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Abstract

Workflow allows e-Scientists to express their experimental processes in a structured

way and provides a glue to integrate remote applications. Since Grid provides an

enormously large amount of data and computational resources, executing workflows

on the Grid results in significant performance improvement. Several workflow man-

agement systems, which are widely used by different scientific communities, were

developed for various purposes. Therefore, they differ in several aspects.

This thesis outlines two major problems of existing workflow systems: workflow

interoperability and data access. On the one hand, existing workflow systems are

based on different technologies. Therefore, to achieve interoperability between their

workflows at any level is a challenging task. In spite of the fact that there is a clear

demand for interoperable workflows, for example, to enable scientists to share work-

flows, to leverage existing work of others, and to create multi-disciplinary workflows;

currently, there are only limited, ad-hoc workflow interoperability solutions avail-

able for scientists. Existing solutions only realise workflow interoperability between

a small set of workflow systems and do not consider performance issues that arise

in the case of large-scale (computational and/or data intensive) scientific workflows.

Scientific workflows are typically computation and/or data intensive and are exe-

cuted in a distributed environment to speed up their execution time. Therefore,

their performance is a key issue. Existing interoperability solutions bottleneck the

communication between workflows in most scenarios dramatically increasing execu-
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tion time. On the other hand, many scientific computational experiments are based

on data that reside in data resources which can be of different types and vendors.

Many workflow systems support access to limited subsets of such data resources

preventing data level workflow interoperation between different systems. Therefore,

there is a demand for a general solution that provides access to a wide range of data

resources of different types and vendors. If such a solution is general, in the sense

that it can be adopted by several workflow systems, then it also enables workflows

of different systems to access the same data resources and therefore interoperate at

data level. Note that data semantics are out of the scope of this work. For the

same reasons as described above, the performance characteristics of such a solution

are inevitably important. Although in terms of functionality, there are solutions

which could be adopted by workflow systems for this purpose, they provide poor

performance. For that reason, they did not gain wide acceptance by the scientific

workflow community.

Addressing these issues, a set of architectures is proposed to realise heterogeneous

data access and heterogeneous workflow execution solutions. The primary goal was

to investigate how such solutions can be implemented and integrated with workflow

systems. The secondary aim was to analyse how such solutions can be implemented

and utilised by single applications.

iii



Acknowledgements

Even though only a single name is listed on the cover of this thesis, many people

contributed to it. I would like to use this section to acknowledge these contributions.

I wish to express a particular gratitude to my research supervisors: Dr. Gabor Z.

Terstyanszky, Prof. Stephen C. Winter, and Prof. Peter Kacsuk whose encourage-

ment, guidance and support from the initial to the final level enabled me to develop

an understanding of the subject.

I would like to thank my colleague, Tamas Kiss for his assistance, endless support,

suggestions and ideas which contributed to the research especially during the initial

steps of my doctoral studies.

I would like to thank the University of Westminster research committee for ad-

mitting me to the PhD programme, granting me the research scholarship and allow-

ing me to carry out this research.

Last but not least, I thank my family, friends and colleagues for supporting me

through this work and who, in their own particular way, contributed to the success

of this long journey.

Tamas Kukla

London, United Kingdom

January 2011

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

1 Introduction 1

1.1 General overview of Grid . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Grid infrastructures and middleware . . . . . . . . . . . . . . 2

1.1.3 Grid Interoperability . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 3

v



Contents

1.2.1 Workflow definition . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Workflow specification and structure . . . . . . . . . . . . . . 5

1.2.3 Workflow execution . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Heterogeneity of workflow systems . . . . . . . . . . . . . . . . . . . . 7

1.4 Workflow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Approaches to workflow interoperability . . . . . . . . . . . . 12

1.5 Interoperability of workflows and data resources . . . . . . . . . . . . 15

1.6 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 Research method . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Heterogeneous Data Access Solutions for Grid applications

(DASG) 25

2.1 Key DASG properties and requirements . . . . . . . . . . . . . . . . 26

2.2 DASG architecture definition . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 DASG node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 DASG structure . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 DASG data flow . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 DASG resource . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.5 DASG interface . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.6 DASG architecture and solution . . . . . . . . . . . . . . . . . 43

vi



Contents

2.3 DASG architecture analysis . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 DASG generality and extendibility . . . . . . . . . . . . . . . 44

2.3.2 DASG performance . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 DASG bulk data flow . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.4 DASG DRC flow . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.5 Recommended DASG structure layout, data flow, and resource

layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Existing and proposed DASG solutions . . . . . . . . . . . . . . . . . 64

2.4.1 Existing DASG solutions . . . . . . . . . . . . . . . . . . . . . 64

2.4.2 Proposed DASG solutions . . . . . . . . . . . . . . . . . . . . 67

2.4.3 Comparison of existing and proposed DASG solutions . . . . . 67

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Heterogeneous Data Access Solutions for Workflows (DASW) 75

3.1 Key DASW properties and requirements . . . . . . . . . . . . . . . . 76

3.2 DASW architecture definition . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 DASW node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.2 DASW structure . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.3 DASW data flow . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.4 DASW resource . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.5 DASW interface . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



Contents

3.2.6 DASW integration . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.7 DASW architecture and solution . . . . . . . . . . . . . . . . 84

3.3 DASW architecture analysis . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 DASW generality, extendibility, and data access . . . . . . . . 84

3.3.2 DASW performance . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.3 DASW bulk data flow . . . . . . . . . . . . . . . . . . . . . . 89

3.3.4 DASW DRC flow . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.5 Recommended DASW structure layout, data flow, and re-

source layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Existing and proposed DASW solutions . . . . . . . . . . . . . . . . . 98

3.4.1 Existing DASW solutions . . . . . . . . . . . . . . . . . . . . 98

3.4.2 Proposed DASW solutions . . . . . . . . . . . . . . . . . . . . 104

3.4.3 Comparison of existing and proposed DASW solutions . . . . 104

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Heterogeneous Workflow Execution Solutions for Applications

(WESA) 110

4.1 Key WESA properties and requirements . . . . . . . . . . . . . . . . 111

4.2 WESA architecture definition . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 WESA node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.2 WESA Structure . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



Contents

4.2.3 WESA Data flow . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2.4 WESA resources . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.5 WESA interface . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.6 WESA architecture and solution . . . . . . . . . . . . . . . . . 119

4.3 WESA architecture analysis . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 WESA generality and extendibility . . . . . . . . . . . . . . . 120

4.3.2 WESA performance . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.3 WESA bulk data flow . . . . . . . . . . . . . . . . . . . . . . 124

4.3.4 WESA engine and workflow flow . . . . . . . . . . . . . . . . 127

4.3.5 Recommended WESA structure layout, data flow, and re-

source layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Existing and proposed WESA solutions . . . . . . . . . . . . . . . . . 136

4.4.1 Existing WESA solution . . . . . . . . . . . . . . . . . . . . . 136

4.4.2 Proposed WESA solutions . . . . . . . . . . . . . . . . . . . . 139

4.4.3 Comparison of existing and proposed WESA solutions . . . . 140

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Heterogeneous Workflow Execution Solutions for Workflows (WESW)

- workflow nesting 150

5.1 Key WESW properties and requirements . . . . . . . . . . . . . . . . 151

5.2 WESW architecture definition . . . . . . . . . . . . . . . . . . . . . . 151

ix



Contents

5.2.1 WESW structure . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.2 WESW structure . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.3 WESW data flow . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.4 WESW resources . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.5 WESW interface . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.6 WESW integration . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.7 WESW architecture and solution . . . . . . . . . . . . . . . . 158

5.3 WESW architecture analysis . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.1 WESW generality, extendibility, and invocation . . . . . . . . 158

5.3.2 WESW performance . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3 WESW bulk data flow . . . . . . . . . . . . . . . . . . . . . . 162

5.3.4 WESW engine and workflow flow . . . . . . . . . . . . . . . . 168

5.3.5 Recommended WESW structure layout, data flow, and re-

source layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4 Existing and proposed WESW solutions . . . . . . . . . . . . . . . . 180

5.4.1 Existing WESW solutions . . . . . . . . . . . . . . . . . . . . 180

5.4.2 Proposed WESW solutions . . . . . . . . . . . . . . . . . . . . 185

5.4.3 Comparison of existing and proposed WESW solutions . . . . 186

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Conclusions 193

x



Contents

Dissemination of the research findings 200

A Proofs 202

Bibliography 212

xi



List of definitions

Definition 2.1 Node and node type * . . . . . . . . . . . . . . . . . . . . . . 28

Definition 2.2 DASG node types . . . . . . . . . . . . . . . . . . . . . . . . . 29

Definition 2.3 Instance * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Definition 2.4 DASG Instance . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Definition 2.5 Coexistence of multiple instances * . . . . . . . . . . . . . . . 30

Definition 2.6 Bijection between node types and instances * . . . . . . . . . 31

Definition 2.7 Bijection between DASG node types and instances . . . . . . . 31

Definition 2.8 Node type set * . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Definition 2.9 Coupling * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Definition 2.10 Structure * . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Definition 2.11 Instance layout * . . . . . . . . . . . . . . . . . . . . . . . . . 32

Definition 2.12 DASG instance layout . . . . . . . . . . . . . . . . . . . . . . 33

Definition 2.13 Type layout * . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Definition 2.14 DASG type layout . . . . . . . . . . . . . . . . . . . . . . . . 34

Definition 2.15 Structure layout * . . . . . . . . . . . . . . . . . . . . . . . . . 34

xii



List of definitions

Definition 2.16 DASG structure layout . . . . . . . . . . . . . . . . . . . . . . 34

Definition 2.17 DASG data types . . . . . . . . . . . . . . . . . . . . . . . . . 35

Definition 2.18 Path * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Definition 2.19 Path layout * . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Definition 2.20 DASG DRC path layout . . . . . . . . . . . . . . . . . . . . . 37

Definition 2.21 DASG bulk data path types . . . . . . . . . . . . . . . . . . . 37

Definition 2.22 Mapping between path layouts and paths * . . . . . . . . . . . 37

Definition 2.23 Byte array and its length * . . . . . . . . . . . . . . . . . . . . 38

Definition 2.24 Byte array concatenation * . . . . . . . . . . . . . . . . . . . . 38

Definition 2.25 Transferring a byte array via a path * . . . . . . . . . . . . . . 38

Definition 2.26 Transferring a sequence of byte arrays via a path * . . . . . . 38

Definition 2.27 Pipelined transfer * . . . . . . . . . . . . . . . . . . . . . . . . 39

Definition 2.28 Non pipelined transfer * . . . . . . . . . . . . . . . . . . . . . 39

Definition 2.29 DASG DRC staging . . . . . . . . . . . . . . . . . . . . . . . . 39

Definition 2.30 DASG bulk data staging . . . . . . . . . . . . . . . . . . . . . 39

Definition 2.31 Set of DASG data flow types . . . . . . . . . . . . . . . . . . . 39

Definition 2.32 Resource types * . . . . . . . . . . . . . . . . . . . . . . . . . 40

Definition 2.33 Resource layout * . . . . . . . . . . . . . . . . . . . . . . . . . 41

Definition 2.34 DASG resource layout . . . . . . . . . . . . . . . . . . . . . . 41

Definition 2.35 Interface representation * . . . . . . . . . . . . . . . . . . . . . 42

Definition 2.36 Interface generality * . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



List of definitions

Definition 2.37 DASG frontend interface . . . . . . . . . . . . . . . . . . . . . 42

Definition 2.38 DASG backend interface . . . . . . . . . . . . . . . . . . . . . 43

Definition 2.39 Set of possible DASG interfaces . . . . . . . . . . . . . . . . . 43

Definition 2.40 Set of possible DASG architectures . . . . . . . . . . . . . . . 43

Definition 2.41 DASG solution . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Definition 2.42 DASG scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Definition 2.43 DASG scenario execution . . . . . . . . . . . . . . . . . . . . . 47

Definition 2.44 Port functions * . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Definition 2.45 Time of byte array transfer between two nodes * . . . . . . . . 49

Definition 2.46 Time and latency of pipelined transfer * . . . . . . . . . . . . 50

Definition 2.47 Time and latency of non pipelined transfer * . . . . . . . . . . 51

Definition 2.48 Simultaneous transfer via a path layout * . . . . . . . . . . . . 52

Definition 2.49 Performance characteristics of simultaneous transfer * . . . . . 53

Definition 2.50 Performance function of DASG DRC transfer . . . . . . . . . 54

Definition 2.51 Performance functions of DASG bulk data transfer . . . . . . 54

Definition 2.52 Overall DASG performance functions . . . . . . . . . . . . . . 54

Definition 2.53 Scalability of DASG data transfer . . . . . . . . . . . . . . . . 55

Definition 2.54 Data flow case * . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Definition 2.55 Data flow case equivalence * . . . . . . . . . . . . . . . . . . . 56

Definition 3.1 DASW nodes and node types . . . . . . . . . . . . . . . . . . 78

Definition 3.2 DASW instance . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



List of definitions

Definition 3.3 Bijection between DASW node types and instances . . . . . . 78

Definition 3.4 DASW instance layout . . . . . . . . . . . . . . . . . . . . . . 79

Definition 3.5 DASW type layout . . . . . . . . . . . . . . . . . . . . . . . . 80

Definition 3.6 DASW structure layout . . . . . . . . . . . . . . . . . . . . . . 80

Definition 3.7 DASW Data types . . . . . . . . . . . . . . . . . . . . . . . . 80

Definition 3.8 DASW DRC flow . . . . . . . . . . . . . . . . . . . . . . . . . 81

Definition 3.9 DASW bulk data flow . . . . . . . . . . . . . . . . . . . . . . 81

Definition 3.10 DASW data flow types . . . . . . . . . . . . . . . . . . . . . . 81

Definition 3.11 DASW resource layout . . . . . . . . . . . . . . . . . . . . . . 82

Definition 3.12 DASW Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 82

Definition 3.13 DASW Subject of integration . . . . . . . . . . . . . . . . . . 82

Definition 3.14 Request representation . . . . . . . . . . . . . . . . . . . . . . 83

Definition 3.15 Set of possible DASW integrations . . . . . . . . . . . . . . . 83

Definition 3.16 Set of DASW architectures . . . . . . . . . . . . . . . . . . . . 84

Definition 3.17 DASW solution . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Definition 3.18 DASW scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 86

Definition 3.19 DASW scenario execution . . . . . . . . . . . . . . . . . . . . 87

Definition 3.20 Performance function of DASW DRC transfer . . . . . . . . . 87

Definition 3.21 Performance functions of DASW bulk data transfer . . . . . . 88

Definition 3.22 Overall DASW performance functions . . . . . . . . . . . . . . 88

Definition 3.23 Scalability of DASW data transfer . . . . . . . . . . . . . . . . 88

xv



List of definitions

Definition 4.1 WESA nodes and node types . . . . . . . . . . . . . . . . . . 113

Definition 4.2 WESA Instance . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Definition 4.3 Bijection between WESA node types and instances . . . . . . 114

Definition 4.4 WESA instance layout . . . . . . . . . . . . . . . . . . . . . . 115

Definition 4.5 WESA type layout . . . . . . . . . . . . . . . . . . . . . . . . 115

Definition 4.6 WESA structure layout . . . . . . . . . . . . . . . . . . . . . . 115

Definition 4.7 WESA data types . . . . . . . . . . . . . . . . . . . . . . . . . 116

Definition 4.8 WESA engine data flow . . . . . . . . . . . . . . . . . . . . . 116

Definition 4.9 WESA workflow data flow . . . . . . . . . . . . . . . . . . . . 117

Definition 4.10 WESA bulk data flow . . . . . . . . . . . . . . . . . . . . . . 117

Definition 4.11 WESA data flow types . . . . . . . . . . . . . . . . . . . . . . 117

Definition 4.12 WESA resource layout . . . . . . . . . . . . . . . . . . . . . . 118

Definition 4.13 WESA frontend interface . . . . . . . . . . . . . . . . . . . . . 118

Definition 4.14 WESA backend interface . . . . . . . . . . . . . . . . . . . . . 119

Definition 4.15 Set of possible WESA interfaces . . . . . . . . . . . . . . . . . 119

Definition 4.16 Set of possible WESA architectures . . . . . . . . . . . . . . . 119

Definition 4.17 WESA solution . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Definition 4.18 WESA scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 121

Definition 4.19 WESA scenario execution . . . . . . . . . . . . . . . . . . . . 122

Definition 4.20 Performance of WESA engine and workflow transfer . . . . . . 123

Definition 4.21 Performance of WESA bulk data transfer . . . . . . . . . . . . 123

xvi



List of definitions

Definition 4.22 Overall WESA performance functions . . . . . . . . . . . . . . 124

Definition 4.23 Scalability of WESA data transfer . . . . . . . . . . . . . . . . 124

Definition 5.1 WESW nodes and node types . . . . . . . . . . . . . . . . . . 152

Definition 5.2 WESW Instance . . . . . . . . . . . . . . . . . . . . . . . . . 153

Definition 5.3 Bijection between WESW node types and instances . . . . . . 153

Definition 5.4 WESW instance layout . . . . . . . . . . . . . . . . . . . . . . 154

Definition 5.5 WESW type layout . . . . . . . . . . . . . . . . . . . . . . . . 154

Definition 5.6 WESW structure layout . . . . . . . . . . . . . . . . . . . . . 154

Definition 5.7 WESW data types . . . . . . . . . . . . . . . . . . . . . . . . 154

Definition 5.8 WESW engine data flow . . . . . . . . . . . . . . . . . . . . . 155

Definition 5.9 WESW workflow data flow . . . . . . . . . . . . . . . . . . . . 155

Definition 5.10 WESW bulk data flow . . . . . . . . . . . . . . . . . . . . . . 156

Definition 5.11 WESW data flow types . . . . . . . . . . . . . . . . . . . . . . 156

Definition 5.12 WESW resource layout . . . . . . . . . . . . . . . . . . . . . . 156

Definition 5.13 WESW interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 157

Definition 5.14 WESW Subject of integration . . . . . . . . . . . . . . . . . . 157

Definition 5.15 Set of possible WESW architectures . . . . . . . . . . . . . . . 158

Definition 5.16 WESW solution . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Definition 5.17 WESW scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 159

Definition 5.18 WESW scenario execution . . . . . . . . . . . . . . . . . . . . 160

Definition 5.19 Performance of WESW engine and workflow transfer . . . . . 161

xvii



List of definitions

Definition 5.20 Performance of WESW bulk data transfer . . . . . . . . . . . 161

Definition 5.21 Overall WESW performance functions . . . . . . . . . . . . . 161

Definition 5.22 Scalability of WESW data transfer . . . . . . . . . . . . . . . 162

Definition A.1 Structure generated by an instance layout . . . . . . . . . . . 202

Definition A.2 Structure generated by a type layout . . . . . . . . . . . . . . 202

xviii



List of lemmas

Lemma 2.1 Time of transferring a byte array sequence via a path * . . . . . 50

Lemma 2.2 Slice size independence * . . . . . . . . . . . . . . . . . . . . . . 51

Lemma 2.3 Performance characteristics of simultaneous transfer * . . . . . . 53

Lemma 2.4 Simultaneous transfer of equivalent data flow cases * . . . . . . . 56

Lemma A.1 Structure layout implementation . . . . . . . . . . . . . . . . . . 203

Lemma A.2 Time of transferring a byte array sequence via a path * . . . . . 205

Lemma A.3 Slice size independence . . . . . . . . . . . . . . . . . . . . . . . 207

Lemma A.4 Performance characteristics of simultaneous transfer . . . . . . . 208

Lemma A.5 Simultaneous transfer of equivalent data flow cases . . . . . . . . 209

xix



List of Figures

1.1 Growth in the content of the MyExperiment workflow repository . . . 4

1.2 Different workflow abstraction levels . . . . . . . . . . . . . . . . . . 6

1.3 Heterogeneous technologies in current workflow systems . . . . . . . . 9

1.4 Research process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Architecture analysis and evaluation . . . . . . . . . . . . . . . . . . 20

1.6 Contributions and their relations . . . . . . . . . . . . . . . . . . . . 22

2.1 Concept of existing DASGs . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Nodes of existing DASGs . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Example DASG structure . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Examples for each data transfer case . . . . . . . . . . . . . . . . . . 50

2.5 Structure and dataflow of existing and proposed DASG architectures 65

2.6 DASG overhead predictions . . . . . . . . . . . . . . . . . . . . . . . 69

2.7 Deploying MySQL client using the GEMLCA Administration Portlet 72

2.8 DASG implementation based on GEMLCA . . . . . . . . . . . . . . . 72

xx



List of Figures

3.1 Concept of existing DASWs . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 DASW Data access approaches . . . . . . . . . . . . . . . . . . . . . 77

3.3 DASW node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Request representation within workflows . . . . . . . . . . . . . . . . 83

3.5 Subject of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Combinations of recommended DASW data flow cases . . . . . . . . . 96

3.7 Structure and data flow of existing DASW architectures . . . . . . . . 100

3.8 Parametrisation of a MySQL client in a P-GRADE workflow . . . . . 106

3.9 DASW implementation based on GEMLCA . . . . . . . . . . . . . . 107

4.1 WESA concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 WESA node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Combinations of recommended WESA data flow cases . . . . . . . . . 132

4.4 Existing and proposed WESA architectures . . . . . . . . . . . . . . 136

4.5 WESA overhead predictions . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Deploying Taverna using the GEMLCA Admin. Portlet . . . . . . . . 144

4.7 Implementation of WESA PC10 based on GEMLCA . . . . . . . . . 145

4.8 Implementation of WESA PC3 based on GEMLCA . . . . . . . . . . 146

4.9 Implementation of WESA PC16 based on GEMLCA . . . . . . . . . 146

5.1 WESW concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2 WESW Workflow invocation types . . . . . . . . . . . . . . . . . . . 152

xxi



List of Figures

5.3 WESW node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 Combinations of recommended WESW data flow cases . . . . . . . . 174

5.5 Existing and proposed WESW architectures . . . . . . . . . . . . . . 182

5.6 Parametrisation of a Triana child workflow in a P-GRADE parent

workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.7 Implementation of WESW PC26 based on GEMLCA . . . . . . . . . 190

5.8 Implementation of WESW PC5 based on GEMLCA . . . . . . . . . . 190

5.9 Implementation of WESW PC31 based on GEMLCA . . . . . . . . . 191

xxii



List of Tables

1.1 Data resource support in current workflow systems . . . . . . . . . . 10

2.1 DASG node matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Properties of different resource types . . . . . . . . . . . . . . . . . . 40

2.3 DASG bulk data flow cases . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Time of DASG bulk data transfer . . . . . . . . . . . . . . . . . . . . 57

2.5 Overhead and scalability of DASG bulk data staging . . . . . . . . . 57

2.6 Latency and scalability of DASG bulk data staging . . . . . . . . . . 58

2.7 DASG DRC data flow cases . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Time and scalability of DASG DRC transfer . . . . . . . . . . . . . . 59

2.9 Elimination of DASG data flow cases . . . . . . . . . . . . . . . . . . 62

2.10 Recommended DASG structure, data flow, and resource layout . . . . 63

2.11 Analysis of proposed and existing DASG architectures . . . . . . . . 65

3.1 DASW node matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 DASW of bulk data flow cases . . . . . . . . . . . . . . . . . . . . . . 89

xxiii



List of Tables

3.3 Overhead and scalability of DASW bulk data staging . . . . . . . . . 90

3.4 Latency and scalability of DASW bulk data staging . . . . . . . . . . 90

3.5 Time of DASW bulk data transfer . . . . . . . . . . . . . . . . . . . . 91

3.6 DASW DRC data flow cases . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Transfer time and scalability of DASW DRC transfer . . . . . . . . . 92

3.8 Elimination of DASW data flow cases . . . . . . . . . . . . . . . . . . 94

3.9 Proposed DASW structures, data flows, and resource layouts . . . . . 95

3.10 Proposed DASW structure and data flow combinations in different

cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.11 Performance of proposed DASW structures and data flows . . . . . . 99

3.12 Existing and proposed DASW architectures . . . . . . . . . . . . . . 101

3.13 Performance of the existing DASW architectures part 1/2. . . . . . . 102

3.14 Performance of the existing DASW architectures part 2/2. . . . . . . 102

4.1 WESA node matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Size of different workflow engines . . . . . . . . . . . . . . . . . . . . 117

4.3 WESA bulk data flow cases . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Time of WESA bulk data transfer . . . . . . . . . . . . . . . . . . . . 125

4.5 Overhead and scalability of WESA bulk data staging . . . . . . . . . 126

4.6 Latency and scalability of WESA bulk data staging . . . . . . . . . . 126

4.7 WESA engine data flow cases . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Transfer time and scalability of WESA engine transfer . . . . . . . . 127

xxiv



List of Tables

4.9 WESA workflow data flow cases . . . . . . . . . . . . . . . . . . . . . 128

4.10 Transfer time and scalability of WESA workflow transfer . . . . . . . 128

4.11 Elimination of WESA data flow cases . . . . . . . . . . . . . . . . . . 130

4.12 Proposed WESA structures, data flows, and resource layouts . . . . . 131

4.13 Proposed WESA structure and data flow combinations in different

cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.14 Performance of proposed WESA structures and data flows . . . . . . 135

4.15 Existing and proposed WESA architectures . . . . . . . . . . . . . . 137

4.16 Performance of the Gria Service based architectures part 1/2. . . . . 138

4.17 Performance of the Gria Service based architectures part 2/2. . . . . 138

5.1 WESW node matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Time of WESW bulk data transfer . . . . . . . . . . . . . . . . . . . 163

5.3 Overhead and scalability of WESW bulk data staging . . . . . . . . . 163

5.4 Latency and scalability of WESW bulk data staging . . . . . . . . . . 164

5.5 WESW bulk data flow cases part 1/3. . . . . . . . . . . . . . . . . . . 165

5.6 WESW bulk data flow cases part 2/3. . . . . . . . . . . . . . . . . . . 166

5.7 WESW bulk data flow cases part 3/3. . . . . . . . . . . . . . . . . . . 167

5.8 WESW engine data flow cases . . . . . . . . . . . . . . . . . . . . . . 168

5.9 WESW workflow data flow cases . . . . . . . . . . . . . . . . . . . . 169

5.10 Time and scalability of WESW engine transfer . . . . . . . . . . . . . 170

5.11 Time and scalability of WESW workflow transfer . . . . . . . . . . . 170

xxv



List of Tables

5.12 Elimination of WESW data flow cases . . . . . . . . . . . . . . . . . 172

5.13 Proposed WESW structures, data flows, and resource layouts . . . . . 173

5.14 Proposed WESW structure and data flow combinations in different

cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.15 Performance characteristics of proposed WESW structure and data

data flow combinations part 1/2. . . . . . . . . . . . . . . . . . . . . 179

5.16 Performance characteristics of proposed WESW structure and data

data flow combinations part 2/2. . . . . . . . . . . . . . . . . . . . . 180

5.17 Existing and proposed WESW architectures . . . . . . . . . . . . . . 181

5.18 Performance characteristics of the Gria and WFBus-VRE Service

based architectures part 1/4. . . . . . . . . . . . . . . . . . . . . . . . 183

5.19 Performance characteristics of the Gria and WFBus-VRE Service

based architectures part 2/4. . . . . . . . . . . . . . . . . . . . . . . . 184

5.20 Performance characteristics of the Gria and WFBus-VRE Service

based architectures part 3/4. . . . . . . . . . . . . . . . . . . . . . . . 184

5.21 Performance characteristics of the Gria and WFBus-VRE Service

based architectures part 4/4. . . . . . . . . . . . . . . . . . . . . . . . 185

5.22 Performance comparison of the proposed and existing WESW archi-

tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.23 Number of proposed and implemented architecture sets . . . . . . . . 196

xxvi



Notations

N set of natural numbers including 0

N� set of positive natural numbers

R set of real numbers

R� set of positive real numbers

R�0 set of non-negative real numbers

L set of logical values: 0 and 1

B set of bytes, where B � L8

@ for all

D exists

D! uniquely exists

P element

tx P X }θpxqu a subset of X whose members are satisfying

formula θpxq

px1, x2, . . . , xnq ordered n-tuple

X1 �X2 � � � � �Xn Cartesian product of sets X1, X2, . . . , Xn

|X| cardinality of a set X

^ logical and operation

xxvii



Notations

_ logical or operation

 logical negation operation

ñ logical implication operation pxñ yq � p x_ yq

ô logical equivalence operation

rn..ms tx P N}n ¯ x ¯ mupn,mq P N

b transitive, symmetric, reflexive closure of binary relation b

� subset

P power set

H empty set

rrs ceiling function: smallest integer not smaller than r P R

tru floor function: largest integer not greater than r P R

domphq domain of function h

VhW truth set of logical function h conatining all elements

of domphq where h is true

� composition of binary relations

rX Ñ Y s set of all functions from a set X to a set Y

χpθq function that maps 1 to logical statement θ if it is true

and maps 0 otherwise

xxviii



Abbreviations

DASG heterogeneous Data Access Solution for Grid applications

DASW heterogeneous Data Access Solution for Workflows

WESA heterogeneous Workflow Execution Solution for Applications

WESW heterogeneous Workflow Execution Solution for Workflows

DRC Data Resource Client

DAG Directed Acyclic Graph

DCG Directed Cyclic Graph

API Application Programming Interface

CLI Command Line Interface

xxix



Chapter 1

Introduction

1.1 General overview of Grid

1.1.1 Grid Computing

“Grid computing has emerged as an important new field, distinguished from conven-

tional distributed computing by its focus on large-scale resource sharing, innovative

applications, and, in some cases, high-performance orientation” [1]. The Grid is

an infrastructure of computers, databases, networks and scientific instruments that

belong to multiple organisations. Since applications on the Grid often use large

amounts of data and secure access to different kinds of resources, managing these

applications is a complex task. For this reason, different high-level tools have been

developed to ease the usage of Grid resources and help the composition and orches-

tration of low-level tasks.
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1.1.2 Grid infrastructures and middleware

Many different Grid infrastructures, with large user communities, emerged dur-

ing the last decade. TeraGrid [2] of the American National Science Foundation

(NSF) interconnects the institutes of the American National Centre for Supercom-

puting Applications forming one of the largest Grid-based infrastructure (about

30000 nodes [3]). The UK National Grid Service [4] (NGS) provides also access to

numerous computer resources (about 1400 CPUs [5]) hosted by the University of

Bristol, Cardiff, Leeds, Leicester, Manchester, Oxford, Westminster, etc. Enabling

Grids for E-sciencE [6] (EGEE) is the largest Grid infrastructure. More than 100

institutions are part of it from more than 50 countries all over the world providing

about 110,000 CPUs. [7] Distributed European Infrastructure for Supercomputing

Applications [8] (DEISA) is a European wide Grid infrastructure hosting about

30,000 processors [9] and connecting 11 European national supercomputing centres.

These Grid infrastructures are based on different Grid middleware, which is the

software layer between computer resources and users. TeraGrid and NGS are based

on the Globus Toolkit [10, 11], EGEE is based on gLite [12] and DEISA is based on

Unicore [13, 14] and the Globus Toolkit.

1.1.3 Grid Interoperability

Different Grid middleware provides different types of computational and data re-

sources. (See comparison of different Grid middleware technologies [15, 16].) For

this reason, there are non-interoperable Grid islands which inhibits the inter-organi-

sational usage of different Grid resources [17]. Grid interoperability is the ability of

different Grids to cooperate and mutually share their resources. Grid communities

put a lot of effort nowadays to attain interoperability. (See Workflow Level Inter-

operation of Grid Data Resources [18], that identifies different interoperation levels

2
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of Grid resources and summarises the current state of the art.)

The Open Grid Forum’s (OGF) Grid Interoperation Now Community Group

(GIN) coordinates a significant project that is aiming to achieve interoperability be-

tween different Grid systems. Their goal is to implement interoperation on specific

topics such as information services, data movement, job submission and authorisa-

tion and identity. This research group distinguishes interoperability and interoper-

ation.

The Simple API for Grid Application (SAGA) project [19] focuses on Grid inter-

operability at application level by providing a standardized interface that comprises

method calls for performing the most commonly needed Grid-functionality. Both

SAGA and GIN use the same working-definitions and distinguish between interop-

erability and interoperation.

According to the definition in [20] both interoperability and interoperation are

trying to make different infrastructures work together, but while the former is a

long-term solution based on standards, which have to be adopted by the infrastruc-

tures, the latter is rather a short-term solution and does not require changes in the

infrastructures. These two notions are not distinguished in this document as they

are not distinguished in most of the publications which this document cites.

1.2 Overview of Workflows

Scientific workflows are widely used by the Grid community to automate large-scale,

computationally intensive experiments. Communities of various research areas, such

as bioinformatics, physics, geographics, astronomy, proposed and developed different

workflow management systems in the last decade.

According to the “Case Studies in Workflow Fragment Reuse” in [22], few hun-
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Figure 1.1: Growth in the content of the MyExperiment workflow repository [21].

dred users of different workflow systems created several hundred workflows up to

2005. Figure 1.1 illustrates the number of workflows available in a single workflow

repository called MyExperiment over the past few years. As the figure suggests, the

number of publicly available workflows is growing continuously.

1.2.1 Workflow definition

A general workflow definition based on the Workflow Management Coalition’s “The

Workflow Reference Model” [23] is the following: “Workflow is concerned with the

automation of procedures whereby files and data are passed between participants

according to a defined set of rules to achieve an overall goal.” Similar definition of

scientific workflow can be found in [24]. A definition of Grid workflow can be found

in [25], which states that “A Grid workflow is a workflow within a Grid comput-

ing environment.” Executing workflows on the Grid results significant performance

improvement and offers the ability to execute multiple tasks concurrently in a dis-

tributed environment. However, because of the diversity of different Grid resources

4
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and complexity of Grid infrastructures, Grid workflows are typically less reliable and

complicated to execute.

1.2.2 Workflow specification and structure

A workflow specification can be abstract or concrete. The former describes the

workflow structure, but does not map the tasks to concrete Grid resources, while

the latter is rather an executable form, so it includes all the data which is required

for execution, including resource mappings and workflow inputs as well. There

are systems in which workflows are defined and stored in abstract form and the

concrete form is generated before or during workflow execution, while other systems

simply store the executable concrete form. However, further abstraction levels can

be identified. Figure 1.2, illustrates these many abstraction levels supported by a

single workflow language called GWorkflowDL [26, 27].

According to taxonomies given in [28] and [24], a workflow structure can be

represented as a DAG1 or non-DAG. The difference is that non-DAG workflows

allow iterations of a subset of tasks (this structure is usually called DCG2), workflow

recursion, and/or further control constraints.

1.2.3 Workflow execution

The workflow scheduler is responsible for controlling the workflow execution process

taking into account that the tasks (jobs) have to be executed in a given order. The

control can be either: centralised, where one scheduler controls the whole execution

process; hierarchical, where the central scheduler gives subtasks (sub-workflows) to

1Directed Acyclic Graph
2Directed Cyclic Graph
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Figure 1.2: Different workflow abstraction levels supported by GWorkflowDL work-

flow language [26]

lower-level schedulers; or decentralised, where multiple schedulers are conducting

the sub-workflow execution without being controlled by a central scheduler.

Before workflow task execution, the executable jobs and/or their requisite data

are transferred to different Grid nodes. However, in some cases the executable

jobs are already deployed on Grid nodes. In this case no task transfer is needed.

After successful execution, the result is gathered and can be used as an input of

the following tasks. This means that intermediate data has to be moved during

execution from one Grid node to another. According to the taxonomy given in [28]

and [24], data movement can be either: centralised, where a central mechanism

moves the data from one node to the other; mediated, where data transfer is managed

by a distributed system; or peer-to-peer, where data is directly passed between the

computational resources. Furthermore, workflow management systems provide fault

6
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handling mechanisms, in order to handle workflow execution failures. This also can

be handled at different levels such as at task or at workflow level.

The system which is responsible for the whole workflow execution process includ-

ing workflow scheduling, data movement, fault tolerance and monitoring is called the

workflow engine. This engine is part of the workflow management system that typ-

ically provides a user interface for workflow development, execution, fault handling,

monitoring and other workflow related functionalities. In the case of Grid work-

flow management system, this is connected to at least one Grid, which provides the

computational resources for task execution.

1.3 Heterogeneity of workflow systems

Since workflow management systems were developed for various purposes, they differ

in several aspects and they are based on different technologies as described in [29],

[28] and [24]. The most important differences are summarised in this section and

illustrated in figure 1.33 and table 1.1.

Triana [30, 31, 32] is a lightweight, modular, general purpose workflow based

distributed problem solving environment developed at Cardiff University. It has

been used in numerous projects such as GridOneD [33], GridLab [34]. Taverna [35,

36, 37] was mainly developed as a collaboration of the University of Manchester

and Southampton so as to create a high-level tool for bioinformatics workflow or-

chestration and execution. The project is, among others, founded by the Open

Middleware Infrastructure Institute UK (OMII-UK), Engineering and Physical Sci-

ences Research Council (EPSRC) and Microsoft. The P-GRADE portal [38, 39] is a

web-based high-level tool for workflow development, execution and monitoring. The

3This figure has been used by the SHIWA project in various documents and presentations.
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portal, which was developed by the MTA SZTAKI Research Institute and Centre

for Parallel Computing at University of Westminster, is the official portal of sev-

eral European Grids, such as EGEE, VOCE, See-Grid or Hun-Grid and provides

access to numerous types of different Grid data resources, for example: OGSA-DAI

or SRB. Askalon [40], which was developed at University of Innsbruck, is a pro-

gramming environment and tool-set for cluster and Grid programming. It provides

UML workflow modelling tool, XML based abstract workflow language and work-

flow scheduling optimisation methods. Kepler [41], which has been developed as

a cross-project collaboration, provides a Grid-based workflow system for scientists

from different areas, such as astronomy, biology or ecology. It is based on Ptolemy

II [42], which has been developed at University of California - Berkeley. The devel-

opment of the UNICORE (UNiform Interface to COmputing Resources) middleware

started as two German projects funded by the German ministry of education and

research. The UNICORE workflow system was developed based on this middleware.

Pegasus [43] (Planning for Execution on Grids) is a framework for mapping compu-

tational workflows on distributed resources. It enables users to represent workflows

at an abstract level while hides the target execution resources. K-Wf Grid [26]

(Knowledge-based Workflow System for Grid Applications) adopts the approaches

of semantic Web to create a knowledge-based system, that is able to utilise the dy-

namically changing, complex Grid environments. MOTEUR [44] workflow engine

is aiming to realise a system that allows both a simple description of the data flow

and efficient execution on the Grid.

Most systems are coupled with one workflow engine. Taverna uses Freefluo, Tri-

ana uses Triana Engine, K-Wf Grid [26] uses GWES [26] (Grid Workflow Execution

Service). UNICORE uses the Shark [45] open source workflow engine. Older ver-

sions of P-GRADE used Condor DAGMan [46], while its recent version uses its own

engine called Xen.
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Figure 1.3: Heterogeneous technologies in current workflow systems

Many workflow systems use dissimilar workflow description languages. While

Triana is able to interpret BPEL [47] (Business Process Execution Language), its

own defined language and additional workflow formats (since its workflow interpreter

is extendible), most systems are restricted to one language. Taverna workflows

are represented in Scufl [48] (Simple Conceptual Unified Flow Language), older

versions of P-GRADE used Condor DAG, now it uses its own defined format (Xen

language), Kepler uses MOML [49] (Modeling Markup Language), while K-WfGrid

uses GWorkflowDL [27] (Grid Workflow Description Language). Because of the

diversity of workflow languages, scientists who use different workflow systems cannot

exchange workflows.

Workflow description languages can be based on various workflow formalisms.

Some workflow languages, such as the Condor DAG, use simple directed acyclic

graph (DAG) workflow structure that does not allow the usage of loop, recursion or
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nested workflow. However Scufl, that is also a DAG based language, is extended with

control constraints supporting the usage of if/else, case and loop structures within

Taverna workflows. The new version of the P-GRADE portal also uses a DAG based

language, which is extended with recursion and workflow nesting. GWorkflowDL is

based on Petri Nets [50], while BPEL is Pi-Calculus [51] based. Both Petri Nets and

Pi-Calculus have a wider range of expression capabilities, for instance they allow the

concept of non-determinism. Because of these differences, it is not a trivial issue to

express a workflow of one type in the description language of another. For instance,

a Petri Net based workflow cannot always be converted into a DAG based language,

since DAG cannot express iteration or non-deterministic choice.

Since most workflow management systems are restricted to use one (Grid) mid-

dleware, it might be a problem to reuse jobs of a workflow that was created in

another workflow management system, because the executable of the job might not

run on other middleware.

Data resources
GridFTP SRB LFC Amazon S3 HTTP JDBC OGSA-DAI

W
or

kf
ow

 s
ys

te
m

s X

K-WF Grid X

MOTEUR X X

P-GRADE X X X X X

Pegasus X X X X X

X X X

Askalon

       

Triana

Table 1.1: Data resource support in current workflow systems

An important part of a workflow is the data that it processes and generates. This

data can reside in various types of data resources. Table 1.14 illustrates the het-

erogeneity of data resources supported by the different workflow systems. Askalon,

K-WF Grid, P-GRADE, Pegasus, and Triana all support GridFTP [52] protocol for

4The table has been created based on the information provided directly by the developer teams

of the included workflow systems.
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transferring files. SRB [53] (Storage Resource Broker) is supported by P-GRADE,

LFC [54] (LCG File Catalogue) is supported by P-GRADE, MOTEUR, and Pega-

sus. The latter two also support gathering data from a given HTTP location and

PEGASUS also supports Amazon S3 [55] (Simple Storage Service). Triana provides

access to different kinds of databases via JDBC [56] (Java Database Connectivity),

while P-GRADE also supports OGSA-DAI [57, 58] (Open Grid Services Architecture

Data Access and Integration). However, most workflow systems, such as Askalon,

K-WF Grid, MOTEUR, or PEGASUS, do not support access to structured data

resources. Since most workflow systems support only a limited set of data resources

as illustrated in table 1.1, workflows of different systems cannot access and process

data of other workflows if they do not support the same data resource type.

1.4 Workflow interoperability

The Workflow Management Coalition defines workflow interoperability in general

in [59] as:“The ability for two or more Workflow Engines to communicate and work

together to coordinate work.” In this definition the workflow engine is a service which

provides the workflow run-time environment. Interoperability between workflows

can be realised at various levels.

Making workflow systems interoperable and reusing workflows that were devel-

oped in different workflow management systems are a natural desire of e-Scientists,

because these: enable inter-organizational collaboration between different scientific

groups; speed up the design phase; and improve the quality by allowing the usage

of already validated workflows even if they were developed within different systems.

The Workflow Management Research Group [60] of the OGF (Open Grid Forum)

is focusing on workflow sharing and interoperability. The Workflow Management

Coalition [61] tries to decrease the risks of using business process management and
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workflow products via interoperability standards. The CppWfMS [62] project is

aiming to achieve workflow language interoperability by defining interfaces for work-

flow description translation. The SHIWA project [63] is aiming to achieve workflow

interoperability applying both coarse- and fine-grained strategies. Coarse-grained

approach treats workflow engines as black-box systems where complete workflows

are sent for enactment. The fine-grained approach tries to achieve workflow lan-

guage interoperability by defining an intermediate workflow representation that can

be used for translation across different workflow systems.

1.4.1 Approaches to workflow interoperability

Since workflow systems are based on several technologies, workflow interoperability

can be achieved at different levels. Three of these: language level, message level,

and engine level interoperability are described in the following sections.

Interoperability at the level of workflow languages

Workflow description language standardization would enable users of different work-

flow management systems to exchange workflows. This would realise interoperability

by defining a common workflow description language that has to be adopted by ev-

ery existing workflow management system. Such a top-down approach requires large

efforts and is against a user-centric design, since it does not support scientists in for-

mulating their research activities in their preferred workflow description language.

If such a standard format will be defined and accepted, workflow management sys-

tems will either adopt this format or define import/export processes for workflow

translation [64].

Workflow description language translation would enable users to reuse workflows
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created in different workflow systems using their preferred and familiar environment.

Workflow translation can be realised by using an intermediate workflow language

representation. YAWL [65] (Yet another workflow language) is based on an exten-

sive analysis of (more than 30) existing workflow systems using a set of workflow

patterns described in [66]. Because of its expressive power and formal semantics,

YAWL might be a candidate to be used as an intermediate language for workflow

translations. See, for instance, BPEL to YAWL translation described in [67]. The

CppWfMS workflow system [68], that was developed by CNAF department of the

National Institute of Nuclear Physics in Italy, defines interfaces for workflow de-

scription translation to achieve workflow language interoperability. It contains a

JDL (Job Description Language, that is able to describe simple jobs as well as DAG

based workflows) to GWorkflowDL converter and also a Scufl to GWorkflowDL con-

verter, that transforms simple Scufl workflows using XSLT (Extensible Stylesheet

Language Transformations).

Both language translation and language standardization would help in enabling

the same workflow to be run on different infrastructures. However, having a standard

workflow language or workflow translators is not sufficient to achieve interoperabil-

ity, since jobs, job descriptions, data, and execution environments also have to be

standardised or mapped. Furthermore, because of different expression capabilities

of workflow languages, it is not always possible to translate one language to another.

Interoperability at the level of message passing

Message level workflow interoperability is the ability of workflows of different sys-

tems to exchange information by sending data messages. The Scientific Workflow

Interoperability Framework [69, 70] (SWIF) realises workflow interoperability at this

level, based on a Publish/Subscribe asynchronous messaging system. Using a set of

Web Services that follow WS-Eventing Specifications [71], SWIF makes processes
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on a workflow system available to other workflows. The PS-SWIF GUI provides

tools for publishing workflow activities and subscribing for those. When a pub-

lished workflow activity is executed, all subscribed workflows receive a notification

message.

This solution is general, builds on existing standards, and can be adopted by any

workflow system that supports the invocation of Web Services. However, in order to

achieve interoperability between different workflows based on this approach, users

should have their own workflow systems installed on their machines and they have

to modify these workflows to enable their communication via Web Services.

Interoperability at the level of workflow engines

An alternative approach to attain workflow interoperability is to enable workflow

management systems to execute non-native workflows by invoking external workflow

engines. The aim of this concept is to enable scientists to create such heterogeneous

nested workflows where child workflows of a given workflow system can be embedded

into a parent workflow of another system enabling interoperability not only between

the parent and child workflow but also between multiple child workflows of different

kinds embedded in the parent workflow. Non native child workflows are black boxes

to the users of the parent workflow system, they don’t have to understand how such

a workflow works, and they do not have to modify them.

The SIMDAT [72] project identified an approach to this interoperability level

in [73], where the functionality of the different workflow engines is wrapped and

published as Web/Grid services. The client passes the workflow written in the

appropriate workflow language and the input data to the workflow engine that will

execute it and give back the results to the client. This client can be used in any

workflow management system for workflow execution. The VLE-WFBus [74] system,
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developed by the Dutch Virtual Laboratory for e-Science project, provides a meta

workflow system, that encapsulates a few popular workflow engines and allows the

composition of high-level heterogeneous workflows via a Vergil based GUI provided

by the Ptolemy project [42]. These solutions are detailed in section 5.4.

Although there is a high demand for a solution that enables scientists to con-

nect heterogeneous, interoperable workflows, due to their limitations and ad-hoc

implementation (see analysis in section 5.4) none of the above solutions is widely

utilised.

1.5 Interoperability of workflows and data

resources

Workflow data can be stored in various types of data resources (such as: rela-

tional databases, XML databases, file system based resources, data repositories).

There are several products in the case of each kind of data resource. For instance:

MySQL [75], Oracle database [76], PostgreSQL [77], IBM DB2 [78], and Microsoft

SQL Server [79] are relational databases; Xindice [80], eXist [81] are semi-structured

databases; SRM [82], SRB [53], FTP [83], and GridFTP [52] provide file system

based data resources; D-SPACE repository [84] and Fedora repository [85] are dig-

ital repositories for storing data and related metadata. Although many scientific

experiments rely on data stored in various data resources, most workflow systems

support only a small subset of these and many of them do not provide access to

databases at all. See table 1.1. For this reason, scientists have to use different tools

before workflow submission to access their datasets and gather the required data

on which they want to carry out computational experiments. A general solution for

accessing heterogeneous data that can be easily integrated with workflow systems
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would help scientists to automate their workflows independently of what resource

its data resides.

There are existing solutions that can be used for accessing databases. JDBC

defined by Sun Microsystems and ODBC [86] (Open Database Connectivity) defined

by the SQL Access Group provide connection to several relational databases to allow

the execution of SQL queries using the same interface.

OGSA-DAI, that provides access to a larger set of data resources, can also be

used for this purpose [87]. It integrates numerous SQL as well as XML databases,

and also file systems. It allows the execution of complex workflows of data related

requests, and it is based on Grid infrastructure. It has been utilised by numer-

ous projects in the UK e-Science community and world-wide [88]. As a reference

implementation, OGSA-DAI implements WS-DAI, WS-DAIR, and WS-DAIX stan-

dard recommendations [89] of the DAIS (Database Access and Integration Services)

Working Group, which is part of the OGF (Open Grid Forum).

JDBC and ODBC are widely utilised by the industry, but they are only suitable

for accessing relational databases. Although OGSA-DAI is a good candidate to use

as a general solution for accessing heterogeneous data resources, it has limitations

in terms of performance, especially in the case of large number of requests and large

amounts of data. These solutions and further data access solutions are detailed

section 2.4 and 3.4.

1.6 Research overview

Research statement Coexistence of different Grid middleware services, data re-

sources and workflow systems encumbers the collaboration of scientific communities

especially in the case of multidisciplinary research. In addition, new solutions arise
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on a regular basis. Often not only different solutions are not able to interoperate,

but different versions of the same software are not compatible either. Because of the

heterogeneity of these systems and the dynamic changes of this field, attaining inter-

operability is a demanding task. To address this issue, flexible and easily extendible

interoperability solutions are needed which do not bottleneck the performance of

the connected software components.

This thesis focuses on two major problems of currently existing workflow sys-

tems: workflow interoperability at the level of workflow engines and data access.

It proposes a set of architectures to realise heterogeneous data access solutions and

to realise heterogeneous workflow execution solutions. The primary goal was to

investigate how such solutions can be implemented and integrated with workflow

systems. The secondary aim was to analyse how such solutions can be implemented

and utilised by single applications.

Hypothesis By dynamically utilizing Grid resources to support heterogeneous

data access and distributed heterogeneous workflow execution solutions, flexible

and easily extendible architectures can be constructed which also provide high per-

formance data exchange between different software components. Such architectures

can be identified based on a mathematical model, that enables the analysis of a large

number of architectures taking under consideration key properties such as generality,

extendibility and performance.

This mathematical model is designed to analyse existing solutions of the field

and numerous possibilities how they can be improved. The model provides concepts

for defining different architectures and provides a set of functions to analyse the

performance characteristics of these. The key novelty in the case of most proposed

architectures is that computational and storage machines provided by the Grid are

utilised in order to divide the load of the different software components. This can be
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achieved by dynamically distributing these software components between the avail-

able machines. This way highly scalable architectures can be realised that deliver

data between these components with low overhead. Based on this extensive analysis

70 different architectures are proposed in different cases. Note that, fine-grained

differentiation between different architectures is an essential part of the analysis.

Since the concept of architecture used in the thesis is formalized, one difference in

an architecture property results in two different architectures. Although, this leads

to a large overall number of proposed architectures, these are mostly similar and are

proposed for 4 different problems in several different use-cases.

Since architectures are proposed based on a theoretical methodology, it was also

important to demonstrate that the proposed concepts are valid and possible to imple-

ment. The thesis describes the implementation of 15 of the proposed architectures.

Contributions of this thesis are aiming to ease the work of scientists and help them

to exploit the potential of workflows and Grids.

Section 1.4.1 and 1.5 gave a brief introduction of existing solutions, further de-

tails of these and other existing solutions are provided in the following chapters, in

section 2.4, 3.4, 4.4, and 5.4.

1.6.1 Research method

Based on the existing solutions and how they can be improved by exploiting the

capabilities of the Grid, several architectural aspects were considered. The archi-

tectural aspects in each case were defined in such way that by combining them it

is possible to construct the architectures of the described existing solutions as well

as to define more efficient new architectures, that utilise computational and storage

machines to distribute the load of the different software components. Properties

of the existing and proposed architectures were compared. A mathematical model
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was defined to analyse the performance characteristics of the different architectures.

The proposed architectures were improved in several properties (such as generality,

extendibility, scalability, and overhead) comparing to the architectures of existing

solutions as it is described in section 2.4.3, 3.4.3, 4.4.3 and 5.4.3.

In the case of all contributions the stated requirements are defined to cover the

most common user scenarios. This work identifies architectures which are optimal

from the stated requirements point of view and defines a general analysis method

and a mathematical model for comparing the different architectures.

Key	  Architecture	  
Proper/es	  
•  Generality	  
•  Extendibility	  
•  Performance	  

Architecture	  Model	  
•  Iden/fy	  Key	  Components	  
•  Iden/fy	  Possible	  
Architectures	  

Evalua/on	  
•  Analy/cal	  scenarios	  
•  Performance	  
characteris/cs	  

•  Proposed	  architectures	  
•  Implementa/on	  

Figure 1.4: Research process

The same research process is applied in the case of each contribution. Key phases

of this research process are illustrated in figure 1.4. First, the key architectural prop-

erties are identified. Next, the key software components of the model are specified.

Based on how these can be distributed over the network and how they can exchange

data, the set of possible architectures is constructed. Performance characteristics of

these architectures are identified and a set of architectures is proposed.

Architectures are defined in a formal way. Their definition includes structure,
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Analy&cal	  
Scenario	  

Performance	  
Model	  

Performance	  
Characteris&cs	  

(i) 

(ii) 

(iii) 

Architecture	  

Structure	  

Data	  flow	   Resources	  

Interface	  

Situa&on	  

Number	  of	  
Requests	  

Execu&on	  
Steps	  

Size	  of	  
transferred	  

data	  

Figure 1.5: Analysis and evaluation, where (i) describes the key components of an

architecture, (ii) illustrates the key properties of a situation used for evaluation and

(iii) shows the architecture evaluation process.

data flow, resources and interface. These are illustrated in figure 1.5/i. Structure

defines the involved software components and their distribution over the network;

data flow defines how software components exchange data to fulfil a particular re-

quest; resources defines on what kind of machines these components are hosted; and

interface defines the key interfaces used to exchange data with external components.

Taking into consideration all combinations of these properties, the set of possible

architectures is composed. Architectures are analysed based on specific sets of an-
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alytical scenarios. An analytical scenario represents a particular architecture in a

particular situation, which defines the number of simultaneous requests, the size

of transferred data, and the execution steps of the scenario. See illustration in fig-

ure 1.5/ii. An analytical scenario serves as an input for the performance model, that

maps the performance formulas (request execution time, overhead, latency, scalabil-

ity) to each architecture in a particular situation. This theoretical approach enables

the analysis and evaluation of a large number of architectures, where architectures

can be put to maximum load; performance properties can be analysed for arbitrarily

large inputs; and evaluation is simple enough to perform within the scope of this

thesis.

1.6.2 Contributions

Accessing heterogeneous data resources

The first part of the thesis focuses on access to heterogeneous data provided for Grid

applications and Workflows. It attempts to address the following research questions:

1. How data access should be provided for large numbers of applications running

on single computational machines provided by the Grid?

2. How data access should be provided for large numbers of running workflows?

3. How large amounts of bulk data should be transferred with optimal perfor-

mance?

These lead to the following contributions:

• C1: A set of optimal architectures to realise heterogeneous Data Access So-

lutions for Grid applications (DASG).
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Figure 1.6: Contributions and their relations

• C2: A set of optimal architectures to realise heterogeneous Data Access Solu-

tions for Workflows (DASW). This research is based on the results of DASGs

(see figure 1.6). However, in this case data access is provided not for Grid

applications, but for workflows of different workflow systems.

Executing heterogeneous workflows

The second part of the thesis focuses on workflow interoperability at the level of

workflow engines and addresses the following research questions:

1. How can large numbers of applications running on single machines execute

workflows of different kinds?
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2. How different workflow systems should be connected and how the communi-

cation should be established?

3. How can large numbers of running workflow instances invoke each other and

exchange large amounts of bulk data?

These lead to the following contributions:

• C3: A set of optimal architectures to realise heterogeneous Workflow Execu-

tion Solutions for Applications (WESA). This contribution is partially based

on C1 (see figure 1.6). In this case however, the architecture integrates and

provides access to heterogeneous workflow engines rather than to different data

resources and the access is provided for applications in general, not for Grid

applications.

• C4: A set of optimal architectures to realise heterogeneous Workflow Execu-

tion Solutions for Workflows (WESW) - workflow nesting. This contribution

is partially based on C2 and C3 (see figure 1.6). In contrast to C2 the re-

sources to which the access is provided are workflow engines. In contrast to

C3 the applications to which the heterogeneous engine access is provided are

workflows of different workflow systems.

In the case of each contribution research outcomes are: (a) definition of the key

properties, architectural aspects, and requirements; (b) definition of a mathematical

model that identifies how the different properties, aspects, and requirements are

related; (c) analysis of the existing solutions based on the model; (d) proposal of

a set of architectures which are optimal from the requirements point of view; (e)

reference implementation of selected proposed architectures.
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1.6.3 Thesis structure

Chapter 2, 3, 4, and 5 respectively describe the research work carried out in the field

on DASGs, DASWs, WESAs, and WESWs. Each of these chapters are structured as

follows. First, the key architecture properties of the aimed solutions are specified and

the set of possible architectures are defined based on a mathematical model. Using

this model, characteristics of the different architectures are identified. Based on this,

proposed architectures are selected and compared to the architectures of existing

solutions. Finally, reference implementations of selected proposed architectures are

described and limitations are identified.
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Heterogeneous Data Access

Solutions for Grid applications

(DASG)
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Figure 2.1: Concept of existing DASGs

A DASG typically has a frontend interface, a business logic layer, and a backend,

that encapsulates a set of Data Resource Clients (DRC) which are software com-

ponents that provide access to remote data resources and are able to communicate

with them directly. (For example: MySQL client, Oracle client, GridFTP client,

SRB client) The application passes a request to the frontend. The business logic
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layer defines how the appropriate DRC is selected and executed. The selected DRC

sends the request to a given data resource and receives the response, that is trans-

ferred back to the application. See illustration in figure 2.1 A few DASGs have been

developed in the past few years, such OGSA-DAI [57, 58], GRelC [90, 91, 92, 93],

and AMGA metadata catalogue [94, 95, 96]. (These are detailed and analysed in

section 2.4.)

2.1 Key DASG properties and require-

ments

Five key properties of DASGs were identified. These are: generality, extendibility,

overhead, latency, and scalability.

Generality As described in section 1.3, numerous heterogeneous data resources

coexist and are used by different scientific communities. Therefore, generality is

a key property of a DASG. An ideal DASG is able to provide access to relational

databases, XML databases, file systems, and repositories.

Extendibility Different scientific communities have different scientific problems.

They use different Grids, different applications and different data resources. Fur-

thermore, the evolution of Grids and Grid based systems is rapid; new architectures,

solutions and standards emerge continuously. Hence, extendibility of DASGs is a

key property. An ideal DASG can be extended with the support of a new kind of

data resource without requiring great effort.
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Overhead, latency, and scalability Many scientific problems that e-Scientists

deal with involve large-scale computations and require processing large amounts of

data. High performance of the integrated systems is essential. When different sys-

tems are integrated and connected in order to work together, the mediator that

connects the systems in question may become a bottleneck and decrease the perfor-

mance of the whole application. Overhead, latency, and scalability are also taken

under consideration as key properties. Overhead is considered as the delay in trans-

ferring a whole data set via a particular DASG compared to transferring it directly

between the data resource and the application. Latency is considered as the time

required for the first network packet of the transferred data to reach the application

machine via a particular DASG. Scalability is represented by the Bachmann–Landau

notation, indicating the growth rates of overhead and latency in function of bulk

data amount and number of simultaneous requests. All performance related prop-

erties are formally defined in section 2.3.2. (See definition 2.52 and 2.53). An ideal

DASG is highly scalable and transfers data with low overhead without significant

latency.

It should be noted that most existing DASGs provide additional functionality

(such as data transformation, additional security, or performing workflows of data

requests) on top of the functionality provided by DRCs. However, in many cases this

extra functionality is not necessary, the basic functionality provided by the DRCs

is sufficient. This research is not aiming to compare the existing solutions based on

the additional functionality they provide. Therefore, functionality is not considered

as a key property.
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2.2 DASG architecture definition

This section not only defines how DASG architectures are represented, but intro-

duces a general architecture model, that will also be used in the case of all further

contributions. Definitions of this general architecture model are marked with aster-

isks.

A DASG architecture consists of four properties structure, data flow, resources,

and interface. To identify and study possible approaches to realise DASGs in a

distributed environment such as Grid, prospective solutions are investigated based

on these four aspects.

Existing DASGs realise such an architecture where DRCs are stored and executed

on the same machine that hosts the frontend service and the business logic layer.

This approach puts all load upon this computer and may result in this machine

becoming a bottleneck. Since existing Grid infrastructures provide a vast range of

computational and storage resources, DRCs can be stored in remote storages and

executed using remote computational resources to distribute the load of a DASG.

To see how the functionality of a DASG can be provided if it is distributed between

multiple machines, different entities are identified. These are called nodes in this

model and form the basic building blocks of a DASG architecture.

2.2.1 DASG node

Definition 2.1 (Node and node type *)

A node is a running computer program or function. A node type represents a set of

computer programs and/or functions. Let N represent the set of all nodes and T

represent the set of all node types.
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Figure 2.2: Nodes of existing DASGs

Definition 2.2 (DASG node types)

In the case of DASGs the following node types are distinguished:

• An application node is a running application that needs to access a data re-

source. In the case of DASGs this application is always executed on a single

computational machine provided by the Grid. Application nodes belong to

type A.

• A data resource node provides access to a dataset hosted locally. Data resource

nodes belong to node type D.

• A DRC repository node provides the executable code of a DRC, which is always

stored locally to the DRC repository node. Note, that this entity is not neces-

sarily a running service of a digital repository such as (Fedora or DSpace), it

can be any entity that is able to provide the executable code of a DRC. DRC

repository nodes belong to node type R.

• A DRC execution node receives the executable code of a DRC from a DRC

repository node and executes it locally. After this point it represents the

running DRC. These nodes belong to type C.

• A mediator node provides the DASG frontend and the business logic layer.

It is contacted to satisfy a particular data request and performs all necessary
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steps in order to fulfil this. The mediator is aware of issues such as: the

machines that can run the DRC repository nodes; the machines that can run

the DRC execution nodes; what DRCs are available in the DRC repositories;

etc. Mediator nodes belong to type M .

Based on this let T :� tA,M,R,C,Du be the set of all DASG node types. Nodes of

M,R,C provide a DASG service and enable the communication between the nodes

of A and D. Therefore, two disjunctive subsets can be identified within T : let

T 1 :� tM,R,Cu be the set of core DASG node types and let T 2 :� tA,Du be the

set of external DASG node types.

In the case of existing DASGs, a mediator node, a DRC repository node, and a

DRC execution node are hosted on the same machine. See illustration on figure 2.2.

Definition 2.3 (Instance *)

Exactly one node of each node type is required to perform a request. Therefore, let

an instance be a set of |T | nodes, where each node belongs to a different node type

of T .

Definition 2.4 (DASG Instance)

Let a DASG instance be a set of |T | � 5 nodes, where each node belongs to a

different node type of tA,M,R,C,Du.

Definition 2.5 (Coexistence of multiple instances *)

Each request is performed through data exchanges between the nodes of an instance

and each request is performed within a different instance. In order to represent

multiple requests, multiple instances are needed. Therefore, the number of instances

is equal to the number of requests, which can be any natural number including 0.

Let r P N be the number of instances.
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Definition 2.6 (Bijection between node types and instances *)

From definition 2.3, there is exactly one node of each node type within an instance.

Therefore, each instance unequivocally defines a bijection between T and itself.

@i P r1..rs : let ϕi : T Ñ Ni represent this bijection, where @t P T : ϕiptq is the ith

node that belongs to node type t. This means that to each node type ϕi maps the

node which belongs to the given node type.

Definition 2.7 (Bijection between DASG node types and instances)

Let @i P r1..rs : let Ni :� tAi,Mi, Ri, Ci, Diu be the ith DASG instance, where

ϕipAq � Ai, ϕipMq �Mi, ϕipRq � Ri, ϕipCq � Ci, and ϕipDq � Di.

Definition 2.8 (Node type set *)

@t P T : let Nt �
�r
i�1 ϕiptq be node type set of t.

In the case of DASGs there are 5 node type sets NA, NM , NR, NE, ND and

r nodes in each type set. A DASG node matrix of instances and types can be

constructed as illustrated in table 2.1. Furthermore, both
�r
i�1Ni and

�
tPT Nt are

equal to the set of all DASG nodes, N and |N | � 5r.

Node types

NA NM NR NC ND

In
st

an
ce

s N1 A1 M1 R1 C1 D1

N2 A2 M2 R2 C2 D2

...
...

...
...

...
...

Nr Ar Mr Rr Cr Dr

Table 2.1: DASG node matrix where rows are instances and columns are node type

sets.
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2.2.2 DASG structure

A structure defines the relationships between the nodes in terms of whether two

nodes are running on the same or on different machines.

Definition 2.9 (Coupling *)

Two nodes are coupled if they are hosted on the same machine. A node is decoupled

if it is not coupled with any other node.

Definition 2.10 (Structure *)

A structure is an equivalence relation over N representing which nodes of N are

coupled and which are not. Let Gr :� tG � N 2}G is an equivalence relation u

represent the set of all possible structures for r instances.

A structure is specific to the number of instances and necessary for the performance

analysis of the different architectures. However, since this number changes with the

number of requests, another concept is used for architecture definition to represent

the layout independently of r. This concept is called structure layout and is defined

by two attributes:

• Instance layout determines couplings between the nodes of each instance.

• Type layout determines couplings between the nodes of each node type.

Definition 2.11 (Instance layout *)

An instance layout on domain T is an equivalence relation on T that defines for each

node type pair whether the nodes that belong to them are or are not coupled within

each instance. The set of all possible instance layouts on domain T is represented

by LIpT q and can be constructed as:

LIpT q :� th � T 2}h is an equivalence relationu. (2.1)
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Structure G P Gr implements instance layout h if:

@i P r1..rs, @pt1, t2q P T 2 : pt1, t2q P hô pϕipt1q, ϕipt2qq P G. (2.2)

This means that within each instance two nodes are hosted on the same machine

based on G if and only if their node types are in the same equivalence class based

on h.

Definition 2.12 (DASG instance layout)

The set of all possible DASG instance layouts is represented by LI and equals to

the set of all possible instance layouts on domain tA,M,R,C,Du.

A type layout defines for each node type between how many machines its nodes

are distributed.

Definition 2.13 (Type layout *)

A type layout on domain T is a function δ : T Ñ N�, where δptq (=δt) represents

the number of available machines that can host the nodes of node type t (t P T ).

The set of all possible type layouts on domain T is represented by LT pT q and can

be constructed as:

LT pT q :� rT Ñ N�s (2.3)

A structure G P Gr implements a type layout δ if:

@i, j P r1..rs, t P T : i � j mod δt ô pϕiptq, ϕjptqq P G. (2.4)

Note that to ensure the fair distribution of nodes between the available machines,

within each structure that implements a type layout δ, @t P T nodes of type t are

distributed based on round robin scheduling between the available δt machines (this

is provided by condition 2.4). Note that any scheduling policy that ensures fair

distribution would be suitable.
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Definition 2.14 (DASG type layout)

The set of all possible DASG type layouts is represented by LT and equals to the

set of all possible type layouts on domain tA,M,R,C,Du.

Definition 2.15 (Structure layout *)

A structure layout on domain T is a couple composed of an instance layout h and

a type layout δ which are both defined on domain T and for any two node types

coupled in instance layout h (meaning that within each instance their nodes are

hosted on the same machine) their nodes are distributed between the same number

of machines based on δ. It can be proven that this condition ensures there always

is a structure which implements both h and δ. (For details, see lemma A.1.) The

set of all possible structure layouts on domain T is represented by LSpT q and can

be constructed as:

LSpT q :� tph, δq P LIpT q � LT pT q}@pt1, t2q P h : t1, t2 P T ñ δt1 � δt2u. (2.5)

G P Gr implements structure layout ph, δq if and only if it implements both h and δ.

Note that, based on the above, the predicate in the set definition guarantees that

there always is such structure. See the nodes of M and R in example 2.1.

Definition 2.16 (DASG structure layout)

The set of all possible DASG structure layouts is represented by LS and equals to

the set of all possible structure layouts on domain tA,M,R,C,Du.

Example (A DASG structure layout)

Let ph, δq P LS be a DASG structure layout, where h � tpM,Rqu and δ � tpA, 4q,

pM, 2q, pR, 2q, pC, 3q, pD, 4qu. In order to save space, rather than defining h by

listing all couplings it contains, in most cases it is defined as a transitive, reflexive,

symmetric closure. Figure 2.3 illustrates a structure that implements structure
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Figure 2.3: DASG structure that implements both instance layout h � tpM,Rqu and

type layout δ � tpA, 4q, pM, 2q, pR, 2q, pC, 3q, pD, 4qu with 4 simultaneous requests

pr � 4q.

layout ph, δq for 4 instances (r � 4). The figure shows that the illustrated structure

is an equivalence relation where nodes are hosted on the same machine if they are

in the same equivalence class.

2.2.3 DASG data flow

Definition 2.17 (DASG data types)

Data between distributed nodes of an instance can flow in various ways. To identify

the different possibilities, three types of data are distinguished:

• bulk data is the dataset that needs to be transferred between the data resource

(D) and application nodes (A);

• DRC data is the DRC itself that needs to be transferred from the DRC repos-

itory nodes (R) to the DRC execution nodes (C); and

• control data is the set of information that includes all further data transferred

between the nodes. The latter consists of a small number of requests which
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are necessary to exchange in order to provide access for an application to a

data resource.

The amount of control data is typically measured in kilobytes, whilst DRC data is

measured in megabytes, and bulk data in giga- or terabytes. The way bulk data is

transferred is critical. In comparison to this, DRC data flow has a marginal impact

and can be considered but control flow is insignificant in affecting the performance of

a particular DASG architecture. Hence, only two kinds of data flow are considered:

DRC flow, and bulk data flow. Definition of both data flows are based on the concept

of path layout and data staging.

Definition 2.18 (Path *)

A path defines a sequence of nodes. Let P represent the set of all possible paths,

where:

P :� tpn1, n2, ..., nmq P Nm}m P N�u. (2.6)

@i P r1..ms the ith node of the path is ni and the source and destination nodes of

the path are always n1 and nm respectively. Path p is acyclic based on structure

G P Gr if it satisfies the following condition:

@i, j P r1..ms : pni, njq P Gô @k P ri..js : pni, nkq P G. (2.7)

Definition 2.19 (Path layout *)

A path layout defines a sequence of node types. Let LP pT q represent the set of all

path layouts, where:

LP :� tpt1, t2, ..., tmq P T m}m P N�u. (2.8)

@i P r1..ms the ith node type of the path layout is ti and the source and destination

node types of the path layout are always t1 and tm respectively. Path layout q is
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acyclic based on instance layout h P LIpT q if any two node types in q are coupled

based on h then all node types in q between those two are coupled as well. With

other words, q � pt1, ..., tmq is acyclic based on h if it satisfies the following condition:

@i, j P r1..ms : pti, tjq P hñ @k P ri..js : pti, tkq P h. (2.9)

Definition 2.20 (DASG DRC path layout)

Two DRC path layouts are distinguished in the case of DASGs: when the DRC is

transferred directly pR,Cq and when it is transferred via the mediator pR,M,Cq.

DASG DRC path layouts that involve external nodes are not considered. Based on

these, let DP :� tpR,Cq, pR,M,Cqu be the set of DRC path layouts.

Note, that DRC is always transferred from R to C, whereas bulk data can flow

in both directions: from D to A or from A to D. From transfer time and overhead

point of view the direction of transfer does not make any difference, hence in the

case of bulk data only direction D to A is considered.

Definition 2.21 (DASG bulk data path types)

From D bulk data always have to be transferred to C, since this represents the

running DRC which is the only entity that can communicate with D. Next bulk

data is either transferred to the application directly or via the mediator. Cases that

transfer bulk data via the DRC repository (R) are not considered. Based on these,

let BP :� tpD,C,Aq, pD,C,M,Aqu be the set of bulk data paths.

Definition 2.22 (Mapping between path layouts and paths *)

A path layout defines a path over the nodes of each instance. @i P r1..rs : let ψi :

LP pT q Ñ P map this path to a path layout as ψippt1, ..., tmqq :� pϕipt1q, ..., ϕiptmqq.

In order to define data staging, the following concepts need to be introduced

first.
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Definition 2.23 (Byte array and its length *)

A byte array of length l is an element of Bl. Let B �
�8
i�0 Bi be the set of all byte

arrays, let λ : B Ñ N represent the length of a byte array (λpxq � l ô x P Bl), and

@x P B, i P r1..λpxqs let xris represent the ith byte of a byte array.

Definition 2.24 (Byte array concatenation *)

Let x1x2...xk � x P B be the concatenation of byte arrays x1, x2, ..., xk P B, where

@j P r1..ks, i P r1..λpxjqs : xrλpx1x2...xj�1q � is � xjris.

Definition 2.25 (Transferring a byte array via a path *)

Assuming that p � pn1, ..., nmq P P , x P B is transferred via p as follows:

1. x is transferred from n1 to n2.

2. @j P r3..ms : x is transferred from nj�1 to nj as soon as transfer of x from nj�2

to nj�1 has finished.

Definition 2.26 (Transferring a sequence of byte arrays via a path *)

Assuming that p � pn1, ..., nmq P P , px1, x2, ..., xkq, pk P N�q sequence of byte arrays

is transferred via p as follows:

1. x1 is transferred from n1 to n2.

2. @j P r3..ms : x1 is transferred from nj�1 to nj as soon as transfer of x1 from

nj�2 to nj�1 has finished.

3. @i P r2..ks : xi is transferred from n1 to n2 as soon as transfer of xk�1 from n1

to n2 has finished.
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4. @i P r2..ks, j P r3..ms : xi is transferred from nj�1 to nj as soon as transfer

of xi from nj�2 to nj�1 has finished and transfer of xi�1 from nj�1 to nj has

finished.

Definition 2.27 (Pipelined transfer *)

Let x P B, p P P , s P N�, where λpxq is dividable by s. Pipelined transfer of byte

array x via path p with slice size smeans that a sequence of byte arrays px1, x2, ..., xkq

is generated from x, where k � λpxq
s

and @i P r1..ks : λpxiq � s, x1x2...xk � x and

this sequence of byte arrays is transferred via path p according to definition 2.26.

Note that in order to simplify the model, in the case of pipelined transfer the

generated byte array sequence contains only byte arrays of equal length and λpxq

have to be dividable by s.

Definition 2.28 (Non pipelined transfer *)

Non pipelined transfer of a byte array via a path means that the byte array is

transferred via a path according to definition 2.25.

Definition 2.29 (DASG DRC staging)

Let DS � tPip, Pipu be the set of DRC staging types, where Pip represents pipe-

lined, while  Pip represents non pipelined DRC staging.

Definition 2.30 (DASG bulk data staging)

Let BS � tPip, Pipu be the set of DRC staging types, where Pip represents pipe-

lined, while  Pip represents non pipelined DRC staging.

Definition 2.31 (Set of DASG data flow types)

Let DF :� DP �DS � BP � BS be the set of possible DASG data flow types.
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2.2.4 DASG resource

It is also important, on what machine resources the different nodes are hosted. This

aspect is defined based on the following concepts.

Definition 2.32 (Resource types *)

Based on the services a machine provides, this model distinguishes between three ba-

sic types of machines: Computational Machines (CoM), Storage Machines (StM),

and Dedicated Machines (DeM). A computational machine provides services for

executing, monitoring, and cancelling jobs. A storage machine provides services

for uploading, storing, locating, and downloading any kind of data. A dedicated

machine, can run any service without restriction in order to fulfil a specific purpose.

Dedicated machines (DeM) Computational machines (CoM) Storage machines (StM)

A
d

v
a
n
ta

g
es

- For hosting any custom service - Special off-the-shelf services - Special off-the-shelf services

- No dependency problems - Large numbers of machines - Large numbers of machines

- No firewall problems - Machines are maintained - Machines are maintained

- Can host any operating - Services are maintained - Services are maintained

system - No cost - No cost

D
is

a
d

v
a
n
ta

g
es

- Machine has to be provided - Not designed for providing - Not designed for providing

- Machine has to be maintained custom services custom services

- Service has to be maintained - Dependency problems - Cannot run applications

- Cost demanding - Firewall problems - Only for data

- Only for running applications

- Given operating system

- Job queues

Table 2.2: Properties of different resource types

Table 2.2 summarises the properties of these resource types. The main differ-

ence between dedicated machines and the other two resource types is that dedicated

machines provide great flexibility, but the machine and its services have to be pro-

vided and maintained. Therefore, hosting nodes on dedicated machines is expensive,

especially in a large scale. Computational and storage machines are more restric-

tive, they provide a fix set of services, but these are maintained by existing Grid
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infrastructures. Hence, they can be utilised as free-off-charge, off-the-shelf services

by the academic/scientific community. The machines that host external nodes are

considered unknown. A fourth resource type called External Machines (ExM) is

used to represent machines of this kind. Resource type of a node is the resource type

of the machine that hosts the node. Let HR :� tCoM,StM,DeM,ExMu be the

set of all resource types.

Definition 2.33 (Resource layout *)

A resource layout on domain T is a ξ : T Ñ HR function, where ξptq (=ξt) represents

the resource types of the machines that host the nodes of node type t (t P T ). Let

LRpT q represent the set of all resource layouts on domain T , where:

LRpT q :� rT Ñ HRs (2.10)

Definition 2.34 (DASG resource layout)

Based on definition 2.2, mediator nodes have to provide custom services which are

not available on computational or storage machines. Therefore, mediator nodes

always have to be hosted either on dedicated or on external machines. Repository

nodes have to provide the executable code of the DRCs. This functionality can

be provided by the services of the storage machines, by custom services hosted on

dedicated machines, or by services running on external machines, but cannot be

hosted by computational machines, since in most cases it is not possible to store

data on those machines at all. (Note that although in some cases it is possible to

store data temporarily on computational machines, there is no guarantee the data

will reside there.) DRC execution nodes can run on either computational machines,

on dedicated machines, or on external machines, storage resources cannot run any

application. Resource layout defines for all DASG node types that what types of

machines their nodes are hosted. Therefore, based on the above, the set of all
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possible DASG resource layouts is defined over node type set T as:

LR :� tξ P LRpT q}ξM P tDeM,ExMu ^ ξR � CoM ^ ξC � StM^

^ ξA, ξD � ExMu
(2.11)

2.2.5 DASG interface

Different interfaces connect different nodes of N . These interfaces determine how

nodes can interact and exchange data. Interfaces can be analysed based on several

aspects. This model focuses on two of these aspects: how an interface is represented

and how general an interface is.

Definition 2.35 (Interface representation *)

An interface can be represented as a Command Line Interface (CLI) or as an

Application Programming Interface (API).

The basic difference between the two is that CLIs can be accessed by both humans

and software, while APIs can be accessed only by software.

Definition 2.36 (Interface generality *)

An interface can be specific (Spe) to certain types of requests if the number or

types of input and output parameters are restricted. It can be generic (Gen) if the

number and type of input and output parameters of the requests are not limited

by the interface, hence, it does not restrict the set of data exchanges that can be

performed via it.

Definition 2.37 (DASG frontend interface)

Frontend interface (IF ) is the interface through which applications can utilize the

provided functionality of a DASG. Let IA :� tGen, Speu be the set of application

interface types. (See definition 2.36.)

42



2.2. DASG architecture definition DASG

Representation of IF (see definition 2.35) is not considered as part of a DASG

architecture, because a mapping of a single frontend interface to another interface

representation type (i.e. CLI to API) is rather straightforward to realise. However,

generality is vital, since it determines the set of data requests that can be performed

via DASG.

Definition 2.38 (DASG backend interface)

Backend interface (IB) defines how DRCs can be accessed. Let IB :� tCLI,APIu

be the set of backend interface types.

Since DRCs are designed to access a particular data resource, DRC interface is

always specific to a data resource. However, in terms of backend interface, represen-

tation is vital, since it determines how an existing DASG can be extended with the

support of further DRCs. Most vendors provide both API and CLI representations

for accessing their data resources.

Definition 2.39 (Set of possible DASG interfaces)

The set of possible interfaces can be defined as IN :� IF � IB.

2.2.6 DASG architecture and solution

Definition 2.40 (Set of possible DASG architectures)

A DASG architecture defines structure layout, resource layout, data flow, and inter-

faces. Let AR represent the set of all DASG architectures, where:

AR :� tpph, δq, ξ, pqd, gd, qb, gbq, pif , ibqq P LS � LR �DF � IN }

qd and qb are acyclic path layouts based on instance layout h^ piq

^@pt,Dq P h : t � D^ piiq

^@pt1, t2q P h : ξt1 � ξt2u. piiiq

(2.12)
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Note that condition piq eliminates DASG architectures that transfer data in loops

between machines, since in most cases this is pointless. The purpose of a DASG

is to provide access to remote data resources. Hence, condition piiq ensures that

data resources are always remote, not coupled with any other node. Condition piiiq

ensures that if two nodes are hosted on the same machine, then they have the same

resource type.

Definition 2.41 (DASG solution)

A DASG solution is a set of DASG architectures. With other words, it is a not

empty subset of AR.

2.3 DASG architecture analysis

2.3.1 DASG generality and extendibility

Generality of a DASG architecture (types of data requests that can be executed

and the set of data resources that can be connected via it) depends on the frontend

interface. By applying a specific frontend interface the usage of the solution can

be simplified, but this also restricts the provided functionality. In order to provide

access to a wider set of data resources without any restrictions on the type and

number of input and output parameters frontend interface should be general.

Extendibility of an architecture is determined by how easy it is to extend the

set of available DRCs. In terms of backend interface, CLI is recommended, since

it enables the straightforward extension and update of the set of supported DRCs

without requiring programming skills. On the other hand, the mediator knows

about the available DRC repositories and the available DRCs. If the system is

extended with a new workflow engine, the mediator has to be updated. Note that
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the mediator has to be aware of all engines and all engine repositories. Adding a new

engine does not only imply that the mediator has to be updated, it might require

changes in the business logic of the mediator as well. In the case of instance layouts

that have pA,Mq coupled, each application has a copy of the mediator, in which

case each application has to be updated with the new mediator version. However,

if the mediator runs as a centralized service, only one update has to be performed.

Therefore, it is recommended to have a centralised mediator which is not coupled

with the application and is hosted on a dedicated machine.

2.3.2 DASG performance

The aim of the performance analysis is to compare overhead, latency, and scala-

bility of different DASG architectures and show how these values vary with bulk

data volume and number of simultaneous requests. The performance comparison is

based on DASG scenarios where r P N� applications hosted by r different machines

gather data of equal size from r decoupled data resources via a particular DASG

architecture simultaneously. These scenarios are represented as elements of the set

defined below.
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Definition 2.42 (DASG scenarios)

Let AS :� tpph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P LS �LR�DP �BP �R�0 �pN�q5}

@t P T 2 : δt � r^ piq

^qd and qb are acyclic path layouts based on h ^ piiq

^@pt,Dq P h : t � D^ piiiq

^@pt1, t2q P h : ξt1 � ξt2^ pivq

^ξC � CoM ñ wd � 0^ pvq

^@t P T 1 : r � 0 mod δt^ pviq

^ld � 0 mod sd ^ lb � 0 mod sbu. pviiq

(2.13)

be the set of analytical DASG scenarios. Let a � pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P

AS be an analytical scenario. Condition piq ensures that none of the application

nodes nor the data resource nodes are coupled, all are hosted on different machines. a

determines structure layout, resource layout, and data flow of a DASG architecture,

this is ensured by conditions piiq, piiiq, and pivq.

By ph, δq and ξ, a explicitly defines a DASG structure and resource layout. In

terms of data flow, a defines DRC and bulk data path layout explicitly by qd and qb.

DRC and bulk data size are represented by ld and lb, DRC and bulk data slice size

by sd and sb. These implicitly define DRC and bulk data staging as kd :� ld
sd

and

kb :� lb
sb

, where staging is non pipelined if slice number equals to 1 and pipelined

otherwise. Note that condition pviiq ensures that ld is dividable by sd and lb is

dividable by sb. wd represents the amount of time that elapses between the DRC

transfer is finished and its execution is started. This delay is resulted by the DRC

waiting in job queue if it is executed on a computational node. To simplify the

model, this number is the same for each request and it also can be 0 representing

cases where the job queues are empty or there are no queues at all. Condition pvq
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ensures that wd is always 0 if the DRC is not executed on a computational machine.

Having conditions pviq and pviiq the analysis can be simplified. In particular,

condition pviq ensures that all nodes of any core DASG node type is coupled with

equal number of nodes of that particular type. This ensures that nodes of each

node type can be equally distributed between the available machines. As it was

already mentioned condition pviiq ensures that DRC and bulk data size is always

dividable by DRC and bulk data slice size respectively, meaning that each slice is of

the same size. Although these conditions do not allow to specify scenarios for any

r, ld, sd, lb, sb, wd, these values can be arbitrarily large. Therefore, based on DASG

scenarios the performance characteristics of any DASG architecture can be analysed

and compared for arbitrarily large r, ld, sd, lb, sb, wd.

Definition 2.43 (DASG scenario execution)

Since control flow is excluded from the model (see definition 2.17), the analysis is

based on DRC and bulk data flow. @i P r1..rs : let di P B byte array represent the

DRC that communicates with Di and to be transferred from Ri to Ci and bi P B

byte array represent the bulk data that is to be transferred from Di to Ai. A DASG

scenario is executed in three steps:

1. DRC transfer: @i P r1..rs: di is transferred from Ri to Ci via path ψipqdq

simultaneously.

2. DRC queuing: all DRCs are waiting wd amount of time to be scheduled for

execution,

3. Bulk data transfer: @i P r1..rs: the execution of the ith DRC starts and bi is

transferred from Di to Ai via path ψipqbq simultaneously.

In order to define the performance characteristics a DASG architecture, the

performance characteristics of the above data transfers need to be specified. In
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order to do this, first the properties of the network has to be identified. Machines

that host the different entities of an architecture are geographically distributed and

connected through the existing infrastructure provided by the internet. Since it is

not aimed by this research to analyse performance of different network environments

and computers, the model is based on a homogeneous computer network, where it is

assumed that all machines have the same specification and machines are connected

via a constant bandwidth full-duplex network, allowing machines to send and receive

data simultaneously without performance decrease. This is defined by the following

axioms:

1. Full-duplex network adapters: each machine has an input and an output net-

work port.

2. Fully connected network: the input port of each machine is connected with

the output port of each machine.

3. Constant bandwidth: the input port of each machine can receive and the

output port of each machine can send constant amount of data per unit time.

These axioms imply several lemmas to define the performance characteristics of

the different architectures. In order to define transfer time between two nodes, the

concept of port functions are introduced.

Definition 2.44 (Port functions *)

Based on axiom 1, each machine has an input and an output port. Let %ip, %op : N Ñ

N, where %ippnq, %oppnq (n P N ) are the number of byte arrays that are transferred

simultaneously via the input and output ports (respectively) of the machine that

hosts node n. It is assumed that these values are constant for each node.

Based on the axioms, transfer time of a byte array between two non-coupled nodes

is determined by its length, the bandwidth, and the number of byte arrays which are
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concurrently transferred to/from the host machines of the two nodes. Bandwidth is

represented by constant K P R� which is a property of the homogeneous network.

Let N be the set of nodes, let n,m P N , x P B be a byte array of length l � λpxq

that is transferred from n to m, and let G P Gr be a structure. The following four

data transfer cases are distinguished.

• If n and m are hosted on the same machine, it is not considered how x is

exchanged between the nodes, transfer time of x is always 0. See example (i)

in figure 2.4.

• Transfer time of x is linear with l if n and m are not coupled and other byte

arrays are not transferred from the machine that hosts n and to the machine

that hosts m. In this case, %oppnq � 1, %ippmq � 1, and transfer time of x is

Kl. See example (ii) in figure 2.4.

• Transfer time of x is linear with both l and r if n and m are not coupled, and

r � 1 other byte arrays are transferred from the host machine of n and r � 1

further byte arrays are transferred to the host machine of m simultaneously.

In this case %oppnq � r, %ippmq � r, and transfer time of x is rKl. See example

(iii) in figure 2.4.

• If n and m are not coupled, and %oppnq � %ippmq, then transfer time of x is

determined by the machine that bottlenecks the transfer. In this case, transfer

time of x is maxt%oppnq, %ippmquKl. See example (iv) in figure 2.4.

Definition 2.45 (Time of byte array transfer between two nodes *)

Based on the above four cases, let τe : N �N 2 Ñ R�0 be the time that is required

for transferring a byte array of a given length between two nodes, where:

τepλpxq, pn,mqq :� χppn,mq R Gqmaxt%oppnq, %ippmquKλpxq. (2.14)
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Figure 2.4: Examples for each data transfer case

The formula above is used to calculate the transfer time of a byte array between two

nodes. The following describes how transfer time is calculated over a path of nodes.

Let p � pn0, n1, ..., nmq P P a path over N and byte array x is transferred via path

p, where k P N�, x � x1x2...xk, @i P r1..ks : λpxiq � s, and λpxq is dividable by s.

Lemma 2.1 (Time of transferring a byte array sequence via a path *)

By applying mathematical induction based on definition 2.26, it can be proven that

time of transferring byte array sequence px1, x2, ..., xkq via path p equals to:

m̧

j�1

τeps, pnj�1, njqq � pk � 1q
m

max
j�1

τeps, pnj�1, njqq. (2.15)

Proof is provided in appendix A in lemma A.2.

Definition 2.46 (Time and latency of pipelined transfer *)

Let τp : N � N� � P Ñ R�0 be the time of pipelined transfer of a byte array via a

path, where the first parameter represents the length of the byte array, the second

parameter represents the slice size, and the last parameter represents the path via

which the slices are transferred. Time of pipelined transfer of byte array x via path
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p with slice size s equals to:

τppλpxq, s, pq :�
m̧

j�1

τeps, pnj�1, njqq � pk � 1q
m

max
j�1

τeps, pnj�1, njqq. (2.16)

Latency is calculated according to the following formula:

εppλpxq, s, pq :�
m�1̧

j�1

τeps, pnj�1, njqq. (2.17)

The above definition is based on a lemma A.2 and definition 2.27. Byte array se-

quence px1, x2, ..., xkq is generated from x with slice size s according to definition 2.27.

Time of transferring this k element byte array sequence via path p � pn0, n1, ..., nmq

is calculated according to lemma A.2. Latency of a data transfer is considered as

the time required for the first network packet of the transferred data to reach the

destination node. Hence, it is the time required for the first slice of x to reach the

nm�1 plus the time that is required to transfer the first network packet of the first

slice from nm�1 to nm. To simplify the model, the latter is not considered.

Definition 2.47 (Time and latency of non pipelined transfer *)

Latency and time of non pipelined transfer of byte array x via path p equals to:

εppλpxq, λpxq, pq and τppλpxq, λpxq, pq respectively.

Since definition 2.25 and 2.26 define the same transfer steps in the case when a one

element byte sequence is transferred via a path, it can be proven that pipelined

transfer of a one element byte array sequence equals to the non pipelined transfer

of the same byte array. Therefore, to define time and latency of a non pipelined

transfer, definition 2.46 can be applied with slice size λpxq, which ensures that x

will be transferred as a one element byte sequence.

Lemma 2.2 (Slice size independence *)

If x P B, p P P , and path p has only two elements, then @s1, s2 P N�, where λpxq is

dividable by s1, s2:

τppλpxq, s1, pq � τppλpxq, s2, pq. (2.18)
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Proof is provided in lemma A.3. Note that this also implies that if p has only two

elements, then times of pipelined and non pipelined transfer are equal. Therefore,

in this case data staging type is irrelevant from transfer time point of view.

Although, the above definitions and lemmas provide formulas for determining

time and latency of a transfer, they are based on τe. In order to determine τe, the

structure of the nodes and the number of concurrent data transfers have to be known.

Rather than defining a general model that considers any possible concurrent data

transfer cases, this model focuses only on the scenarios that are used to compare

different architectures.

Definition 2.48 (Simultaneous transfer via a path layout *)

Let Dst :� tpph, δq, q, s, l, rq P LSpT q � LP pT q � pN�q3}

q is an acyclic path layout based on instance layout h^ piq

^l � 0 mod s^ piiq

^@t P T : r � 0 mod δtu piiiq

(2.19)

be the set of simultaneous data transfers, where ph, δq represents a structure layout,

q represents a path layout, s represents slice size, l represents byte array length,

and r represents the number of simultaneous requests. Condition piq ensures that

data is never transferred in loops between machines, condition piiq ensures that l

is dividable by s, and condition piiiq ensures that @t P T : r is dividable by δt

which implies that nodes of each type are equally distributed between the available

machines. Simultaneous data transfer pph, δq, q, s, l, rq represents the parallel transfer

of r different byte arrays of length l, where @i P r1..rs : the ith byte array is

transferred via path ψipqq, transfer is pipelined with slice size s.
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Lemma 2.3 (Performance characteristics of simultaneous transfer *)

Let pph, δq, q, s, l, rq P Dst be a simultaneous transfer. If @x1, x2, ..., xr P B : λpx1q �

λpx2q � ... � λpxrq � l, q � pt0, t1, ..., tmq, and k � l
s
, then @i P r1..rs : the pipelined

transfer time of xi through path ψipqq with slice size s is the same and equals to:

m̧

j�1

χpptj�1, tiq R hq
rKs

minpr, δtj�1
, δtjq

�

� pk � 1q
m

max
j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

,

(2.20)

while latency is also the same and equals to:

m�1̧

j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

(2.21)

By applying mathematical induction based on definition 2.45 and 2.46 it can be

proven that the above statements are correct. For details, see lemma A.4.

Definition 2.49 (Performance characteristics of simultaneous transfer *)

Based on lemma A.4, let τq, εq : Dst Ñ R�0 functions mapping respectively the

transfer time and latency to a simultaneous transfer as:

τqpph, δq, q, s, l, rq :�
m̧

j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

�

�

�
l

s
� 1



m

max
j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

,

(2.22)

εqpph, δq, q, s, l, rq :�
m�1̧

j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

(2.23)

According to definition 2.42: @i P r1..rs : λpdiq � ld^λpbiq � lb. Therefore, DRC

flow can be represented as a simultaneous transfer, since the conditions defined in

definition 2.42 ensure that pph, δq, qd, sd, ld, rq P Dst. Similarly, bulk data flow also

can be represented as: pph, δq, qb, sb, lb, rq P Dst. Having these, the performance

functions of a scenario can be defined as follows.
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Definition 2.50 (Performance function of DASG DRC transfer)

Let a :� pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P AS, and Γd : AS Ñ R�0 be a function

for determining DRC transfer execution time as:

Γdpaq :�τqpph, δq, qd, sd, ld, rq. (2.24)

Note that definition 2.49 is applied to identify Γdpaq.

Definition 2.51 (Performance functions of DASG bulk data transfer)

Let a :� pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P AS, and Γb,∆b,Θb : AS Ñ R�0 be

functions for determining respectively bulk data transfer time, overhead, and latency

as:

Γbpaq :�τqpph, δq, qb, sb, lb, rq, (2.25)

∆bpaq :�Γbpaq � kbsbK, and (2.26)

Θbpaq :�εqpph, δq, qb, sb, lb, rq. (2.27)

Note that definition 2.49 is applied to determine Γbpaq and Θbpaq. @i P r1..rs :

transferring bi directly between Di and Ai takes τepλpbiq, pDi, Aiqq � kbsbK time.

Overhead on bulk data transfer of a particular scenario is considered as this time

subtracted from bulk data transfer time.

Definition 2.52 (Overall DASG performance functions)

Let Γ,∆,Θ : AS Ñ R�0 be functions for determining respectively overall execution

time, overhead, and latency of a scenario, where:

Γpaq :�Γdpaq � wd � Γbpaq, (2.28)

∆paq :�Γdpaq � wd �∆bpaq, and (2.29)

Θpaq :�Γdpaq � wd �Θbpaq. (2.30)
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Note that because DRC transfer always has to be performed before bulk data trans-

fer, DRC transfer time is always added to the overall transfer time, overhead and

latency of a scenario.

Definition 2.53 (Scalability of DASG data transfer)

Performance functions of any DASG scenario are characterised based on growth

rates in function of lb and r. This is represented by the Bachmann–Landau (Big O)

notation and can have the following values: Op0q if the given performance function

is 0; Op1q if it is a positive constant (independent of lb and r); Oplbq if it is linear

with lb, but independent of r; Oprq if it is linear with r, but independent of lb; and

finally, Oprlbq if it is linear with both r and lb.

2.3.3 DASG bulk data flow

Performance characteristics of bulk data transfer are determined by bulk data path,

bulk data staging, instance and type layout. In particular, bulk data path determines

through which nodes bulk data is transferred, while instance layout determines

whether these nodes are coupled. Obviously, if two nodes are coupled, then no

physical data transfer is performed between machines. Based on bulk data path

and instance layout, different bulk data flow cases can be identified.

Definition 2.54 (Data flow case *)

A data flow case is a pq, πq tuple where q � pt0, t1, ..., tmq P LP pT q is a path layout

and π P rtptj�1, tjq}j P r1..msu Ñ Ls is a logical function that defines @j P r1..ms :

whether ptj�1, tjq P h. Note that this logical function always defines a set of which

elements are instance layouts that satisfy π. A data flow case ppt0, t1, ..., tmq, πq is

representative if @j P r1..ms : πptj�1, tjq is false.
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According to this definition, 2m different data flow cases can be defined for path lay-

out pt0, t1, ..., tmq and exactly one of these is representative. In the case of DASGs,

there are 2 bulk data path layouts: pD,C,Aq and pD,C,M,Aq. 4 data flow cases

can be defined based on pD,C,Aq and 8 data flow cases can be defined based

pD,C,M,Aq. However, since DASG instance layouts having pD,Cq coupled are not

considered, πpD,Cq should always be false. This means that based on path layout

pD,C,Aq only 2 data flow cases while based on path layout pD,C,M,Aq only 4 data

flow cases are considered. These are listed in table 2.3, where representative cases are

marked with asterisks. Based on definition 2.15: @pt1, t2q P h : t1, t2 P T ñ δt1 � δt2 .

This means that instance layout implies restrictions on type layout. This is also in-

cluded in the table.

Definition 2.55 (Data flow case equivalence *)

Data flow case ppt0, ..., tk�1, tk, tk�1, ..., tmq, π1q and ppt0, ..., tk�1, tk�1, ..., tmq, π2q are

directly equivalent pk P r1..m � 1sq if either π1ptk�1, tkq or π1ptk, tk�1q is true, @j P

r1..k � 1s Y rk � 2..ms : π1ptj�1, tjq � π2ptj�1, tjq and π2ptk�1, tk�1q � π1ptk�1, tkq ^

π1ptk, tk�1q. Two data flow cases are equivalent if they are in the same equivalence

class based on the transitive, reflexive, symmetric closure of this relation.

Based on their equivalence, DASG bulk data flow cases can be divided into 3 dif-

ferent groups, data flow cases in each group are equivalent. These groups are also

illustrated in the table 2.3.

Lemma 2.4 (Simultaneous transfer of equivalent data flow cases *)

Let pq1, π1q and pq2, π2q be equivalent data flow cases and let pph1, δq, q1, s, l, rq,

pph2, δq, q2, s, l, rq P Dst. If h1 and h2 are elements of the instance layout sets that

π1 and π2 define (respectively), then performance functions of the two simultaneous

transfers are the same.
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Case Bulk data path Instance layout Restrictions Group

BC1 * pD,C,Aq pC,Aq P h δC � r
BG1

BC2 pD,C,M,Aq pC,Mq, pM,Aq P h δC , δM � r

BC3 * pD,C,Aq pC,Aq R h

BG2BC4 pD,C,M,Aq pC,Mq R h^ pM,Aq P h δM � r

BC5 pD,C,M,Aq pC,Mq P h^ pM,Aq R h δM � δC

BC6 * pD,C,M,Aq pC,Mq, pM,Aq R h BG3

Table 2.3: DASG bulk data flow cases

Proof is provided in lemma A.5. In the case of DASGs, there are 3 groups. Per-

formance properties of data flow cases are the same within each group. Bulk data

transfer time, overhead, and latency values can be found in table 2.4, 2.5, and 2.6

respectively, where the formulas are given by Γbpaq, ∆bpaq, and Θbpaq. Based on

∆bpaq and Θbpaq, the architectural conditions which determine scalability in terms

of latency and overhead are identified for each group, these can be found in table 2.5,

and 2.6.

Group Transfer time (Γbpaq)

BG1 kbsbK

BG2
rpkb�1qsbK
mintr,δCu

BG3
rsbK

mintr,δM u
�

rsbK
mintr,δCu

�
rkbsbK

mintr,δM ,δCu

Table 2.4: Time of DASG bulk data transfer

Group Overhead (∆bpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2
rpkb�1qsbK
mintr,δCu

� kbsbK E
kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r
E δC   r

BG3

rsbK
mintr,δM u �

rsbK
mintr,δCu

�
rkbsbK

mintr,δM ,δCu
� kbsbK

E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

E δC   r _ δM   r

Table 2.5: Overhead and scalability of DASG bulk data staging

In particular, cases of group BG1 always provide 0 overhead and latency on bulk

data staging, while cases of group BG2 and BG3 never. In the cases of the latter
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Group Latency (Θbpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2
rsbK

mintr,δCu
E

kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r

kb ¡ 1

δC   r

kb � 1

δC   r

BG3

rsbK
mintr,δM u�

� rsbK
mintr,δCu

E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

kb ¡ 1

δC   r _ δM   r

kb � 1

δC   r _ δM   r

Table 2.6: Latency and scalability of DASG bulk data staging

two groups the following rules apply: As long as r is not greater than any of the δ

values in the overhead formula of a particular group, then overhead is independent

of r. If this is the case, then pipelined transfer (kb ¡ 1) implies that overhead is

independent of lb as well, while non pipelined transfer (kb � 1) implies that overhead

is linear with lb. Scalability in terms of overhead is Op1q in the case of the former

and Oplbq in the case of the latter. If r is greater than any of the δ values in the

overhead formula of a particular group, then overhead is linear with both r and

lb. In this case scalability in terms of overhead is Oprlbq. Note that none of the

architectures realise scalability Oprq in terms of overhead.

Similar rules apply for scalability in terms of latency with the following differ-

ences. If r is greater than any of the δ values in the latency formula of a particular

group, then latency is linear with r. If this is the case, then pipelined transfer

(kb ¡ 1) implies that latency is independent of lb, while non pipelined transfer

(kb � 1) implies that latency is linear with lb. Scalability in terms of latency is Oprq

in the case of the former and Oprlbq in the case of the latter.

2.3.4 DASG DRC flow

Performance characteristics of DRC transfer are determined by DRC path, DRC

staging, instance and type layout. DRC flow analysis is similar to bulk data flow

analysis in several aspects. Based on DRC path layout pR,Cq and pR,M,Cq 6
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different cases can be identified. These are listed in table 2.7. Instance layout

implies restrictions on type layout in case DC1, DC2, DC4, and DC5.

Case DRC path Instance layout Restrictions Group

DC1 * pR,Cq pR,Cq P h δR � δC
DG1

DC2 pR,M,Cq pR,Mq, pM,Cq P h δC � δM � δR

DC3 * pR,Cq pR,Cq R h

DG2DC4 pR,M,Cq pR,Mq P h^ pM,Cq R h δM � δR

DC5 pR,M,Cq pR,Mq R h^ pM,Cq P h δC � δM

DC6 * pR,M,Cq pR,Mq, pM,Cq R h DG3

Table 2.7: DASG DRC data flow cases

Based on data flow case equivalence (see definition 2.54), the 6 DRC data flow

cases can be divided into 3 groups. According to lemma A.5, performance properties

are the same within each group. Transfer time values are determined based on the

definition of Γdpaq and included in table 2.8. Scalability is only analysed in function

of r, since lb does not affect DRC flow.

Group Transfer time pΓdpaqq Op0q Op1q Oplbq Oprq Oprlbq

DG1 0 @ E E E E

DG2
rkdsdK

mintr,δC ,δRu
E

δR ¯ r

δC ¯ r
E δR   r _ δC   r E

DG3

rsdK
mintr,δR,δM u�

� rsdK
mintr,δM ,δCu

�

� rpkd�1qsdK
mintr,δM ,δR,δCu

E

δM ¯ r

δC ¯ r

δR ¯ r

E δM   r _ δR   r _ δC   r E

Table 2.8: Time and scalability of DASG DRC transfer

Since, for all data flow cases in DG1 transfer time of DRC transfer is 0, scalability

is Op0q. In cases of group DG2 and DG3 the following rules apply. As long as r

is not greater than any of the δ values in the transfer time formula of a particular

group, than transfer time is independent of r. In this case scalability is Op1q. If r is

greater than any of the δ values in the transfer time formula of a particular group,

than overhead is linear with r. In this case scalability is Oprq. Scalability values of

DRC transfer are listed in table 2.8.
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2.3.5 Recommended DASG structure layout, data

flow, and resource layout

In any of the 6 bulk data transfer cases, it is possible to realise scalable bulk data

transfer where overhead and latency on bulk data transfer are both independent

of r and lb. However, not under the same conditions. In terms of type layout,

while cases BC1 and BC3 require that δC ¯ r, cases BC2, BC4, BC5, and BC6

also require that δM ¯ r. In terms of bulk data staging BC3, BC4, BC5, and BC6

require pipelined staging (kb ¡ 1) as well. In all of the 6 DRC transfer cases DRC

transfer time is independent of lb and in any of the 6 cases it is possible to realise

scalable DRC transfer, where DRC transfer time is independent of r. DC1 and DC2

always provide scalable DRC transfer. In terms of type layout, DC3, DC4 provides

scalable DRC transfer if δC ¯ r and δR ¯ r, while DC5 and DC6 also require that

δM ¯ r. The selection of proposed structure layout, resource layout, and data flow

combinations is based on the following recommendations:

R1 - Mediator Based section 2.3.1, the mediator is recommended to be hosted

as a centralised service on a dedicated machine (ξM � DeM). Based on this and

on definition 2.32, the larger is the number of utilised dedicated machines, the more

cost demanding it is to set up and maintain a DASG. For this reason, it is aimed to

minimise δM (let δM � 1). Therefore, data flow cases that require that δM ¯ r are

not recommended. On the one hand, in each scenario δA � r is always true. Hence,

data flow cases which require to have pA,Mq coupled are not recommended. On the

other hand, since bulk data amount is multiple orders of magnitude greater than

DRC data amount, it is always aimed to realise bulk data transfer of which overhead

and latency is independent of the number of simultaneous requests and bulk data

amount. This means that data flow cases which are based on bulk data path layout

pD,C,M,Aq are not recommended and δC ¯ r should always be provided which
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implies that data flow cases which require to have pM,Cq P h are not recommended

either.

R2 - DRC repository Instance layouts having pA,Rq coupled are not recom-

mended, since it cannot be guaranteed that the machine that hosts the application

has a copy of the required DRC to access a particular data resource. Note, that

this also implies that ξR � ExM . Instance layouts having pM,Cq coupled are not

recommended based on R1. In the case of instance layouts requiring both pA,Cq P h

and pR,Cq P h are not recommended because pA,Rq P h is not recommended and h

is transitive. If pA,Cq R h, then pR,Cq can be realised only by utilising dedicated

machines for running nodes of R and C. This is not advised since the number of

dedicated machines should be minimised, but in order to provide a scalable solution

δC ¯ r should be provided based on recommendation R1. Therefore, pR,Cq P h is

not recommended in general.

R3 - DRC execution Instance layouts requiring pR,Cq P h are not recommended

based on R2 and instance layouts requiring pM,Cq P h are not recommended based

on R1. pA,Cq P h implies that the DRC has to be transferred to the application

machine (ξC � ExM), while pA,Cq R h implies that the DRC is either transferred

to a dedicated machine (ξC � DeM) or to a computational machine for execution

(ξC � CoM). ξC � DeM is not recommended, since based on R1 the number

of utilised dedicated machines should be minimised, but δC ¯ r is aimed to be

provided. In the case of a typical Grid environment, using computational machines

for DRC execution (ξC � CoM) adds delay on overhead and latency resulted by the

fact that the DRC executable has to wait in a job queue before it is scheduled for

execution. (This delay is represented by wd ¯ 0.) However, if ξC � ExM , then since

the application is already running, it can execute the DRC as soon as it is received

without being held in a job queue. There is no delay that increases overhead and
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Recommendation DASG data flow case

R1 BC2, BC4, BC5, BC6, DC2, DC5

R2 DC1, DC2

R3 BC3

R4 DC6

Table 2.9: Elimination of DASG data flow cases based on different recommendations.

latency in this case (wd � 0) and δC � r is always provided. Therefore, only instance

layouts that have pA,Cq coupled are recommended.

R4 - DRC transfer In the case of instance layouts requiring that pR,Mq R

h DRCs should not be transferred via the mediator, because this would increase

overhead and if δR ¡ 1 the mediator would also bottleneck data transfer in case of

multiple simultaneous requests. Therefore, if pR,Mq R h, then only DRC path type

pR,Cq is recommended.

Having these, data flow cases listed in the right column of table 2.9 are excluded

based on the recommendations indicated in the left column. This means, that

only bulk data flow case BC1 combined with DRC flow case DC3 or DC4 can be

recommended. If it is not possible to utilise multiple Grid storage machines for

hosting the DRC repositories then it is recommended to host the DRCs at the

mediator machine (pM,Rq P h, δR � 1, ξR � DeM), since the mediator will not

bottleneck DRC transfer. In this case both DC3 and DC4 can be recommended.

However, if it is possible to utilise multiple Grid storage machines for hosting DRC

repositories then it is recommended to have a decoupled mediator (pM,Rq R h, δR ¯

1, ξR � StM). In this case only DC3 can be recommended.

Based on these the recommended architectures realise either of the structure

layout, data flow, and resource layout combinations represented in table 2.10. Com-

binations of these structure layouts and representative data flow cases are illustrated

in figure 2.5. Whether DCR path in the case of PC1 is pR,Cq or pR,M,Cq is irrel-
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Table 2.10:

Recommended DASG structure,

data flow, and resource layout

combinations, where sign X shows

that a particular architectural ap-

proach is realised by the corre-

lated combination. Multiple X

signs within instance layout in-

dicate multiple couplings at the

same time. Multiple O signs

within data flow indicate that

there is no difference between the

correlated approaches of a partic-

ular combination.

evant in terms of performance, since DC3 and DC4 are equivalent based on defini-

tion 2.55. Bulk data staging and DRC staging are also irrelevant, since in the case

of BC1, DC3, and DC4, there is no difference in performance between pipelined and

non pipelined transfer according to lemma A.3.

The key difference between the two proposed combinations is that while PC1

uses only one repository that is coupled with the mediator, PC2 can use multiple

decoupled repositories. This results in different performance characteristics. In the

case of PC1 overall overhead and latency both equal to rldK, while in the case of

PC2 overall overhead and latency both equal to mint1, r
δR
uldK. Hence, if multiple

storage resources can be provided, then PC2, otherwise PC1 is recommended. Pro-

posed architectures are described and compared to the existing solutions in the next

section. (See table 2.11 and figure 2.5.)
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2.4 Existing and proposed DASG solu-

tions

2.4.1 Existing DASG solutions

Although there are several solutions for accessing data resources, many of these pro-

vide access to specific types of data resources. SAGA, SRB, LFC, Hadoop MapRe-

duce [97] provide access to file system based distributed data resources and focus

on additional functionality such as replication and high throughput data retrieval.

Although, these solution are aiming to support distributed applications that simul-

taneously process large data amounts, they cannot be considered as DASGs, since

they are not designed to provide access to a wide range of data resources: SQL and

XML databases, file systems and repositories.

On the other hand, there are a few existing DASG solutions, such as OGSA-DAI,

GRelC, or the AMGA metadata catalogue, as it was mentioned in the introduction

of this chapter. OGSA-DAI was already introduced in section 1.4.1.

GRelC (Grid Relational Catalogue) was developed at the CACT/ISUFI Labo-

ratory of the University of Salento, Lecce and the SPACI Consortium. It is com-

patible with gLite and Globus middleware and provides access to relational and

non-relational data resources. It is used by several projects, according to [98]. From

numerous aspects it is similar to OGSA-DAI, since it also implements the DAIS

specification.

The AMGA metadata catalogue was designed to provide access to metadata for

files stored on the Grid, but it also provides simplified access to relational databases

of different vendors. Therefore, it is considered as a DASG. It has back-ends for

Oracle, PostgreSQL, MySQL, and SQLite. It was developed in collaboration with
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Table 2.11: Analysis of proposed and existing DASG architectures, where signs

represent the same concepts as in the case of table 2.10.
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Figure 2.5: Structure and representative data flow cases of the existing and proposed

DASG architectures, where black lines represent which node types are coupled, green

arrows represent bulk data path layouts and blue arrows represent DRC path layouts.
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the EGEE user community and it is the metadata catalogue for gLite. AMGA is

planning to adapt the WS-DAIR Standard that is included in the DAIS specification.

Although, these solutions were designed for various purposes, they are very simi-

lar. The aim of this research is not to analyse these solutions based on each possible

aspect, but to compare them based on generality, extendibility, and performance

by identifying what architecture they realise based on the architectural aspects de-

scribed in section 2.2.

From a structural point of view, OGSA-DAI, GRelC, and AMGA are identical.

All solutions integrate and tightly couple the mediator (M), the DRC repository

(R), and the DRC execution (C). Hence instance layout of all existing solutions is

h � tpM,Rq, pR,Cq, pC,Mqu, implying that, in terms of type layout: δM � δR �

δC . By default, existing solutions are installed on a single computer, hence, this is

number is 1.

In terms of data flow, existing solutions are also identical. Since repository and

execution are coupled, DRC is not staged physically from one computer to another.

They all implement DRC flow case DC1. This means, that performance formulas

of DG1 in table 2.8 apply meaning that there is no overall overhead or latency

increase resulted by DRC transfer and also implies that DRC staging is irrelevant,

since there is no difference in performance between pipelined and non pipelined

transfer according to lemma A.3. DRCs are executed on a dedicated machine, no

job queues are involved. Therefore, wd � 0 is always true. Bulk data path of

the existing solutions implement BC5. The performance formulas of group BG2 in

table 2.4, 2.5, and 2.6 apply. All existing solutions can realise both pipelined and

non pipelined bulk data transfer. Pipelined transfer is typically realised by data

streaming if it is supported by the accessed data resource.

In the case of all existing solutions, all core nodes are hosted on the same dedi-

cated machine. Therefore, in terms of resource layout: ξM � ξR � ξC � DeM .
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The driver interface, through which the DRCs are accessed is based on APIs.

In most cases it is partially based on existing frameworks such as JDBC (OGSA-

DAI) or ODBC (GRelC, AMGA). Application interface is general for most solutions,

except AMGA, that is specific to SQL.

Architectures that the exsiting solutions can realise are included in table 2.11

and also illustrated in figure 2.5.

2.4.2 Proposed DASG solutions

Based on the analysis in section 2.3, two types of architectures are proposed. These

also can be seen in table 2.11. In the case of the proposed architectures, DRCs are

accessed via CLI. This helps the straightforward integration of a new data resource.

Note that CLI is the native interface for executing applications on the majority of

Grid provided computational machines. Therefore, using CLI also simplifies DRC

execution on these machines. On the other hand, frontend interface is general,

hence, does not restrict the set of data resources that can be accessed via a DASG.

They implement either of the structure, data flow, and resource layout combinations

described in table 2.10. The recommended DASG solution should realise one or more

of the proposed architectures depending on what cases it will be used in.

2.4.3 Comparison of existing and proposed DASG

solutions

The key difference between existing and proposed architectures lies in their struc-

ture and resource layout. In the case of all existing solutions mediator, repository,

and DRC execution are coupled and hosted by the same dedicated machine. This

minimizes DRC transfer time, since DRCs do not have to be transferred between any
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machines, but requires bulk data to flow through this machine, resulting in this ma-

chine bottlenecking data transfer. Proposed solutions couple only application and

DRC execution. Hence, DRC has to be transferred from a DRC repository machine

to an application machine. With other words, although both existing and proposed

solutions provide a centralised mediator, in the case of the proposed solutions the

DRC is moved to the application, removing the centralised mediator from the path

of bulk data. This results in increased DRC transfer time, but as soon as the DRC

is at the application machine, bulk data flows directly between this machine and the

data resource without additional overhead on bulk data transfer.

As a result overall overhead of existing architectures is linear with both num-

ber of simultaneous requests prq and bulk data size plbq, while overhead of pro-

posed architectures is independent of lb and linear with r in the case of both PC1

and PC2. However, in the case of PC2, as long as δR ¯ r, overall overhead is

constant ld, hence, independent of r. Comparing overhead of existing and pro-

posed architectures, overhead of not pipelined transfer through the existing archi-

tectures is
�
2� 1

r

�
lb
ld

, while overhead of pipelined transfer through existing archi-

tectures is sb
ld
�
�
1� 1

r

�
lb
ld

times more, than overhead of transfer through PC1. Fur-

thermore, overhead of not pipelined transfer through the existing architectures is

minpδR, rq
�
2� 1

r

�
lb
ld

, while overhead of pipelined transfer through existing architec-

tures is minpδR, rq
sb
ld
� minpδR, rq

�
1� 1

r

�
lb
ld

times more, than overhead of transfer

through PC1.

Since sb
ld

is constant and assuming that r is sufficiently large, overhead of not pipe-

lined transfer through existing architectures is about 2 lb
ld

, while overhead of pipelined

transfer through existing architectures is roughly lb
ld

times greater, than overhead of

transfer through PC1. Moreover, overhead of not pipelined transfer through existing

architectures is about 2δR
lb
ld

, while overhead of pipelined transfer through existing

architectures is roughly δR
lb
ld

times greater, than overhead of transfer through PC2.
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Figure 2.6: Overall overhead predictions of OGSA-DAI (non-pipelined) and Pro-

posed DASG (PC1) architectures in seconds in the function of bulk data size, where

graph (i) and (ii) represent single, graph (iii) and (iv) represent multiple request

executions.
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The difference in size between DRC and bulk data is significant (ld is measured

in MB, lb is typically measured in GB or TB). Both PC1 and PC2 show significant

performance improvement comparing to existing solutions.

Figure 2.6 compares overhead predictions of the OGSA-DAI (non-pipelined) ar-

chitecture and Proposed DASG (PC1) architecture in the case of a single and mul-

tiple requests in function of bulk data amount. The graphs represent the overall

overhead performance formulas provided for these architectures in table 2.5. The

performance predictions are based on a network with 100MB/s bandwidth and 7MB

DRC size. As graph (i) shows, overhead of the OGSA-DAI (non-pipelined) architec-

ture increases linearly with bulk data size. In the case of 32GB, overhead is above

300s (5 minutes). This is resulted by the fact that first bulk data is transferred

to the OGSA-DAI service machine and then transferred further to the application

machine. In comparison, as graph (ii) shows, overhead of the Proposed DASG ar-

chitecture (PC1) is 0.07s. This is the amount of time required for the DRC to be

transferred from the DRC repository machine to the application machine. Since

after this point bulk data is transferred directly between the data resource machine

and the application machine, overhead is constant and independent of bulk data size.

Graph (iii) and (iv) show that overhead of both architectures increase linearly with

request number. However, while in the case of the OGSA-DAI (non-pipelined) ar-

chitecture with 8 simultaneous requests and 32GB bulk data size overhead is nearly

5000s (about 83 minutes), overhead of the Proposed DASG architecture (PC1) is

below 0.7s.

2.5 Implementation

To show that it is possible to realise the distributed concept of the proposed ar-

chitectures, a solution was developed for accessing heterogeneous data based on
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GEMLCA [99, 100]. GEMLCA is unique in a sense that it is an application repos-

itory extended with a job submitter. It allows the deployment of legacy code ap-

plications on the Grid. An application can be exposed via a GEMLCA service and

can be executed using a GEMLCA client. The legacy application is stored either in

the repository of a GEMLCA service or on a third party computational node where

GEMLCA can access it. To publish a legacy application via GEMLCA, only a basic

user-level understanding of the legacy application is needed, code re-engineering is

not required. As soon as the application is deployed, GEMLCA is able to submit it

using either GT2, GT4 [10] or gLite [12] Grid middleware. GEMLCA also provides a

list of computational sites where the legacy application in question can be executed

(these sites are defined by the application owner that publishes the legacy applica-

tion) and allows scientists to select a suitable site. For the same legacy application,

GEMLCA allows the specification of different binaries and different configurations

for different sites.

A command line MySQL client was deployed in GEMLCA as a legacy ap-

plication. 6 command line parameters (database hostname, username, password,

database name, SQL input file, and result file) of the application were defined in

GEMLCA via the GEMLCA administration portlet, that provides a web based

graphical user interface and can be used either as a stand alone portlet or it can be

integrated to any JSR-168 [101] based portal. See illustration in figure 2.7.

Since GEMLCA was designed to execute legacy applications on remote compu-

tational machines, the GEMLCA client was extended with the capability to exe-

cute DRCs locally to the GEMLCA client. The GEMLCA based DASG solution

is illustrated in figure 2.8. The GEMLCA service that realises the mediator also

encapsulates an application repository which is used as the DRC repository. This

also means that in this solution the mediator and the DRC repository are coupled.

First, the Grid application passes its data request to the GEMLCA client. (This is
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Figure 2.7: Deploying MySQL client using the GEMLCA Administration Portlet
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Figure 2.8: Implementation of DASG PC1 based on GEMLCA, where black ar-

rows represent control data, blue arrow represents DRC transfer, and green arrow

represents bulk data transfer.

not shown on the figure). In the case of MySQL this request includes the location

of the GEMLCA service where the MySQL client is deployed and the 6 parameters

of the MySQL client. The GEMLCA client selects the appropriate MySQL client
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binary and sends a request to the GEMLCA service to transfer it. When the transfer

finishes, the GEMLCA client parametrises and executes the MySQL client, which

sends the request to the selected database and receives the result data set. This way

bulk data flows directly between the database and the machine that runs the Grid

application. This solution implements PC1.

2.6 Summary

This chapter proposes two types DASG architectures that provide access to hetero-

geneous data resources for Grid applications and introduces a general mathematical

model which is also utilised in the following chapters. Although there is a clear

demand for a general, easily extendible, and scalable solution that provides access

to heterogeneous data resources for Grid applications with low overhead, currently

there is no such solution available for Grid users.

The described architecture analysis not only compares proposed architectures

and architectures of existing solutions, but also compares numerous other possibil-

ities at the level of data flow. This data flow analysis can be utilised in special

scenarios which are not addressed by this research.

Based on the proposed architectures, scalable solutions can be realised, which

allow direct data transfer with low overhead. This can be realised by an approach

where DRCs are dynamically distributed and executed on the machine where the

bulk data is generated/processed by the Grid application. Distribution of DRCs

increases overhead, but this is minimal compared to bulk data transfer time due to

the small size of the DRCs. Bulk data is transferred directly between this machine

and the data resource machine.

In contrast to the proposed architectures, all existing solutions that could be
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used as a DASG (OGSA-DAI, AMGA, and GRelC) host and execute DRCs on a

dedicated machine, where bulk data is first transferred to this machine, then to the

machine that runs the Grid application. This increases overhead and bottlenecks

data transfer in the case of large number of requests.

The GEMCLA based reference implementation shows that the proposed archi-

tectures are possible to realise. This solution is easily extendible with any DRC

that has a command line interface. (This is provided in most cases.) Adding a new

DRC to GEMLCA can be done using a simple graphical user interface, only a ba-

sic user-level understanding of DRC is needed, code re-engineering is not required.

Furthermore, it is a general solution, since it has a generic frontend interface which

do not restrict the number and type of input parameters that can be passed to the

DRC. The only restriction is that the parameters have to be represented either as

command line arguments or files.

74



Chapter 3

Heterogeneous Data Access

Solutions for Workflows (DASW)

Although many scientific experiments rely on data stored in various data resources,

the capability of most workflow management systems to access a large set of data

resource types during workflow execution is very limited. (See table 1.1.) For this

reason, scientists have to use different tools before workflow submission to access

their data-sets and retrieve the required data on which they want to carry out

computational experiments.
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Figure 3.1: Concept of existing DASWs

A DASW has a very similar concept to a DASG with the exception that here data
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access is provided not for Grid applications but for workflows of different workflow

systems. See illustration in figure 3.1 Although there are no general solutions for

workflow systems to access heterogeneous data, some workflow systems support

the access to different kinds of data resources. These are detailed and analysed in

section 3.4.

3.1 Key DASW properties and require-

ments

Six key properties of DASWs were identified. These are: (i) generality, (ii) ex-

tendibility, (iii) overhead, (iv) latency, (v) scalability and (vi) data access. Proper-

ties (i-v) are important in the case of DASWs for the same reasons as in the case of

DASGs described in section 2.1.

Data access Data access is a DASW property that indicates when a data resource

can be accessed by a workflow. Data access can be: (i) static, (ii) semi-dynamic, or

(ii) dynamic. See figure 3.2. Static approach means that the data resource can be

accessed before and after workflow execution, but it cannot be accessed at workflow

runtime. For instance, data is gathered from a database before execution, stored in

a file that will act as an input for the workflow. Similarly to this procedure, data

that is obtained as a result of workflow execution can be transferred to a database.

In the case of semi-dynamic approach, data resource is accessed during workflow

execution. However, the parameters of the data request are already specified before

execution and cannot be generated at runtime. Although all the request parameters

are determined when the workflow execution starts, data itself will be transferred at

execution time, ensuring that the workflow nodes will receive the most recent data
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content before they start their computation and the data will appear instantly in the

data resource when the node finishes its computation. Dynamic approach enables

access to data resource at workflow runtime and the parameters of the request

are also generated during workflow execution. This approach gives the greatest

flexibility, since not only the data content is transferred in a dynamic fashion, but

the data request itself can be generated by the same workflow. Therefore, it is aimed

to find a solution that supports dynamic data access for workflows.
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Figure 3.2: DASW Data access approaches: (i) static, (ii) semi-dynamic, and (iii)

dynamic

3.2 DASW architecture definition

This section defines how DASW architectures are represented based on the general

definitions (marked with asterisks) introduced in chapter 2. DASW architectures

are defined based on five properties: structure, data flow, resources, interface, and

integration. These are defined in the followings.

Similarly to DASGs, existing DASWs encapsulate their complete functionality

on a single machine. How the load on this machine can be distributed by utilising

computational and storage resources provided by the Grid is under investigation in

the followings.
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3.2.1 DASW node

Definition 3.1 (DASW nodes and node types)

In the case of DASWs, six node types are distinguished. Mediator, DRC repository,

DRC execution, and data resource nodes and node types represent the same concepts

as defined in the case of DASGs in definition 2.2. In addition:

• An engine node represents a running workflow engine. Engine nodes belong

to node type W .

• A job node represents a running workflow job that has either generated data

or it is going to process some data that is to be transferred to/from a data

resource. Job nodes belong to node type J .

Let T :� tW,J,M,R,C,Du be the set of all DASW node types. Nodes of M,R,C

provide a DASW service and enable the communication between the nodes of J

and D. Therefore, two disjunctive subsets can be identified within T : let T 1 :�

tM,R,Cu be the set of core DASW node types and let T 2 :� tW,J,Du be the set

of external DASW node types. See illustration on figure 3.3.

Note that a workflow engine is the software component that orchestrates the

execution of workflow jobs and is responsible for the execution of the whole workflow.

The term “workflow job” refers to a job which is part of a given workflow.

Definition 3.2 (DASW instance)

Let a DASW instance be a set of |T | � 6 nodes, where each node belongs to a

different node type of tW,J,M,R,C,Du.

Definition 3.3 (Bijection between DASW node types and instances)

Let @i P r1..rs : let Ni :� tWi, Ji,Mi, Ri, Ci, Diu be the ith DASW instance, where

ϕipW q � Wi, ϕipJq � Ji, ϕipMq �Mi, ϕipRq � Ri, ϕipCq � Ci, and ϕipDq � Di.
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Figure 3.3: DASW node types

In the case of DASWs there are 6 node type sets NW , NJ , NM , NR, NC , ND
and r nodes in each type set. A DASW node matrix of instances and types can be

constructed as illustrated in table 3.1. Furthermore, both
�r
i�1Ni and

�
tPT Nt are

equal to the set of all DASW nodes, N and |N | � 6r.

Node types

NW NJ NM NR NC ND

In
st

an
ce

s N1 W1 J1 M1 R1 C1 D1

N2 W2 J2 M2 R2 C2 D2

...
...

...
...

...
...

Nr Wr Jr Mr Rr Cr Dr

Table 3.1: DASW node matrix

3.2.2 DASW structure

Similarly to DASGs, DASW structure layouts are defined by instance and type

layout.

Definition 3.4 (DASW instance layout)

The set of all possible DASW instance layouts is represented by LI and equals to

the set of all possible type layouts on domain T (see definition 2.11).
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Definition 3.5 (DASW type layout)

The set of all possible DASW type layouts is represented by LT and equals to the

set of all possible type layouts on domain T (see definition 2.13).

Definition 3.6 (DASW structure layout)

The set of all possible DASW structure layouts is represented by LS and equals to

the set of all possible structure layouts on domain T (see definition 2.15).

3.2.3 DASW data flow

Definition 3.7 (DASW Data types)

Similarly to the case of DASGs, in the case of DASWs three kinds of data are

distinguished:

• bulk data is the data-set that needs to be transferred between pDiq and pJiq;

• DRC data is the DRC itself that needs to be transferred from pRiq to pCiq;

and

• control data is the set of information that includes all further data transferred

between the nodes. The latter consists of a small number of requests which

are necessary to exchange in order to provide access for an application to a

data resource.

Two kinds of data flow are considered: DRC flow, and bulk data flow. Control

flow is excluded from the model for the same reasons as in the case of DASGs,

described in section 2.2.3.
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Definition 3.8 (DASW DRC flow)

Four DRC path layouts are distinguished in the case of DASWs: when the DRC is

transferred directly pR,Cq, when it is transferred via the mediator pR,M,Cq, when it

is transferred via the workflow engine pR,W,Cq, and when it is transferred via both

the mediator and the workflow engine (R,M,W,C). DRC path layouts involving

job and data resource nodes are not considered. Let DP :� tpR,Cq, pR,M,Cq,

pR,W,Cq, pR,M,W,Cqu be the set of DRC path types and let DS � tPip, Pipu be

the set of DRC staging types, where Pip represents pipelined, while  Pip represents

non pipelined DRC staging.

Definition 3.9 (DASW bulk data flow)

Similarly to DASGs, in the case of DASWs first bulk data have to be transferred

from D to C, since this is the only entity that can communicate with D. Next

bulk data is either transferred to the application directly pR,C, Jq, via the mediator

pR,C,M, Jq, via the workflow engine pR,C,W, Jq, or via both the mediator and

the workflow engine pR,C,M,W, Jq. Cases that transfer bulk data via the DRC

repository (R) are not considered. Let BP :� tpD,C, Jq, pD,C,M, Jq, pD,C,W, Jq,

pD,C,M,W, Jqu be the set of bulk data path types and let BS � tPip, Pipu be the

set of bulk data staging types, where Pip represents pipelined, while  Pip represents

non pipelined bulk data staging.

Definition 3.10 (DASW data flow types)

Having these, let DF :� DP �DS � BP � BS be the set of DASW data flow types.
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3.2.4 DASW resource

Definition 3.11 (DASW resource layout)

Since definition 3.1 identified the same core DASW node types (M,R,E), these can

have exactly the same resource types as in the case of DASGs described in defini-

tion 2.34. The three external DASW node types (W,J,D) are hosted on external

machines. Based on these, the set of all possible DASW resource layouts is defined

over node type set T as:

LR :� tξ P LRpT q}ξM P tDeM,ExMu ^ ξR � CoM ^ ξC � StM^

^ ξW , ξJ , ξD � ExMu
(3.1)

3.2.5 DASW interface

Definition 3.12 (DASW Interfaces)

Let IF :� tGen, Speu be the set of frontend interface types, let IB :� tCLI,APIu

be the set of backend interface types, and let IN :� IF � IB be the set of interface

types.

3.2.6 DASW integration

Definition 3.13 (DASW Subject of integration)

The subject of integration is the particular part of the workflow system that will

be able to communicate with the mediator. Let GS :� tWEd,AuT,WEnu be the

set of integration subjects. WEd represents workflow editor level integration that

enables the workflow editor to be capable of communicating with heterogeneous

data resources. AuT represents auxiliary tool level integration where the workflow

management system is extended with an auxiliary tool that is able to access hetero-
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geneous data resources. WEn represents workflow engine level integration meaning

that the workflow engine is enhanced to be able to execute the data requests.

Definition 3.14 (Request representation)

Let GR :� tPLR, JLRu be the set of request representation types, where PLR

indicates port level representation, meaning that the data request is represented as

either an input port of a workflow job that will process the result of the request, or as

an output port if the job produces data that has to be transferred to a data resource.

JLR indicates job level representation, meaning that the request is represented as

a workflow job that transfers it to the data resource and receives the results. See

figure 3.4.
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Figure 3.4: Request representation within workflows: (i) port level, (ii) job level

Definition 3.15 (Set of possible DASW integrations)

The set of possible DASW integrations is defined as IG :� GS � GR.
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3.2.7 DASW architecture and solution

Definition 3.16 (Set of DASW architectures)

The set of DASW architectures can be composed as:

AR :� tpph, δq, ξ, pqd, sd, cd, qb, sbq, pif , ibq, pgs, grqq P LS � LR �DF � IN � IG}

qd and qb are acyclic path layouts based on instance layout h^ piq

^@pt,Dq P h : t � D^ piiq

^@pt1, t2q P h : ξt1 � ξt2u. piiiq

(3.2)

Note that conditions are needed for the same reasons as described in the case of

DASG architectures in definition 2.40.

Definition 3.17 (DASW solution)

A DASW solution is a set of DASW architectures. With other words, it is a not

empty subset of AR.

3.3 DASW architecture analysis

3.3.1 DASW generality, extendibility, and data

access

For the same reasons described in the case of DASGs in section 2.3.1, general fron-

tend interface, command line backend interface, and centralised mediator hosted on

a dedicated machine are recommended.

In terms of subject of integration, workflow editor level integration means that

the scientist can gather the data before workflow execution as part of the workflow
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Figure 3.5: Subject of integration

design process. Data requests are executed at authoring time, the results of the re-

quest will be part of the concrete executable workflow. Since this solution provides

access only before workflow execution, it supports only static data staging. Auxil-

iary tool level integration provides data access before and after workflow execution

as an individual part of the system. (For instance, in the case of a portal-based

workflow management system this tool can be a portlet.) Similarly to workflow ed-

itor level integration, this solution supports only static data staging. Data-sets are

transferred between the data resource and a storage which the concrete workflow

is able to access. Data is delivered from the database to the workflow by the aux-

iliary tool. Then, the workflow processes the data and generates an output as the

result of the computation. This result-set can be transferred back to the resource

by the tool. Data requests are separated from the workflow, the only connection

is the shared storage that both the workflow engine and the auxiliary tool can ac-

cess. Workflow engine level integration provides runtime access to the data resource.

Contrary to workflow editor and auxiliary tool level integration, this solution sup-

ports semi-dynamic and dynamic data staging. Therefore, it is recommended to

integrate DASW with the workflow engine of a workflow management system. Fig-

ure 3.5 illustrates, using a workflow life-cycle time-line, when the different subject

of integration approaches enable data access.

In the case of both port and node level request representation, the parameters

of a data request can be generated by previous nodes of the workflow at runtime.

Therefore, both approaches support dynamic data staging. However, port-level
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representation approach is best applied if the data request is nothing more than

a simple data transfer, while, node-level representation is best applied when the

data request is more complex. Since, in general data requests can contain complex

queries, data transformation, and even computation, it is recommended to represent

data requests at node level.

3.3.2 DASW performance

The performance analysis compares different DASW architectures focusing on over-

head, latency, overhead scalability and latency scalability. It is based on DASW

scenarios where r P N� different workflow jobs hosted by r different machines gather

data of equal size from r decoupled data resources via a particular DASW archi-

tecture simultaneously. Each job is part of a different workflow that is executed

by engines hosted on r different machines. These scenarios are represented as the

elements of the set defined below.

Definition 3.18 (DASW scenarios)

Let AS :� tpph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P LS �LR�DP �BP �R�0 �pN�q5}

@t P T 2 : δt � r^ piq

^qd and qb are acyclic path layouts based on h ^ piiq

^@pt,Dq P h : t � D^ piiiq

^@pt1, t2q P h : ξt1 � ξt2^ pivq

^ξC � CoM ñ wd � 0^ pvq

^@t P T 1 : r � 0 mod δt^ pviq

^ld � 0 mod sd ^ lb � 0 mod sbu. pviiq

(3.3)
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be the set of analytical DASW scenarios. Let a � pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P

AS be an analytical scenario. Parameters of a and conditions of AS represent the

same concepts as in the case of analytical DASG scenarios defined in definition 2.42.

Definition 3.19 (DASW scenario execution)

Since control flow is excluded from the model, similarly to the case of DASG scenario

execution, the analysis is based on DRC and bulk data flow. @i P r1..rs : let di P B

byte array represent the code of the DRC that communicates with Di and to be

transferred from Ri to Ci and bi P B byte array represent the bulk data that is to

be transferred from Di to Ji. A DASW scenario is executed in three steps:

1. DRC transfer: @i P r1..rs: di is transferred from Ri to Ci via path ψipqdq

simultaneously.

2. DRC queuing: all DRCs are waiting wd amount of time to be scheduled for

execution,

3. Bulk data transfer: @i P r1..rs: the execution of the ith DRC starts and bi is

transferred from Di to Ji via path ψipqbq simultaneously.

DRC flow can be represented as a simultaneous transfer (see definition 2.48), since

the conditions of definition 3.18 ensure that pph, δq, qd, sd, ld, rq P Dst. Similarly, bulk

data flow also can be represented as: pph, δq, qb, sb, lb, rq P Dst. Having these, the

performance functions of a DASW scenario can be defined as follows.

Definition 3.20 (Performance function of DASW DRC transfer)

Let a :� pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P AS, and Γd : AS Ñ R�0 be a function

for determining execution time of DRC transfer as:

Γdpaq :�τqpph, δq, qd, sd, ld, rq (3.4)
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Definition 3.21 (Performance functions of DASW bulk data transfer)

Let a :� pph, δq, ξ, qd, qb, wd, sd, sb, ld, lb, rq P AS, and Γb,∆b,Θb : AS Ñ R�0 be

functions for determining respectively bulk data transfer time, overhead, and latency

as:

Γbpaq :�τqpph, δq, qb, sb, lb, rq, (3.5)

∆bpaq :�Γbpaq � kbsbK, and (3.6)

Θbpaq :�εqpph, δq, qb, sb, lb, rq. (3.7)

Note that definition 2.49 is applied to determine Γbpaq and Θbpaq. @i P r1..rs :

transferring bi directly between Di and Ji takes τepλpbiq, pDi, Jiqq � kbsbK time.

Overhead on bulk data transfer of a particular scenario is considered as this time

subtracted from bulk data transfer time.

Definition 3.22 (Overall DASW performance functions)

Let Γ,∆,Θ : AS Ñ R�0 be functions for determining respectively overall execution

time, overhead, and latency of a scenario, where:

Γpaq :�wd � Γdpaq � Γbpaq, (3.8)

∆paq :�wd � Γdpaq �∆bpaq, and (3.9)

Θpaq :�wd � Γdpaq �Θbpaq. (3.10)

Because DRC transfer always has to be performed before bulk data transfer, DRC

transfer time is always added to the latency and overhead of a scenario.

Definition 3.23 (Scalability of DASW data transfer)

Performance functions of any DASW scenario are characterised based on growth

rates in function of lb and r. This is represented by the Bachmann–Landau (Big

O) notation and can have the same values as in the case of DASGs described in

definition 2.53.
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3.3.3 DASW bulk data flow

Case Bulk data path Instance layout Restrictions Group

BC1 * pD,C, Jq pC, Jq P h δC � r

BG1
BC2 pD,C,M, Jq pC,Mq, pM,Jq P h δM , δC � r

BC3 pD,C,W, Jq pC,W q, pW,Jq P h δC � r

BC4 pD,C,M,W, Jq pC,Mq, pM,W q, pW,Jq P h δM , δC � r

BC5 * pD,C, Jq pC, Jq R h

BG2

BC6 pD,C,M, Jq pC,Mq R h^ pM,Jq P h δM � r

BC7 pD,C,M, Jq pC,Mq P h^ pM,Jq R h δM � δC

BC8 pD,C,W, Jq pC,W q R h^ pJ,W q P h

BC9 pD,C,W, Jq pC,W q P h^ pW,Jq R h δC � r

BC10 pD,C,M,W, Jq pC,Mq, pM,W q P h^ pW,Jq R h δM � δC

BC11 pD,C,M,W, Jq pC,Mq R h^ pM,W q, pW,Jq P h δM � r

BC12 pD,C,M,W, Jq pM,W q R h^ pC,Mq, pW,Jq P h δM , δC � r

BC13 * pD,C,M, Jq pC,Mq, pM,Jq R h
BG3

BC14 pD,C,M,W, Jq pC,Mq, pM,W q R h^ pW,Jq P h

BC15 pD,C,M,W, Jq pC,Mq, pW,Jq R h^ pM,W q P h δM � r BG3 ^ BG4

BC16 * pD,C,W, Jq pC,W q, pW,Jq R h
BG4

BC17 pD,C,M,W, Jq pC,Mq P h^ pM,W q, pW,Jq R h δM � δC

BC18 * pD,C,M,W, Jq pC,Mq, pM,W q, pW,Jq R h BG5

Table 3.2: DASW of bulk data flow cases

There are 4 bulk data path layouts: pD,C, Jq, pD,C,M, Jq, pD,C,W, Jq, and

pD,C,M,W, Jq. Based on these 36 different bulk data flow cases can be identified

(see definition 2.54). However, since DASW instance layouts having pD,Cq coupled

are not considered, πpD,Cq should always be false. This means that only 18 data

flow cases are considered. These are listed in table 3.2, where representative cases

(see definition 2.54) are marked with asterisks. Based on definition 2.15: @pt1, t2q P

h : t1, t2 P T ñ δt1 � δt2 . This means that instance layout implies restrictions

of type layout. This is also included in the table. Based on definition 2.55, bulk

data flow cases can be divided into 5 different groups, where cases of each group

are equivalent, in terms that they have the same performance characteristics. These

groups are also illustrated in the table 3.2.
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Group Overhead (∆bpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2
rpkb�1qsbK
mintr,δCu

� kbsbK E
kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r
E δC   r

BG3

rsbK
mintr,δM u �

rsbK
mintr,δCu

�

� rkbsbK
mintr,δM ,δCu

� kbsbK
E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

E δC   r _ δM   r

BG4 sbK �
rpkb�1qsbK
mintr,δCu

� kbsbK E
kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r
E δC   r

BG5
sbK �

rsbK
mintr,δCu

� rsbK
mintr,δM u�

� rkbsbK
mintr,δC ,δM u � kbsbK

E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

E δC   r _ δM   r

Table 3.3: Overhead and scalability of DASW bulk data staging

Group Latency (Θbpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2
rsbK

mintr,δCu
E

kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r

kb ¡ 1

δC   r

kb � 1

δC   r

BG3

rsbK
mintr,δM u�

� rsbK
mintr,δCu

E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

kb ¡ 1

δC   r _ δM   r

kb � 1

δC   r _ δM   r

BG4 sbK �
rsbK

mintr,δCu
E

kb ¡ 1

δC ¯ r

kb � 1

δC ¯ r

kb ¡ 1

δC   r

kb � 1

δC   r

BG5

rsbK
mintr,δCu

�

� rsbK
mintr,δC ,δM u�

� rsbK
mintr,δM u

E

kb ¡ 1

δC ¯ r

δM ¯ r

kb � 1

δC ¯ r

δM ¯ r

kb ¡ 1

δC   r _ δM   r

kb � 1

δC   r _ δM   r

Table 3.4: Latency and scalability of DASW bulk data staging

Transfer time, overhead, and latency values can be found in table 3.5, 3.3, and 3.4

respectively, where the formulas are based on the definition of Γbpaq, ∆bpaq, and

Θbpaq. Based on ∆bpaq and Θbpaq, the architectural conditions which determine

scalability in terms of overhead and latency are identified for each group, these can

be found in table 3.3, and 3.4. In particular, cases of group BG1 always provide 0

overhead and latency on bulk data staging, while cases of group BG2, BG3, BG4,

and BG5 never. In the cases of the latter four groups the same rules apply as in the

case of DASG bulk data transfer groups BG2 and BG3 described in section 2.3.3.
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Group Transfer time (Γbpaq)

BG1 kbsbK

BG2
rpkb�1qsbK
mintr,δCu

BG3
rsbK

mintr,δM u
�

rsbK
mintr,δCu

�
rkbsbK

mintr,δM ,δCu

BG4 sbK �
rpkb�1qsbK
mintr,δCu

BG5 sbK �
rsbK

mintr,δCu
�

rsbK
mintr,δM u

�
rkbsbK

mintr,δC ,δM u

Table 3.5: Time of DASW bulk data transfer

3.3.4 DASW DRC flow

Case DRC path Instance layout Restrictions Group

DC1 * pR,Cq pR,Cq P h δR � δC

DG1
DC2 pR,M,Cq pR,Mq, pM,Cq P h δM � δR � δC

DC3 pR,W,Cq pR,W q, pW,Cq P h δR, δC � r

DC4 pR,M,W,Cq pR,Mq, pM,W q, pW,Cq P h δM , δR, δC � r

DC5 * pR,Cq pR,Cq R h

DG2

DC6 pR,M,Cq pR,Mq P h^ pM,Cq R h δM � δR

DC7 pR,M,Cq pR,Mq R h^ pM,Cq P h δM � δC

DC8 pR,W,Cq pR,W q P h^ pW,Cq R h δM � r

DC9 pR,W,Cq pR,W q R h^ pW,Cq P h δC � r

DC10 pR,M,W,Cq
pR,Mq, pM,W q P h^

^pW,Cq R h
δM , δR � r

DC11 pR,M,W,Cq
pW,Cq, pR,Mq P h^

^pM,W q R h

δC � r

δM � δR

DC12 pR,M,W,Cq
pM,W q, pW,Cq P h^

^pR,Mq R h
δM , δC � r

DC13 * pR,M,Cq pR,Mq, pM,Cq R h

DG3
DC14 pR,M,W,Cq

pW,Cq P h^

^pR,Mq, pM,W q R h
δC � r

DC15 pR,M,W,Cq
pM,W q P h^

^pR,Mq, pW,Cq R h
δM � r DG3 ^ DG4

DC16 * pR,W,Cq pR,W q, pW,Cq R h

DG4
DC17 pR,M,W,Cq

pR,Mq P h^

^pM,W q, pW,Cq R h
δR � δM

DC18 pR,M,W,Cq pR,Mq, pM,W q, pW,Cq R h DG5

Table 3.6: DASW DRC data flow cases

Performance characteristics of DRC transfer are determined by DRC path, DRC
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staging, instance and type layout. DRC flow analysis is similar to bulk data flow

analysis in several aspects. Based on the four DRC path layouts (pR,Cq, pR,M,Cq,

pR,W,Cq, pR,M,W,Cq) 18 different cases can be identified. These are listed in ta-

ble 3.6 along with the restrictions on type layout implied by definition 2.15. Transfer

time values are determined based on the definition of Γdpaq and included in table 3.7.

Scalability is only analysed in function of r, since lb does not affect DRC flow.

Group Transfer time Γdpaq Op0q Op1q Oplbq Oprq Oprlbq

DG1 0 @ E E E E

DG2
rkdsdK

mintr,δC ,δRu
E

δR ¯ r

δC ¯ r
E δR   r _ δC   r E

DG3

rsdK
mintr,δR,δM u�

� rsdK
mintr,δM ,δCu

�

� rpkd�1qsdK
mintr,δM ,δR,δCu

E

δM ¯ r

δC ¯ r

δR ¯ r

E δM   r _ δR   r _ δC   r E

DG4

rsdK
mintr,δRu

�

� rsdK
mintr,δCu

�

� rpkd�1qsdK
mintr,δR,δCu

E
δC ¯ r

δR ¯ r
E δR   r _ δC   r E

DG5

rsdK
mintr,δR,δM u�

� rsdK
mintr,δM u�

� rsdK
mintr,δCu

�

� rpkd�1qsdK
mintr,δM ,δR,δCu

E

δM ¯ r

δC ¯ r

δR ¯ r

E δM   r _ δR   r _ δC   r E

Table 3.7: Transfer time and scalability of DASW DRC transfer

Cases of group DG1 require, that all nodes through which DRCs are transferred

are hosted by the same machine, that implies that DRC transfer time is 0 and

scalability is Op0q. In cases of group DG2, DG3, DG4, and DG5 the same rules

apply as in the case of DASG DRC transfer groups DG2 and DG3 described in

section 2.3.4. Transfer time and scalability values are listed in table 3.7.
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3.3.5 Recommended DASW structure layout,

data flow, and resource layout

In any of the 18 bulk data transfer cases, it is possible to realise scalable bulk data

transfer where overhead and latency on bulk data transfer are independent of r and

lb. In terms of type layout, while cases BC1, BC3, BC5, BC8, BC9, and BC16

require that δC ¯ r, cases BC4, BC2, BC6, BC7, BC10, BC11, BC12, BC13, BC14,

BC15, BC17, and BC18 require that both δM , δC ¯ r. In terms of bulk data staging

BC5 - BC18 require pipelined staging (kb ¡ 1) as well in order to provide scalable

bulk data transfer.

In all of the 18 DRC transfer cases DRC transfer time is independent of lb and

in any of the 18 cases it is possible to realise scalable DCR transfer where DRC

transfer time is independent of r. In terms of type layout, DC1, DC3, DC5, DC9,

DC14, DC16 require that δC ¯ r and δR ¯ r; DC2, DC4, DC6, DC7, DC8, DC10,

DC11, DC12, DC13, DC15, DC17, and DC18 require that δC , δR, δM ¯ r to provide

DRC transfer independent of r. The selection of proposed structure layout and data

flow combinations is based on the following recommendations:

R1 - Mediator The same reasons apply here as in the case of DASG recommen-

dation R1 described in section 2.3.5. Therefore, it is aimed to minimise the number

of utilised dedicated machines (let δM � 1), provide that δC ¯ r, and exclude bulk

data flow cases that transfer data via the mediator. This means that bulk data

flow cases based on path type pD,C,M, Jq or pD,C,M,W, Jq and instance lay-

outs having pM,Cq coupled are not recommended. Furthermore, in each scenario

δW , δJ � r, which implies that instance layouts having pJ,Mq or pW,Mq coupled

are not recommended either.
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R2 - DRC repository It cannot be guaranteed in general that DRC repositories

can be hosted by the same machines that host the workflow engine or the workflow

job. Therefore, instance layouts requiring to have pW,Rq or pJ,Rq coupled are not

recommended. This also means that DRC repository nodes should not be hosted

on external machines (ξR � ExM). On the one hand, the fact that having pW,Rq

or pJ,Rq coupled are not recommended, implies that if pW,Cq P h or pJ,Cq P h,

then pR,Cq P h is not recommended either, because of the transitivity the of h. On

the other hand, if pW,Cq, pJ,Cq R h, then pR,Cq can be realised only by utilising

dedicated machines for running nodes of R and C for the same reasons described in

DASG recommendation R2 in section 2.3.5. Therefore, pR,Cq P h in general is not

recommended.

Recommendation DASW data flow case

R1 BC2, BC4, BC6, BC7, BC10-BC15, BC17, BC18, DC2, DC4, DC7, DC10, DC12, DC15

R2 DC1-DC4, DC8

R4 DC7, DC12-DC15, DC18

Table 3.8: Elimination of DASW data flow cases based on different recommenda-

tions.

R3 - DRC execution Since pM,Cq P h is not recommended based on R1, the

DRC is either executed on a separate computational machine (C is decoupled), runs

on the same machine as the workflow job (pJ,Cq P h), or runs on the same machine as

the workflow engine (pW,Cq P h). In the latter two cases, ξC � ExM . In the former

case, the DRC can be executed either on a computational or on a dedicated machine.

However, the number of dedicated machines should be minimised and δC ¯ r is

aimed to be provided based on R1. Therefore, ξC � DeM is not recommended in

general.
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R4 - DRC transfer Based on the reasons described in the case of DASG rec-

ommendation R4 (section 2.3.5), if pR,Mq R h, then only DRC path type pR,Cq or

tpR,W q, pW,Cqu can be recommended.

Based on these recommendations, data flow cases listed in table 3.8 are excluded.

This means, that only bulk data flow case BC1, BC3, BC5, BC8, BC9, BC16 and

DRC flow case DC5, DC6, DC9, DC11, DC16, DC17 can be recommended. Table 3.9

defines all possible structure layout, data flow and resource layout combinations.

These can be recommended in different cases.

Proposed

Aspects

S
tr

u
ct

u
re

(W,M)

(W,R)

(W,C) O* X O* X

(J,C) X X X X

(M,R) X X X X X X X

(M,C)

(R,C)

Type layout

1 1 1 1 1 1 1 1 1 1 1 1 1 1

≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 1 1 1 1 1 1 1

≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r ≥r

D
at

a 
flo

w

Bulk data path

(D,C,J) X X X O X X X X O X

(D,C,M,J)

(D,C,W,J) O* O X X O* O X X

(D,C,M,W,J)

O O X X X X X O O X X X X X

O O O O

DRC path

(R,C) X X O X O O O O

(R,M,C) O O O O

(R,W,C) O* X O X X O* O O O O

(R,M,W,C) O* O O O O

DRC staging
O X O O X O X O X O O X O X

O O O O O O O O

R
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ce Mediator DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM
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DRC execution ExM ExM CoM ExM CoM CoM CoM ExM ExM CoM ExM CoM CoM CoM

P
ro

po
se

d 
1

 
(P

C
1

)

P
ro

po
se

d 
2

 
(P

C
2

)

P
ro

po
se

d
 3

 
(P

C
3

)

P
ro

po
se

d 
4

 
(P

C
4

)

P
ro

po
se

d 
5

 
(P

C
5

)

P
ro

po
se

d 
6

 
(P

C
6

)

P
ro

po
se

d 
7

 
(P

C
7

)

P
ro

po
se

d 
8

 
(P

C
8

)

P
ro

po
se

d 
9

 
(P

C
9

)

P
ro

po
se

d
 1

0 
(P

C
1

0
)

P
ro

po
se

d 
11

 
(P

C
11

)

P
ro

po
se

d 
12

 
(P

C
1

2
)

P
ro

po
se

d 
13

 
(P

C
1

3
)

P
ro

po
se

d 
14

 
(P

C
1

4
)

Instance 
layout

δ
M

δ
R

δ
C

Bulk data 
staging

Pipelined (k
b
=1)

Not pipelined (k
b
>1)

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Resource 
layout

Table 3.9: Proposed DASW structures, data flows, and resource layouts, where sign

X within instance layout show which nodes are coupled in a particular case. Sign

X within data flow means that only the correlated architectural approach can be

implemented. Sign O indicates that it is irrelevant which approach is chosen and

sign O* means that if pW,Jq P h is provided, then it is irrelevant which approach is

chosen.
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Figure 3.6: Combinations of recommended DASW data flow cases, where black lines

represent which node types are coupled, dashed lines represent optional couplings,

green arrows represent bulk data path layouts, and blue arrows represent DRC path

layouts.

1. DRC repositories

• (a) If it is not possible to utilise Grid storage resources for DRC repositories

then it is recommended to host the DRCs at the dedicated machine that hosts

the mediator (pM,Rq P h, δR � 1, ξR � DeM), since the mediator will not

bottleneck DRC transfer. In this case DC5, DC6, DC9, DC11, DC16, and

DC17 all can be recommended.

• (b) If it is possible to utilise multiple storage machines for DRC repositories

then it is recommended to have a decoupled mediator (pM,Rq R h and δR ¯

1, ξR � StM). In this case only DC5, DC9, and DC16 can be recommended.

2. Workflow engines, jobs, and DRCs

• (a) If workflow jobs are executed locally to the workflow engines, then pW,Jq P

h. In this case BC9 and BC16 cannot be realised, since these data flow cases

require pW,Jq R h. BC1, BC3, BC5, and BC8 all can be recommended.
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(a-i) If the workflow engine can execute the desired DRC locally (pW,Cq P

h), then bulk data flow case BC1 and BC3 can be recommended.

(a-ii) If pW,Cq P h cannot be realised, then bulk data flow case BC5 and

BC8 can be recommended.

• (b) If workflow jobs are executed remotely to the workflow engines (pW,Jq R

h), but it is possible to run the DRC on the same machine where the job runs

(pJ,Cq P h), then BC1 is recommended, since this bulk data transfer case

provides 0 overhead and latency. In this case ξC � ExM .

• (c) If workflow jobs are executed remotely to the workflow engines (pW,Jq R h)

and it is not possible to run the DRC on the same machine where the job runs

(pJ,Cq R h), then there are three options.

(c-i) If the workflow engine can execute the desired DRC locally (pW,Cq P

h), then data flow case BC5 or BC9 can be recommended. In this case bulk

data is first transferred to the engine machine (where the DRC runs) and then

to the job machine.

(c-ii) If pW,Cq P h cannot be realised and data can be transferred directly

to the machine that runs the job from the machine that runs the DRC, then

bulk data flow case BC5 can be recommended. In this case bulk data is first

transferred to the separate machine that runs the DRC and then to the job

machine.

(c-iii) If pW,Cq P h cannot be realised and data cannot be transferred

directly to the machine that runs the job from the machine that runs the

DRC, then bulk data flow case BC16 is recommended. In this case bulk data

is first transferred to the separate machine that runs the DRC, next to the

engine machine and finally to the job machine.

Based on these table 3.10 summarises which data flow and structure layout com-
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Case Proposed combinations

1/a, 2/a-i PC8

1/a, 2/a-ii PC10, PC12

1/a, 2/b PC8, PC9

1/a, 2/c-i PC11

1/a, 2/c-ii PC10, PC12

1/a, 2/c-iii PC13, PC14

Case Proposed combinations

1/b 2/a-i PC1,

1/b 2/a-ii PC3, PC5

1/b, 2/b PC1, PC2

1/b, 2/c-i PC4

1/b, 2/c-ii PC3, PC5

1/b, 2/c-iii PC6, PC7

Table 3.10: Proposed DASW structure and data flow combinations in different cases

binations are recommended in the different cases. Table 3.11 illustrates performance

characteristics of each proposed combination.

Based on definition 2.54, BC1 is the representative of the group that also includes

BC3. Note that, since BC1 and BC3 are equivalent (see definition 2.55), their

performance characteristics are the same. This also applies for BC5 and BC8, BC9;

DC5 and DC6, DC9, DC11; and DC16 and DC17. Rather than illustrating all

combinations of each case, here only the representative cases BC1, BC5, BC16,

DC5, and DC16 are illustrated in figure 3.6 with the possible structure layouts that

can implement them.

3.4 Existing and proposed DASW solu-

tions

3.4.1 Existing DASW solutions

There are several solutions that can be utilised by workflows for accessing distributed

data. SAGA, SRB, LFC, Hadoop MapReduce can be used for this purpose. How-

ever, as it is explained in section 2.4.1, these solutions cannot provide access to a

wide range of heterogeneous data resources of different types and vendors. For this
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Proposed Overhead / Latency
Overhead / Latency

scalability

PC1 wd �
rldK

mintr,δRu
Opr � 1q

PC2 wd �
rldK

mintr,δRu
� sdK Opr � 1q

PC3 wd �
rldK

mintr,δRu
� sbK Opr � 1q

PC4 rldK
mintr,δRu

� sbK Opr � 1q

PC5 wd �
rldK

mintr,δRu
� sdK � sbK Opr � 1q

PC6 wd �
rldK

mintr,δRu
� 2sbK Opr � 1q

PC7 wd �
rldK

mintr,δRu
� sdK � 2sbK Opr � 1q

PC8 wd � rldK Opr � 1q

PC9 wd � rldK � sdK Opr � 1q

PC10 wd � rldK � sbK Opr � 1q

PC11 rldK � sb Opr � 1q

PC12 wd � rldK � sdK � sbK Opr � 1q

PC13 wd � rldK � 2sbK Opr � 1q

PC14 wd � rldK � sdK � 2sbK Opr � 1q

Table 3.11: Performance characteristics of proposed DASW structures and data

flows

reason they cannot be considered as DASWs.

As a matter of fact, there are no general solutions designed for workflow sys-

tems to provide access to a wide range of heterogeneous data resources. However,

some workflow systems support different kinds of heterogeneous data access. These

solutions are analysed in the followings.

JDBC is integrated to both Taverna and Kepler workflow systems. Data resource

clients can be connected to JDBC using a backend API, while at the frontend side it

provides API that is specific to SQL. Workflow engine (W), DRC repository (R), and

DRC execution (C) are coupled with the mediator (M) node. Hence, these solutions

provide instance layout where h � tpW,Mq, pW,Rq, pW,Cq, pM,Rq, pM,Cq, pR,Cqu

if jobs (J) are executed remotely to the workflow engine and h � tpW,Mq, pW,Rq,

pW,Cq, pJ,Cq, pM,Rq, pM,Cq, pR,Cqu if jobs are executed locally to the workflow

engine. In terms of type layout δM � δC � δR, which all equal to δW since all
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these nodes are coupled. This also means that ξM � ξR � ξC � ExM . There is

no physical DRC transfer, the DRC repository is basically a set of JDBC drivers

(usually represented as JAR files) that encapsulate the DRCs. Typically type 4

drivers (see comparison of different JDBC driver types in [102]) are used which are

loaded and executed by the Java virtual machine and communicate directly with a

particular data resource. Hence, DRC path is pR,Cq and since these are coupled,

DRC staging is irrelevant (see lemma A.3). Bulk data is first passed from the

data resource to the the DRC (JDBC driver), this passes it further to the mediator

(JDBC driver manager). Next, data is transferred to the workflow engine, that

transfers it further to the job. For this reason, bulk data path is pD,C,M,W, Jq

and staging is not pipelined, since streaming is not supported by these solutions.

JDBC is integrated with the workflow engine in the case of both Taverna and Kepler

engines and data requests are represented as jobs. Requests can be generated by

previous jobs, hence, data access is dynamic.
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Figure 3.7: Structure and data flow cases of the existing architectures, where black

lines represent which node types are coupled, green arrows represent bulk data path

layouts and blue arrows represent DRC path layouts.

A proof-of-concept that integrates OGSA-DAI WSI 2.2 and Taverna 1.4 was de-

veloped by the Taverna team [103]. A new job type was introduced into Taverna

called OGSA-DAI processor, that is able to execute an SQL query via a given OGSA-

DAI service. Since the solution is based on OGSA-DAI, backend interface is an API

and the frontend interface is general, any type of data resource can be connected
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Table 3.12: Existing and proposed DASW architectures, where signs have the same

purpose as in the case of table 3.9.

to it. The newly introduced OGSA-DAI processor is a local processor, that, after

installation, becomes a part of the workflow system. This processor represents the

OGSA-DAI client that connects to a remote OGSA-DAI server. This server encapsu-

lates the mediator (M), the DRC repository (R), and the DRC execution (C). Hence

the solution implements an instance layout where h � tppM,Rq, pM,Cq, pR,Cqu.

By default the OGSA-DAI server is hosted by a dedicated single machine, hence

δM � δC � δR � 1 and ξM � ξR � ξC � DeM . Although OGSA-DAI supports

third party delivery, this functionality is not utilised by the solution, hence bulk

data always flows though the mediator and the workflow engine that is integrated

with the OGSA-DAI client. Bulk data path type is pD,C,M,W, Jq and data trans-
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fer is not pipelined. Similarly to JDBC, DRC repository and execution are on the

same machine. Hence, DRC path type is pR,Cq, any DRC staging is irrelevant (see

lemma A.3). The subject of integration is the workflow engine, which was extended

with the ability of executing the new OGSA-DAI job type. Hence, the data request

is represented at job level within a workflow. Data requests can be generated and

passed by previous jobs to the OGSA-DAI job. Therefore, data access is dynamic.

This solution is a restricted proof-of-concept, that supports only a small subset of the

functionalities provided by OGSA-DAI, it is not intended to be used in production

as it is stated in the manual of the solution.

Architecture Overhead
Overhead

scalability
Latency

Latency

scalability

JDBC (E1, E2) lbK Oplbq lbK Oplbq

OGSA-DAI (E3) 2rlbK O prlbq 2rlbK O prlbq

OGSA-DAI (E4) 2rlbK O prlbq 2rlbK O prlbq

OGSA-DAI (E5) 2rlbK � lbK O prlbq rlbK O prlbq

Table 3.13: Performance characteristics of existing DASW architectures, where jobs

are executed remotely to the workflow engines (pW,Jq R h)

Architecture Overhead
Overhead

scalability
Latency

Latency

scalability

JDBC (E1, E2) 0 Op0q 0 Op0q

OGSA-DAI (E3) 2rlbK � lbK O prlbq rlbK O prlbq

OGSA-DAI (E4) 2rlbK � lbK O prlbq rlbK O prlbq

OGSA-DAI (E5) 2rlbK � lbK O prlbq rlbK O prlbq

Table 3.14: Performance characteristics of DASW existing architectures, where jobs

are executed locally to the workflow engines (pW,Jq P h)

Several projects developed re-usable, portal-based interfaces for OGSA-DAI. For

instance, the Alliance OGSA-DAI Portlet [104], the OGSA-DAI portlet developed

by the Sakai VRE Demonstrator project [105, 106], or the Westminster OGSA-

DAI portlet set [107, 108]. The first version of the Westminster portlet set was
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developed as part of my MSc project [109]. Except for the Westminster portlet

set, the mentioned portlets provide only a very limited functionality and have not

reached production quality. Such a portlet can be integrated to a workflow portal

and can serve as an auxiliary tool for accessing heterogeneous data. In the case of

auxiliary tool integration, however, it is not possible to represent the data request

within the workflow, since it is executed either before or after the workflow. Since

this solution is also based on OGSA-DAI, backend interface is API and the frontend

interface is general, ξM � ξR � ξC � DeM , and the structure is also the same as in

the case of the OGSA-DAI - Taverna proof-of-concept solution. The only difference

here is that the OGSA-DAI client is embedded to a portlet and is not integrated

with the workflow engine. However, this does not imply any structural difference.

For the same reason, DRC flow is also identical to the OGSA-DAI - Taverna proof-

of-concept solution. However, two types of bulk data flow can be realised by this

solution. Bulk data path can be pD,C,M,W, Jq (T1) if the workflow engine has

a data storage that can be accessed by the OGSA-DAI service (e.g. via FTP or

GridFTP) or can be pD,C,M, Jq (T2) if the computational resource machine that

runs the job can be accessed by the OGSA-DAI. In both cases the third party

delivery function of OGSA-DAI is used and data transfer is not pipelined. Although,

these portlets are very useful in some cases and provide solutions for several user

scenarios, they provide only static data access.

Table 3.12 describes each architecture the existing solutions can realize and ta-

ble 3.13, 3.14 shows performance characteristics of each of these architectures. Fig-

ure 3.7 illustrates structure and data flow examples for each existing architecture.
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3.4.2 Proposed DASW solutions

Section 3.3 identifies several proposed architectures, which also can be seen in ta-

ble 3.12. Based on section 3.3.1, in the case of the proposed architectures, the

recommended backend interface for accessing DRCs is CLI and frontend interface is

general. The recommended subject of integration is the workflow engine and data

requests should be represented at node level within the workflows.

Section 3.3.5 identifies numerous recommended structure and data flow combi-

nations. These are defined in table 3.9. Based on the workflow repositories and the

workflow jobs 8 cases were defined in this section. Table 3.10 summarises which

structure and data flow combinations are recommended in the different cases. Hav-

ing these, table 3.12 defines all proposed architectures along with all architectures

that can be realised by the existing solutions. The recommended DASW solution

should realise one or more of the proposed architectures depending on where it would

be used.

3.4.3 Comparison of existing and proposed

DASW solutions

The existing and proposed architectures differ in several aspects. Overall overhead

and latency of the existing solutions are all linear with the number of simultaneous

requests (r) and bulk data size (lb), except for the JDBC solution. In the case of

workflows of which jobs are executed locally to their workflow engines, latency and

overhead of both JDBC solutions are 0. In the case of workflows of which jobs are

executed remotely to their workflow engines, latency and overhead of both JDBC

solutions are linear with bulk data amount and independent of the number of simul-

taneous requests. Although in the above case the performance of the JDBC based
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solutions are significantly better then the OGSA-DAI based solutions, they are nei-

ther general (specific to SQL) nor easily extendible, since if a new data resourced is

introduced, its driver (DRC) has to be added to the JDBC of each workflow engine).

On the other hand, the OGSA-DAI based solutions are general and provide a vast

range of functionality, but their performance is rather poor. Bulk data is always

transferred via the OGSA-DAI service. This increases overhead and bottlenecks

data transfer. Data transfer is not scalable, it is linear with both the number of

simultaneous requests and bulk data amount.

In the case of all proposed solutions DRC execution is never coupled with the

DRC repository and the mediator, it is either coupled with the job, with the the

workflow engine, or decoupled. This means that the DRC has to be physically

transferred from the machine that hosts the DRC repository to the DRC execution

machine. This adds additional overhead as in the case of the proposed DASG

solutions, but the size of the DRCs are relatively small comparing to bulk data size.

Hence, all proposed architectures provide relatively low overhead and latency that

is independent of bulk data size. Although it is linear with r, this does not affect

bulk data, only DRC transfer.

Graphical representation of performance improvements of proposed architectures

to existing architectures is provided in the case of DASGs in section 2.4.3. Since

based on the above, the performance improvements of proposed DASW architectures

to existing DASW architectures are similar to the DASG performance improvements,

graphical representation of DASW performance improvements is not provided.
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3.5 Implementation

Proposed DASW architectures are based on similar concepts to proposed DASG

architectures. To show that it is possible to realise these even if data access is pro-

vided for workflows, a solution was developed for accessing heterogeneous data from

P-GRADE workflows. The solution is also based on the GEMLCA (see descrip-

tion in section 2.5) application repository and submitter. For testing the concept of

proposed DASW architectures, the same MySQL client was used as in the case of

DASGs.

Figure 3.8: Parametrisation of a MySQL client in a P-GRADE workflow

GEMLCA is integrated [110] to the workflow engine of the P-GRADE portal

in such way that a GEMLCA application is represented as a job in a P-GRADE
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workflow. Figure 3.8 illustrates how this job can be parametrised in the P-GRADE

workflow editor. First, the user selects the Grid and the GEMLCA service where

the MySQL client is deployed. Next, selects the MySQL client from the list of

available legacy applications (legacy codes) and the computational resource (site)

where it will be executed. Input and output files can be generated and processed by

other nodes in the P-GRADE workflow. In order to transfer bulk data directly, the

MySQL client should be submitted to the same computational resource that runs

the job which generates/processes it. Finally, the user parametrises the MySQL

client.
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Figure 3.9: Implementation of DASW PC8 based on GEMLCA, where black ar-

rows represent control data, blue arrow represents DRC transfer, and green arrow

represents bulk data transfer.

The GEMLCA based DASW implementation is illustrated in figure 3.9. The

GEMLCA application repository is used as the DRC repository, which is part of

the GEMLCA service that serves as the mediator. These are hosted on the same

machine, hence mediator and DRC repository are coupled. When the job which

represents the data request is to be executed by the P-GRADE workflow engine,

the engine passes a request to the local GEMLCA client. This request includes all

information that the user specifies in the GEMLCA parameter window illustrated

in figure 3.8. Next, the GEMLCA client sends a request to the selected GEMLCA

service to submit the MySQL client to the desired location. When the MySQL client
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is transferred, the GEMLCA client sends the data request to it. The MySQL client

starts execution, sends the request to the database and retrieves the results. Bulk

data flows directly between the database and the computational resource that runs

the job and the MySQL client. This solution realises PC8.

3.6 Summary

Based on the mathematical model introduced in chapter 2, this chapter proposes 14

DASW architectures that provide access to heterogeneous data resources for work-

flows. Although many scientific experiments rely on data stored in various data

resources, most workflow systems support only a small subset of data resources and

many of them do not provide access to databases at all. There is a high demand for

a general, easily extendible, and scalable solution that provides access to heteroge-

neous data resources for workflows at runtime.

Although there is no general solution designed for this purpose, some workflow

systems support access to heterogeneous data resources using either JDBC or OGSA-

DAI. Taverna and Kepler workflow systems support JDBC which runs on the same

machine as the workflow engine. The performance of this solution is sufficient, since

bulk data is not transferred via a centralised service. However, JDBC was designed

for SQL based databases and cannot provide access to other types of data resources.

On the other hand, if a new data resource is introduced, its driver (DRC) has to be

added to the JDBC of each workflow engine.

OGSA-DAI based solutions access data using a centralised service hosted on a

dedicated machine. If a new data resource is introduced, after connecting the DRC

of the new data resource with OGSA-DAI, workflow systems connected with the

given OGSA-DAI service can access the new data resource. The limitation of this
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approach is that all data flows via the machine which hosts this centralised service.

This bottlenecks data transfer and increases overhead. The result is a solution that

is not suitable for large scale, data intensive workflows due to its poor performance.

The proposed architectures dynamically distribute the DRCs, which are either

executed on the machine of the workflow engine, on the machine that runs the job

which processes/generates bulk data, or on third party computational machines pro-

vided by the Grid, depending on the given scenario. Distribution of DRCs increases

overhead, but this is minimal compared to bulk data transfer time due to the small

size of the DRCs.

The reference implementation described in this chapter implements one of the

proposed DASW architectures based on the P-GRADE workflow system and GEM-

CLA, but can be adopted by any workflow system by the integration of GEMLCA

with the given system. This solution is general and easily extendible for the same

reasons as the similar GEMCLA based DASG reference implementation.
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Chapter 4

Heterogeneous Workflow

Execution Solutions for

Applications (WESA)

A WESA enables applications to execute workflows of different kinds, independently

of what workflow system they were originally designed in. A WESA consists of

a frontend interface, a business logic layer, a workflow repository and a backend

that encapsulates multiple workflow engines. See illustration in figure 4.1. The

application sends its request to the frontend. This request includes a reference to

a workflow that resides in the workflow repository (or in some cases the workflow

descriptor itself) and the workflow inputs and maybe some further parameters for

instance to specify where the workflow should be executed. The business logic layer

defines how the appropriate workflow engine is selected, parametrised and executed.

The selected workflow engine executes the workflow of which output is transferred

back to the application.
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Figure 4.1: WESA concept

4.1 Key WESA properties and require-

ments

Although, this contribution is aiming to define an architecture for applications to

access and execute heterogeneous workflows on the Grid, the same five key prop-

erties of WESAs: (i) generality, (ii) extendibility, (iii) overhead, (iv) latency, and

scalability (v) were taken under consideration like in the case of DASGs described

in section 2.1.

Generality Generality of a WESA architecture is defined by what kind of work-

flows can be executed via it. As it was discussed in section 1.3 there are numerous

workflow systems, that differ in several aspects. Because of the heterogeneity of

those systems, generality of such an architecture is a key property, which affects

which workflow systems can be accessed via it. Although a specific metric for this

property is not defined here, it is aimed to propose architectures that enable the

execution of the broadest possible range of workflows.

Extendibility As well as the evolution of Grid based applications, the evolution of

Grid workflow systems is dynamic. Changes in this field are so rapid it is inevitable
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that systems are incompatible, and sometimes, even different versions of the same

system are incompatible. Therefore, how much effort it takes to connect workflow

systems to such a solution is essential. We refer to this key property as extendibility.

Overhead, Latency, and Scalability Furthermore, the performance related

properties: Overhead, latency, and scalability are also important, since most sci-

entific experiments represented and executed as Grid workflows are either or both

data and computation intensive, where execution time is substantial.

4.2 WESA architecture definition

To study possible approaches and identify optimal solutions, WESAs are investi-

gated from four aspects: structure, resources, data flow, and interface. These as-

pects were defined in such way that by combining them it is possible to construct

several architectures. Some of them exploit more, some of them exploit less advan-

tages provided by the underlying Grid technology. Therefore, they provide different

characteristics from the key properties point of view.

Apart from the the fact that DASGs and WESAs differ in several aspects, e.g.

here the mediator provides access to heterogeneous workflow engines rather than

to heterogeneous data resources and the access is provided for an application in

general, not for an application executed on the Grid, many of these aspects are

partially identical to the aspects with the same name in section 2.2. However, as it

will be described in the following description, those differences are significant enough

to construct completely different architectures.

In analogy with previously defined structures, WESA architectures are also based

on the general definitions defined in chapter 2.
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4.2.1 WESA node

Definition 4.1 (WESA nodes and node types)

• An application node represents a running application that needs a workflow

to be executed. In the case of WESAs this application is always executed on

a single machine. Application nodes belong to type A.

• An engine repository node provides the executable code of a workflow engine,

which is always stored locally to the engine repository node. Engine repository

nodes belong to node type RE.

• A workflow repository node provides the workflow description of the workflow

to be executed, which is always stored locally to the workflow repository node.

Workflow repository nodes belong to node type RW .

• An engine execution node receives the executable code of a workflow engine

from an engine repository node and executes it locally. After this point it

represents the running workflow engine. These nodes belong to type E.

• A job node is task that either generates or processes data that is to be ex-

changed with an application node. Job nodes are initiated by workflow engine

nodes and belong to node type J .

• A mediator node contains the WESA frontend and the business logic layer.

It is contacted in order to execute a particular workflow. A mediator node

performs all necessary steps in order to fulfil this request. The mediator is

aware of the machines that can run the engine repository nodes, the engine

execution nodes and it is also aware of the available engines. Mediator nodes

belong to type M .

Note that repository nodes do not necessarily represent running services of a dig-

ital repository, they can represent any entity that is able to provide the executable
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code of a workflow engine in the case of engine repositories or the workflow descrip-

tor in the case of workflow repositories. Let T 1 � tM,RE,RW,Eu be the set of

core WESA node types, T 2 � tA, Ju be the set of external WESA node types, and

T � tA, J,M,RE,RW,Eu be the set of all WESA node types. See illustration on

figure 4.2.
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Figure 4.2: WESA node types

Definition 4.2 (WESA Instance)

Let a WESA instance be a set of |T | � 6 nodes, where each node belongs to a

different node type of tA,M,RE,RW,E, Ju.

Definition 4.3 (Bijection between WESA node types and instances)

Let @i P r1..rs : let Ni :� tAi,Mi, REi, RWi, Ei, Jiu be the ith WESA instance,

where ϕipAq � Ai, ϕipMq � Mi, ϕipREq � REi, ϕipRW q � RWi, ϕipEq � Ei, and

ϕipJq � Ji.

In the case of WESAs there are 6 node type sets NA, NM , NRE, NRW , NE, NJ
and r nodes in each type set. A WESA node matrix of instances and types can be

constructed as illustrated in table 3.1. Furthermore, both
�r
i�1Ni and

�
tPT Nt are

equal to the set of all WESA nodes, N and |N | � 6r.
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Node types

NA NM NRE NRW NE NJ

In
st

an
ce

s N1 A1 M1 RE1 RW1 E1 J1

N2 A2 M2 RE2 RW2 E2 J2

...
...

...
...

...
...

Nr Ar Mr REr RWr Er Jr

Table 4.1: WESA node matrix

4.2.2 WESA Structure

Similarly to DASGs and DASWs, WESA structure layouts are based on two con-

cepts: instance and type layout.

Definition 4.4 (WESA instance layout)

The set of all possible WESA instance layouts is represented by LI and equals to

the set of all possible type layouts on domain T (see definition 2.11).

Definition 4.5 (WESA type layout)

The set of all possible WESA type layouts is represented by LT and equals to the

set of all possible type layouts on domain T (see definition 2.13).

Definition 4.6 (WESA structure layout)

The set of all possible WESA structure layouts is represented by LS and equals to

the set of all possible structure layouts on domain T (see definition 2.15).
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4.2.3 WESA Data flow

Definition 4.7 (WESA data types)

Data between distributed nodes of N can flow in various ways. To identify the

different possibilities, four kinds of data are distinguished:

• bulk data is the data-set that needs to be transferred between pAiq and pJiq;

• engine data is the workflow engine executable itself that needs to be transferred

from pREiq to pEiq;

• workflow data is the workflow descriptor and all further data (fix parameters,

job executables, etc) that need to be transferred from pRWiq to pEiq; and

• control data is the set of information that includes all further data transferred

between the nodes. The latter consists of a small number of requests which are

necessary to exchange in order to enable an application to execute a workflow.

The amount of control data is typically measured in kilobytes, whilst workflow data

is measured in kilo or megabytes (depending on workflow type), engine data in

megabytes (see examples of the size of different engines in table 4.2) and bulk data

in giga- or terabytes. The way bulk data is transferred is critical. In comparison to

this, engine data flow and workflow data flow slightly, control flow barely affect the

overall performance of a particular WESA architecture. Hence, only three kinds of

data flow are considered here: engine data flow, workflow data flow and bulk data

flow.

Definition 4.8 (WESA engine data flow)

Two engine path types are distinguished in the case of WESA, when the engine is

transferred directly pRE,Eq and when it is transferred via the mediator pRE,M,Eq.

Let EP :� tpRE,Eq, pRE,M,Equ be the set of engine path types and let ES �
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Version Additional modules

ASKALON EE2 76.8 - -

GWES 2.1 212.7 11.8

MOTEUR 0.9.9 21.8 14.8

3.2.3 100.7 WS Module, PEGASUS Module 29

WS-PGRADE 3.2 326 10

Workflow 
engine

Minimal 
installation 
size (MB)

Overall size of 
additional 

modules (MB)

Linuxtoolbox, GraphViz

GraphViz, gLiteUI, DIET API, Antlworks

Triana

gLiteUI

Table 4.2: Uncompressed size of example workflow engines and optional modules

tPip, Pipu be the set of engine staging types, where Pip represents pipelined,

while  Pip represents non pipelined engine staging.

Definition 4.9 (WESA workflow data flow)

Two engine path types are distinguished in the case of WESAs, when the engine is

transferred directly pRW,Eq and when it is transferred via the mediator pRW,M,Eq.

Let WP :� tpRW,Eq, pRW,M,Equ be the set of workflow path types and let WS �

tPip, Pipu be the set of engine staging types, where Pip represents pipelined, while

 Pip represents non pipelined workflow staging.

Definition 4.10 (WESA bulk data flow)

Four bulk data path types are distinguished in the case of WESAs, when bulk

data is transferred via directly pA, Jq, via the mediator pA,M, Jq, via the engine

pA,E, Jq, and via both the mediator and the engine pA,M,E, Jq. Let BP :� tpA, Jq,

pA,M, Jq, pA,E, Jq, pA,M,E, Jqu be the set of bulk data path types and let BS �

tPip, Pipu be the set of bulk data staging types, where Pip represents pipelined,

while  Pip represents non pipelined bulk data staging.

Definition 4.11 (WESA data flow types)

Having these, let DF :� EP � ES �WP �WS � BP � BS be the set of WESA data

flow types.
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4.2.4 WESA resources

Definition 4.12 (WESA resource layout)

WESA resource layout defines what kind of resources host the WESA nodes. Based

on definition 2.33 and 4.1, mediator nodes have to provide custom services which

are not available on computational or storage machines. Therefore, mediator nodes

always have to be hosted on dedicated or on external machines similarly to all

previous cases. Engine and workflow repository nodes have to provide the executable

engines and workflows. Similarly to DRC repositories, computational machines

cannot be utilized for this purpose, but this functionality can be provided by the

services of storage machines, by custom services hosted on dedicated machines,

or by services running on external machines. Engine execution nodes cannot run

on storage resources, but they can run on computational, dedicated, or external

machines. Having these, the set of all possible WESA resource layouts is defined

over node type set T as:

RL :� tξ P LRpT q}ξM P tDeM,ExMu ^ ξRE � CoM ^ ξRW � CoM^

^ ξE � StM ^ ξA, ξJ � ExMu
(4.1)

4.2.5 WESA interface

Definition 4.13 (WESA frontend interface)

Frontend interface (IF ) is the interface through which applications can utilize the

provided functionality of a WESA. Let IF :� tGen, Speu be the set of application

interface types. (See definition 2.36.)

Representation of IF (see definition 2.35) is not considered as part of a WESA ar-

chitecture, because mappings between representations are straightforward to realise.

However, generality is vital, since it determines the set of workflow engine requests
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that can be performed via a WESA. Hence,

Definition 4.14 (WESA backend interface)

Backend interface (IB) defines how engines can be accessed. Let IB :� tCLI,APIu

be the set of backend interface types.

Since engine interfaces are designed to interact with a particular workflow engine,

engine interface is always specific to a particular workflow engine. However, in

terms of engine interface, representation is vital, since it determines how an existing

WESA can be extended with the support of further engines. Most workflow systems

provide either or both API1 and CLI representations to interact with their workflow

engines.

Definition 4.15 (Set of possible WESA interfaces)

The set of possible interfaces can be defined as IN :� IF � IB.

4.2.6 WESA architecture and solution

Definition 4.16 (Set of possible WESA architectures)

The set of possible WESA architectures is constructed as:

AR :� tpph, δq, ξ, pqe, se, qw, sw, qb, sbq, pif , ibqq P LS � LR �DF � IN }

qe, qw, and qb are acyclic path layouts based on instance layout h^ piq

^@pt1, t2q P h : ξt1 � ξt2u. piiq
(4.2)

Note that conditions are needed for the same reasons as described in the case of

DASG architectures in definition 2.40.

1This usually means web service interface.
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Definition 4.17 (WESA solution)

A WESA solution is a set of WESA architectures. In words, it is a not empty subset

of AR.

4.3 WESA architecture analysis

4.3.1 WESA generality and extendibility

Generality of a WESA solution depends on the frontend interface. By applying a

specific frontend interface the usage of a solution can be simplified, but this also

restricts the provided functionality and the set of workflows that can be executed

via a particular WESA solution. In order to enable the execution of the widest

possible set of workflows, frontend interfaces should not restrict the data type and

number of input and output parameters that can be specified for a workflow.

Extendibility of a WESA solution is determined by how easy it is to extend

the set of available workflow engines, which is defined by the backend interface

of a WESA solution. CLI backend interface is recommended, since it enables the

straightforward extension of the set of supported workflow engines without requiring

programming skills. Furthermore, the mediator knows about the available engine

repositories and the available engines. If the system is extended with a new workflow

engine, the mediator has to be updated. In the case of instance layouts that have

pA,Mq coupled, each application has a copy of the mediator, in which case each

application has to be updated with the new mediator version. However, if the

mediator is not coupled with the application and runs as a centralised service, once

that service is updated, all applications can use the new workflow engine. Therefore,

it is recommended to have a centralised mediator which is not coupled with the

application and is hosted on a dedicated machine.
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4.3.2 WESA performance

The aim of the performance analysis is to compare overhead, latency, and scala-

bility of different WESA architectures and show how these values vary with bulk

data volume, engine size, workflow size, and number of simultaneous requests. The

performance comparison is based on WESA scenarios where r P N� different appli-

cations hosted by different machines initiate the execution of r different workflows.

The first job of each workflow is a job that receives data from the application that

initiated the execution. These scenarios are represented as the elements of the set

defined below.

Definition 4.18 (WESA scenarios)

Let AS :� tpph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P

P LS � LR � EP �WP � BP � R�0 � pN�q7}

δA � r^ piq

^qe, qw and qb are acyclic path layouts based on h ^ piiq

^@pt1, t2q P h : ξt1 � ξt2^ piiiq

^ξE � CoM ñ we � 0^ pivq

^@t P T ztAu : r � 0 mod δt^ pvq

^le � 0 mod se ^ lw � 0 mod sw ^ lb � 0 mod sbu. pviq

(4.3)

be the set of analytical WESA scenarios. Let a � pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le,

lw, lb, rq P AS be an analytical scenario. Condition piq ensures that none of the

application nodes are coupled, all are hosted on different machines. a determines

structure layout, resource layout, and data flow of a DASG architecture, this is

ensured by conditions piiq and piiiq.

By ph, δq and ξ a explicitly defines a WESA structure and a resource layout. In
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terms of data flow, a defines engine, workflow and bulk data path layout explicitly

by qe, qw and qb. Engine, workflow and bulk data size are represented by le, lw and

lb, Engine, workflow and bulk data slice size by se, sw and sb. These implicitly define

engine, workflow and bulk data staging as ke :� le
se

, kw :� lw
sw

and kb :� lb
sb

, where

staging is non pipelined if slice number equals to 1 and pipelined otherwise. Note

that condition pviq ensures that le is dividable by se, lw is dividable by sw, and lb

is dividable by sb. we represents the delay resulted by the engine waiting in a job

queue before it is scheduled for execution when it is executed on a computational

machine. This number is constant and it also can be 0 representing cases where job

queues are empty or there are no queues at all. Condition pivq ensures that we is

always 0 if the engine is not executed on a computational machine.

Furthermore, condition pvq ensures that all nodes of a given node type other than

A are coupled with equal number of nodes of that particular type. This ensures that

nodes of each node type can be equally distributed between the available machines.

Definition 4.19 (WESA scenario execution)

Since control flow is excluded from the model, the analysis is based on engine,

workflow, and bulk data flow. @i P r1..rs : let ei P B byte array represent the engine

that executes workflow wi (see below) and to be transferred from REi to Ei, wi P B

byte array represent the workflow that is to be invoked by application Ai and to be

transferred from RWi to Ei, and bi P B byte array represent the bulk data that is

to be transferred from Ai to Ji. A WESA scenario is executed in four steps:

1. engine transfer: @i P r1..rs: ei is transferred from REi to Ei via path ψipqeq

simultaneously,

2. workflow transfer: @i P r1..rs: wi is transferred from RWi to Ei via path ψipqwq

simultaneously,

122



4.3. WESA architecture analysis WESA

3. engine queuing: all engines are waiting we amount of time to be scheduled for

execution,

4. bulk data transfer: @i P r1..rs: the execution of the ith workflow engine starts

and bi is transferred from Ai to Ji via path ψipqbq simultaneously.

Engine flow can be represented as a simultaneous transfer (see definition 2.48), since

conditions of definition 4.18 ensure that pph, δq, qe, se, le, rq P Dst. Similarly, workflow

and bulk data flow also can be represented as: pph, δq, qw, sw, lw, rq, pph, δq, qb, sb, lb, rq

P Dst. Having these, the performance functions of a scenario can be defined as

follows.

Definition 4.20 (Performance of WESA engine and workflow transfer)

Let a :� pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P AS, and Γe, Γw : AS Ñ R�0
be functions for determining respectively engine and workflow transfer time, where:

Γepaq :�τqpph, δq, qe, se, le, rq Γwpaq :�τqpph, δq, qw, sw, lw, rq. (4.4)

Note that definition 2.49 is applied to identify Γepaq and Γwpaq.

Definition 4.21 (Performance of WESA bulk data transfer)

Let a :� pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P AS, and Γb,∆b,Θb : AS Ñ

R�0 be functions for determining respectively bulk data transfer time, overhead, and

latency as:

Γbpaq :�τqpph, δq, qb, sb, lb, rq, (4.5)

∆bpaq :�Γbpaq � χppA, Jq R hqkbsbK, and (4.6)

Θbpaq :�εqpph, δq, qb, sb, lb, rq. (4.7)

Note that definition 2.49 is applied to determine Γbpaq and Θbpaq. @i P r1..rs :

transferring bi directly between Ai and Ji takes τepλpbiq, pAi, Jiqq time. This value is
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0 if pA, Jq P h and kbsbK otherwise. Overhead on bulk data transfer of a particular

scenario is considered as this time subtracted from bulk data transfer time.

Definition 4.22 (Overall WESA performance functions)

Let Γ,∆,Θ : AS Ñ R�0 be functions for determining respectively execution time,

overhead, and latency of a scenario, where:

Γpaq :�wd � Γepaq � Γwpaq � Γbpaq, (4.8)

∆paq :�wd � Γepaq � Γwpaq �∆bpaq, and (4.9)

Θpaq :�wd � Γepaq � Γwpaq �Θbpaq. (4.10)

Because engine and workflow transfer always has to be performed before workflow

execution, engine and workflow transfer times are always added to the overall latency

and overhead of a scenario.

Definition 4.23 (Scalability of WESA data transfer)

Performance functions of any WESW scenario are characterised based on growth

rates in function of lw, le, lb, and r. It is represented by the Bachmann–Landau (Big

O) notation in analogy with all previous contributions.

4.3.3 WESA bulk data flow

Based definition 2.54 and the four bulk data path layout types (pA, Jq, pA,M, Jq,

pA,E, Jq, pA,M,E, Jq) defined in definition 4.10, 18 different bulk data flow cases

can be identified. These are listed in table 4.3. Restrictions on type layout implied

by instance layout are also illustrated in the table. Based on definition 2.55, bulk

data flow cases can be divided into 5 different groups, where cases of each group

are equivalent, in terms that they have the same performance characteristics. These

groups and representative (which are marked with asterisks) bulk data flow cases

(see definition 2.54) are also illustrated in the table 4.3.
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Case Bulk data path Instance layout Restrictions Group

BC1 * pA, Jq pA, Jq P h δJ � r

BG1

BC2 pA,M, Jq pA,Mq, pM,Jq P h δM , δJ � r

BC3 pA,E, Jq pA,Eq, pE, Jq P h δJ , δE � r

BC4 pA,M,E, Jq pA,Mq, pM,Eq, pE, Jq P h δJ , δM , δE � r

BC5 * pA, Jq pA, Jq R h

BG2

BC6 pA,M, Jq pA,Mq P h^ pM,Jq R h δM � r

BC7 pA,M, Jq pA,Mq R h^ pM,Jq P h δM � δJ

BC8 pA,E, Jq pA,Eq P h^ pE, Jq R h δE � r

BC9 pA,E, Jq pA,Eq R h^ pE, Jq P h δE � δJ

BC10 pA,M,E, Jq pA,Mq R h^ pM,Eq, pE, Jq P h δJ � δM � δE

BC11 pA,M,E, Jq pM,Eq R h^ pE, Jq, pA,Mq P h
δM � r

δJ � δE

BC12 pA,M,E, Jq pE, Jq R h^ pM,Eq, pA,Mq P h δM , δE � r

BC13 * pA,M, Jq pA,Mq, pM,Jq R h
BG3

BC14 pA,M,E, Jq pM,Eq, pA,Mq R h^ pE, Jq P h δJ � δE

BC15 pA,M,E, Jq pE, Jq, pA,Mq R h^ pM,Eq P h δM � δE BG3 ^ BG4

BC16 * pA,E, Jq pA,Eq, pE, Jq R h
BG4

BC17 pA,M,E, Jq pM,Eq, pE, Jq R h^ pA,Mq P h δM � r

BC18 * pA,M,E, Jq pA,Mq, pE, Jq, pM,Eq R h BG5

Table 4.3: WESA bulk data flow cases

Group Transfer time (Γbpaq)

BG1 0

BG2
rkbsbK

mintr,δJu

BG3
rsbK

mintr,δM u
�

rkbsbK
mintr,δM ,δJu

BG4
rsbK

mintr,δEu
�

rkbsbK
mintr,δE ,δJu

BG5
rsbK

mintr,δM u
�

rsbK
mintr,δM ,δEu

�
rsbK

mintr,δE ,δJu
�

rpkb�1qsbK
mintr,δM ,δE ,δJu

Table 4.4: Time of WESA bulk data transfer

Transfer time, overhead, and latency values can be found in table 4.4, 4.5, and 4.6

respectively, where the formulas are based on the definition of Γbpaq, ∆bpaq, and

Θbpaq. Based on ∆bpaq and Θbpaq, the architectural conditions which determine

scalability in terms of overhead and latency are identified for each group, these can

be found in table 4.5, and 4.6. In particular, cases of group BG1 always provide 0

overhead and latency on bulk data staging, cases of group BG2 always provide 0
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Group Overhead (∆bpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 E E E E E

BG2
rkbsbK

mintr,δJu
� kbsbK δJ ¯ r E E E δJ   r

BG3

rsbK
mintr,δM u �

rkbsbK
mintr,δM ,δJu

�

�kbsbK
E

kb ¡ 1

δJ ¯ r

δM ¯ r

kb � 1

δJ ¯ r

δM ¯ r

E δJ   r _ δM   r

BG4

rsbK
mintr,δEu

� rkbsbK
mintr,δE ,δJu

�

�kbsbK
E

kb ¡ 1

δJ ¯ r

δE ¯ r

kb � 1

δJ ¯ r

δE ¯ r

E δJ   r _ δE   r

BG5

rsbK
mintr,δM u �

rsbK
mintr,δM ,δEu

�

� rsbK
mintr,δE ,δJu

�

� rpkb�1qsbK
mintr,δM ,δE ,δJu

� kbsbK

E

kb ¡ 1

δE ¯ r

δM ¯ r

δJ ¯ r

kb � 1

δE ¯ r

δM ¯ r

δJ ¯ r

E δE   r _ δM   r _ δJ   r

Table 4.5: Overhead and scalability of WESA bulk data staging

Group Latency (Θbpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2 0 @ E E E E

BG3
rsbK

mintr,δM u E
kb ¡ 1

δM ¯ r

kb � 1

δM ¯ r

kb ¡ 1

δM   r

kb � 1

δM   r

BG4
rsbK

mintr,δEu
E

kb ¡ 1

δE ¯ r

kb � 1

δE ¯ r

kb ¡ 1

δE   r

kb � 1

δE   r

BG5

rsbK
mintr,δM u�

� rsbK
mintr,δM ,δEu

E

kb ¡ 1

δE ¯ r

δM ¯ r

kb � 1

δE ¯ r

δM ¯ r

kb ¡ 1

δE   r _ δM   r

kb � 1

δE   r _ δM   r

Table 4.6: Latency and scalability of WESA bulk data staging

latency, but overhead is 0 if and only if δJ ¯ r, otherwise overhead is linear with

both lb and r. Cases of group BG2, BG3, BG4, and BG5 never provide 0 latency

nor overhead and the same rules apply as in the case of DASG bulk data transfer

groups BG2 and BG3 described in section 2.3.3.
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4.3.4 WESA engine and workflow flow

Based definition 2.54 the two engine path layout types (pRE,Eq, pRE,M,Eq) and

the two workflow path layout types (pRW,Eq, pRW,M,Eq), 6 different engine data

flow cases and 6 different workflow data flow case can be identified. These are listed

in table 4.7 and 4.9. Representative cases (see definition 2.54) are marked with

asterisks. Restrictions implied by instance layout are also illustrated in the table.

Case Engine path Instance layout Restrictions Group

EC1 * pRE,Eq pRE,Eq P h δRE � δE
EG1

EC2 pRE,M,Eq pRE,Mq, pM,Eq P h δM � δRE � δE

EC3 * pRE,Eq pRE,Eq R h

EG2EC4 pRE,M,Eq pRE,Mq P h^ pM,Eq R h δM � δRE

EC5 pRE,M,Eq pRE,Mq R h^ pM,Eq P h δE � δM

EC6 * pRE,M,Eq pRE,Mq, pM,Eq R h EG3

Table 4.7: WESA engine data flow cases

Group Transfer time pΓepaqq Op0q Op1q Opleq Oprq Oprleq

EG1 0 @ E E E E

EG2 rkeseK
mintr,δE ,δREu

E E
δRE ¯ r

δE ¯ r
E δRE   r _ δE   r

EG3

rseK
mintr,δRE ,δM u�

� rseK
mintr,δM ,δEu

�

� rpke�1qsdK
mintr,δM ,δRE ,δEu

E E

δM ¯ r

δE ¯ r

δRE ¯ r

E δM   r _ δRE   r _ δE   r

Table 4.8: Transfer time and scalability of WESA engine transfer

In the case of both engine and workflow transfer, the 6 cases can be divided into

3 groups. Performance properties are the same within the each group. Transfer

time values are determined based on the definition of Γepaq, Γwpaq and included in

table 4.8 and 4.10.

Cases of group EG1 and WG1 require, that all nodes through which the en-

gines/workflows are transferred are hosted on the same machine, implying that

transfer time is 0. In cases of group EG2, EG3, WG2, and WG3, the following rules
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Case Workflow path Instance layout Restrictions Group

WC1 * pRW,Eq pRW,Eq P h δRW � δE
WG1

WC2 pRW,M,Eq pRW,Mq, pM,Eq P h δM � δRW � δE

WC3 * pRW,Eq pRW,Eq R h

WG2WC4 pRW,M,Eq pRW,Mq P h^ pM,Eq R h δM � δRW

WC5 pRW,M,Eq pRW,Mq R h^ pM,Eq P h δE � δM

WC6 * pRW,M,Eq pRW,Mq, pM,Eq R h WG3

Table 4.9: WESA workflow data flow cases

Group Transfer time Γwpaqq Op0q Op1q Oplwq Oprq Oprlwq

WG1 0 @ E E E E

WG2 rkwswK
mintr,δE ,δRW u E E

δRW ¯ r

δE ¯ r
E δRW   r _ δE   r

WG3

rswK
mintr,δRW ,δM u�

� rswK
mintr,δM ,δEu

�

� rpkw�1qswK
mintr,δM ,δRW ,δEu

E E

δM ¯ r

δE ¯ r

δRW ¯ r

E δM   r _ δRW   r _ δE   r

Table 4.10: Transfer time and scalability of WESA workflow transfer

apply. As long as r is not greater than any of the δ values in the transfer time for-

mula of a particular group, transfer time is independent of r. In this case scalability

is Opleq in the case of engine transfer and Oplwq in the case of workflow transfer. If r

is greater than any of the δ values in the transfer time formula of a particular group,

than transfer time is linear with r. In this case scalability is Oprleq in the case of

engine transfer and Oprlwq in the case of workflow transfer. Scalability values are

also shown in table 4.8 and 4.10.

4.3.5 Recommended WESA structure layout,

data flow, and resource layout

In any of the 18 bulk data transfer cases, it is possible to realise scalable bulk data

transfer where both overhead and latency on bulk data transfer are independent of

128



4.3. WESA architecture analysis WESA

r and lb. In terms of type layout, while cases BC1 and BC5 only require that δJ ¯ r,

cases BC2, BC6, BC7, and BC13 require that δM , δJ ¯ r, cases BC3, BC8, BC9,

BC16 require that δE, δJ ¯ r, while cases BC4, BC10, BC11, BC12, BC14, BC15,

BC17, and BC18 require that all δJ , δM , δE ¯ r. In terms of bulk data staging BC13

- BC18 require pipelined staging (kb ¡ 1) as well.

In all of the 6 engine and 6 workflow transfer cases, transfer time is indepen-

dent of lb and in any of the cases it is possible to realise scalable transfer where

engine/workflow transfer time is independent of r. EC1 and EC2 always provide

scalable engine, WC1 and WC2 always provide scalable workflow transfer where

transfer time is independent of r. In terms of type layout, EC3 provides scalable

engine transfer if δE ¯ r and δRE ¯ r, WC3 provides scalable workflow transfer if

δE ¯ r and δRW ¯ r, while EC4, EC5, EC6, WC4, WC5, and WC6 also require

that δM ¯ r. The selection of proposed structure layout, resource layout and data

flow combinations is based on the following recommendations:

R1 - Mediator Similarly to DASGs and DASWs and based section 4.3.1, the

mediator should be established as a centralised service hosted on a dedicated machine

(ξM � DeM). Based on this and on definition 2.32, the larger the number of utilised

dedicated machines is, the more cost demanding it is to set up and maintain a

WESA. For this reason, it is amied to minimise δM (let δM � 1). This has several

implications. Data flow cases that require that δM ¯ r are not recommended. In

each scenario δA � r is always true. Therefore, data flow cases which require to

have pA,Mq coupled are not recommended. Moreover, since bulk data amount is

multiple orders of magnitude greater than engine or workflow size, it is always aimed

to minimise overhead and latency on bulk data transfer and make it independent of

the number of simultaneous requests and bulk data amount. This means that data

flow cases which are transferring bulk data via the mediator are not recommended
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Recommendation WESA data flow case

R1 BC2, BC4, BC6, BC7, BC10-BC15, BC17, BC18, EC2, EC5, WC2, WC5

R2 BC1-BC4, BC8

R3 EC5, EC6, WC5, WC6

Table 4.11: Elimination of WESA data flow cases based on different recommenda-

tions.

and δJ ¯ r should always be provided. This also means that cases that require

pM,Jq P h are not recommended. Furthermore, although it is not included in

the model, in order to distribute the computational load on the mediator machine,

instance layouts having pM,Eq coupled are not recommended either.

R2 - Repositories and engine execution In terms of instance layout, cases

that require pA,Eq P h or pA, Jq P h cannot be recommended, since it cannot

be guaranteed in general that software and network requirements of jobs/workflow

engines can be fulfilled. This means that ξE � ExM . If engines are executed on

computational machines (ξE � CoM), then cases that require pRW,Eq or pRE,Eq

coupled are not recommended, since according to definition 4.12: ξRE, ξRW � CoM .

However, if engines are executed on dedicated machines (ξE � DeM), then cases

that require pRW,Eq or pRE,Eq coupled can be recommended, since although the

number of dedicated machines should be minimised, in special cases ξE � DeM can

be recommended if this way better performance can be achieved. (See case 1/b-i in

the followings.)

R3 - Engine and workflow transfer In cases where pRE,Mq R h, engines

should not be transferred via the mediator, because this increases overhead and if

δRE ¡ 1 the mediator also bottlenecks data transfer in case of multiple simultaneous

requests. The same is true for workflows if pRW,Mq R h. Therefore, if pRE,Mq R h,

then only engine path layout tRE,Eu is recommended, and if pRW,Mq R h, then
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only workflow path layout tRW,Eu is recommended.

Proposed

Aspects
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δ
M

δ
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δ
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δ
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Bulk data 
staging

Pipelined (k
b
=1) Xa Xa Xa Xa Xa Xa Xa

Not pipelined (k
b
>1) Xb Xb Xb Xb Xb Xb Xb

Pipelined (kd>1)
Not pipelined (k

d
=1)

Workflow 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Resource 
layout

Table 4.12: Proposed WESA structures, data flows, and resource layouts, where sign

X within instance layout shows which nodes are coupled in a particular case. Sign

X within data flow means that only the correlated architectural approach can be

implemented, sign O indicates that it is irrelevant which approach is chosen, while

sign O* means the same as O, but it only applies if instance layout defines node

types E and J are coupled. Sign Xa and Xb mean that it is possible to realise both

pipelined (Xa) and non pipelined (Xb) bulk data staging by the given structure, but

this affects the performance characteristics as illustrated in table 4.14.

Based on these recommendations, data flow cases listed in table 4.11 are ex-

cluded. Hence, data transfer cases BC5, BC9, BC16, engine transfer cases EC1,

EC3, EC4, and workflow transfer cases WC1, WC3, WC4 can be recommended.

Table 4.12 illustrates all combinations of these data flow cases and structure layouts

that can implement them. Different data flow types can be recommended under
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Figure 4.3: Combinations of recommended WESA data flow cases, where black lines

represent which node types are coupled, dashed lines represent optional couplings,

green arrows represent bulk data path layouts, blue arrows represent engine path

layouts, and orange arrows represent workflow path layouts.

different circumstances. These are classified based on the following 3 aspects:

1. Workflow jobs

• (a) If workflow jobs are executed locally to the workflow engine (pE, Jq P h),

then only BC5 or BC9 can be recommended and ξE � CoM , BC16 cannot be

applied, since it explicitly defines that pE, Jq R h. In this case it is not rec-

ommended to use workflow engines installed on dedicated machines, since this

may bottleneck bulk data transfer in the case of large number of simultaneous

requests. Hence, in this case EC1 is not recommended.

• (b) If workflow jobs are executed remotely to the workflow engine (pE, Jq R h),

then both BC5 and BC16 can be recommended.

(b-i) If this is the case and bulk data can be transferred directly (i.e

using GridFTP or other data transfer protocol) to/from the job then it is rec-
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ommended to use previously installed workflow engines running on dedicated

machines, since this way engine transfer does not increase overhead and la-

tency and the engine will not bottleneck bulk data transfer either. In this case

BC5 combined with EC1 is recommended and ξE � DeM .

(b-ii) If data can be transferred to the job only via the workflow en-

gine then only BC16 can be applied and ξE � CoM . For the same reason

as described in the case of locally executed jobs (see case 1/a) EC1 is not

recommended.

2. Workflow engines

• (a) If workflow engines are relatively small (up to a few megabytes), then

pM,REq P h can be recommended which means that both EC3 and EC4 can

be applied and ξRE � DeM , but

• (b) if they are relatively large (hundreds of megabytes), then pM,REq R h is

recommended with ξRE � StM , since it allows to utilize multiple distributed

engine repositories to distribute the load on engine transfer. In this case only

EC3 can be applied.

However, in special cases (see case 1/b-i) it is recommended to use workflow engines

hosted on dedicated machines where EC1 is recommended independently of engine

size. In this case ξRE � DeM .

3. Workflow descriptors

• (a) If workflows are not provided by the application (pA,RW q R h) and

(a-i) workflow descriptors are relatively small (up to a few megabytes),

then the workflow repository can be coupled with the mediator (pM,RW q P h),
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in which case both WC3 and WC4 can be recommended where ξRW � DeM .

However, if

(a-ii) workflow descriptors are relatively large (hundreds of megabytes),

then pM,RW q R h should be applied, since, like in the case of engines, this al-

lows to utilize multiple storage machines as workflow repositories to distribute

the load on workflow transfer. In this case the workflow repository can be

hosted on a storage machine (ξRW � StM) or in the special case where the

engine is hosted on a dedicated machine (see case 1/b-i), then WC1 can be

recommended in which case ξRW � DeM and pE,RW q P h.

• (b) Cases where workflows are provided by the application are represented by

pA,RW q P h. In this case ξRW � ExM . In the case of the latter two (a-ii

and b) workflow transfer path type WC3 can be recommended, since WC5

transfers the workflows via the mediator which may bottleneck the transfer.

However, in special cases where engine repository and execution are coupled and

hosted on the same DeM , then RW nodes can also be hosted on a these machines

(pRE,Eq, pRW,Eq P h, ξRW � ReM) to avoid latency and overhead on workflow

transfer. In this case WC1 is recommended.

Case Proposed combinations

1/a, 2/a, 3/a-i PC7

1/a, 2/a, 3/a-ii PC2

1/a, 2/a, 3/b PC6

1/a, 2/b, 3/a-i PC3

1/a, 2/b, 3/a-ii PC1, PC4

1/a, 2/b, 3/b PC5

1/b-i, 2/a, 3/a-i PC16, PC18

1/b-i, 2/a, 3/a-ii PC15, PC18

1/b-i, 2/a, 3/b PC17

Case Proposed combinations

1/b-i, 2/b, 3/a-i PC16, PC18

1/b-i, 2/b, 3/a-ii PC15, PC18

1/b-i, 2/b, 3/b PC17

1/b-ii, 2/a, 3/a-i PC14

1/b-ii, 2/a, 3/a-ii PC9

1/b-ii, 2/a, 3/b PC13

1/b-ii, 2/b, 3/a-i PC10

1/b-ii, 2/b, 3/a-ii PC8, PC11

1/b-ii, 2/b, 3/b PC12

Table 4.13: Proposed WESA structure and data flow combinations in different cases

See table 4.13, that summarizes which proposed structure and data flow combi-
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nations are recommended in the different cases. Table 4.14 illustrates performance

characteristics of each proposed combination. Based on definition 2.54, BC5 is the

representative of the group that also includes BC9. Note that, since BC5 and BC9

are equivalent (see definition 2.55), their performance characteristics are the same.

This also applies for EC3 and EC4; and WC3 and WC4. Combinations of represen-

tative cases of are shown in figure 4.3.

Proposed Overhead / Latency Overhead / Latency scalability

PC1, PC4 we �
rleK

mintr,δREu
� rlwK

mintr,δRW u O prle � rlw � 1q

PC2 we � rleK �
rlwK

mintr,δRW u O prle � rlw � 1q

PC3 we �
rleK

mintr,δREu
� rlwK O prle � rlw � 1q

PC5 we �
rleK

mintr,δREu
� lwK O prle � lw � 1q

PC6 we � rleK � lwK O prle � lw � 1q

PC7 we � rleK � rlwK O prle � rlw � 1q

PC8a, PC11a we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � sbK O prle � rlw � 1q

PC8b, PC11b we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � lbK O prle � rlw � lb � 1q

PC9a we � rleK �
rlwK

mintr,δRW u � sbK O prle � rlw � 1q

PC9b we � rleK �
rlwK

mintr,δRW u � lbK O prle � rlw � lb � 1q

PC10a we �
rleK

mintr,δREu
� rlwK � sbK O prle � rlw � 1q

PC10b we �
rleK

mintr,δREu
� rlwK � lbK O prle � rlw � lb � 1q

PC12a we �
rleK

mintr,δREu
� lwK � sbK O prle � lw � 1q

PC12b we �
rleK

mintr,δREu
� lwK � lbK O prle � lw � lb � 1q

PC13a we � rleK � lwK � sbK O prle � lw � 1q

PC13b we � rleK � lwK � lbK O prle � lw � lb � 1q

PC14a we � rleK � rlwK � sbK O prle � rlw � 1q

PC14b we � rleK � rlwK � lbK O prle � rlw � lb � 1q

PC15 rlwK
mintr,δRW u O prlwq

PC16 rlwK O prlwq

PC17 lwK O plwq

PC18 0 O p0q

Table 4.14: Performance characteristics of proposed WESA structures and data

flows, where cases marked with a and b are representing pipelined (a) and non

pipelined (b) bulk data staging. Bulk data staging does not affect the performance

properties of cases which are not marked.
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4.4 Existing and proposed WESA solu-

tions

4.4.1 Existing WESA solution

Although, there are no general coarse grained solutions for heterogeneous workflow

engine execution, a solution for runtime workflow interoperability was developed

within the SIMDAT project [111, 73, 112, 113]. This solution is based on the Gria

service [114] and was designed to enable a few particular workflows of different

kinds to invoke each other, but theoretically this approach also can be used as a

general solution for invoking heterogeneous workflow engines. The solution wraps

the functionality of different workflow engines and makes them accessible via a

Web/Grid service based general frontend. This approach uses a backend API for

wrapping the engines.
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Figure 4.4: Combinations of possible Gria based structures and data flow cases,

where color coded arrows and lines represent the same concepts as in the case of

figure 4.3.

The Gria Service provides access to previously installed workflow engines hosted

by dedicated machines. Hence, there is no engine repository, engines are executed

where they reside, meaning that pRE,Eq P h. Workflows are provided by the appli-

cation that invokes the service, workflow repository is not provided. This means that

pA,RW q P h. The application, the mediator, and engine are not coupled. Based on
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O O O X X X O O O O O O O O O O O O O O O O O O

R
es

o
u

rc
e Mediator DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM DeM

Engine Repository DeM DeM DeM DeM DeM DeM StM DeM StM StM StM DeM DeM StM DeM StM StM StM DeM DeM DeM DeM DeM DeM
Workflow Repository ExM ExM ExM ExM ExM ExM StM StM DeM StM ExM ExM DeM StM StM DeM StM ExM ExM DeM StM DeM ExM DeM

Engine execution DeM DeM DeM DeM DeM DeM CoM CoM CoM CoM CoM CoM CoM CoM CoM CoM CoM CoM CoM CoM DeM DeM DeM DeM

In
te

rf
a

ce Backend
CLI X X X X X X X X X X X X X X X X X X
API X X X X X X

General X X X X X X X X X X X X X X X X X X X X X X X X
Specific

E
xi

st
in

g 
1      

 
(G

R
IA

 v
1

)

E
xi

st
in

g 
2  

 
(G

R
IA

 v
2

a
,v

2
b

)

E
xi

st
in

g 
3       

 
(G

R
IA

 v
3

)

E
xi

st
in

g 
4      

 
(G

R
IA

 v
4

)

E
xi

st
in

g 
5   

 
(G

R
IA

 v
5

a
,v

5
b

)

E
xi

st
in

g 
6       

 
(G

R
IA

 v
6

)

P
ro

po
se

d 
1

 
(P

C
1

)

P
ro

po
se

d 
2

 
(P

C
2

)

P
ro

po
se

d 
3

 
(P

C
3

)

P
ro

po
se

d 
4

 
(P

C
4

)

P
ro

po
se

d 
5

 
(P

C
5

)

P
ro

po
se

d 
6

 
(P

C
6

)

P
ro

po
se

d
 7

 
(P

C
7

)

P
ro

po
se

d 
8

 
(P

C
8

a
,P

C
8

b
)

P
ro

po
se

d 
9

 
(P

C
9

a
,P

C
9

b
)

P
ro

po
se

d
 1

0 
(P

C
1

0
a,

P
C

1
0b

)

P
ro

po
se

d 
11

 
(P

C
11

a
,P

C
11

b)

P
ro

po
se

d 
12

 
(P

C
1

2
a,

P
C

1
2b

)

P
ro

po
se

d
 1

3 
(P

C
1

3
a,

P
C

1
3b

)

P
ro

po
se

d 
14

 
(P

C
1

4
a,

P
C

1
4b

)

P
ro

po
se

d 
15

 
(P

C
1

5
)

P
ro

po
se

d 
1

6 
(P

C
1

6
)

P
ro

po
se

d 
17

 
(P

C
1

7
)

P
ro

po
se

d 
18

 
(P

C
1

8
)

Instance 
layout

Type 
layout

δ
M

δ
RE

δRW

δ
E

Bulk data 
path

Bulk data 
staging

Pipelined (k
b
=1) Xa Xa Xa Xa Xa Xa Xa Xa Xa

Not pipelined (k
b
>1) Xb Xb Xb Xb Xb Xb Xb Xb Xb

Engine 
path

Engine 
staging

Pipelined (k
d
>1)

Not pipelined (kd=1)

Workflow 
path

Workflow 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Resource 
layout

Frontend

Table 4.15: Existing and proposed WESA architectures, where signs have the same

purpose as in the case of table 4.12.

these the instance layout of this solution can be defined as h � tpRE,Eq, pA,RW qu.

By default, the Gria Service is hosted on a single dedicated machine (δM � 1,

ξM � DeM), access is provided to multiple previously installed workflow engines

hosted on dedicated machines (δRE, δE ¯ 1; ξRE, ξE � DeM). Finally, since work-

flows are provided by the applications, δRW � r and ξRW � ExM .

Engine path is pRE,Eq in which case engine staging is irrelevant (see lemma A.3).

Actually, since pRE,Eq P h there is no physical engine transfer. Workflows by

default are passed to the workflow engine via the mediator tpRW,Mq, pM,Equ,

but if the workflow engine supports to receive workflows from third parties, it can

be transferred directly from the application tpA,Equ. In the case of the former,
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Architecture Overhead
Overhead

scalability
Latency

Latency

scalability

Gria v1 rlwK
mintr,δEu

O prlwq
rlwK

mintr,δEu
O prlwq

Gria v2a

rlwK
mintr,δEu

� rsbK
mintr,δEu

�

� rlbK
mintr,δEu

� lbK
O prlw � rlbq

rlwK
mintr,δEu

� rsbK
mintr,δEu

O prlw � rq

Gria v2b
rlwK

mintr,δEu
� 2 rlbK

mintr,δEu
�

�lbK
O prlw � rlbq

rlwK
mintr,δEu

� rlbK
mintr,δEu

O prlw � rlbq

Gria v3

rlwK
mintr,δEu

� 2rlbK�

� rlbK
mintr,δEu

� lbK
O prlw � rlbq

rlwK
mintr,δEu

� 2rlbK O prlw � rlbq

Gria v4 2rlwK O prlwq 2rlwK O prlwq

Gria v5a
2rlwK �

rsbK
mintr,δEu

�

� rlbK
mintr,δEu

� lbK
O prlw � rlbq 2rlwK �

rsbK
mintr,δEu

O prlw � rq

Gria v5b
2rlwK � 2 rlbK

mintr,δEu
�

�lbK
O prlw � rlbq 2rlwK �

rlbK
mintr,δEu

O prlw � rlbq

Gria v6
2rlwK � 2rlbK�

� rlbK
mintr,δEu

� lbK
O prlw � rlbq 2rlwK � 2rlbK O prlw � rlbq

Table 4.16: Performance characteristics of the Gria Service based architectures in

the case where pE, Jq R h. Cases marked with a and b are representing the same as

in table 4.14.

Architecture Overhead
Overhead

scalability
Latency

Latency

scalability

Gria v1, v2
rlwK

mintr,δEu
� rlbK

mintr,δEu
�

�lbK
O prlw � rlbq

rlwK
mintr,δEu

O prlwq

Gria v3
rlwK

mintr,δEu
� 2rlbK�

�lbK
O prlw � rlbq

rlwK
mintr,δEu

� 2rlbK O prlw � rlbq

Gria v4, v5
2rlwK �

rlbK
mintr,δEu

�

�lbK
O prlw � rlbq 2rlwK O prlwq

Gria v6
2rlwK � 2rlbK�

�lbK
O prlw � rlbq 2rlwK � 2rlbK O prlw � rlbq

Table 4.17: Performance characteristics of the Gria Service based architectures in

the case where pE, Jq P h.

workflow staging is non pipelined, while in the case of the later workflow staging

is irrelevant. Three types of bulk data paths can be implemented via this solution:

pA, Jq, pA,E, Jq, pA,M,E, Jq. The latter is the default approach, but the former

two can be applied if it is supported by a particular workflow job or workflow engine
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to receive data from third party machines. In the case of pA, Jq bulk data staging

is irrelevant, in the case of pA,E, Jq, depending on the particular engine, both bulk

data staging approaches can be realised, while in the case of pA,M,E, Jq bulk data

staging is not pipelined. All possible architectures that can be realised based on

the Gria service are included in table 4.15 along with the proposed architectures.

Structure and data flow combinations of the Gria based solution is illustrated in

figure 4.4. Performance characteristics of the Gria based architectures can be seen

in table 4.16 and 4.17.

4.4.2 Proposed WESA solutions

The WESA architecture analysis described in section 4.3, proposes several different

architectures in different cases. Based on section 4.3.1, frontend interface of the

proposed architectures should be general meaning that the data type and number of

input and output parameters of a workflow should not be restricted. Furthermore,

in order to provide architectures that are easily extendible with further workflow

engines, the backend interface is recommended to be CLI. Section 4.3.5 identifies

several proposed structure and data flow type combinations which are defined in

table 4.12. Table 4.13 summarises which structure and data flow type combinations

are recommended in 18 different cases. Having these, all proposed architectures are

specified in table 4.15 along with the architectures of the Gria service based solu-

tion. The recommended WESA solution should realise one or more of the proposed

architectures depending on what cases it will be used in.
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4.4.3 Comparison of existing and proposed WESA

solutions

While the Gria service based architectures invoke a previously installed workflow

engine in a service oriented manner, many of the proposed solutions can also sub-

mit the workflow engines to computational Grid resources distributing the load on

bulk data transfer. In the case of workflows of which jobs are executed locally to

their workflow engines, architectures of PC1-PC7 are proposed, which submit the

workflow engines to Grid resources. While engine transfer time the of Gria based

architectures is always 0, it is linear with the number of simultaneous requests and

engine size in the case of the above proposed solutions. However, overhead on

bulk data transfer of Gria based architectures is always linear with the number of

simultaneous requests and bulk data amount, in the case of the above proposed

architectures it is always 0. Since bulk data amount in the case of large-scale work-

flows is significantly greater than engine size, overhead of the proposed architectures

is less then the overhead of the Gria based architectures and is independent of bulk

data amount.

In the case of workflows of which jobs are executed remotely to their work-

flow engines and can transfer bulk data directly to/from the application (i.e using

GridFTP or other data transfer protocol), the architectures of PC15-PC17 are pro-

posed. These utilise previously installed workflow engines and transfer bulk data

directly between the application and the workflow job. Therefore, overhead on both

engine and bulk data transfer is always 0, just like in the case of the Gria based

architecture Gria v1 and v4.

In the case of workflows of which jobs are executed remotely to their workflow

engines and can transfer bulk data only via their workflow engines, architectures

of PC8-PC14 are proposed, which also submit the workflow engines to the Grid.
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Proposed	  WESA	  (PC6)	  – single request 	  	  
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Figure 4.5: Overall overhead predictions of Gria (v6) and Proposed WESA (PC6)

architectures in seconds in the function of bulk data size, where graph (i) and (ii)

represent single, graph (iii) and (iv) represent multiple request executions.
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Overhead is linear with the number of simultaneous requests and engine size in the

case of these proposed solutions. Overhead on bulk data transfer of the Gria based

architectures linearly increases with both the number of simultaneous requests and

bulk data amount. However, in the case of the above proposed architectures if

the workflow engine supports pipelined transfer it is always 0, while if the workflow

engine does not support pipelined transfer then it is linear with bulk data amount but

independent of the number of simultaneous requests. Therefore, overall overhead

of the proposed architectures is less then the overall overhead of the Gria based

architectures in the case of large numbers of multiple requests and is independent

of bulk data amount if pipelined transfer is supported by the workflow engine. For

detailed performance figures see table 4.14, 4.16 and 4.17.

Overhead predictions of the Gria (v6) architecture and the Proposed WESA

(PC6) architecture are illustrated on figure 4.5. The graphs represent the overall

overhead performance formulas provided for these architectures in the case of a single

and multiple requests. The graphs were generated based on the overhead formulas

defined in table 4.14 and 4.17 for the case where workflow jobs are executed locally

to the workflow engines. The performance predictions are based on a network with

100MB/s bandwidth and 10MB Workflow size and 100MB Engine size. Overhead

of the Gria (v6) architecture increases linearly with bulk data size, as shown on

graph (i). In the case of 32GB, overhead is above 300s (5 minutes). This is resulted

by the fact that first bulk data is transferred to the Gria service machine and then

transferred further to the application machine. In comparison, as graph (ii) shows,

overhead of the Proposed WESA architecture (PC6) is 61.1s. This is the amount of

time required for the workflow engine to be transferred from the Engine repository

machine to the machine where it is executed (1s) with additional engine queuing

(60s) and also including the amount of transfer time required for the workflow de-

scription to be transferred from the Workflow repository machine to the workflow

engine (0.1s). Since after this point bulk data is transferred directly between the
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application machine and the job machine, overhead is constant and independent of

bulk data size. Graph (iii) and (iv) show that overhead of both architectures increase

linearly with request number. However, while in the case of the Gria (v6) architec-

ture with 8 simultaneous requests and 32GB bulk data size overhead is nearly 5000s

(about 83 minutes), overhead of the Proposed WESA architecture (PC6) with the

same number of parallel requests is below 70s.

Another difference is that in the case of the Gria based architectures engines are

accessed via APIs, which means that programming knowledge is required to add a

new workflow engine to an existing WESA. In the case of the proposed concepts,

engines are connected via CLI. This means that user level knowledge is sufficient to

add a new engine to the system, provided that a special user interface, such as the

GEMLCA administration portlet [99], is available for describing CLIs.

4.5 Implementation

Several WESA architectures were implemented based on the GEMLCA (see descrip-

tion in section 2.5) application repository and submitter. Command-line workflow

engines, just like DRCs or legacy applications, can be published via GEMLCA,

without code re-engineering and can be executed by GEMLCA on computational

Grid resources. Frontend interface of GEMLCA is general since it does not restrict

the number or type of parameters that can be specified on engine execution. Back-

end interface is CLI, since workflow engines are accessed via their command line

interfaces.

Four workflow engines Kepler, MOTEUR, Taverna, and Triana were deployed in

the GEMLCA application repository. The engines were placed to a GridFTP storage

machine and wrapper scripts were created which are able to download, parametrise,
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and execute them. In order to make the workflow engines accessible, these wrapper

scripts were deployed to the GEMLCA service via the GEMLCA Administration

Portlet. Figure 4.6 shows how the Taverna engine can be exposed using this Portlet.

Figure 4.6: Deploying Taverna workflow engine using the GEMLCA Administration

Portlet

In order to enable GEMLCA to expose and execute not only workflow engines

but workflow as well, GEMLCA was extended with a so called Generic Interpreter

Backend (GIB). GIB allows to deploy and connect two different legacy applications:

an interpreter and an interpreted application. The interpreter application (workflow

engine) receives the interpreted application (workflow) as an input file and executes

it transparently. This concept is used to deploy and connect workflow engines and

workflows in GEMLCA. Using the GEMLCA Administration Portlet, a so called

engine administrator can deploy different workflow engines as interpreter applica-

tions, while workflow developers can deploy workflows as interpreted applications

and select which workflow engine can execute it.

Figure 4.7 illustrates how the GEMLCA based WESA solution implements PC10.
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Figure 4.7: Implementation of WESA PC10 based on GEMLCA, where black arrows

represent control data, blue arrow represents engine transfer, yellow arrow represents

workflow transfer, and green arrows represent bulk data transfer.

The GEMLCA service realises the mediator and also the workflow repository, and

a GridFTP storage machine realises the engine repository. This means that the

mediator is coupled with the workflow repository and the engine repository is de-

coupled. The application passes a request to the local GEMLCA client. The request

includes which GEMLCA service to invoke, which workflow to execute, the compu-

tational resource where the workflow engine should be executed, and the workflow

arguments. The GEMLCA client submits a request to the GEMLCA service to

execute the selected workflow. The GEMLCA service knows which workflow engine

this workflow should be executed by. It submits the wrapper script of this engine to

the desired location along with the selected workflow descriptor. Next, bulk data is

transferred from the GEMLCA client to this machine. The wrapper script retrieves

the appropriate workflow engine from the engine repository and starts the execution

of the workflow engine. Finally, the workflow engine transfers bulk data to the job

that needs to process it. Selecting a workflow for execution from the GEMLCA ap-

plication repository is not necessary, the application can also provide a workflow for

execution. In this case the workflow is transferred directly by the GEMLCA client

from the application machine to engine. Therefore the GEMLCA based solution

also implements PC5.
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Figure 4.8: Implementation of WESA PC3 based on GEMLCA

In the case when it is possible for the job to gather data directly from the

machine of the application (i.e. the application machine hosts a GridFTP server),

only a reference to the bulk data should be passed via GEMLCA and bulk data

should be transferred directly between the application and the job. See illustration

on figure 4.8. This way PC3 (workflow is in GEMLCA application repository) and

PC12 (workflow is provided by the application) also can be implemented.
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Figure 4.9: Implementation of WESA PC16 based on GEMLCA

GEMLCA supports not only the submission of legacy applications, but it also

supports the remote execution of previously installed applications hosted on ded-

icated machines. The four workflow engines were also deployed on dedicated ma-

chines at the local NGS cluster of the University of Westminster. If the job can

gather bulk data from the application machine then PC16 (workflow is in GEMLCA

application repository) and PC17 (workflow is provided by the application) can also
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be implemented via GEMLCA. See illustration in figure 4.9.

The solution was tested on the UK NGS (based on Globus) and on Gilda (based

on gLite) with three types of workflows:

• (a) workflows of which jobs are executed locally to the workflow engine,

• (b) workflows of which jobs are remote web services, and

• (c) workflows of which jobs are submitted to Globus based computational

resources.

Case (a) was tested with Kepler, MOTEUR, Taverna, and Triana engines on both

Globus and gLite middleware. Case (b) was tested with Taverna on both Globus

and gLite middleware. Case (c) was tested with Taverna on Globus middleware.

Taverna submitted jobs to other computational resources using the command line

submitter tools provided on the machine that executed the Taverna engine. Note

that these tools are available on most NGS sites, but typically not available on

EGEE sites.

Software dependencies of the workflow engines have to be linked statically, if they

are not provided on the computational resource where they are executed. Firewall

settings of the different computational resources may limit the functionality of the

workflow engines and disable them to submit jobs to other computational resources.

4.6 Summary

This chapter proposed 18 WESA architectures to enable applications to execute

workflows of different types independently of what workflow system they were de-

signed in originally. Note that this application can be a Grid application, a simple
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client which can be used by scientists to execute different types of workflows even if

they are not familiar with the workflow system they were designed in, or any kind of

application that needs a specific functionality that is provided by a given workflow.

The described analysis not only compares proposed architectures and architec-

tures of existing solutions, but also compares numerous other possibilities at the

level of data flow. This data flow analysis also can be utilised in special scenarios

which are not addressed by this research. Note that the analysis is only based on

data flow, computational load generated by the different workflow engines is out of

the scope of this thesis. This can be addressed by future work.

The only existing WESA solution is based on the Gria service which makes

a small set of workflow engines available via Web/Grid services. In this concept

workflow engines are deployed on dedicated machines and invoked by Gria. By

default this approach transfers bulk data from the application via the Gria service

to the workflow engine that transfers it further to the workflow job that processes it.

Transferring large amounts of bulk data this way is not recommended, since both

the Gria service and the machine that hosts the workflow engine can bottleneck

the transfer in the case of large number of requests. Alternatively, a reference to

the bulk data should be transferred and bulk data should be gathered by the job

that processes it directly. However, this is can be only realised if the job and the

application can directly exchange data which cannot be guaranteed in general. If

this is possible and jobs are executed remotely from the workflow engine, then

the proposed architectures recommend a similar concept to the Gria service based

solution. In all other cases, the proposed architectures distribute workflow engines

between the available computational machines and bulk data is exchanged between

the engines and the application directly. Although, the distribution of workflow

engines increases overhead and latency, after the engine is in place, bulk data can

flow directly. In contrast to the Gria based solution, this approach is scalable even
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in the case of large number of simultaneous requests.

The GEMLCA based reference implementation realises 6 of the proposed archi-

tecture sets. It supports the execution of Kepler, MOTEUR, Taverna, and Triana

workflows. Dynamic distribution of workflow engines on computational Grid re-

sources can be realised only on resources where the software dependencies of a given

engine are fulfilled. If this is not provided all required libraries have to be statically

linked. In the case of workflows where jobs have to be submitted to remote re-

sources, submission has to be supported on the given computational resource where

the engine is executed. Although existing Grid middleware products can support

this approach, due to administrative limitations (i.e. firewall restrictions) in the

case of some Grid infrastructures (i.e. EGEE) this is not supported. Similarly to

DASGs and DASWs, the GEMLCA based WESA solution is also easily extendible

with any workflow engine that has a command line interface, which is provided in

most cases. This can be achieved using the GEMCLA administration portlet that

enables the description of the workflow engine CLI via a simple graphical interface

without code re-engineering. Furthermore, it is a general solution, because GEM-

CLA does not restrict the number and type of input parameters that can be passed

to the engine. Although, the parameters have to be represented either as command

line arguments or files, this does not mean that all data to the workflow has to be

passed as command line arguments or files. If a particular workflow job needs to

gather data form a given Web Service, the HTTP end point of the Web Service can

be passed as an argument and the workflow job can connect the Web Service during

workflow execution.
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Chapter 5

Heterogeneous Workflow

Execution Solutions for Workflows

(WESW) - workflow nesting

Concepts of WESWs and WESAs are very similar. The main difference is that

WESWs provide service not for applications but for workflows. See illustration in

figure 5.1. WESWs enable interoperation of heterogeneous workflows at the level of

workflow nesting.
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Figure 5.1: WESW concept

150



5.1. Key WESW properties and requirements WESW

5.1 Key WESW properties and require-

ments

Six key properties of WESWs: (i) generality, (ii) extendibility, (iii) overhead, (iv)

latency, (v) scalability, and (vi) invocation were taken under consideration. Proper-

ties (i-v) are important for the same reasons as in the case of WESAs described in

section 4.1.

Invocation The property invocation is similar to the previously defined data ac-

cess property for DASWs. (See section 3.1.) However, in the case of WESWs,

rather than accessing heterogeneous data, heterogeneous workflow engines are in-

voked. Workflow engine invocation (invocation for short), like data access, can be

static, semi-dynamic, or dynamic. See illustration in figure 5.2. Static invocation

means that the child workflow specified/selected and invoked before or after the

parent workflow is executed. Semi-dynamic invocation means that the workflow is

specified/selected before, but it is invoked during parent workflow execution. Dy-

namic invocation means that the child workflow is specified/selected and executed as

part of the parent workflow. Static workflow invocation allows sequential execution

of the parent and child workflows, but does not enable workflow nesting. Therefore

it is not suitable for WESWs. Semi-dynamic invocation can be suitable in many

cases, but dynamic invocation provides the greatest flexibility.

5.2 WESW architecture definition

To study possible approaches and identify optimal solutions, WESWs are investi-

gated from five aspects: structure, resources, data flow, interface, and integration.
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Figure 5.2: WESW Workflow invocation types: (i) static, (ii) semi-dynamic, and

(iii) dynamic

These are defined in the followings.

5.2.1 WESW structure

In analogy with previously defined structures, WESW structure definition is also

based on the general definitions introduced in chapter 2.

Definition 5.1 (WESW nodes and node types)

• A parent engine node represents a running workflow engine. This engine exe-

cutes a workflow (so called parent workflow) that is to execute another work-

flow (a child workflow). Parent engine nodes belong to node type EP .

• A parent job node represents a task initiated by a parent workflow engine node.

It either generates or processes data that is to be exchanged with a child job

node (see below). Parent job nodes belong to node type JP .

• A child engine node receives a workflow engine from an engine repository and

executes it locally. After this point it represents the running workflow engine

which enacts a child workflow. These nodes belong to type EC.

• A child job node is a task that is initiated by a child engine node. It either

generates or processes data that is to be exchanged with a parent job node.

Child job nodes belong to node type JC.
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Mediator, engine repository, and workflow repository nodes and node types rep-

resent the same concepts as definition 4.1 describes them in the case of WESAs. Let

T 1 � tM,RE,RW,ECu be the set of core WESW node types, T 2 � tEP, JP, JCu

be the set of external WESW node types, and T � tEP, JP,M,RE,RW,EC, JCu

be the set of all WESW node types. See illustration on figure 5.3.
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Figure 5.3: WESW node types

Definition 5.2 (WESW Instance)

Let a WESA instance be a set of |T | � 7 nodes, where each node belongs to a

different node type of tEP, JP,M,RE,RW,EC, JCu.

Definition 5.3 (Bijection between WESW node types and instances)

Let @i P r1..rs : let Ni :� tEPi, JPi,Mi, REi, RWi, ECi, JCiu be the ith WESW

instance, where ϕipEP q � EPi, ϕipJP q � JPi ϕipMq � Mi, ϕipREq � REi,

ϕipRW q � RWi, ϕipECq � ECi, and ϕipJCq � JCi.

In the case of WESWs there are 7 node type sets NEP , NJP , NM , NRE, NRW ,

NEC , NJC and r nodes in each type set. A WESW node matrix of instances and

types can be constructed as illustrated in table 3.1. Furthermore, both
�r
i�1Ni and�

tPT Nt are equal to the set of all WESW nodes, N and |N | � 7r.
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Node types

NEP NJP NM NRE NRW NEC NJC

In
st

an
ce

s N1 EP1 JP1 M1 RE1 RW1 EC1 JC1

N2 EP2 JP2 M2 RE2 RW2 EC2 JC2

...
...

...
...

...
...

...

Nr EPr JPr Mr REr RWr ECr JCr

Table 5.1: WESW node matrix

5.2.2 WESW structure

WESW structure layout is also based on instance and type layout.

Definition 5.4 (WESW instance layout)

The set of all possible WESA instance layouts is represented by LI and equals to

the set of all possible type layouts on domain T (see definition 2.11).

Definition 5.5 (WESW type layout)

The set of all possible WESW type layouts is represented by LT and equals to the

set of all possible type layouts on domain T (see definition 2.13).

Definition 5.6 (WESW structure layout)

The set of all possible WESW structure layouts is represented by LS and equals to

the set of all possible structure layouts on domain T (see definition 2.15).

5.2.3 WESW data flow

Definition 5.7 (WESW data types)

Data between distributed nodes of N can flow in various ways. To identify the

different possibilities, the same four kinds of data are distinguished like in the case
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of WESAs:

• bulk data is the data-set that needs to be transferred between pJPiq and pJCiq;

• engine data is the workflow engine executable itself that needs to be transferred

from pREiq to pECiq;

• workflow data is the workflow descriptor and all further data (fix parameters,

job executables, etc) that need to be transferred from pRWiq to pECiq; and

• control data is the set of information that includes all further data transferred

between the nodes. This consists of a small number of requests which are

necessary to exchange in order to enable a workflow to execute another.

For the same reasons as in the case of WESAs, only three kinds of data flow are

considered here: engine data flow, workflow data flow and bulk data flow.

Definition 5.8 (WESW engine data flow)

In the case of WESWs four engine path types are distinguished: when the engine

is transferred directly pRE,ECq, via the mediator pRE,M,ECq, via the parent

workflow engine pRE,EP,ECq, and via both the mediator and the parent workflow

engine pRE,M,EP,ECq. Let EP :� tpRE,ECq, pRE,M,ECq, pRE,EP,ECq,

pRE,M,EP,ECqu be the set of engine path types and let ES � tPip, Pipu be the

set of engine staging types, where Pip represents pipelined, while  Pip represents

non pipelined engine staging.

Definition 5.9 (WESW workflow data flow)

In the case of WESWs four workflow path types are distinguished: when the engine

is transferred directly pRW,ECq, via the mediator pRW,M,ECq, via the parent

workflow engine pRW,EP,ECq, and via both the mediator and the parent workflow
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engine pRW,M,EP,ECq. Let WP :� tpRW,ECq, pRW,M,ECq, pRW,EP,ECq,

pRW,M,EP,ECqu be the set of workflow path types. LetWS � tPip, Pipu be the

set of engine staging types, where Pip represents pipelined, while  Pip represents

non pipelined workflow staging.

Definition 5.10 (WESW bulk data flow)

Seven bulk data flow path types are distinguished in the case of WESWs: bulk data

can be transferred directly pJP, JCq, via the child engine pJP,EC, JCq, via the par-

ent engine pJP,EP, JCq, via the mediator pJP,M, JCq, via both parent and child

engine pJP,EP,EC, JCq, via both the mediator and child engine pJP,M,EC, JCq,

via both the parent engine and the mediator pJP,EP,M, JCq, and via all the par-

ent engine, the mediator, and the child engine pJP,EP,M,EC, JCq. Let BP :�

tpJP, JCq, pJP,EC, JCq, pJP,EP, JCq, pJP,M, JCq, pJP,EP,EC, JCq, pJP,M,

EC, JCq, pJP,EP,M, JCq, pJP,EP,M,EC, JCqu be the set of bulk data path types

and let BS � tPip, Pipu be the set of bulk data staging types, where Pip represents

pipelined, while  Pip represents non pipelined bulk data staging.

Definition 5.11 (WESW data flow types)

Having these, let DF :� EP � ES �WP �WS � BP � BS be the set of WESA data

flow types.

5.2.4 WESW resources

Definition 5.12 (WESW resource layout)

Definition 5.1 identified three external node types (EP, JP, JC) and the same core

node types as definition 4.1 for WESAs, except for child engine execution (EC)

which in the case of WESAs is called engine execution (E). For the same reasons
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described in definition 4.12 the same resource types can be mapped to the core note

types as in the case of WESAs, and external machine resources are mapped to all

external node types. Therefore, the set of all possible WESW resource layouts is

defined as:

RL :� tξ P LRpT q}ξM P tDeM,ExMu ^ ξRE � CoM ^ ξRW � CoM^

^ ξJC � StM ^ ξEP , ξJP , ξJC � ExMu
(5.1)

5.2.5 WESW interface

Definition 5.13 (WESW interfaces)

Let IF :� tGen, Speu be the set of frontend interface types, let IB :� tCLI,APIu

be the set of backend interface types, and let IN :� IF � IB be the set of interface

types.

5.2.6 WESW integration

Definition 5.14 (WESW Subject of integration)

The subject of integration is the particular part of the parent workflow system

that will be able to communicate with the child workflow engines. Let GS :�

tAuT,WEnu be the set of integration subjects. Depending on which part of the

system will be enhanced with this capability, the integration can be realized at:

(i) workflow engine or (ii) auxiliary tool level. Both integration types are partially

identical to the ones described in section 3.2. The only difference is that the subject

of integration is extended with a tool, that is able to communicate with heteroge-

neous workflow engines, rather that with heterogeneous data resources and workflow

editor integration type is excluded here.
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5.2.7 WESW architecture and solution

Definition 5.15 (Set of possible WESW architectures)

The set of possible WESW architectures consists of elements of the Cartesian product

of sets of possible structures, data flows, interfaces, and integrations as:

AR :� tpph, δq, ξ, pqe, se, qw, sw, qb, sbq, pif , ibq, gsqq P LS�LR�DF�IN�GS�LR}

qe, qw, and qb are acyclic path layouts based on instance layout h^ piq

^@pt1, t2q P h P T : ξt1 � ξt2u. piiq
(5.2)

Note that conditions are needed for the same reasons as described in the case of

DASG architectures in definition 2.40.

Definition 5.16 (WESW solution)

A WESW solution is a set of WESW architectures. With other words, it is a not

empty subset of AR.

5.3 WESW architecture analysis

5.3.1 WESW generality, extendibility, and invo-

cation

In order to provide general and easily extendible architectures, general frontend

interface, command line backend interface, and centralised mediator hosted on a

dedicated machine are recommended, for the same reasons described in the case of

WESAs in section 4.3.1.

In terms of subject of integration, auxiliary tool pAuT q level integration provides

only static workflow engine invocation, that is not suitable in many cases. Workflow
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engine pWEnq level integration, however, provides both semi-dynamic and dynamic

workflow engine invocation, that is needed in most use cases. Therefore, workflow

engine level integration is recommended.

5.3.2 WESW performance

The aim of the performance analysis is to compare overhead, latency, and scalability

of different WESW architectures and show how these values vary with bulk data

volume, workflow size, engine size, and number of simultaneous requests. The per-

formance comparison is based on WESW scenarios where r P N� different parent

workflow jobs hosted by different machines initiate the execution of r different child

workflows. The first job of each child workflow is a job that receives data from the

parent workflow job that initiated the execution. Parent engines are always hosted

on r different machines and the same is true for the parent workflow jobs. Scenarios

are represented as the elements of the set defined below.

Definition 5.17 (WESW scenarios)

Let AS :� tpph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P

P LS � LR � EP �WP � BP � R�0 � pN�q7}

δEP , δJP � r^ piq

^qe, qw and qb are acyclic path layouts based on h ^ piiq

^@pt1, t2q P h : ξt1 � ξt2^ piiiq

^ξEC � CoM ñ we � 0^ pivq

^@t P T ztEP, JP u : r � 0 mod δt^ pvq

^le � 0 mod se ^ lw � 0 mod sw ^ lb � 0 mod sbu. pviq

(5.3)
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be the set of analytical WESW scenarios. Let a � pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le,

lw, lb, rq P AS be an analytical scenario. Parameters of a and conditions represent

the same concepts as in the case of analytical WESA scenarios defined in defini-

tion 4.18.

Definition 5.18 (WESW scenario execution)

Since control flow is excluded from the model, similarly to WESA scenario execution,

the analysis is based on engine, workflow and bulk data flow. @i P r1..rs : let ei P B

byte array represent the engine that executes workflow wi (see below) and to be

transferred from REi to ECi, wi P B byte array represent the workflow that is to be

invoked by the parent workflow EPi and to be transferred from RWi to ECi, and

bi P B byte array represent the bulk data that is to be transferred from JPi to JCi.

A WESW scenario is executed in four steps:

1. engine transfer: @i P r1..rs: ei is transferred from REi to ECi via path ψipqeq

simultaneously,

2. workflow transfer: @i P r1..rs: wi is transferred from RWi to ECi via path

ψipqwq simultaneously,

3. engine queuing: all engines are waiting we amount of time to be scheduled for

execution,

4. bulk data transfer: @i P r1..rs: the execution of the ith child workflow engine

starts and bi is transferred from JPi to JCi via path ψipqbq simultaneously.

Engine flow can be represented as a simultaneous transfer (see definition 2.48),

since the conditions of definition 5.17 ensure that pph, δq, qe, se, le, rq P Dst. Simi-

larly, workflow and bulk data flow also can be represented as: pph, δq, qw, sw, lw, rq,
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pph, δq, qb, sb, lb, rq P Dst respectively. Having these the performance functions of a

WESW scenario can be defined as follows.

Definition 5.19 (Performance of WESW engine and workflow transfer)

Let a :� pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P AS, and Γe,Γw : AS Ñ R�0
be functions for determining respectively engine workflow transfer time as:

Γepaq :�τqpph, δq, qe, se, le, rq Γwpaq :�τqpph, δq, qw, sw, lw, rq. (5.4)

Note that definition 2.49 is applied to identify Γepaq and Γwpaq.

Definition 5.20 (Performance of WESW bulk data transfer)

Let a :� pph, δq, ξ, qe, qw, qb, we, se, sw, sb, le, lw, lb, rq P AS, and Γb,∆b,Θb : AS Ñ

R�0 be functions for determining respectively bulk data transfer time, overhead, and

latency as:

Γbpaq :�τqpph, δq, qb, sb, lb, rq (5.5)

∆bpaq :�Γbpaq � χppJP, JCq R hqkbsbK, and (5.6)

Θbpaq :�εqpph, δq, qb, sb, lb, rq. (5.7)

Note that definition 2.49 is applied to determine Γbpaq and Θbpaq. @i P r1..rs :

transferring bi directly between JPi and JCi takes τepλpbiq, pJPi, JCiqq time. This

value is 0 if pJP, JCq P h and kbsbK otherwise. Overhead on bulk data transfer of

a particular scenario is considered as this time subtracted from bulk data transfer

time.

Definition 5.21 (Overall WESW performance functions)

Let Γ,∆,Θ : AS Ñ R�0 be functions for determining respectively execution time,
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overhead, and latency of a scenario, where:

Γpaq :�we � Γepaq � Γwpaq � Γbpaq, (5.8)

∆paq :�we � Γepaq � Γwpaq �∆bpaq, and (5.9)

Θpaq :�we � Γepaq � Γwpaq �Θbpaq. (5.10)

Because engine and workflow transfer always has to be performed before workflow

execution, engine and workflow transfer times are always added to the overall latency

and overhead of a scenario.

Definition 5.22 (Scalability of WESW data transfer)

Performance functions of any WESW scenario are characterised based on growth

rates in function of lw, le, lb, and r. It is represented by the Bachmann–Landau (Big

O) notation in analogy with all previous contributions.

5.3.3 WESW bulk data flow

Based definition 2.54 and the seven bulk data path layout types (see definition 5.10,

54 bulk data flow cases can be identified. These are listed in table 5.5-5.7. Restric-

tions implied by instance layout are also illustrated in the tables and representative

cases (see definition 2.54) are marked with asterisks.

Based on definition 2.55, these cases can be divided into 9 groups. Performance

properties are the same in each case of the same group. Transfer time, overhead,

and latency values can be found in table 5.2, 5.3, and 5.4 respectively, where the

formulas are based on the definition of Γbpaq, ∆bpaq, and Θbpaq. Based on ∆bpaq and

Θbpaq, the architectural conditions which determine scalability in terms of overhead

and latency are identified for each group, these can be found in table 5.3, and 5.4.

In particular, cases of group BG1 always provide 0 overhead and latency on bulk
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Group Transfer time (Γbpaq)

BG1 0

BG2 rkbsbK
mintr,δJCu

BG3 rsbK
mintru �

rkbsbK
mintr,δJCu

BG4 rsbK
mintr,δM u �

rkbsbK
mintr,δM ,δJCu

BG5 rsbK
mintr,δECu

� rkbsbK
mintr,δEC ,δJCu

BG6 rsbK
mintru �

rsbK
mintr,δECu

� rsbK
mintr,δEC ,δJCu

� rpkb�1qsbK
mintr,δEC ,δJCu

BG7 rsbK
mintr,δM u �

rsbK
mintr,δM ,δECu

� rsbK
mintr,δEC ,δJCu

� rpkb�1qsbK
mintr,δM ,δEC ,δJCu

BG8 rsbK
mintru �

rsbK
mintr,δM u �

rsbK
mintr,δM ,δJCu

� rpkb�1qsbK
mintr,δM ,δJCu

BG9 rsbK
mintru �

rsbK
mintr,δM u �

rsbK
mintr,δM ,δECu

� rsbK
mintr,δEC ,δJCu

� rpkb�1qsbK
mintr,δM ,δEC ,δJCu

Table 5.2: Time of WESW bulk data transfer

Group Overhead (∆bpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2
rkbsbK

mintr,δJCu
� kbsbK δJC ¯ r E E E δJC   r

BG3
rsbK �

rkbsbK

mintr,δJCu
�

�kbsbK
E

kb ¡ 1

δJC ¯ r

kb � 1

δJC ¯ r
E δJC   r

BG4

rsbK

mintr,δM u
�

rsbK

mintr,δM,δJCu
�

�
rpkb�1qsbK

mintr,δM,δJCu
� kbsbK

E

kb ¡ 1

δM ¯ r

δJC ¯ r

kb � 1

δM ¯ r

δJC ¯ r

E
δM   r_

_δJC   r

BG5

rsbK

mintr,δECu
�

rsbK

mintr,δEC,δJCu
�

�
rpkb�1qsbK

mintr,δEC,δJCu
� kbsbK

E

kb ¡ 1

δEC ¯ r

δJC ¯ r

kb � 1

δEC ¯ r

δJC ¯ r

E
δEC   r_

_δJC   r

BG6

rsbK �
rsbK

mintr,δECu
�

�
rsbK

mintr,δEC,δJCu
�

�
rpkb�1qsbK

mintr,δEC,δJCu
�

�kbsbK

E

kb ¡ 1

δEC ¯ r

δJC ¯ r

kb � 1

δEC ¯ r

δJC ¯ r

E
δEC   r_

_δJC   r

BG7

rsbK

mintr,δM u
�

rsbK

mintr,δM,δECu
�

�
rsbK

mintr,δEC,δJCu
�

�
rpkb�1qsbK

mintr,δM,δEC,δJCu
�

�kbsbK

E

kb ¡ 1

δM ¯ r

δEC ¯ r

δJC ¯ r

kb � 1

δM ¯ r

δEC ¯ r

δJC ¯ r

E

δM   r_

_δEC   r_

_δJC   r

BG8

rsbK �
rsbK

mintr,δM u
�

�
rsbK

mintr,δM,δJCu
�

�
rpkb�1qsbK

mintr,δM,δJCu
�

�kbsbK

E

kb ¡ 1

δM ¯ r

δJC ¯ r

kb � 1

δM ¯ r

δJC ¯ r

E
δM   r_

_δJC   r

BG9

rsbK �
rsbK

mintr,δM u
�

�
rsbK

mintr,δM,δECu
�

�
rsbK

mintr,δEC,δJCu
�

�
rpkb�1qsbK

mintr,δM,δEC,δJCu
�

�kbsbK

E

kb ¡ 1

δM ¯ r

δEC ¯ r

δJC ¯ r

kb � 1

δM ¯ r

δEC ¯ r

δJC ¯ r

E

δM   r_

_δEC   r_

_δJC   r

Table 5.3: Overhead and scalability of WESW bulk data staging
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Group Latency (Θbpaq) Op0q Op1q Oplbq Oprq Oprlbq

BG1 0 @ E E E E

BG2 0 @ E E E E

BG3 sbK E kb ¡ 1 kb � 1 kb ¡ 1 kb � 1

BG4
rsbK

mintr,δM u
E

kb ¡ 1

δM ¯ r

kb � 1

δM ¯ r

kb ¡ 1_

_δM   r

kb � 1_

_δM   r

BG5
rsbK

mintr,δECu
E

kb ¡ 1

δEC ¯ r

kb � 1

δEC ¯ r

kb ¡ 1_

_δEC   r

kb � 1_

_δEC   r

BG6 sbK �
rsbK

mintr,δECu
E

kb ¡ 1

δEC ¯ r

kb � 1

δEC ¯ r

kb ¡ 1_

_δEC   r

kb � 1_

_δEC   r

BG7
rsbK

mintr,δM u
�

rsbK

mintr,δM,δECu
E

kb ¡ 1

δM ¯ r

δEC ¯ r

kb � 1

δM ¯ r

δEC ¯ r

kb ¡ 1_

_δM   r_

_δEC   r

kb � 1_

_δM   r_

_δEC   r

BG8 sbK �
rsbK

mintr,δM u
E

kb ¡ 1

δM ¯ r

kb � 1

δM ¯ r

kb ¡ 1_

_δM   r

kb � 1_

_δM   r

BG9
sbK �

rsbK

mintr,δM u
�

�
rsbK

mintr,δM,δECu
�

E

kb ¡ 1

δM ¯ r

δEC ¯ r

kb � 1

δM ¯ r

δEC ¯ r

kb ¡ 1_

_δM   r_

_δEC   r

kb � 1_

_δM   r_

_δEC   r

Table 5.4: Latency and scalability of WESW bulk data staging

data staging, cases of group BG2 always provide 0 latency, but overhead is 0 if and

only if δJC ¯ r, otherwise overhead is linear with both lb and r. Cases of group BG3

– BG9 never provide 0 latency nor overhead and the same rules apply as in the case

of DASG bulk data transfer groups BG2 and BG3 described in section 2.3.3.
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Case Bulk dara path Instance layout Restrictions Group

BC1 * pJP, JCq pJP, JCq P h δJC � r

BG1

BC2 pJP,EC, JCq pJP,ECq, pEC, JCq P h δEC , δJC � r

BC3 pJP,EP, JCq pJP,EP q, pEP, JCq P h δJC � r

BC4 pJP,M, JCq pJP,Mq, pM,JCq P h δM , δJC � r

BC5 pJP,EP,EC, JCq
pJP,EP q, pEP,ECq,

pEC, JCq P h
δEC , δJC � r

BC6 pJP,M,EC, JCq
pJP,Mq, pM,ECq,

pEC, JCq P h
δM , δEC , δJC � r

BC7 pJP,EP,M, JCq
pJP,EP q, pEP,Mq,

pM,JCq P h
δM , δJC � r

BC8 pJP,EP,M,EC, JCq
pJP,EP q, pEP,Mq,

pM,ECq, pEC, JCq P h
δM , δEC , δJC � r

BC9 * pJP, JCq pJP, JCq R h

BG2

BC10 pJP,EC, JCq
pJP,ECq P h

pEC, JCq R h
δEC � r

BC11 pJP,EC, JCq
pJP,ECq R h

pEC, JCq P h
δEC � δJC

BC12 pJP,EP, JCq
pJP,EP q P h

pEP, JCq R h

BC13 pJP,EP, JCq
pJP,EP q R h

pEP, JCq P h
δJC � r

BC14 pJP,M, JCq
pJP,Mq P h

pM,JCq R h
δM � r

BC15 pJP,M, JCq
pJP,Mq R h

pM,JCq P h
δM � δJC

BC16 pJP,EP,EC, JCq
pJP,EP q, pEP,ECq P h

pEC, JCq R h
δEC � r

BC17 pJP,EP,EC, JCq
pJP,EP q, pEC, JCq P h

pEP,ECq R h
δEC � δJC

BC18 pJP,EP,EC, JCq
pEP,ECq, pEC, JCq P h

pJP,EP q R h
δEC , δJC � r

BC19 pJP,M,EC, JCq
pJP,Mq, pM,ECq P h

pEC, JCq R h
δM , δEC � r

BC20 pJP,M,EC, JCq
pJP,Mq, pEC, JCq P h

pM,ECq R h

δM � r

δEC � δJC

Table 5.5: WESW bulk data flow cases part 1/3.
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Case Bulk dara path Instance layout Restrictions Group

BC21 pJP,M,EC, JCq
pM,ECq, pEC, JCq P h

pJP,Mq R h
δM � δEC � δJC

BG2

BC22 pJP,EP,M, JCq
pJP,EP q, pEP,Mq P h

pM,JCq R h
δM � r

BC23 pJP,EP,M, JCq
pJP,EP q, pM,JCq P h

pEP,Mq R h
δM � δJC

BC24 pJP,EP,M, JCq
pEP,Mq, pM,JCq P h

pJP,EP q R h
δM , δJC � r

BC25 pJP,EP,M,EC, JCq
pJP,EP q, pEP,Mq,

pM,ECq P h, pEC, JCq R h
δM , δEC � r

BC26 pJP,EP,M,EC, JCq
pJP,EP qpEP,Mq,

pEC, JCq P h, pM,ECq R h

δM � r

δEC � δJC

BC27 pJP,EP,M,EC, JCq
pJP,EP q, pEC, JCq,

pM,ECq P h, pEP,Mq R h
δM � δEC � δJC

BC28 pJP,EP,M,EC, JCq
pEC, JCq, pEP,Mq,

pM,ECq P h, pJP,EP q R h
δJC , δM , δEC � r

BC29 * pJP,EP, JCq pJP,EP q, pEP, JCq R h

BG3

BC30 pJP,EP,EC, JCq
pJP,EP q, pEP,ECq R h

pEC, JCq P h
δEC � δJC

BC31 pJP,EP,M, JCq
pJP,EP q, pEP,Mq R h

pM,JCq P h
δM � δJC

BC32 pJP,EP,M,EC, JCq
pJP,EP qpEP,Mq R h

pEC, JCq, pM,ECq P h
δEC � δJC � δM

BC33 * pJP,M, JCq pJP,Mq, pM,JCq R h

BG4

BC34 pJP,M,EC, JCq
pJP,Mq, pM,ECq R h

pEC, JCq P h
δEC � δJC

BC35 pJP,EP,M, JCq
pEP,Mq, pM,JCq R h

pJP,EP q P h

BC36 pJP,EP,M,EC, JCq
pEP,Mq, pM,ECq R h

pJP,EP q, pEC, JCq P h
δEC � δJC

BC37 * pJP,EC, JCq pJP,ECq, pEC, JCq R h

BG5

BC38 pJP,EP,EC, JCq
pEP,ECq, pEC, JCq R h

pJP,EP q P h

BC39 pJP,M,EC, JCq
pM,ECq, pEC, JCq R h

pJP,Mq P h
δM � r

BC40 pJP,EP,M,EC, JCq
pM,ECq, pEC, JCq R h

pJP,EP q, pEP,Mq P h
δM � r

Table 5.6: WESW bulk data flow cases part 2/3.
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Case Bulk dara path Instance layout Restrictions Group

BC41 pJP,EP,M, JCq
pJP,EP q, pM,JCq R h

pEP,Mq P h
δM � r

BG3 ^ BG4

BC42 pJP,EP,M,EC, JCq
pJP,EP qpM,ECq R h

pEP,Mq, pEC, JCq P h

δM � r

δEC � δJC

BC43 pJP,EP,EC, JCq
pJP,EP q, pEC, JCq R h

pEP,ECq P h
δEC � r BG3 ^ BG5

BC44 pJP,M,EC, JCq
pJP,Mq, pEC, JCq R h

pM,ECq P h
δM � δEC

BG4 ^ BG5

BC45 pJP,EP,M,EC, JCq
pEP,Mq, pEC, JCq R h

pJP,EP q, pM,ECq P h
δEC � δM

BC46 pJP,EP,M,EC, JCq
pJP,EP q, pEC, JCq R h

pM,ECq, pEP,Mq P h
δM , δEC � r BG3 ^ BG4 ^ BG5

BC47 * pJP,EP,EC, JCq
pJP,EP q, pEP,ECq,

pEC, JCq R h
BG6

BC48 * pJP,M,EC, JCq
pJP,Mq, pM,ECq,

pEC, JCq R h
BG7

BC49 pJP,EP,M,EC, JCq
pEC, JCq, pEP,Mq,

pM,ECq R h, pJP,EP q P h

BC50 * pJP,EP,M, JCq
pJP,EP q, pEP,Mq,

pM,JCq R h
BG8

BC51 pJP,EP,M,EC, JCq
pJP,EP qpEP,Mq,

pM,ECq R h, pEC, JCq P h
δEC � δJC

BC52 pJP,EP,M,EC, JCq
pJP,EP q, pEC, JCq,

pM,ECq R h, pEP,Mq P h
δM � r BG6 ^ BG7

BC53 pJP,EP,M,EC, JCq
pJP,EP qpEP,Mq,

pEC, JCq R h, pM,ECq P h
δM � δEC BG6 ^ BG8

BC54 * pJP,EP,M,EC, JCq
pJP,EP q, pEP,Mq,

pM,ECq, pEC, JCq R h
BG9

Table 5.7: WESW bulk data flow cases part 3/3.
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5.3.4 WESW engine and workflow flow

Case Engine path Instance layout Restrictions Group

EC1 * pRE,ECq pRE,ECq P h δRE � δEC

EG1
EC2 pRE,M,ECq pRE,Mq, pM,ECq P h δRE � δM � δEC

EC3 pRE,EP,ECq pRE,EP q, pEP,ECq P h δRE , δEC � r

EC4 pRE,M,EP,ECq pRE,Mq, pM,EP q, pEP,ECq P h δRE , δM , δEC � r

EC5 * pRE,ECq pRE,ECq R h

EG2

EC6 pRE,M,ECq pRE,Mq P h^ pM,ECq R h δM � δRE

EC7 pRE,M,ECq pRE,Mq R h^ pM,ECq P h δM � δEC

EC8 pRE,EP,ECq pRE,EP q P h^ pEP,ECq R h δRE � r

EC9 pRE,EP,ECq pRE,EP q R h^ pEP,ECq P h δEC � r

EC10 pRE,M,EP,ECq
pRE,Mq, pM,EP q P h^

^pEP,ECq R h
δM , δRE � r

EC11 pRE,M,EP,ECq
pRE,Mq, pEP,ECq P h^

^pM,EP q R h

δEC � r

δM � δRE

EC12 pRE,M,EP,ECq
pM,EP q, pEP,ECq P h^

^pRE,Mq R h
δM , δEC � r

EC13 * pRE,M,ECq pRE,Mq, pM,ECq R h

EG3
EC14 pRE,M,EP,ECq

pEP,ECq P h^

^pRE,Mq, pM,EP q R h
δEC � r

EC15 pRE,M,EP,ECq
pM,EP q P h^

^pRE,Mq, pEP,ECq R h
δM � r EG3 ^ EG4

EC16 * pRE,EP,ECq pRE,EP q, pEP,ECq R h

EG4
EC17 pRE,M,EP,ECq

pRE,Mq P h^

^pM,EP q, pEP,ECq R h
δRE � δM

EC18 * pRE,M,EP,ECq pRE,Mq, pM,EP q, pEP,ECq R h EG5

Table 5.8: WESW engine data flow cases

Engine and workflow flow analysis is similar to bulk data flow analysis in several

aspects. Based definition 2.54, the four engine and four workflow path layout types

(see definition 5.8 and 5.9), 18 engine and 18 workflow data flow cases can be iden-

tified. These are listed in table 5.8 and table 5.9. Restrictions implied by instance

layout are also included in the tables and representative cases (see definition 2.54)

are marked with asterisks.

In terms of both engine and workflow transfer, the different cases can be divided
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Case Workflow path Instance layout Restrictions Group

WC1 * pRW,ECq pRW,ECq P h δRW � δEC

WG1
WC2 pRW,M,ECq pRW,Mq, pM,ECq P h δRW � δM � δEC

WC3 pRW,EP,ECq pRW,EP q, pEP,ECq P h δRW , δEC � r

WC4 pRW,M,EP,ECq pRW,Mq, pM,EP q, pEP,ECq P h δRW , δM , δEC � r

WC5 * pRW,ECq pRW,ECq R h

WG2

WC6 pRW,M,ECq pRW,Mq P h^ pM,ECq R h δRW � δM

WC7 pRW,M,ECq pRW,Mq R h^ pM,ECq P h δM � δEC

WC8 pRW,EP,ECq pRW,EP q P h^ pEP,ECq R h δRW � r

WC9 pRW,EP,ECq pRW,EP q R h^ pEP,ECq P h δEC � r

WC10 pRW,M,EP,ECq
pRW,Mq, pM,EP q P h^

^pEP,ECq R h
δRW , δM � r

WC11 pRW,M,EP,ECq
pRW,Mq, pEP,ECq P h^

^pM,EP q R h

δEC � r

δRW � δM

WC12 pRW,M,EP,ECq
pM,EP q, pEP,ECq P h^

^pRW,Mq R h
δM , δEC � r

WC13 * pRW,M,ECq pRW,Mq, pM,ECq R h

WG3
WC14 pRW,M,EP,ECq

pEP,ECq P h^

^pRW,Mq, pM,EP q R h
δEC � r

WC15 pRW,M,EP,ECq
pM,EP q P h^

^pRW,Mq, pEP,ECq R h
δM � r WG3 ^ WG4

WC16 * pRW,EP,ECq pRW,EP q, pEP,ECq R h

WG4
WC17 pRW,M,EP,ECq

pRW,Mq P h^

^pM,EP q, pEP,ECq R h
δRW � δM

WC18 * pRW,M,EP,ECq pRW,Mq, pM,EP q, pEP,ECq R h WG5

Table 5.9: WESW workflow data flow cases

into 5 groups based on definition 2.55. Performance properties are the same in each

case of the same group. Transfer time values are determined based on the definition

of Γepaq and Γwpaq, and are included in table 5.10 and 5.11.

Cases of group EG1 and WG1 require, that source and destination nodes are

hosted by the same machine, which implies that transfer time is 0. In cases of group

EG2, EG3, EG4, EG5, WG2, WG3, WG4 and WG5, the same rules apply as in

the case of WESA engine and workflow transfer groups EG2, EG3, WG2, and WG3

described in section 4.3.4. Scalability values are listed in table 5.10 and 5.11.
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Group Transfer time Γepaqq Op0q Op1q Opleq Oprq Oprleq

EG1 0 @ E E E E

EG2 rkeseK
mintr,δEC ,δREu

E E
δRE ¯ r

δEC ¯ r
E δRE   r _ δEC   r

EG3

rseK
mintr,δRE ,δM u�

� rseK
mintr,δM ,δECu

�

� rpke�1qseK
mintr,δM ,δRE ,δECu

E E

δM ¯ r

δEC ¯ r

δRE ¯ r

E δM   r _ δRE   r _ δEC   r

EG4

rseK
mintr,δREu

�

� rseK
mintr,δECu

�

� rpke�1qseK
mintr,δRE ,δECu

E E
δEC ¯ r

δRE ¯ r
E δRE   r _ δEC   r

EG5

rseK
mintr,δRE ,δM u�

� rseK
mintr,δM u�

� rseK
mintr,δECu

�

� rpke�1qseK
mintr,δM ,δRE ,δECu

E E

δM ¯ r

δEC ¯ r

δRE ¯ r

E δM   r _ δRE   r _ δEC   r

Table 5.10: Time and scalability of WESW engine transfer

Group Transfer time Γwpaqq Op0q Op1q Oplwq Oprq Oprlwq

WG1 0 @ E E E E

WG2 rkwswK
mintr,δEC ,δRW u E E

δRW ¯ r

δEC ¯ r
E δRW   r _ δEC   r

WG3

rswK
mintr,δRW ,δM u�

� rswK
mintr,δM ,δECu

�

� rpkw�1qswK
mintr,δM ,δRW ,δECu

E E

δM ¯ r

δEC ¯ r

δRW ¯ r

E δM   r _ δRW   r _ δEC   r

WG4

rswK
mintr,δRW u�

� rswK
mintr,δECu

�

� rpkw�1qswK
mintr,δRW ,δECu

E E
δEC ¯ r

δRW ¯ r
E δRW   r _ δEC   r

WG5

rswK
mintr,δRW ,δM u�

� rswK
mintr,δM u�

� rswK
mintr,δECu

�

� rpkw�1qswK
mintr,δM ,δRW ,δECu

E E

δM ¯ r

δEC ¯ r

δRW ¯ r

E δM   r _ δRW   r _ δEC   r

Table 5.11: Time and scalability of WESW workflow transfer
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5.3.5 Recommended WESW structure layout,

data flow, and resource layout

Table 5.3 and 5.4 shows that in any of the bulk data transfer cases, it is possible

to realise scalable bulk data transfer, where overhead and latency on bulk data

transfer are independent of r and lb. According to table 5.10 and 5.11, the same

is true for engine and workflow staging, but not under the same conditions. The

selection of proposed structure and data flow combinations is based on the following

recommendations.

R1 - Mediator For the same reasons described in WESA recommendations R1 in

section 4.3.5, it is aimed to minimise the number of utilised dedicated machines (let

δM � 1), δJC ¯ r should always be provided, and bulk data flow cases that transfer

data via the mediator and data flow cases which require to have pM,ECq coupled

are not recommended. Because in each scenario δEP , δJP � r, data flow cases which

require to have pEP,Mq or pJP,Mq are not recommended. Furthermore, because

of δJC ¯ r, cases that require pM,JCq P h are not recommended either.

R2 - Child engine execution On the other hand, it cannot be guaranteed in

general that parent and child workflow engines can be hosted by the same machine

and it cannot be guaranteed that parent and child workflow jobs can be coupled with

each other, or with each other’s engine. Based on these, instance layouts having any

of the following couplings are not recommended: pEP,ECq, pJP, JCq pJP,ECq,

pEP, JCq. This also implies that child engine is never recommended to be executed

on external machines (ξEC � ExM).

R3 - Engine and workflow repositories There are workflow systems of which

workflow engines are coupled with workflow repositories, for instance the P-GRADE
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Recommendation WESW data flow case

R1

BC4, BC6-BC8, BC14, BC15, BC19-BC28, BC31-BC36, BC39-BC42, BC44-BC46,

BC48-BC54, EC2, EC4, EC7, EC10, EC12-EC14, EC18, WC2, WC4, WC7, WC10,

WC12-WC14, WC18

R2
BC1-BC8, BC10, BC13, BC16, BC18, BC28, BC43, BC46, EC3, EC4, EC9, EC11,

EC12, WC3, WC4, WC9, WC11, WC12

R3 EC3, EC8, EC10

R4 EC3, EC4, EC8 - EC12, EC14-EC18, WC3, WC4, WC8 - WC12, WC14-WC18

Table 5.12: Elimination of WESW data flow cases based on different recommenda-

tions.

portal which is coupled with a simplified workflow repository where users can store

their private workflows. However, there are no workflow systems having their engines

coupled with engine repository. Therefore, instance layouts which allow that parent

workflow engines and workflow engine repositories are coupled are not considered,

but instance layouts which allow that parent workflow engines and workflow repos-

itories are coupled can be recommended. Based on this, instance layouts having

pEP,REq coupled are not recommended.

R4 - Engine and workflow transfer In special cases it might be preferred to

transfer child engines and workflows via the parent workflow engine, in order to min-

imise bulk data transfer time, but in general it is preferred to transfer them directly

from the repository machine to the machine where the child engine is executed,

since transferring them via the parent workflow engine increases overall overhead

and latency. Therefore, workflow and engine transfer cases that include the parent

workflow engine in their path are not recommended.

Based on these recommendations, data flow cases listed in table 5.12 are ex-

cluded. Therefore, data transfer cases BC9, BC11, BC12, BC17, BC29, BC30,

BC37, BC38, BC47, engine transfer cases EC1, EC5, EC6, and workflow transfer

cases WC1, WC5, WC6 can be recommended. Table 5.13 illustrates all combinations
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(EP,M)

(EP,RE)

(EP,RW) X X X X X X X X X X
(EP,EC)

(M,RE) X X X X X X X X X X X X
(M,RW) X X X X X X X X X X
(M,EC)

(RW,RE) X X X X X X X X X X
(RW,EC) X X
(RE,EC) X X X X X X X X

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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D
at

a 
flo

w

(JP,JC) X X X X X X X
(JP,EC,JC) O* O* O* O* O* O* O* X X X X X X X
(JP,EP,JC) O* O* O* O* O* O* O* X X X X X X X
(JP,M,JC)

(JP,EP,EC,JC) O* O* O* O* O* O* O* O* O* O* O* O* O* O* X X X X X X X X X X X X X X X
(JP,M,EC,JC)

(JP,EP,M,JC)

(JP,EP,M,EC,JC)

O O O O O O O O O O O

O O O O O O O O O O O
(RE,EC) X O X O X X O X O X O X X O X O X O X X O X O X O X X O X X X X X X X X

(RE,M,EC) O O O O O O O O O O O O
(RE,EP,EC)

(RE,M,EP,EC)

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
(RW,EC) X X X X O X O X X X X O X O X X X X O X O X X X X O X O X O O X X O O X

(RW,M,EC) O O O O O O O O O O
(RW,EP,EC) O O

(RW,M,EP,EC)

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

R
es

o
u

rc
e Mediator D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D

Engine Repository S D S D S S D S D S D S S D S D S D S S D S D S D S S D D D D D D D D D
Workflow Repository S S E E S S S S S E E S S S S S E E S S S S S E E S S S S E S S S E S S

Engine execution C C C C C C C C C C C C C C C C C C C C C C C C C C C C D D D D D D D D

Instance 
layout

Type 
layout

δ
M

δ
RE

δ
RW

δ
EC

Bulk data 
path

Bulk data 
staging

Pipelined (k
b
=1) Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa

Not pipelined (kb>1) Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb

Engine 
path

Engine 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Workflow 
path

Workflow 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Resource 
layout

Table 5.13: Proposed WESW structures, data flows, and resource layouts, where

sign X within instance layout show which nodes are coupled in a particular case.

Sign X within data flow means that only the correlated architectural approach can

be implemented, sign O indicates that it is irrelevant which approach is chosen,

while sign O* means the same as O, but it only applies if instance layout defines

node types EC and JC or EP and WE are coupled. Sign Xa and Xb mean that it

is possible to realise both pipelined (Xa) and non pipelined (Xb) bulk data staging

by the given structure, but this affects the performance characteristics as illustrated

in table 5.15 and 5.16. Within resource layout D represents dedicated, C represents

computational, S represents storage, and E represents external machines.
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Figure 5.4: Combinations of recommended representative WESW data flow cases,

where black lines represent which node types are coupled, dashed lines represent

optional couplings, green arrows represent bulk data path layouts, blue arrows rep-

resent engine path layouts, and orange arrows represent workflow path layouts.

of these data flow cases and structure layouts that can implement them. Obviously,

different data flow types can be recommended under different circumstances. Cases

are classified based on the following aspects:

1. Parent workflow jobs
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• (a) If parent workflow jobs are executed locally to the parent workflow engine

(pEP, JP q P h), then bulk data transfer BC29, BC30, and BC47 cannot be

applied, since these explicitly require that pEP, JP q R h.

• (b) If parent workflow jobs are executed remotely to the parent workflow

engine (pEP, JP q R h) then bulk data transfer BC12, BC17, BC38 cannot be

applied, since these explicitly require that pEP, JP q P h.

(b-i) If this is the case and data can be transferred directly to/from the

parent job machine from a third party computational resource, then BC9,

BC11, BC37 can be recommended, since BC29, BC30, BC47 transfer data

via the parent workflow engine that adds extra overhead and latency. (See

performance properties of these transfer cases in section 5.3.3).

(b-ii) If parent workflow jobs are executed remotely to the parent engine

and data can only be transferred to/from the parent job machine via the parent

engine, then BC29, BC30, or BC47 are recommended, since BC9, BC11, BC37

cannot be applied.

2. Child workflow jobs

• (a) Similarly to parent workflow jobs, if child workflow jobs are executed

locally to the child workflow engine (pEC, JCq P h), then bulk data transfer

BC37, BC38, and BC47 cannot be applied, since these explicitly require that

pEC, JCq R h. In these cases EC1 is not recommended, since to utilise a

previously installed workflow engines that are hosted on dedicated machines

may bottleneck data transfer, therefore in ξEC � CoM .

• (b) If child workflow jobs are executed remotely to their workflow engines

(pEC, JCq R h) then bulk data transfer BC11, BC17, BC30 cannot be applied,

since these explicitly require that pEC, JCq P h.
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• (b-i) If this is the case and data can be transferred directly to/from the child

job machine from a third party computational resource, then BC9, BC12,

BC29 can be recommended, because BC37, BC38, BC47 transfer data via the

child workflow engine increasing overhead and latency on bulk data transfer.

(See again performance properties of these transfer cases in section 5.3.3.)

In these cases (BC9, BC12, BC29), it is recommended to use child engines

previously installed on dedicated machines (pRE,ECq P h, ξEC � ExM) and

apply EC1, since in this case bulk data is transferred directly to the child

jobs. Therefore, previously installed child engines will not bottleneck bulk

data transfer.

• (b-ii) If child workflow jobs are executed remotely to the child engine and data

can only be transferred to/from the child job machine via the child engine,

then BC9, BC12, BC29 cannot be applied. Hence, BC37, BC38, BC47 are

recommended. In this case child engines are recommended to be executed on

computational machines (ξEC � CoM) and EC1 is not recommended due to

the same reason as defined in case where child workflow jobs are executed

locally (see case 2/a).

3. Child workflow engines

• (a) If all child workflow engines are relatively small (up to a few megabytes),

the engine repository can be coupled with the mediator (pM,REq P h, ξRE �

DeM) without adding significant overhead resulted by engine transfer. There-

fore, in this case EC5 or EC6 can be recommended.

• (b) If child engines are relatively large (hundreds of megabytes), then it is

recommended to use multiple engine repository nodes hosted on storage ma-

chines (pM,REq R h, ξRE � StM). In this case only EC5 is recommended,

since EC6 would bottleneck engine transfer.
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In special cases (see case 2/b-i) it is recommended to use workflow engines hosted

on dedicated machines where EC1 is recommended independently of engine size. In

this case pRE,ECq P h, ξRE � DeM .

4. Child workflow descriptors

• (a) Child workflow descriptors can be hosted in such repositories where (pJP,

RW q, pEP,RW q R h), in which case

(a-i) if all child workflow descriptors are relatively small (up to a few

megabytes, e.g. only simple XML descriptors that contain the graph structure

and references to jobs), the workflow repository can be coupled with the medi-

ator (pM,RW q P h, ξRW � DeM) without adding significant overhead resulted

by workflow transfer. In this case both WC5 and WC6 can be recommended.

However,

(a-ii) if they are relatively large (hundreds of megabytes, e.g. they also

contain large workflow jobs) it is recommended to have multiple workflow

repositories hosted on storage machines (pM,RW q R h, ξRW � StM).

• (b) The workflow repository can also be coupled with the parent workflow

engine which is represented by pEP,RW q P h and ξRW � ExM .

For the latter two (a-ii and b) only WC5 is recommended, since WC6 would bot-

tleneck workflow transfer in the case of (b) and it cannot be realised in the case of

(a-ii). However in the case when engine repository and child engine execution are

coupled and hosted on dedicated machines pRE,ECq P h, then workflow repository

nodes can also be hosted on these machines pRW,ECq P h, ξRW � DeM , in order

to avoid latency and overhead increase resulted by workflow transfer. In this case,

WC1 is recommended independently of workflow size.
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Cases
3/a,

4/a-i

3/a,

4/a-ii

3/a,

4/b

3/b,

4/a-i

3/b,

4/a-ii

3/b,

4/b

1/a, 2/a PC7 PC2 PC4 PC5 PC1, PC6 PC3

1/a, 2/b-i PC31 PC29, P32 PC30 PC31 PC29, P32 PC30

1/a, 2/b-ii PC21 PC16 PC18 PC19 PC15, PC20 PC17

1/b-i, 2/a PC7 PC2 PC4 PC5 PC1, PC6 PC3

1/b-i, 2/b-i PC31 PC29, P32 PC30 PC31 PC29, P32 PC30

1/b-i, 2/b-ii PC21 PC16 PC18 PC19 PC15, PC20 PC17

1/b-ii, 2/a PC14 PC9 PC11 PC12 PC8, PC13 PC10

1/b-ii, 2/b-i PC35 PC33, PC36 PC34 PC35 PC33, PC36 PC34

1/b-ii, 2/b-ii PC28 PC23 PC25 PC26 PC22, PC27 PC24

Table 5.14: Proposed WESW structure and data flow combinations in different cases

Table 5.14, summarizes which proposed structure and data flow combinations

are recommended in the different cases. Table 5.15 and 5.16 illustrate performance

characteristics of each proposed combination. BC9, BC11, BC12, BC17 all belong

to group BG2; BC29, BC30 belong to BG3; BC37, BC38 belong to BG5; BC47

belongs to BG6; EC1 belongs to EG1; EC5, EC6 belong to EG2; WC1 belongs to

WG1; and WC5, WC6 belong to WG2. Combinations of representative cases are

shown in figure 5.4.
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Proposed Overhead / Latency
Overhead / Latency

scalability

PC1, PC6 we �
rleK

mintr,δREu
� rlwK

mintr,δRW u
Oprle � rlw � 1q

PC2 we � rleK �
rlwK

mintr,δRW u
Oprle � rlw � 1q

PC3 we �
rleK

mintr,δREu
� lwK Oprle � lw � 1q

PC4 we � rleK � lwK Oprle � lw � 1q

PC5 we �
rleK

mintr,δREu
� rlwK Oprle � rlw � 1q

PC7 we � rleK � rlwK Oprle � rlw � 1q

PC8a, PC13a, PC15a, PC20a we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � sbK Oprle � rlw � 1q

PC8b, PC13b, PC15b, PC20b we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � lbK Oprle � rlw � lb � 1q

PC9a, PC16a we � rleK �
rlwK

mintr,δRW u � sbK Oprle � rlw � 1q

PC9b, PC16b we � rleK �
rlwK

mintr,δRW u � lbK Oprle � rlw � lb � 1q

PC10a, PC17a we �
rleK

mintr,δREu
� lwK � sbK Oprle � lw � 1q

PC10b, PC17b we �
rleK

mintr,δREu
� lwK � lbK Oprle � lw � lb � 1q

PC11a, PC18a we � rleK � lwK � sbK Oprle � lw � 1q

PC11b, PC18b we � rleK � lwK � lbK Oprle � lw � lb � 1q

PC12a, PC19a we �
rleK

mintr,δREu
� rlwK � sbK Oprle � rlw � 1q

PC12b, PC19b we �
rleK

mintr,δREu
� rlwK � lbK Oprle � rlw � lb � 1q

PC14a, PC21a we � rleK � rlwK � sbK Oprle � lw � 1q

PC14b, PC21b we � rleK � rlwK � lbK Oprle � lw � lb � 1q

PC22a, PC27a we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � 2sbK Oprle � rlw � 1q

PC22b, PC27b we �
rleK

mintr,δREu
� rlwK

mintr,δRW u � 2lbK Oprle � rlw � lb � 1q

PC23a we � rleK �
rlwK

mintr,δRW u � 2sbK Oprle � rlw � 1q

PC23b we � rleK �
rlwK

mintr,δRW u � 2lbK Oprle � rlw � lb � 1q

PC24a we �
rleK

mintr,δREu
� lwK � 2sbK Oprle � lw � 1q

PC24b we �
rleK

mintr,δREu
� lwK � 2lbK Oprle � lw � lb � 1q

PC25a we � rleK � lwK � 2sbK Oprle � lw � 1q

PC25b we � rleK � lwK � 2lbK Oprle � lw � lb � 1q

PC26a we �
rleK

mintr,δREu
� rlwK � 2sbK Oprle � rlw � 1q

PC26b we �
rleK

mintr,δREu
� rlwK � 2lbK Oprle � rlw � lb � 1q

PC28a we � rleK � rlwK � 2sbK Oprle � lw � 1q

PC28b we � rleK � rlwK � 2lbK Oprle � lw � lbq

PC29 rlwK
mintr,δEC ,δRW u

Oprlwq

PC30 lwK Oplwq

Table 5.15: Performance characteristics of proposed WESW structure and data data

flow combinations part 1/2.
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Proposed Overhead / Latency
Overhead / Latency

scalability

PC31 rlwK Oprlwq

PC32 0 Op0q

PC33a rlwK
mintr,δEC ,δRW u � sbK Oprlw � 1q

PC33b rlwK
mintr,δEC ,δRW u � lbK Oprlw � lbq

PC34a lwK � sbK Oplw � 1q

PC34b lwK � lbK Oplw � lbq

PC35a rlwK � sbK Oprlw � 1q

PC35b rlwK � lbK Oprlw � lbq

PC36a sbK Op1q

PC36b lbK Oplbq

Table 5.16: Performance characteristics of proposed WESW structure and data data

flow combinations part 2/2.

5.4 Existing and proposed WESW solu-

tions

5.4.1 Existing WESW solutions

The Gria based solution that was already introduced in section 4.4 developed within

the SIMDAT project, was connected to Taverna and InforSense KDE workflow sys-

tems in order to support the execution of particular workflows of different kinds

from those systems. In theory, the Gria based approach could be used as a WESW.

Another solution called VLE-WFBus [74, 115, 116] was developed at the Dutch

Virtual Laboratory for e-Science. This solution connects a few popular workflow

engines in order to create a meta-workflow system that allows the composition and

execution of high-level heterogeneous workflows via the Vergil GUI.

The Gria based solution exposes the functionality of workflow engines via gen-

eral frontend Web/Grid services that are invoked by the parent workflow engine.
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Existing solutions Proposed architectures
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(RW,M,EC) O* O* O* O* O* O* O* O* O* O* O* O* O O O O O O O O O O
(RW,EP,EC) O O

(RW,M,EP,EC)

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

R
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o
u

rc
e Mediator D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D

Engine Repository D D D D D D D D D D D D S D S D S S D S D S D S S D S D S D S S D S D S D S S D D D D D D D D D
Workflow Repository E/D E/D E/D E/D E/D E/D E/D E/D E/D E/D E/D E/D S S E E S S S S S E E S S S S S E E S S S S S E E S S S S E S S S E S S

Engine execution D D D D D D D D D D D D C C C C C C C C C C C C C C C C C C C C C C C C C C C C D D D D D D D D
Auxiliary tool level

Workflow engine level X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

In
te

rf
a

ce Backend
CLI O O O O O O X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
API X X X X X X O O O O O O

General X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
Specific
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Instance 
layout

Type 
layout

δ
M

δ
RE

δ
RW

δ
EC

Bulk data 
path

Bulk data 
staging

Pipelined (k
b
=1) Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa Xa

Not pipelined (kb>1) Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb Xb

Engine 
path

Engine 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Workflow 
path

Workflow 
staging

Pipelined (k
d
>1)

Not pipelined (k
d
=1)

Resource 
layout

In
te

g
r.

Subject of 
integration

Frontend

Table 5.17: Existing and proposed WESW architectures, where E{D represents that

the workflow repository nodes can be executed on dedicated (if pEP,RW q P h) as

well as on external machines (if pEP,RW q R h) and all other signs have the same

purpose as in the case of table 5.13.

Workflow engines can be connected to the Gria service via their API, while WFBus

also supports workflow engines with CLI. The subject of integration in both solu-

tions is the workflow engine of the parent workflow system. On the one hand, both

solutions utilize child engines that are deployed and executed on a dedicated ma-

chine. This is represented by instance layouts which have RE and EC coupled. On

the other hand, none of the existing solutions provide workflow repositories. Hence,

the workflow repository either can be hosted by the parent workflow engine or an

external, decoupled workflow repository can be used. Based on these, two instance
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Figure 5.5: Combinations of possible Gria and WFBus based structures and data

flow cases, where color coded arrows and lines represent the same concepts as in the

case of figure 5.4.

layouts can be realised by the existing solutions: h � tpEP,RW q, pRE,ECqu and

h � pRE,ECq. In terms of type layout, in the case of both solutions the media-

tor is hosted on a single machine, the child engines and workflow repositories can

be hosted by multiple machines. Note that, since RE and EC are always coupled

δEC � δRE. Since child engines are previously installed, they do not have to be trans-

ferred between machines. Hence, engine transfer path type is pRE,ECq and data

staging is irrelevant. (See lemma A.3.) Workflows can be either transferred from the

workflow repository directly, which is represented by engine path type pRW,ECq,

or they can be transferred via the mediator, which is represented by path type

pRW,M,ECq. The latter cannot be applied if an external workflow repository is

used, since this is not supported by the mediators of the existing solutions. Bulk

data is transferred via the mediator by default, but it is possible to realise further

bulk data path types by passing references via the mediator if this is supported by

the engines and/or the jobs. Bulk data path type pJP, JCq can be applied if the

parent and the child workflow jobs can directly communicate (e.g via GridFTP). In

this case bulk data staging is irrelevant. pJP,EC, JCq can be applied if the child

workflow engine can directly gather the bulk data from the parent workflow job.

From performance point of view, this path type is equivalent with pJP, JCq if the

child job is executed locally to the child engine. pJP,EP, JCq can be applied if

the child workflow job can directly gather the bulk data from the parent workflow

182



5.4. Existing and proposed WESW solutions WESW

Gria, WFBus

Architecture
Overhead

Overhead

scalability
Latency

Latency

scalability

v1 rlwK
mintr,δRW ,δECu

O prlwq rlwK
mintr,δRW ,δECu

O prlwq

v2a

rlwK
mintr,δRW ,δECu

�

� rpsb�lbqK
mintr,δJCu

� lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

� rsbK
mintr,δECu

O prlwq

v2b

rlwK
mintr,δRW ,δECu

�

�2 rlbK
mintr,δJCu

� lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

� rlbK
mintr,δECu

Oprlw � rlbq

v3a
rlwK

mintr,δRW ,δECu
�

�sbK
O prlwq

rlwK
mintr,δRW ,δECu

�

�sbK
O prlwq

v3b
rlwK

mintr,δRW ,δECu
�

�lbK
Oprlw � lbq

rlwK
mintr,δRW ,δECu

�

�lbK
Oprlw � lbq

v4a

rlwK
mintr,δRW ,δECu

�

�sbK�

� rpsb�lbqK
mintr,δJCu

� lbK

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�sbK �
rsbK

mintr,δECu

O prlwq

v4b

rlwK
mintr,δRW ,δECu

�

�2 rlbK
mintr,δJCu

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�lbK �
rlbK

mintr,δECu

Oprlw � rlbq

v5

rlwK
mintr,δRW ,δECu

�

�2rlbK�

� rlbK
mintr,δJCu

� lbK

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�2rlbK
Oprlw � rlbq

v6

rlwK
mintr,δRW ,δECu

�

�2rlbK�

� rlbK
mintr,δJCu

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�lbK � 2rlbK
Oprlw � rlbq

Table 5.18: Performance characteristics of the Gria and WFBus-VRE Service based

architectures, in the case when pEC, JCq, pEP, JP q R h.

engine. This path type is equivalent with pJP, JCq if the parent job is executed

locally to the parent engine. pJP,EP,EC, JCq can be applied if the workflow en-

gines can directly communicate. This path type is equivalent with pJP, JCq if both

jobs are executed locally to their workflow engines, equivalent with pJP,EC, JCq if

the child job is executed locally, and equivalent with pJP,EP, JCq if the parent job

is executed locally. pJP,M,EC, JCq can be applied if the parent job can directly

communicate with the mediator. This path type is equivalent with pJP,M, JCq if

the child job is executed locally. pJP,EP,M,EC, JCq can always be applied. This

path type is equivalent with pJP,M,EC, JCq if the parent job is executed locally.

Bulk data path type pJP,M, JCq and pJP,EP,M, JCq cannot be applied if the
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Gria, WFBus

Architecture
Overhead

Overhead

scalability
Latency

Latency

scalability

v1, v3a, v3b rlwK
mintr,δRW ,δECu

O prlwq rlwK
mintr,δRW ,δECu

O prlwq

v2a, v4a

rlwK
mintr,δRW ,δECu

�

� rpsb�lbqK
mintr,δJCu

� lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

� rsbK
mintr,δECu

O prlwq

v2b, v4b

rlwK
mintr,δRW ,δECu

�

�2 rlbK
mintr,δJCu

� lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

� rlbK
mintr,δECu

Oprlw � rlbq

v5, v6

rlwK
mintr,δRW ,δECu

�

�2rlbK�

� rlbK
mintr,δJCu

� lbK

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�2rlbK
Oprlw � rlbq

Table 5.19: Performance characteristics of the Gria and WFBus-VRE Service based

architectures, in the case when pEC, JCq R h^ pEP, JP q P h.

Gria, WFBus

Architecture
Overhead

Overhead

scalability
Latency

Latency

scalability

v1, v2a, v2b

rlwK
mintr,δRW ,δECu

�

� rlbK
mintr,δJCu

� lbK
Oprlw � rlbq rlwK

mintr,δRW ,δECu
O prlwq

v3a, v4a

rlwK
mintr,δRW ,δECu

�

�sbK�

� rlbK
mintr,δJCu

� lbK

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�sbK
O prlwq

v3b, v4b

rlwK
mintr,δRW ,δECu

�

� rlbK
mintr,δJCu

Oprlw � rlbq
rlwK

mintr,δRW ,δECu
�

�lbK
Oprlw � lbq

v5
rlwK

mintr,δRW ,δECu
�

�2rlbK � lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

�rlbK
Oprlw � rlbq

v6
rlwK

mintr,δRW ,δECu
�

�2rlbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

�rlbK � lbK
Oprlw � rlbq

Table 5.20: Performance characteristics of the Gria and WFBus-VRE Service based

architectures, in the case when pEC, JCq P h^ pEP, JP q R h.

child job is executed remotely, because these are not supported by the mediators

of the existing solutions. In the case of path types pJP,EC, JCq, pJP,EP, JCq,

and pJP,EP,EC, JCq pipelined bulk data staging can be applied if this is sup-

ported by the engines involved in the transfer. In the case of pJP,M,EC, JCq and

pJP,EP,M,EC, JCq data staging is not pipelined, since it is not supported by the

mediators.
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Gria, WFBus

Architecture
Overhead

Overhead

scalability
Latency

Latency

scalability

v1, v2a, v3a, v4a,

v2b,v3b, v4b

rlwK
mintr,δRW ,δECu

�

� rlbK
mintr,δJCu

� lbK
Oprlw � rlbq rlwK

mintr,δRW ,δECu
O prlwq

v5, v6
rlwK

mintr,δRW ,δECu
�

�2rlbK � lbK
Oprlw � rlbq

rlwK
mintr,δRW ,δECu

�

�rlbK
Oprlw � rlbq

Table 5.21: Performance characteristics of the Gria and WFBus-VRE Service based

architectures, in the case when pEC, JCq, pEP, JP q P h.

All architectures that can be realised by the existing solutions are included in ta-

ble 5.17. Combinations of the different structures and representative data flow cases

are illustrated in figure 5.5 and performance characteristics of theses architectures

are described in table 5.18-5.21.

5.4.2 Proposed WESW solutions

WESW architecture analysis (see section 5.3) identified several architectures that

can be proposed in different cases. Recommended non-performance related archi-

tectural aspects (interface and integration) are identified in section 5.3.1. According

to this section recommended frontend and backend interfaces are the same as in the

case of WESAs: generic and CLI respectively. Recommended subject of integration

is the workflow engine of the parent workflow since this enables both dynamic and

semi-dynamic invocation. Numerous proposed structure and data flow combina-

tions are identified in section 5.3.5. These are specified in table 5.13. Based on the

properties of the parent and child workflow and the child workflow engine 54 differ-

ent cases were identified and described in this section. Table 5.14 summarises which

structure and data flow combinations are recommended in each case. Based on these

all proposed architectures are defined in table 5.17 along with the architectures that

can be realised by the Gria service and WFBus based solutions. The recommended

WESW solution should realise one or more of the proposed architectures depending
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on what cases it will be used in.

5.4.3 Comparison of existing and proposed

WESW solutions

Just like in the case of WESAs, the main difference between the proposed and exist-

ing architectures lies in their structure. While the Gria and WFBus based architec-

tures invoke previously installed workflow engines in a service oriented manner, the

proposed solutions also support submitting the workflow engines to computational

Grid resources.

Overhead on bulk data transfer is the most important indicator of performance.

This performance property is strongly affected by where the parent and child work-

flow jobs are executed and whether they transfer data directly. These properties are

described and detailed in paragraph 1. Parent workflow jobs and 2. Child workflow

jobs in section 5.3.5. According to these:

• case 1/a and 2/a represent (respectively) that the parent and child jobs are

executed locally to their engines;

• case 1/b-i and 2/b-i represent (respectively) that the parent and child jobs are

executed remotely to their engines and data can be transferred to/from these

jobs without transferring data via their engines; and

• case 1/b-ii and 2/b-ii represent (respectively) that the parent and child jobs are

executed remotely to their engines and data can only be transferred to/from

these jobs via their engines.

Based on these, nine different cases were identified. The comparison of overhead

scalability of the proposed end existing architectures can be seen in table 5.22. The
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Case
Proposed

architecture

Ovh. scl.

Pip

Ovh. scl

 Pip

Gria, WFBus

architecture

Ovh. scl.

Pip

Ovh. scl

 Pip

1/a, 2/a PC1-PC7 Op0q Op0q v1-v6 O prlbq O prlbq

1/a, 2/b-i PC29-P32 Op0q Op0q v1,v3 Op0q Op0q

1/a, 2/b-ii PC15-P21 O p1q O plbq v2,v4-v6 O prlbq O prlbq

1/b-i, 2/a PC1-PC7 Op0q Op0q v1, v2, v5 O prlbq O prlbq

1/b-i, 2/b-i PC29-P32 Op0q Op0q v1 Op0q Op0q

1/b-i, 2/b-ii PC15-P21 O p1q O plbq v2, v5 O prlbq O prlbq

1/b-ii, 2/a PC8-PC14 O p1q O plbq v3, v4, v6 O prlbq O prlbq

1/b-ii, 2/b-i PC33-P36 O p1q O plbq v3 O p1q O plbq

1/b-ii, 2/b-ii PC22-P28 O p1q O plbq v4, v6 O prlbq O prlbq

Table 5.22: Bulk data transfer overhead scalability of the proposed and existing

WESW architectures in different cases, where Pip represents pipelined and  Pip

represents non pipelined bulk data staging.

table also describes which architectures are proposed in the different cases and also

which architectures of the existing solutions are recommended in those cases.

In case the case of 2/b-i proposed architectures invoke previously installed work-

flow engines. This means that overhead and latency are not increased by the transfer

time of the workflow engine. In this case the overall overhead and latency of the

existing and proposed solutions are identical.

In all other cases, proposed architectures submit workflow engines to computa-

tional resources for execution. This increases overhead with engine transfer time,

but provides lower overhead on bulk data transfer. In the case of the proposed

solutions, overhead on bulk data staging is either 0 or constant (Op1q) if pipelined

bulk data transfer is possible. It is linear with bulk data amount, but indepen-

dent of the number of simultaneous requests (Oplbq) if pipelined bulk data staging

is not possible. In the case of the existing solutions overhead on bulk data trans-

fer is linear with both bulk data amount and the number of simultaneous requests

(Oprlbq). Therefore, proposed solutions provide significantly lower overall overhead

and latency than the existing solutions especially in the case of large numbers of
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simultaneous requests. For detailed performance figures see table 5.15, 5.16 5.18,

5.19, 5.20 and 5.21.

The performance improvements of proposed architectures in the case of WESWs

are similar to the WESA performance improvements described in section 4.4.3, where

graphical representation is also provided.

In addition, in the case of the Gria based architectures engines are accessed via

APIs, which means that programming knowledge is required to add a new workflow

engine to the system. Engines can be connected to WFBus both via CLI or API. In

the case of the proposed concepts, engines are connected only via CLI. This means

that user level knowledge is sufficient to add a new engine to the system and also

means that the engine can be submitted to computational resources.

5.5 Implementation

Several proposed WESW architectures were implemented based on GEMLCA and P-

GRADE. The implementation is partially based on the concept of DASW and WESA

implementation described in section 3.5 and 3.5, and enables P-GRADE workflows

(as parent workflows) to embed and execute Kepler, Moteur, Taverna, and Triana

workflows (as child workflows). Note that P-GRADE to be the parent workflow

system was chosen, because it can directly interface with GEMLCA. GIB extension

(see description in section 4.5) of GEMLCA is used to enable the deployment and

execution of workflows via GEMLCA.

The GEMLCA client is integrated with the workflow engine and legacy appli-

cations executed by GEMLCA are represented as P-GRADE jobs. Figure 5.6 il-

lustrates how a Triana workflow represented as a job can be parametrised in the

P-GRADE workflow editor. First, the Grid and the GEMLCA service that hosts
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Figure 5.6: Parametrisation of a Triana child workflow in a P-GRADE parent work-

flow

the desired workflow have to be specified. Next, the workflow (legacy code) has to

be selected and the computational resource (site) where it will be executed. After

this, a parameter table pops up, where the user can specify the workflow arguments.

Figure 5.7 illustrates how PC26 is implemented by GEMLCA based WESW so-

lution. Similarly to the GEMLCA based WESA implementation, in this solution

the GEMLCA service realises the mediator and also the workflow repository and a

GridFTP storage machine realises the engine repository. This means that the medi-

ator is coupled with the workflow repository and the engine repository is decoupled.

When the job which represents the child workflow is to be executed, the P-GRADE

engine gathers the bulk data from the previous job in the P-GRADE workflow.

189



5.5. Implementation WESW

  

EngineWrapper Sc. 1

EngineWrapper Sc. n

EngineWrapper Sc. 2

...

WF Repo. Application repo.

F
ro

nt
e

nd

GEMLCA service

B
us

in
e

ss
 L

og
ic

Engine 1

Engine 2

Engine 3

Storage
Machine

RE

WF 1

...

WF m

WF 2

P-GRADE workflow system

Engine A GEMLCA client

P-GRADE Job

EngineWrapper
Script 2

Child Engine

Child Job

1.
 b

u
lk

 d
a

ta
  

   
 

4. bulk data

   7.  b u
l k     

       d
at a     

M RWJP

EP

JC

2.  request            
WF execution          

    3. submit   
       including WF EC

5. request
    engine

       

    6. transfer   
    engine

Figure 5.7: Implementation of WESW PC26 based on GEMLCA, where black ar-

rows represent control data, blue arrow represents engine transfer, yellow arrow

represents workflow transfer, and green arrows represent bulk data transfer.

(This is not illustrated in the figure.) Next the P-GRADE engine passes a request

to the local GEMLCA client. This request includes all information specified in the

parameter table shown in figure 5.6 and the following steps are the same as in the

case of the GEMLCA based WESA implementation described in section 4.5. The

solution can also implement PC24 if the child workflow is provided by the P-GRADE

parent workflow engine.
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Figure 5.8: Implementation of WESW PC5 based on GEMLCA

If it is possible for the child job to gather data directly from the machine of the

parent job (i.e. using GridFTP), only a reference to the bulk data should be passed

via GEMLCA and bulk data should be transferred directly between the parent and

child jobs. See illustration on figure 5.8. If this is the case, then PC5 (child workflow
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is in GEMLCA application repository) and PC3 (child workflow is provided by the

parent workflow) can be implemented as well. Note that this approach works only if

the parent workflow is executed on such Grid (i.e. the UK NGS), where data is not

erased automatically after job execution, therefore, it can be gathered later on by

the child workflow. Similarly, if the child engine can gather the bulk directly data

from the parent job using a reference, then PC19 can also be implemented.
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Figure 5.9: Implementation of WESW PC31 based on GEMLCA

As it was described in section 4.5 the four workflow engines were also deployed

on dedicated machines. If the child job can gather bulk data from the machine of

the parent job then PC31 (if workflow is in GEMLCA application repository) and

PC30 (workflow is provided by the parent workflow) can also be implemented. See

illustration in figure 5.9.

The solution was tested on both Globus and gLite with the same cases described

in section 4.5.

5.6 Summary

This chapter proposed 36 WESW architectures in order to realise workflow interop-

erability at the level of engine integration. Architectures were selected based on the

mathematical model introduced in chapter 2. The analysis primarily focuses on the
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performance characteristics of the different architectures, but other properties such

as generality and extendibility were also considered.

Two existing solutions the Gria service based approach and VLE-WFBus realise

workflow interoperability at the level of workflow engines. They are both based

on the same concept, where workflow engines are previously deployed on dedicated

machines and accessed via a centralised service, which may bottleneck bulk data

transfer in the case of simultaneous requests. This can be avoided only in special

cases.

Similarly to the proposed WESA architectures, the novelty of the proposed

WESW architectures is that engines are distributed across the available compu-

tational machines provided by the Grid. Performance characteristics of a WESW

architecture are strongly affected by where the parent and child workflow jobs are

executed and whether they can exchange data directly. The analysis recommends

different architectures under different circumstances considering these and further

aspects.

The P-GRADE and GEMLCA based reference implementation realises 7 of the

proposed architectures. The GEMLCA based WESW solution has the same limi-

tations as the GEMLCA based WESA solution with the addition that direct data

transfer between parent and child workflow jobs can only be achieved if they sup-

port the same protocol (i.e. GridFTP) for transferring data. This solution is general

and easily extendible for the same reasons as the similar GEMCLA based WESA

reference implementations.
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The contribution this thesis is aiming to make to scientific knowledge lies in its pro-

posed architectures in two areas: executing heterogeneous workflows and accessing

heterogeneous data resources.

On the one hand, existing workflow systems are based on different technologies.

Therefore, to achieve interoperability between their workflows at any level is a chal-

lenging task. In spite of the fact that there is a clear demand for interoperable

workflows, since it enables scientists to share workflows, build on top of the existing

work of others, and to create multi-disciplinary workflows, there are only limited,

ad-hoc workflow interoperability solutions. These solutions realise workflow interop-

erability between a small set of workflow systems and do not consider performance

issues that arise in the case of large-scale scientific workflows. Scientific workflows

are typically computation and/or data intensive and are executed in a distributed

environment to speed up their execution time. Therefore, their performance is a key

issue. Existing interoperability solutions bottleneck the communication between

workflows in most scenarios dramatically increasing execution time.

On the other hand, even though most scientific computational experiments are

based on data that reside in databases, few have a very limited support to access

databases and other types of data resources. Therefore, there is a demand for a

solution that provides access to a large set of data resources. If such a solution is
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general, in the sense that it can be adopted by several workflow systems, then it

also enables workflows of different systems to access the same data resources and

therefore interoperate at data level. For the same reasons as described above, the

performance characteristics of such a solution are inevitably important. Although

in terms of functionality, there are solutions which could be adopted by workflow

systems for this purpose, they provide poor performance. This is the reason why

they did not gain wide acceptance by the scientific workflow community.

The main objective of this thesis is to propose architectures for two major prob-

lems of currently existing workflow systems: workflow interoperability at the level of

workflow engines and data access. It proposes a set of architectures to realise het-

erogeneous data access solutions and to realise heterogeneous workflow execution

solutions. The primary goal was to investigate how such solutions can be imple-

mented and integrated with workflow systems. The secondary goal was to analyse

how such solutions can be implemented and utilised by single applications. Based

on these the following four areas were identified:

• DASG heterogeneous Data Access Solutions for Grid applications

• DASW heterogeneous Data Access Solutions for Workflows

• WESA heterogeneous Workflow Execution Solutions for Applications

• WESW heterogeneous Workflow Execution Solutions for Workflows - work-

flow nesting

In the case of both data access solutions and workflow execution solutions it was

important to distinguish between whether the access/execution solution is provided

for applications or workflows. The reason for that is that workflows are far more

complex then applications executed on a single machine. In many cases workflows
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are distributed and their execution is controlled by a remote workflow engine. This

can dramatically increase the complexity of the problem.

The mathematical model designed for analysing the different architectures and

their properties, existing and proposed solutions is described in chapter 2. In or-

der to clearly show the difference in performance of the compared architectures,

they have to be analysed based on the same network environment. Although, in

real life machines and the network that connects them have different performance

characteristics, the mathematical model used for analysing the different architec-

tures assumes an idealised homogeneous network where all machines are connected

via a full-duplex network with constant bandwidth. Axioms of this homogeneous

network can be found in section 2.3.2. In a real life scenario available bandwidth

changes dynamically with data traffic generated by third party machines and soft-

ware. Therefore, modelling such a heterogeneous network dramatically increases the

complexity of the analysis and involves several unknown variables. Analysis based

on a heterogeneous network environment or real life measurements can be covered

by future work, but this is out of the scope of this thesis.

The model provides concepts for defining different architectures including the

distribution of different software components between the available machines and

data transfer between these software components. It also provides a set of functions

to analyse the performance characteristics of the architectures.

Performance of the different architectures are compared based on a set of ana-

lytical scenarios. A scenario not only defines the performance related properties of

an architecture, but it also defines the number and size of the different data-sets

that need to be exchanged between the different software components. In each case

the set of analytical scenarios were chosen based on the following principles. An

analytical scenario: has to be suitable to indicate the performance differences of the

different architectures; has to be relevant in the sense that it has to cover typical
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Area Proposed architecture sets Implemented architecture sets

DASG 2 1

DASW 14 1

WESA 18 6

WESW 36 7

Table 5.23: Number of proposed and implemented architecture sets in different areas

user scenarios; and has to be simple enough for evaluation within the scope of this

thesis. The selected analytical scenarios on which the analysis is based fulfil the

above requirements. Note that it is not aimed by this thesis to analyse the different

architectures based on specific scenarios. This can be covered by future work using

a similar approach presented in the case of selected analytical scenarios.

This thesis proposes 70 disjunctive sets of architectures: 2 in the case of DASGs

(heterogeneous Data Access Solutions provided for Grid applications); 14 in the

case of DASWs (heterogeneous Data Access Solutions provided for Workflows); 18

in the case of WESAs (heterogeneous Workflow Execution Solutions provided for

Applications); and 36 in the case of WESWs (heterogeneous Workflow Execution

Solutions provided for Workflows - workflow nesting) See illustration in table 5.23.

The key novelty in the case of most proposed architectures is that computational

and storage machines provided by the Grid are utilised in order to divide the load of

the different software components. This can be achieved by dynamically distributing

these software components between the available machines. This way highly scalable

architectures can be realised that deliver data between these components with low

overhead. Dynamically distributing software components on the Grid requires that

the software dependencies of the given component are fulfilled on the computational

machine where it is executed. If this is not provided, software dependencies have to

be statically linked.
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Backend software components are data resource clients (i.e. MySQL client, SRB

client, GridFTP client, etc.) in the case of DASGs and DASWs and workflow en-

gines (i.e. MOTEUR engine, Taverna engine, Triana Engine) in the case of WESAs

and WESWs. All proposed architectures are easily extendible thanks to the pro-

posed backend interfaces which enable the extension of the available backend com-

ponents via CLI (Command Line Interface). Since this approach does not connect

the backend software components via API (Application Programming Interface) no

programming skills are needed, user level understanding of the given backend is suf-

ficient. The limitation of this approach is that it can be used only for data resource

clients and workflow engines that provide a CLI. However, in most cases this is

provided.

All proposed architectures are generic since the proposed frontends do not restrict

the type and number of parameters that can be passed to the desired backend.

Since these parameters have to be fed to the backend component as command line

parameters, they have to be passed either as files or as command line arguments.

Note that this limitation does not mean that all data has to be passed this way to

the backend component. For instance, if a workflow engine can gather information

from a web service, the endpoint reference can be passed to the engine via its CLI,

and the engine can gather any type of data from the given web service.

Since architectures are proposed based on a theoretical methodology, it was also

important to demonstrate that the proposed concepts are valid and possible to

implement. 15 of the proposed architecture sets were implemented based on the

GEMLCA application repository and submitter: 1 in the case of DASGs; 1 in the

case of DASWs; 6 in the case of WESAs; and 7 in the case of WESWs. These

numbers are also illustrated in table 5.23. Application deployment in GEMLCA

is straightforward, it can be performed using the graphical user interface of the

GEMLCA administrator portlet. This only requires the definition of the CLI of the
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given application (data resource client in the case of DASGs and DASWs or workflow

engine in the case of WESAs and WESWs) and specification how and where it can

be executed. In the case of DASGs and DASWs, a MySQL client, while in the

case of WESAs and WESWs, Taverna, Triana, Kepler, and MOTEUR workflow

engines were deployed in GEMLCA. Currently GEMLCA supports execution on

gLite, GT2 and GT4 based Grids. However, thanks to its modular architecture

this can be simply extended by adding further submitter plugins to GEMLCA.

Since GEMCLA is based on a command line approach, execution monitoring is only

possible via the standard output and error messages of the running applications.

Partially based on the presented work related to workflow execution and interop-

erability (WESAs and WESWs), the European Union FP7 funded SHIWA project

started on the 1st of July 2010 and lasts two years. Its main goal is to leverage

existing workflow based solutions and enable workflow interoperability at different

levels. Fine-grained approach is aiming to realise language level interoperability by

defining an intermediate workflow representation that can be used for translation

of workflows across different workflow systems. Coarse-grained approach is aim-

ing to realise engine level interoperability, partially based on the concepts and the

GEMCLA based reference implementations presented in this thesis.

Within the scope of the SHIWA project, the GEMLCA based workflow execution

solutions will be extended with the support of further workflow systems both at

parent and child workflow side. It will also be extended with a functionality rich

workflow repository that will enable scientists to upload and share their workflows,

browse and download workflows of others. These solutions will be used and tested

by the SHIWA user community in real user scenarios. Results and limitations will be

published in forthcoming papers. Although the problem of accessing heterogeneous

data resources is not in the main focus of SHIWA, it is an important issue that has

to be addressed. The proposed data access solutions are available for the users of
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the NGS via the NGS-PGRADE portal, their concept will be published in the near

future.

Contributions of this thesis are aiming to ease the work of scientists and the work-

flow community. The presented mathematical model makes it possible to analyse a

wast range of possibilities and identify optimal architectures. Reference implemen-

tations show that the proposed concepts are valid and possible to realise. We believe

that the presented work will help scientists to exploit the potential of workflows and

Grids and will enable the collaboration of the scientific community to address grand

challenges that were not solved before.
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Dissemination of the research

findings

An essential component of the research is the dissemination of its findings. Five

papers have been published so far in this topic and further journal articles will be

published summarizing the findings of this research. Furthermore, partially based

on the presented work related to workflow execution and interoperability (WESAs

and WESWs), the European Union FP7 funded SHIWA project started on the 1st

of July 2010 and lasts two years. Its main goal is to leverage existing workflow based

solutions and enable workflow interoperability at different levels.
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Appendix A

Proofs

Definition A.1 (Structure generated by an instance layout)

Let γI : LIpT q Ñ Gr be a function that maps a structure to any instance layout,

where the structure contains all couplings defined by a particular instance layout

as:

γIphq :�
r¤
i�1

tpϕipt1q, ϕipt2qq P N 2
i }pt1, t2q P hqu (A.1)

Note that since, @i P r1..rs : ϕi is a bijection between T and Ni and h is an

equivalence relation over T , tpϕipt1q, ϕipt2qq P N 2
i }pt1, t2q P hqu is also an equivalence

relation over Ni. Furthermore, since these equivalence relations are defined over

distinct sets, their union (γIphq) is also an equivalence relation over N , and as such

it is a structure over N , also meaning that γIphq P Gr. Based on definition 2.11,

@r P N�, h P LIpT q : γIphq implements h.

Definition A.2 (Structure generated by a type layout)

Let γT : LT pT q Ñ G � be a function that maps a structure to any type layout. The

structure contains all couplings defined by a particular type layout as:

γT pδq :�
¤
tPT
tpϕiptq, ϕjptqq P N 2

t }i, j P r1..rs ^ i � j mod δtu. (A.2)
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Note that @t P T : tpϕiptq, ϕjptqq P N 2
t }i, j P r1..rs^ i � j mod δtu is an equivalence

relation over Nt. Moreover, since these are distinct sets, γT phq is also an equivalence

relation, and as such it is a structure over N , also meaning that γT phq P Gr. Based

on definition 2.13, @r P N�, δ P LT pT q : γT pδq implements δ.

Lemma A.1 (Structure layout implementation)

Having h P LIpT q, δ P LT pT q, the following statement is true:

@pt1, t2q P h : δt1 � δt2 ñ DG P Gr that implements structure layout ph, δq (A.3)

Proof G implements ph, δq if and only if it implements both h and δ. (See defini-

tion 2.15.) According to definition 2.11 and 2.13 G implements both h and δ if and

only if:

@i P r1..rs, pt1, t2q P T 2 : pt1, t2q P hô pϕipt1q, ϕipt2qq P G, and (a)

@i, j P r1..rs, t P T : i � j mod δt ô pϕiptq, ϕjptqq P G. (b)

+
(A.4)

Let GI :� γIphq, GT :� γT pδq, and G :� GI

�
GT . Note that GI implements h

and GT implements δ based on their definition. First, by applying mathematical

induction, it is showed that:

@i, j P r1..rs, t1, t2 P T :

pϕipt1q, ϕjpt2qq P Gñ @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI

(A.5)

Since both GI and GT are symmetric and reflexive, GI

�
GT is symmetric and

reflexive as well. This implies that GI

�
GT is the transitive closure of GI

�
GT ,

because the transitive closure of a symmetric, reflexive relation is symmetric and

reflexive. The transitive closure of G equals to its connectivity relation which can

be generated as:

G �

|E0|¤
u�0

Eu, where (A.6)

E0 :� GI

¤
GT , and @u P N� : Eu :� Eu�1

¤
pEu�1 � E0q . (A.7)
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In the case of E0 the following is always true:

@i, j P r1..rs, t1, t2 P T : pϕipt1q, ϕjpt2qq P E0 ñ i � j _ t1 � t2 (A.8)

pϕipt1q, ϕjpt2qq P E0 ñ @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI (A.9)

Statement A.8 is true, since @i, j P r1..rs, t1, t2 P T 1 : pϕipt1q, ϕjpt2qq P GI ñ i �

j ^ pϕipt1q, ϕjpt2qq P GT ñ t1 � t2 meaning that GI does not define couplings

between the nodes of different instances and GT does not define couplings between

the nodes of different node types. This implies statement A.9. Because, if i � j, then

pϕipt1q, ϕipt2qq P GI ô @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI based on definition A.1.

If t1 � t2, then @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI is true, because GI is reflexive.

Assume that @v P r0..us:

@i, j P r1..rs, t1, t2 P T :

pϕipt1q, ϕjpt2qq P Ev ñ @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI .
(A.10)

Based on statement A.7:

@i, j P r1..rs, t1, t2 P T :pϕipt1q, ϕjpt2qq P Eu�1 ñ

pϕipt1q, ϕjpt2qq P Eu _ pϕipt1q, ϕjpt2qq P Eu � Eo

(A.11)

If pϕipt1q, ϕjpt2qq P Eu then based on assumption A.10 @m P r1..rs : pϕmpt1q, ϕmpt2qq P

GI . If pϕipt1q, ϕjpt2qq P Eu � Eo then based on the definition of the composition of

binary relations:

Dk P r1..rs, t3 P T : pϕipt1q, ϕkpt3qq P Eu ^ pϕkpt3q, ϕjpt2qq P E0 (A.12)

which implies that:

@m P r1..rs : pϕmpt1q, ϕmpt3qq, pϕmpt3q, ϕmpt2qq P GI ñ (A.13)

ñ @m P r1..rs : pϕmpt1q, ϕmpt2qq P GI , (A.14)

because GI is transitive. Having these, it can be stated that statement A.5 is always

true, which implies that:

@i P r1..rs, t1, t2 P T : pϕipt1q, ϕipt2qq P Gô pϕipt1q, ϕipt2qq P GI . (A.15)
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This means that G always implements h. Next it is showed under what conditions

G implements δ. Because of statement A.5 and the fact that G is transitive:

@i, j P r1..rs, t1, t2 P T :pϕipt1q, ϕjpt2qq P Gñ

ñ pϕipt1q, ϕjpt1qq, pϕipt2q, ϕjpt2qq P GT

(A.16)

Based on definition A.2, the followings must be true:

pϕipt1q, ϕjpt1qq P GT ô i � j mod δt1 (A.17)

pϕipt2q, ϕjpt2qq P GT ô i � j mod δt2 (A.18)

These are ensured in the following two cases:

δt1 , δt2 ¯ r ñ pi � j mod δt1 ô i � j mod δt2q (A.19)

δt1 � δt2 ñ pi � j mod δt1 ô i � j mod δt2q (A.20)

But they are false in any other case:

δt1 � δt2 ^ δt2   r ñ Di, j P r1..rs : i � j mod δt1 ^ i � j mod δt2 (A.21)

δt1 � δt2 ^ δt1   r ñ Di, j P r1..rs : i � j mod δt1 ^ i � j mod δt2 (A.22)

This means that G implements δ if and only if @t1, t2 P T : δt1 , δt2 ¡ r _ δt1 � δt2 .

Based on these, we can conclude that statement A.4 is always true independently

from r. �

Lemma A.2 (Time of transferring a byte array sequence via a path *)

By applying mathematical induction based on definition 2.26, it can be proven that

time of transferring byte array sequence px1, x2, ..., xkq via path p � pn0, n1, ..., nmq

equals to:
m̧

j�1

τeps, pnj�1, njqq � pk � 1q
m

max
j�1

τeps, pnj�1, njqq. (A.23)
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Proof Definition 2.26 defines when a byte array can be transferred between two

neighbouring nodes of the node sequence and definition 2.45 defines how much

time it takes to transfer a byte array between any two nodes. Based on these,

first, x1 is transferred from n0 to n1, that takes τepλpx1q, pno, n1qq time. Than x1

is transferred from n1 to n2, this takes τepλpx1q, pn1, n2qq time. Next, it is trans-

ferred to n3, n4, and so on, until it reaches nm. Thus, transferring x1 to nj takes:°j
u�1 τepλpx1q, pnu�1, nuqq time pj P r1..msq. As soon as x1 is transferred to n1, the

transfer of x2 from n0 to n1 starts. When it is finished, x3 is transferred from n0 to

n1, and so on. In general, it takes
°i
u�1 τepλpxuq, pn0, n1qq time, for xi to reach n1

pi P r1..ksq.

However, the question is how much time does it take to transfer the whole byte

array sequence from n0 to nm, which is the same as the time required from start for

xk to reach nm. To calculate this value, let A � rai,jsm�k (ai,j P R�0 ) be a matrix,

where ai,j shows how much time is needed from start for xi to reach nj. Based

on the above, the first row and the first column of this matrix can be constructed

respectively as:

@j P r1..ks : a1,j �
j̧

u�1

τepλpx1q, pnu�1, nuqq and (A.24)

@i P r1..ms : ai,1 �
i̧

u�1

τepλpxuq, pn0, n1qq. (A.25)

According to definition 2.26, in the case when i P r2..ks and j P r2..ms, transfer

of xi between nj�1 and nj is performed only when the transfer of xi between nj�2

and nj�1 and the transfer of xi�1 between nj�1 and nj are both finished. Therefore,

the rest of the matrix can be constructed as:

@i P r2..ns, j P r2..ms : ai,j � maxtai�1,j, ai,j�1u � τepλpxiq, pnj�1, njqq. (A.26)

Since, it is assumed that @i P r1..ks : λpxiq � s, therefore, @i P r1..ks, j P r1..ms :

τepλpxiq, pnj�1, njqq � τeps, pnj�1, njqq. By applying mathematical induction, it can
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be proven, that

an,m �
m̧

j�1

τeps, pnj�1, njqq � pk � 1q
m

max
j�1

τeps, pnj�1, njqq. (A.27)

This amount of time is required for the last byte array, to reach node nm. Therefore,

this amount of time is required to transfer the whole byte array sequence via path

p. �

Lemma A.3 (Slice size independence)

If x P B, p P P , and path p has only two elements, then @s1, s2 P N�, where λpxq is

dividable by s1, s2:

τppλpxq, s1, pq � τppλpxq, s2, pq. (A.28)

Proof This is implied by definition 2.46, since if p � pn,mq and G is the structure

of the nodes, then

τppλpxq, s1, pn,mqq � (A.29)

� τeps1, pn,mqq �

�
λpxq

s1

� 1



τeps1, pn,mqq � (A.30)

�
λpxq

s1

τeps1, pn,mqq � (A.31)

�
λpxq

s1

χppn,mq R Gqmaxt%oppnq, %ippmquKs1 � (A.32)

� λpxqχppn,mq R Gqmaxt%oppnq, %ippmquK � (A.33)

�
λpxq

s2

χppn,mq R Gqmaxt%oppnq, %ippmquKs2 � (A.34)

�
λpxq

s2

τeps2, pn,mqq � (A.35)

� τeps2, pn,mqq �

�
λpxq

s2

� 1



τeps2, pn,mqq � (A.36)

� τppλpxq, s2, pn,mqq (A.37)

�
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Lemma A.4 (Performance characteristics of simultaneous transfer)

Let pph, δq, q, s, l, rq P Dst be a simultaneous transfer. If @x1, x2, ..., xr P B : λpx1q �

λpx2q � ... � λpxrq � l, q � pt0, t1, ..., tmq, and k � l
s

then @i P r1..rs : the pipelined

transfer time of xi through path ψipqq with slice size s is the same and equals to:

m̧

j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

�

� pk � 1q
m

max
j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

,

(A.38)

while latency is also the same and equals to:

m�1̧

j�1

χpptj�1, tjq R hq
rKs

minpr, δtj�1
, δtjq

(A.39)

Proof Let G be a structure that implements structure layout ph, δq and @i P r1..rs :

xi � xi,1xi,2...xi,k, where @u P r1..ks : λpxi,uq � s. Let j P r1..ms, u P r1..ks. If

@i P r1..rs : transfer of xi,u from ϕiptj�1q to ϕiptjq starts at the same time, (A.40)

then it equals to:

τepλpxi,uq, pϕiptj�1q, ϕiptjqqq � (A.41)

� χppϕiptj�1q, ϕiptjqq R Gqmaxt%oppϕiptj�1q, %ippϕiptjquKλpxi,uq � (A.42)

� χpptj�1, tjq R hqmaxt%oppϕiptj�1q, %ippϕiptjquKs � (A.43)

� χpptj�1, tjq R hqmax

"
max

"
1,

r

δtj�1

*
,max

"
1,

r

δtj

**
Ks � (A.44)

� χpptj�1, tjq R hq
rKs

mintr, δtj�1
, δtju

(A.45)

Formula A.41 equals to formula A.42, based on definition 2.45. Formula A.42

equals to formula A.43, since G implements h (see statement 2.2 in definition 2.11)

and s � λpxi,uq. Formula A.43 equals to formula A.44, since on the one hand,

if ptj�1, tjq P h then both are equal to 0. On the other hand, if ptj�1, tjq R h,

than since G implements δ, ensuring that ϕiptj�1q is coupled with maxt1, r
δtj�1

u
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Proofs

nodes of node type tj�1 and ϕiptjq is coupled with maxt1, r
δtj
u nodes of node type

tj (see statement 2.4 in definition 2.13 and note that @t P T : r is dividable by δt).

Assumption A.40 ensures that each node of type tj�1 which ϕiptj�1q is coupled with

transfers a byte array of size s and each node of type tj which ϕiptjq is coupled with

recieves a byte array of size s. Since q is acyclic there is no other data transfer on

these nodes. Therefore, %oppϕiptj�1qq � maxt1, r
δtj�1

u and %ippϕiptjqq � maxt1, r
δtj
u.

Formula A.44 equals to formula A.45, since r is never negative.

This also implies that if assumption A.40 is true, than @i P r1..rs : transfer of

xi,u from ϕiptj�1q to ϕiptjq finishes at the same time. Definition 2.48 ensures that

@i P r1..rs : transfer of xi,1 from ϕipt0q to ϕipt1q starts at the same time. By applying

mathematical induction, it can be proven for any j P r1..ms and for any u P r1..ks,

that @i P r1..rs : transfer of slice xi,u from ϕiptj�1q to ϕiptjq starts at the same time.

This means that line A.40 is always true.

Having τe for any i P r1..rs, j P r1..ms, and u P r1..ks, εp and τp (see defini-

tion 2.46) can be applied to determine latency and transfer time. �

Lemma A.5 (Simultaneous transfer of equivalent data flow cases)

Let pq1, π1q and pq2, π2q be equivalent data flow cases and let pph1, δq, q1, s, l, rq,

pph2, δq, q2, s, l, rq P Dst. If h1 and h2 are elements of the instance layout sets that

π1 and π2 define (respectively), then performance functions of the two simultaneous

transfers are the same.

Proof First, it is showed that the lemma is true for directly equivalent data flow

cases. Next, it is showed that it is true for all equivalent data flow cases.
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Proofs

Let pq1, π1q and pq2, π2q be directly equivalent data flow cases, where:

q1 � pt0, ..., tk�1, tk, tk�1, ..., tmq, (A.46)

q2 � pt0, ..., tk�1, tk�1, ..., tmq, (A.47)

π1ptk�1, tkq � true, and (A.48)

π1ptk, tk�1q � false. (A.49)

Based on definition 2.55:

π2ptk�1, tk�1q � π1ptk�1, tkq ^ π1ptk, tk�1q � π1ptk, tk�1q (A.50)

Based on definition 2.49, transfer time of simultaneous transfer pph1, δq, q1, s, l, rq

equals to:

τqpph1, δq, q1, s, l, rq � (A.51)

�
¸

jPr1..ms

χpptj�1, tjq R h1q
rKs

minpr, δtj�1
, δtjq

�

�

�
l

s
� 1



max
jPr1..ms

χpptj�1, tjq R h1q
rKs

minpr, δtj�1
, δtjq

�

(A.52)

�
¸

jPpr1..ms{kq

χpptj�1, tjq R h1q
rKs

minpr, δtj�1
, δtjq

�

�

�
l

s
� 1



max

jPpr1..ms{kq
χpptj�1, tjq R h1q

rKs

minpr, δtj�1
, δtjq

�

(A.53)

� τqpph2, δq, q2, s, l, rq (A.54)

Formula A.51 equals to formula A.52 based on definition 2.49. Formula A.52

equals to formula A.53 because, based on condition A.49 and the fact that h1 is an

element of the instance layout set defined by π1, ptk�1, tkq P h is true, χpptj�1, tjq R

h1q � 0. Formula A.53 equals to formula A.54 based on definition 2.49. Similarly, it

can be showed that transfer times equal even in the case when π1ptk�1, tkq � false

and π1ptk, tk�1q � true.
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Proofs

Let pq1, π1q and pq2, π2q be equivalent data flow cases. Because definition 2.55

defines equivalence between data flow cases as a transitive, reflexive, symmetric

closure of direct equivalence, there is a sequence of data flow cases that starts with

pq1, π1q, finishes with pq2, π2q and it is true for each neighbouring data flow cases in

this sequence that they are directly equivalent meaning that their transfer times are

the same. This implies that transfer times of pq1, π1q and pq2, π2q are the same as

well. Similarly it can be proven that latency times are also the same. �
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