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Abstract 

Helix pomatia agglutinin (HPA) is a carbohydrate binding protein isolated from the 

Roman snail. There has been considerable interest in understanding HPA binding 

partners in cancer, as the lectin has been shown to identify glycosylation changes 

in cancers arising from the epithelia, from patients with poor prognosis. Identifying 

the HPA binding epitopes associated with a malignant phenotype may be useful 

for prognostication and may also offer potential as targets for immunotherapy.  

Previous studies have shown that HPA recognises a multitude of proteins in 

colorectal cancer (CRC). This study aimed to establish whether HPA recognises 

the same glycoproteins in breast cancer.   

An in vitro model of human breast cancer cell lines was used, ranging from HPA 

negative, non metastatic, to HPA positive and metastatic. Four human breast cell 

lines were chosen to represent phenotypes ranging from ‘normal’/benign 

(HMT3522), primary cancer (BT474) to metastatic cancer (T47D, MCF-7). HPA 

binding was assessed using confocal microscopy. Membrane proteins were 

extracted by differential centrifugation and the proteins were analysed by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with Western 

blotting. The cell surface glycoproteins recognised by HPA were characterised 

using 2-dimensional electrophoresis (2-DE), Western blotting and mass 

spectrometry. 

 

HPA binding correlated with integrin α6 levels, this concurred with previous 

findings in CRC. HPA also bound transcription factors HnRNP H1, HnRNP D-like, 

HnRNP A2/B1 as well as Hsp27, GFAP and ENO1.  The recognition of HnRNPs, 

Hsp 27 and ENO1 by HPA correlated with O-GlcNAcylation of these proteins. 

Interestingly, these HPA-binding glycoproteins were either absent or showed 

decreased levels in the non-metastatic breast cancer cell line BT474 and in 

‘normal’ HMT3522. A comprehensive analysis of the breast cells proteome showed 

a number of proteins with elevated level in the metastatic breast cancer cell lines 

T47D and MCF-7, but this is the first report to show elevated levels of  elongation 

factor Tu, Enoyl Coenzyme A hydratase 1 peroxisomal and macropain subunits. 
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This work was extended to analyse the gene expression for UDP-N-acetyl-alpha-

D-galactosamine: polypeptide N-acetylgalactosaminyltransferase (ppGalNAc 

T1,T2, T3 and T6) and alpha 2,6 sialyltransferases (ST6GalNAc I and II) in the 

breast cell lines, but no correlation between the expression levels of mRNA of 

these enzymes and HPA binding was found in this study.  

 

The results from the present study show that, as in CRC cell lines, integrin α6 was 

the most abundant HPA binding glycoprotein extracted from the breast cancer 

cells with a metastatic phenotype. This is the first report in which HPA has been 

shown to bind O-GlcNAcylated transcription factors. This class of proteins 

represent a new means by which HPA differentiates cancer cells with an 

aggressive metastatic phenotype. New approaches aimed at targeting these 

changes might have broad application for the treatment of breast, colorectal and 

possibly other epithelial cancers.  
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Introduction 
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1.0 Introduction 

1.1 Breast cancer: the clinical problem 
 

Breast cancer is the most prevalent form of cancer and is the leading cause of 

cancer related deaths in the Western world (McPherson et al., 2000). In the UK, 

around 46,000 new cases of breast cancer are diagnosed each year (Cancer 

Research UK, 2008). Breast cancer occurs mainly in women rather than in men 

who account for less than 1% of all the cases (Cancer Research UK, 2008). It is 

estimated that breast cancer causes more than 12,300 deaths each year in the UK 

(Cancer Research UK, 2008). Althrough breast cancer mortality rates have fallen 

dramatically since 1989, largely as a result of widespread use of hormonal and 

biological treatments, most patients succumb to the disease due to metastasis 

formation (Chambers et al. 2002; Steeg 2006).  The ability of breast cancer cells to 

detach mechanically from the primary tumour mass and to migrate to distant 

organs remains a major clinical problem. To date a congruent strategy for 

metastasis prevention and treatment has remained elusive. 

 

1.2 Female breast anatomy 

The development of the mammary gland is unique as it mostly occurs postnatally, 

reaching full development during pregnancy and correlating with the main function 

of the breast to produce and deliver milk to the newborn (Lanigan et al., 2007). In 

humans, the development of the breast begins prenatally during the 4th week of 

gestation (Dawson, 1934). During embryogenesis, a poorly branched primitive duct 

system develops (Howard and Gusterso, 2000), here maternal hormones cross the 

placenta and induce the development of the ductal system. In the foetus the major 

development however occurs just preceding and during puberty (Russo et al., 

1987; Monaghan et al., 1990). There is no difference in the development of the 

male and female breast between birth and just before puberty, the major ductal 

system develops in the early pubertal transition approximately 2-3 years prior to 

menarche (Juul et al., 2006). Oestrogen, progesterone and prolactin together with 

local growth factors stimulate the development of the primitive ductal scaffold into 
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a network of ducts and secretory lobules this occurs along with marked stromal 

expansion (Hennighausen and Robinson, 2005; Hens and Wysolmerski, 2005; 

Howard and Gusterso, 2000; Monaghan et al., 1990).  

 

In its development, the mammary gland resembles a modified sweat gland 

functioning to synthesise milk for the newborn (Lanigan et al., 2007; Tortora & 

Grabowski, 1993). The mature human breast is composed of a branching duct 

system of 15 to 20 lobes separated by adipose tissue (Bannister, 1995). There is a 

preponderance of glandular tissue in the upper outer section of the breast resulting 

in tenderness in many women prior to their menstrual cycle. Each lobe comprises 

smaller sections called lobules usually 1-2 millimetres in diameter and embedded 

in the surrounding stroma and fat (Park, 1959; Tortora & Grabowski, 1993). The 

lobule is a complex system of ducts called ductules which differentiate into 

secretory units known as alveoli or acini (Park, 1959).  The structure of an adult 

human female breast is shown in figure 1.1. 

 

 
 

Figure 1.1: Structure of an adult human breast.   Adapted from Dwek (1998). 
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The alveoli drain into small ducts that merge to form larger ducts and function to 

convey milk from the ductules. These larger ducts converge forming one milk duct 

for each lobe, and as the main duct approaches the nipple it enlarges to form a 

lactiferous sinus (Bannister et al. 1995; Vorherr, 1974), the sinus narrows into the 

lactiferous duct which terminates in the nipple and exits via the secretory pores. 

The nipple is a small hyperpigmented projection on the anterior surface which is 

innervated by the fourth intercostal nerves. The pigmented area surrounding the 

nipple is the areolar (Tortora & Grabowski, 1993). Breast cancers can arise in any 

part of the organ, althrough the majority of tumours have been reported in the 

upper outer quadrant of the breast (Douek et al, 1999). 

  

The main blood supply to the breast is from the internal mammary artery and the 

lateral thoracic artery (Cunningham, 1977).  The posterior intercostal arteries and 

the pectoral branch of the thoracoacromial artery are smaller sources of blood 

supply to the breast (Bannister, 1995). The venous system of the breast is 

composed of deep and superficial systems linked by short connecting veins 

(Cunningham, 1977). The main venous drainage of the breast is via the axillary 

vein, while the internal thoracic vein and the intercostal veins also contribute to 

some venous drainage. The lymphatic system of the breast has been extensively 

documented with particular emphasis on its important role in the metastasis of 

breast cancer cells. The axillary nodes and the internal mammary nodes are the 

two main systems for lymphatic drainage of the breast.  The axillary nodes drain 

the lymph from both the medial and the lateral portions of the breast whilst the 

lymph drainage from the deep areas of the breast is accomplished by the internal 

mammary nodes. Other small networks of the lymphatic systems have also been 

documented (Bannister, 1995). 
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1.3 Causative factors in breast cancer 

Breast cancer development is unpredictable, its evolution may take between 5 to 

30 years, or it may appear suddenly and progress rapidly (Holt et al., 1993).   A 

single change or transforming event in the genetic pathways (mainly involving 

susceptibility genes) in breast cells may initiate the formation of breast cancer 

(reviewed in Polyak, 2007). The subsequent progression of the tumour is 

accompanied by cellular immortalisation, clonal expansion and selection (reviewed 

in Baum & Schipper, 2005, reviewed in Polyak, 2007). Approximately 90% of 

breast cancers occur sporadically, in this case women have no family history and 

very little is known about the specific factors giving rise to these cancers (Polyak, 

2001). Only approximately 10% of all breast cancers arise from inherited 

mutations in tumour susceptibility genes. Initially, mutation in the p53 suppressor 

gene was throught to be important (Malkin et al., 1990), but since then, mutations 

in other genes such as BRCA1 (King, 1992), BRCA2 (Wooster et al., 1995) and 

BRCA3 (Thompson et al., 2003) have been associated with familial breast cancer.  

Other genetic changes linked to breast cancer development are the over-

expression of myc and (HER2/neu) oncogenes and suppression of p53 and (Rb) 

tumour suppressor genes (Couldrey & Green, 2000). 

  

Other recognised risk factors associated with the development of breast cancer 

include early menarche, late menopause, low parity, environmental conditions (for 

example exposure to radiation and carcinogens) and relatively late age at first full 

time pregnancy (MacMahon et al., 1973; Shapiro et al., 1989).  Moreover, of the 

many candidates of endogenous hormones, oestrogen and progesterone have 

also been implicated in breast cancer (Key & Pike, 1988; Thomas et al., 1997; 

Toniolo et al., 1995). A number of population based studies have also reported that 

sources of exogenous hormones such as the prolonged use of the oral 

contraceptive pill correlate with an increased risk of developing breast cancer 

(reviewed in Harris & Hellman, 1996). It has also been demonstrated that certain 

formulations of hormone replacement therapy taken for prolonged periods of time 

increase the likelihood of developing the disease (Faiz & Fentiman, 1998). 
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Of the many types of breast diseases, atypical hyperplasia and recurrent or cystic 

disease have been correlated with increased risk of breast cancer (Bodian, 1993; 

Dupont et al., 1993). It has also been shown that patients with diabetes mellitus 

are at greater risk of developing breast and endometrial cancer (Weiderpass et al., 

1997), this may be due to increased levels of insulin-like growth factor in the breast 

tissues of these patients (Stoll, 1997). 

 

1.4 Breast cancer staging  
 

The majority of breast cancers originate from the terminal duct lobular unit 

(Ronnov-Jessen et al., 1996). Benign (non-malignant) tumours mainly arise from 

the myoepithelia or fibroblast cell populations, whilst invasive carcinomas arise 

mostly from the ductal luminal or lobular cells (Taylor-Papadimitriou & Lane, 1987; 

Lakhani et al., 1999). Cancers arising from ducts are classified as ductal 

carcinomas and those arising from lobules are classified as lobular carcinomas.   

 

There are two common types of breast carcinoma recognised in symptomatic 

individuals, these are; carcinoma in situ (lobular carcinoma in situ and ductal 

carcinoma in situ) and invasive carcinoma (invasive lobular carcinoma and 

invasive ductal carcinoma). The invasive ductal carcinoma can further be 

classified, depending on their histological subtypes, as mucinous, tubular, 

medullary and metaplastic invasive carcinomas (Millis, 1984; Gallager, 1984). 

Invasive ductal and lobular carcinomas are often grouped together as patient 

outcome is similar.  

 

Initially, it was throught that breast cancer spread centrifugally from the primary 

tumour, in a local manner, first throughout the breast tissue, into the lymphatics, 

then to the regional axillary lymph nodes and later to distant organs. It was 

believed that surgical removal of the affected breast and axilla would result in a 

cure (Halstead, 1898; Haagensen, 1986). However, amongst others, Brinkley and 

Haybittle, (1975) reported that breast cancer patients die steadily from metastatic 

disease over 20 years following their initial surgery. From this it became apparent 
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that systems to ‘stage’ or ‘group’ the tumours according to their likely biological 

outcome were needed.   

 

Human breast cancer tissues are histologically complex, consisting of a multitude 

of different cell types amongst the carcinoma cells (Ronnov-Jessen et al, 1990) 

and  mammary gland tumourigenesis involves a sequence of marked clinical and 

pathological stages (Polyak, 2001). Atypical proliferation is generally throught to 

precede the formation of in situ carcinoma which then develops into invasive 

carcinoma, often resulting in metastatic disease (Beckmann et al, 1997). When a 

patient is diagnosed with breast cancer, they are classified by the extent to which 

the disease has spread and are grouped with patients who have similar outcomes. 

 

This classification, or staging, is essential to determine the prognosis (probable 

cause and outcome of the disease) and the appropriate treatment for the patient 

(Brower et al., 1999; Baum & Schipper, 2005).  In order to ensure accuracy, 

consistency and to allow for comparison of data between different centres a single 

system is used for breast cancer staging (Brower et al., 1999; Baum and 

Schipper., 2005). Table 1.1 summarises the TMN classification system. The TNM 

staging system was refined by the American Joint Committee on Cancer (AJCC) 

and the International Union against Cancer (UICC), in the 1980s, allowing further 

classification of tumours categorised by the TNM system, into one of the four 

stages (Brower et al., 1999; Weiss, 2000). T refers to primary tumour, N refers to 

regional lymph nodes, and M refers to distant metastasis (Weiss, 2000).  
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Table 1.1: TNM classification system. Adapted from Baum and Schipper (2005). 

 

 
 
 
 
 
 
 
 
 

Tumour 
stage 

Description 

Tx Tumours cannot be assessed 

T0 No evidence of Tumour 

Tis Carcinoma in situ.  

T1 Tumour is  not larger than 20 mm in diameter 

T1a Tumour  is more than 1 mm but not more than 5 mm in diameter 

T1b Tumour is more than 5 mm but is  not larger than 10 mm  

T1c Tumour is more than 10 mm but is  not more than 20 mm  

T2 Tumour is more than 20 mm but is  not more than 50 mm 

T3 Tumour is more than 50 mm in diameter 

T4a Tumour of any size and the tumour has spread into the chest wall 

T4b  Tumour has spread into the skin (Ulceration; Ipsilateral satellite 

nodules; Edema) 

T4c Both T4a and T4b (Tumour has spread to both skin and chest wall) 

T4d Inflammatory carcinoma 

N Stage Features 

NX Lymph node cannot be assessed (e.g if previously removed) 

N0 No cancer cells found in  lymph nodes   

N1 Metastases in ipsilateral  axillary nodes (no fixation) 

N2 Metastases in  ipsilateral axillary  nodes with fixation 

N3 Metastases   detected in ipsilateral internal mammary lymph nodes 

M stage       Features  

M0 No distant metastases detected  

M1 Distant detachable metastases detected  
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The staging systems seek to serve as a means of identification of the likely patient 

outcome prognosis. A number of systems, involving the identification of prognostic 

markers, were previously explored but the system most widely used is the TNM 

system described above (Bloom & Richardson, 1957). The Nottingham prognostic 

index which includes age, tumour size, tumour grade, lymph node stage, and 

estrogen receptor (ER) content, maybe useful with other biological factors  (Galea 

et al., 1991). There is further need for improved prognostic markers as well as new 

targets for breast cancer therapy. 

 

1.5 Prognostic indicators 
 
Breast cancer staging system also incorporates the identification and use of 

several prognostic indicators such as nodal status, tumour size, histological grade, 

hormone receptor status, oncogene over-expression, cancer cell proliferation and 

cell surface glycoproteins. Another prognostic factor discussed in this thesis is the 

Helix pomatia binding status. These factors are discussed below. 

 

1.5.1 Nodal status 

 
Detection of metastases in the axillary lymph nodes is one of the most accurate 

prognostic factors in breast cancer. Nodal status is part of the TNM classification 

system. The most accurate approach used for assessing axillary lymph node 

involvement is to surgically remove the lymph node. This is an invasive procedure 

and may lead to physical impairment such as lymphoedema, nerve damage and 

paresthesias. A less invasive procedure commonly used is the sentinel lymph 

biopsy. This technique involves the excision and examination of the the first lymph 

node from the breast drains through, for the presence of metastases (Hammer et 

al., 2008; Krishnamurthy, 2005).  
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1.5.2 Tumour  size 

 
Tumour size, after lymph node status, is the next most accurate indicator of breast 

cancer. Tumour size is also part of the TNM classification system. Prognosis 

becomes poorer with increase in tumour size. Patients with tumours of size ≤ 1cm 

have a longer survival rate (about 79%) compared to patient with larger tumours of 

size 2-5 cm (about 66%) (Hutson & Osborne, 2005). 

 

1.5.3 Histological grade 

 
Histological grading provides a measure of tumour differentiation and correlates 

with prognosis and survival rates. The first histological grading system for breast 

cancer was introduced by Greenough in 1925 and carcinomas were classified 

based on six histological characterisitics, including, adenomatous arrangement, 

secretory activity, hyperchromatism, number of mitoses and variations in cell size 

and shape. This classification system was further simplified in 1957 by Bloom and 

Richardson. Bloom and Richardson classification system was based on 

histological characteristics such as tubule formation, variation in nuclear size and 

shape (pleomorphism) and hyperchromatism. This system is most widely used in 

the UK to effectively predict patient prognosis and is called the Nottingham 

combined histological grading system (Elston & Ellis, 1991).  

 

1.5.4 Hormone receptor status 

 
Oestrogen receptor (ER) and progesterone (PR) status are not included in the 

staging process, but are routinely used to allow a more tailored treatment plan for 

patients. Approximately 50-80% of breast tumours are ER and PR positive 

(Elledge & Osborne 1997).  ER positive breast tumours predict a longer disease-

free survival rate (66%) compared to ER negative tumours (56%). ER positive 

patient respond well to endocrine therapies such as oophrectomy and luteinising 

hormone-releasing hormone (LHRH) analogues. These approaches reduce the 

levels of circulating oestrogen in the blood. Tamoxifen is also commonly used to 
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block the interaction between circulating oestrogen and the ER receptors (Cheung, 

2007).  

 

1.5.5 Oncogene Over-expression 

 
Over-expression of HER2 gene is reported in approximately 30% of breast cancers 

(Salmon et al., 1987). This gene encodes for the HER2/neu protein which is a 185 

kDa tyrosine kinase receptor (Coussens et al., 1985). Over-expression of this 

oncogene is associated with shorter disease free survival rate (Slamon et al., 

1987). Determination of the HER2 status of a patient is also of importance in 

developing appropriate treatments plans, for instance, HER2 positive patients are 

treated with Herceptin, a monoclonal antibody which slows the growth of HER-2 

positive tumours (Vogel et al., 2002).  

 

 

1.5.6 Cell proliferation 

 
Tumour cell proliferation rate is also a valuable prognostic factor commonly used in 

breast cancer diagnosis. Two markers of cellular proliferation commonly employed 

are detailed below. 

 

1.5.6.1 S-phase Fraction (SPF)  
 

S-phase fraction (SPF) is a measure of the number of cells in the S-phase i.e 

undergoing active DNA synthesis/replication. High SPF has been shown to 

correlate with early disease recurrence (Wenger et al., 1993). 

 

1.5.6.1 Nuclear Antigen Ki-67 
 

The nuclear protein Ki-67 is expressed during all phases of the cell cycle except 

G0 phase (Gerdes et al., 1991).  A positive correlation exists between increase Ki-

67 levels and decreased survival rate (Sullivan et al., 1993). 
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1.5.7 Helix pomatia agglutinin (HPA) binding status 

 Helix pomatia agglutinin (HPA) binding is a significant prognostic indicator of 

breast and other cancers. This is further explored in section 1.8. 

 

1.5.8 Cell surface glycoproteins 

Cell surface proteins have been subject of much research interest in breast cancer 

(Jacobson et al., 1996). The post-translational modification of proteins, 

glycosylation and phosphorylation, in particular, have been associated with the 

complex transformation of malignancy. Some of these changes have been 

demonstrated to provide a selective advantage for tumour cells to progress to a 

metastatic stage (Krueger & Srivastava, 2009) and many of these changes may 

also offer potential for monitoring disease, for instance, glycoproteins such as 

carcinoembryonic antigen (CEA) and CA125 are commonly used as tumour 

markers for monitoring breast cancer patients’ response to treatment (reviewed in 

Duffy, 2006). Whilst, these markers are of some utility for monitoring patient 

response to treatment, they have limited relevance as diagnostic tools because of 

their low specificity and sensitivity, two factors that are important for tumour 

markers (Pannell & Kotasek., 1997). Identification of cell surface proteins, with 

altered post-translational modifications may be useful for cancer diagnosis, 

prediction and prognostication. 
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1.6 Glycosylation 
 

Glycosylation is the most frequent post-translational modification of proteins in 

eukaryotes. It is a complex modification which involves the enzymatic addition of 

carbohydrates to proteins (Lis & Sharon, 1993, Varki et al, 1999).  Glycosylation 

plays a  key role in mediating cellular functions such as ensuring correct protein 

folding (Walsh et al., 1990), cell to cell adhesion (Lasky, 1992; Springer, 1990), cell 

to cell communication (Wassarman, 1990), protection of proteins from enzymatic 

degradation (Homans et al., 1987) and signal transduction (Haltiwanger & Stanley, 

2002).  In mammalian  cells, glycans attached to proteins or lipids consist of either 

linear or branched oligosaccharide chains are formed by  the enzymatic addition of 

a combination of seven different monosaccharides consisting of either glucose, 

mannose, galactose, fucose, N-acetylgalactosamine, N-acetylglucosamine and/or  

sialic acids (the seven monosaccharides are shown in figure 1.2), giving rise to 

glycoproteins, glycosaminoglycans, proteoglycans and glycolipids. The 

oligosaccharide chains link to proteins in two main types of ways: (a) via glycosidic 

bonds between N-acetylgalactosamine (GalNAc) to the hydroxyl group of theonine 

or serine on the polypeptide chain, giving rise to O-linked glycans which are 

predominantly membrane bound or secreted on mucins, (b) via glycosidic bonds 

between N-acetylglucosamine (GlcNAc) to asparagine occurring on the sequon 

Asn-X-Ser/Thr (where X can be any protein except proline) of the protein chain, 

(Opdenakker et al., 1993).  Proteoglycans, (such as heparan sulphate or 

chondroitin sulphate) and glycosaminoglycans (such as hyaluronan) exist as free 

glyconjugates and form the extended components of the ECM. Oligosaccharides 

glycosidically linked to lipids include glycosylphatidylinositol (GPI) anchored 

proteins which exist as membrane components (Dwek & Brooks, 2004; Brooks et 

al., 2008).  
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Figure 1.2: The seven monosaccharides associated with human glycoproteins and 
glycolipids. Adapted from Afrough (2009). 
 
 

1.6.1 Enzymes of glycosylation 

 
Glycans are not coded directly by the genome but are synthesised by enzymes 

which are themselves coded by genes. It has been speculated that one percent of 

the genome codes for the enzymes of glycosylation (Lowe & Marth, 2003) but it is 

also known that not all the enzymes involved in glycosylation reactions have been 

identified (De Graffenried & Bertozzi, 2004). Glycosylation is a complex process 

involving many enzymes located mainly in the endoplasmic reticulum (ER) and in 

the Golgi apparatus (De Grafenried & Bertozzi, 2004), and the glycosylation 

process is orchestrated by glycosidase and glycosyltransferase enzymes. 

Oligosaccharides or glycans consist of chains of monosaccharides linked by 
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glycosidic bonds and the synthesis of glycans involves the catalytic addition and 

removal of monosaccharide units to the growing chain by the action of 

glycosyltransferases and glycosidases respectively. 

 

1.6.2 N-linked glycosylation 

 
N–linked glycosylation is a co-translational process occurring mainly in eukaryotes, 

and rarely in bacteria (Langdon et al., 2009; Magidovich & Eichler, 2009; Spiro, 

2002; Szymanski & Wren, 2005). N-linked protein glycosylation takes place in 

several distinct steps, the first of which is the covalent attachment of a pre-formed 

lipid-linked oligosaccharide chain to asparagine of the Asn-X-Ser/Thr sequence 

(where X can be any amino acid except proline) of a nascent polypeptide, this 

occurs in the lumen of the endoplasmic reticulum (Jones et al., 2005). In some 

cases the tripepetide sequon Asn-X-Cys may also be glycosylated with N-linked 

glycans (Imperiali & Hendrickson, 1995). It has been reported that due to protein 

folding and the accessibility of glycotransferases to the sequon, only about 70% of 

tripeptide Asn-X-Ser/Thr sequences in eukaryotic proteins are successfully 

glycosylated (Petrescu et al., 2004). The steps in N-linked glycosylation are 

illustrated in figure 1.3. 
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Figure 1.3 The steps involved in N-linked glycosylation.  Adapted from Lomax-
Browne (2009). N-linked oligosaccharides synthesis starts with the attachment of two 
GalNAc residues to a dolichol phosphate molecule. This is followed by the subsequent 
attachement of five mannose residue to form the Man5GlcNAc2  molecule. This molecule 
is further enlarged in the lumen of the ER to form a final dolichol-linked oligosaccharide 
intermediate (Glc3Man9GlcNAc2).  
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N-linked biosynthesis involves the formation of the intermediate oligosaccharide 

structure on a dolichol-pyrophosphate molecule, this occurs by the sequential 

enzymatic activity of glycosyltransferases. There is initial attachment of a GlcNAc 

residue to the dolichol phosphate molecule resulting in the formation of Dol-PP-

GlcNAc, this enzymatic process is mediated by Alg7, an N-acetylglucosamine-

phosphate transferase (Kukuruzinska and Robbins, 1987). The Dol-PP-GlcNAc is 

further extended by the addition of another GlcNAc residue catalysed by an N-

acetylglucosaminyltransferase such Alg 13/14 (Bickel et al., 2005; Chantret et al., 

2005; Goa et al., 2004). The resulting Dol-PP-GlcNAc-GlcNAc is further extended 

by the addition of five mannose residues in a process involving five 

mannosyltransferases to form the Man5GlcNAc2-PP-Dol structure (Brooks et al., 

2002).  The heptasaccharide is then flipped into the lumen of the ER by the action 

of Rft1p, a membrane-spanning protein (Helenius et al., 2002). The remaining step 

in the formation of the oligosaccharide occurs in the lumen of the ER (Weerapana 

and Imperiali, 2006). The completion of the dolichoyl-pyrophosphate 

decatetrasaccharide (Glu3-Man9GlcNAc2-PP-Dol) involves the addition of four 

mannose and three glucose residues catalysed by a further four 

mannosyltransferases and three glucosyltransferases (Weerapana and Imperiali, 

2006). Once the decatetrasaccharide assembly is completed, the enzyme complex 

oligosaccharyltransferase (OST) catalyses the transfer of the oligosaccharide from 

the lipid-linked oligosaccharide onto the nascent protein chain (Kelleher & Gilmore, 

2006). The dolichol phosphate is regenerated and is re-exposed on the outer 

membrane of the ER (Rush et al., 2008; Schenk et al., 2001).   After transfer of the 

oligosaccharide, protein folding is controlled by the calnexin/calreticulin cycle in 

eukaryotic cells, thus preventing the release of misfolded proteins (Bedard et al., 

2005; Jaeken et al., 1993). If the protein is properly folded glucosidase I and II 

removes the three glucose residues. The fully folded protein is then cleaved by 

mannosidase resulting in a Man8-GlcNAc2 containing glycoprotein which is 

transported to the Golgi apparatus where the glycans are either elongated or 

trimmed by glycosidases and glycosyltransferases (Jaeken et al., 1993).  

 

 

 

 



18 
 

The addition of monosaccharides including galactose, N-acetylglucosamine, 

fucose and sialic acid results in the elongation of the glycans and the final 

structures Man8GlcNAc2 can be further trimmed or extended to form a wide 

variety if N-linked glycans, all sharing common trimannosyl core (Man3GlcNAc2). 

Three main classes of N-linked glycans share this core: (1) high mannose type, 

which consists of a total of between 5 and 9 mannose residues attached to the 

inner GalNAc of the trimmannosyl core (2) complex type, which do not contain any 

mannose residues except from those already in the core structure and consists of 

repeated oligosaccharides branches in particular GlcNAc (β1-4)Gal branches. (3) 

hybrid type, which comprises features from both high mannose and complex type 

oligosaccharides (Brooks et al., 2002). 

 

1.6.3 O-linked glycosylation of mucin-type glycoproteins 
 

O-linked glycosylation is a complex post-translational event that is initiated in the 

Golgi apparatus (Kellokumpu et al., 2002). It involves the addition of sugar 

residues to amino acids carrying a hydroxyl functional group (Ser, Thr, Tyr, Hyp 

(hydroxyproline) and Hyl (hydrolysine) (Spiro, 2002). The O-linked glycans are 

branched structures comprising N-acetylgalactosamine, N-acetylglucosamine, 

galactose, fucose and sialic acid residues, the synthesis of which is controlled by a 

series of membrane bound glycotransferases, glycosidases (Van Den Steen et al., 

1998).O-linked glycosylation is initiated by the attachment of a GalNAc 

monosaccharide to a Ser or Thr on a polypeptide chain by the action of an N-

acetylgalactosaminyltransferase.  This structure is termed as the Tn antigen. The 

extension of the Tn antigen leads to the formation of eight basic core structures (as 

detailed in figure 1.4). There are seven different cores associated with O-linked 

glycans present in humans (Wopereis et al., 2006).  The GalNAc-α-Ser/Thr linkage 

that occurs in mucins with N-acetylgalactosamine at the reducing end prevails in 

eukaryotes (Spiro, 2002). Many studies in eukaryotic cells have shown that O-

linked glycan synthesis in eukaryotes involves at least fifteen GalNAc transferases 

(Clausen & Bennett, 1996, Ten Hagen et al., 2001). O-linked mucin core 

structures, core 1-6 and core 8, have been reported in humans (Brockausen, 
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2006). The core structures may be modified further resulting in several hundreds of 

different mucin-type O-linked glycan structures (Brockausen, 2006).  

 

 

 

 

 
 
Figure 1.4: The Tn antigen and the eight core structures that arise from Tn antigen 
extension.  Adapted from Lomax-Browne (2009). 
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1.6.4 O-GlcNAc glycosylation of cytoplasmic and nuclear proteins 

 
O-GlcNAcylation involves the addition of a β-O-GlcNAc monosaccharide on a 

Ser and/or Thr amino acid on a polypeptide chain. This is a common form of 

glycosylation amongst cytoplasmic and nuclear proteins and has been shown to 

be an alternative pathway to phosphorylation, functioning in intracellular 

signalling processes (Slawson et al., 2008).  Aberrant O-GlcNAcylation is a 

notable feature associated with chonic diseases such as diabetes (Copeland et 

al., 2008; Akimoto et al., 2005), cardiovascular disease (Laczy et al., 2009; 

Jones et al, 2008), neurodegenerative disorders (Lazarus et al; 2009; Lefebvre 

et al., 2005) and cancer (Chou et al., 2001). 

 

1.6.5 Changes in glycosylation in cancer 

 
The implications of aberrant glycosylation in the development of a malignant 

phenotype and tumour progression have been well documented in several studies 

(reviewed in Miyamoto, 2006). Alterations in glycosylation have been reported in 

cancer (Varki et al., 1999); (1) increased branching of N-linked oligosaccharides, 

(2) exposure of Lewis antigens, (3) synthesis of truncated O-glycans and (4) 

alteration in the sialylation of glycans (Dwek & Brooks, 2004). It has been shown 

that aberrant glycosylation is associated with tumour dissemination during the 

process of metastastasis (Brockhausen, 1999). 

 

1.6.5.1 Increased in N-linked glycan branching  
 

Increased β1-6 branched N-linked glycans on cell surface proteins have been 

established in numerous studies particularly in breast and colon cancer 

(Fernandes, 1991; Dennis et al., 1987; Korczak et al., 1994).  Increased β1-6 

GlcNAc branching occurs as a result of an increased expression of GlcNAc 

transferase V (GNT-V). The transcription of the GlcNAc transferase V gene 

(MGAT5) is upregulated in cancerous cells (Chen et al., 2006) and cells with an 

enhanced expression of GNT-V exhibit a metastatic phenotype, at least in animal 
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models of metastasis (Korczak et al., 2000). This is further described in section 

1.7.1.1. 

 

1.6.5.2 Alteration in Lewis antigens  
 

Aberrant synthesis of Lewis antigens is a common feature of epithelial 

malignancies (Yu et al., 2005). Lewis antigens are formed by the catalysis of a 

fucose residue on core 1 or core 2 chains on O-linked glycans and are also found 

on N-linked glycans. This catalysis is mediated by the action of fucosyltransferases 

(FUCT I and VII). Increase synthesis of Lewis x (Lex) and Lewis a (Lea) as well as 

their respective sialylated structures, sialyl Lewis x (SLex)   and sialyl Lewis a  

(SLea)  have been shown in cancer cells (Varki et al., 1999) and their levels 

correlate with tumour progression, metastatic potential and poor prognosis in 

humans (Varki et al., 1999). This is futher discussed in section 1.7.4.1. It has been 

reported that α1,2 fucosyltransferase is elevated in colorectal cancer (Xiong et al., 

2003) and the increase in this enzyme activity results in the synthesis of Lewisb, 

Lewis y and formation of the ABH antigen (LaRue et al., 1997).  Another 

mechanism that may lead to increased Lewis antigen synthesis on epithelial 

mucosa is through the downregulation of the ABH blood group transferases that 

result in blood group H or Lewisb, Lewisy carbohydrate moieties with a GalNAc or 

Gal, thereby masking the substrate which would give rise to difucosylated Lewise, 

Lewisy (Orntoft et al., 1991). Loss of normal ABH structures and increases in Lewis 

glycans have been shown to correlate with poor prognosis in bladder and lung 

cancers (Marquez et al., 2004).  

 

 

1.6.5.3 Truncated O-glycans 
 

Mucins are high molecular weight glycoproteins which are normally present on the 

apical surface of cells (Burchell et al., 1983; Ellis et al., 1987; Kim et al., 1991). 

These glycoproteins carry glycan chains attached to the Ser/Thr residues in 

tandem repeat regions (Varki et al., 1999; Brooks et al., 2002). In contrast to 

normal tissue architecture, in cancer, mucins are expressed over the entire cell-

surface and are released to the extracellular space and secreted into the body fluid 
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(Gold & Freeman., 1956). Changes in mucin glycosylation have been observed in 

numerous cancers including breast, pancreatic, ovarian and bile duct cancers 

(Yonezawa, 1994). The availability of monoclonal antibodies has facilitated the 

detection of altered levels of mucin in the blood of cancer patients (Berry et al., 

1985, Ellis et al., 1985). The aberrant glycosylation of mucin CA125 has been 

observed in ovarian cancer patient serum (Hogdall, 2008). Incomplete 

glycosylation of O-linked mucins is a key feature that accompanies the 

development of a metastatic phenotype and is characterised by an increase in T-

antigen, sialyl-Tn and Tn antigen (Springer, 1997). Increase levels of sialyl-Tn 

antigen in tumour cells due to increased levels of ST6GalNAc l transferase has 

been observed in several cancers (Julien et al., 2006; Marcos et al., 2004; Senda 

et al., 2007; Sewell et al., 2006; Vazquez-Martin et al., 2004.,). The main changes 

that occur in O-linked glycosylation in cancer are summarised in table 1.2. 
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Table 1.2: Changes in O-glycans associated with cancer. Adapted from Brockhausen, 

(2006a) 

 
 

1.6.5.4   Alteration in sialylation 
 

Many studies have reported that an increase in sialylation is a common feature of 

cancer (Yu et al., 2005). Increases in sialylation often occur as a result of an 

elevation in �2-6-linked sialic acid binding to N-acetylactosamine or to GalNAc-α1-

O-Ser/Thr units on O-linked glycans (Varki et al., 1999). The elevation in cell-

surface sialylation in cancer may reduce the attachment of malignant cells to the 

matrix and protect malignant cells by evading the host immune recognition via the 

alternative complement pathway (Pilatte et al., 1993). Significant changes in sialic 

O-type glycans                      Structure Increase ( + ) / 
decrease ( - )  
in cancer  

Core 1, T 

antigen 

Galβ1-3GalNAcα-Ser/Thr            + 

Core 2 GlcNAcβ1-6(Galβ1-3)GalNAcα-Ser/Thr            +/- 

Core 3 GlcNAcβ1-3GalNAcα-Ser/Thr            + 

Core 4 GlcNAcβ1-6(GlcNAcβ1-3)GalNAcα-Ser/Thr            + 

Tn antigen GalNAcα-Ser/Thr            + 

Type 1 chain [GlcNAcβ1-3 Galβ1-3]n            - 

Type 2 chain [GlcNAcβ1-3Galβ1-4]npoly-N-

acetylactosamines 

           + 

Sialyl-Tn antigenSialylα2-6GalNAcα-Ser/Thr            + 

Sialyl Lewisa Sialylα2-3Galβ1-3(Fucα1-4)GlcNAcβ1-Gal-            + 

Sialyl Lewisx Sialylα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-Gal-             + 

Sialyl-dimeric 

Lewisx 

Sialylα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-3 

Galβ1-4(Fucα1-3) GlcNAcβ1-3Gal- 

            + 
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acid containing structures have been reported in cancer for example the 

ganglioside epitope 9-O-acetylated GD3 is elevated in human melanoma cells 

(Cheresh et al., 1984). Apart from an increase in sialylation in tumour cells, 

reduced sialylation has also been implicated in cancers such as colon carcinomas 

(Varki et al., 1999). This is further discussed in section 1.7.1.2. 

 

1.7 Breast cancer metastasis and glycobiology 
 

Tumour progression and metastasis may largely be attributed to alterations in the 

genetic makeup of the cancer cells; such genetic changes include mutations in 

proto-oncogenes and tumour suppressor genes which subsequently give rise to 

subclones of tumour cells with different behavioural characteristics compared with 

their normal counterparts (Hanahan and Weinberg, 2000). The acquisition of 

altered genetic traits promotes tumour cell dissociation, degradation of the 

basement membrane (BM) and invasion into the surrounding extracellular matrix 

(ECM) (Cavallaro & Chistofori, 2004; Condeelis & Pollard, 2006). After migration 

through the ECM, successful dissemination through the haematogenous or 

lymphatic circulatory system requires that the tumour cell survives immunological 

attack (Nash et al., 2002). Finally, the tumour cell needs to adhere to the 

vasculature, extravasate into the organ of metastasis and proliferate at the 

secondary site (Kaplan et al., 2006). These steps are shown in figure 1.5. 

 

A key feature of the metastatic cascade is the role of the cell adhesion molecules, 

many of which act via protein-glycan interactions. Oncogenic transformation is 

often accompanied by altered glycosylation patterns of proteins and lipids and 

these appear to have functional implications in potentiating the metastatic spread 

of tumours (Hakomori, 1996).  While many genetic and physiological processes 

involved in the metastatic process have been documented, the patho-physiological 

role of altered glycosylation remains less well understood. Identifying glycosylation 

changes on glycoconjugates at an early stage of cancer development may offer 

the potential for earlier diagnosis, for monitoring disease progression, and/or as 

targets for biological tumour therapies. The role of glycans on proteins function in 
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the metastatic process is described below, has been published as a review 

(Rambaruth & Dwek, 2011). 

 
 

 
 
Figure 1.5: The main steps in the metastatic cascade. The following takes place; (1) 
formation of primary the tumour mass, (2) infiltration of primary tumour cells through the 
basement membrane (BM) and extracellular matrix (ECM), (3) intravasation of tumour 
cells into the circulatory system, (4) angiogenesis, (5) extravasation of tumour cells to 
finally establish a secondary tumour in organ the of metastasis. 
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1.7.1 Tumour invasion (loss of cell–cell homotypic adhesion) 

 
Tumour invasion is dependent on a loss of intercellular adhesion and the 

transmigration of cells through the basement membrane (BM) as well as through 

the surrounding extracellular matrix (ECM). A key part of this process is the 

detachment of cancer cells from the primary tumour mass and acquisition of a 

more motile and invasive phenotype.  A growing body of evidence shows that in 

addition to defective architectural remodelling and de-organisation of BM and ECM 

components (such as laminin-5 and collagen IV), changes to the cytoskeleton and 

degrading properties of proteases, the initial process of dissemination is facilitated 

by altered cell surface glycans structures which effect the adhesive properties of 

neoplastic cells (Hakomori, 1984; Dennis et al., 1999; Nakano et al., 2000; Lohi, 

2001; Brockhausen, 2006; Abiatari et al., 2010).  

 

1.7.1.1 E-cadherins 
 

The adhesive interactions of epithelial cells are in part mediated by E-cadherin, a 

calcium dependant transmembrane glycoprotein receptor (Takeichi, 1990). E-

cadherin has five extracellular domains that dimerise with the  E-cadherin of 

adjacent cells to form homotypic cell–cell interactions (Takeichi, 1990). The 

cytoplasmic tail of E-cadherin interacts with the actin cytoskeleton through beta 

catenin and this function in the recruitment of multiprotein complexes at the plasma 

membrane known as adherens junctions (AJs) (Brieher et al., 1996; Gumbiner, 

2000; Wheelock & Johnson, 2003). The molecular organisation and stability of  AJ 

formation is influenced by the presence of altered glycans on the cell surface and 

increased β1-6 branched N-glycans on E-cadherin, a phenotypic change 

commonly observed in malignancy (Jamal et al., 2009). Elevated levels of N-

acetylglycosaminyltransferase V (as described in section 1.6.5.1), required for the 

biosynthesis of β 1-6 N-glycans, has been correlated with tumour cell migration 

and invasion in a murine model of cancer metastasis and expression of Mgat5, the 

gene that codes for N-acetylglycosaminlytransferase V is regulated by Ras-Raf-

MAPK, a signal transduction pathway commonly activated in tumours (Saito et al., 

1995). In normal cells, N-acetylglucosaminyltransferase III (GnT-III) catalyses the 
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formation of a bisecting GlcNAc structure in N-linkages and has been associated 

with tumour suppression of B16-hm murine melanoma cells (Yoshimura et al., 

1995). GnT-V knock-down with siRNA revealed enhanced cell detachment of cells 

from the ECM and gene expression analysis has also shown that there is 

bidirectional crosstalk between GnT-III/GnTV expression and E-cadherin which 

consequently can modify E-cadherin N-glycosylation status (Pinho et al., 2009). 

Such studies helped to determine the involvement of glycosylation changes in the 

metastatic process. Figure 1.6 shows the influence of GnTIII and GnT V on AJ 

formation. 

 

 
 
Figure 1.6: Adherens junction (AJ) formation between two adjacent epithelial cells. 
E-cadherins consist of an outer domain and a cytoplasmic tail. The cytoplasmic tail 
interacts with actin cytoskeleton through beta catenin and these functions in the 
recruitment of multiprotein complexes at the plasma membrane to form adherens 
junctions. GnT-III catalyses the formation of bisecting GlcNAc N-linked structures in 
normal cells whilst GnT-V catalyses increased levels of β1,6 GlcNAc containg N-glycans 
in cancer.  
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1.7.1.2 Siglecs and sialylation 
 

The functional role of endogenous carbohydrate binding  lectins in the mediation of 

homotypic cell-cell adhesion is not fully understood. Sialic-acid-binding 

immunoglobulin-like lectins (Siglecs) play key roles in mediating cell-cell 

interactions in the immune system via glycan recognition on pathogenic organisms 

(Crocker et al., 2007). Sialylated epitopes recognised by Siglecs are common to 

many glycoproteins and glycolipids suggesting that Siglec-glycoconjuate 

interactions may have a functional role in physiopathological processes (as 

described in section 1.6.5.4). The binding of the Siglec, sialoadhesion, a 

macrophage-specific cell surface receptor is regulated by the sialylation status of 

the receptor (Barnes et al., 1999). Sialoadhesin recognises ligands containing α2-3 

linked sialic acid (mostly of SLex) on glycoconjugates of leukocytes. Sialylation of 

soluble sialoadhesin inhibits its binding to Jurkat cells (immortalized T lymphocyte 

cell) ligands, potentiating the loss of cell-cell interactions (Barnes et al., 1999). 

Tumour cells tend to produce increased levels of sialic acid containing 

glycoconjugates, a phenotype which has been associated with invasion and 

malignancy (Bogenrieder & Herlyn, 2003; Seidenfaden et al., 2003; Suzuki et al., 

2005). Increased levels of α2-6 linked sialylated oligosaccharides have been 

observed in colon cancer (Sata et al., 1991). Aberrant expression of sialic acid 

containing glyconjugates in cancer might inhibit interaction between Siglecs and 

their binding partners through electrochemical repulsion (due to the negative 

charge of the sialylated epitopes), and thereby resulting in reduced homotypic cell-

cell adhesion. However additional studies are needed to explore this hypothesis. 
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1.7.2 Motility of cancer cells and glycosylation 

 

1.7.2.1 Integrins  
 

Integrins are an important group of cancer cell-surface receptors that mediate cell-

ECM interactions by binding matrix proteins such as fibronectin (FN) and laminin. 

Integrins are involved in the regulation of cell adhesion, migration, differentiation, 

and apoptosis and remodelling of the cytoskeleton through their ability to 

transduce multiple intercellular signals (reviewed in Tarone et al., 2000). Integrins 

consist of α and β subunits. The Arg-Gly-Asp (RGD) sequence of α5β1 integrin, 

interacts mainly with fibronectin, while α3β1 binds preferentially to basement 

membrane laminins (Ruoslahti, 1996; Frisch & Ruoslahti, 1997; Kreidberg, 2000; 

Gu et al., 2001, Gu & Taniguchi, 2004) as shown in figure 1.7. Aberrant levels of 

integrin proteins have been reported in breast, colon and prostate cancer, with 

many of the RGD-binding integrins implicated in metastatic cancer progression 

(Natali et al., 1992; Dedhar et al., 1993; Hardan et al., 1993; Zutter et al., 1993; 

Oku et al., 1996; Pouliot et al., 2001). Amino acid sequencing studies have 

revealed fourteen and twelve potential N–linked glycosylation sites on the α5 and 

β1subunits, respectively, suggesting that cell surface integrins may act as major 

carriers of N-glycan structures (Nakagawa et al., 1996; Gu & Taniguchi, 2004). In 

epithelial cells, changes in the N-glycosylation status of integrins (such as an 

increase β1-6 branched N-glycans) may affect the cell–cell and cell-matrix 

interactions and hence promote cell motility and invasiveness (Dennis et al., 1987; 

Hakomori, 1996; Asada et al., 1997). Experimental studies with NIH3T3 

fibroblasts, transformed with the Ras gene, have shown that adhesion to FN was 

enhanced with increased in β1,6 GlcNAc branched structures on α5β1 integrin 

subunit (Asada et al., 1997). Removal of α2, 8-linked sialic acids residues from the 

α5 integrin subunit of G361 melanoma cells resulted in an inhibition of cell 

adhesion to FN (Nadanaka et al., 2001). Recently Saint-Guirons et al (2007) 

demonstrated that Helix pomatia agglutinin (HPA) bound to the integrin αv/α6 

subunit in an in vitro model of metastatic colorectal cancer. HPA bound strongly to 

metastatic HT29 cells but not to non-metastatic SW480 cells. Taken together, 



30 
 

these results suggest that the glycosylation status of integrin, which is altered in 

cancer, may have direct impact in cancer cell dissemination. 

 

 
Figure 1.7:  Integrin binding sites. Integrin consists of an α and β subunit, each dimeric 
unit has a large extracellular N-terminal globular domain which forms the RGD/ laminin 
binding site and a short C-terminal cytoplasmic domain. The β subunit of the C- terminal 
domain is linked with the intracellular cytoskeleton.  

 
 

1.7.2.2 Laminin 
 

Laminin is a basement membrane protein that associates with integrin to promote 

cell motility in a range of cellular processes such as those of wound healing and 

cancer cell invasion (Colognato & Yurchenco, 2000). Introduction of β1,6 branched 

N-glycans of MKN45 cells (a human gastric carcinoma cell line), resulted in an 

increase in cell migration (in Lm332-null keratinocyte plated wells compared to  

MKN45 cells with bisecting GlcNAc) on laminin and resulted in reduced cell 

migration (Kariya et al., 2008). Galectin-3 cross-links laminin with α3β1integrin 

subunits and epidermal growth factor receptor (EGFR) resulting in a 

supramolecular complex. Galectins have emerged as an important class of 
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carbohydrate binding protein in cancer and are further discussed in section 1.7.4.2. 

It appears that N-glycans modulate the interaction between laminin and α3β1 

integrin subunits and hence indirectly promote cell migration.  

 

 1.7.2.3 CD44 and hyaluronate 
 

CD44 is a cell surface glycosaminoglycan (GAG) receptor which binds extracellular 

hyaluronan found on diverse cell types, including progenitor cells (Avigdor et al., 

2004), epithelial cells (Cichy et al., 2002), fibroblasts (Henke et al., 1996) and 

leukocytes (Xu et al., 2002). CD44 has been shown to bind fibronectin (Jalkanen 

and Jalkanen, 1992), collagen (Ehnis et al., 1996), growth factors (Wolff et al., 

1999) and matrix metalloprotease-9 (MMP-9) (Yu & Stamenkovic, 1999), by virtue 

of its differentially spliced isoforms. CD44 is involved in  key cellular processes 

such as cellular motility (Pure and Cuff, 2001), cell trafficking (DeGrendele et al., 

1997), cell-cell and cell-ECM adhesion (Prosper & Verfaillie, 2001). CD44 also 

binds cytokines, growth factors, chemokines and enzymes which are sequestered 

and then available to other cells or to the surrounding tissue (Jones et al., 2000).  

Altered CD44 spliced variants have been reported in pathological conditions such 

as autoimmune, chonic inflammatory diseases (Mikecz et al., 1995, Blass et al., 

2001) and in neoplasms (Salmi et al., 1993, Tanabe et al., 1993). In cancer the 

splice variants of CD44 show altered binding to hyaluronan and certain splice 

variants are associated with promotion of metastatic spread. CD44 undergoes 

extensive modification of the N-and O-linked glycosylation during carcinogenesis 

(Carter & Wayner, 1988, Stamenkovic et al., 1989).  In colon cancer, CD44 

receptors have been shown to be modified with O-linked glycans. Inhibition of the 

O-linked glycosylation step enhances CD44-mediated adhesion to hyaluronate 

whereas inhibition of N-linked glycosylation had no effect on CD44 adhesion, 

hence it has been suggested that O-linked glycosylation may be as important as 

alternative splicing in regulating CD44 function in tumour dissemination.  

Transfection studies have also demonstrated than O-linked glycosylation 

modulates interaction between the B loop domains of CD44 and hyaluronate 

(Dasgupta et al., 1996). On the other hand, Bartolazzi et al(1996) showed that 

inhibition of N-linked sugars on CD44 by  treatment with tunicamycin on different 
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human cells was associated with the loss of CD44-mediated cell adhesion to 

hyaluronan, althrough treatment of the cells with deoxymannojiramycin, which 

blocks the synthesis of high mannose type Asn-linked glycans, had no effect on 

adhesion suggesting that N-linked glycans are necessary for CD44 function 

(Bartolazzi et al., 1996). The two studies described above highlight the need for 

further investigation into the role of glycans on CD44 function. 

 

1.7.3 Angiogenesis: the role of heparan sulphate (HS)  

 
Angiogenesis is a complex process which involves multiple cellular events that 

leads to the formation of new vasculature from pre-existing blood vessels. During 

this process urokinase-plasminogen activator (uPA) and other proteins such as the 

MMPs degrade the basement membrane and the surrounding stroma. This is 

followed by migration and  proliferation of endothelial cells at localised regions in 

the surrounding tissues and the formation of  new vasculature (Iozzo & San 

Antonio, 2001). 

 

Angiogenesis is essential for normal development and for physiological processes 

such as  wound healing, formation of the uterine lining during the female monthly 

reproductive cycle (Fraser & Lunn, 2000) and development of blood vessels which 

link the mother to the fetus during pregnancy (Reynolds & Redmer, 2001). 

Aberrant angiogenesis is associated with pathological conditions, including tumour 

growth and metastasis and in order for a tumour to progress to a metastatic stage 

it must be supplied with an intratumoural blood vasculature which nourishes the 

cancer cells with oxygen and nutrients. This is crucial to support tumour growth 

beyond 2 mm diameter (Folkman, 2006).  Angiogenesis is modulated by a 

delicately controlled balance of growth factors such as pro- and anti-angiogenic 

factors which affect endothelial cell growth and differentiation. The main pro-

angiogenic growth factors include fibroblast growth factors (aFGF and bFGF) and 

vascular endothelial growth factors (VEGF). VEGF levels are controlled and 

stimulated by hypoxia and by activated oncogenes.  VEGF plays a critical role in 

the regulation of protein expression, cellular migration, division and apoptosis of 

endothelial cells (Ferrara, 2001, Robinson & Stringer, 2001). VEGF-A is a pro-
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angiogenic factor, the level of which has been correlated with the development of 

blood vessels at the sites of the neoplasm (Chen et al., 2004). Heparan sulphate 

(HS) containing proteoglycans, or the structurally related heparin, is frequently 

bound to growth factors at sites of angiogenesis. HS proteoglycans can occur as 

ECM components (for example perlecan), or as membrane, GPI anchored, 

molecules (for example syndecans and glypicans). These glycans also facilitate 

the binding of receptor tyrosine kinases to a variety of growth factors. Gene knock-

down studies of N-deacetylase/N-sulphotransferase to block acetylation and 

sulphation of nascent heparan sulphate chains inhibited tumour angiogenesis 

(Zhou et al., 2004). Absence of the HS proteoglycan perlecan has also been 

shown to block carcinoma growth in several in vivo models (Zhou et al., 2004). 

Moreover a 10-15 times increase in the level of HS has been observed in the 

neovasculature acquired during angiogenesis (Marcum & Rosenberg, 1985). In 

this aspect of the metastatic process, proteoglycans support the process of tumour 

dissemination.  Figure 1.8 illustrates the interaction of heparan sulphate with VEGF 

on endothelial cells receptors during the process of angiogenesis. 

 

 
 
Figure 1.8: Heparan sulphate (HS) interaction with VEGF. HS proteoglycans enhances 
the interaction between VEGF and receptor tyrosine kinase of activated endothelial cells 
at the site of angiogenesis. 
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1.7.4 Tumour cell interactions with the microvasculature and 
evasion of immune recognition 

 
The release of cancer cells from a primary tumour mass and their invasion through 

the BM and surrounding ECM is mediated by glycoconjugates and enzymes of the 

ECM. Haematogenous dissemination of tumour cells is also governed by the 

adhesive interactions between the tumour cell and the microvasculature within the 

tumour (Fidler et al., 1970). Tumour cells either adhere at the gaps between the 

endothelial cells of blood vessels and escape in the blood circulatory system 

(Kramer, 1982). This is an important process for intravasation  (Weidner, 2002). 

Once in the blood-stream a fraction of tumour cells travel as emboli with platelets 

rather than as individual entities (Morimoto et al., 2008). Cells at the centre of the 

tumour mass are physically shielded from immune recognition (Fidler & Bucana 

1977). The tumours then adhere to the endothelium prior to extravasation at a 

distant site to form secondary cancer foci (Nicolson, 1985). 

 

1.7.4.1 C-type lectin receptors (CLR) including selectins 
 

The adhesion of circulating tumour cells to the endothelium and subsequent 

movement to the organ of metastasis involves similar mechanisms to those used 

by leukocytes when homing to sites of inflammation (Lasky, 1995, Springer, 1995). 

Selectins are adhesion molecules mediating the interaction of the leukocytes and 

endothelial cells with other cells including platelets in the vascular endothelium. 

This area of biology has been extensively reviewed by Gonzalez-Amaro and 

Sanchez-Madrid (1999). Selectins are a family of transmembrane proteins of the 

C-type lectin family which include L-selectin, P-selectin and E-selectin. These 

selectins recognise SLex and SLea, sialic acid containing ligands which are 

predominantly present at the tips of O-linked glycans on the surface of leukocytes 

(Varki, 1994). Tumour derived mucins, from carcinomas such as breast, colon, 

pancreas and stomach, frequently show increased level of Lewis glycans, and 

hence the interaction between tumour cells and the vasculature were throught and 

subsequently shown to be mediated by selectins on the endothelial cells (Kim et 

al., 1998; Varki, 1997). In vitro studies with the CRC cell line HT29 showed that 

adhesion to human umbilical cord endothelial cells (HUVEC) was inhibited by a 
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monoclonal antibody directed against E-selectin ligands (Srinivas et al., 1996).  

Introduction of HT29 colorectal cancer cells into E-and P- selectin knock-out 

severe combined immunodeficient (SCID) mice resulted in a decrease in 

metastasis formation compared to wild type mice, here, significant metastasis 

formation occurred in the lungs (Kohler et al., 2009).  Flow experiments indicated 

that tumour cells roll and tether on an E- and P-selectin matrix in a manner similar 

to leukocytes but firm adhesion occurred only on E-selectin. The interactions of 

selectins with tumour cells and leukocytes are illustrated in figure 1.9.  

 

Other transmembrane CLRs of importance in cancer are the dendritic cell-specific 

intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and scavenger 

receptor C-type lectin (SRCL). DC-SIGN play a key role in the adhesion of tumour 

cells to endothelial cells, again by virtue of their ability to recognise Lex containing 

glycans present on the tumour cells (Guo et al., 2004). Recent studies have 

demonstrated that DC-SIGN recognises modified glycans of CEA or MUC1 in 

colon tissues (Berinstein, 2002; Denda-Nagai & Irimura, 2000). Another CLR that 

may be involved in tumour cell adhesion is the SRCL which recognises Lex and 

Lea containing oligosaccharides.  The precise role of   SRCL in glycan mediated 

cell adhesion has yet to be elucidated. However  it has been demonstrated that it 

binds to glycoproteins on the cell surface of breast tumour cells and hence could 

have a role similar to that proposed for the selectins in the metastatic spread of 

cancer (Elola et al., 2007). 
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Figure 1.9: P-, E- and L- Selectin of activated endothelial cells.  Tumour cells adhere 
to activated endothelial cells through the SLeX or SLea and P-, E- L- selectin mediated 
interactions 
 
 

1.7.4.2 Galectins 
 

Galectins belong to a family of 14 structurally related proteins which share 

common homologous carbohydrate recognition domains (CRDs). Galectins have 

affinity for beta-galactoside-containing epitopes (Barondes et al., 1994) and are  

involved in cellular events including cell-matrix adhesion, pre-mRNA splicing 

(Hughes, 2001), migration (Jung et al., 2008), cell growth, apoptosis and 

differentiation (Yang & Liu, 2003). As galectins have the ability to form cross-linked 

structures between adjacent cells, they have been shown important for maintaining 

the stability of cellular adhesions. Galectin associated cross-linking is associated 

with receptor activation and induction of intracellular signalling which may 

subsequently induce apoptosis (Hernandez & Baum, 2002). Galectins are altered 

in pathological conditions including diabetes (Perone et al., 2009), autoimmune 

disease, inflammation, atherosclerosis (Papaspyridonos et al., 2008; Rabinovich et 

al., 2007) and cancer cell metastasis (Hsu et al., 1999; Irimura et al., 1991, Lotan 

et al., 1994). The loss of adhesive properties that galectins confer is implicated in a 

number of pathological states including tumour progression. Whilst most galectins 
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are intracellular proteins, some interact with glycoprotein receptors at the cell 

surface. The exposure of galactose residues at the terminal end of 

glycoconjugates (as observed in cancer associated antigens), for example the 

presence of the T antigen (Gal β1-3 GalNAc) and the Lex trisaccharide (Galβ1-

4(Fuc 1-3) GlcNAc) may facilitate the binding of circulating tumour cells to 

galectins of the vascular endothelium during adhesion processes and may also 

affect the rolling events inside the vasculature (Glinsky et al., 2000; Takenaka et 

al., 2004). Figure 1.10 illustrates the involvement of galectins in the formation of 

cross-linked structures and how this is implicated in maintaining structural stability 

at the cell surface. 

 

 
Figure 1.10: Galectin dimer formation. Galectin enhances the interaction between cell 
surface proteins by forming cross-linking structures between adjacent receptors. 
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1.7.5 Glycans in ‘immune protection’ 

 
The survival of tumour cells and evasion of immune surveillance system is not fully 

understood. It is throught that sialylated glycans at the cell surface play a 

functional role in shielding them from immune attack, by processes similar to those 

involved in protection of parasites such as trypanasomes, bacteria and pathogenic 

fungi from phagocytosis by the cells of host organisms (Pilatte et al., 1993). In 

such a model host immune system fails to discriminate the tumour mass as ‘non-

self’ giving rise to secondary tumours and metastasis formation. Desialylation of 

pathogenic fungi results in an increased likeliness of phagocytosis by human 

macrophages, implying that sialic acid residues found on those organisms may 

have functional role in the immune protection (Pilatte et al., 1993; Wasylnka et al., 

2001). On the other hand, the presence of branching N-linked oligosaccharides on 

gp120 on the envelope of the human immunodeficiency virus 1 (HIV-1), facilitates 

viral escape from the host immune system (Zhang et al., 2004). Studies have 

revealed that gp120 carries an average of 25 potential N-glycosylation sites and 

that these N-glycans are critical for the correct folding, hence for proper structure 

and function of the virus envelope (Fischer et al., 1996; Li et al., 1993; Morikawa et 

al., 1990; Zhang et al., 2004)  The cluster of N-glycans promotes the escape of the 

virus from the host immune system by hindering antigen presentation to 

neutralizing antibodies (Ly and Stamatatos, 2000) and cytotoxic T- lymphocytes 

(CTL) (Duenas-Decamp et al., 2008; Li et al., 2008; Kwong et al., 1998). If 

parallels are drawn between tumour and infectious disease pathogenesis, the 

glycan structures present on the surface of tumour cells may serve as a ‘glycan 

shield’ facilitating cancer cell escape from the host immune system.  
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1.8 Lectins and cancer 

1.8.1 History of lectins 

Lectins are agglutinating proteins of non-immune origin that were discovered 

almost 150 years ago. Weir Mitchell first observed an agglutinating substance in 

snake venom in 1860 and then in 1888, Peter Herman Stillmark described a 

protein extract from the seeds of the castor tree (Ricinus communis) which had the 

ability to agglutinate erythocytes (Mitchell, 1860; Stillmark, 1888). It was not until 

1954 that it was first shown that agglutination by lectin occurs selectively via 

recognition of specific carbohydrate epitopes (Boyd & Shapleigh, 1954). Lectins 

are now known to be present throughout nature from bacteria to plants, primitive 

animals to humans (Bies et al., 2004). 

 

Whilst the major function of lectins in viruses and bacteria is often key to their 

pathogenicity (Lehmann et al., 2006), in plants they are believed to protect against 

pathogenic bacteria through the binding on the cell surface of the microbial cells 

(Rudiger & Gabius, 2001). Lectins are involved in the recognition of molecules in 

the immune system in invertebrates and animals. Invertebrates’ lectins are 

throught to act as primitive immune molecules directed against pathogens by 

recognising extracellular oligosaccharides on the microorganisms. Several lectins 

in humans such as ficolins, mannan-binding lectin and the membrane bound 

macrophage mannose receptor mediate elimination of pathogens (reviewed in 

Kilpatrick, 2002). Several cell adhesion molecules with lectin properties, including 

selectins and CD44, are involved in cell recognition and cell trafficking. In animals, 

galectins are known to have immune-regulatory properties (Levi et al., 1983; 

Offner et al., 1990) and cytokines play a role in immune-regulation via lectin-like 

interactions (Fukushima & Yamashita, 2001). 

 

 A growing body of evidence has shown that some lectins bind preferentially to 

malignant cells and these have attracted interest in the area of cancer research. 

Lectins can be used to investigate the presence of carbohydrate structures in or on 

cancer cells, in much the same way as antibodies are used to probe cells and 

tissues for the presence of specific antigens (Ikeda et al., 1994; Schumacher et al., 
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1994). Aub et al (1965) first reported that the lectin wheat germ agglutinin (WGA) 

recognised cells with a malignant phenotype. Since that time, many lectins were  

shown to detect alterations in glycosylation that accompany malignant 

transformation, for instance the lectin from Erythina cristagalli (ECA) showed 

differential binding between normal and cancerous colonic epithelia (Baldus et al., 

1996). Other lectins such as Dolichos biflorus agglutinin (DBA) and Ulex 

europaeus agglutinin-1 (UEA-1) and WGA displayed differential binding pattern 

between normal and cancerous colorectal cells. Another lectin that has been the 

focus of several studies is the lectin from Helix pomatia (the Roman snail) as its 

binding to cancer tissue samples has been associated with poor patient prognosis 

(as described in section 1.8.2 and 3.1). Helix pomatia agglutinin (HPA) has been 

suggested to be a useful tool for identifying aggressive epithelial cancer and the 

epitopes recognised by this lectin are the focus of the work in this thesis.  

 

1.8.2 Helix pomatia agglutinin (HPA)  

 
HPA is a 79 kDa hexameric molecule composed of identical monomers present in 

at least 12 glycoforms (Hammarstorm & Kabat, 1969; Hammarstorm et al., 1972; 

Vretbald et al., 1979). Each HPA monomer consists of six anti parallel beta sheets 

connected by short loops, which form a sandwich structure stabilised by a 

disulphide bridge between cysteine 9 and 80. The dimers associate with each 

other to form a trimer by the formation of three disulphide bonds between cysteine 

42 on each monomer. Each HPA monomer consists of one GalNAc and Zn2+ 

binding site with the sugar binding site formed by the hairpin-like loops that 

connect the strands at the extremities of each monomer. The lectin specificity for 

GalNAc results from the particular network of hydrogen bonds where a histidine 

residue makes hydrophobic contact with the aglycon, rationalizing the preference 

for GalNAc bearing an additional sugar or amino acid in the α position (Sanchez et 

al., 2006; Lescar et al., 2007). These lectin structures were solved and this is 

shown in figure 1.11 and provides the molecular basis for the use of the lectin HPA 

in cancer research.  
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Figure 1.11: HPA structure. Panel A shows the structure of HPA alone obtained with a 
resolution of 2.5 Ao. Panel B shows the HPA structure in presence of GalNAc and Zinc 
molecule (Adapted from Sanchez et al., 2006). 
 
 
The lectin HPA is a blood group A specific lectin and played a significant role in 

experiments to determine the sugar composition of antigens associated with the 

ABO blood group system (Prokop et al., 1965; Uhlenbruck, 1966). HPA is 

extracted from the albumen gland of the Roman snail where it appears to be 

involved in the innate immune system of the snail by conferring protection for 

fertilised eggs (Prokop et al., 1965). The lectin has has the ability to aggregate 

bacterial pathogens and herpes virus (Kholer et al., 1973; Patchett et al., 1991; 

Slifkin and Cumbie, 1989).  HPA has binding specificity for the Forssman antigen 

(αGalNAc1-3GalNAc) (Baker et al., 1983), blood group A antigen (GalNAcα1-

3Galβ1-4GlcNAcβ1-Fucα1-2)   (Anderson & Haas, 1984; Mourali et al., 1980), Tn 

antigen (αGalNAc1 -O- Ser/Thr) (Piller et al., 1990; Springer, 1989), terminal α-

A  

B  
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GalNAc and α-GlcNAc (Hammerstorm & Kabat, 1969) and also sialic acid (Dwek 

et al., 2001).  

 

It is now known that in addition to agglutinating human blood-group A erythrocytes, 

HPA also binds cancer cells associated with poor clinical outcome suggesting that 

HPA recognises altered glycans on the surface of cancer cells. The predictive 

value of HPA was first shown over two decades ago when metastatic breast 

cancers of patients with poor prognosis were found to bind the lectin (Leathem & 

Brooks, 1987). In 1991, Leathem and Brooks conducted a study of 373 primary 

cancers from patients which had been followed-up for a period of up to 15 years 

and demonstrated that HPA staining of the primary tumours correlated with poor 

clinical outcome of the patients and lymph node status, althrough no correlation 

were made with tumour size, histological grade or age at diagnosis. The prognostic 

value of HPA has also been observed in other cancer types such as oesophageal 

(Yoshida et al., 1994; Takashi et al., 1994), gastric (Kakeji et al., 1994), prostatic 

(Shirashi et al., 1992), lung (Kawai et al., 1991) and colorectal cancer (Ikeda et al., 

1994; Schumacher et al., 1992).  

 

HPA has the ability to bind to metastatic cancer cells by recognition of epitopes on 

the surface of cancer cells and these may be useful as a prognostic marker in a 

range of solid tumours. Approximately 80% of metastatic tumours contain HPA 

binding epitopes (Brooks and Leathem 1998). The HPA binding characteristics of 

cancer cells has been correlated with in vivo models of metastasis and migration of 

HPA positive breast and colon cancer cells to secondary sites (Schumacher & 

Adam, 1997, Kohler et al., 2010). Other groups have, however failed to establish a 

relationship between HPA binding and poor prognosis cancer (Galea et al., 1991; 

Gusterson et al., 1993). It has been since been shown that the reasons for the 

differences in the results acoss the different teams were methodological, and that 

an indirect method for the detection for lectin binding histochemistry based studies 

is preferred (Brooks et al., 1996). Despite the evidence that HPA has the potential 

for prognostication, the lectin does not yet have a role in clinical decision making 

for any tumour type, and the HPA binding glycoproteins of most cancer cells types 

has yet to be determined. This is explored in more detail in section 3.1. 
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Recently, HPA binding to CRC cell lines was investigated by Saint-Guirons et al 

(2007). HPA binding to metastatic HT29 and non-metastatic SW480 CRC cell lines 

was investigated. Membrane glycoproteins from these CRC cell lines were isolated 

by affinity chromatography and was analysed by 2-DE coupled with MS.  HPA 

labelling using confocal microscopy revealed intense binding in the HT29 cell lines 

consistent with the phenotype of the cell line.  Proteomic studies showed  HPA 

bound to several membrane glycoproteins involved in cell adhesion/migration 

(integrins and annexins), re-modelling (tubulin, cytokeratins, actin) and anti-

apoptotic pathways (Hsp-70, Hsp-90, Hsp-96 and TNFR-1) in this cell line.  The 

authors’ showed that these proteins bound HPA only the metastatic HT29 but not 

in the non-metastatic SW480. This work was the key reference to the work carried 

out in this thesis.  

 
 

1.9 Aims of the project: 

1. To establish an in vitro model for HPA binding using breast cancer cell 

lines (chapter 3). 

 

2. To determine whether HPA recognises the same glycoproteins in 

breast cancer as previously reported in CRC (chapter 4).   

 

3. To identify whether HPA recognises glycoproteins via binding to blood 

group substance, aberrant O-linked structures or O-GlcNAcylation  

(chapter 5). 
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Chapter 2 
 
 
       Materials and Methods 
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2.0 Materials and Methods 

2.1 Cell lines 

Human breast cancer cell lines HMT3522, BT474, MCF-7, T47D, and were 

selected as they have known HPA binding properties and their behaviour in terms 

of metastasis formation differ when implanted in SCID mouse (Brooks et al., 2001; 

Schumacher & Adam, 1997). The details of the four cell lines used in this study are 

shown in table 2.1. The cells were kindly donated by Dr. Brooks (Oxford Brookes 

University, UK), grown in Dulbecco’s Modified Eagle Medium (DMEM) (Lonza, UK) 

supplemented with 10% v/v foetal calf serum (FCS) (Biosera, UK), penicillin and 

streptomycin (1% w/v, Sigma) in 5% v/v CO2. Cells were grown in 25 cm2, 75 cm2 

or 175 cm2 flasks at 37°C (Hera Cell Incubator 240). The culture media was 

changed every 2-3 days and the cells were passaged by trypsinisation (0.5 g/l 

trypsin and 0.2 g/l EDTA, Sigma, UK) when the cells reached approximately 70–

80% confluence (Donohue et al., 2006). Cells used for protein or mRNA extraction 

were then grown to near confluence, washed 3 times in phosphate buffered saline 

(PBS, Sigma, UK), mechanically detached using a sterile plastic cell scraper in 25 

ml of PBS and centrifuged at 500 xg in a Centaur 1 MSE centrifuge for 10 min. 

Before using the cells for experimental assays, a cell count was performed using a 

haemocytometer.  Approximately 1.5 million cells were used for protein extraction 

experiments and 10,000 cells were used for mRNA extraction.  All the cells used in 

this study, were kept within 10 cellular passages. Cell pellets were stored at -80oC 

until protein extraction was carried out.  
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Table 2.1: Characteristics of the breast cell lines used in this study. ATCC number, 
cell origin and HPA binding status of HMT3522, BT474, MCF-7 and T47D. N/A: not 
applicable. 

 

 

 

 

 

2.2 Light microscopy 

To assess the lectin binding properties of the cells, methods developed by Brooks 

& Hall, (2002) were adapted as follows: Cells were grown in 6 well plates until near 

confluence for approximately 24 hours after passage and fixed for 20-30 min in 

10% v/v formalin in PBS (pH 7.4). After washing away the formalin with PBS, the 

fixed cells were blocked in 5% w/v bovine serum albumin (BSA) for 30 min. The 

cells were incubated with biotinylated HPA (Sigma, UK) prepared in PBS and used 

at 10 μg/ml for 2 h. The cells were then washed 3 times for 5 min with PBS and 

incubated with horseradish (HRP) conjugated streptavidin (Sigma, UK) prepared in 

PBS and used at 10 μg/ml for 1 h at room temperature. Detection was performed 

using the chromogenic substrate diaminobenzidine (DAB) for 5 min. DAB was 

prepared in PBS/ H2O2 (6 mg of DAB prepared in 9 ml of TBS and 60 μl of 30 vol 

H2O2).   

 

 

Cell line ATCC 
number 

Derived  from Reference (s) Published 
HPA status 

HMT3522 N/A Benign fibrocystic breast tissue  
used to represent ‘normal’ 
 breast cell. 

 

Briand et al., 
1987 

Brooks et al.  
2001 

BT474 HTB-20 Primary breast cancer Lasfargues 
et al., 1978 

 

Brooks et al., 
 2001 

 
MCF-7 HTB-22 Malignant pleural effusion from 

primary infiltrating ductal cancer 
 

Soule et al.,  
1973 

Brooks et al.  
2001;  
Schumacher, 
 2004 

T47D HTB-133 Malignant pleural effusion from 
primary infiltrating ductal cancer 

 

Keydar et al.,  
1979 

Schumacher &
Adam, 2004 
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2.3 Confocal microscopy 

2.3.1 Lectin staining 

 
To assess the lectin binding properties of the cells methods developed by Brooks 

& Hall, (2002) and Saint-Guirons et al (2007) were adapted as follows: Cells were 

grown in 6 well plates until near confluence for approximately 24 hours after 

passage and fixed for 20-30 min in 10% v/v formalin in PBS (pH 7.4). After 

washing away the formalin with PBS, the cells were incubated for 30 min at 37°C 

with 1 mg/ml trypsin (type II from porcine pancreas; Sigma, UK). Trypsinisation 

was used for antigen retrieval. Prior to fluorescent lectin staining, cells were fixed 

and washed as above and blocked in 5% w/v BSA for 30 min. Fluororescein 

isothiocyanide (FITC) and tetramethylrhodamine isothiocyanide (TRITC) 

conjugated HPA, SNA and PNA encompassing different sugar binding properties 

were used to stain the cells (table 2.2).  

 
Cells were incubated in the dark, at room temperature, after washing 3 times for 5 

min in PBS, with each lectin (10 μg/ml in PBS) for 1 h. All lectins, (except HPA 

which was obtained from Sigma, UK), were purchased from Vector Laboratories, 

Burlingame, CA. A DNAse free ribonuclease A stock solution was prepared by 

boiling for 10 min in 10 mM sodium acetate buffer, pH 5.2. The cells were then 

treated with 100 µg/ml ribonuclease A (Sigma, UK) for 20 min at 37°C in PBS and 

the nuclei were counter-stained  using To-Pro-3 (Molecular Probes, Eugene, USA) 

at 1 μM in PBS for 20 min. As a negative control for lectin staining, cells were 

incubated with buffer alone. 
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Table 2.2: The lectins used in this study and their nominal binding sugars 

 
 
 
 
 
 
 
 
 
 

 

2.3.2 Antibody labelling 
 

The cells were grown as above and fixed for 20-30 min in methanol diluted with 

PBS (1:1 volume).  After washing away the methanol with PBS, the fixed cells 

were trypsinised and blocked as above. The nuclei were counter-stained using To-

Pro-3 prior to antibody incubation.  The monoclonal mouse IgM anti-human-O-

GlcNAc antibody (sc-81483, Santa-Cruz Biotech, UK) was used at 10 μg/ml for 1 h 

followed by 20 min incubation with a monoclonal goat anti-mouse IgG-FITC at 5 

μg/ml (sc-2010, Santa Cruz Biotech, UK). A control was included in which the anti-

O-GlcNAc step was omitted. For co-localisation studies, lectin staining was 

performed prior to antibody labelling. 

 

2.3.3 Localisation of the Golgi apparatus 
 

The cells were grown as above and fixed for 20-30 min in 10% v/v formalin in PBS, 

pH 7.4.  After washing away the methanol with PBS, the fixed cells were 

trypsinised and blocked as above. Nitrobenzoxadiazole (NBD) labelled C6 

ceramide dye (NBD-C6-ceramide, B-34400, Invitrogen, UK) has been shown to 

locate the Golgi apparatus (Ktistakis et al., 1995). The NBDC6-ceramide was 

applied to the cells at 10 �M for 1 h at 4oC. The ceramide was prepared in 4-(2-

Lectin Abbreviation  Nominal binding sugar  Fluorophore 

 

Helix pomatia agglutinin 

Sambucus nigra 
agglutinin 

Arachis hypogaea 
agglutinin 

 

 

HPA 

SNA 

PNA 

 

      GalNAc/GlcNAc  

      α2,6 linked-sialic  

      Galβ1-3-GalNAc  

 

          TRITC 

           FITC 

           FITC 
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hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (Invitrogen, UK). 

For co-localisation studies, lectin staining was performed prior to labelling the Golgi 

apparatus. 

 

2.3.4 Specificity of HPA binding  

The specificity of HPA binding was assessed in T47D cells. Cells were grown in 6 

well plates, fixed and blocked with 5% w/v BSA as described in section 2.2.1 The 

specificity of the lectin binding was evaluated by assessing the intensity of HPA 

staining after pre-incubating the lectin (10 µg/ml) for 30 min with increasing 

concentrations of GalNAc or GlcNAc (25 mM, 50 mM and 100 mM) (Sigma, UK). 

Mannose (50mM) (Sigma, UK) was included in the experiment as it has not been 

shown to bind HPA. The cells were incubated in the dark with the HPA/sugar 

mixture for 1 h and counter-stained  with To-Pro-3, as described earlier. The 

intensity of the HPA staining was evaluated in 10 high power fields using a scoring 

system for each condition. 

 

2.3.5 Image capture 

Images were collected using a Leica TCS SP2 confocal microscope (Leica 

Microsystems, Milton Keynes, UK) with a X63 ceramic dipping objective and by 

sequential scanning. Images were acquired at a scanning speed of 400 Hz, 1024 x 

1024 pixel resolution and with a line average of 4. A 466 nm laser was used for the 

excitation of NBD C6-ceramide (intensity 35%, emission bandwidth 500-536 nm), 

488 nm for IgG-FITC (intensity 40%, emission bandwidth 500-550 nm), 543 nm for 

HPA-TRITC (intensity 40%, emission bandwidth 550-630 nm) and 633 nm laser for 

the To-Pro-3 (intensity 35%, emission bandwidth 650-720 nm). These parameters 

are summarised in table 2.3. The background was compensated by adjusting the 

gain and offset commands. For 3-D images, Z-stacks were scanned at 1 μm 

increments. 
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Table 2.3: Parameters used for confocal microscopy work with fluorophores  
 
 

Fluorophore Excitation 
wavelength 
(nm) 

Emission 
Bandpass 
(nm) 

Laser 
intensity 
(%) 

NBD 
FITC 

466 

488 

500-236 

500-550 

35 

40 

TRITC 543 550-630 40 

To-Pro-3 633 

 

650-720 

 

35 

 

  

2.3.6 2D models and 3D reconstructions of confocal images 
 

3D reconstructions were produced using the Imaris® 7.1.0 software from 

Bitplane® -AG to combine the Z-stacks obtained by confocal microscopy. 2D 

models were prepared using the Surpass tool from Imaris® 7.1.0, after baseline 

correction. 

 

2.4 Cell lysate preparations 

The breast cancer cells were grown to near confluence in 175 cm2 tissue culture 

flasks (Flacon) and harvested using a sterile cell scraper (Falcon) into 25 ml of 

PBS as described in section 2.1. Cells were centrifuged for 5 - 7 min at 500 xg in a 

bench top Centaur I MSE centrifuge before being stored as a dried pellet at - 80°C. 

 

 

 

 

 

 

 



51 
 

2.4.1 Preparation of the cytoplasmic and membrane enriched 
fractions 

 
Frozen cell pellets were resuspended in 150 mM KCl and disrupted by sonication 

using an ultrasonic probe (MS73 Status 200) at 40% power, 10 times for 10 sec 

with intermittent cooling on ice cold water. Cellular debris was removed by 

centrifuging the cell lysate in a Sorvall Super T21 centrifuge with SL50T rotor for 

20 min at 11,000 xg before the protein concentration was determined. 

 

Microsomes containing membrane enriched proteins were prepared from the 

disrupted cell pellets by ultracentrifugation using a modified version of the 

procedure described by Saint-Guirons et al (2007) and Lehner et al. (2003). The 

preparation process is summarised in figure 2.1. 

 
Briefly, the cells were disrupted using an ultrasonic probe (MS73 Status 200) at 

40% power, 10 times for 10 sec in 40 ml of 150 mM KCl. The resulting 

homogenate was centrifuged at 11,000 xg for 20 min at 4°C to pellet the cell debris 

and nucleic acids. The supernatant was subsequently centrifuged for 1 h at 

170,000 xg at 4°C (Sorvall Discovery 90SE with rotor T-865). These steps 

separated soluble proteins in the supernatant from the pellet containing 

microsomes. The pellet was re-suspended in water, sonicated as before and 

centrifuged for a further 1 h at 170,000 xg at 4°C to pellet the microsomes. The 

membrane-enriched proteins were then solubilised in 1 ml of U1T1 (8 M urea, 4% 

w/v CHAPS, 1% w/v DTT, 2% w/v ampholytes  and 3 M thiourea) or urea lysis 

buffer (7 M urea, 4% w/v CHAPS, 1% w/v DTT) described in section 2.5.  
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Figure 2.1: Schematic diagram showing the preparation of cytoplasmic and 
membrane proteins. Cells were disrupted by sonication (10 times for 10 sec) in 150 mM 
KCl. The cell lysate was then centrifuged at 11,000 xg in order to remove the cell debris 
and the nucleic acids from the cellular solution. The supernatant was centrifuged at high 
speed (170,000 xg) in order to pellet the cellular membranes prior to protein extraction. 
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2.5 Protein solubilisation 

Optimisation of appropriate buffers for the solubilisation of proteins has been 

recognised as a key step prior to proteomic separation (Weiss & Gorg, 2008; 

Rabilloud, 1998). 

 

2.5.1 Buffers for protein separation by one-dimensional 
electrophoresis (1-DE) 

 
Prior to separation of membrane proteins by 1-DE the solublisation, properties of 

three buffers was compared. The buffer composition is shown in table 2.4. 

 
Table 2.4:  The composition of the solubilisation buffers used for 1-DE 

 
 
 
 
 
 

2.5.2 Buffers for protein separation by two-dimensional 
electrophoresis (2-DE) 

 
 A total of four solubilisation buffers were investigated for their suitability as 2-DE 

solubilisation buffers. The compositions of the complete 2-DE buffers are shown in 

table 2.5. 

 

 

 

 

 

 

 
 

Buffer  Composition 

Chaps  1% w/v CHAPS 

Thiourea  7 M urea, 4% w/v CHAPS, 1% w/v DTT, 2M thiourea  

Urea 7 M urea, 4% w/v CHAPS, DTT 1% w/v 
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Table 2.5: The composition of the solubilisation buffers used for 2-DE in this study. 
 
 
 
 
 
 
 
 

 

 

2.6 Protein assay 

Protein was quantitated using the Quant-iT™ Protein Assay Kit (Invitrogen, 

Molecular Probes). Briefly, a calibration curve of prediluted standards was set up 

and the Quant-iT™ reagent was diluted in Quant-iT™ buffer in a ratio of 1:199.  A 

known volume of the sample was added to the working solution and a reading was 

taken using a Quant-iT™ fluorescence reader at excitation/ emission wavelengths 

of 470 nm and 570 nm respectively. 

 
2.7 One-dimensional electrophoresis (1-DE) 

Cytoplasmic or cell membrane proteins were prepared and assayed as described 

earlier and separated by SDS/PAGE according to the method of Laemmli (1970). 

Briefly, a suitable volume of cytoplasmic or cell membrane protein containing 

approximately 5-20 μg of protein in a maximum volume of 10 μl with an equal 

volume of 2x Laemmli reducing buffer: 125 mM Tris-HCl pH 6.8,  5% v/v glycerol, 

4% w/v SDS, trace of bromophenol blue, 10% β-mercaptoethanol, was employed. 

The protein samples were boiled for 5 min to achieve complete denaturation and 

were allowed to cool to room temperature for 5 min before being loaded on an 

SDS-PAGE gel as detailed below. 

 

Buffer acronym Composition 

U 7 M urea, 4% w/v CHAPS, 1% w/v DTT, 

 2% v/v ampholytes  and 2 M thiourea 

U1 8 M urea, 4% w/v CHAPS, 1% w/v DTT,  

2% v/v ampholytes  and 2 M thiourea 

T1 7 M urea, 4% w/v CHAPS, 1% w/v DTT,  

2% v/v ampholytes  and 3 M thiourea 

U1T1 8 M urea, 4% w/v CHAPS, 1% w/v DTT,  

2% v/v ampholytes  and 3 M thiourea 
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2.8 Sodium dodecylsulphate–polyacrylamide gel 
electrophoresis (SDS-PAGE) 

 
Protein samples were loaded on to a 12% SDS-PAGE gel, along with protein 

markers (Bio-Rad or GE Healthcare) and were separated electrophoretically with 

running buffer; 25 mM Tris, 192 mM glycine, 0.1% w/v SDS pH 8.3 at 120 V for 1 h 

in the Mini Protean 3 gel system (Bio-Rad). All the buffers and recipes are 

summarised in Appendix 1. 

 

2.9 Sample preparation for 2-DE 

To enable a more in-depth analysis of the proteins in the samples, a combination 

of isoelectric focusing (IEF) followed by SDS-PAGE was utilised. This system, in a 

mini-gel format allows the separation of approximately 300-500 proteins in a single 

experiment (O'Farrell, 1975). 

 

An appropriate volume of membrane proteins containing between 70 μg and 100 

μg of protein was mixed with hydration buffer containing 7 M urea, 2 M thiourea, 

4% w/v CHAPS, 1% w/v DTT, 2% v/v ampholytes (GE Healthcare, UK), to a final 

volume of 130 μl prior to in-gel rehydration of the immobilised pH gradient strip. 

DTT was added fresh to the rehydration buffer prior to use in order to prevent 

denaturation of the DTT. 
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2.9.1 In-gel rehydration 
 

The protein samples were loaded onto 7 cm linear pH 3-10 Immobiline Drystrips 

(GE-Healthcare). Briefly, 130 μl of sample containing 70 μg to 100 μg of proteins 

prepared in rehydration buffer was pipetted into the groove of the reswelling tray. A 

dry IPG strip was inserted into the groove, gel face down, to cover the sample. 

Silicone oil (Sigma, UK) was layered on top of the strip to prevent dehydration of 

the strip. Rehydration was performed overnight at room temperature. 

 

2.9.2 Isoelectric focussing (IEF) 

Prior to IEF, the rehydrated strips were rinsed gently with distilled water. The strips 

were placed on the isoelectric focussing unit (Multiphor, GE Healthcare), gel facing 

up with a dampened filter paper between the gel and the electrodes to trap fast 

moving ions that may have caused an increase in current intensity and unwanted 

heating of the strip.     

                                    

IEF was performed under the conditions summarised in table 2.6. Focussing was 

performed in two stages; in the first stage low voltage focussing was performed 

(300 V and 600V) to allow the removal of fast moving ions which are eventually 

trapped in the filter paper placed at the electrode, in the second stage focussing 

was performed at 3,500 V and during this step the proteins move toward the 

anode/cathode depending on their charge. The proteins eventually come to rest at 

the pH zone equal to their pKa (O'Farrell, 1975). 
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Table 2.6: The conditions of IEF set-up of the proteins loaded onto 7 cm IPG strip. 
 

 

 

 

2.9.3 Equilibration of IPG strip 
 

Focussed strips were maintained at -80oC for no longer than 2 days.  Prior to 

separation of proteins in the second dimension, the strips were equilibrated for 15 

min in equilibration buffer: 50 mM Tris-HCl, pH 8.8; 6 M urea, 30% v/v glycerol, 2% 

w/v SDS, 1% w/v DTT, to reduce disulphide bonds and unfold the proteins to 

enable their exit from the IPG strips. This step was followed by another 15 min 

step in a second equilibration buffer: 50 mM Tris-HCl, pH 8.8; 6 M urea, 30% v/v 

glycerol, 2% w/v SDS, 1% DTT, 2.5 % w/v iodoacetamide to stabilise the unfolded 

proteins and prevent protein re-folding.  

 

2.9.4 Second dimension: SDS-PAGE 
 

Equilibrated strips were then gently placed on top of a vertical 1 mm thick, 8 x 7 

cm, 10% SDS-PAGE gel. Molecular weight standards were loaded on a small 

piece of filter paper and inserted next to the positive end of the IPG strip. A sealing 

buffer: 0.5% w/v agarose, 25 mM Tris pH 8.3, 192 mM glycine, 0.5% w/v SDS, 

trace of bromophenol blue, was poured over the strip to seal the the IPG strip and 

prevent movement during protein separation. The gels were electrophoresed for 2 

h at 120 V prior to protein staining or Western blotting. 

Gel length: 7cm 

Temperature: 20°C 
Current max: 2 mA 
Voltage max: 3500  V 

IEF Volts Time 

Initial steps 300 V 

600 V 

30 min 

30 min 

Focussing step 3,500 V 2 h 45 min 
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 2.10 Protein staining using Coomassie brilliant blue 
 (CBB) 
 

The protein gels were stained with Coomassie brilliant blue (CBB). The fixative, 

stain and destain solutions were freshly prepared and are shown in table 2.7. The 

gels were fixed for 30 min in methanol/ acetic acid; stained with CBB for 2 h and 

destained for 2 h. Complete destaining of gels was achieved by allowing the gels 

to stand overnight in water until the protein bands were stained deep blue against 

a transparent background. All these steps were performed under gentle agitation 

on a rocking tray at room temperature.  

 

 
Table 2.7: Coomassie brilliant blue staining solutions used for fixing, staining and 
destaining. 
 

 

 

 
 
 
 
 

 
 
 
 
 
 

     2.11 Protein transfer by Western blotting 

The proteins separated by 1-DE or 2-DE were transferred onto nitrocellulose 

membranes (GE Healthcare) by wet transfer in a Mini Trans Blot transfer cell, Bio-

Rad, using transfer buffer: 25 mM Tris, 192 mM glycine and 20% v/v methanol at 

200 V for 2 h. The system was cooled throughout the experiment. 

 

 

  

Solutions Composition Time 

Fixing 
solution 

50% v/v methanol, 10% v/v acetic acid, dH2O 30 min 

Staining 
solution 

10% v/v acetic acid, 0.025% w/v  

Coomassie brilliant blue, dH2O 

2 h 

Destaining 
solution 

10% v/v acetic acid, dH2O 2 h 
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 2.12 Ponceau S staining of Western blots 

Prior to lectin or antibody probing, the membranes were stained with the protein 

dye, Ponceau S (Sigma, UK) to check the efficiency of the protein transfer and to 

localise the molecular weight markers. 0.1% w/v Ponceau S in 5% v/v acetic acid 

was used for 5 min for staining and was subsequently removed by rinsing the blot 

in water. 

 

 2.13 Lectin and antibody detection on Western blots 

Prior to probing the blot with lectin or antibody, the nitrocellulose membrane was 

blocked with 5% w/v BSA in phosphate buffered saline/0.05%  v/v Tween, pH 7.6 

(PBS/T) for 2 h. After the blocking step, the membrane was washed 3 times for five 

min in PBS/T. Lectin/antibody steps and washing steps were carried out in PBS/T 

and were performed at room temperature with gentle rocking. 

 

 2.13.1 Lectin blotting with HPA 

 
After blocking, the blots were incubated with biotinylated lectin (Sigma, UK) and 

streptavidin-HRP (Thermofisher Scientific, UK). Initially, the chromogenic substrate 

diaminobenzidine (DAB) was used for detection of lectin binding.  Biotinylated 

lectin and streptavidin-HRP were prepared in PBS/T and used at 5 μg/ml  for 2 h 

and 2 μg/ml for 1 h respectively. The blots were washed 5 times for 5 min in PBS/T 

between each step.  DAB was prepared in PBS/ H2O2 (6 mg of DAB prepared in 9 

ml of TBS and 60 μl of 30 vol H2O2).  The blots were incubated with DAB for 5 min. 

The reaction was stopped by addition of water. 

 

Due to the relatively high cost of HPA, a more sensitive method using less lectin 

was developed, this was based on using enhanced chemiluminsesce (ECL). The 

conditions used were optimised by using varying concentrations (between 0.125-1 

µg/ml) of biotinylated lectin and streptavidin-HRP.  After the optimisation steps had 

been completed the final protocol used was as follows: the protein blots were 

incubated with 0.5 μg/ml biotinylated lectin for 2 h and 0.125 μg/ml of streptavidin-
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HRP for 1 h (Pierce, UK), the blots were washed 5 times for 5 min in PBS/T 

between each step and incubated for 3 min with Super Signal West Pico (Thermo 

Fisher Scientific, UK) substrate according to the manufacturer’s instructions. 

Detection was performed by exposure of an X-ray film for between 30 sec to 1 min 

and subsequent development of the film for 30 sec.  

 

  2.13.2 Inhibition of HPA binding to T47D membrane proteins 

 
T47D membrane proteins separated by 1-DE and transferred to nitrocellulose 

membranes were blocked with BSA (as above) and incubated for 2 h with 5 µg/ml 

biotinylated HPA in PBS/T which has been preincubated for 30 min with freshly 

prepared 100 mM GalNAc, GlcNAc, Gal and Man monosaccharide (Sigma, UK). 

The membrane was washed in PBS/T and incubated with streptavidin-HRP before 

detection with DAB as before. 2-DE separated T47D membrane proteins were 

transferred to nitrocellulose and blocked as above, the blots were incubated with 

HPA prepared with 100 mM GlcNAc as for the 1-DE and detection was performed 

using the Super Signal West Pico reagent. 

 

2.13.3 Probing Western blots with anti-integrin α6 (anti-CD49f) 
antibody 

 
Proteins were separated by SDS-PAGE, transferred to nitrocellulose and blocked 

in BSA (as before) and were probed with a mouse monoclonal anti-integrin α6 

antibody (sc-59971, Santa-Cruz Biotech, UK) (Horton et al, 1985; Hynes, 1992; 

Levy et al., 2000), prepared in PBS/T at 20 µg/ml for 2 h. The membrane was 

washed 5 times for 5 min in PBS/T, this was then followed by 1 h incubation with 

10 µg/ml goat anti-mouse IgG-HRP (Santa-Cruz Biotech, UK). Detection was 

performed using the Super signal West Pico chemiluminescent reagent as before. 
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2.13.4   Probing Western blots with anti-blood group A antibody 

 
Proteins were separated by SDS-PAGE, transferred to nitrocellulose and blocked 

in BSA (as before) and probed with a murine monoclonal antibody directed against 

the blood group A antigen (Ortho-Diagnostics, Johnson and Johnson, kindly 

provided by Dr P Greenwell, University of Westminster) prepared in PBS/T at 20 

µg/ml for 2 h, the blot was then washed 5 times for 5 min in PBS/T, followed by 1h 

incubation with 10 µg/ml of goat anti-mouse IgM-HRP (Sigma, UK). Detection was 

performed using the Super Signal West Pico chemiluminescent reagent as before. 

 

 2.13.5 Probing Western blots with anti-O-GlcNAc antibody 
 

Proteins were separated by SDS-PAGE, transferred to nitrocellulose and blocked 

in BSA (as before) and were probed with a murine monoclonal antibody directed 

against the O-GlcNAc epitope (sc-81483, Santa-Cruz Biotech, UK) prepared in 

PBS/T at 20 µg/ml for 2 h, the blot was then washed 5 times for 5 min in PBS/T 

(Akimoto et al., 2003; Haltiwanger et al., 1992; Shafi et al., 2000), followed by 1h 

incubation with 10 µg/ml of goat anti-mouse IgG-HRP (Santa-Cruz, UK). Detection 

was performed using the Super signal West Pico chemiluminescent reagent as 

before. 

 

2.14 Data analysis of 1-DE and 2-DE 

2.14.1 Digital image processing 
 

Digital images of the 1-DE, 2-DE separations and Western blots were obtained 

using a BioRad GS-800 densitometer. Data was analysed using the BioRad 

Quantity One computer software package. A lane profile and intensity histogram 

was obtained with relative intensity values for each of the bands detected. Images 

in TIFF format were imported into the Progenesis Same Spots system, Version 3.0 
(Non–Linear Dynamics, UK) and processed by background subtraction, spot 

detection, landmarking and overlay analysis. 
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2.14.2 Reproducibility of the 2-DE system 

The robustness of the 2-DE system was assessed by analysing gel to gel variation 

in analytical (protein gels from same passage of the cell lines) and biological 

repeats (protein gels from different passage of the cell lines).  An Anova test was 

performed using 6 replicate gels. An Anova test and fold difference values were 

generated by the Progenesis Same Spots Software system Version 3.0. 

Coefficient of variation (CV) was calculated as a ratio of the standard deviation ( ) 

to the mean (µ). 

 

2.15 Spot picking of 2-DE separated HPA binding 
proteins 

 
 HPA binding membrane proteins of T47D (identified on the X-ray film exposed to 

the Super Signal reagent following the Western blotting step) were used as a 

template to locate the equivalent protein species on a CBB stained gel; run at the 

same time as the Western blot.  HPA binding proteins of interest were manually 

excised from the CBB stained gel using a clean scapel and stored at -80oC in 0.5 

ml sterile Eppendorf tubes.  

 

2.16 Protein identification by MALDI-TOF Mass 
Spectrometry 

 
Protein identification was performed by commercial arrangement with Dr. Thomas, 

Department of Biology, University of York, using a MALDI-TOF/TOF Applied 

Biosystems, 4700 analyser.  

 

Briefly, the proteins were reduced using DTT, S-carbamidomethylation and 

iodoacetamide prior to tryptic digestion. The excised protein gels pieces were 

washed thee times in 50% v/v acetonitrile/ 25 mM ammonium bicarbonate and air 

dried before rehydration in 10 ml of 20 µg/ml sequencing-grade, modified porcine 

trypsin (Promega, UK). Protein digestion was performed overnight at 37oC. A 0.5 

µl aliquot of each tryptic digest and 0.5 µl of a solution of α-cyano-4-

hydroxycinnamic acid (CHCA) (Sigma, UK) in 50% v/v acetonitrile containing 0.1% 
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v/v trifluroacetic acid was applied to the MALDI target plate. Mass spectra were 

obtained in the reflection mode with an accelerating voltage of 20 kV. The peptide 

mass fingerprint (PMF) generated was compared to the masses of all theoretical 

tryptic peptides generated in silico by the MASCOT search program updated in 

2010 (Pappin et al., 1993). Collision-induced dissociation MS/MS was also 

performed to corroborate the significant matches from the MALDI/MS. 

 

2.17 Post-translational modification (PTM) prediction  

Potential N-linked, O-GalNAc, O-GlcNAc and O-phosphate sites in the HPA 

binding proteins were predicted using the following web servers: 
http://www.cbs.dtu.dk/services/NetNGlyc/ ,  http://www.cbs.dtu.dk/services/NetOGlyc/,  
 http://www.cbs.dtu.dk/services/YinOYang/ and http://www.cbs.dtu.dk/services/NetPhos/  

respectively. 
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2.18 Genomic studies 

Sterile plastic-ware and RNAse/DNAase free water and reagents were used 

throughout. 

 

2.18.1  mRNA extraction 

 
Cellas use for mRNA extraction were grown and collected as described in section 

2.1.Approximately 10,000 cells were used from each cell line for the mRNA 

extraction steps. mRNA extraction was undertaken using the RNeasy Mini 

extraction kit (Qiagen, UK) according to the manufacturer’s instructions. Briefly, the 

pelleted cells were loosened by vortexing and pipetting. A suitable volume (~400 

µl) of lysis buffer (RLT) was added to the cell pellet. The cells were resuspended 

by vortexing for 1 min and pipetted directly into a QIAshedder spin column placed 

in a 2 ml collection tube. The lysate was centrifuged for 2 min at full speed. An 

equal volume of 70% v/v ethanol was added to the homogenised lysate and mixed 

by pipetting.  The resulting lysate (~700 µl) was pipetted into an RNeasy spin 

column placed in a 2 ml collection tube and centrifuged at 8,000 xg for 15 sec. The 

flow-through was discarded. Approximately 700 µl of wash buffer (RW1) was then 

added to the RNeasy column and the column was centrifuged at 8,000 xg for 15 

sec to wash the membrane.  A further 500 µl of a second wash buffer (RPE) was 

added to the RNeasy column and centrifuged at 8,000 xg for 15 sec again to wash 

the membrane of the column. This step was repeated for 2 min. Lastly, the spin 

column was placed in a 1.5 ml collection tube and 50 µl of RNase-free water was 

added directly to the column and was centrifuged at 8,000 xg for 1 min to elute the 

RNA. 
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2.18.2  mRNA quantification and purity 
 

The mRNA concentration was determined in 10 mM Tris-HCl pH 7.5, taking the 

optical density (OD) at a wavelength of 260 nm using a quartz cuvette in a Lambda 

35 spectophotometer (PerkinElmer, UK).  The RNA concentration was calculated 

using the following equation 

 

RNA concentration (µg/ml) =       OD260 X 40 (dilution factor) X 50 µg/ml  

             1000 

To determine the extent of protein contamination the absorbance at 280 nm was 

measured. The RNA preparations used in this study had an OD260/OD280 in the 

range of 1.9-2.1. 

  

2.18.3  Reverse transcription 
 

Reverse transcription of the purified mRNA was performed using the Quantiscript 

Reverse transcription kit (Qiagen, UK) and Oligo-dT 

(5’TTTTTTTTTTTTTTTTTTTTV3’) primers, according to the manufacturer’s 

instructions. Briefly, in order to eliminate genomic DNA, 2 µg of RNA was added to 

12 µl of gDNA wipeout buffer and incubated at 42oC for 2 min.  This mixture 

containing the template RNA was then mixed with the reverse transcription master 

mix containing 1 µl of Quantiscript Reverse Transcriptase, 4 µl of Quantiscript RT 

buffer and 1 µl of RT primer mix.  This mixture was incubated at 42oC for 15 min to 

allow cDNA transcription followed by incubation at 95oC for 3 min to inactivate 

Quantitect Reverse Transciptase. 
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2.18.4   cDNA quantification and purity 
 

The DNA concentration was determined in TE buffer (10 Mm Tris-HCl, pH 7.5, 

1mM EDTA) taking the optical density (OD) at a wavelength of 260 nm using a 

quartz cuvette and a lambda 35 spectophotometer (PerkinElmer, UK). The DNA 

concentration was calculated using the following equation 

DNA concentration (µg/ml) =       OD260 X 50 (dilution factor) X 50 µg/ml  

             1000 

To determine the extent of protein contamination the absorbance at 280 nm was 

measured. The DNA preparations used in this study had an OD260/OD280 in the 

range of 1.7-2.0. 

 

2.18.5   Primer design 
 

Primers for the ppGalNAc T1, T2, T3 and T6 genes used in this study were 

purchased from Qiagen, UK, therefore the sequences of primers are currently not 

available as these are proprietary information. Areas of the genes targeted in the 

PCR experiments are, however, shown in Appendix 7.  Primers for ST6GalNAc I/II 

and β-actin genes was designed by using  Basic local Alignment Search Tool 

(BLASTn) on http://www.ncbi.nlm.nih.gov/tools/primer-blast/ website and obtained 

from MWG-Biotech, UK. The primer sequences are shown in table 2.8. 

 
Table 2.8: Primer sequences of for ST6GalNAc I/II and beta-actin genes 

 
 
 
 
 
 
 
 
 
 
 

Genes Entrez gene ID Forward and Reverse primers 

ST6GalNAc I 55808 F 5’-GCAAAGCGGCAACCACAGCC-3’ 

R 3’CTGCTGGGGCACTGGAGGGA-5’ 

ST6GalNAc II 10610 F 5’- CACCTGGCCATTCAGCGGCA-3’ 

R 3’- GTGGCACGGAGGTGAAGCCC-5’ 

beta actin 126867 F 5’CCAGACAGCACTGTGTTGGC3’ 

R 5’GAGAAGCTGTGCTACGTCGC3’ 
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2.18.6    Quantitative Real time, two step RT-PCR 

 After the RNA was reverse transcribed to cDNA using the Quantitect Reverse 

Transcriptase Kit (Qiagen, UK) the subsequent cDNA was used for quantitative 

PCR using the QuantiFast SYBR green PCR kit (Qiagen, UK). Briefly, 100 ng of 

cDNA was added to PCR vessels containing a mixuture of 12.5 µl 2X QuantiFast 

SYBR Green Master mix, up to 1 µM of forward and reverse primers.  The Rotor 

Gene time cycler (Qiagen, UK) was used for this experiment. The Real-time cycler 

conditions were set as detailed in table 2.9. 

 
Table 2.9: The Real-time PCR cycler conditions. N/A = not applicable 

 

 

 

 

 

 

 
 

 

2.18.7    DNA separation by agarose gel electrophoresis 
 

The PCR products were separated by agarose gel electrophoresis (Ogden & 

Adams, 1987) using a mini-Sub cell GT apparatus (Bio-Rad, UK). The composition 

of the buffers used is shown in Appendix 1. Briefly, to prepare a mini gel 2% w/v 

agarose was weighed into 250 ml conical flasks dissolved in 30 ml of TAE buffer: 

40 mM Tris-HCL, pH 8.2, 1 mM EDTA and 20 mM acetic acid by microwaving for 

approximately 1 min (Stellwagen & Stellwagen, 2002) and was allowed to set for 

30 min. The gel was then placed in a running tank with sample wells prepared at 

the cathode end and the tank was filled with 250 TAE buffer. Aprroximately, 10 µl 

of DNA was mixed with 2 µl of concentrated sample buffer: 0.4% w/v orange G, 

0.03% w/v bromophenol blue, 0.03% w/v xylene cyanol FF, 15% w/v 400 in TAE 

buffer, pH 8.2 and loaded into the well of the gel.  Molecular weight DNA ladders 

(Promega, UK) were run at the same time as the samples.  Electrophoresis was 

performed at 120 V for 1 h. After electrophoresis, the gel was incubated for 30 min 

Step Time Temperature 

PCR initial activation step 5 min 95oC 

Denaturation 10 s 95 oC 

Combined annealing/extension 30 s 60 oC 

Number of cycles 35-40 N/A 
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in 1% w/v ethidium bromide solution. The DNA fragments were detected using a 

UV transiluminator (Ultra-Violet Products Ltd, UK) using a wavelength of 200-280 

nm. 

 

2.18.8    DNA purification from the agarose gels 
 

For DNA purification, the area containing the desired DNA fragment was excised 

from the agarose gel with a clean scalpel and the DNA was purified using a 

QIAquick gel extraction kit (Qiagen, UK), according to the manufacturer’s 

recommendations. Briefly, the DNA fragment was excised from the gel and minced 

with 300 µl of QG buffer pH 5.5, guanidine thiocyanate, 20mM Tris-HCl, pH6.6, 

0.0025% cresol red (Sigma, UK), in an Eppendorf tube. The tube was incubated at 

50oC for 10 min followed by the addition of 100 µl of isopropanol to the sample.  

The sample was then pipetted into the QIAquick column and centrifuged for 1 min 

at 14,000 xg. The flow-through was discarded and the QIAquick column and 500 

µL of QG buffer added to the column and centrifuged for 1min at 14,000 xg. To 

wash the column, 0.75 ml of PE buffer was added to the QIaQUICK column and 

centrifuged for 1 min at 14,000 xg. The flow-through was discarded and the 

QIAquick column was placed back into the same tube and centrifuged for an 

additional 1 min at 14,000 xg. To elute the DNA, the QIAquick column was placed 

in an Eppendorf tube, 30 µl if MilliQ water was added, incubated for 1 min at 20oC 

and then centrifuged for further minute at 14,000 xg. The purified DNA was sent for 

sequencing at MGW, UK. 
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 3.0 Evaluation of HPA binding at cellular and 
 protein level 
 

3.1 Introduction 

The glycosylation of cell surface proteins is a post-translational modification which 

plays significant roles in mediating cellular functions such as correct protein folding 

(Walsh et al., 1990), cell to cell adhesion (Lasky,1992; Springer, 1990), cell to cell 

communication (Wassarman, 1990), protection of proteins from enzymatic 

degradation (Homans et al., 1987) and signal transduction (Haltiwanger et al., 

2002). It is widely accepted that altered glycosylation of cell surface glycoproteins 

accompanies malignant transformation (Brockhausen, 2006; Dennis et al., 1999; 

Hakomori, 1984). Lectin based studies have enabled the identification of 

abrogated glycan structures accompanying the physiopathological development of 

cancer (Aub et al., 1965; Burger & Goldberg, 1967).  A positive correlation 

between HPA staining of tissue sections and poor prognosis was established more 

than a decade ago by Leathem & Brooks (1987) and has since been reported by 

independent researchers in other cancers such as oesophageal (Takashi et al., 

1994; Yoshida et al., 1994), gastric (Kakeji et al., 1994), prostate (Shirashi et al., 

1992), lung (Kawai et al., 1991) and colorectal (Ikeda et al., 1994; Schumacher et 

al., 1992). Other lectins with nominal GalNAc binding properties do not bind poor 

prognosis cancer in the same way as HPA (Sharma & Surolia, 1997). The utility of 

HPA for detecting poor prognosis cancer appears to be come from its ability to 

simultaneously recognise a number of proteins which may directly be implicated in 

the metastatic process.  

Saint-Guirons et al (2007) showed that HPA bound a multitude of proteins in 

metastatic HT29 colorectal cell lines. The authors used fluorescently labelled HPA 

and revealed cell surface localisation of HPA binding in colorectal HT29 cells. The 

work of Saint-Guirons et al (2007) in  our laboratory used 2-DE coupled with MS 

and demonstrated that HPA binds simultaneously to many glycoproteins which has 

previously been associated with metastatic spread and poor prognosis cancer. The 

HPA binding proteins in CRC includes molecules involved in cell migration and 

adhesion (integrin αV/α6 and annexin A2/A4), anti-apoptotic pathways (Hsp-90, 
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Hsp-96 and TNFR-1) and cellular remodelling (αβ tubulin, actin, and cytokeratins 8 

and 18). Integrins have been implicated in promoting tumour cell invasion through 

the ECM (Chao et al., 1996).  This study therefore assisted in the discovery of 

membrane glycoproteins with aberrant glycosylation in HT29 CRC cells. This is a 

key reference for the work carried in this thesis, as a similar approach was used in 

the current investigation to identify HPA binding partners in metastatic breast 

cancer.  

Schumacher et al (1995) were the first to investigate the cell surface HPA binding 

glycoproteins in human breast cancer cell lines. Cell membrane glycoproteins were 

isolated and analysed by 1-DE SDS-PAGE with lectin blotting. The Western blot 

analysis revealed that HPA bound to several membrane glycoproteins, however, 

the identities of these proteins remained unknown. Mitchell et al (1995) reported 

seven HPA-binding bands ranging in molecular weight from 20–90 kDa in several 

breast cell lines and tentatively identified the band at 90 kDa, as the transferrin 

receptor. In 2001, Brooks et al (2001) characterised a range of human breast cell 

lines, normal and malignant, for the synthesis of HPA-binding ligands. The cell 

lines used in the study were HMT3522 (derived from fibrocystic disease); BT474 

(derived from primary breast cancer); MDA MB435, MDA MB 468, MCF-7, ZR-751, 

DU4475 (all derived from metastatic breast cancers). Clinical breast tumour 

samples were also analysed to determine if tumour samples and cell lines produce 

the same HPA-binding glycoproteins. Light and confocal microscopy revealed that 

the cell lines exhibited varying degrees of HPA binding ranging from negligible in 

HMT3522 (‘normal’/benign disease), and weak in BT474 (primary cancer) to very 

intense in MCF-7 and T47D (metastatic cancer). Analysis of HPA-binding 

glycoproteins by Western blotting revealed eleven prominent HPA-binding 

glycoproteins in all of the metastatic cell lines and these matched those found in 

clinical tumour samples. These proteins were evaluated with the reference to their 

molecular weight but there remained an opportunity to identify the HPA binding 

glycoproteins of breast cancer.  

 

The current study employed four cell lines (HMT3522, BT474, MCF-7 and T47D) to 

represent a range of phenotypes, from normal to highly metastatic. These human 

breast cell lines have defined HPA-binding properties and metastatic 
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characteristics when implanted into SCID mice (Schumacher & Adam, 1997), 

therefore were a suitable in vitro model for cytochemical analysis of HPA binding in 

breast cancer.  

 

Brooks et al (2001) have developed a scoring system in an attempt to quantify the 

lectin histochemistry. The system uses a scale ranging from “–’’ for negative HPA 

binding and “++++’’ for strong HPA binding. The scoring for HPA labelling was 

given as follows: HMT3522 (-), BT474 (+) and MCF-7 (++++).  
 

Schumacher and Adam (1997) were first to establish a correlation between HPA 

binding and an in vivo model of metastasis using human breast cells. The work 

found that HPA positive breast cancer cells, transplanted subcutaneously into 

SCID mice, metastasised spontaneously to the lungs of the mice, whereas HPA 

negative cell lines generally did not metastasise, emphasising the clinical 

relevance of this model and the utility of the breast cancer cell lines used in this 

investigation.  

 

In this study, I initially sought to confirm the observations of Brooks et al (2001) for 

the HPA binding properties of the breast cell lines. Secondly, the proteins of the 

cells were separated and transferred to nitrocellulose to localise HPA binding 

glycoproteins in the cytoplasmic and membrane proteins fraction of the breast 

cancer cell lines. The specificity of HPA binding to T47D was also considered and 

was evaluated by competitive inhibition, by preincubation of the lectin with 

monosaccharides and using both confocal microscopy and protein separation.  
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3.2 HPA cytochemistry 
 

 The initial work was undertaken to assess HPA binding of the breast cancer cell 

lines using light and fluorescence microscopy. The breast cell lines were grown to 

near confluence overnight in 6-well plates and fixed in formalin to mimic tissue 

processing prior to lectin staining. The images from the microscopy experiments 

were processed using the Scope Photo and Imaris software package version 

7.1.0). The methods used are described in section 2.2 and 2.3. 

 

3.2.1 HPA binding to the breast cells 
 

The breast cells HMT3522, BT474, MCF-7 and T47D were evaluated for HPA 

binding using a colorimetric method previously employed by Brooks and Hall 

(2002). Biotinylated HPA was used in conjunction with streptavidin-HRP. 

Diaminobenzinidine (DAB) / hydrogen peroxide (H2O2) was employed as the 

substrate.  

 
In this experiment, marked quantitative differences in HPA staining was observed 

across the breast cell lines (figure 3.1). The cells of metastatic origin, T47D and 

MCF-7, exhibited intense and moderate HPA labelling respectively, whereas weak 

or ‘negligible’ binding was noted in ‘normal’/benign (HMT3522) and non-metastatic 

(BT474), consistent with the phenotype of these cell lines. In experiments where 

the lectin incubation step was omitted, HPA staining was non detectable.  
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Figure 3.1: Light microscopy image of HPA binding to breast cancer cell lines. : 
Panel A: mages of breast cancer cells incubated with biotinylated HPA (10 µg/ml) and 
streptavidin-HRP (5 µg/ml). The brown colouration shows the peroxidase reaction with 
DAB/H2O2. Levels of labelling ranged from ‘negligible’ or weak in HMT3522, and BT474, 
moderate in MCF-7 to intense in T47D. Panel B: Images of breast cells incubated with 
streptavidin-HRP (5 µg/ml) alone showed no significant staining. Scale bars= 50 µm 
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To obtain a more detailed evaluation of HPA binding in the ‘normal’/benign 

(HMT3522), non-metastatic (BT474) and metastatic (MCF-7 and T47D) cells, the 

cell preparations were incubated with TRITC labelled HPA and observed using 

confocal microscopy. The aim of this work was to confirm previous observations of 

cytoplasmic and cell surface labelling in the breast cells (Brooks et al., 2001). 

 
This system allowed a detailed analysis of HPA binding to the cell lines (figure 

3.2). HPA bound intensely to T47D at the cell surface and, in addition, granular 

and perinuclear staining was also observed.  Moderate perinuclear staining were 

noted in the MCF-7 cells, whilst very low levels or ‘negligible’ HPA binding were 

detected in HMT3522 and BT474. These data were consistent with the 

observations made using light microscopy where intense HPA labelling was 

observed in T47D, moderate in MCF-7 and weak or negligible binding were noted 

for BT474 and HMT3522 experiment MCF-7. 

 

In this experiment the use of HPA-TRITC to study lectin interaction with the breast 

cells was defined and the results obtained confirmed observations of HPA binding 

made by Brooks et al (2001) and Saint Guirons et al (2007) in breast and 

colorectal cancer cells respectively. 
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Figure 3.2: Confocal images of HPA labelling in breast cell lines. Images showing the 
binding of TRITC-labelled HPA (10µg/ml) (red) to breast cancer cell lines, counter-stained 
with the nuclear label To-Pro-3 (blue). Images showing HPA binding in HMT3522, BT474, 
MCF-7 and T47D, Panel A: scale bars = 20 µm and Panel B: scale bars= 4 µm. HMT3522 
and BT474 showed occasional or ‘negligible’ granular staining, whereas T47D showed 
intense HPA binding on the cell surface with some granular intracellular staining. MCF-7 
showed intense granular staining in the perinuclear region perhaps representing the 
binding of lectin to glycoproteins transiting through the Golgi apparatus. 
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3.2.2 HPA binding to T47D cells: 3D reconstruction of confocal 
images 

The cellular distribution of HPA binding ligands in a subpopulation of T47D cells 

was assessed by generating 3D models of HPA binding in T47D cells. Z-stack 

sections of HPA stained T47D cells were taken at  4-5 µm increments, the sections 

were combined to generate a 3D representation of HPA binding using the Imaris  

Software package (version 7.1.0) (figure 3.3).   

 
Whilst intense HPA labelling was observed in selected T47D cells, a somewhat 

heterogenous distribution of HPA binding ligands was observed. Some cells 

exhibited granular and perinuclear staining only and some showed cell surface, in 

addition to cytoplasmic labelling.  Overall the 2D images showed intense cell 

surface and cytoplasmic staining in T47D (figure 3.3 A), however the 3D model 

revealed intense perinuclear staining in this cell line (figure 3.3 B).  The 3D model 

offered a spatial view of the localisation of HPA binding within a cell. The white and 

yellow arrows in figure 3.3 B show perinuclear and cell surface labelling 

respectively. In this way HPA binding epitopes were observed in variable levels 

across a subpopulation of T47D cells.  
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3.3 Establishing conditions for evaluating HPA binding 
glycoproteins in breast cells using SDS-PAGE and 
Western blotting 

 
 

One of the main aims of this work was to identify HPA binding glycoproteins in 

breast cancer cell lines and compare them to those previously reported for CRC. 

Fractions containing cytoplasmic and membrane proteins were collected following 

ultracentrifugation (as described in section 2.4.1). In each experiment, 10 µg to 20 

µg of proteins were loaded in the wells of a gel and separated by SDS-PAGE. The 

gels were stained with Coomassie brilliant blue (CBB).  A replicate gel was 

transferred onto a nitrocellulose membrane and probed with biotinylated HPA 

followed by streptavidin-HRP for the detection of HPA binding glycoproteins (as 

described in section 2.13.1). 

 
In the first part of this study, a method was established for the detection of HPA 

binding glycoproteins by probing Western blots with biotinylated HPA and 

streptavidin-HRP. A comparison of two detection systems was undertaken; using a 

colorimetric based method: DAB/H2O2 and a second system based on enhanced 

chemiluminescence (ECL). The optimal buffers for solubilisation and separation of 

membrane proteins prior to analysis by SDS-PAGE were assessed.  Lastly, the 

HPA binding glycoproteins in the membrane fraction across the different breast cell 

lines was analysed.  
 

3.3.1 Detection of HPA binding to cytoplasmic proteins with 
diaminobenzinidine (DAB) substrate and enhanced 
chemiluminescence (ECL) systems 

 
 

In this first part of the work the DAB and ECL detection systems were compared. A 

key consideration was to minimise the use of lectin in Western blotting analysis 

and at the same time there was a need to develop a sensitive method for the 

detection of low quantities of HPA binding glycoproteins on the Western blots. 
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Figure 3.4 shows a CBB stained gel of the fraction of cytoplasmic proteins from the 

four breast cell lines. The protein levels were consistent and proteins were 

homogeneous across the cell lines. In contrast, the Western blots revealed 

heterogenous levels of HPA binding glycoproteins, with HMT3522 and BT474 

having the lowest levels of HPA binding glycoproteins and the cell lines derived 

from metastatic phenotype showing a significantly higher number of intense bands 

that bound the lectin.  The observation was consistent across both the colorimetric 

and chemiluminesent detection systems. The Western blot probed with HPA and 

detected using the DAB substrate showed six major glycoproteins species in the 

range of approximately 28-102 kDa that interacted with the lectin in T47D and five 

in MCF-7, all of which, except protein bands 1 and 2, were detectable in HMT3522 

and BT474, althrough the intensity of the HPA binding varied across the cell lines, 

with the highest protein band intensity noted in T47D, moderate amounts in MCF-7 

and lowest intensity in HMT3522 and BT474.   

 
A similar HPA binding pattern was observed using the ECL detection system. All 

the bands observed in the DAB blot were also identified on the chemiluminesence 

X-ray film. However, two additional bands at a lower molecular weight (bands 7 

and 8) were noted with the ECL detection system.  Moreover, the HPA binding 

protein species appeared as intense bands. In the case of T47D, band 1 and 2 

were not dectable as discrete bands, instead numerous bands bound HPA in this 

region, perhaps suggesting that HPA recognises a multitude of lower abundance 

proteins of similar molecular weight which were only detected by the ECL system. 

The improved sensitivity of the ECL system was confirmed by the dectection of 

protein band 1 which was observed in the ECL system but not the DAB system for 

BT474 and HMT3522. In experiment where the lectin step was omitted and 

streptavidin-HRP was incubated alone, no bands were detected (data not shown). 

The estimated molecular weight of the HPA binding glycoproteins is displayed in 

table 3.1. 

 

In summary, this experiment confirmed that HPA glycoproteins are present in 

higher levels in the cells associated with a metastatic phenotype, (MCF-7 and 

T47D). This study also showed that the ECL method offers improved detection of 
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low abundance HPA binding glycoproteins and gives an insight into the HPA 

glycoproteins in the cancer cell lines. 
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Table 3.1: Estimated MW of HPA binding cytoplasmic glycoroteins in the breast cell 
lines. N/D= not detectable. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.3.2 Solubilisation of membrane proteins for 1-DE SDS-PAGE 

Prior to separation of membrane proteins  for  subsequent analysis by SDS-PAGE, 

the proteins are denatured, reduced, dissagregated and solubilised,  the aim of this 

process was to achieve disruption of molecular interactions and  to ensure that 

each band represents, ideally, an individual polypeptide chain. 

 

In this study, preliminary work was undertaken to solubilise and separate 

membrane glycoproteins prepared from the breast cell line MCF-7. Different 

chaotropes such as urea and thiourea  are commonly used in combination with 

detergents such as CHAPS and reducing agents such as DTT to unfold 

hydrophobic proteins and reduced disulphide bonds (O'Farrell, 1975). To evaluate 

an optimal buffer condition using these chemicals for the solubilisation of 

membrane proteins the following three buffers were evaluted, CHAPS buffer (1% 

w/v CHAPS), thiourea buffer (7 M urea, 4% w/v CHAPS, 1% w/v DTT and 2M 

thiourea), urea buffer (7M urea, 4% w/v CHAPS and 1% w/v DTT) were used in 

this experiment. Membrane proteins of MCF-7 were solublised in each buffer and 

approximately 15 µg of proteins were loaded with an equal volume of Laemilli 

buffer into the wells of the stacking gels (as described in section 2.5.1). 

 

Band 
Number 

Estimated molecular Weight (kDa) 

 HMT3522 
 

BT474 MCF-7 T47D 

1  102 102 102 102 
2                      N/D           N/D 83 83 
3               81              81 81 81 
4 N/D N/D N/D  67 
5 55 N/D 55 55 
6 N/D N/D 45  45 
7 41 41 41 41 
8 28 28 28 28 
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A number of protein bands were observed with each buffer (figure 3.5), however  

significant quantitative and qualitative difference in the protein banding patterns 

were observed  with the lowest number of intense protein bands noted with the 

CHAPS buffer (panel A) , moderate with thiourea buffer (panel B) and the highest 

with urea buffer (panel C). Protein separation was very poor at the high MW 

ranging from 50-125 kDa with thiourea buffer, with some vertical streaking also 

noted across the gels, probably due to the incompatiblity of the thiourea chaotrope 

with the SDS-PAGE gel constituents. This experiment showed that the urea buffer 

resulted in the highest number of well resolved protein bands and this buffer was 

used for further separations of membrane proteins for all the 1-DE SDS-PAGE gel 

analysis. 
 
 

 
  

Figure 3.5: Representative CBB stained gels of MCF-7 membrane proteins 
separated by SDS-PAGE. 15 µg of proteins were loaded in each lane. Panel A: A number 
of weak intensity proteins bands were noted, Panel B: poor separation of proteins with 
some vertical streaking occured, Panel C: discrete, high intensity protein bands were 
noted. 
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3.3.3 HPA labelling of membrane glycoproteins  
 

To analyse and identify HPA binding glycoproteins of the breast cell lines, the 

membrane fractions from HMT3522, BT474, MCF-7 and T47D were compared 

(figure 3.6). Similarities as well as marked qualitative and quantitative differences 

in the protein band intensities across the cell lines were noted; with T47D 

exhibiting the lowest number of detectable bands and HMT3522 the highest. 

Western blotting revealed the highest number of HPA binding glycoproteins in 

T47D and the lowest in BT474. Strikingly, HPA binding was most intense in the 

membrane fraction of proteins from T47D which exhibited the lowest protein level 

in the CBB stained gel (figure 3.6) and it is assumed that these proteins were 

heavily glycosylated species. 

 
T47D exibited six major HPA binding glycoproteins, ranging in molecular weight 

from 29 kDa to 130 kDa, five HPA binding bands were observed in MCF-7, all of 

which were common to T47D. Protein band 1 was identified only in T47D whereas 

protein band 2 was common to both of the metastatic cell lines (T47D and MCF-7). 

Protein bands 3, 4, 5 and 6 were common to all the cell lines, althrough the 

intensity of HPA binding varied across the cell lines with the highest intensity 

observed in T47D, moderate in MCF-7 and were least intense in HMT3522 and 

BT474. The two major  glycoproteins  at approximately 130 kDa (GP130) and  80 

(GP80) kDa attracted our interest as they were the most  intense HPA binding 

species in the HPA positive T47D and MCF-7 cell lines and virtually non-

detectable in HMT3522 and BT474. Moreover, recently, Saint-Guirons et al (2007) 

reported two major glycoproteins of similar molecular weight in the HT29 CRC cell 

line. The estimated molecular weight of the of the HPA binding membrane 

glycoproteins for main bands 1-6, for each cell line is shown in table 3.2.    
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Figure 3.6: Representative CBB stained gel and lectin blot of membrane proteins. 
MW markers (kDa) are indicated on the left of the lanes. Panel A: 20μg of proteins 
were separated in each lane. Panel B: A replicate gel was transferred on nitrocellulose 
and blotted with HPA lectin, detection was performed with ECL reagent. Four bands 
(bands 3, 4, 5 and 6) were detected in all the four cell lines. Band 1 was found only in 
T47D while band 2 was detected in both metastatic cell lines (MCF-7 and T47D). In the 
negative control where the lectin step was omitted and streptavidin was incubated 
alone, no bands were detected (data not shown). 

 
 
 
Table 3.2: Estimated MW of HPA binding membrane glycoroteins in the breast cell 
lines. N/D= not detectable. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Band 
Number 

 Estimated molecular Weight (kDa) 

 HMT3522 BT474 MCF-7 T47D 
1     N/D N/D N/D 130 
2 N/D N/D 80 80 
3 75 75 75 75 
4 50 50 50 50 
5 35 35 35 35 
6 29 29 29 29 
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3.4 Evaluation of the specificity of HPA binding  

HPA is known to have a nominal affinity for glycans bearing the GalNAc and 

GlcNAc residues (Hammarstrom & Kabat, 1971; Lescar et al., 2007; Vretblad et 

al., 1979; Wu & Sugii, 1991). In this study, the specificity of HPA binding to T47D 

membrane proteins was evaluated by competitive inhibition using GalNAc, GlcNAc 

and Man monosaccharides (as described in section 2.3.4). A scoring system was 

used to assess inhibition of HPA binding. 

 

3.4.1 Evaluation of the specificity of HPA binding at cellular level 
 

Pre-incubation of the lectin with different concentrations of GalNAc (25 mM to 100 

mM revealed specific inhibition of HPA-binding to T47D cells, with a decrease in 

HPA-TRITC binding in proportion to the amount of competing sugar (figure 3.7). 

HPA staining was almost completely abolished when the lectin was preincubated 

with 50 mM GalNAc. When the cells were incubated with HPA lectin preincubated 

with 100 mM GlcNAc and 100 mM Man, a marked difference in HPA labelling of 

T47D cells was observed. Moderate labelling of T47D was noted when the lectin 

was preincubated with mannose, however, no significant binding occured when the 

lectin was preincubated with GlcNAc. A scale ranging from ‘-’ for low HPA binding 

and ‘++++’ for strong binding was used to score the HPA binding. The scoring for 

HPA labelling was as follows:  HPA only (++++), 25 mM GalNAc (+), 50 mM 

GalNAc (-), 100 mM GalNAc (-), 100 mM GlcNAc (-) and 100 mM Man (+). 

 

These observations suggest that HPA recognises the cancer cells by virtue of 

recognising GalNAc or GlcNAc containing epitopes. This finding supports the 

observations made by several other groups (Hammarstorm & Kabat, 1969; 

Hammarstorm & Kabat., 1971; Lescar et al., 2007; Sanchez et al., 2006). 
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3.4.2 Evaluation of the specificity of HPA binding to cell 
membrane glycoproteins 

 
 

To further evaluate the specificity of HPA binding, membrane proteins from T47D 

were separated by 1-DE and blotted on to nitrocellulose and probed with HPA 

again, following pre-incubation with different buffers containing 100 mM Gal,  100 

Man, GalNAc and GlcNAc (as described in section 2.13.2). Weak inhibition of the 

HPA binding to the proteins was observed when the lectin was pre-incubated with 

Gal and Man with Gal being a slightly more effective inhibitor of HPA binding to 

lower molecular weight proteins (approximately 49kDa) than Man (figure 3.8). On 

the other hand, almost complete abrogation of HPA binding to T47D proteins were 

noted when HPA was preincubated with GalNAc and GlcNAc.  

 
These observations indicated that GalNAc and GlcNac were both effective 

inhibitors of HPA binding to the higher molecular weight proteins, (for example, 

GP130 and GP80), supporting the view that these proteins may contain GalNAc or 

GlcNAc bearing epitopes (Markiv et al., 2011). 
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3.5 Discussion 

3.5.1 Microscopy 
 

The initial findings revealed intense HPA labelling in T47D and MCF-7.  Whilst light 

microscopy confirmed that T47D and MCF-7 were HPA positive and HTM3522 and 

BT474 were HPA negative, confocal microscopy greatly facilitated detailed 

localisation of HPA binding in these cells. T47D exhibited intense cell surface as 

well as cytoplasmic labelling whereas MCF-7 showed punctuate HPA binding in 

the perinuclear region. Both metastatic cell lines bound HPA in an intense manner 

in the perinuclear region, this may represent binding of HPA to glycoproteins in 

transit through the secretory pathway or it may be that HPA binds 

glycosyltransferse/glycosidase enzymes resident in the Golgi apparatus (Brooks et 

al., 2001; Laitinen et al., 1990; Mitchell et al., 1995; Roth, 1984). In 2001, Brooks 

et alreported weak or negligible HPA staining in BT474 and HMT3522 and intense 

in MCF-7, but with moderate cell surface labelling in BT474 and MCF-7. This 

study, however, failed to report cell surface labelling in both these cell lines.  These 

inconsistencies in observations may be attributed to a number of factors including 

cell passage, cell growth parameters or the selection of a subclone of cells which 

do not express HPA binding ligands. Nevertheless, these observations correlates 

with the HPA binding patterns previously reported in colorectal cell lines studies 

with metastatic HT29 cells exhibiting intense cell surface/granular/perinuclear 

labelling and non-metastatic SW480 cells exhibiting weak or negligible staining 

(Saint-Guirons et al., 2007). 

 

The reconstruction of 3D images of T47D (from the evaluation of T47D confocal 

microscopy), confirmed the observation made with the classical 2D models that 

HPA binds strongly to the metastatic cell line T47D on the cell surface as well as in 

the perinuclear region. The images from confocal microscopy offered a deeper 

insight into the distribution of HPA binding epitopes within a subpopulation of the 

cells and heterogenous expression of HPA binding epitopes observed, across the 

cell population reflects the heterogeneous nature of the cancer cell population and 

the pleomorphic nature of the nuclei (figure 3.3). 
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3.5.2 SDS PAGE and Western blotting 
 

Comparative analysis of CBB stained SDS-PAGE gels and Western blots probed 

with HPA showed that there are significant differences in HPA binding protein 

species across the four breast cell lines. The T47D and MCF-7 cells exhibited the 

highest number of HPA binding proteins whilst HMT3522 and BT474 had the 

lowest. This result was entirely consistent with the phenotype of these cell lines 

and correlated with the results of both light and confocal microscopy experiments.  

 
Lectin blotting of a fraction containing cytoplasmic proteins (from the breast cell 

lines) revealed intense HPA binding in MCF-7 and T47D. The HPA binding 

glycoproteins varied in relative molecular weight and were between 28-102 kDa. In 

the case of T47D, six main glycoprotein bands were detected with the DAB 

method and eight with the ECL detection method. However ten times lower 

concentration of lectin was used in the ECL system (0.5 µg/ml) than the DAB 

method (5 µg/ml), thus the ECL method of detection offered a much greater level 

of sensitivity than the DAB detection system. In the case of MCF-7 seven bands 

were identified with the ECL system, however, Brooks et al (2001) reported eleven 

glycoproteins of 20 kDa to 200 kDa using whole cell lysates from this cell line and 

using this method. This discrepancy between observations may be due to a loss of 

HPA binding glycoproteins during the differential centrifugation step that was 

adopted for the separation of cytoplasmic and membrane proteins. It is worth 

noting that Mitchell et al(1995) reported seven HPA-binding bands of 20–90 kDa in 

breast cell lines and tentatively identified a protein species at 90 kDa, as the 

transferrin receptor, the data correlating with the observations that have been 

reported here. 
 
To enable the analysis of cell membrane glycoproteins, a range of buffers to 

solubilise the proteins were evaluated. The buffer containing urea resulted in the 

best separation of membrane proteins as assessed by SDS-PAGE. Lectin blots of 

membrane proteins revealed five and six major glycoproteins of 29-130 kDa which 

interact with HPA. Many of the proteins that were less than 80 kDa were 
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detectable in all four cell lines, althrough the bands were more intense for MCF-7 

and T47D. Two major HPA binding partners GP80 (MW: 80 KDa) and GP130 

(MW: 130 kDa) were identified in the membrane protein preparations of T47D 

cells.  GP130 was specific to T47D whilst GP80 was common to both MCF-7 and 

T47D.  These observations were consistent with the findings of Saint Guirons et 

al(2007) who previously reported  two major glycoproteins  of similar relative 

molecular weight in HT29 a CRC cell line, and identifed those proteins to be Hsp 

90 (GP80) and integrin α6/αv (GP130).  

 

3.5.3 Inhibition of lectin binding 
 

Preincubation of lectins with monosaccharides is a technique that has widely been 

used to define nominal lectin-binding properties (Macedo et al., 2007; Sumida et 

al., 1997).  Whilst it is rather a simplistic approach it does offer the potential to 

understand which interactions are glycan mediated and which are likely to be ‘non 

specific’, for example protein-protein interactions. 

 

Inhibition studies showed that HPA binding could be inhibited using GalNAc and 

GlcNAc, confirming previous findings that HPA has affinity for these epitopes 

(Hammarstorm & Kabat, 1969; Hammarstorm & Kabat, 1971; Lescar et al., 2007; 

Sanchez et al., 2006).  

 

3.6 Conclusion 

Taking together the results obtained from confocal microscopy and lectin blotting, 

the present study confirmed that the cell lines used show differences in 

glycosylation as detected using HPA. Disruption in glycosylation pathways in 

metastatic cancer cells is mostly reflected by the presence of abrogated glycans 

structures on cell surface proteins. It is interesting to speculate as to whether these 

glycosylation changes contribute to the metastatic behaviour of the breast cells in 

vivo.  
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4.0 Identification of HPA binding glycoproteins in 
breast cancer cells 
 

4.1 Introduction 

In the previous chapter, the experiments with the breast cancer cell lines confirmed 

the HPA binding properties of the cells (Brooks et al., 2001; Schumacher & Adam, 

1997). In addition the HPA binding ligands were localised mainly to the cell surface 

in the cell line T47D. In order to identify the HPA binding glycoproteins in the cell 

lines, a method based on the 2-DE separation of proteins was used. In a large gel 

format this method has the advantage of allowing  the resolution of  1,000-1,500 

proteins  (based on their relative MW and pI) in a single experiment (O'Farrell, 

1975). The mini-gel format has been shown to enable separation of between 300-

500 proteins in a single experiment (Weiss & Gorg, 2008). Saint-Guirons et al 

(2007) previously identified several HPA binding glycoproteins from CRC using the 

2-DE method in HT29 colorectal cells. However, the authors used a pre-

fractionationation step, based on the separation of the proteins using HPA affinity 

chromatography. In the system  adopted by Saint-Guirons et al (2007) HPA was 

observed to recognise proteins involved in cell adhesion and migration (integrin 

α6/αV, annexin A2/A4), remodelling (α and β tubulin, actin, cytokeratins) and anti-

apoptic pathways (Hsp70, Hsp90, TRAP-1, and TNFR 1). 

 

To extend this analysis to breast cancer, membrane proteins from the breast 

cancer cell lines were separated by 2-DE in a proteomic approach that was used in 

combination with lectin blotting.  The aim of the work was to establish whether the 

same glycoproteins are recognised by HPA in breast cells as in CRC cells. First, a 

solubilisation buffer maximising the yield and separation of membrane 

glycoproteins was identified.   Secondly, the robustness of the 2-DE system was 

assessed by evaluating gel reproducibility. The proteome profile across the four 

breast cell lines was compared and proteins in increased levels in the metastatic 

T47D cell line were identified using MALDI-MS and MS-MS, finally, the HPA 

binding glycoproteins of T47D were identified again by MALDI-MS and MS-MS. 
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4.2 Solubilisation of membrane proteins for separation 
by 2-DE  

 
 

The solubilisation of membrane proteins remains a critical step for high-

performance 2-DE. Transmembrane proteins comprise hydrophobic groups of 

amino acids and the use of detergents which form micellar structures, such as 

ionic detergents (for example, SDS), can be used to achieve complete 

solubilisation of these proteins. However, ionic detergents are not compatible with 

the IEF step, therefore only non-ionic detergents, including urea, thiourea and 

CHAPS, appropriate for the solubilisation of membrane proteins, are then used in 

a 2-DE based work-flow (Rabilloud, 1998).  

 

In this section, a number of buffers were evaluated in terms of their utility for 

solubilisation and separation of membrane proteins from MCF-7 breast cells.  As a 

minimum requirement, a solubilisation buffer should contain; chaotropes such as 

urea and/or thiourea, zwitterionic detergents such as CHAPS to unfold proteins; 

reducing agents such as DTT to break disulphide bonds within proteins and carrier 

ampholytes to facilitate solubilisation with the aim that each spot contains a single 

peptide (Molloy, 2000; O’Farrell, 1975; Santoni et al., 2000).  In an attempt to 

obtain the maximum protein yield and the clearest protein separation, four buffers 

was assessed, these were; U buffer (7 M urea, 4% w/v CHAPS, 1% w/v DTT, 2% 

v/v ampholytes and 2 M thiourea), U1 buffer (as U buffer but with 8 M urea), T1 (as 

U1 buffer but with 3 M thiourea) and U1T1 (as U1 buffer but with 8 M urea and 3 M 

thiourea). MCF-7 membrane protein samples were prepared in each of these 

buffers and separated by 2-DE (as described in section 2.9). The gels were 

stained with Coomassie brilliant blue. 

 

The MCF-7 membrane proteins solubilised in U buffer, U1 buffer, T1 buffer and 

U1T1 buffer showed similar protein migration patterns, althrough there was sharp 

variation in the quality of separation due to the solubility achieved with each buffer 

(figure 4.1). The resolution of separated proteins was poor for the urea containing 

buffers (U and U1) whereas when thiourea was added (T1 and U1TI), a better 

separation was achieved. Good resolution of both high and low abundance 
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proteins was noted with the U1TI buffer.  A region of relative molecular weight of 

55-130 kDa and pI of 4.5-6.5 (framed in red), which was subject to variation in 

resolution depending on the buffer used to solubilise the protein, was selected and 

is shown in a zoom view in figure 4.2.  The framed region contains a large 

selection of proteins and was compared using the 2-DE analysis Progenesis Same 

Spots software.  

 

 

 

 
 
Figure 4.1: MCF-7 membrane proteins solubilised in four buffers and separated by 
2-DE. MCF-7 membrane proteins were prepared and solubilised in U buffer (panel A), U1 
(panel B), T1 buffer (panel C) and U1T1 buffer (panel D). In each case, 70 µg of proteins 
were loaded on a pH 3-10 IPG strip and subsequently separated on a 12% SDS-PAGE in 
order to achieve a bidimensional separation of the proteins. The proteins were visualised 
by staining with CBB. Similarities in the general protein spot pattern are observed in the 
four gels. 
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 Poor resolution was observed in buffers which did not contain thiourea (panel A 

and B). However, an improved protein separation was observed with (T1 and 

U1T1) (figure 4.2 panel C and D) suggesting that thiourea is an important 

chaotrope for unfolding membrane proteins. In these two latter systems, the 

proteins were all well separated, althrough there was a marked variation in the 

quality of separation observed due to the solubilisation achieved with each buffer. 

 

Two specific regions were further investigated with proteins solubilised in either T1 

or U1T1 buffer (figure 4.2, A1 and A2), as they contained proteins that seemed to 

vary across the two gels. Zone A1, panel C contained five major well- separated 

protein spots. This detailed view showed that the T1 buffer offered good separation 

of proteins including those with similar isoelectric points. On the other hand, 

proteins solubilised in the U1T1 (panel D) buffer showed better resolution of 

proteins in terms of the number and intensity of proteins observed with 10 intense 

protein spots observed (A1 boxed area). The U1T1 buffer contains the same 

components as T1 buffer with the difference that urea was added in higher 

concentration  and the results obtained were consistent with the hypothesis that 

thiourea and urea allows improved solubilisation of hydrophobic proteins 

(Rabilloud, 1998).  The T1 buffer failed to resolve proteins, shown boxed in area 

A2, suggesting that the concentration of thiourea may be critical component for the 

solubility of these proteins. This area contained six major proteins observed with 

U1T1 buffer.   

 

It can be summarised from this experiment that the addition of 8M urea and 3M 

thiourea in combination gave a better resolution than solubilisation in urea 

containing buffers (without the addition of thiourea) and U1T1 was the most 

suitable buffer of those tested for the solubilisation of the membrane proteins. The 

U1T1 buffer was therefore used in subsequent experiments. 
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Figure 4.2:  Evaluation of four solubilisation buffers. A zoomed view of the framed 
regions selected on gel A, B,C and D in figure 4.1. Evaluation of U buffer (panel A), U1 
buffer (panel B), T1 buffer (panel C) and U1T1 (panel D) for MCF-7 membrane protein 
separation. Membrane proteins solubilised in U buffer and T1 buffer were poorly 
separated. Distinct protein species were observed with T1 and U1T1 buffer.  Zone A1 
shows 5 and 10 major protein spots in panel C (T1 buffer) and D (U1T1 buffer) 
respectively.  Zone A2 was only observed with U1T1 buffer (panel D). 
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4.3 Reproducibility of the 2-DE system 

The next important consideration was determining a suitable 2-DE system for the 

study of changes in protein levels in the metastatic and non-metastatic cancer 

cells. The main factor here was the biological/analytical variation between gels and 

this aspect of the 2-DE separation method was considered; (1) by assessing the 

analytical reproducibility of protein migration in two replicates gels of protein 

extracted from the same passage of T47D cells but collected on two different 

occasions (same passage of the breast cell lines but different protein preparation), 

(2) evaluating the biological variation between gels from two different batches of 

cells with different passage numbers (different passage number and different 

protein preparation).  

 

4.3.1 Analytical reproducibility of the 2-DE system using T47D 
cells 

 
Membrane proteins from two different membrane preparations, but from the same 

cellular passage, were run on two separate gels (in parallel) and the reproducibility 

was assessed by evaluating the reproducibility between selected regions of the 

gels and by estimating variation in spots detected in the analytical replicates. In 

each case 100 µg of protein was loaded on the IPG (pH 3-10) strips. An overview 

of the separation is shown in figure 4.3.  

 

4.3.1.1 Analytical reproducibility: gel to gel comparison 
 

To evaluate the reproducibility between two gels, three areas were chosen, these 

contained proteins ranging from low to high abundance and from low to high 

molecular mass, the three areas were numbered 1, 2 and 3 on the gels (figure 4.3) 

and are shown in zoom view (figure 4.4). Similar protein migration patterns were 

observed in the replicate gels (A and B) for both the high and low abundance 

proteins in both gels. The zoomed  view of Area  1 represents proteins of 76-130 

kDa and pI 5.5-5.8 and these showed a similar protein separation pattern in both 

gels (figure 4.4), with some slight differences observed due to gel to gel variation. 

This region contained seven high abundance proteins (labelled 1-7). Some 
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differences were observed in terms of intensity, for example protein ‘ 7’ was less 

intense in replicate B.  Area 2 represented proteins with of 50-70 kDa, pI 6.5-6.8 

and showed seven (labelled 1-7) high abundance protein species in replicate A 

and six in replicate B (labelled 1-6). Protein ‘7’ in replicate A was not observed in 

replicate B.  This difference may be due to batch to batch variability in protein 

solubilisation.  Area 3 represented proteins of 35-40 kDa, Pi 5.7-6.6 and revealed 

six high abundance proteins in both replicate A and B, however protein ‘5’ and ‘6’ 

were less intense in replicate B.  Overall, the protein pattern of migration was 

reproducible on 2-DE gels across both replicates. Althrough variations in spot 

intensity were observed, analysis of the three characteristic regions of the two 

replicate protein samples from different protein preparations showed that  a 

reproducible and robust methodology has been developed,  enabling the 

separation of breast cancer  cell membrane proteins by 2-DE.   

 

 

 
 
Figure 4.3: T47D membrane proteins separated by 2-DE on pH 3-10 strips. 100 µg of 
proteins were separated and the gel was stained with Coomassie brilliant blue. Three 
regions numbered 1,2,3  ( red box) were analysed in two replicates (gel A and B) of 
different protein preparation. 
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Figure 4.4: Zoom view of area 1,2,3 in replicates A and B of T47D membrane 
proteins. Area 1 (MW 76-130 kDa; pI 5.5-5.8) shows 7 major protein spots labelled 1-7. 
High abundance proteins were reproducible in both replicates A and B. Protein ‘5’ seemed 
to sustain a significant variation in quantity, with higher intensity of protein spots noted in 
replicate gel A.  Area 2 (MW 50-70 kDa; pI 6.5-6.8) contained 7 proteins in replicate gel A 
and 6 proteins in gel replicate gel B. Protein ‘7’ was present in replicate gel A but absent in 
replicate gel B . Area 3 (MW 35-40 kDa; pI 5.7-6.6) show similar migration pattern in 
replicates A and B, but spot 5 and 6 were more intense in replicate A. 
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4.3.1.2 Analytical reproducibility: statistical estimate 
 

The analytical reproducibility of the 2-DE system was also assessed by estimating 

the coefficient of variation between the analytical replicates. This was carried out 

by comparing the average number of protein spots from two different batches of 

protein preparation but from the same cell passage for each of the breast cell 

lines. The representative 2-DE separated protein gels are shown in figure 4.6. The 

spot detection software revealed a similar number of spots in the 6 replicates gels 

from the two different batches of proteins prepared from the breast cell lines (table 

4.1). HMT3522 and T47D (both with CV=0.01) were the most reproducible whilst 

BT474 (CV=0.02) and MCF-7 (CV=0.03) were least reproducible. The highest 

number of protein species separated was noted in T47D and the lowest in 

HMT3522 (figure 4.5). This observation was consistent with the metastatic 

phenotype of the cell lines and is suggestive that an increase in the number of 

proteins accompanies cells with a metastatic phenotype. In summary, these data 

validate the efficacy of the solubilisation buffers and showed that the capacity of 

the 2DE system to enable reproducible separation of high as well as low 

abundance protein isoforms with high resolution in all the four cell lines. 
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Table 4.1:  Total number of protein spots from same batch of cells. The total number 
of protein spots observed in 6 replicate gels from two different protein preparations (1 and 
2), from the same passage of breast cell lines HMT3522, BT474, MCF-7 or T47D. The 
mean average proteins species detected from each cell line, standard deviation and 
coefficient of variation (CV) is shown. Highest variability in spot numbers were observed 
for MCF-7 (CV=0.03) and lowest in HMT3522 (CV=0.01) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 4.5: The average number of proteins in the breast cell lines. The average 
number of protein species detected following 2-DE separation of cell membrane proteins 
in U1T1 buffer. 100 µg of protein was loaded onto mini-SDS-PAGE gel and stained with 
CBB. Mean +/- SD shown. 
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Total number of protein spots 

 preparation  1  preparation  2    

Cell line  Gel 1  Gel 2 Gel 3  Gel 4  Gel 5  Gel 6  Mean (x̄)  ±SD CV  

HMT3522 425  432  428  437  424  430  429   4.4  0.01  

BT474  501  525  534  507  511  525  517  11.6  0.02  

MCF-7  575  580  586  587  550  555  572  14.5  0.03  

T47D  580  598  587  588  589  590  589   5.3  0.01  
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4.3.2 Biological reproducibility of the 2-DE system in the breast 
cell lines 

 

In this experiment we aimed to assess the biological reproducibility of the 2-DE 

system using protein preparations from two different cell passage numbers (batch 

A and batch B) from MCF-7 and T47D (table 4.2). The variation in spots resolved 

was higher when proteins were extracted from different cellular passage (CV≥0.05) 

than when proteins were extracted from same passage (CV≤0.03). Parker et 

al(2006) have reported a biological difference where the coefficient of variation 

was within a range of 0.7 again using a 2-DE approach. In this study it was 

considered that the difference in average number of protein spots from two 

different passages of cells was fairly low, therefore the system was considered to 

be sufficiently robust to allow the comparison of protein levels across the cell lines.  

 
Table 4.2: Total number of protein spots from different batches of cells.The average 
number of protein spots The average number of protein spots observed from two different 
cellular passages (batch A and batch B) of the breast cell lines MCF-7 and T47D. The 
average numbers of proteins in each cell line are shown with standard deviation (SD) and 
coefficient of variation (CV). A higher variability of spot number was observed in T47D 
(CV=0.06). 
.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Average number of protein spots 

Cell line Batch A Batch B (±)SD CV 

T47D 589 651 35.5 0.06 

MCF-7 572 578  26.2 0.05 
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4.4 Membrane protein profile of the breast cell lines  

To compare the protein levels across the cell lines, it is necessary to identify 

‘landmark’ or ‘reference’ proteins which are present across all the cells and use the 

location of these to ‘anchor’ the profiles and enable them to be overlaid.  

HMT3522, BT474, MCF-7 and T47D, all originate from breast tissue and would, 

therefore, be expected to contain similar structural proteins, these might be used 

as reference proteins.  A total of ten reference/landmark protein species which 

were present across all the four breast cell lines were used for the overlay analysis 

of the protein separations. The protein profiles across the four breast cell lines 

were compared and this enabled the characterisation of the proteins found in 

elevated levels in the breast cancer cell lines with metastatic phenotype (T47D and 

MCF-7).   

 

An overview of protein separations from the four breast cell lines is shown in figure 

4.6. The general pattern of migration of proteins from the four cell lines was similar, 

althrough variations in intensity of protein spots were noted. The region framed in 

red represent high abundance proteins (50-125 kDa)  and these were noted in the 

all the cell lines, however estimation by eye showed that more high abundance 

proteins was present in T47D, consistent with a increased number of proteins 

separated from T47D. The overlay analysis revealed proteins which were elevated 

in T47D and MCF-7 compared to HMT3522 and BT474 (P ≤ 0.005; fold difference 

≥1.5). These proteins were identified by MALDI-MS and MS-MS. The proteins in 

elevated levels are shown in figure 4.7 and are numbered 1-18. The average 

normalised volume, fold difference and P values of each protein are shown in 

Appendix 2. The identity of the proteins are shown in table 4.3, the protein 

sequence and sequence coverage of proteins with the peptides are shown in 

Appendix 3.    
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Figure 4.6: Representative 2-DE gels of membrane proteins of HMT3522, BT474, 
MCF-7 and T47D. 100 µg of proteins were separated on a pH 3-10 IPG strip and then by 
SDS-PAGE.The cells were stained with CBB. Similar protein migration profile was 
observed across all the four cell lines. The region framed in red represent high abundance 
proteins (50-125 kDa). 
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Figure 4.7: Identification of proteins in elevated levels in T47D cell lines. 
Comparison of gels of membrane proteins separated 2-DE and stained with CBB 
showed that proteins numbered 1-18 were elevated in metastatic T47D cells. The 
proteins identities are shown in table 4.3. 
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4.5 Characterisation of HPA binding glycoproteins: 2-DE 
and lectin blotting analysis 

 
In chapter 3, a strategy for the separation and analysis of HPA binding membrane 

proteins from the breast cell lines was described.  HPA bound most intensely to 

the membrane proteins of T47D. To further characterise the HPA binding partners 

of the cell lines, membrane proteins were separated by 2-DE, replicate gels were 

prepared, transferred to nitrocellulose and probed with HPA, in this system the 

resolving power of 2-DE was employed  to investigate in detail the individual 

polypeptides recognised by HPA. All the four cell lines were subjected to this 

analysis (figure 4.8). 

 

HPA binding proteins were most abundant in the T47D cells. High molecular 

weight protein species were observed at approximately 80 kDa and 130 kDa 

(figure 4.8, marked with red arrows), and several proteins species of ≤ 80kDa were 

also observed to interact with HPA. These observations were consistent with those 

of the 1-DE analysis where GP80 and GP130 comprised the most intense HPA 

binding components of T47D (section 3.3.3). The protein species that showed the 

highest abundance in terms of HPA binding were identified on the equivalent CBB 

stained gels and were subjected to MALDI-MS and MS-MS (table 4.3). GP80 and 

GP130 as well as a number of other low abundance proteins were not detected by 

MS. Other HPA binding proteins of ≤80 kDa were identified as: heterogeneous 

nuclear ribonuclear protein H1 (hnRNP H1), heterogeneous nuclear 

ribonuclearprotein D-like (HnRNP-D like), heterogeneous nuclear ribonuclear 

protein A2/B1: isoform 1 (hnRNP A2/B1), enolase 1 (ENO1), heat shock protein 27 

(hsp 27) and glial fibrillary acidic protein isoform 1 (GFAP). These cytoplasmic 

proteins were assumed to complex in vitro with the membrane proteins. 

Interestingly, the protein analysis of the previous section (section 4.4) showed that 

these glycoproteins were also elevated in the metastatic MCF-7 and T47D cells (P 

≤0.005 ; fold difference ≥1.5).  The most notable changes in protein levels was 

observed in Hsp27 (p=3.10E-07; fold difference = 6.1). Similar HPA binding 

glycoproteins were also observed in MCF-7. The proteins at approximately 75 kDa 

and 29 kDa (circled in red) represented HnRNP H1 and Hsp 27 respectively.  The 

blue arrows show HPA binding glycoproteins at approximately 80 kDa and 130 
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kDa in MCF-7, however, the number of the protein species observed in this region 

was less than those observed for T47D. In the 1-DE experiment an HPA binding 

component at approximately 80 kDa was also observed in MCF-7 and it appears 

that the GP80 was the principal HPA binding component in MCF-7 whilst GP130 

was predominant in the T47D cell line. Unlike the observations made in 1-DE 

where there were low molecular weight proteins observed in the region of 

approximately 29-75 kDa in HMT3522 and BT474, the 2-DE analysis showed only 

two protein species (circled in blue) at approximately 80 kDa which weakly 

interacted with HPA. 

  

The experiments using 2-DE and HPA with Western blotting confirmed that the 

higher molecular proteins (GP80 and GP130) that bind HPA in T47D and MCF-7 

are not recognised in the non-metastatic cell lines HMT3522 and BT474. 

Furthermore, the 2-DE system enabled the separation of individual polypeptides 

hidden within, for example, the GP130 protein band observed in the 1-DE 

separation, which may represent a number of differentially glycosylated forms of 

the same polypeptide sequence.  
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Figure 4.8: HPA binding proteins of T47D, MCF-7, BT474, and HMT3522. 100 µg of 
proteins were separated by 2-DE, transferred to nitrocellulose by Western blotting and 
probed with HPA. HPA interacted with 2 protein species in HMT3522 and BT474 at MW of 
~80 kDa.  A wide range of proteins were recognised below 80 kDa in MCF-7 and T47D.  In 
MCF-7, HPA bound strongly to several protein species at MW ~80 (marked in blue 
arrows), whereas HPA bound strongly to GP130 and GP80 protein species in T47D 
(marked in red arrows). HPA did not bind to these proteins in the non-metastatic cell lines. 
The proteins circled in red in MCF-7 closely corresponded to the MW and position of the 
characterised protein in T47D. In the negative control, where the lectin step was omitted 
and blots were probed with streptavidin alone no protein species were detected (data not 
shown). 
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Table 4.3: Identification of spots with protein accession number, Mascot score, MW 
and predicted pI.    
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4.6 Anti-CD49f antibody (integrinα6) binding to T47D 
membrane proteins 
 

The lectin blotting experiments have suggested that GP130 was amongst the most 

important HPA binding protein of T47D. Saint-Guirons et al (2007) previously 

reported that integrin α6 was the major HPA binding protein component of GP130 

in the CRC cell line HT29. To identify whether the protein species at approximately 

130 kDa was integrin α6, T47D membrane proteins were separated by SDS-

PAGE, blotted to nitrocellulose and probed with a murine anti-human  integrin α6 

(anti-CD49f) antibody, this was subsequently detected with a peroxidase labelled 

goat anti-mouse IgG and incubated with the ECL reagent, (as described in section 

2.13.3). The predominant 130 kDa protein species observed to bind HPA in T47D 

was also recognised by the anti-CD49f antibody (figure 4.9). A blot in which the 

primary antibody step was omitted and IgG-HRP was probed alone confirmed that 

binding was not due to non-specific interaction of the secondary IgG-HRP with the 

T47D membrane proteins.   
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Figure 4.9: Detection of anti-integrin α6 binding to membrane proteins in T47D. 
T47D membrane proteins were separated and analysed by 1-DE and Western blotting. 
Detection of anti-CD49f antibody was performed using a secondary IgG-HRP antibody.  
The equivalent Western blot probed with HPA/streptavidin-HRP is shown as a reference 
blot. The anti-CD49f antibody detected one major protein species at ~130 kDa in the 
membrane fraction of T47D (marked by asterisks).  No bands were observed when the 
blots were incubated with IgG-HRP. 
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4.7 Discussion 

4.7.1 Solubilisation of membrane proteins 
 

In this part of the work the aim was to evaluate four solubilisation buffers to enable 

the separation of cell membrane proteins by 2-DE. Buffers containing urea and 

thiourea were important for the solubilisation of a fraction enriched in membrane 

proteins, and these observations are consistent with previous findings (Rabilloud, 

1998; Weiss & Gorg, 2008). To date, only a few studies have investigated HPA 

binding membrane glycoproteins in cancer cells. Redondo et al (2004) reported 

membrane proteins recognised by lectins HPA and WGA in HCT116 and the 

CaCo2 CRC cell lines, using high speed centrifugation to purify the proteins and 

detergent based approaches.  Recently Saint-Guirons et al (2007) used a similar 

approach to investigate the HPA binding proteins of the HT29 CRC cell line. The 

methods used to prepare membrane proteins in this study were slightly different 

with respect to the composition of the buffers but the key step was the use of high 

speed centrifugation and this was a common feature in these studies.  In this work, 

the solubilisation buffer enabled preparation and separation of membrane proteins 

from the breast cell lines, which showed similar migration patterns and therefore 

constitute an ideal model for studying HPA-binding glycoproteins in breast cancer. 

 

4.7.2 Reproducibility of the 2-DE system 
 

The robustness of the 2-DE separation was assessed using two analytical 

replicates of T47D (different protein preparations but the same cellular passage of 

the cell line). The protein migration pattern was similar in both replicates, althrough 

small variations in terms of intensity of protein spots were noted across the gels 

due to gel to gel variability. This has been observed in other studies (Valcu & 

Valcu, 2007). The protein map of the membrane proteins from T47D separated 

using 2-DE with pH 3-10 IPG strips was comparable to the 2-DE map generated 

for the HT29 cell line by Saint-Guirons et al (2007) and Tan et al (2002), althrough 

different samples were used in these experiments such as total lysate and 

membrane preparation. Several high abundance proteins ranging from 40-80 kDa 
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were noted in these 2-DE protein maps.  For example, the high abundance 

proteins that were analysed in area 2 (50-70 kDa) were also observed in the 2-DE 

map described by Saint-Guirons et al (2007). This may be because these protein 

preparations contain membrane proteins which were enriched using similar 

approaches (high speed centrifugation and solubilisation buffers) and the same 7 

cm IEF strips were used in both studies.  

 

The analytical reproducibility of the 2-DE system was evaluated with respect to the 

protein species detected from each cell line preparation. Replicates gels were 

compared with protein extracted on two different occasions from cell lines with the 

same cellular passage. The coefficient of variation was low  (CV≤ 0.03)  in these 

cell lines; this data validates 2-DE as a system to enable separation of  high as 

well as low abundance proteins with high resolution and with good reproducibility 

in all the four cell lines. This is consistent with findings that the separation method 

using immobilised pH gradient (IPGs) minimises gel to gel variation (Weiss & Gorg, 

1998). Comparing the average number of protein spots detected in the four breast 

cell lines, showed   that T47D had the highest number of proteins and HMT3522 

the lowest, perhaps indicating that the expression of numerous proteins is 

accompanied with the development of a metastatic phenotype (Welsh et al., 2003).  

 

The biological reproducibility of the 2-DE system was also evaluated using proteins 

extracted from different cells with different cellular passage. The coefficient of 

variation was higher than those obtained for the analytical variation but it is worth 

noting that Parker et al (2006) have also shown that biological differences result in 

coefficient of variation of around 0.7. In this study the coefficient of variation was 

≤0.06 for all analysis.  
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4.7.3 Protein ‘profiles’ across breast the cell lines 
 

The protein profiles obtained from the 2-DE experiments allowed the comparison 

of between 400-500 protein ‘spots’ across all the cell lines. In this evaluation, 

proteins from T47D showing an average of 1.5 fold difference in levels or P≤0.05, 

were subjected to MALDI-MS and MS-MS analysis. The MASCOT search program 

compared the resulting peptide mass fingerprint with the theoretical peptide 

fingerprint generated in silico and produced a MOWSE score to give an evaluation 

of the significance of the matches, mass scores with P≤0.05 which were 

considered significant (Pappin et al., 1993).  In addition proteins that were 

identified with MOWSE scores (≥40) were considered significant. Most of the 

proteins with elevated levels for example glutamate synthetase, HnRNPs, ENO 1, 

proteasome subunits, Hsp 27, GFAP, chaperonin subunits and Nm23 have 

previously been reported in malignancy (Arlt et al., 2009; Bhui-Kaur et al., 1998; 

Christa et al., 1994; Coghlin et al., 2006; Shiraishi et al., 1992; Steeg et al., 1993; 

Storm et al., 1996; Tsai et al., 2010; Zhang et al., 2008; Zhou et al., 2001). In this 

study for the first time the following proteins were reported as elevated in T47D; 

elongation factor Tu, Enoyl Coenzyme A hydratase 1 peroxisomal and macropain 

subunits.  

 

4.7.4 Characterisation of HPA binding proteins 
 

A 2-DE proteomic based approach was used to identify the HPA binding 

glycoproteins of T47D cells. This analysis identified molecules involved in 

apoptosis (Hsp 27) (Rane et al., 2003), pre-mRNA splicing (HnRNP H1, HnRNP D-

like,   HnRNP A2/B1) (Gallinaro et al., 1986), cellular remodelling (GFAP) (Kohama 

et al.,1995)  and cell migration (ENO1) (Wygrecka et al., 2009).  It is assumed that 

the cytoplasmic HPA binding glycoproteins were present because they were 

complexed with HPA membrane proteins and thus were pelleted during membrane 

protein separation but the intracellular location of these proteins needs 

confirmation using other techniques. The proteins identified in this 2-DE work have 

been observed in other cancers (see table 4.3): for example  heat shock protein 

(Hsp 27) has been reported to be increased in brain, breast and prostate cancer 
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(Andrieu et al., 2010 ; Kato et al., 1992);  heterogenous nuclear ribonuclear protein 

H1 (HnRNP H1) in breast (Zhang et al., 2008); HnRNP A2/B1 in breast and lung 

(Zhou et al., 2001);  glial fibrillary acidic protein (GFAP) in breast (Shiraishi et al., 

1999)  and  enolase 1 (ENO1) in head and neck cancer (Tsai et al. 2010). Whilst 

many of these proteins have previously been linked to cancer, there has not been 

any reagent other than HPA which will bind all of these proteins simultaneously. It 

remains however unclear as to whether HPA recognises these cytoplasmic 

proteins via binding to GalNAc or GlcNAc containing epitopes. Prediction of 

potential glycosylation sites showed no N-linked, very few (≤8) O-GalNAc, and (≥4) 

O-GlcNAc sites within these proteins (Appendix 4). It will be interesting to 

investigate whether HPA recognises these proteins via O-GlcNAcylation. 
 

In this study, the protein components of GP80 and GP130 were not identified with 

MADLDI-TOF-MS and MS-MS, because these were low abundance proteins and 

strategies such as affinity chromatography were not used to purify these proteins 

due to a number of cells required as starting material for this type of analysis. 

Previously Saint-Guirons et al (2007) identified the major components of that GP80 

and GP130 to be integrin α6/αV and Hsp90 respectively. In an attempt to further 

investigate whether GP130 in T47D corresponded to integrin α6, T47D membrane 

proteins were blotted and probed with a monoclonal antibody directed against 

integrin α6. This experiment revealed that HPA recognises proteins of the same 

molecular weight as the integrin α6 subunit, consistent with the report of Saint-

Guirons et al (2007) that the major component of GP130 was integrin α6. GP80 

was common to both MCF-7 and T47D and it will be interesting to further 

investigate whether this protein corresponds to Hsp 90. These observations 

support the hypothesis that HPA recognises the same glycoproteins across both 

breast and CRC. 
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4.8 Conclusion 

In conclusion, the work described the development of a sensitive, reproducible and 

robust methodology (based on 2-DE) enabling the separation and analysis of 

proteins. HPA was observed to recognise a range of proteins with diverse cellular 

functions ranging from apoptosis, pre-mRNA splicing, remodelling, to cell 

migration. To date, no reagent other than HPA has been described that can bind 

simultaneously to these proteins.  

 

 
 
 
 
 
 

  



120 
 

 
 
 
 
 
 
 
 
 

  

Chapter 5 
 
 
Intracellular localisation and identification 
of HPA binding antigens in breast cancer 

cell lines 
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5.0 Intracellular localisation and identification of 
HPA binding partners in breast cancer cell lines 
 
5.1 Introduction 

In the previous chapter, the HPA binding glycoproteins of T47D were 

characterised. In this model, HPA recognised proteins from different cellular 

compartments: the cytoplasm and membrane. Despite the significance of HPA as 

a tool for predicting poor prognosis breast (Alam et al., 1990; Brooks & Leathem, 

1991; Fenlon et al., 1987; Fukutomi et al., 1989; Leathem & Brooks, 1987) and 

other cancers (Kakeji et al., 1991; Schumacher et al., 1994; Shiraishi et al., 1992), 

the precise nature of the HPA-binding ligands and their defined role in the 

metastatic process has remained obscure. 

 

It is known that native HPA preferentially binds terminal alpha α-N-

acetylgalactosamine (αGalNAc) residues (Hammarstrom & Kabat, 1971; Lescar et 

al., 2007) and recent studies using a recombinant form of HPA have supported this 

observation (Markiv et al., 2011). Initially, therefore it was throught that HPA bound 

αGalNAc containing tumour associated antigens such as the Tn antigen 

(αGalNAc1 -O- Ser/Thr) (Springer, 1989)  the Forssman antigen (αGalNAc1-

3GalNAc) (Baker et al., 1983) or blood group A substance (GalNAcα1-3Galβ1-

4GlcNAcβ1-Fucα1-2) (Anderson & Haas, 1984; Grundbacher, 1987; Mourali et al., 

1980) in cancer cells. However, other studies have shown that its utility may lie in 

its ability to bind a much wider and heterogeneous array of N-acetyl 

galactosaminylated glycoproteins (Brooks & Leathem, 1995). On the other hand, 

further reports have  highlighted that  HPA binds  GlcNAc (Wu & Sugii, 1991) and 

sialic acid containing epitopes (Dwek et al., 2001).  

 

Aberrant expression of the Tn antigen has been observed in cancer with 

approximately 90% of human carcinomas having detectable levels of these 

epitopes (Springer et al., 1990). Whilst the presence of the Tn antigen has been 

shown in cancer, its functional role of in tumour metastasis has remained unclear. 

Springer (1989) proposed that the Tn antigen is the predominant structure 
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recognised by HPA in breast and other cancers, however, Grundbacher (1987) 

suggested that HPA recognises tumour cells by virtue of binding to blood group A 

antigen, the increase expression of which has been also reported in several 

cancers. Brooks and Leathem (1995), reported that in addition to the Tn epitope 

and blood group A antigen, HPA recognises related but distinct carbohydrate 

moeities sharing similar terminal αGalNAc groups. This absence of defined HPA 

epitopes has limited the application of HPA in the clinical oncology setting and 

there is, therefore, an opportunity to further investigate the complex epitopes 

recognised by HPA. 

 

The synthesis of tumour associated carbohydrate structures such as Tn, is 

mediated through alterations in expression or activity of one or more of the 

enzymes of glycosylation. The events involved in the glycosylation processes are 

orchestrated by glycosidases and glycosyltransferases, these enzymes catalyse, 

respectively, the degradation and biosynthesis of glycans.  Several studies have 

demonstrated altered expression of glycosyl epitopes and changes in levels of 

enzymes of glycosylation as related to tumour invasion and the metastatic process 

(Brockhausen, 2006; Dennis et al., 1999; Hakomori, 1984).  

 

 One group of enzymes that are of key importance in the glycobiology of breast 

cancer are the UDP-N-acetyl-α-D-galactosamine polypeptide: GalNAc-N-

acetylgalactosaminyl transferases (ppGalNAc-Ts), the over-expression of which, 

has been reported in the malignancies of the breast (Berois et al., 2006; Freire et 

al., 2006). ppGalNAc-Ts regulate the attachment of N-acetylgalactosamine 

(GalNAc) to  Ser/Thr on the polypeptide backbone initiating mucin type O-linked 

glycosylation in the Golgi apparatus (Brooks et al., 2007; Cardone et al., 2005; 

Hassan et al., 2000). To date, fifteen enzymes of the ppGalNAc-T have been 

functionally identified in mammalian cells, and in silico studies suggest that as 

many 20 may exist (Ten Hagen et al., 2003; Ten Hagen et al., 1998). An 

increasing body of evidence suggests that while some members of the ppGalNAc-

T family are broadly expressed in normal tissues, the distribution of others is 

restricted to certain tissues or organs (Bennett et al., 1998; Mandel et al., 1999; 

Young et al., 2003) . O-linked glycosylation in the Golgi apparatus is regulated by 
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differential expression of the enzymes that initiate O-linked glycosylation, thus 

ppGalNAc-Ts may be  the initiating factor that ultimately gives rise the aberrant 

synthesis of immature carbohydrate structures such as Tn or sialyl Tn, frequently 

observed in cancer (Brooks et al., 2007; Cardone et al., 2005; Hassan et al., 

2000). If this is indeed the case then glycosylated epitopes in cancer would be 

expected to be labelled with HPA in the Golgi apparatus.  

 

Recently, Freire et al (2006), investigated the mRNA expression of 9 enzymes 

(ppGalNAc T1-T9) in breast tumours specimen and breast cancer cell lines 

(including MCF-7 and T47D using RT-PCR) and reported the expression of only 

ppGalNAc-T1, T2, T3 and T6. The increase expression of ppGalNAc-T6 correlated 

with breast cancer, thus the authors postulated that increase expression 

ppGalNAc-T6 may mark an early event associated with development of a 

metastatic phenotype. Immunolocalisation studies confirmed these observations 

with ppGalNAc T6 readily detectable in MCF-7 and T47D and non-detectable in 

HMT3522 and BT474 cells (Brooks et al., 2007).  These findings suggest that 

increase expression of ppGalNAc T6 enzyme may be consistent with the presence 

of a wide range of immature GalNAc glycoforms in the Golgi apparatus. 

 

Another family of enzymes of key interest in breast cancer biology are the 

sialyltransferases. The sialyltransferase α2,6-sialyltransferase I (ST6GalNAc I ) 

transfers  a sialic acid residue in α2,6-linkage onto GalNAcα1-O-Ser/Thr resulting 

in the  formation of the sialyl-Tn antigen (STn) in the Golgi apparatus (Ikehara et 

al., 1999).  The synthesis of STn has been reported to be increased  in several 

different types of epithelial cancer (Kuwabara et al., 1997; Pinho et al., 2007; 

Schuessler et al., 1991; Wang et al., 2001) including breast cancer (Leivonen et 

al., 2001).  

 

In an attempt to unravel the HPA binding partners observed in the breast cancer 

cell lines, we undertook several different approaches. The aim was to determine 

whether the ligands recognised by HPA include the blood group A determinant. 

Secondly, the binding of HPA in the perinuclear region of T47D and MCF-7 

(reported in chapter 3) was evaluated to determine if it represented GalNAc 
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glycoforms in the Golgi apparatus. Thirdly, the finding (reported chapter 4) that 

HPA binds cytosol resident proteins, including transcription factors, led to an 

investigation as to whether HPA recognises O-GlcNacylated proteins in this model 

of cancer. Fourthly, a preliminary analysis of the expression of mRNA for key 

enzymes regulating O-glycosylation, such as ppGalNAc transferase (T1, T2 and 

T3, T6) and sialyltransferases (ST6GalNAc I and ST6GalNAc II) was performed in 

the cell lines.  Lastly, the presence of STn (SAα2,6-GalNAcα-Ser/Th) and TF 

(Galβ1-3-GalNAcα-Ser/Th) were considered  using  Sambucus nigra  agglutinin 

(SNA) and Arachis hypogaea agglutinin (peanut lectin, PNA) binding. 

 

5.2 Binding of blood group A antibody to Western blots 
of T47D membrane proteins  
 

The first step was to determine whether the glycoproteins recognised by HPA in 

T47D (established from individual with unknown blood group) contain the blood 

group A antigen or if they also carry other GalNAc containing glycans. Saint-

Guirons et al (2007) previously reported a number of glycoproteins bearing the 

blood group A substance in the range of approximately 20-80 kDa in HT29 cells 

(established from blood group A individual). The work with HT29 cells revealed 

that some of the glycoproteins bearing the blood group A substance also interact 

with HPA. 

 

To identify the glycoproteins bearing the blood group A substance in T47D 

membrane proteins, a murine monoclonal antibody directed against the blood 

group A antigen was used to probe Western blot of membrane proteins separated 

by SDS-PAGE from T47D cell line (as described in section 2.13.4). Detection was 

made with a secondary horseradish peroxidase (HRP) labelled goat anti-mouse 

antibody. The anti-A Western blot was compared with an HPA blot. A negative 

control (where the lectin and monoclonal antibody step was omitted) was also 

considered in this investigation. The antibody reacted weakly with a single 

glycoprotein band at approximately 85 kDa (GP 85), this broadly corresponded to 

the molecular weight of the HPA binding glycoprotein that was observed at 

approximately 85 kDa in T47D membrane protein fraction (both marked with 
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asterisks, figure 5.1). Interestingly, the predominant HPA binding glycoprotein did 

not interact with the antibody.  Saint-Guirons et al (2007) previously showed an 

HPA binding glycoprotein at approximately 82 kDa which reacted with the blood 

group A antibody in HT29 cells. Whilst it had been considered possible that the 

same glycoprotein bearing the blood group A determinant would be recognised in 

T47D, only one protein carrying the blood group A epitope was observed in this 

cell line. The findings indicate that the predominant proteins recognised by HPA in 

T47D, bear glycosylation motifs distinct from blood group A antigen. 

 

 

 
 
Figure 5.1: Anti-A antibody binding to T47D membrane proteins. Proteins (20 µg) 
were separated by SDS-PAGE, transferred by nitrocellulose and the Western blot was 
probed with biotinylated HPA followed by streptavidin-HRP or a goat anti-mouse HRP 
labelled antibody.  The anti-blood group A antibody detected a single protein band 
(showed by asterisks) in the T47D membrane protein fraction.  
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5.3 O-GlcNAc epitopes in the breast cancer cell lines 

Aberrant O-GlcNAcylation of cytoplasmic and nuclear pore proteins is a common 

feature accompanying metastatic transformation (Chou et al., 2001; Slawson et al., 

2010 Slawson et al., 2008). The occurence of O-GlcNAcylated epitopes and their 

HPA binding properties was studied in the breast cells lines. In the first section of 

this investigation, an anti-human O-GlcNAc antibody was used to investigate the 

O-GlcNAc containing staining pattern across the breast cancer cell lines, 

HMT3522, BT474, MCF-7 and T47D, using confocal microscopy. Secondly, a co-

localisation study using HPA and anti-O-GlcNAc antibody was undertaken using 

T47D cells. Finally, the O-GlcNAcylated protein of the membrane and cytoplasmic 

fraction of T47D were assessed following separation by SDS-PAGE and probing of 

Western blots. The 2-DE approach was also used to further investigate the 

membrane glycoproteins recognised by both HPA and the O-GlcNAc antibody of 

T47D. 

 

5.3.1 O-GlcNAc labelling in breast cells 
 

The cells were incubated with a murine antibody against human O-GlcNAc 

followed by a FITC labelled IgG antibody (as described in section 2.3.2), the O-

GlcNAc labelling was observed using confocal microscopy. The O-GlcNAc 

cytochemistry revealed that all the four breast cancer cell lines synthesised O-

GlcNAc containing glycoconjugates (figure 5.2). However, a marked quantitative 

difference in O-GlcNAc labelling pattern was observed across the cell lines, 

varying from intense (T47D), to moderate (MCF-7), to weak or negligible 

(HMT3522 and BT474). Interestingly, the levels of synthesis of O-GlcNAcylated 

glycoconjugates correlated with the metastatic potential of the cells, with the 

metastatic cell line T47D exhibiting higher levels of synthesis of O-GlcNAcylated 

glycoconjugates than the non-metastatic cell line HMT3522.  The binding was 

mainly cytoplasmic but some occasional binding to the cell surface of T47D was 

also noted. Omission of the antibody resulted in no labelling in those cells 

(Appendix 6). 
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Figure 5.2: Confocal images showing O-GlcNAc/IgG-FITC labelling in the four breast 
cell lines. The nucleii was counter-stained with the nuclear label To-Pro-3 (blue). A 
murine antibody against human O-GlcNAc followed by a FITC labelled IgG antibody 
(green) was used. HMT3522 and BT474 showed occasional weak granular staining, 
whereas MCF-7 showed moderate binding and T47D showed intense cytoplasmic as well 
occasional binding to the cell surface. Scale bars = 20µm 
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5.3.2 HPA co-localisation with O-GlcNAcylated epitope 
 

In this section, we aimed to further assess HPA binding and correlate this with O-

GlcNAcylated epitopes through co-localisation studies in T47D cells.  Cells were 

grown and fixed (as described in section 2.3).  The cells were incubated with 

TRITC labelled HPA followed by an O-GlcNAc/IgG-FITC antibody step. The 

binding was observed using confocal microscopy (figure 5.3).  

 

Intense HPA labelling (A) and anti-O-GlcNAc antibody (B) was observed in T47D 

cells. Strong co-localisation of HPA and O-GlcNAc binding epitopes were noted in 

the cytoplasmic region of T47D (C, mark with green arrows) with binding also 

observed on the cell surface (mark with yellow arrows). This result suggested that 

HPA has the ability to recognise cytoplasmic O-GlcNAcylated glycoproteins 

associated with the metastatic phenotype of T47D. 
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5.3.3 Anti-O-GlcNAc antibody probing of Western blots of T47D 
membrane proteins 

 
Cytoplasmic and membrane proteins of T47D were separated by SDS-PAGE, 

blotted to nitrocellulose and probed with a murine anti-O-GlcNAc antibody and 

detected using an HRP labelled secondary antibody raised in goat (as described in 

section 2.13.5). A negative control where the antibody step was omitted was also 

considered.  

 

The Western blot probed with the anti-O-GlcNAc antibody was compared with the 

reference HPA blot (figure 5.4). The anti-O-GlcNAc antibody reacted with a 

number of proteins species in the range of approximately 30-150 kDa, with three 

major species (marked in asterisks) noted at approximately 35 kDa, 50 kDa and 70 

kDa in the cytoplasmic fraction of T47D.  In the membrane fraction only three 

weakly  binding protein bands were observed to interact with the antibody, the 

molecular weights of these corresponded with three major HPA binding proteins 

(marked in asterisks) at approximately 35 kDa, 50kDa  and 70 kDa. These 

observations suggest that most of the HPA binding proteins at lower molecular 

weights in the membrane fraction are O-GlcNAcylated and may represent 

contamination of membrane proteins with cytoplasmic proteins. 
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Figure 5.4: Anti-O-GlcNAc antibody binding to T47D cytoplasmic and membrane 
proteins. T47D cytoplasmic and membrane proteins (20 µg) were separated by SDS-
PAGE and transferred to nitrocellulose and the Western blots were probed with an anti-O-
GlcNAc antibody followed by a secondary HRP labelled antibody. The anti-O-GlcNAc 
antibody detected proteins in the range of approximately 30 to 150 kDa with three intense 
bands at MW of 35 kDa, 50 kDa and 75 kDa, these O-GlcNAcylated proteins were also 
observed in the membrane fraction of T47D (marked by  asterisks).  No bands were 
observed when the blots were incubated with secondary antibody alone. 
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Figure 5.4 showed three O-GlcNAc containing glycoproteins in the membrane 

protein of T47D. To characterise these further, Western blots of 2-DE separated 

proteins were probed using the strategy described above. This approach revealed 

eight proteins that were recognised by the O-GlcNAc antibody (Figure 5.5). The 

HPA binding proteins circled in blue (panel A) closely corresponded to the 

molecular weight and position of O-GlcNAcylated protein species (also circled in 

blue). For instance the protein species at 75 kDa correlated with position of 

HnRNP H1 and the ENO 1 and those at the lower molecular weight correlated with 

HnRNP D-like, HnRNP A2/B1 and Hsp27 proteins identified in chapter 4. However, 

GFAP (circled in yellow) were not detected on the O-GlcNAc blot and other 

proteins, not recognised by HPA (circled in red) were detected by the O-GlcNAc 

antibody. In summary, in this experiment, HPA binding glycoproteins, HnRNPs, 

Hsp27 and ENO1 appeared to be recognised by virtue of their O-GlcNAcylation.  

 

 

 
 
Figure 5.5 Anti-O-GlcNAc antibody binding to T47D membrane proteins. T47D 
membrane proteins were separated by 2-DE and analysed by Western blotting. 
Representative HPA and O-GlcNAc blot is shown in panel A and B respectively. The blots 
were detected with streptavidin-HRP and IgG-HRP respectively. The anti-O-GlcNAc 
antibody bound to eight proteins.  The proteins circled in blue were noted both in the HPA 
and O-GlcNAc blot, whereas proteins circled in yellow and red were detected only in HPA 
and O-GlcNAc blots respectively. 
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5.3.4 Specificity of GlcNAc binding 
 

The specificity of HPA binding was assessed by preincubation of the lectin with 

100 mM freshly prepared GlcNAc. In this approach pre-incubation of the lectin with 

GlcNAc was observed to abrogate the binding of HPA to almost all the binding 

partners in T47D (figure 5.6).  Many of the HPA binding proteins, including the O-

GlcNAcylated proteins were not detectable when HPA was pre-incubated with 

GlcNAc (panel B). This is consistent with the observations made in the 1-DE 

Western blot analysis, where HPA binding was completely abolished following pre-

incubation of the lectin with 100 mM GlcNAc (chapter 3).  Unlike the observations 

made previously, GP80 was still observed. These observations suggest that the 

majority of the HPA binding proteins, except GP80, encompass glycans which 

appear to be recognised by the lectin through GlcNAc: HPA interactions. 

 
 
 
 

 
 
Figure 5.6: Inhibition of HPA binding to O-GlcNAcylated glycoproteins. 
Representative HPA (panel A) and HPA pre-incubated with 100 mM GlcNAc (panel B) 
blots of T47D membrane proteins. T47D membrane proteins were separated by 2-DE 
transferred to nitrocellulose by Western blotting and probed with biotinylated HPA which 
has pre-incubated with 100 mM of GlcNAc and detected using streptavidin-HRP. Most of 
the HPA binding proteins, except GP80 were no longer detectable when the HPA was pre-
incubated with GlcNAc. 
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5.4 Co-localisation of HPA binding in the Golgi 
apparatus using a Golgi tracker dye  

 
Initiation of mucin type O-linked glycosylation occurs in the Golgi apparatus and 

aberrant activity of the glycosyltransferase or glycosidase enzymes may be 

reflected by an increase in the levels of a wide range of GalNAc containing 

glycoforms in this cellular compartment (Brooks & Leathem, 1995).  In chapter 3, 

punctuate HPA labelling in the perinuclear region was observed in MCF-7 and 

T47D cells. Here, we set out to identify whether HPA binding localised to the Golgi 

apparatus in MCF-7 and T47D by co-localisation of HPA binding with a Golgi 

tracker dye. 

 

A Golgi tracker dye (NBDC6-Ceramide) was used to selectively stain the 

sphingolipids of the trans–Golgi compartments (Ktistakis et al., 1995). Cells were 

grown, fixed and stained (as described in section 2.3.3), the co-localisation of 

HPA-TRITC and NBDC6-ceramide was assessed using fluorescence microscopy. 

A 3D model of HPA binding was prepared to assist visualisation of the interaction. 

 

HPA and NBDC6-ceramide dye binding was located in the same region of the cells. 

T47D exhibited slightly more intense binding than MCF-7 (indicated by arrows, 

figure 5.7 and figure 5.8). This finding indicated that HPA binding in the perinuclear 

region of these cell lines was associated, at least in part, with the localisation of 

HPA binding epitopes in the Golgi apparatus. 
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5.5   Glycosyltransferases expression in the breast cell 
lines 

 
 

As described in section 5.1 ppGalNAcTs catalyse the addition of a GalNAc residue 

to an O-linkage to give rise to the Tn epitope (Brooks et al., 2007; Cardone et al., 

2005; Hassan et al., 2000). ST6GalNAc I and β3GalT (T-synthase) transfer a sialic 

acid or a galactose residue respectively to the Tn structure to give rise to STn and 

the TF antigen (core 1) (Ikehara et al., 1999; Ju et al., 2002).  Whilst the formation 

of the core 1 structure is most common in normal human cells (Ju et al., 2002), 

formation of STn is less frequently observed and its occurence in cancer has been 

shown to correlate with the development of a metastatic phenoytype (Sewell et al., 

2006). Abrogation of glycosyltransferase expression, for example, up-regulation of 

expression of mRNA for ppGalNAcTs or down-regulation of mRNA for ST6GalNAc 

I genes or β3GalT may lead to increased exposure of the Tn epitope or incomplete 

synthesis of the sialyl Tn or TF antigens, respectively. The schematic diagram 

below (figure 5.9) illustrates the enzymatic reactions that catalyse the formation of 

Tn and STn or TF antigen. 

 

 

 
 Figure 5.9: Schematic illustration of the formation of Tn , Sialyl Tn, TF antigen. 
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To correlate the expression of ppGalNAcTs and ST6GalNAcs with HPA binding, a 

study of gene expression study was undertaken using the HMT3522, BT474, MCF-

7 and T47D cells.  The breast cells were grown to near confluency and mRNA was 

extracted and converted into cDNA (as described in section 2.18). A quantitative 

system using q-RT-PCR was used to assess the expression of the genes. The 

cycle theshold (CT) was determined at a theshold fluorescence value of 0.2. The 

expression levels of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

gene were compared with β-actin gene in the breast cancer cell lines. Next 

expression levels of ppGalNAc T1, T2,T3, T6 and ST6GalNAc I/II genes were also 

examined in all these breast cell lines and compared with the reference gene. The 

melting curve of the amplicons for all the six genes is shown in Appendix 8. 

 

5.5.1 Validation of reference genes as internal control for 
quantitative RT-PCR: β-actin compared with GAPDH  

 
Validation of q-RT- PCR results requires accurate normalisation of the PCR data 

against a reference gene (internal control).  Ideally, the reference gene should 

display uniform expression, regardless of the phenotypic characteristics of the cell 

lines or tissues (Berois et al., 2006). 

 

The expression of GAPDH varied across the breast cell lines, with relatively high 

levels of expression observed in HMT3522 and BT474 and comparatively lower 

expression observed in MCF-7 and T47D (figure 5.10). However the β-actin gene 

appeared to be uniformly expressed across the four breast cells studied; this is 

consistent with previous observations made by Freire et al(2006) in breast cell 

lines, including T47D and MCF-7 used in this study. As the β-actin gene was 

constitutively expressed in the breast cell lines, it was considered to be an 

appropriate reference gene for the q-RT-PCR data analysis undertaken in the 

current study.  
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Figure 5.10: mRNA expression of β-actin and GAPDH reference genes in the breast 
cell lines.  RT-PCR cycle theshold (CT) values for  β-actin and GAPDH reference genes 
for the breast cell lines., mean average and +/- SD of 6 replicates. CT values are inversely 
proportional to the transcript level (gene expression). Expression of GAPDH was variable 
whilst stable expression of β-actin was observed in the breast cell lines. 
 

 

5.5.2 Expression of ppGalNAc T1, T2, T3 and T6 genes in breast 
cells  

 
Freire et al (2007) previously reported that ppGalNAc T1, T2, T3 and T6 enzymes 

were expressed in breast cancer cells, with an elevated mRNA expression of 

ppGalNAc T6 also noted in breast cancer tissues. Brooks et al showed that 

ppGalNAc T3 and T6 enzymes were detected only in metastatic cell lines with 

metastatic phenotype, including, MCF-7 and T47D used in this study. In this 

experiment, we investigated the gene expression of four pp-GalNAc-Ts: T1, T2, T3 

and T6 in the breast cell lines by RT-PCR.  The expression of the target genes 

was normalised to the β-actin reference gene to take into account any differences 

in the amount of cDNA in the starting mixture.  

 

In this study the ppGalNAc-T1, T2, T3 and T6  genes were expressed across all 

the four cell lines (figure 5.11), consistent with previous reports where those genes 
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are heterogeneously expressed in breast tissues (Berois et al., 2006, Freire et al., 

2006). Unlike previous findings, this study did not observe an increase in the 

expression of ppGalNAc-T6 in the metastatic breast cancer cells (T47D and MCF-

7), instead, HMT3522 expressed highest level of all the four genes, BT474 slightly 

lower and all the cell lines derived from metastatic breast expressing comparatively 

lower level of expression. All the four genes showed similar expression levels 

across all the breast cell lines with ppGalNAc-T2 expressed in higher levels 

followed by ppGalNAc-T1, then ppGalNAc-T3 and ppGalNAc-T6. The product of 

the RT-PCR was run on an agarose gel to confirm the length of the amplicons 

(figure 5.12). The intensity of the bands for ppGalNAc-T3 and ppGalNAc-T6 was 

however higher in the all the breast cell lines and this does not correlate with the q-

RT-PCR work.  

 

In summary, the experimental data did not correlate with the HPA binding status of 

the cell lines and hence the phenotype of the cells. Furthermore, these findings 

contradicted previous reports and there is clearly a need for further investigation to 

validate these findings more fully.  
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Figure 5.11: mRNA expression of ppGalNAc T1, T2, T3 and T6 genes in the breast 
cell lines. ∆CT values, mean average and +/- SD of 6 replicates. CT values are inversely 
proportional to the transcript level (gene expression). RT-PCR data was normalised to the 
β-actin gene expression. In all cases, T2 was more highly expressed, followed by T1, then 
T3 and T6 in the breast cell lines.  Expression of all the four genes was higher in 
HMT3522, followed by BT474 and then T47D and MCF-7. 
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Figure 5.12: Representative agarose gel for pp-GalNAcTs RT-PCR product 
separation. 5 µg of DNA amplicon was loaded on agarose gel. Detection was performed 
with 1% w/v ethidium bromide. The RT-PCR products for pp-GalNAc T3 and T6 appeared 
as the sharpest bands in the breast cell lines HMT3522, BT474, MCF-7 and T47D.  The 
length of amplicon for ppGalNAc T1, T2, T3 T6 and β-actin was calculated as 96 bp, 114 
bp, 129 bp, 129 bp and 98 bp respectively.  
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5.5.3 Expression of ST6GalNAc I and II genes in breast cells  
 

The expression levels of core 1 enzymes, ST6GalNAc I and II in the breast cancer 

cell lines was assessed.  ST6GalNAc I transfers a sialic acid residue in alpha 2-6 

linkage onto the Tn structure to yield sialyl Tn and failure of this enzyme may 

results in an immature Tn structure.  Althrough, ST6GalNAc I is the primary 

synthase of the STn epitope (Marcos et al., 2004), it has also been reported that 

ST6GalNAc II may also act as a secondary candidate synthase.  In this 

experiment, we sought to investigate whether these enzymes are down-regulated 

in metastatic breast cancer, thus leaving exposed Tn antigen.  

 

Gene expression analysis revealed an absence of expression of ST6GalNAc I 

enzymes in all the four breast cell lines consistent with previous findings (Julien et 

al., 2001).  However, the  ST6GalNAc II gene was expressed across all the four 

breast cell lines with the  highest level observed in MCF-7 and lowest in T47D 

(figure 5.13).  These observations showed no correlation with the HPA binding 

status of the cell lines. The product of RT-PCR was run on an agarose gel to 

confirm the length of the amplicons (figure 5.14).  
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Figure 5.13: mRNA expression of ST6GalNAc II gene in the breast cell lines. ∆CT 
values, mean average and +/- SD of 6 replicates. CT values are inversely proportional to 
the transcript level (gene expression). RT-PCR data was normalised to the β-actin gene 
expression. ST6GalNAc II gene was expressed in all the breast cell lines, however higher 
expression was noted in MCF-7 and lowest expression was observed in T47D. 
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Figure 5.14 Representative agarose gel for ST6GalNAc II product separation. 5 µg of 
DNA amplicon was loaded on agarose gel. Detection was performed with 1% w/v ethidium 
bromide. The RT-PCR products for ST6GalNAc II and β-actin appeared as the sharp 
bands.  The length of amplicon for ST6GalNAc II and β-actin was calculated as 550 bp 
and 98 bp respectively.  
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5.5   SNA and PNA labelling in breast cells 
 

 In this part of the study, the binding of Sambucus nigra agglutinin (SNA) and 

Arachis hypogaea agglutinin (PNA) to the cell lines was assessed.  SNA and PNA 

have affinity for  2,6 linked sialic acid (such as those found in STn) and Galβ1-3-

GalNAcα-Ser/Th (Alam et al.,1990) containing epitopes, respectively, the 

synthesis of which have also been correlated with the development of a metastatic 

phenotype (Campbell et al., 1995; Murayama et al., 1997; Ryder et al., 1992; Sata 

et al., 1991; Slovin et al., 2005). 

 

Marked differences in cytoplasmic SNA and PNA labelling was observed across 

the breast cell lines HMT3522, BT474, MCF-7 and T47D (figure 5.15). SNA 

labelling ranged from intense (T47D), moderate (MCF-7) to negligible or weak in 

HMT3522 and BT474.  Similarly, PNA labelling ranged from intense in T47D and 

moderate in MCF-7 and weak in BT474 and HMT3522.  Both of these 

observations were consistent with the HPA binding status as well as the 

phenotypic characteristics of the cell lines with the metastatic cell lines binding to  

SNA and PNA and the non-metastatic cell lines HMT3522 and BT474 showing 

reduced levels of binding to the lectins. This study suggests that the metastatic cell 

lines T47D and MCF-7 may contain T antigen and sialyl Tn epitopes.  
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Figure 5.15: SNA and PNA labelling in HMT3522, BT474, MCF-7 and T47D. The cells 
were counter-stained with To-Pro-3. HMT3522 and BT474 showed occasional or 
‘negligible’ granular staining. MCF-7 showed moderate labelling whereas T47D showed 
intense granular staining. MCF-7 showed intense granular staining in the perinuclear 
region. Scale bars = 20µm 
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5.6 Discussion 

5.6.1 HPA interaction with blood group A antigen 
 

It has long been known that HPA has the ability to recognise the blood group A 

determinant (Anderson & Haas, 1984; Grundbacher, 1987; Mourali et al., 1980). 

Whilst the aberrant synthesis of blood group antigens has been well established in 

cancer, it has been suggested that the prognostic utility of HPA lies in its ability to 

predominantly recognise blood group A determinant in tumours (Grunbacher et al., 

1984). This study has shown that the majority of HPA binding glycoproteins in 

T47D (with the exception of one glycoprotein of approximately 85kDa which 

interacted with the anti-A antibody), encompassed structures other than the blood 

group A epitope. Hirota et al (1992) previously reported a number of membrane 

proteins bearing the blood group A antigen in pancreatic cancer and these ranged 

in molecular weight from  20 to 200 kDa, of which, one glycoprotein at  85 kDa was 

amongst the most prominent glycoprotein (Hirota et al., 1992). Similarly, Saint-

Guirons et al (2007) showed that membrane glycoproteins bearing the blood group 

A substance ranged in molecular weight from 20-82 kDa in the HT29 colorectal cell 

line, and of these, intriguingly, only one membrane glycoprotein at 82 kDa 

interacted with the lectin HPA. Furthermore, a recent study has shown  an 

exhaustive number of glycoproteins in the sera of breast cancer patients (including 

a glycoprotein at 85 kDa), bound HPA,  irrespective of the blood group  of the 

patient from whom the sera was derived (Welinder et al., 2009). Taken together, 

these observations suggest that the presence of the blood group A determinant on 

GP85 of T47D cells is likely to be a tumour -associated phenomenon. 

 

5.6.2 HPA binding to O-GlcNAcylated proteins 
 

O-GlcNAcylation is a common form of glycosylation amongst cytoplasmic proteins 

and has been shown to be an alternative pathway to phosphorylation functioning in 

intracellular signalling processes (Slawson et al., 2008). Aberrant O-GlcNAcylation  

is a notable feature associated with chonic diseases such as diabetes (Copeland 

et al., 2008; Akimoto et al., 2005), cardiovascular disease (Laczy et al., 2009; 
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Jones et al, 2008), neurodegenerative disorders (Lazarus et al; 2009; Lefebvre et 

al., 2005) and cancer (Chou et al., 2001).  In this study intense binding of an anti-

O-GlcNAc antibody was noted in MCF-7 and T47D consistent with the metastatic 

phenotype of these cells. Immunofluorescence studies with an O-GlcNAc antibody 

and HPA showed that most of the binding co-localised in the cytoplasm, confirming 

the hypothesis that aberrant O-GlcNAcylation occurs mostly on cytoplasmic 

proteins. Beside these findings made at the cellular level,  the 1-DE immunoblots 

showed three major protein species which interacted with the antibody at 

approximately 35 kDa, 50kDa and 70 kDa in the both the cytoplasmic and 

membrane protein fractions of T47D,  all of which closely correspond to the 

molecular weight of the HPA binding glycoproteins.  It is therefore reasonable to 

propose that the proteins at 35 kDa, 50 kDa and 70 kDa are likely to be Hsp27, 

HnRNP D-like or HnRNP A2/B1 and HnRNP H1, respectively. Furthermore 

inhibition studies showed that the interaction of HPA with the O-GlcNAcylated 

protein species could be abrogated with GlcNAc. Recent studies using click 

chemistry based tagging has confirmed the O-GlcNAcylation of ENO1, Hsp27 in 

MCF-7 (Gurcel et al., 2008), however, this is the first report to show the O-GlcNAc 

modification of the transcription factors HnRNP H1, HnRNP D-like and HnRNP 

A2/B1.   Interestingly, the HPA binding glycoproteins identified in this study also 

exist as O-phosphorylated proteins (Mayrand et la., 1993; Huot et al, 1996; Karl et 

al2000; Trojanowicz et al., 2008). Bioinformatic analysis was undertaken to 

evaluate the potential O-GlcNAcylation and phosphorylation of the HPA binding 

glycoproteins identified in this study.  This analysis confirmed that all the proteins 

have potential O-GlcNAc (≥4) and O-phosphate (≥12) modification sites (Appendix 

5). For instance, ten potential O-GlcNAcylation and twelve potential O-

phosphorylation sites respectively were predicted in Hsp27, ten of which occurred 

on, or near, the same Ser or Thr residue on the polypeptide chain (Appendix 5), 

indicating that indeed these proteins may exist both in an O-GlcNAcylated and O-

phosphorylated form. 

 

The 2DE immunoblot also showed other O-GlcNAcylated proteins that were not 

observed in the HPA blot. It is interesting to speculate as to whether these proteins 

are simply proteins that are in transition to an O-phosphorylation state. Studies 

have shown that the transition of proteins between O-GlcNAcylation and 
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phosphorylation  states enables exquisite control to be exerted on cell regulatory 

mechanisms and that a disruption in this cross-talk may be implicated in many 

disease states (Bork et al., 2008; Copeland et al., 2008). It will be interesting to 

examine the whether the cross-talk between O-GlcNAcylation and O-

phosphorylation bears any relation to the function of these proteins in cancer. 

 

5.6.3  HPA binding in the  Golgi apparatus 
 

The initial observation that HPA labelled the perinuclear region of the metastatic 

cell lines MCF-7 and T47D (Chapter 3) led to co-localisation work using HPA-

TRITC and a Golgi tracker dye. The observations highlighted that HPA recognises 

proteins resident in or  in transit through, the Golgi apparatus, consistent with 

previous observations where HPA labelling has been localised in this cellular 

compartment in non-malignant cells from sources other than the breast (Laitinen et 

al., 1990; Roth, 1984), but this finding  contradicts ultrastructural studies with 

breast cells lines which failed to report HPA  localisation in the Golgi apparatus in 

human mammary tumours (Calafat & Janssen, 1984) and breast cancer cell lines 

(Mitchell et al., 1995).  

 

Wang et al. (2001) suggested that disruptions in the glycosylation pathway in 

colorectal adenocarcinoma is manifested by an increase in the levels of STn in the 

trans-Golgi compartment, possibly corresponding to aberrant expression of 

enzymes such as sialyltransferases, acting later in the biosynthetic pathways.  

 

It appears that the HPA labelling observed in MCF-7 and T47D in this study 

represents a mixture of immature GalNAc bearing glycan epitopes which may be 

consistent with increasing disruption in glycosylation pathways of enzymes such as 

ppGalNAc-Ts or ST6GalNAc (Brooks et al., 2001; Cardone et al., 2005; Hassan et 

al.,2000) leading to an increased concentration of immature N-

acetylgalactosaminylated glycoforms in these cellular compartments. 
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5.6.4 Glycosyltransferases 
 

To understand  the basis of HPA binding in MCF-7 and T47D, an analysis of the 

gene expression of of ppGalNAc-T1, T2, T3 and T6 was undertaken. In the current 

investigation, however no correlation between mRNA levels of ppGalNAc-T and 

the HPA binding status of the cell lines was noted using the q-RT-PCR.  It is 

possible that  mRNA expression level of ppGalNAc T1, T2, T3 and T6 do not 

reflect the level of these enzyme in the cells, as has been proposed elsewhere 

where mRNA levels did not predict protein level (Chen et al., 2002; Gygi et al., 

1999; Lidgren et al., 2008; Nie et al., 2006; Al-Mulla et al., 2005). From what is 

known about the relationship between protein levels and mRNA expression levels 

it appears plausible the mRNA expression level of ppGalNAcTs and ST6GalNAcs 

may not reflect the level of these enzymes in the cells. 

 

 

Another factor to consider is the confluency of the starter culture and other aspects 

of cell culture which have shown to be  important for the expression of cell surface 

glycoconjugates (Breen & Ronayne, 1994). Thus, the results observed in this study 

in terms of the mRNA analysis may reflect differences across laboratories with 

respect to experimental conditions.  

 

To date, a family of fifteen of ppGalNAc Ts have been identified in mammalian 

cells and according to Ten Hagen et al (2003) as many as 20 ppGalNAc-Ts may 

exist.  Out of the 11 ppGalNAc-Ts not studied in the current investigation, some of 

these enzymes might be responsible for the addition of the GalNAc residue to the 

proteins, as opposed to the four ppGalNAc-T studied in this investigation.  

 

Another possibility considered was that increased levels of other enzymes acting 

later (such as core 1 transferase) might lead a failure in completion of the 

glycosylation process and leaving immature carbohydrate moieties exposed.  

ST6GalNac I transfers a sialic acid residue in alpha 2-6 linkage onto GalNAc-O-

Ser/Thr (Pinho et al. 2007) to yield sialyl Tn. Failure of this enzyme to function may 

result  in exposed GalNAc residues (Brooks et al., 2001). Althrough ST6GalNAc I 
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is the primary synthase of STn epitope, ST6GalNAc II has also been reported as a 

secondary candidate synthase for this epitope.  

 

In an attempt to correlate a relationship between HPA labelling and ST6GalNAc I 

and ST6GalNAc II expression levels in breast cells, mRNA expression was 

assessed using q-RT-PCR. Julien et al (2001) previously reported that breast 

cancer cell lines (including the MCF-7 and T47D) cells used in this study express 

neither ST6GalNAc I nor sialyl-Tn antigen and indeed in this investigation no 

expression of ST6GalNAc I was observed, in any of the breast cell lines 

suggesting that STn is unlikely to be HPA binding candidate antigen in metastatic 

T47D or MCF-7 cells. Gene expression levels of ST6GalNAc II also failed to show 

correlation with the HPA binding status and the phenotypic characteristic of the cell 

lines, thus indicating that ST6GalNAc II is unlikely to be a candidate synthase for 

STn antigen in the breast cell lines. This may be consistent with the previous 

observations that ST6GalNAc I is the primary synthase of STn in cancer (Marcos 

et al., 2004).  

 

Another possibility is that the substrate for the enzyme might be limited or as 

discussed previously, the enzyme may be mislocalised intracellularly.  Studies 

have shown that changes in the localisation of transferases residing in the Golgi 

apparatus occurs in malignancy and this results in increased synthesis of cancer 

associated carbohydrate epitopes by disrupting the location or the optimal activity 

of several glycosylation enzymes (Kellokumpu et al., 2002; Rivinoja et al., 2006). 

Specifically it has been shown that inappropriate Golgi pH resulted in fragmented 

Golgi apparatus and lowered glycosylation potential of the Golgi apparatus in 

MCF-7 cells (Kellokumpu et al., 2002). It may be possible that the differences in 

glycosylation observed between normal and cancer cells is associated with an 

alteration in enzymatic activity due to changes in the Golgi apparatus pH. 

 

 

The glycosyltransferase work is at relatively early stage and there is clearly a need 

for further investigations to validate and further explore these observations.  Initial 

work with SNA and PNA suggested that sialic acid and TF containing epitopes are 

present in the MCF-7 and T47D cells as well as to a lesser degree in HMT3522 
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and BT474 cells. This is consistent with  reports where increased levels of STn 

antigen detected by SNA were observed in several malignancies (Kuwabara et al., 

1997; Leivonen et al., 2001; Pinho et al., 2007; Schuessler et al., 1991; Wang et 

al., 2001). These lectins as well as others, alongside mRNA analysis of a wider 

range of ppGalNAc-Ts and ST6GalNAc-Ts will facilitate further understanding of 

the changes in these cells as associated with HPA binding. 

 

5.7 Conclusion 

In summary, the HPA binding partners in the breast cancer cell lines were shown 

to encompass antigens other than blood group A.  HPA staining in the perinuclear 

region of the cytoplasm of MCF-7 and T47D was localised in the Golgi apparatus 

and this was assumed to be by virtue of interaction with proteins in transit through 

the secretory pathways of the cell or with glycosyltransferases resident in this 

organelle.  This study revealed that the cells with a metastatic phenotype contain 

O-GlcNAcylated proteins on a range of cytoplasmic proteins. For the first time HPA 

has been shown to recognise the HnRNPs, Hsp 27 and ENO1 and the evidence 

with the confocal microscopy work suggests that this was via O-GlcNAcylated 

residues. In an attempt to unravel the changes in the glycosylation machinery, as 

related to HPA binding, expression levels of ppGalNAc-T1, T2, T3 and T4 in T47D 

and MCF-7 were assessed, but in the current study, no correlation between the 

HPA binding status of the cells and the expression of the enzymes was found. An 

absence of ST6GalNAc I and varied expression of ST6GalNAc II in the breast cells 

sparks new interest in other ppGalNAc Ts not considered in this study and also 

other enzymes that are involved at later stages in the glycosylation process. 
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6.0 General Discussion 

6.1 Novelty of the research outcomes 
 

The significance of HPA as a tool for identifying poor prognosis cancer has been 

shown in several retrospective studies of resected primary tumour tissues (Ikeda 

et al., 1994; Leathem & Brooks, 1987) and the role of HPA binding epitopes in 

the metastatic process has been established using cancer cell lines derived from 

human tumour tissues (Schumacher et al., 1994). However, the precise nature of 

the HPA-binding partners that are involved in cancer cell metastasis not yet been 

identified (Brooks, 2000; Lescar et al., 2007). The major aim of this study was to 

use proteomic technologies to explore the hypothesis that HPA recognises the 

same proteins in breast cancer as have previously been reported in CRC (Saint-

Guirons et al., 2007). The proteomic approach that was adopted has enabled 

hundreds of proteins to be compared across a range of breast cancer cell lines 

and to be correlated with the HPA binding properties of the cells. 

 

The cell lines used in this study have previously been assessed for their HPA 

binding status and the observations made previously were confirmed here 

(Brooks et al., 2001; Schumacher & Adam, 1997). A range of novel HPA binding 

proteins were identified as described in Chapter 4. These included molecules 

involved in apoptosis (Hsp 27) (Rane et al., 2003), pre-mRNA splicing (HnRNP 

H1, HnRNP D-like, HnRNP A2/B1) (Gallinaro et al., 1986), cellular remodelling 

(GFAP) (Kohama et al., 1995) and cell migration (ENO1) (Wygrecka et al., 

2009). 

 

One of the concerns surrounding the use of HPA in cancer-related studies is that 

the lectin has been shown to recognise the blood group A epitope (Prokop et al., 

1965; Uhlenbruck, 1966).  To address whether this is the case in the breast 

cancer cells, the HPA binding glycoproteins of the cells were compared with 

those recognised by an anti-blood group A antibody. From this work it was clear 

that HPA binds glycoproteins that contain structures distinct from the blood group 

A determinant. Further work has shown that HPA appears to bind to cancer cells 
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via recognition of O-GlcNAcylated epitopes (Chapter 5). HPA also bound 

proteins of similar molecular weight to the integrin α6 subunit, concurring with 

previous findings in CRC. The results from the present study show that, as in the 

CRC model, the integrin α6 subunit was detectable in the breast cell lines and 

appeared to be the most abundant HPA binding glycoprotein in the cells with a 

metastatic phenotype.  

 

Many of the proteins that were identified in this work have previously been 

described to be altered in cancer (Arlt et al., 2009; Bhui-Kaur et al., 1998; Chista 

et al., 1994; Coghlin et al., 2006; Shiraishi et al., 1992; Steeg et al., 1993; Storm 

et al., 1996; Tsai et al., 2010; Zhang et al., 2008; Zhou et al., 2001).  The 

proteomic study also identified elevated levels of the elongation factor Tu; enoyl 

coenzyme A hydratase 1 peroxisomal; and macropain subunits (Chapter 4), 

none of these proteins have previously been reported as altered in cancer and 

therefore offer potential for future studies. 

 

HPA labelling of the cancer cells was shown to partly localise to the Golgi 

apparatus.  This is consistent with previous observations (Brooks et al., 2001; 

Laitinen et al., 1990; Roth, 1984) and supports the hypothesis that changes in the 

glycosylation pathways and location of enzymes, such as ppGalNAc-Ts 

ST6GalNAcs occur in cancer.  

 

6.2 Glycoproteins as biomarkers and targets for cancer 
treatments 

 
Most tumour markers that are used in the clinical setting are glycoproteins.  For 

example: CA125 (Bast et al., 2005); CA15.3 (Schmidt-Rhode et al., 1987); 

carcinoembryonic antigen, CEA, (Carmignani et al., 2004); HER2 (Konecny et 

al., 2004) and PSA (Stenman et al., 2005).  Some of these proteins have been 

used to monitor the clinical progression of cancer (PSA) whilst others are used to 

help define treatment regimens (HER2). Whilst many of these markers play an 

important role, they are of limited use as diagnostic tools, principally because of 

their low specificity and sensitivity, two factors important in a tumour marker 
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(Pannall & Kotasek., 1997). Therefore, there remains an opportunity to identify 

new biomarkers for the diagnosis of breast (and other) cancers and these may 

also offer utility for predicting response to treatment or for prognostication.  

Lectins have frequently been used for identify glycosylation changes in cancer 

(Baldus & Hanisch, 2000; Blonski et al., 2007; Handerson et al., 2005; Takano et 

al., 2000), and there has been considerable interest in identifying the epitopes 

recognised by the lectin HPA. As described above, one of the key findings of this 

investigation was that HPA bound to a protein of the cancer cells that correlated 

with the migration position of the integrin α6 subunit on SDS-PAGE.  This finding 

concurs with observations previously made in CRC cells (Saint-Guiros et al., 

2007) and the work of Prokopishyn et al(1999) who have proposed that the 

integrins are the major carrier of oncodevelopmental carbohydrates in CRC. 

Taken together, these observations support the hypothesis that  members of the 

integrin family, which exhibit abnormal glycosylation, may play a significant role 

in the metastatic process, for example by facilitating cancer cell invasion through 

the ECM (Chao et al., 1996).  

 

To extend the findings of this study it would be of value to assess whether the 

integrin α6 subunit is detectable in the serum of breast cancer patients, as the 

glycosylation of this protein appears to be altered in a cancer-specific manner 

and this may, therefore, be a useful tumour marker. An alternative approach, 

given the cell surface localisation of the integrin α6 subunit, may be to evaluate 

this protein as a potential candidate for biological based approaches for cancer 

targeting.  A similar strategy was adopted for targeting cErb-B2/HER2 in breast 

cancer.  Clearly, many more samples from different cell lines and human cancer 

samples will require detailed peptide mapping and functional analysis in an initial 

step toward testing this hypothesis. 

 

6.3 HPA recognition of O-GlcNAcylated proteins 

One of the major novel findings of this work, supported by evidence from confocal 

microscopy and Western blot analysis, is that HPA recognises ENO1, HnRNPs 
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and Hsp 27 and that this recognition appears to be via O-GlcNAcylation of the 

proteins. Bioinformatic analysis has shown the likely addition of phosphate and 

O-GlcNAc groups to these proteins. ENO1 and Hsp27 have been shown to be 

modified with O-GlcNAc in previous studies in breast cancer (Gurcel et al., 2008). 

This is the first observation of the modification of the transcription factors HnRNP 

H1, HnRNP D-like and HnRNP A2/B1 with O-GlcNAc, althrough elevated levels 

of these transcription factors has previously been shown in cancer (Zhang et al., 

2008, Zhou et al., 2001). The HPA binding glycoproteins identified as being 

modified with O-GlcNAc residues have also been shown to exist as O-

phosphorylated proteins (Mayrand et al., 1993; Huot et al, 1996; Trojanowicz et 

al., 2008).   

 

The O-GlcNAc modification has been shown to play a role in regulating protein 

stability (Bode et al., 2004), protein-protein interactions (Golks et al., 2007) and in 

modifying the DNA binding ability of a number of transcription factors including c-

myc, p53, Pdx-1, FoxO-1, NF-κB STAT5 (Gu et al., 1994) by competing with 

protein kinases and modulating protein phosphorylation of the same Ser/Thr 

residues (Slawson et al., 2008).  

 

Modification of proteins with O-GlcNAc also regulates their sub-cellular 

localisation, particularly the shuttling of transcription factors between the nucleus 

and cytoplasm (Lefterova et al., 1994; Petersen et al., 2007; Kawamura et al., 

2002).  It is unclear as to the precise cellular localisation of the HPA binding 

glycoproteins found in this study, whether these exist as cytosolic, nuclear or cell 

membrane resident molecules and if the intracellular localisation is influenced by 

their O-GlcNAcylation and O-phosphorylation status.  There is an opportunity to 

examine the potential cross-talk between O-GlcNAcylation and O-

phosphorylation for these proteins using this well-characterised in vitro model and 

to determine if the O-GlcNAc modification of the HnRNPs influences intracellular 

signalling pathways and DNA transcription. 
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6.3.1 Inhibitors of O-GlcNAcylation as cancer therapies 
 

The O-GlcNAc modification is catalysed by the enzyme O-linked N-

acetylglucosaminyl transferase (OGT) which functions to transfer O-GlcNAc to 

Ser/Thr residues on the protein backbone; �-N-acetylglucosaminidase (O-

GlcNAcase or OGA) removes O-GlcNAc residues.  There has been considerable 

interest over the past few years in understanding how these two enzymes control 

the O-GlcNAcylation of the hundreds of individual protein substrates found 

intracellularly and how this system regulates cellular processes. A monoclonal 

antibody raised against the O-GlcNAc-Ser epitope (CTD110.6) has been shown 

to block the addition of free GlcNAc to Ser/Thr and appears to be of value for the 

study of the role of O-GlcNAc in cell physiology (Comer et al., 2001).  

 

The crystal structures of OGT (Lazarus et al., 2011) and OGA (Dennis et al., 

2006) have been solved and this has provided an insight into the substrate 

recognition and the mechanism by which the enzymes function. Using the data 

from the crystal structure alongside molecular modelling (for example with the 

Autodock system) will enable large numbers of inhibitor molecules to be 

screened from databases of ligand molecules (Heindl et al., 2011).  The relative 

affinity of ligands to the enzyme can be determined and promising candidate 

molecules are then subject to detailed laboratory analyses (Dorfmueller et al., 

2011, Haltiwanger et al., 1998).  To date, two OGA inhibitors have been explored 

in the laboratory (PUGNAc and streptozotocin) by raising cellular O-GlcNAc 

levels and hence favouring O-GlcNAc modification (Haltiwanger et al., 1998). 

UDP-GlcNAc analogues such as alloxan (a glucose analogue) have also been 

explored as OGT inhibitors and are in the pre-clinical testing phase (Dorfmueller 

et al., 2011).  In summary, the development of inhibitors will enable studies of the 

cellular functions mediated by the OGT and OGA enzymes.  Inhibitors of the O-

GlcNAcylation process may later find clinical application as anti-cancer drugs, 

potentially offering scope alongside the protein kinase inhibitors such as tyrosine 

kinases inhibitors. 
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6.4 Conclusion  

The results presented in this thesis provide clear evidence of the utility of HPA as 

a tool for identification of proteins showing changes in glycosylation in a model of 

metastatic breast cancer. The proteomic approach allowed the characterisation 

of HPA binding glycoproteins and non-HPA binding proteins which were 

differentially glycosylated in the cells with a metastatic phenotype. The work has 

shown that integrin α6 is an HPA binding protein that is recognised in both CRC 

and breast cancer cells. HPA also recognises O-GlcNAcylated cytoplasmic 

proteins (ENO1, HnRNP H1, HnRNP A2/B1, HnRNP D-like). The O-

GlcNAcylation of the HnRNPs transcription factors opens up the possibility of 

glycosylation affecting the regulation and, therefore, function of these proteins 

suggesting a new mechanism by which HPA may detect poor prognosis cancers. 

New approaches aimed at targeting these changes might have broad application 

for the treatment of breast, colorectal and possibly other epithelial cancers. 
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6.5 Future work 
 

There is an opportunity to investigate the following: 
 

� The HPA binding component described as GP80 remained poorly characterised.  

A strategy for this may include HPA affinity chromatography followed by LC-

MS/MS to identify the HPA binding partners. 

 

� It will be helpful to investigate the protein levels of ppGAlNAc-Ts and ST6GalNAcs 

enzymes rather than the mRNA levels in the breast cells to validate the 

observations made in this investigation. 

 
 

� The specificity of HPA binding to proteins of T47D was assessed by competitive 

inhibition using GalNAc and GlcNAc but this may be further investigated using 

cancer cell derived glyconjugates and HPA in conjunction with Surface Plasmon 

Resonance measurements (BiaCore System). 

 

� It would be of interest to compare the protein profile for O-GlcNAcylation of the 

metastatic and non-metastatic cell lines using‘click chemistry’ based tagging 

approach.  It will also be interesting to study the inter-relationship between O-

GlcNAcylation and O-phosphorylation in the function of the HnRNPs in pre-

mRNA splicing. 
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Appendix 1 

 
 

Recipes for buffer used in 1DE and 2DE experiments 
 

 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

15 % Ammonium persulfate 
Ammonium persulfate (FW 228.2) 15 % 

w/v 
dH2O 1 ml 

 
 
 

10 % SDS 
SDS (FW 288.38) 10 % 
dH2O  to 100 ml 

 
 
 
 
 
 
 
 
 

Resolving gel buffer (1M  Tris-HCl pH 8.8) 
Tris (FW 121.1) 1M 
dH2O 150ml 
HCl to pH 8.8 
dH2O To 200 ml 

Stacking gel buffer (0.5M   Tris-HCl pH 6.8) 
Tris (FW 121.1) 1M 
dH2O 150ml 
HCl to pH 8.8 
dH2O To 200 ml 

Water-saturated n-butanol 
n-butanol 50 ml 
dH2O 50 ml 
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Resolving gel (5 ml per Minigel) 
 

10% 12% 

Acrylamide/bisacrylamide 40% 1.25 ml 1.5 ml 
Resolving buffer 1.9 ml 1.9 ml 
dH2O 1.8 ml 1.55 ml 
10% SDS 50 μl 50 μl 
15% APS 25 μl 25 μl 
TEMED 2.5 μl 2.5 μl 

Stacking gel (2.5 ml)   4% 

Acrylamide/bisacrylamide 40% 0.25 ml 

Stacking buffer 0.63 ml 

dH2O 1.5 ml 
10% SDS 25 μl 

15% APS 1.25 μl 

TEMED 2.5 μl 

Running buffer 
Tris (FW 121.1) 0.025M 
Glycine(FW 75.07) 150ml 
SDS(FW 288.4) 0.1%w/v 
dH2O To 1L 
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Recipes for buffer used in agarose gel electrophoresis 
 
10 x TAE buffer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tris-base 0.4M 

Glacial acetic acid 0.2M 

EDTA –Na2-salt 0.01M 

Distilled  water To final volume of 1000 ml 
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Appendix 2 
 
 

Average normalised volume, fold difference and p values of 
protein 1-18 
 

 
 
 
 
 
 
 
 
 



205 
 

Appendix 3 
 
 

Sequences and percentage coverage of protein spots 1-18  
 
 
Protein spot 1 
Glutamate sunthetase enoyl-CoA hydratase-like protein [Homo sapiens] Sequence 
Coverage: 7% 
  1 MAAGIVASRR LRDLLTRRLT GSNYPGLSIS LRLTGSSAQE EASGVALGEA  
    51 PDHSYESLRV TSAQKHVLHV QLNRPNKRNA MNKVFWREMV ECFNKISRDA  
   101 DCRAVVISGA GKMFTAGIDL MDMASDILQP KGDDVARISW YLRDIITRYQ  
   151 ETFNVIERCP KPVIAAVHGG CIGGGVDLVT ACDIRYCAQD AFFQVKEVDV  
   201 GLAADVGTLE RLPKVIGNQS LVNELAFTAH KMMADEALDS GLVSRVFPDK  
   251 EVMLDAALPL APEISSKTTV LVQSTKVNLL YSRDHSVAES LNYVASWNMS  
   301 MLQTQDLVKS VQPTTENKEL KTVTFSKL 
 
Protein spot 2 
heterogeneous nuclear ribonucleoprotein H1 [Homo sapiens] 
Sequence Coverage: 5% 
1 MMLGTEGGEG FVVKVRGLPW SCSADEVQRF FSDCKIQNGA QGIRFIYTRE  
    51 GRPSGEAFVE LESEDEVKLA LKKDRETMGH RYVEVFKSNN VEMDWVLKHT  
   101 GPNSPDTAND GFVRLRGLPF GCSKEEIVQF FSGLEIVPNG ITLPVDFQGR  
   151 STGEAFVQFA SQEIAEKALK KHKERIGHRY IEIFKSSRAE VRTHYDPPRK  
   201 LMAMQRPGPY DRPGAGRGYN SIGRGAGFER MRRGAYGGGY GGYDDYNGYN  
   251 DGYGFGSDRF GRDLNYCFSG MSDHRYGDGG STFQSTTGHC VHMRGLPYRA  
   301 TENDIYNFFS PLNPVRVHIE IGPDGRVTGE ADVEFATHED AVAAMSKDKA  
   351 NMQHRYVELF LNSTAGASGG AYEHRYVELF LNSTAGASGG AYGSQMMGGM  
   401 GLSNQSSYGG PASQQLSGGY GGGYGGQSSM SGYDQVLQEN SSDFQSNIA 
 
 
Protein spot 3 
heterogeneous nuclear ribonucleoprotein H1 [Homo sapiens]  
Sequence Coverage: 9% 
1 MMLGTEGGEG FVVKVRGLPW SCSADEVQRF FSDCKIQNGA QGIRFIYTRE  
    51 GRPSGEAFVE LESEDEVKLA LKKDRETMGH RYVEVFKSNN VEMDWVLKHT  
   101 GPNSPDTAND GFVRLRGLPF GCSKEEIVQF FSGLEIVPNG ITLPVDFQGR  
   151 STGEAFVQFA SQEIAEKALK KHKERIGHRY IEIFKSSRAE VRTHYDPPRK  
   201 LMAMQRPGPY DRPGAGRGYN SIGRGAGFER MRRGAYGGGY GGYDDYNGYN  
   251 DGYGFGSDRF GRDLNYCFSG MSDHRYGDGG STFQSTTGHC VHMRGLPYRA  
   301 TENDIYNFFS PLNPVRVHIE IGPDGRVTGE ADVEFATHED AVAAMSKDKA  
   351 NMQHRYVELF LNSTAGASGG AYEHRYVELF LNSTAGASGG AYGSQMMGGM  
   401 GLSNQSSYGG PASQQLSGGY GGGYGGQSSM SGYDQVLQEN SSDFQSNIA 
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Protein spot 4 
heterogeneous nuclear ribonucleoprotein H1 [Homo sapiens]  
Sequence Coverage: 7% 
1 MMLGTEGGEG FVVKVRGLPW SCSADEVQRF FSDCKIQNGA QGIRFIYTRE  
    51 GRPSGEAFVE LESEDEVKLA LKKDRETMGH RYVEVFKSNN VEMDWVLKHT  
   101 GPNSPDTAND GFVRLRGLPF GCSKEEIVQF FSGLEIVPNG ITLPVDFQGR  
   151 STGEAFVQFA SQEIAEKALK KHKERIGHRY IEIFKSSRAE VRTHYDPPRK  
   201 LMAMQRPGPY DRPGAGRGYN SIGRGAGFER MRRGAYGGGY GGYDDYNGYN  
   251 DGYGFGSDRF GRDLNYCFSG MSDHRYGDGG STFQSTTGHC VHMRGLPYRA  
   301 TENDIYNFFS PLNPVRVHIE IGPDGRVTGE ADVEFATHED AVAAMSKDKA  
   351 NMQHRYVELF LNSTAGASGG AYEHRYVELF LNSTAGASGG AYGSQMMGGM  
   401 GLSNQSSYGG PASQQLSGGY GGGYGGQSSM SGYDQVLQEN SSDFQSNIA 
 
 
Protein spot 5 
elongation factor Tu  
Sequence Coverage: 8%  
  1 MAAATLLRAT PHFSGLAAGR TFLLQGLLRL LKAPALPLLC RGLAVEAKKT  
    51 YVRDKPHVNV GTIGHVDHGK TTLTAAITKI LAEGGGAKFK KYEEIDNAPE  
   101 ERARGITINA AHVEYSTAAR HYAHTDCPGH ADYVKNMITG TAPLDGCILV  
   151 VAANDGPMPQ TREHLLLARQ IGVEHVVVYV NKADAVQDSE MVELVELEIR  
   201 ELLTEFGYKG EETPVIVGSA LCALEGRDPE LGLKSVQKLL DAVDTYIPVP  
   251 ARDLEKPFLL PVEAVYSVPG RGTVVTGTLE RGILKKGDEC ELLGHSKNIR  
   301 TVVTGIEMFH KSLERAEAGD NLGALVRGLK REDLRRGLVM VKPGSIKPHQ  
   351 KVEAQVYILS KEEGGRHKPF VSHFMPVMFS LTWNMACRII LPPEKELAMP  
   401 GEDLKFNLIL RQPMILEKGQ RFTLRDGNRT IGTGLVTNTL AMTEEEKNIK  
   451 WG 
 
 
Protein spot 6 
enolase 1 [Homo sapiens]  
Sequence Coverage: 7% 
1 MSILKIHARE IFDSRGNPTV EVDLFTSKGL FRAAVPSGAS TGIYEALELR  
    51 DNDKTRYMGK GVSKAVEHIN KTIAPALVSK KLNVTEQEKI DKLMIEMDGT  
   101 ENKSKFGANA ILGVSLAVCK AGAVEKGVPL YRHIADLAGN SEVILPVPAF  
   151 NVINGGSHAG NKLAMQEFMI LPVGAANFRE AMRIGAEVYH NLKNVIKEKY  
   201 GKDATNVGDE GGFAPNILEN KEGLELLKTA IGKAGYTDKV VIGMDVAASE  
   251 FFRSGKYDLD FKSPDDPSRY ISPDQLADLY KSFIKDYPVV SIEDPFDQDD  
   301 WGAWQKFTAS AGIQVVGDDL TVTNPKRIAK AVNEKSCNCL LLKVNQIGSV  
   351 TESLQACKLA QANGWGVMVS HRSGETEDTF IADLVVGLCT GQIKTGAPCR  
   401 SERLAKYNQL LRIEEELGSK AKFAGRNFRN PLAK 
 
 
Protein spot 7 
elongation factor Tu 
Sequence Coverage: 12% 
1 MAAATLLRAT PHFSGLAAGR TFLLQGLLRL LKAPALPLLC RGLAVEAKKT  
    51 YVRDKPHVNV GTIGHVDHGK TTLTAAITKI LAEGGGAKFK KYEEIDNAPE  
   101 ERARGITINA AHVEYSTAAR HYAHTDCPGH ADYVKNMITG TAPLDGCILV  
   151 VAANDGPMPQ TREHLLLARQ IGVEHVVVYV NKADAVQDSE MVELVELEIR  
   201 ELLTEFGYKG EETPVIVGSA LCALEGRDPE LGLKSVQKLL DAVDTYIPVP  
   251 ARDLEKPFLL PVEAVYSVPG RGTVVTGTLE RGILKKGDEC ELLGHSKNIR  
   301 TVVTGIEMFH KSLERAEAGD NLGALVRGLK REDLRRGLVM VKPGSIKPHQ  
   351 KVEAQVYILS KEEGGRHKPF VSHFMPVMFS LTWNMACRII LPPEKELAMP  
   401 GEDLKFNLIL RQPMILEKGQ RFTLRDGNRT IGTGLVTNTL AMTEEEKNIK  
   451 WG 
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Protein spot 8 
macropain subunit delta [Homo sapiens]  
Sequence Coverage: 10% 
1 IANRVTDKLT PIHDRIFCCR SGSAADTQAV ADAVTYQLGF HSIELNEPPL  
    51 VHTAASLFKE MCYRYREDLM AGIIIAGWDP QEGGQVYSVP MGGMMVRQSF  
   101 AIGGSGSSYI YGYVDATYRE GMTKEECLQF TANALALAME RDGSSGGVIR  
   151 LAAIAESGVE RQVLLGDQIP KFAVATLPPA  
 
 
Protein spot 9 
proteasome subunit alpha type 2 [Homo sapiens]  
Sequence Coverage: 5% 
1 MAERGYSFSL TTFSPSGKLV QIEYALAAVA GGAPSVGIKA ANGVVLATEK  
    51 KQKSILYDER SVHKVEPITK HIGLVYSGMG PDYRVLVHRA RKLAQQYYLV  
   101 YQEPIPTAQL VQRVASVMQE YTQSGGVRPF GVSLLICGWN EGRPYLFQSD  
   151 PSGAYFAWKA TAMGKNYVNG KTFLEKRYNE DLELEDAIHT AILTLKESFE  
   201 GQMTEDNIEV GICNEAGFRR LTPTEVKDYL AAIA 
 
 
Protein spot 10 
heat shock protein 27 [Homo sapiens]  
Sequence Coverage: 17% 
1 MTERRVPFSL LRGPSWDPFR DWYPHSRLFD QAFGLPRLPE EWSQWLGGSS  
    51 WPGYVRPLPP AAIESPAVAA PAYSRALSRQ LSSGVSEIRH TADRWRVSLD  
   101 VNHFAPDELT VKTKDGVVEI TGKHEERQDE HGYISRCFTR KYTLPPGVDP  
   151 TQVSSSLSPE GTLTVEAPMP KLATQSNEIT IPVTFESRAQ LGGRSCKIR 
 
 
Protein spot 11 
Enoyl Coenzyme A hydratase 1, peroxisomal [Homo sapiens] 
Sequence Coverage: 7% 
1 MAAGIVASRR LRDLLTRRLT GSNYPGLSIS LRLTGSSAQE AASGVALGEA  
    51 PDHSYESLRV TSAQKHVLHV QLNRPNKRNA MNKVFWREMV ECFNKISRDA  
   101 DCRAVVISGA GKMFTAGIDL MDMASDILQP KGDDVARISW YLRDIITRYQ  
   151 ETFNVIERCP KPVIAAVHGG CIGGGVDLVT ACDIRYCAQD AFFQVKEVDV  
   201 GLAADVGTLQ RLPKVIGNQS LVNELAFTAR KMMADEALGS GLVSRVFPDK  
   251 EVMLDAALAL AAEISSKSPV AVQSTKVNLL YSRDHSVAES LNYVASWNMS  
   301 MLQTQDLVKS VQATTENKEL KTVTFSKL 
 
 
Protein spot 12 
glial fibrillary acidic protein isoform 1 [Homo sapiens]  
Sequence Coverage: 5% 
1 MERRRITSAA RRSYVSSGEM MVGGLAPGRR LGPGTRLSLA RMPPPLPTRV  
    51 DFSLAGALNA GFKETRASER AEMMELNDRF ASYIEKVRFL EQQNKALAAE  
   101 LNQLRAKEPT KLADVYQAEL RELRLRLDQL TANSARLEVE RDNLAQDLAT  
   151 VRQKLQDETN LRLEAENNLA AYRQEADEAT LARLDLERKI ESLEEEIRFL  
   201 RKIHEEEVRE LQEQLARQQV HVELDVAKPD LTAALKEIRT QYEAMASSNM  
   251 HEAEEWYRSK FADLTDAAAR NAELLRQAKH EANDYRRQLQ SLTCDLESLR  
   301 GTNESLERQM REQEERHVRE AASYQEALAR LEEEGQSLKD EMARHLQEYQ  
   351 DLLNVKLALD IEIATYRKLL EGEENRITIP VQTFSNLQIR ETSLDTKSVS  
   401 EGHLKRNIVV KTVEMRDGEV IKESKQEHKD VM 
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Protein spot 13 
prosomal protein P30-33K  
Sequence Coverage: 11% 
1 MQLSKVKFRN QYDNDVTVWT AQGRIHQIEY AMEAVKQGSA TVGLKSKTHA  
    51 VLVALKRAQS ELAAHQKKIL HVDNHIGISI AGLTADARLL CNFMRQECLD  
   101 SRFVFDRPLP VSRLVSLIGS KTQIPTQRYG RRPYGVGLLI AGYDDMGPHI  
   151 FQTCPSANYF DCRAMSIGAR SQSARTYLER HMSEFMECNL NELVKHGLRA  
   201 LRETLPAEQD LTTKNVSIGI VGKDLEFTIY DDDDVSPFLE GLEERPQRKA  
   251 QPAQPADEPA EKADEPMEH 
 
 
Protein spot 14 
heterogeneous nuclear ribonucleoprotein D-like [Homo sapiens]  
Sequence Coverage: 7% 
1 MEVPPRLSHV PPPLFPSAPA TLASRSLSHW RPRPPRQLAP LLPSLAPSSA  
    51 RQGARRAQRH VTAQQPSRLA GGAAIKGGRR RRPDLFRRHF KSSSIQRSAA  
   101 AAAATRTARQ HPPADSSVTM EDMNEYSNIE EFAEGSKINA SKNQQDDGKM  
   151 FIGGLSWDTS KKDLTEYLSR FGEVVDCTIK TDPVTGRSRG FGFVLFKDAA  
   201 SVDKVLELKE HKLDGKLIDP KRAKALKGKE PPKKVFVGGL SPDTSEEQIK  
   251 EYFGAFGEIE NIELPMDTKT NERRGFCFIT YTDEEPVKKL LESRYHQIGS  
   301 GKCEIKVAQP KEVYRQQQQQ QKGGRGAAAG GRGGTRGRGR GQGQNWNQGF  
   351 NNYYDQGYGN YNSAYGGDQN YSGYGGYDYT GYNYGNYGYG QGYADYSGQQ  
   401 STYGKASRGG GNHQNNYQPY  
 
 
Protein spot 15 
heterogeneous nuclear ribonucleoprotein A2/B1 isoform A2 [Homo sapiens] Sequence 
Coverage: 12% 
1 MEREKEQFRK LFIGGLSFET TEESLRNYYE QWGKLTDCVV MRDPASKRSR  
    51 GFGFVTFSSM AEVDAAMAAR PHSIDGRVVE PKRAVAREES GKPGAHVTVK  
   101 KLFVGGIKED TEEHHLRDYF EEYGKIDTIE IITDRQSGKK RGFGFVTFDD  
   151 HDPVDKIVLQ KYHTINGHNA EVRKALSRQE MQEVQSSRSG RGGNFGFGDS  
   201 RGGGGNFGPG PGSNFRGGSD GYGSGRGFGD GYNGYGGGPG GGNFGGSPGY  
   251 GGGRGGYGGG GPGYGNQGGG YGGGYDNYGG GNYGSGNYND FGNYNQQPSN  
   301 YGPMKSGNFG GSRNMGGPYG GGNYGPGGSG GSGGYGGRSR Y 
 
 
Protein spot 16 
chaperonin containing TCP1, subunit 2 [Homo sapiens] 
 Sequence Coverage: 11% 
1 MASLSLAPVN IFKAGADEER AETARLTSFI GAIAIGDLVK STLGPKGMDK  
    51 ILLSSGRDAS LMVTNDGATI LKNIGVDNPA AKVLVDMSRV QDDEVGDGTT  
   101 SVTVLAAELL REAESLIAKK IHPQTIIAGW REATKAAREA LLSSAVDHGS  
   151 DEVKFRQDLM NIAGTTLSSK LLTHHKDHFT KLAVEAVLRL KGSGNLEAIH  
   201 IIKKLGGSLA DSYLDEGFLL DKKIGVNQPK RIENAKILIA NTGMDTDKIK  
   251 IFGSRVRVDS TAKVAEIEHA EKEKMKEKVE RILKHGINCF INRQLIYNYP  
   301 EQLFGAAGVM AIEHADFAGV ERLALVTGGE IASTFDHPEL VKLGSCKLIE  
   351 EVMIGEDKLI HFSGVALGEA CTIVLRGATQ QILDEAERSL HDALCVLAQT  
   401 VKDSRTVYGG GCSEMLMAHA VTQLANRTPG KEAVAMESYA KALRMLPTII  
   451 ADNAGYDSAD LVAQLRAAHS EGNTTAGLDM REGTIGDMAI LGITESFQVK  
   501 RQVLLSAAEA AEVILRVDNI IKAAPRKRVP DHHPC 
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Protein spot 17 
 
proteasome beta 7 subunit proprotein [Homo sapiens] 
Sequence Coverage: 7% 
1 MAAVSVYAPP VGGFSFDNCR RNAVLEADFA KRGYKLPKVR KTGTTIAGVV  
    51 YKDGIVLGAD TRATEGMVVA DKNCSKIHFI SPNIYCCGAG TAADTDMTTQ  
   101 LISSNLELHS LSTGRLPRVV TANRMLKQML FRYQGYIGAA LVLGGVDVTG  
   151 PHLYSIYPHG STDKLPYVTM GSGSLAAMAV FEDKFRPDME EEEAKNLVSE  
   201 AIAAGIFNDL GSGSNIDLCV ISKNKLDFLR PYTVPNKKGT RLGRYRCEKG  
   251 TTAVLTEKIT PLEIEVLEET VQTMDTS 
 
 
 
Protein spot 18 
 
Nm23 protein [Homo sapiens]  
Sequence Coverage: 12% 
1 CCEPRGSRAR FGCWRLQPEF KPKQLEGTMA NCERTFIAIK PDGVQRGLVG  
    51 EIIKRFEQKG FRLVGLKFMQ ASEDLLKEHY VDLKDRPFFA GLVKYMHSGP  
   101 VVAMVWEGLN VVKTGRVMLG ETNPADSKPG TIRGDFCIQV GRNIIHGSDS  
   151 VESAEKEIGL WFHPEELVDY TSCAQNWIYE  
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Appendix 4 
 
 

Number of potential glycosylation and phosphorylation sites 
within HPA binding glycoproteins 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Number of potential glycosylation and 
phosphorylation sites 

N-
Linked 

O-GalNAC O-GlcNAC O-Phosphate 

HnRNP-D-like 0 4 12 22 
GFAP 0 0 4 27 
Hsp 27 0 8 10 12 
ENO I 0 0 4 16 
HnRNP-HI 0 0 6  23 
HnRNP-A2/B1 0 0 4 24 
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Appendix 5 

 
 

Number of potential glycosylation and phosphorylation sites 
within Hsp27 
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Appendix 6 

 
 

Negative control for O-glcNAc staining; staining of IgG-FITC 
only 
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Appendix 7 
 
 

Target sequences for ppGalNAc Ts 
 
 
 
GalNAc T 1 
Hs_GALNT1_1_SG QuantiTect Primer Assay (200) (QT00074879)  
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GalNAc T 2 
Hs_GALNT2_1_SG QuantiTect Primer Assay (200) (QT00045087)  
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GalNAc T 3 
Hs_GALNT3_1_SG QuantiTect Primer Assay (200) (QT00033908)  
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GalNAc T 6 
Hs_GALNT6_1_SG QuantiTect Primer Assay (200) (QT00076083)  
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Appendix 8 
 
 

Representative melting curves of beta-actin, ppGalNAc Ts and 
ST6GalNAcs genes in T47D cell lines 

 
 

beta-actin 
 

 
 

ppGalNAc T1 
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ppGalNAc T2 
 

 
 
 

ppGalNAc T3 
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ppGalNAc T6 
 

 
 
 
 

ST6GalNAc II 
 

 
 

 
 
 
 
 
 


