hosts of
the infrastructure are denoted with ellipses (e.g. n33 or portal014), the dif-
ferent administrative domains are circled with dashed and dotted lines (e.g.
University of Westminster), the different software components are represented
with boxes (e.g. Xen, AVS), arrows symbolize the direction of direct control
between components, finally, repositories are represented with cylinders (e.g.
r1, r2).

For the demonstration of the extraction functionality, I have implemented
the central extraction service (see Section 4.2.1.1) of the AVS. Thus, the AVS
must be deployed with direct access to the VMMs (namely Xen – [7]) of the
infrastructure (e.g. see the host named source in Figure 9.1). Therefore, in or-

9.2 the generic testbed 136

University of Westminster
portal014

r3IaaS

n33
Xen

n34
Xen

n35
Xen

n36
Xen

n37
Xen

n38
Xen

n39
Xen

n40
Xen

asd
r2AVS

University of Miskolc
source

r1AVS

Xen

Figure 9.1: The generic testbed used for evaluating the AVS service and its compon-
ents

der to allow extraction a highly complex web service has to be prepared in a
virtual machine prior the first step of the proof of concept scenario (see Sec-
tion 8.3). The validator algorithm has to be available for this high complexity
service because the appliance of the service will undergo the optimization
procedure. After analyzing various services, I have identified GEMLCA as
the best candidate to represent the high complexity services. I have selected
the GEMLCA service [22] for the following advantages: (i) it supports web
service notifications, therefore, it requires extra firewall rules during its ex-
ecution; (ii) it supports connectivity with various grid and web services as
its external dependencies (e.g. grid sites supporting legacy code execution);
(iii) its appliance has high amount of internal dependencies – e.g. a Globus
Toolkit 4 (GT4 – [32]) service container; finally, (iv) I have personal devel-
opment experience with the service as it is a product of the University of
Westminster, therefore, I can create a complete validator for the service.

Consequently, I have installed GEMLCA in a virtual machine that is hos-
ted by one of the VMMs accessible for the AVS service. Throughout the
evaluation of the proof of concept scenario, I will use the GEMLCA virtual
appliance (see Section A.3) as the service package:

p2 ∶= GEMLCA (9.1)

9.2 the generic testbed 137

proof of concept scenario. According to the proof of concept scen-
ario, the evaluation of the architecture starts with the extraction of the virtual
appliance of the highly complex service from its initial virtual machine.

The size of the new virtual appliance is optimized (pσ → p′σ) after the ex-
traction step in the scenario. To accomplish the evaluation of this task the op-
timization facility requires an IaaS service (c ∈ ϕ – executed on host portal014
in Figure 9.1) with a dedicated cluster (Ξϕ(c) – n33-n40 in the figure) allow-
ing the execution of the size optimization algorithm in parallel. University of
Westminster provided 8 dedicated compute nodes of its cluster as the back-
bone of my testbed. All the nodes have the same hardware configuration (4
CPUs, 4GB of RAM and 80GB of HDD), software configuration (Debian
Lenny with Xen virtual machine monitor [7]) and they are interconnected
with Infiniband connections towards the host of the IaaS service. Only the
service’s host (portal014) has external connections towards the Internet. In
this testbed, the 8 cluster nodes and the host of the IaaS service represent an
entire IaaS system.

Next, the optimized GEMLCA appliance is uploaded to a repository. Ac-
cording to the requirements of the evaluation scenario, the testbed infrastruc-
ture should consist of three repositories (r1, r2, r3). To represent the diversity
of the repositories they should belong to three different connection classes
according to their connection properties with the host of the IaaS service (c):

l(c, r1) > l(c, r2) > l(c, r3)

BW(c, r1) ≤ BW(c, r2) ≤ BW(c, r3)
(9.2)

As a result, the generic testbed consists of the host called “source”
that runs r1 the local repository of the AVS service at the University of
Miskolc (BW(c, r1) = 16Mbps). This host runs the AVS service to demon-
strate the scenario when the appliance developer uploads the initial virtual
appliance from an external location of the IaaS system. Similarly to the host
of r1, r2 is hosted on “asd” and it runs the local repository of the AVS service
at the University of Westminster. However, this host is not part of the dedic-
ated cluster, therefore, its sole connection towards the IaaS system is through
a gigabit Ethernet port. The AVS service at Westminster can be used to apply
the decomposition and optimization functions on existing appliances.

Finally, to allow the decomposition of the uploaded GEMLCA appliance
the r2 and r3 should store packages according to Equations 8.2 and 8.3. These
requirements not just define the desired locations of these packages but they
also require to have common parts with the GEMLCA service. As the GEM-
LCA service is built on Globus services, I have used the “Globus 002” virtual
appliance from the Science Clouds marketplace [20]. The Globus virtual appli-

9.3 testbed with nimbus 138

ance (referred as p1 in Equation 8.2) is stored in r2 before the evaluation of
the proof of concept scenario is started.

An SSH appliance (pµ, see Section A.1) is also stored in repository r3 to
serve as a dependency of the Globus appliance: ∃n < PC(p1) ∶ (pµ ∈ D(p′1, n)).
In most of the measurements an optimized SSH appliance is used as the min-
imal manageable virtual appliance because its basic functionality can be used
to present the management interfaces required by the various algorithms of
the architecture. The SSH appliance can be used as a replacement for an
MMVA because of its minimal complexity.

9.3 testbed with nimbus

Nimbus [54] is one of the earliest academic IaaS solutions [43]. During the
early stages of my research the developers of Nimbus offered the only open
source IaaS solution, therefore, I have used their solution as a base of my
initial experiments on virtual appliance creation for services. These experi-
ments were first published in [44].

Nimbus provides the Virtual Workspace Service (VWS) as a Web Services
Resource Framework (WSRF – [6]) compliant service. This service is the cent-
ral control point of the underlying infrastructure. Users contact the VWS to
create, manage and destroy virtual machines on the VWS controlled cluster
nodes. The service uses the Workspace Controller component on each node to
enact the management tasks requested on the VWS interfaces. The service
also handles repositories on a generalized way, therefore, support for new
repositories can be added by third party developers.

When I conducted my initial experiments, Nimbus did not provide any
particular repository implementations. Therefore, I have also investigated
repositories (e.g. [13, 33, 69]) to present the advanced features of the architec-
ture. The four main requirements against the repositories was (i) their WSRF
behavior (to allow seamless integration with the virtual workspace service),
(ii) their extensibility and the availability of their open source implementa-
tion, (iii) their capability to store and handle occasionally large sized virtual
appliances and finally, (iv) their standardized behavior. After the analysis
of various repository systems, I have selected the application content ser-
vice (ACS – [33]) to serve as the repository of my Nimbus installation, be-
cause, the ACS is an Open Grid Forum proposal with multiple [61, 77] open
source implementations designed with the WSRF concepts and extensibility
in mind.

Figure 9.2 presents the deployment of the Nimbus services on the Westmin-
ster cluster. eVWS represents the service of the virtual workspace service and
WC represents its workspace controller component. The workspace service is

9.3 testbed with nimbus 139

University of Westminster
asd

eACS2
AVS

+CES

Xen
WC
n35

Xen
WC
n36

Xen
WC
n34

Xen
WC
n33

portal014
eACS3eVWS

Xen
WC
n39

Xen
WC
n40

Xen
WC
n38

Xen
WC
n37

University of Miskolc
eACS1AVS

Xen

source

Figure 9.2: Nimbus based testbed

accessible from other administrative domains in contrary to the workspace
controllers that are only accessible from the host of the eVWS service. Along-
side with Nimbus services ACS repositories are also deployed and they are
denoted as eACS in the figure. The AVS service runs the centralized extractor
service (CES – see Section 4.2.1.1) component that can reach the Xen VMMs
on all the cluster nodes (displayed with a dashed and dotted line). The follow-
ing paragraphs describe the extensions that allow Nimbus and ACS services
to meet the requirements of the generic testbed and the AVS service.

deployment challenges of the nimbus testbed. In 2008, the avail-
able workspace service (downloadable from the website of the Nimbus pro-
ject [54]) supported only basic virtual appliance staging. Thus, it was able to
download the virtual appliance by either using HTTP or by collecting the ap-
pliance from a shared file system between the Virtual Workspace Service and
the virtualization-enabled machines (n33-n40 in Figure 9.2). The workspace
service allows its extension towards extra virtual appliance sources with the
help of StagingAdapters. Therefore, as my extension to the local service, I have
implemented a new staging adapter that allows downloading virtual appli-
ances from ACS repositories. As a means to mark the difference between the
publicly available and the extended workspace service, I have depicted the
service as “eVWS” in Figure 9.2. The extension expects that the host of the
VWS service also include a repository client for the ACS service.

9.4 testbed with eucalyptus 140

This testbed infrastructure uses repositories compliant with the Application
Content Service standard proposal of the Open Grid Forum. As the minimal
implementation of the standard is not capable to serve as an active repository,
I have specified the required extensions that reach the boundaries of the
standard proposal and meet the requirements of my proposed architecture.
Then, I supervised a successful MSc project (at the University of Miskolc) that
implemented the specified extensions resulting [77]. This implementation
adds several extra functionalities so that the standard ACS clients are still
capable of using the extended features of the implementation. Because of
these extended features, Figure 9.2 depicts the repository instances based
on this implementation as eACS. This implementation adds the following
functionalities to the proposal:

• To enable the transfer of larger virtual appliances, this ACS implement-
ation offers new transfer methods above the minimal required by the
standard (namely: gridftp and http).

• To enable decomposition and replication, it allows the creation of ex-
ternal package dependencies among repositories:

p ∈ contents(ri) ∶ (∃px ∈ dep(p) ∶ px ∉ contents(ri))

• To remove the threat for destroying an external dependency for a pack-
age, the implementation incorporates new two phased package deletion and
update procedures ensuring the consistency of the system.

• Finally, the implementation allows extended content management so re-
positories can handle individual items in stored virtual appliance pack-
ages if necessary for the decomposition algorithm.

9.4 testbed with eucalyptus

During my research, the influence of the commercial infrastructure as a ser-
vice providers [39, 50] continuously increased on cloud computing techno-
logies. Therefore, the proposed virtual appliance creation techniques should
be applicable in these IaaS solutions. However, the evaluation of the architec-
ture cannot be executed on commercial systems because of financial reasons.
Consequently, a local testbed has to be constructed – based on the cluster of
the University of Westminster – with equivalent properties (closed infrastruc-
ture and fixed service interfaces) to the commercial systems. To emulate these
commercial systems, I have investigated the available non-commercial im-
plementations of their interfaces [21, 40, 54, 58] and selected the open source
version of Eucalyptus based on (i) its widespread use in the academia and

9.4 testbed with eucalyptus 141

University of Westminster

University of Miskolc
source

asd
r2AVS

Xen

Node
controller

n33

Xen

Node
controller

n35

Xen

Node
controller

n34

Xen

Node
controller

n36

Xen

Node
controller

n37

Xen

Node
controller

n39

Xen

Node
controller

n38

Xen

Node
controller

n40

Walrus
r3........

Cloud
Controller

Cluster
Controller

portal014

pμ

DE

Xenr1

Figure 9.3: Eucalyptus based testbed

on (ii) its most complete implementation of the Amazon EC2 interface fam-
ily.

Eucalyptus offers four basic services: (i) the cloud controller offers the entry
point to a Eucalyptus IaaS system by implementing the EC2 interfaces of
Amazon; (ii) a Eucalyptus system could consist of multiple clusters that
can be reached through their cluster controller services; (iii) within a specific
cluster the virtualization layer of each computing node is made accessible
by the local Node Controller service; finally, (iv) Walrus offers the permanent
storage – repository – facilities for the entire Eucalyptus system and it also
implements the Simple Storage Service interface of Amazon.

Figure 9.3 reveals the specifics of a Eucalyptus based testbed system on
the Westminster cluster. This installation only contains a single cluster thus
both the cloud and the cluster controller services are deployed on the same
host (portal014). This host runs as the controller of the local cluster by man-
aging both its IaaS behavior and also its networking – e.g. DHCP, DNS and
routing. The walrus repository is also located on portal014. Finally, in this
testbed the Xen virtual machine monitors of the cluster nodes (n33-n40) are
only accessible to the Node controller services.

9.5 my proprietary testbed 142

challenges of the eucalyptus testbed. I have identified three chal-
lenges while designing the Eucalyptus testbed: (i) support of the closed be-
havior of commercial IaaS systems, (ii) support for remote repositories and
the active repository functionality, (iii) support the rebuilding of decomposed
virtual appliances.

First, taking into consideration the requirement of closed behavior, the AVS
(hosted on asd) only uses the cloud controller and walrus services throughout
its entire operations (depicted with a bold bidirectional arrow in Figure 9.3).
Consequently, the AVS service on this testbed cannot extract appliances de-
ployed within the local cluster. Instead, the AVS supports the decoupled
extraction component (shown as a dashed arrow in Figure 9.3, for details see
Section 4.2.1.2) that allows the extraction operation to be executed remotely.

Second, the active repository functionality is supported by the decomposi-
tion functionality of an AVS service (see Section 6.2.1 on page 6.2.1). However,
when the AVS provides the decomposition functionality the AVS has to be
connected with the repository on a low latency high bandwidth link. Con-
sequently, for each passive repository there should be a local AVS installation.
Therefore, the AVS should be hosted within the same administrative domain
as the repository by either deploying it within the IaaS system on a virtual
machine or deploying it next to the repository. As I was the maintainer of
the testbed infrastructure, I have chosen the second option by installing the
AVS on the host of “asd”.

Next, an MMVA (pµ) stored in the central Walrus repository (r3) enables
the online rebuilding capabilities of the testbed. As a result, the system can
rebuild decomposed virtual appliances by downloading and installing pack-
ages from repositories (either local or remote). Installing a package needs
the MMVAs support for interfacing with the repository where the package
is stored. As a result, in order to show that the system can handle mixed
repository types, Figure 9.3 does not specify the type of the repositories r1
and r2.

Finally, the MMVA in the repository also enables the virtual machine pool-
ing methods of the optimization facility (in the AVS service hosted at asd).
VM pooling (detailed in Section 7.3.3.2) increases the efficiency of the op-
timization facility in closed IaaS systems, like Eucalyptus, where deployable
virtual appliances have to be stored in their central repository (r3).

9.5 my proprietary testbed

The proprietary testbed system (presented in Figure 9.4) is built on the basic
virtualization-enabled cluster nodes, and adds my custom built IaaS system
and repositories that meet all the requirements of the AVS service. These cus-

9.5 my proprietary testbed 143

University of Westminster

Firewalled cluster boundaries

ss
h,

rs
yn

c

asd
r1AVSCES

VMScheduler
&Queue

portal014

Opt
FacTrn

AVS

ssh,rsync
r'6........pμ

Xen

n37

r'8........pμ

Xen

n39

r'7........pμ

Xen

n38

r'9........pμ

Xen

n40

r'2........pμ

Xen

n33

r'3........pμ

Xen

n34

r'4........pμ

Xen

n35

r'5........pμ

Xen

n36

Figure 9.4: The proprietary testbed

tom built components allow the flexible reconfiguration of the testbed system
for the subsequent evaluation of all scenarios introduced in Chapter 8.

The proprietary IaaS system is based on direct super user access (e.g. root
login on Unix machines) to all cluster nodes and it manages the virtual ma-
chines with the command line toolset of Xen. The VMScheduler & Queue com-
ponent is restricted to three basic functionality: (i) it keeps a record about
virtual machine allocations on the cluster nodes, (ii) it also schedules the
creation and destruction of new or unused virtual machines, finally, (iii) it
allows the remote execution of virtual machine management operations like
restart, suspend. The AVS components dependent on this IaaS system are
drawn on its top: (i) the central extraction service (marked as “CES” in Fig-
ure 9.4) is dependent on the system’s virtual machine management opera-
tions, (ii) the IaaS initiated MMVA based appliance transformation (depicted
as “Trn” in Figure 9.4) uses the virtual machine creation capabilities of the
system and (iii) the optimization facility (shown as “Opt Fac” in Figure 9.4)
queues the virtual machine requests for the parallel validation tasks with the
system.

The proprietary repositories (r1, r2, . . . , r9) keep their contents (Pϕ) in a
simple file structure. These repositories offer queries on their contents over
a simple web service interface and transfer their content with the help of
rsync (between repositories – [83]) and sftp (between a repository and the
host of a VMM). They can be requested to deliver a package without rebuild-

9.6 summary 144

ing, however their default behavior is to rebuild virtual appliances before
delivery.

Figure 9.4 reveals a major difference between the generic testbed and its
proprietary implementation. As this testbed is controlled entirely by me, new
administrative domains can be established within the cluster itself (no need
for the site at University of Miskolc). In order to maintain the repository
classes introduced in Equation 9.2 I have installed repositories (r′2, r′3, . . . , r′9)
on all the cluster nodes to compensate the removal of the host “source” from
the testbed. Consequently, each repository in the cluster can behave as a
medium or a high bandwidth one depending on the source of the package
request. If the host of the repository requests the package, then the reposit-
ory behaves as a high bandwidth one (see Equation 3.2) because only disk
transfers are required to deliver the requested contents. In contrast, the re-
pository behaves as a medium bandwidth one when it has to transfer the
requested content to a third party.

9.6 summary

Table 9.1a presents the comparison of the applied technologies in the three
testbed infrastructures. The table offers a cross-reference between the various
testbed infrastructures and the discussion of their applied technologies (with
section references in the last row).

The various testbed infrastructures introduced in the previous sections
were evaluated with the proof of concept scenario (as described in Sections
8.3 and 9.2). The initial virtual appliances (GEMLCA – p2 –, globus 002 and
SSH) were identical during all three evaluations. Therefore, after the success-
ful execution of the proof of concept scenario (correct(p2, ϕ) = true) the three
repositories (r1, r2 and r3) should store identical packages independently
from the used testbed infrastructure (Φ ∶= {ϕNimbus, ϕEucalyptus, ϕProprietary}).
Consequently, if all implementations result the same package layout and
content (∀p ∈ Pϕx ∶ (∃p1 ∈ Pϕy ∶ (p = p1))), then I consider the target of infra-
structure independence reached – see page 122. As a result, I have defined the
following conditions for infrastructure independence:

1st ∶ ∄ϕx ∈ Φ ∶ (correct(p2, ϕx) = f alse)
2nd ∶ ∀ϕx, ϕy ∈ Φ ∶ (Pϕx = Pϕy)

(9.3)

In the first condition, I specify that all infrastructures should pass the correct-
ness criterion specified in Equation 8.6. The second condition for infrastruc-
ture independence can only be met between service-based systems (ϕ ∈ Φ)
that did not change after the evaluation of the proof of concept scenario.
Consequently, this evaluation requires the execution of the proof of concept

9.6 summary 145

scenario on isolated infrastructures that nobody else uses during the evalu-
ation.

Table 9.1b presents the evaluation of the proof of concept scenarios and
the infrastructure independence criteria defined in the previous equation.
This table presents the entire package set after the execution of the proof of
concept scenario (this package set was initially discussed in Equation 8.4),
in order to allow the comparison between the various package sets I have
calculated the SHA1 hash values [28] for the images of every package. These
hash values can be seen in the second column of the table (representing
the Nimbus testbed – ϕNimbus). Afterwards, I only present values if they are
different from the original hash values of the Nimbus testbed. I have used
a “==” sign, in case the packages in the later evaluated testbeds represent
the same content as the original. Consequently, I consider the architecture
universally applicable, when only the second column contains hash values.

chapter summary. In this chapter, I have defined the way a generic test-
bed system should be constructed for the evaluation of the proof of concept
scenario (see Section 8.3). Then, the chapter details the implementation de-
tails of three testbed systems (namely Nimbus, Eucalyptus and a propriet-
ary one) I have used to demonstrate the infrastructure independence of my
research. Finally, the chapter presents the evaluation results of the three test-
beds and compares them to each other to present their correctness and the
IaaS independence of the AVS architecture.

9.6 summary 146

A
V

S
Si

ze
O

pt
im

iz
at

io
n

D
el

iv
er

y
O

pt
im

iz
at

io
n

Te
st

be
d

Ex
tr

ac
ti

on
Tr

an
sf

or
m

at
io

n
In

te
rm

ed
ia

te
VA

M
M

VA
A

ct
iv

e
re

po
si

to
ry

R
eb

ui
ld

in
g

N
im

bu
s

C
ES

eA
C

S
–

√
eA

C
S

eA
C

S
Eu

ca
ly

pt
us

D
E

M
M

VA
√

√
A

V
S

M
M

VA
Pr

op
ri

et
ar

y
C

ES
/D

E
Ia

aS
/M

M
VA

√
√

Pr
op

ri
et

ar
y

Ia
aS

/M
M

VA

Se
ct

io
ns

4
.2

.1
4
.3

,7
.3

.2
5
.2

.3
7
.3

.3
.2

6
.2

.1
,9

.3
,9

.5
6
.3

.1
,7

.3
.1

(a) Applied techniques in
the testbeds

Te
st

be
d

U
ni

ve
rs

al
it

y
ϕ

N
im

bu
s

ϕ
Eu

ca
ly

pt
us

ϕ
Pr

op
ri

et
ar

y
C

ri
te

ri
a

co
rr

ec
t(

p 2
,ϕ

x)
tr

ue
tr

ue
tr

ue

1
st

Pa
ck

ag
es

H
as

he
s

–

SS
H

:p
µ

6
fd

4
5
f8

6
3
b4

5
e3

c8
3
d9

7
ab

b0
db

d8
8
a4

0
9
5
2
6
6
cf

b
==

==
gl

ob
us

:p
1

fd
c9

4
bb

fc
7
8
fd

ae
9
0
4
b7

6
7
1
6
fa

f7
d6

5
a7

ec
2
3
d7

3
==

==
gl

ob
us

:p
′ 1

3
2
5
3

ff
fd

7
bc

9
0
5
2
6
2

d2
4
e2

7
3
2
3
2
0
ef

f6
0

b7
da

1
3
7

==
==

ge
m

lc
a:

p 2
1
df

9
0
4
3
a3

8
4
9
0
5
af

8
9
c6

a9
0
3
3
3
4

d5
3
7
f6

2
9
5
cd

1
6

==
==

2
nd, see Equation 9.3

ge
m

lc
a:

p′ 2
7
bc

e9
a1

6
d1

a2
1
3
9
8
df

3
1
af

a5
4

d7
4
8
4
9
1
3
8
2
c7

0
9
6

==
==

ge
m

lc
a:

p′
′ 2

b3
ca

6
5
9
5

cd
5
8
4
bc

5
5
2
9

dc
5
3

ef
8
9
dc

c5
0
5
2
fe

a6
b2

==
==

in
de

pe
nd

en
t:

p 3
a0

d7
e2

1
f6

5
1
1
0
3
9
d9

e3
9
5
d9

d5
8
4
f3

d9
8
ed

a9
0
6
ef

==
==

co
m

m
on

:p
4

3
0
7
b3

6
3
7

cd
c7

8
2
5
dc

1
e1

8
6
ef

1
e4

0
f1

4
0
8
4
9

e4
a5

c
==

==

(b) Evaluation of the different testbed infrastruc-
tures

Table 9.1: Comparison of the testbed infrastructures

10
E VA L U AT I O N

chapter overview. This chapter continues the discussion of the experi-
ments and measurements conducted to verify the four major objectives iden-
tified in Chapter 8. After Chapter 9 confirmed the correctness and infrastruc-
ture independent behavior of the architecture, this chapter aims at the evalu-
ations and measurements for deployment efficiency and cost. To support these
objectives the following experiments and measurements are all executed in
the proprietary testbed (discussed in Section 9.5) that was designed to allow
automatic reconfiguration between the different experiments so the infra-
structure is always fit to suit the prerequisites of the evaluation scenarios.

10.1 used virtual appliances

The evaluation of the various measurements defined in Sections 8.4 and 8.5
requires at least medium complexity virtual appliances. High complexity
virtual appliances are dependent on external services, therefore, they would
require these external services to be either deployed within the cluster or ac-
cessible through the network. However, the application of external services
in different administrative domains could cause the following problems dur-
ing the evaluation: (i) because of the increased network latencies and the
unpredictable network changes they might reduce the performance of the
proposed architecture and therefore increase its apparent operating costs;
(ii) several architectural measurements (e.g. the full optimization of the ap-
pliance) result in the frequent execution of the virtual appliance validators
that could involve extensive use of the external services. Consequently, the
preparation for these evaluation scenarios should include the deployment of
those external services that the selected high complexity virtual appliances
are dependent on.

The outputs of the various evaluation scenarios are not dependent on high
complexity appliances. Therefore, medium complexity appliances are super-
ior to high complexity ones during the evaluation, because they can still be

147

10.2 the cost of applying the architecture 148

Table 10.1: Basic virtual appliance properties of the experimental appliances

Appliance Size Compressed Size Number of Files

SSH 476 MiB 120MiB 10647

Apache 667MiB 165MiB 14050

used to present the findings but with reduced prerequisites on the testbed
infrastructure. Consequently, I have searched for typical medium complexity
virtual appliances and made a selection based on the following criteria: (i)
the popularity and wide use of the service and (ii) the effort required to
create a validator for the service. Measurement results with widely used ap-
pliances allow the comparison with related works (e.g. the rPath Apache Ap-
pliance – [67]). The ideal candidate appliances should either have an already
existing validator or the development of a new validator should require min-
imum effort. In order to ensure that my findings are not specific to a partic-
ular virtual appliance all evaluation scenarios should be executed on at least
two independent virtual appliances.

Based on these criteria, I have defined appliances for two basic Internet
services, namely: the SSH and the Apache web server appliances. The SSH
appliance (defined in Section A.1) enables a user to transfer executables to
its hosting machine and allows their execution. In contrast, the apache ap-
pliance (detailed in Section A.2) does not allow arbitrary code execution,
however it enables the user to upload static html content to the machine. As
a result, the internal apache web server could offer the uploaded content
later on. Neither of these virtual appliances require configuration during
deployment, because they are standalone services and they do not depend
on external network connections (consequently they can be classified as me-
dium complexity appliances). The basic properties of the two original virtual
appliances are listed in Table 10.1.

During the experiments, these appliances were configured with 100 MiB
of free space to allow custom content for their users. The free space is big
enough to allow the initial use of the appliance, however for advanced usage
it either has to be extended with one of the available tools (e.g. resize2fs,
xfs_growfs) before publishing the appliance or alternatively a new file sys-
tem can be attached for the custom content (e.g. by attaching an EBS volume
on Amazon EC2).

10.2 the cost of applying the architecture

This section focuses on the cost of the application of the architecture. This
is the last remaining evaluation target identified during the introduction of

10.2 the cost of applying the architecture 149

0.56	

3.14	

3.206	

5.514	

0.16	

0.87	

1.38	

1.57	

0	 1	 2	 3	 4	 5	 6	 7	 8	

SS
H	
In
i1
al
	

Sp
lit
	

SS
H	
Di
re
ct
	

U
pl
oa
d	

Ap
ac
he

	
In
i1
al
	 S
pl
it	

Ap
ac
he

	
Di
re
ct
	

U
pl
oa
d	

Seconds	 Analysis	 VA	 Packaging	 Upload	

Figure 10.1: Comparison of initial upload phases with and without using Al-
gorithm 4.1
As the length of the Analysis phase is negligible this figure does not provide its exact timing. In
case of direct upload the analysis phase is not applicable. The number in the checked bars repres-
ent the time required for VA packaging. The number in the bricked bars represent the time required
for Upload

the methodology. The measurements and their requirements, supporting this
objective, were introduced in Section 8.5. Throughout this section, I discuss
the cost of initial upload then the cost of the optimization. The discussion
involves the basic measurements and the factors that can influence the estim-
ated cost.

10.2.1 The cost of initial upload

Among the first tasks of the appliance developer is the publication of its
newly created virtual appliance. This task is supported by the initial upload
algorithm introduced in Section 4.2.3. This algorithm decomposes the virtual
appliance and only uploads its unique parts for publication. Consequently,
for the evaluation of the algorithm, I erased all the previous contents of
the repositories in the proprietary testbed and uploaded my MMVA to r′3.
Then I have published both experimental virtual appliances in repositories
r′2 and r′3. I have measured the duration of the publication operation and
plotted it in Figure 10.1. The initial upload timings towards r′2 are used as
the baseline (tIUBL) for these measurement and presented as “DirectUpload”
in the Figure. The upload timings towards r′3 have identified the common
parts between the repository contents and used Algorithm 4.1 for publication.
These timings (tIUOpt) are presented as “InitialSplit” in the Figure.

10.2 the cost of applying the architecture 150

Each upload procedure is composed of three phases. First, the system ana-
lyzes the contents of the current appliance with the contents of the available
repositories and identifies the unique parts of the appliance. This analysis
phase is missing if the proposed algorithm is not used, and the system pro-
ceeds as the entire virtual appliance would be unique. Next, the unique parts
of the virtual appliance are enclosed in a repository package. Finally, the just
created repository package is uploaded to the most suitable repository. If ap-
plied, the proposed algorithm selects this repository; otherwise, the appli-
ance developer has to pick one based on his/her preferences and experiences
with the infrastructure.

As it can be seen in Figure 10.1, using the initial upload algorithm the
system can spare considerable amount of bandwidth for the appliance de-
veloper. Because of the algorithm, the experimental appliances became avail-
able more than 1.5 faster than the baseline measurement.

However, the initial upload algorithm is heavily dependent on the actual
repository contents. The algorithm could even fail to serve its purpose on
small but unique virtual appliances where the amount of data transferred to
identify the candidate repositories is comparable to the size of the virtual ap-
pliance under publication. The algorithm is most useful for uploading appli-
ances with small variance (e.g. when the appliance developer creates virtual
appliances based on the same service with different software environments
and configurations). This case is beneficial for both the appliance developer
who needs to upload just a fraction of the appliance and for the repository
because of the reduced storage needs of these appliances.

10.2.2 Evaluating the cost of size optimization

This section further details the measurements initially introduced in Sec-
tion 8.5.1. These measurements are focused on the efficiency and the benefits
of the proposed virtual appliance size optimization technique (see Chapter 5).
This section analyzes the optimization facility from multiple viewpoints in-
cluding (i) the gains on the deployment times of the optimized appliances,
(ii) the impacts of the various optionally applicable techniques (snapshot-
ting, using the optimization target criterion and application of MMVAs) of
the facility on the optimization time.

During the evaluation of the optimization facility the repositories are not
playing any role because the optimization takes place entirely in the cluster
behind the AVS service, thus there is no need to publish the virtual appli-
ance before the optimization completes. In order to evaluate the optimiza-
tion facility, I have executed an unlimited optimization of both experimental
virtual appliances (I have executed the optimization procedure without an

10.2 the cost of applying the architecture 151

0	

50	

100	

150	

200	

250	

300	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

M
by
te
s	

Itera+ons	

Size	 Remaining	

(a) SSH appliance

0	

50	

100	

150	

200	

250	

300	

350	

400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	

M
by
te
s	

Itera+ons	

Size	 Remaining	

(b) Apache appliance

Figure 10.2: The process of optimization demonstrated on the size of the appliance

end criterion). Figure 10.2 presents these executions through the progression
of appliance size. The figure depicts the ratio between the size of the inter-
mediate virtual appliance after a specific optimization iteration and the size
of the non-validated (and thus still remaining) items of the virtual appliance.

Instead of evaluating the optimization facility with a regular execution, I
have initiated the optimization process that monitored the state of the op-
timization system at the end of the optimization iterations (see Section 5.2.1).
The state includes the items removed, the current value of all five completion
metrics (see Section 5.2.1.4), the number of virtual machines used, the num-
ber of validations passed, the average time to initiate a virtual machine, etc.

10.2 the cost of applying the architecture 152

02:49.3	

05:42.1	

08:34.9	

11:27.7	

14:20.5	

17:13.3	

20:06.1	

22:58.9	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

VA
	 o
p&

m
iz
a&

on
	 it
er
a&

on
	 le
ng
th
	 (m

in
:s
ec
)	

Itera&on	

Snapsho5ng	
Normal	

Figure 10.3: Effect of intermediate virtual appliance creation in the optimization fa-
cility

Based on these values I can evaluate the system’s behavior without executing
the optimization process in too many configurations.

As it was depicted in Table 10.3, the unlimited optimization process re-
quires hours to complete. I have implemented a snapshotting approach that
creates an intermediate virtual appliance after the optimization iterations as
discussed in Sections 5.1.1 and 5.1.2.2. This appliance is stored in a virtual
appliance playground (see Section 4.2.2) with the validated items already re-
moved; therefore, later on the algorithm uses this reduced virtual appliance
in the parallel validation algorithm. Figure 10.3 presents the optimization of
the SSH virtual appliance with and without the creation of the intermediate
virtual appliances. The figure reveals that intermediate virtual appliances can
dramatically decrease (e.g. from 20 minutes to less than five) the time and
cost of later iterations of the size optimization process, therefore, this tech-
nique immediately results in the reduction of the total optimization time.

However, this approach still does not exploit the completion criterion eval-
uation in the target check action. Figure 10.2 reveals another problem: in both
executions, the optimization process could not reach significant size reduc-
tion in its late stages (the size of the remaining non-validated items follow
a Pareto distribution). This is also reflected in Figure 10.5 where we can see
that more than 40% of optimization time is spent on less than 10% of fur-
ther size gain. Therefore, to avoid the tail problem, I have investigated the
various completion conditions (introduced in Section 5.2.1.4) whether they
can predict the inefficiencies of the late optimization process. However, most
of the completion conditions cannot predict the inefficiencies, because they
are either not stable enough throughout the entire optimization process (see

10.2 the cost of applying the architecture 153

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Pe
rc
en

ta
ge
	

Itera+on	

Reduc2on	
Remaining	

(a) SSH

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	

Pe
rc
en

ta
ge
	

Itera+on	

Remaining	

Reduc7on	

(b) Apache

Figure 10.4: Comparing the stability of the remaining and reduction completion con-
ditions – see Section 5.2.1.4

reduction in Figure 10.4a), or their inefficiency threshold cannot be general-
ized for multiple appliances (e.g. optimization time). A stable completion
condition has to be monotonic, in order to allow the definition of a threshold
value that the completion condition variable only crosses once during the op-
timization process. I have defined inefficiency indicators as special completion
condition variables that reveal the inefficiency of the optimization process
after passing the previously defined threshold value.

From the list of Section 5.2.1.4, I have identified two completion condi-
tion variables as candidates for the role of inefficiency indicator. The first
one is the size reduction percentage achieved during a single iteration. The

10.2 the cost of applying the architecture 154

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0.0%	 10.0%	 20.0%	 30.0%	 40.0%	 50.0%	 60.0%	 70.0%	 80.0%	 90.0%	 100.0%	

Ti
m
e	
sp
en

t	

Remaining	 non-‐validated	 content	

SSH	 Apache	

Figure 10.5: Effects of remaining size exit condition on execution time

second one is the percentage of the remaining (non-validated) appliance con-
tents compared to the current size of the intermediate virtual appliance. Fig-
ures 10.4a and 10.4b presents the changes of these two completion conditions
throughout an entire optimization. I have chosen the remaining completion
condition for further investigation because its monotonic nature.

Figure 10.5 demonstrates the effects of applying different remaining com-
pletion condition values in the target check action. In this figure, I have nor-
malized the optimization time for better comparison (for the concrete op-
timization time values see Table 10.3 or Figure 10.2). In order to decrease
optimization time but still maintain adequate appliance size I have identi-
fied that the remaining completion condition variable can be used as an in-
efficiency indicator with the threshold of 10%. I have identified the 10% as
the indicator value because – according to Figure 10.5 – it significantly re-
duces (around 60%) the optimization time (the effect of Pareto distribution
on the late stages of the optimization) and still maintains the size of the
virtual appliance close to optimal.

The last option to increase the effectiveness of the optimization process is
the introduction of embedded minimal manageable virtual appliances (MMVA).
This option enables a new item removal algorithm and allows the pooling
and reuse of virtual machines according to Section 7.3.3. As discussed be-
fore, I have designed the two experimental virtual appliances with embed-
ded MMVAs. Therefore, the optimization facility can reuse the virtual ma-
chines utilized during the optimization process if it ensures that they are
still functional after some of its items were removed. Figure 10.6 compares
the execution time of the optimization procedure depending on its use of the
management capability in the appliance under optimization.

10.2 the cost of applying the architecture 155

0.8	 0.9	 1	 1.1	 1.2	 1.3	 1.4	 1.5	

SS
H	
N
o	

M
M
VA

	
SS
H	
w
ith

	
M
M
VA

	
Ap

ac
he

	 N
o	

M
M
VA

	
Ap

ac
he

	 w
ith

	
M
M
VA

	

Speedup	

Figure 10.6: Effects of MMVA usage during optimization

Finally, using the previously introduced options (snapshotting and MMVA)
for increasing effectiveness I have calculated the Ndep values (see Equation
8.13 in Section 8.5.1) based on the statistical information collected during
the execution of the optimization processes. Figure 10.7 presents the calcu-
lated values and presents the minimum amount of the future deployments
required before the optimization becomes profitable. The data points in the
figure represent the optimization iterations: (i) x-values represent the exact
time spent upon reaching a specific iteration and (ii) y-values depict the
actual Ndep value calculated based on the time spent on the optimization
and on the deployment time of the reduced appliance (pred) after the com-
pletion of the iteration. According to the figure, the cost of the optimization
procedure is high in the early stages reflecting the high grouping failure
rates (see Figure 5.3) and the long iteration lengths (see Figure 10.3). Later,
the cost increases linearly with the executed optimization iterations because
the last iterations of the process are not reducing the deployment time con-
siderably (see Figure 10.2).

10.2 the cost of applying the architecture 156

95	

190	

380	

760	

1520	

3040	

0:00:00	 0:14:24	 0:28:48	 0:43:12	 0:57:36	 1:12:00	 1:26:24	 1:40:48	 1:55:12	 2:09:36	

N
de

p	
	

Op'miza'on	 Time	

NoSnapNoMMVA	
WithSnapNoMMVA	
WithSnapWithMMVA	

(a) SSH appliance

45	

90	

180	

360	

0:00:00	 0:28:48	 0:57:36	 1:26:24	 1:55:12	 2:24:00	 2:52:48	

N
de

p	
	

Op'miza'on	 Time	

WithSnapWithMMVA	

NoSnapWithMMVA	

(b) Apache appliance

Figure 10.7: The number of future deployments required before size optimization
becomes profitable

10.3 the influence of the avs architecture on deployment 157

Table 10.2: Deployment times [in seconds] before and after the optimization process

Optimized & Rebuilt by
Baseline Optimized IaaS Repository MMVA

SSH 26.87 4.65 4.63 6.48 4.64

Apache 36.4 7.78 6.73 11.98 6.83

10.3 the influence of the avs architecture on deployment

This section discusses the preparations and measurements taken to present
the efficiency of deployment. The experimental measurements are based on the
requirements and discussion in Section 8.4. In order to present the viability
of the proposed architecture I have measured the deployment time of the
experimental virtual appliances (see Section 10.1) in various situations and
testbed configurations.

First, I have prepared for the baseline measurement introduced in Sec-
tion 8.4.1. During this measurement r′2 (see host n33 Figure 9.4) stored the
original version of both experimental virtual appliances. All other reposit-
ories were empty and r′2 did not store any other packages. Then I have
measured the deployment time of both virtual appliances while they were
sequentially instantiated in their virtual machines on the host of r′2 – namely
n33. This baseline measurement is shown in the second column of Table 10.2.
The table presents the measured timings formed from both the installation
and the activation deployment tasks (see Section 1.1). In the proprietary test-
bed the installation task of virtual appliance based services are composed of
downloading and unpacking the virtual appliance on the target host. The activ-
ation of the service instance is composed of two steps: (i) the virtual machine
is started (VM Startup), and then (ii) the service is started up within (Activ-
ation). The individual timings of all four phases of the basic deployment
procedure can be compared in Figure 10.8.

Next, I have executed the size optimization procedure on the virtual ap-
pliances stored in r′2 without any completion criteria specified for the target
check action (see Section 5.2.1.4 for details). Therefore, the optimization fa-
cility progressed with the optimization task until it has not found any fur-
ther removable items in the virtual appliances. Table 10.3 presents the basic
properties of the virtual appliances received as the results of the unlimited
optimization task (optimized appliances are listed with an apostrophe en-
tailed to their names). The eight machines optimized the appliances to less
then tenth of their original size within no more than two hours. In addition,
the file counts of the appliances have dropped to less than 1

50 th of their ori-

10.3 the influence of the avs architecture on deployment 158

Table 10.3: Basic virtual appliance properties of the optimized experimental appli-
ances

Appliance Opt. size Compr. Opt. Size Files Opt. time

SSH’ 147MiB 6.6MiB 197 4958 secs
SSH” N/A 1.2MiB 28 N/A
Apache’ 192MiB 13MiB 236 7468 secs
Apache” N/A 7.6 MiB 67 N/A
rPath Apache 1938MiB 152MiB 28923 N/A

2.29	

24.06	

5.83	

33.68	

1.92	

1.69	

1.51	

1.90	

0.44	

1.12	

0.44	

0.82	

0.00	 5.00	 10.00	 15.00	 20.00	 25.00	 30.00	 35.00	

SS
H	

O
p0

m
ize

d	
SS
H	

Ap
ac
he

	
O
p0

m
ize

d	
Ap

ac
he

	

seconds	 Download	 VM	 Startup	 Ac0va0on	

Figure 10.8: Deployment phases

ginals. The optimized appliances were also stored in repository r′2. To allow
comparison with the currently available appliances, Table 10.3 also lists the
properties of the rPath Apache appliance [67] created and optimized with
rPath’s pre-optimizing approach (see Section 2.3). This appliance is a typical
developer created appliance that does not take into consideration the target
functionality of the appliance therefore the appliance contains non-necessary
content.

Then, I used both optimized virtual appliances and deployed them to host
n33 (see Figure 9.4) while measuring their deployment times. These measure-
ments are presented in the third column of Table 10.2 and in Figure 10.8. The
various download time measurements clearly reveal the main cause of the
deployment time speedup after the application of the optimization facility.
After the comparison of the service activation times of the original and the
optimized appliances, I conclude that the optimization facility successfully

10.3 the influence of the avs architecture on deployment 159

removed components causing unnecessary delays in activation (e.g. some
unused system level services that were not important for the target function-
ality of the appliance). This feature increases the security of the optimized
virtual appliances compared to the original ones, because the size optimized
appliances cannot be attacked through unused system level services.

Afterwards, I have added an MMVA to the system (pµ) that was prepared
to serve as the base virtual appliance for both experimental virtual appli-
ances. I have added this package to both r′2 and r′3. As a result, the system
initiated the decomposition of the optimized appliances in r′2 leading to the
decomposed virtual appliances denoted in Table 10.3 with a tailing double
apostrophe. The table presents the decomposed virtual appliances only with
their service package. The dependencies of the service packages are not lis-
ted. Consequently, the table shows the files and their cumulative sizes that
directly represent the target functionality in each appliance. The table reveals
that these decomposed virtual appliances are significantly smaller than the
originals, however their real uncompressed sizes cannot be determined until
they are rebuilt before deployment.

Later, I deployed the decomposed virtual appliances on the host of re-
pository r′3 (see host n34 in Figure 9.4). During these deployments, I have
configured the proprietary testbed to support one of the various rebuilding
options introduced in the dissertation: (i) Active Repository based rebuild-
ing (see Section 6.3.2), (ii) IaaS based rebuilding (see Section 6.3.3), finally,
(iii) MMVA based rebuilding (see Section 7.3.1) using the pre-transfer meas-
urement threshold value of τ = 0.1 . These rebuilding algorithms were indi-
vidually used during the deployment of the decomposed virtual appliances
and their deployment timings are presented in the last three columns of
Table 10.2.

After all the measurements were executed successfully, the speedup val-
ues (S(p, ϕ)) for all the techniques are calculated and presented in Figure 10.9.
As the calculated speedup values are all significantly higher than one (see
Equation 8.8), I can conclude that the architecture is capable of decreasing
the deployment time of the various virtual appliances.

If the deployment times of the size optimized virtual appliances (denoted
as “Opti” in Figure 10.9) are used as the baseline value for calculating the
speedup, then the figure also allows the comparison of the various rebuild-
ing algorithms. As a result, the figure highlights that the measurements for
active repository based rebuilding (denoted as “RebuAR” in Figure 10.9) con-
firm the extra transfer costs identified in Table 7.1. As it was revealed in
Section 6.3.1 the active repository based rebuilding is only feasible when the
IaaS system has low bandwidth connections towards those repositories that

10.3 the influence of the avs architecture on deployment 160

5.78	 5.81	

4.15	

5.79	

4.68	
5.41	

3.04	

5.33	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

4.50	

5.00	

5.50	

6.00	

Op/	 RebuIaaS	 RebuAR	 RebuMMVA	

Sp
ee
du

p	

SSH	 Apache	

Figure 10.9: Effects of rebuilding

store the delta packages. However, this situation cannot be simulated with
the available infrastructure at the University of Westminster.

In the proprietary testbed infrastructure, the last two rebuilding solutions
could further improve the deployment times of size optimized virtual appli-
ances by maximum 15% at the cost of storing the MMVA in all the repositor-
ies. The MMVA based (denoted as “RebuMMVA” in Figure 10.9) rebuilding
results and their closeness to the IaaS based ones – denoted as “RebuIaaS”
in Figure 10.9 – reveal the applicability of the architecture in a closed IaaS
environment like the Amazon EC2.

chapter summary. This chapter has first discussed the virtual appli-
ances chosen for evaluating the potential of the system. Next, I have demon-
strated the experiments to evaluate the cost of applying the proposed ar-
chitecture. Finally, the last part of the chapter presented the measurement
results that verify the accomplishment of the increased deployment efficiency.

11
C O N C L U S I O N S

Highly dynamic service environments introduce new demands on service
deployment systems because they might schedule service calls on yet-to-be
deployed service instances. As a result, service users will face prolonged ser-
vice calls until the deployment system handles the creation of the new ser-
vice instance. Therefore, in highly dynamic service environments appliance
based service deployment systems are only usable if the deployment time
of the various appliances can be reduced. This dissertation has presented
an architecture for automatically creating virtual appliances with reduced
deployment time (see Chapter 3). The architecture is compared to other de-
ployment systems in Table 11.1.

This novel architecture is aimed at supporting the virtual appliance de-
velopers to encapsulate services in appliances usable in highly dynamic ser-
vice environments. In the current practice the virtual appliance creation task
is usually performed manually that hinders dynamic service deployment
and makes impossible to create dynamic adaptive systems. The primary con-
tribution in my work is a mechanism that automates this task. Consequently,
it enables faster adaptation of new services in the various Infrastructure as
a Service cloud systems. As more services become deployable in cloud sys-
tems, they can increase the dynamism of the service-based system.

My first contribution to the knowledge was an “approach for initial virtual
appliance creation” (see Section 1.3.1). This contribution allows appliance de-
velopers to extract an already existing service from a running system and
encapsulate it within a virtual appliance. The proposed mechanism incor-
porates the automated metadata collection and initial upload algorithms that
simplify the first publication of the newly created virtual appliance and pre-
pares its participation in virtual appliance based deployments. The collected
metadata supports the new size and delivery optimization algorithms and
the on-demand deployment process. The presented initial upload algorithm
minimizes the upload time of the appliance. As a result of this contribution,
the appliance developer can reduce the required resources for publishing the

161

conclusions 162

D
ep

lo
ym

en
t

Sy
st

em
s

Is
ol

at
io

n
R

ep
os

it
or

y
su

pp
or

t
U

ni
ve

rs
al

it
y

N
on

In
va

si
ve

ne
ss

St
at

e
tr

an
sf

er
su

pp
or

t

Ia
aS

sy
st

em
s

V
ir

tu
al

is
ed

√
√

√
—

H
ot

D
ep

lo
ym

en
t

Se
rv

ic
e

C
on

ta
in

er
—

√
√

—

H
A

N
D

C
on

ta
in

er
—

√
√

—

W
SP

ee
rs

C
on

ta
in

er
—

√
√

—

D
yn

ag
ri

d
C

on
ta

in
er

—
√

—
√

C
D

D
LM

im
pl

em
en

ta
ti

on
s

N
/A

—
—

—
—

Th
is

w
or

k
V

ir
tu

al
is

ed
√

√
√

√

(a) Requirement based classific-
ation

D
ep

lo
ym

en
t

Sy
st

em
s

Se
le

ct
io

n
In

st
al

la
ti

on
C

on
fig

ur
e

A
ct

iv
at

e
A

da
pt

D
ea

ct
iv

at
e

U
pd

at
e

D
ec

om
m

is
si

on

Ia
aS

sy
st

em
s

[4
0

,4
8

,5
8

]
—

√
—

√
—

√
—

√

H
D

S
[7

5
]

—
√

Pa
rt

ia
l

√
—

√
—

√

H
A

N
D

[6
2

]
—

√
Pa

rt
ia

l
√

—
√

—
√

W
SP

ee
rs

[3
5

]
√

√
Pa

rt
ia

l
√

—
√

—
√

D
yn

ag
ri

d
[1

5
]

√
√

Pa
rt

ia
l

√
—

√
—

√

C
D

D
LM

[8
1

]
—

√
√

√
√

√
—

√

Th
is

w
or

k
—

√
√

√
√

√
√

√

(b) Deployment task based
classification

Table 11.1: Comparison of the proposed architecture to related works

conclusions 163

virtual appliance, and concentrate on ensuring the target functionality of the
service instead of its internal representation in IaaS cloud systems.

Next, my second contribution provided a “parallel algorithm for virtual appli-
ance size optimization” (see Section 1.3.2). This contribution not only reduces
the deployment time by optimizing the size of the virtual appliances but it
also provides a technique that minimizes the optimization time and allows
the early release of the optimal appliances. The proposed approach uses act-
ive fault injection to remove irrelevant parts of the virtual appliances. In or-
der to maintain the target functionality of the appliance, the reduced virtual
appliances are validated with algorithms provided by appliance developers.
The proposed size optimization approach offers several advantages over the
existing solutions. First, the appliance developer (who initiates the optimiza-
tion process) does not need to know the dependencies of the service before
its encapsulation in a virtual appliance. Second, this solution could also be
used with existing virtual appliances. As a result, frequently deployed and
decommissioned virtual appliances can be activated cost efficiently and rap-
idly.

Furthermore, my third contribution introduced the concept of active repos-
itories for “distributed virtual appliance storage and delivery” (see Section 1.3.3).
This contribution aims at optimizing the storage costs and delivery time of
virtual appliances in repositories. The proposed solutions are based on the
partial replication of virtual appliance contents where the replicated parts
are defined automatically by a decomposition algorithm. The presented de-
composition algorithm determines which parts of the virtual appliance have
to be distributed and on which sites. I also provide a mechanism to rebuild
the decomposed virtual appliances on the target site. My virtual appliance re-
building algorithm reduces deployment time by employing the decomposed
and replicated parts of the appliances. Therefore, this solution reduces the
apparent service execution time of service calls preceded by deployments.

Later, my fourth contribution defined the “minimal manageable virtual ap-
pliance” (see Section 1.3.4). This contribution provides a virtual appliance
that appliance developers can build on. The embedded minimal manageable
virtual appliance offers more efficient deployment, transformation and size
optimization procedures independently from the IaaS system in use. As a
result, I have identified requirements for minimal manageable virtual appli-
ances so that they can improve the possible adaptations of the architecture:
(i) they should offer the manageability interfaces that can be utilized by the
various components of the architecture (e.g. the optimization facility), (ii)
they should allow their embedment in other virtual appliances and (iii) they
should have minimal impact on the deployment time of the virtual appli-
ances encapsulating them. Based on these requirements I have defined an

11.1 future research directions 164

approach to create and embed minimal manageable virtual appliances in
future appliances.

Finally, I have designed three testbed infrastructures to present the applic-
ability of the proposed architecture in different IaaS systems and environ-
ments. Afterwards, I have presented my implementation by experimenting
on two well-known services (the SSH and the Apache Web servers) repres-
ented as virtual appliances. The results revealed that regular virtual appli-
ances could be significantly optimized in size and their deployment time
can be reduced with the help of the rebuilding algorithms. Based on these
measurements I have also identified that the time and cost efficiency of the
optimization algorithm can be improved by (i) creating intermediate virtual
appliances and by (ii) terminating the optimization process using the ratio of
the remaining non-validated content in the suboptimal VA as the completion
criterion.

11.1 future research directions

While this dissertation answered several questions regarding the minimiz-
ation of the deployment time, the architecture has left open the following
questions:

• Future research should be focused on the further optimization of the
item selection and grouping algorithms of the proposed size optimiza-
tion approach.

• I am also considering the development of more efficient scheduling
algorithms for the parallel validation phase in order to reduce the re-
source usage caused by the revalidation of previously successful valid-
ation results (see Figure 5.4 and Section 5.2.2.1).

• In order to speed up the appliance rebuilding process the current im-
plementation of the decomposition algorithm stores the same parts of
a virtual appliance multiple times. I plan to investigate and extend the
decomposition algorithm with simultaneous optimization of the repos-
itory contents for effective disk usage and achievable rebuilding speed-
up.

• I also intend to extend the rebuilding algorithm to give feedback on
possible merging of previously decomposed repository content based
on the evaluation of different appliance rebuilding strategies.

• The current extraction algorithm assumes that the virtual appliances
are extracted from virtual machines. Later, this algorithm should be

11.1 future research directions 165

extended to support extracting virtual appliances from the physical
machine of the virtual appliance developer.

• Even though the research evaluation is promising, its small scale did
not allow the complete analysis of the proposed active repository func-
tionality. Future research should identify the infrastructural require-
ments to enable the experimentation with the active repository and
rebuilding functionalities of the architecture.

b

37~V 86RriTiR e6Y @ 6Ea1TzR16UO 2{&6R @ r#+=

8r5 jEx7Y3Tt+ e6Y @ qY1t%,T1E B̀5̂ eiEjT1T Û̀ 5% @ 5t# V̀ W d7z[Tb%=

55% V̀ zE1r% V̀ 7qRiY1T7Y B̀iR 2~Nt2$ 1 Ǹ 8qj1T qE'j B̀5#8iR=

5̂ V̀ tr{ C̀ 5̂ jE¸ @ 7qRiY1T7Y B̀iR=

5% @ j2{(W" r#+ ³6RO eR'iT B̀5$8 Û̀ j B̀iR-=

5̂ V̀ tr{ C̀ 1 Ǹ 7jU V̀ 3t$ jE¸= 5̂ V̀ tr{ C̀ 1 Ǹ qY1t%,T V̀ 3t$=

5̂ V̀ tr{ C̀ 1 Ǹ 7w$ M̀jT2 3t$ jE¸= 2{(@ B̀~C+ 5%1T B̀jE,TiR 3t$

5% @ j2{(W" r#+ ³6RO eR'iT B̀5$8 Û̀ j B̀iR-=

12
P U B L I C AT I O N S D U R I N G R E S E A R C H

journal

• Gabor Kecskemeti, Gabor Terstyanszky, Peter Kacsuk and Zsolt Ne-
meth. An Approach for Virtual Appliance Distribution for Service De-
ployment. Future Generation Computer Systems, 2011, volume 27, issue 3,
pp. 280–289.

conferences

• Attila Kertesz, Gabor Kecskemeti and Ivona Brandic. Autonomic SLA-
Aware Service Virtualization for Distributed Systems. In: Proceedings of
the 19th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011), Ayia Napa, Cyprus, February 9-11, 2011. IEEE,
Los Alamitos, USA.

• Attila Kertesz, Gabor Kecskemeti, and Ivona Brandic. An SLA-based
resource virtualization approach for on-demand service provision. In
Proceedings of the International Conference on Autonomic Computing, 3rd
International Workshop on Virtualization Technologies in Distributed Com-
puting, pp. 27–34, 2009.

• Gabor Kecskemeti, Peter Kacsuk, Thierry Delaitre, and Gabor Ter-
styanszki: Virtual Appliances: a Way to Provide Automatic Service De-
ployment. In Proceedings of 3rd International Workshop on Distributed Co-
operative Laboratories (INGRID 2008), April 2008

• Gabor Kecskemeti, Peter Kacsuk, Gabor Terstyanszky, Tamas Kiss and
Thierry Delaitre: Automatic service deployment using virtualisation. In:
Proceedings of the 16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2008), Toulouse, France, February 13-15,
2008. IEEE, pp. 628–635. ISBN 9780769530895

166

publications during research 167

• Gabor Kecskemeti, Gabor Terstyanszky, Tamas Kiss and Peter Kacsuk:
Legacy code repository with broker-based job execution. In: CoreGRID
Workshop on Grid Systems, Tools and Environments in Conjunction with
GRIDS@work: CoreGRID Conference, Grid Plugtests and Contest, 01 Dec
2006, Sophia-Antipolis, France.

• Gabor Kecskemeti, Yonatan Zetuny, Gabor Terstyanszky, Stephen
Winter, Tamas Kiss and Peter Kacsuk: Automatic deployment and in-
teroperability of grid services. In: Cox, Simon J. and Walker, D.W., (eds.)
Proceedings UK e-Science All Hands Meeting 2005, Steering via the Image
in Local, Distributed and Collaborative Settings. EPSRC, Swindon, UK,
pp. 729–736. ISBN 1904425534

B I B L I O G R A P H Y

[1] Vmware. http://www.vmware.com.

[2] Bob Amstadt and Michael K. Johnson. Wine. Linux Journal, http://www.
linuxjournal.com/article/2788, August 1994.

[3] Jonathan Appavoo, Volkmar Uhlig, and Amos Waterland. Project kitty-
hawk: building a global-scale computer: Blue gene/p as a generic com-
puting platform. SIGOPS Oper. Syst. Rev., 42(1):77–84, 2008.

[4] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles
Fabre, Jean-Claude Laprie, Eliane Martins, and David Powell. Fault
injection for dependability validation: A methodology and some applic-
ations. IEEE Trans. Softw. Eng., 16(2):166–182, 1990.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, University of California at Berkley, February 2009.

[6] Tim Banks. Web services resource framework (wsrf) – primer v1.2. http:
//docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf,
2006.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bar, I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems prin-
ciples, pages 164–177, New York, NY, USA, October 2003. ACM.

[8] Hamid Abdul Basit and Stan Jarzabek. Detecting higher-level similar-
ity patterns in programs. In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 156 – 165, Lisbon,
Portugal, Sept 2005.

[9] Meriem Belguidoum and Fabien Dagnat. Dependency management
in software component deployment. Electr. Notes Theor. Comput. Sci.,
182:17–32, 2007.

168

http://www.vmware.com
http://www.linuxjournal.com/article/2788
http://www.linuxjournal.com/article/2788
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

bibliography 169

[10] D. Bell, T. Kojo, P. Goldsack, S. Loughran, D. Milojicic, S. Schaefer,
J. Tatemura, and P. Toft. Configuration description, deployment, and
lifecycle management (cddlm) foundation document, August 2005.

[11] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings
of the USENIX Annual Technical Conference, FREENIX Track, pages 41–46,
2005.

[12] David Blackman. Debian package management, part 1: A user’s guide.
Linux Journal, http://www.linuxjournal.com/article/4352?page=0,0,
December 2000.

[13] Kathryn Breininger, Joseph M. Chiusano, Suresh Damodaran, Mike
DeNicola, Anne Fischer, Sally Fuger, Jong Kim, Kyu-Chul Lee, Joel
Munter, Farrukh Najmi, Joel Neu, Sanjay Patil, Neal Smith, Nikola Sto-
janovic, Prasad Yendluri, and Yutaka Yoshida. Oasis/ebxml registry
services specification v2.0, April 2002.

[14] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for de-
livering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, June 2009.

[15] Eun-Kyu Byun and Jin-Soo Kim. Dynagrid: An adaptive, scalable, and
reliable resource provisioning framework for wsrf-compliant applica-
tions. Journal of Grid Computing, 7(1):73–89, March 2009.

[16] Bin Chen, Nong Xiao, Zhiping Cai, Fuyong Chu, and Zhiying Wang.
Virtual disk image reclamation for software updates in virtual machine
environments. Networking, Architecture, and Storage, International Confer-
ence on, 0:43–50, 2009.

[17] A.L. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer, S. Bharathi,
I. Foster, A. Iamnitchi, and C. Kesselman. The globus replica location
service: Design and experience. IEEE Transactions on Parallel and Distrib-
uted Systems, 20(9):1260–1272, Sept 2008.

[18] Vidyanand Choudhary. Software as a service: Implications for invest-
ment in software development. In System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on, pages 209a –209a, jan.
2007.

[19] Jeffrey A. Clark and Dhiraj K. Pradhan. Fault injection. Computer,
28(6):47–56, 1995.

http://www.linuxjournal.com/article/4352?page=0,0

bibliography 170

[20] Science Clouds. http://scienceclouds.org/marketplace/, January
2011.

[21] OpenStack community. Openstack open source cloud computing soft-
ware. http://www.openstack.org/, January 2011.

[22] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, and P. Kac-
suk. Gemlca: Running legacy code applications as grid services. Journal
of Grid Computing, 3(1-2):75–90, June 2005.

[23] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A jour-
ney to highly dynamic, self-adaptive service-based applications. Auto-
mated Software Engineering, 15(3):313–341, 2008.

[24] A. Epstein, D.H. Lorenz, E. Silvera, and I. Shapira. Virtual appliance con-
tent distribution for a global infrastructure cloud service. In INFOCOM,
2010 Proceedings IEEE, pages 1 –9, 2010.

[25] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[26] Raimar Falke, Raimund Klein, Rainer Koschke, and Jochen Quante. The
dominance tree in visualizing software dependencies. In Proceedings of
the 3rd IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis, 2005.

[27] M. Feller, I. Foster, and S. Martin. Gt4 gram: A functionality and per-
formance study. In TeraGrid Conference, 2007.

[28] PUB FIPS. Secure hash standard. Technical report 180-3, NIST, October
2008.

[29] J. Fontán, T. Vázquez, L. Gonzalez, RS Montero, and IM Llorente. Open-
nebula: The open source virtual machine manager for cluster comput-
ing. In Open Source Grid and Cluster Software Conference, San Francisco,
CA, USA, May 2008.

[30] I. Foster, H. Kishimoto, A. Savva, et al. The open grid services archi-
tecture, version 1.5. http://ogf.org/documents/GFD.80.pdf, October
2006.

[31] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid com-
puting 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1–10, DOI: 10.1109/GCE.2008.4738445, 2009. IEEE.

http://scienceclouds.org/marketplace/
http://www.openstack.org/
http://ogf.org/documents/GFD.80.pdf

bibliography 171

[32] Ian T. Foster. Globus toolkit version 4: Software for service-oriented
systems. Journal of Computer Science and Technology, 21(4):513–520, 2006.

[33] Keisuke Fukui. Application contents service specification 1.0, Sept 2006.

[34] David Geer. The os faces a brave new world. Computer, 42:15–17, Octo-
ber 2009.

[35] Andrew Harrison and Ian J. Taylor. Dynamic web service deployment
using wspeer. In Proceedings of 13th Annual Mardi Gras Conference - Fron-
tiers of Grid Applications and Technologies, pages 11–16. Louisiana State
University, February 2005.

[36] T. Ho and D. Abramson. A unified data grid replication framework.
In Proceedings of the Second IEEE International Conference on e-Science and
Grid Computing, 2006.

[37] Google Inc. App engine. https://appengine.google.com/, February
2011.

[38] Microsoft Inc. Windows azure services platform. http://www.
microsoft.com/windowsazure/, February 2011.

[39] Rackspace US Inc. Rackspace cloud hosting solutions. http://www.
rackspacecloud.com/, January 2011.

[40] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron. Virtual work-
spaces in the grid. ANL/MCS-P1231-0205, 2005.

[41] Katarzyna Keahey and Tim Freeman. Contextualization: Providing one-
click virtual clusters. In ESCIENCE ’08: Proceedings of the 2008 Fourth
IEEE International Conference on eScience, pages 301–308, Washington, DC,
USA, 2008. IEEE Computer Society.

[42] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose For-
tes. Sky computing. IEEE Internet Computing, 13(5):43–51, 2009.

[43] Kate Keahey, Matei Ripeanu, and Karl Doering. Dynamic creation and
management of runtime environments in the grid. In Workshop on
Designing and Building Web Services, 2003.

[44] Gabor Kecskemeti, Peter Kacsuk, Gabor Terstyanszky, Tamas Kiss, and
Thierry Delaitre. Automatic service deployment using virtualisation.
In Proceedings of 16th Euromicro International Conference on Parallel, Dis-
tributed and network-based Processing (PDP 2008), pages 628–635, Tolouse,
France, February 2008. IEEE Computer Society.

https://appengine.google.com/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.rackspacecloud.com/
http://www.rackspacecloud.com/

bibliography 172

[45] Attila Kertész, Gábor Kecskeméti, and Ivona Brandic. An sla-based re-
source virtualization approach for on-demand service provision. In Pro-
ceedings of the International Conference on Autonomic Computing, 3rd Inter-
national Workshop on Virtualization Technologies in Distributed Computing,
pages 27–34, 2009.

[46] Attila Kertesz, Gabor Kecskemeti, and Ivona Brandic. Autonomic sla-
aware service virtualization for distributed systems. In Proceedings of
the 19th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011), Ayia Napa, Cyprus, February 2011. IEEE.

[47] Heather Kreger, Kirk Wilson, and Igor Sedukhin. Web services distrib-
uted management: Management of web services (wsdm-mows) 1.1. web,
August 2006.

[48] Ivan Krsul, Arijit Ganguly, Jian Zhang, José A. B. Fortes, and Renato J.
Figueiredo. Vmplants: Providing and managing virtual machine execu-
tion environments for grid computing. In Proceedings of the ACM/IEEE
SC2004 Conference on High Performance Networking and Computing, pages
1–7. IEEE Computer Society, November 2004.

[49] Xiao Ling, Hai Jin, Song Wu, and Xuanhua Shi. Vmcol: A collector of
garbage for virtual machine image files. In Tai-Hoon Kim, Stephen S.
Yau, Osvaldo Gervasi, Byeong Ho Kang, Adrian Stoica, and Dominik
Slezak, editors, FGIT-GDC/CA, volume 121 of Communications in Com-
puter and Information Science, pages 74–83. Springer, 2010.

[50] Amazon Web Services LLC. Amazon elastic compute cloud. http://
aws.amazon.com/ec2/, 2009.

[51] Stephane Manuel. Classification and generation of disturbance vectors
for collision attacks against sha-1. Designs, Codes and Cryptography, 59(1-
3):247–263, April 2011.

[52] Distributed Management Task Force. Open virtualization format
specification, version 1.1. http://dmtf.org/sites/default/files/
standards/documents/DSP0243_1.1.0.pdf, January 2010.

[53] Public EC2 Amazon Machine Images. http://developer.
amazonwebservices.com/connect/kbcategory.jspa?categoryID=171,
2010.

[54] The Nimbus Project. http://www.nimbusproject.org/, 2010.

[55] Vizioncore Inc. voptimizer, optimization of virtual machine size and
performance, 2008.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171
http://www.nimbusproject.org/

bibliography 173

[56] VMWare public virtual appliances. http://www.vmware.com/
appliances/, 2010.

[57] Hideo Nishimura, Naoya Maruyama, and Satoshi Matsuoka. Virtual
clusters on the fly - fast, scalable, and flexible installation. In Proceedings
of the Seventh IEEE International Symposium on Cluster Computing and the
Grid, CCGRID ’07, pages 549–556, Washington, DC, USA, 2007. IEEE
Computer Society.

[58] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus
open-source cloud-computing system. In Franck Cappello, Cho-Li
Wang, and Rajkumar Buyya, editors, CCGRID, pages 124–131. IEEE
Computer Society, 2009.

[59] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web
services vs. "big"’ web services: making the right architectural decision.
In WWW ’08: Proceeding of the 17th international conference on World Wide
Web, pages 805–814, New York, NY, USA, 2008. ACM.

[60] GridWay Project. Gridway amazon ec2 ami. http://www.gridway.org/
doku.php?id=documentation:howto:virtual_appliance_amazon.

[61] Naregi project. The naregi acs implementation. http://forge.
gridforum.org/sf/go/projects.acs-wg/frs, January 2007.

[62] Li Qi, Hai Jin, Ian T. Foster, and Jarek Gawor. Hand: Highly avail-
able dynamic deployment infrastructure for globus toolkit 4. In Pro-
ceedings of 15th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP 2007), pages 155–162, Los Alamitos,
CA, USA, February 2007. IEEE Computer Society.

[63] Abhishek Singh Rana, Frank Würthwein, Kate Keahey, Timothy Free-
man, et al. An edge services framework (esf) for egee, lcg, and osg. In
Proceedings of Computing in High Energy Physics (CHEP06), T.I.F.R. Mum-
bai, India, February 2006.

[64] K. Ranganathan and I. Foster. Computation scheduling and data replic-
ation algorithms for data grids. In INTERNATIONAL SERIES IN OPER-
ATIONS RESEARCH AND MANAGEMENT SCIENCE, pages 359–376.
Kluwer Academic Publishers, 2003.

[65] Felix Rauch, Christian Kurmann, and Thomas M. Stricker. Partition
cast — modelling and optimizing the distribution of large data sets in

http://www.vmware.com/appliances/
http://www.vmware.com/appliances/
http://www.gridway.org/doku.php?id=documentation: howto:virtual_appliance_amazon
http://www.gridway.org/doku.php?id=documentation: howto:virtual_appliance_amazon
http://forge.gridforum.org/sf/go/projects.acs-wg/frs
http://forge.gridforum.org/sf/go/projects.acs-wg/frs

bibliography 174

pc clusters. In Proceedings European Conference on Parallel Computing Euro-
Par 2000, August 2000.

[66] Felix Rauch, Christian Kurmann, and Thomas M. Stricker. Partition
repositories for partition cloning - os independent software maintenance
in large clusters of pcs. In Proceedings of the IEEE International Conference
on Cluster Computing 2000, Chemnitz, Germany, November 2000.

[67] rPath. Apache appliance. http://www.rpath.org/project/aa/
releases, 07 2010.

[68] rPath - rBuilder. http://www.rpath.com/rbuilder/.

[69] Marta Sabou and Jeff Pan. Towards semantically enhanced web service
repositories, 2007.

[70] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using de-
pendency models to manage complex software architecture. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 167–176,
New York, NY, USA, October 2005. ACM.

[71] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai
Zeldovich, Jim Chow, Monica S. Lam, and Mendel Rosenblum. Virtual
appliances for deploying and maintaining software. In LISA ’03: Pro-
ceedings of the 17th USENIX conference on System administration, pages
181–194, Berkeley, CA, USA, 2003. USENIX Association.

[72] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. Optimizing the migration
of virtual computers. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 377–390, 2002.

[73] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of the eighth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’02, pages
269–278, New York, NY, USA, 2002. ACM.

[74] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben. Efficient dis-
tribution of virtual machines for cloud computing. In Proceedings of
18th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP 2010), pages 567 –574, Pisa, Italy, February 2010.
IEEE Computer Society.

http://www.rpath.org/project/aa/releases
http://www.rpath.org/project/aa/releases
http://www.rpath.com/rbuilder/

bibliography 175

[75] Matthew Smith, Thomas Friese, and Bernd Freisleben. Hot service de-
ployment in an ad hoc grid environment. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented computing, pages 75–83,
New York, NY, USA, 2004. ACM.

[76] Nanda Susanta and Chiueh Tzi-Cker. A survey on virtualization tech-
nologies. Technical report, Stony Brook University, February 2005.

[77] Gabor Szmetanko. Virtual appliance acs. http://sourceforge.net/
projects/vaacs/, June 2008.

[78] Vanish Talwar, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan,
and Gueyoung Jung. Approaches for service deployment. Internet Com-
puting, 9:70–80, March-April 2005.

[79] J. Tatemura. Cddlm configuration description language specification,
version 1.0, January 2007.

[80] Sebastien Tixeuil, William Hoarau, and Luis Silva. An overview of ex-
isting tools for fault-injection and dependability benchmarking in grids,
October 2006.

[81] Peter Toft and Steve Loughran. Configuration description, deployment
and lifecycle management working group (cddlm-wg) final report. http:
//www.ogf.org/documents/GFD.127.pdf, 2008.

[82] SUSE Appliance tookit. Suse galery. http://susegallery.com/, January
2011.

[83] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, June 1996.

[84] tuxdistro. Vmware lamp virtual appliance. http://www.vmware.com/
appliances/directory/54966, 01 2011.

[85] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: towards a cloud definition. SIGCOMM Computer
Communication Review, 39:50–55, December 2008.

[86] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology
of cloud computing. In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1–10, DOI: 10.1109/GCE.2008.4738443, 2009. IEEE.

[87] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies, FAST’08, pages 18:1–
18:14, Berkeley, CA, USA, 2008. USENIX Association.

http://sourceforge.net/projects/vaacs/
http://sourceforge.net/projects/vaacs/
http://www.ogf.org/documents/GFD.127.pdf
http://www.ogf.org/documents/GFD.127.pdf
http://susegallery.com/
http://www.vmware.com/appliances/directory/54966
http://www.vmware.com/appliances/directory/54966

Part IV

A P P E N D I X

A
V I RT U A L A P P L I A N C E D E F I N I T I O N S

The purpose of this chapter is the introduction of the virtual appliances used
during the validation of the proposed AVS service, the active repositories
and the optimization facility. The chapter defines the utilized appliances in
the following sections in a tabular format.

Each virtual appliance definition is presented as a table with four rows.
First, the “target functionality” row provides a textual description of the given
virtual appliance. It discusses the intended target functionality and use of
the specified appliance. For details, see service packages in Section 3.3.1.

Second, “complexity” classifies these virtual appliances according to the
complexity definitions of Section 8.2. Appliances could participate in the
various validation scenarios of the proposed architecture according to their
complexity.

Next, the row of “construction” offers a step-by-step algorithm for creating
the initial virtual appliance. The description assumes the use of the xen-tools
appliance creation system (e.g. by running xen-create-image) available on
the initial host of the machines. I have used the default xen-tools package
of the Debian GNU/Linux 5.0. The different virtual appliances are created
with the same method and they are all built on the same Debian base system,
therefore, the resulting virtual appliances will share common parts. These
parts are required by the Equation 8.3 in order to allow their later identifica-
tion by the decomposition algorithm.

Finally, the “validator algorithm” row shortly describes the validation steps
for each appliance. This algorithm is used during the execution of the size
optimization algorithm (see Section 5.1.2.2) and the proof of concept scen-
ario (detailed in Section 8.3). The validator ensures that modified virtual
appliances still maintain their intended target functionality.

177

virtual appliance definitions 178

a.1 the ssh virtual appliance

Target func-
tionality The SSH virtual appliance should offer a virtual ma-

chine image that provides remote execution and transfer
capabilities. Therefore, this is a general-purpose vir-
tual appliance that enables the execution of arbitrary
code. As a prerequisite, the user has to transfer the
executable and its dependencies before execution.

Complexity Minimal

Construction 1. Create a virtual machine image for Xen with
xen-tools of debian.

2. Start up the created VM image.

3. Add the ssh daemon and the rsync transfer util-
ity.

4. Enable remote ssh based root logins in the VM.

Validator al-
gorithm

1. Create a shell script that prints out “hello
world”.

2. Transfer the previously created shell script to
the target virtual machine with rsync.

3. Remotely execute the transferred script.

4. Check whether the execution returns with
“hello world”. If not then the virtual machine
is not valid.

virtual appliance definitions 179

a.2 the apache virtual appliance

Target func-
tionality The aim of the Apache appliance is to provide an

HTTP server that is capable of serving static html pages
to its users. As a prerequisite, the user has to trans-
fer the static html pages that should be offered by the
server.

Complexity Medium

Construction 1. Create a virtual machine image for Xen with
xen-tools of debian.

2. Start up the created VM image.

3. Add the ssh-, apache daemons and the rsync
transfer utility.

Validator al-
gorithm

1. Create an HTML document that has an html
header with the text of “hello world”.

2. Transfer the previously created HTML docu-
ment to the apache web server’s folder on the
target virtual machine.

3. Download the pre transferred HTML file with
an HTTP request.

4. Check for the html header with the text “hello
world”. If the header is not present then the tar-
get virtual machine is not valid.

virtual appliance definitions 180

a.3 the gemlca virtual appliance

Target func-
tionality The GEMLCA appliance provides a GEMLCA grid

service that is composed of a GRAM4 submitter and
a legacy code repository. A deployed service should be
able to execute applications on an arbitrary Globus
Toolkit 4 GRAM [27], and it should be able to re-
gister, manage and destroy legacy codes in its reposit-
ory. This virtual appliance is included among the test
appliances to present the behavior of my algorithms
with more complex services.

Complexity High

Construction 1. Create a virtual machine image for Xen with
xen-tools of debian.

2. Start up the created VM image.
3. Install the gridftp utility of globus toolkit 4 with

all its dependencies.
4. Install GEMLCA service.
5. Configure GEMLCA service with GRAM 4 sub-

mission capabilities.

Validator al-
gorithm

1. Create a single shell script to print out the con-
tents of a file that by default contains the text
“hello world”.

2. Register the previously created script and de-
fault file with the target GEMCLA service.

3. Run the registered application on a predefined
GRAM4 without any input files, and then trans-
fer its results to the local machine.

4. Execute the application again with a custom in-
put file containing the text “hello world”, and
transfer its results back.

5. Check whether both files were received with the
correct content, if not then the target GEMLCA
service is not valid.

	Abstract
	Abstract
	Acknowledgements

	Acknowledgements
	Contents

	Contents
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Notation Index
	Notation Index

	Glossary
	Research Overview
	1 Introduction
	1.1 Service deployment overview
	1.1.1 The appliance model

	1.2 Requirements for Automating Service Deployment
	1.2.1 Taxonomy of Related Deployment Systems

	1.3 Contributions
	1.3.1 Approach for initial Virtual Appliance creation (C1)
	1.3.2 Parallel Algorithm for Virtual Appliance Size Optimization (C2)
	1.3.3 Distributed virtual appliance storage and delivery (C3)
	1.3.4 Minimal Manageable Virtual Appliance (C4)

	1.4 The structure of the thesis

	2 Related Works
	2.1 Infrastructure as a service clouds
	2.2 Service Deployment overview
	2.3 Virtual appliance size optimization
	2.4 Virtual appliance distribution optimization

	Achievements
	3 Overview of the Architecture
	3.1 Introduction
	3.2 Virtual Appliance Management
	3.3 Basic system definitions
	3.3.1 Package types and relations

	4 Automatic Virtual Appliance Creation Service
	4.1 Introduction
	4.2 The AVS Client Interface
	4.2.1 Virtual Appliance extraction
	4.2.2 Playground operations
	4.2.3 The upload operation

	4.3 The Infrastructure as a Service System Interface
	4.4 Repository Interface and Metadata Collection
	4.4.1 Virtual Appliance Representation

	5 Virtual Appliance Size Optimization Facility
	5.1 Virtual Appliance Optimization Principles
	5.1.1 The Virtual Appliance Optimization Facility
	5.1.2 Appliance Contents Removal

	5.2 Implementation of Virtual Appliance Optimization
	5.2.1 Implementation of the Item Selection
	5.2.2 Parallel Validation
	5.2.3 Virtual Machine Management Strategy

	6 Partial Virtual Appliance Replication
	6.1 Introduction
	6.2 Active Repository Functionality
	6.2.1 Package decomposition
	6.2.2 Package merging
	6.2.3 Package replication
	6.2.4 Package destruction

	6.3 Virtual Appliance Rebuilding
	6.3.1 Rebuilding scenarios and algorithm
	6.3.2 Rebuilding in active repositories
	6.3.3 Rebuilding in the IaaS system
	6.3.4 Reconstructing the virtual appliance

	7 The Minimal Manageable Virtual Appliance
	7.1 Introduction
	7.2 Definition of the manageable virtual appliance
	7.2.1 Maintaining the Management Capabilities of Virtual Appliances
	7.2.2 Minimal Manageable Virtual Appliances

	7.3 Architectural developments
	7.3.1 Effects on the rebuilding algorithms
	7.3.2 MMVA based virtual appliance transformation
	7.3.3 MMVA and the Optimization facility

	Analysis
	8 Methodology
	8.1 Introduction
	8.2 Appliance classification
	8.3 Correctness of the architecture
	8.4 Basic deployment efficiency
	8.4.1 Baseline and post-optimization deployments
	8.4.2 Deployments with rebuilding
	8.4.3 Deployments utilizing the MMVA

	8.5 Estimating the cost of the architecture
	8.5.1 Evaluating the optimization time
	8.5.2 The cost of initial upload

	9 Testbed
	9.1 Introduction
	9.2 The generic testbed
	9.3 Testbed with Nimbus
	9.4 Testbed with Eucalyptus
	9.5 My proprietary testbed
	9.6 Summary

	10 Evaluation
	10.1 Used virtual appliances
	10.2 The cost of applying the architecture
	10.2.1 The cost of initial upload
	10.2.2 Evaluating the cost of size optimization

	10.3 The influence of the AVS architecture on deployment

	11 Conclusions
	11.1 Future research directions

	12 Publications During Research
	Bibliography

	Appendix
	A Virtual appliance definitions
	A.1 The SSH Virtual Appliance
	A.2 The Apache Virtual Appliance
	A.3 The GEMLCA Virtual Appliance

