

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Integrating formal reasoning into component-based approach
to reconfigurable distributed systems.

Alessandro Basso

School of Social Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2010.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161120119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTEGRATING FORMAL

REASONING INTO A

COMPONENT-BASED APPROACH

TO RECONFIGURABLE

DISTRIBUTED SYSTEMS

By

Alessandro Basso

A thesis submitted in partial fulfilment of the

requirements of the University of Westminster

for the degree of Doctor of Philosophy

July 2010

Contents

Abstract 7

Declaration 9

Acknowledgements 11

1 Introduction 12

1.1 Overview and orientation . 12

1.2 Thesis Organization . 16

2 Integration 18

2.1 Model Abstraction . 20

2.1.1 Component Model Abstraction . 21

2.1.2 Distributed Execution Abstraction . 22

2.2 Integrating Abstract Models . 23

3 Grids and Component Models 25

3.1 Grid types and structures . 25

3.1.1 Classifications . 26

3.1.2 Grid Structure . 26

3.2 Component Models . 28

3.2.1 The Grid Component Model . 29

2

3.3 The GCM: Composing, monitoring and steering 33

3.3.1 Hierarchical composition . 33

3.3.2 Monitoring of components and resources 34

3.3.3 Dynamic reconfiguration in Grids and the GCM 34

4 Formal Specification and Deductive Verification 37

4.1 Formal Methods . 38

4.1.1 Formalism in software development . 38

4.1.2 GCM Approach . 39

4.1.3 Agents . 40

4.1.4 Model checking vs deductive reasoning . 41

4.2 Languages . 42

4.2.1 ECTL+ . 43

4.2.2 SNFCTL . 45

4.2.3 ECTL+
D . 48

4.2.4 SNFDCTL . 50

4.2.5 Automata based approach to Formal Specification 51

4.3 Formal verification . 53

4.3.1 Deductive Verification techniques . 54

4.3.2 Temporal resolution for branching time logic 55

4.3.3 Natural deduction . 63

4.4 Complexity and complexity reduction . 71

5 Formalizing Behaviour of Grid Components 73

5.1 Formal specification of components . 74

5.1.1 State Behaviour of components . 76

5.2 State mapping . 78

5.2.1 Types of mappings . 79

3

5.2.2 Formalizing mappings . 80

5.3 Dynamic reconfiguration . 80

5.3.1 Model update . 83

6 Implementation 85

6.1 Strategies . 85

6.2 The GridComp IDE . 87

6.3 Verification tool Features . 88

6.3.1 Object Model Parser . 89

6.3.2 GIDE Extended properties View . 93

6.3.3 Formal Specification Database . 94

6.3.4 GIDE Monitoring and Steering . 94

6.3.5 Monitoring Engine . 96

6.3.6 Verification Engine . 97

6.4 Use Cases and experimental work . 98

6.4.1 Testing . 99

6.4.2 Results . 100

7 Conclusions 104

A CTL-RP [ZHD08] Sample Proof 108

Bibliography 115

4

List of Tables

4.1 ECTL+ state and path formulae . 44

4.2 SNFCTL clauses . 46

4.3 SNFCTL evaluation of the temporal operators and path quantifiers 46

4.4 TDS clauses . 48

4.5 ECTL+
D state and path formulae . 49

4.6 Well-formed ECTL+
D formulae . 50

4.7 S tep resolution rules . 55

4.8 Temporal resolution rules . 55

4.9 Conditions of the system and Constraints of TDS 60

4.10 Deontic resolution rule . 61

4.11 CTLDND rules for Boolean . 66

4.12 CTLDND elimination rules for temporal and deontic operations 67

4.13 CTLDND introduction rules for temporal and deontic operations 68

4.14 CTLDND rules for relational judgements . 68

5

List of Figures

3.1 Architecture . 35

4.1 Automata Based Model . 52

4.2 States Tree Example . 58

5.1 States Tree - Sample section . 74

5.2 Parallelism and Sequential Processes . 75

5.3 Component’s Lifecycle States . 76

5.4 Reconfiguration Cycle . 82

5.5 Model Update . 84

6.1 Prototype Structure . 87

6.2 GIDE Structure . 88

6.3 GIDE Verification View . 95

6.4 BIS Architectural Design . 99

6.5 BIS Component Model . 101

6

Abstract

Distributed computing is becoming ubiquitous in recent years in many areas, especially the

scientific and industrial ones, where the processing power - even that of supercomputers - never

seems to be enough. Grid systems were born out of necessity, and had to grow quickly to

meet requirements which evolved over time, becoming today’s complex systems. Even the

simplest distributed system nowadays is expected to have some basic functionalities, such as

resources and execution management, security and optimization features, data control, etc. The

complexity of Grid applications is also accentuated by their distributed nature, making them

some of the most elaborate systems to date. It is often too easy that these intricate systems

happen to fall in some kind of failure, it being a software bug, or plain simple human error; and

if such a failure occurs, it is not always the case that the system can recover from it, possibly

meaning hours of wasted computational power.

In this thesis, some of the problems which are at the core of the development and mainte-

nance of Grid software applications are addressed by introducing novel and solid approaches

to their solution. The difficulty of Grid systems to deal with unforeseen and unexpected cir-

cumstances resulting from dynamic reconfiguration can be identified. Such problems are often

related to the fact that Grid applications are large, distributed and prone to resource failures.

This research has produced a methodology for the solution of this problem by analysing the

structure of distributed systems and their reliance on the environment which they sit upon, often

overlooked when dealing with these types of scenarios. It is concluded that the way that Grid

7

applications interact with the infrastructure is not sufficiently addressed and a novel approach

is developed in which formal verification methods are integrated with distributed applications

development and deployment in a way that includes the environment. This approach allows for

reconfiguration scenarios in distributed applications to proceed in a safe and controlled way, as

demonstrated by the development of a prototype application.

8

Declaration

The work included in this thesis is the author’s own. No portion of the work referred to in this

thesis has been submitted in support of an application for another degree or qualification of

this or any other university or other institution of learning.

External publications directly related to this thesis

In Books:

[1] A. Basso, A. Bolotov, and V. Getov, Behavioural Model of Component-based Grid Envi-

ronments. In From Grids To Service and Pervasive Computing. Edited by T. Priol and M.

Vanneschi, Springer, 2008.

[2] A. Basso and A. Bolotov, Towards GCM Re-Configuration - Extending Specification by

Norms. In Making Grids Work, Edited by M. Danelutto, P. Fragopoulou and V. Getov,

Springer, 2007.

In Proceedings:

[3] A. Bolotov, A. Basso and O. Grigoriev, Deontic extension of deductive verification of com-

ponent model: Combining computation tree logic and deontic logic in natural deduction style

calculus, in International Indian Conference on Artificial Intelligence, 2009.

[4] A. Basso, A. Bolotov, and V. Getov, Temporal specification and deductive verification of a

distributed component model and its environment, in Secure System Integration and Reliability

Improvement, (Shanghai, China), pp. 379-386, IEEE Computer Society, 2009.

9

[5] A. Basso, A. Bolotov, and V. Getov, State-based behavior specification for gcm systems, in

The 16th Workshop on Automated Reasoning, (ARW 2009), 2009.

[6] A. Basso, A. Bolotov, and V. Getov, Automata-based formal specification of stateful sys-

tems, in The 15th Workshop on Automated Reasoning, (ARW 2008), 2008.

[7] A. Basso and A. Bolotov, Deductive verification of gcm: Deontic temporal resolution, in

CoreGRID WP3 Programming model Institute, plenary meeting, 2008.

[8] A. Basso and A. Bolotov, Verification tool - towards an analysis of complexity, in The 14th

Workshop on Automated Reasoning, (ARW 2007), 2007.

[9] A. Basso, A. Bolotov, and M. Urbanski, Specification and verification of reconfiguration

protocols in grid component systems, in 3rd IEEE Conference On Intelligent Systems, IS 2006.

[10] A. Basso and A. Bolotov, Specification and verification of reconfiguration protocols in grid

component systems, in The 13th Workshop on Automated Reasoning, (ARW 2006), 2006.

In Technical Reports:

[11] A. Basso, A. Bolotov, V. Getov, and L. Henrio, Dynamic reconfiguration of gcm com-

ponents, Tech. Rep. TR-0173, Institute on Programming Model, CoreGRID - Network of

Excellence, 2008.

[12] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, G. Zoppi, A. Basso, A. Bolotov, F.

Baude, H. Bouziane, D. Caromel, L. Henrio, C. Perez, J. Cunha, C. Michael, P. Classen, C.

Lengauer, J. Cohen, S. Mc Gough, N. Currle-Linde, P. Dazzi, N. Tonellotto, J. Dunnwebber,

S. Gorlatch, P. Kilpatrick, N. Ranaldo, and E. Zimeo, Proceedings of the programming model

institute technical meeting 2008, Tech. Rep. TR-0138, Institute of Programming Model, Core-

GRID - Network of Excellence, 2008.

[13] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. Henrio, and M. Urbanski, Specification

and verification of reconfiguration protocols in grid component systems, Tech. Rep. TR-0042,

Institute on Programming Model, CoreGRID - Network of Excellence, 2006.

10

Acknowledgements

I would like to thank my supervisors, Alexander Bolotov, Vladimir Getov and Ludovic Henrio

for their invaluable help and support throughout my PhD; the CoreGrid and GridComp projects

which partially funded my research, as well as the people involved with the projects with whom

I have collaborated over the past years. For their collaboration in constructing my prototype I

would like to thank Stavros Isaiadis and Lan Zhang. I would also like to thank Artie Basukoski

for his help proofreading the thesis and his suggestions for improvement. Finally I would like

to thank my family and especially my wife for being so patient while I completed my thesis.

11

Chapter 1

Introduction

1.1 Overview and orientation

‘Grid’ or ‘distributed’ computing, is a term that refers to a particular type of parallel comput-

ing in which multiple computers, called ‘resources’, are networked together in one big virtual

computer, in order to harness the power of multiple machines to process large amounts of data,

to perform computational intensive calculations. The term was first coined in [KF98], and has

been made popular by projects such as SETI@home [ACK+02]. Since then, many projects

have developed trying to construct various types of grid infrastructures, middleware, applica-

tions etc. [OMG06, CCH+08, BFH03, oE], aimed at simplifying the way grid applications are

created and used, and ultimately leading to the widespread use of Grids, making the whole

framework become invisible [GBT+07]. As the use of Grids is becoming more and more com-

monplace, the necessity to simplify usability, increase performance, reduce failure, and so forth,

are becoming more and more an essential part of Grid development. From scientific applica-

tions, to image rendering, to data processing, the computing power required has increased over

the years, and it appears that Moore’s Law can be applied to more and more aspects of modern

computing. Furthermore, if the range of applications for distributed computing continues to

grow and change, the way computation is performed has to evolve as well. Users want to be

12

CHAPTER 1. INTRODUCTION 13

able to create an experiment during the day, leave it to run at night, and expect to find results

in the morning; unfortunately, this is not always the case. In order to ease the life of the

user, developers turn to new and diverse methods to cope with unforeseen problems, trying to

create software which adapts to situations. ‘Adaptive software’ [Hig00] is a term that refers to

these kind of developments, and can be found not only in the parallel computing world, but

also in everyday’s home computers, where software is able to detect a variety of information

about the system it is running on, and choose the appropriate configuration without any user

interaction. While many of these solutions are usually hard coded in each and every piece of

software, and can cope with a wide range of different problems thrown at them, they are not

infallible. The causes of failures in distributed systems can range from hardware defects, to

operating system malfunctions; and in Grid systems in particular, because of their distributed

characteristic, failures are often caused by problems with resources. In this thesis, these causes

have been investigated and an approach to a solution has been created which can handle aspects

not considered before, and can be adapted to a variety of distributed computing environments

through the integration of formal reasoning in the Grid applications development.

Grid Enviroment

The first challenge identified in this thesis is the almost absence of research on the ‘environment’

where Grid application lie. It is easy to understand that distributed applications have a close

relationship with the resources utilized, but there is no clear structure in their interoperability,

ultimately leading to applications which could become unstable. In this research it will be

analysed in detail the effect that the infrastructure has on distributed application, aiming at

providing an insight on its workings and on how to approach the environment when constructing

a methodology to address related problems.

Component Model

The component models utilized in the construction of Grid applications offer an understanding

of the relationship between its fundamental parts as well as their relations with the environment.

In this thesis component models have been analysed in order to understand what parts can

CHAPTER 1. INTRODUCTION 14

be relevant when dealing with failures in dynamically reconfiguring distributed systems. The

challenge here is to decompose these models into their parts and retrieve only the useful aspects

while disregarding the rest. This process is more complex than it might appear at first as some

parts which need to be clear in order to be able to apply specific techniques, might be hidden

or implied. The objective is to expose those aspects while ensuring that relevant others are not

disregarded.

Formal Specification and Verification

In choosing a way to solve the problem of failures in Grid systems, it is difficult to identify

a procedure which is able to consider parts such as a dynamic composition, or possible in-

frastructure restrictions. Although formal specification and verification have a record of being

successfully used in software validation, it has never been used in respect to these aspects.

In this thesis it has been detailed how it is possible to adapt, improve and enable theoretical

procedures on formal specification and verification in large scale software systems, through the

use of a specification language created for this purpose, and a verification technique which is

ideal for these types of specifications.

Integration

A challenge identified in this thesis is the integration of a formal verification methods with

software systems development and deployment. As this process has to be reliable and ultimately

automated in a tool, as well as being adaptable to the peculiar structure of component-based

distributed systems which rely on a range of resources, a technique for integration needs to

be developed with rigid constraints. The objective in this thesis will be to provide such an

innovative procedure based on solid and well studied techniques.

Reconfiguration

The reconfiguration of component-based Grid applications, has been identified in this thesis as

a flawed procedure in standard developments due to its failure prone aspects in composition and

deployment. The construction of these distributed systems, comprised of hierarchical compo-

nents, distributed deployments, resource dependent and so forth, will be affected by unforeseen

CHAPTER 1. INTRODUCTION 15

problems during dynamic reconfigurations (as in the case of suddenly unavailable resources or

services), which are just not feasible to be solved only through standard software safety proto-

cols. It is the aim of this thesis to outline a complete methodology which bypasses the software

code and looks deeper into the interaction between elements of the overall system, and provides

a solution which is generic enough that can be adapted to a wide range of developments in the

field.

Overall Aim

The overall aim of this research is to provide, both in a theoretical way as well as by proof

of concept, a verification engine capable to work simultaneously, integrating and interacting

with a distributed system; capable of providing both developers and users with a way to verify

dynamic reconfigurations of a grid system. This would include the distributed application,

as well as all the resources which are part of the overall grid environment - such as nodes,

databases, services and any other parts which are needed by the application in order to perform

correctly. On a functional level, this research makes use of a combination of a newly constructed

specification language as well as a suitable verification method to be the base for a tool capable

to interact with the distributed system by receiving information from it, as well as applying

changes and adapting to changes made by the system or the tool itself. When a user might fire

a reconfiguration procedure, the tool will then be able to consider these changes and analyse

whether they are appropriate for the system. Furthermore, the tool needs to adapt to the

newly created configuration, and be able to take them into consideration if the need for another

reconfiguration arises in the future. As an example consider a user adding the functionality

for a grid to utilise wireless devices as resources. If the tool confirms that such reconfiguration

is not in conflict with the overall grid environment (which, for example, might be missing a

wireless adapter), the tool should then adapt to any services these new devices may now offer

and may be exposed to the grid in a consequent reconfiguration.

CHAPTER 1. INTRODUCTION 16

1.2 Thesis Organization

Throughout this thesis, the related work is often interwoven with the author’s contribution, due

to the fact that this thesis has a broad coverage of topic areas. To ease the reader’s understand-

ing of which parts in the thesis are related material and which are the author’s contribution, the

contributions are highlighted in the following thesis organisation, as well as at the beginning of

relevant sections throughout the body of the thesis. In chapter §2 the approach to the problem

of integration of formal tools with Grid applications development and usage is outlined, and

the author’s approach to the solution is given. In section §2.1 model abstraction is defined,

given an overview of the approaches of abstraction for formal specification, and how this can be

achieved in the context of component models and the environment where grid applications lie;

while in section §2.2 the author’s approach to integration of the abstract model is described.

Chapter §3 begins with related works, describing the types of Grid systems and their struc-

tures in section §3.1. It is then described the use of component model developments in section

§3.2 where close attention is paid to how this is achieved in the component model considered

and the importance of the behaviour of states of components, which is part of the author’s

contribution. Finally, in section §3.3 is described related works in the division of grid applica-

tion composition, deployment, monitoring and steering. In chapter §4 the focus is on formal

methods for describing software applications, and how those methods can be used to verify the

validity of the application construction. In section §4.1 formal methods are introduced, detail-

ing the language used to describe grid applications in section §4.2 and illustrating verification

techniques in section §4.3. Lastly, an outline is given on the issue of complexity in section §4.4

and solutions considered by the author in this research. In chapter §5 the researched approach

in the formalism of behaviour of the Grid Component Model is described, one of the major

contribution by the author. Starting by addressing formal specification of components in sec-

tion §5.1, and continuing in section §5.2 by detailing the specification process involved when

dealing with the environment of the grid application. In section §5.3 the focus is on the aspect

CHAPTER 1. INTRODUCTION 17

of dynamic reconfiguration of components, and the approach used to achieve it through model

update. In chapter §6 it is illustrated the author’s implementation of a prototype based on the

research. The process involved in the design of the prototype is described in section §6.1, and

how it was integrated in the related work of the Grid Development Environment in section §6.2.

The features that this tool provides are described in section §6.3, and the testing against use

cases is outlined in section §6.4. Finally, in chapter §7, are provided concluding remarks and

identified possible future works.

Chapter 2

Integration

In recent times, software is growing in complexity in ways that seems to surpass people’s ability

to keep up with changes. We are not in fact talking about lines of code, calls to methods or loops

in programs, but also about code spread between different locations, running in parallel and

requiring a greater variety of external resources. Clouds, Grids, Service Oriented computing

are just the most common examples, and in the near future the way we look at complexity will

have to follow these developments. Furthermore, users of these systems expect constant new

features to be added, problems to be addressed, and that the systems be as adaptive to their

needs as possible. There has been a great amount of research in terms of component models

[WS01], their structure [Ste99], reconfiguration (both static and dynamic) [BR00], even some

autonomous approaches (a patent for dynamic software updates [Mar94] has also been filed).

This topic can be very broad, and many of the cited researches overlap in one way or another,

some trying to address a specific problem in a small context, some giving just a comprehensive

overview of the issue without addressing any real type of scenario. We must not forget that

any type of software system has to interact with its environment. From the common household

appliance to the most sophisticated scientific computational systems, these software systems are

generally developed to comfortably sit on top of some infrastructure. As the software develops,

18

CHAPTER 2. INTEGRATION 19

so does the way it interacts with its environment, and it becomes more and more difficult

to keep track of changes, since every environment may be affected by sudden and unplanned

changes (e.g. power failures or human errors). This is why complex software is often designed

to compensate in a way or another and adapt to these changes. Although these features are

developed with the intent of compensating for any type of problem which might arise, often

they do not consider each and every type of scenario, otherwise the complexity of the system

would become unmanageable; but rather utilize the underlying structure of the framework

the system is developed upon (such as a specific API), and give a fail-safe mode the software

can revert to in case of malfunction. By keeping this in mind, we can see that this process

cannot be foolproof, and often such a framework could lead to software still malfunctioning,

although in a “safe” way. This is an underlying problem with the way the software and the

framework it is developed upon are integrated. This can be considered trivial in the case of

simple home applications (such as a word processor), but it becomes of great concern when

scientific applications, or large scale systems in general, are involved. It becomes apparent

that a formal approach to the development of such large scale infrastructures could come as

a solution to the problem. Unfortunately it is often difficult to develop a framework with an

underlying structure which allows for some kind of formal development, and some research has

tried to address this point [KMWM03, Lin01], by using the well known planning properties of

agents. The approach taken in this thesis is to instead integrate formal tools to a pre-existing

framework, so that the approach can scale to other frameworks and be adapted to different

kinds of software systems.

When deciding to solve a software (or hardware) problem using formal verification, it is

common practice to choose one specification technique over another with regard to the best one

that would fit the problem at hand, as well as of any software requirements needed to integrate

the technique with other systems it may rely on or run in conjunction with. Furthermore,

in some cases, more than one specification technique might be applicable or needed. At this

point, integration of formalism and application becomes crucial for a successful output. But

CHAPTER 2. INTEGRATION 20

while most research in the area is concentrated on integration from the point of view of inter-

action between different specification techniques, and between methods and tools still aimed

at different techniques [EDD+04], the side of integration between formal specification and a

’system of tools’ is often overlooked, as one is essentially built “ad-hoc”, while the other is of

a more combined approach. By ‘system of tools’ it is referred to a combined softwares which

is composed of a number of different modular parts which fit together to perform a task, but

which could evolve over time, often in a dynamic and distributed way, and perform the task in a

different way. This is the case in system built from a model-based prospective, which is analysed

in this research. While it is impossible to claim that a single concept for formal specification

can be fitted to any component model, it is possible to say that an integration technique can

be adapted to fit varying techniques of formal development to a number of abstract models

typology. From this, it is possible to have a clear structure on how the integration can be

fitted to different scenarios. In order to do this, the first step has to be to construct a proper

abstraction of the component model, as well as one for the distributed execution. It is possible

to then extract the formal development needed and fit in the parts to match the abstractions

using common patterns to end up with a formal representation of the system. This approach

is on the author’s core contribution in this research.

2.1 Model Abstraction

In [JCK98], abstraction is defined as a process of elimination of irrelevant details in order to

focus on the “essence of the problem at hand”. Model abstraction is often associated with model

checking, where a software system is too complex to be formally represented, so it is reduced in

complexity in order to give a more simplified view. More precisely, by using model abstraction it

is possible to reduce the number of states for a formal verification while preserving the structure

and functionality of the original model. Although much research has been carried out in the

field, [HL98] [Fra95] to name a few, it is often the case that such abstractions lose in one way

CHAPTER 2. INTEGRATION 21

or another a part of the functionality of the original system which might be of importance. In

order to minimize this loss, two parts of abstraction are needed, where instead of ‘translating’

the whole software system, it has been tried to map the parts which are relevant to our aim, and

disregard the rest. In this research it is therefore referred to abstraction in terms of “reduction

by abstraction”, the idea of which was first introduced in [CGL94], and was created because of

the need for reducing infinite transition systems to finite ones, so that the available specification

languages and verification techniques would be able to cope with the complexity. The concept

has been extended since to be applicable to other temporal logics [Kel94, CIY95, DGG97], but

similarly to the research in [CC99] the abstraction needs to be extended to transition systems

which are infinite, in order to take advantage of their characteristics; furthermore, as in this

research it is considered the execution environment of the system, the abstraction should be

extended to comprise this aspect. In this research, two abstractions have been modelled; the

first depicts a view of the static part of the system, called the Component Model abstraction;

while the second is a view of the system over time and through parallel executions, called the

Distributed Execution Abstraction. Both are needed to have a complete picture of the system.

While it is the case that the first, static, view has been researched and implemented with various

successful techniques - mostly through mathematical abstractions for model checking [CGL94]

- it is not sufficient without the dynamic insight that a Distributed Execution Abstraction can

provide.

2.1.1 Component Model Abstraction

When dealing with abstraction of component models, it is easy to think of the procedure as

similar to any other abstraction, and this is generally the case, especially in model checking

scenarios. Some research has focused on taking components separately, and creating an ab-

straction for each of them [BJ08], having the drawback of not considering the interconnections

between components, and their relation to the environment. Needless to say, the complexity of

abstraction only of components taken separately can be still high, and it is just not practical

CHAPTER 2. INTEGRATION 22

if we want to consider also the environment. While an in-depth abstraction of all the inner

workings of each component in a component model is indeed essential to ensure correct execu-

tion of each component, this is not necessarily the case when dealing with the complete system;

therefore only the outer workings of the component model are taken into account, i.e. the

connectivity between components and components and resources. In this research it is devised

a method through which an automata approach is designed to gather the necessary formalism,

and a behavioural model can be applied.

2.1.2 Distributed Execution Abstraction

The research in abstractions of a software execution process, especially if distributed, is very

slim, and often domain specific [DJ93], whereas the area of machine learning of environments

and their behaviour [She94, KPP+04, XZ08] is more developed. Unfortunately when dealing

with large distributed systems the developer often falls into the assumption that any problem

related to the execution of the software will be handled by the environment itself. Needless to

say, this is not always the case, and a method to infer this abstraction is needed to complete the

system’s abstraction. In order to capture the distinctive nature of long term running distributed

environments, an appropriate abstraction of the distributed execution of the system has to be

constructed. Similarly to the abstraction for the component model, by utilizing an automata

structure to infer the process of execution, it is possible to capture the state behaviour of

components when running, as well as the state behaviour of any resource in the environment.

The abstraction is built in a agent-like style, so that other parts of the environment which might

be crucial to its abstraction can be analysed and added, in a process which is very similar to

that in sequential or non-episodic agent environment. In these types of properties, the agent

experiences the environment by dividing it into episodes; after each episode perception, the

agent reacts with an action. This action though is not based only on the single perceived

episode, but it also relates to previous episodes, giving the agent the potential to ‘think ahead’

when performing an action, as demonstrated in [TL02]; this process, although more complex

CHAPTER 2. INTEGRATION 23

than simple episodic agent environments, can be more useful in the area of distributed execution,

where planning ahead for future changes might prevent unforeseen failures.

2.2 Integrating Abstract Models

When talking about integration of model abstractions it is important to clarify the technique

used to achieve it, as this determines whether the formal specification abstracted from the soft-

ware system is a faithful enough representation of the concrete application and its environment.

In this research, two abstractions have been identified, one for the component model, and the

other for the distributed execution. When considering which approach to best combine the two

together, it became clear that a manual process would be wasteful, but it also emphasized the

fact that many steps involved are repetitive. Thanks to the clear specification of a component

model’s structure, the abstraction of its fundamental parts is greatly simplified. As there is

no need for the creation of an abstract interpretation of data structures and the business code

[CR94], the focus can be on parts like type of connections, hierarchical relationship, etc. It is

easy to see that, for example, all broadcast connections (one to many) between interfaces of

components in a system can be represented in a similar way, independently from how many

components are in the relationship. Furthermore, this process is made even easier due to the

innate properties of the formal language chosen, since a repetitive process can be easily du-

plicated and fitted into the formal specification. This process remind of similar procedures in

image processing [Rus02], where patterns are used to identify similarities and associate them

with a particular mathematical formula; it therefore evolved to consider pre-built patterns,

called ‘skeletons’ [ACD+08], defined in the chosen Component Model, allowing for a more ac-

curate representation of these sections of the model. A crucial part of the pattern creation is

to ensure that it is written in the least complex manner. As the whole system if represented

through a set of patterns, the aim has to be to try to lower the complexity for each pattern, as

this, together with the way these patterns are assembled into a structure, could lead to reducing

CHAPTER 2. INTEGRATION 24

the specification complexity.

Integration of formal methods in software developments can be challenging to accomplish,

especially in today’s complex systems. In this chapter it is described how Abstract Models

methods can be used to achieve a faithful representation of a system, without having to resort

to compromises, by choosing a technique which fits the requirements of the final aim. When

having to deal with Grid systems, and specifically with their large and distributed nature,

it is often easy to try to consider too many aspects in creating an abstract model. If the

aim is to reduce the overall complexity of the integrated Abstract Models, it is important to

clearly identifying the aspect most crucial when dynamically reconfiguring a Grid - i.e. the

state behaviour of the Component Model, and its Distributed Execution; as well as shredding

off parts that, while important to other approaches such as static model checking, are not

important to the tackled scenario - such as data structures and business code.

Chapter 3

Grids and Component Models

The concept behind Grid computing is to utilize the processing power of computers when they

are idle, and/or purpose-built clusters of workstations, as one big powerful supercomputer.

To achieve this, low level Grid Infrastructures have been developed [FKNT02], often utilizing

Component Models as their underlying structure [BFH03]. In this chapter it is analysed related

work on Grids types and Component Models as a type of composition structure.

3.1 Grid types and structures

Between the various approaches to building long-lived and flexible Grid systems, the main ones

are exhaustive and generic [CXDM04]. The first approach provides rich systems satisfying

every service request from applications, its implementation consequently suffering from very

high complexity. While in the second approach, it is represented only the basic set of services

(minimal and essential) and thus overcome the complexity of the exhaustive approach. However,

to achieve the full functionality of the system, it is essential to make this lightweight core

platform reconfigurable and expandable. One of the possible solutions here is to identify and

describe the basic set of features of the component model and to consider any other functions

as pluggable components [TIG04] which can be brought on-line whenever necessary [GRSF04].

25

CHAPTER 3. GRIDS AND COMPONENT MODELS 26

Establishing the theoretical foundations of the generic processes involved in designing and

functioning of such Grid systems is highly important.

3.1.1 Classifications

Classifying different types of Grids can be controversial, there is in fact no clear definitions

of classification of a Grid based on its core functionalities [Sto07]; however, it is common

practice to make the most basic distinction between Computational Grids and Data Grids -

the first being application centric and aiming at providing the highest processing power, while

the second dealing with the sharing and management of large amounts of data, often focusing

on storage and reliability rather than power [KF98]. Some other more subtle differentiations

include [Zit07]:

• Networking Grids: where the main concern is on fault-tolerance during communication.

• Collaboration Grids: where the aim is to provide a platform for collaboration in dis-

tributed projects.

• Utility Grids: usually related to grids that make available specialized resources.

Other classifications deal with the size and location of Grids, such as with Cluster Grids

(composed of a single localized cluster of machines), Enterprise Grids (where the machines

are spread across multiple locations) and Global Grids (referring to a Grid widely spread and

controlled by multiple organizations). With a similar terminology as above, Grids are also

classified by complexity and conceptual models: Collaboration / Enterprise Grids refer to

widely distributed grids characterized by business models; while Cluster Grids refer to static,

high performance computing systems.

3.1.2 Grid Structure

As outlined in [FT05], the Grid Infrastructure must provide the following basic aspects:

CHAPTER 3. GRIDS AND COMPONENT MODELS 27

• Resource modelling: insight on resources, their uses, availability, etc.

• Monitoring and notification: giving real time updates on the status of the application and

the resources being used

• Allocation: ensuring that services are provided and requests are met

• Life-cycle: ensuring that resources are allocated for the life of the application

• Auditing: tracking usage of resources

Even though this is a very minimalistic list, it already gives an idea of the level of comprehen-

siveness which a generic grid must provide.

The Open Grid Service Architecture [Tal02], an architecture for a service-oriented grid

computing environment for business and scientific use, expands on the capabilities in its docu-

mentation by adding:

• Infrastructure services

• Execution Management services

• Data services

• Resource Management services

• Security services

• Self-management services

• Information services

In the next section, it is analysed how a similar structure has been developed with a

Component-based approach in the Grid Component Model (GCM), and what particular as-

pect of this development makes it an interesting approach in the realm of this research.

CHAPTER 3. GRIDS AND COMPONENT MODELS 28

3.2 Component Models

Component models have been used in software engineering for years on a wide range of systems,

most notably being Microsoft’s COM [Box98] and ActiveX [Cor], and industrial standards such

as Corba [OMG06] and JavaBeans [MHW03]. The main concept was created when the need

to give software some form of abstract structure was presented [Mci68]; the initial idea behind

software components was to take a similar approach as to hardware components, where the

complexity of constructing machines was already been addressed by this method. The concept

evolved and took different forms, but the fundamental idea of constructing software in basic

building blocks - components - which could be arranged and connected together, remained.

Most notably, in Component-based software engineering, a component is defined as a package

which provides a set of functionalities. More precisely, as defined in [SGM02], the characteristic

properties of components are: to be a unit of independent deployment and third-party compo-

sition, and to have no persistent state. This clearly gives a picture of a component that can be

developed independently from any other that will form the final system (fundamental to the

concept of re-usability), and that a component is essentially stateless (which becomes a core is-

sue when dealing with Web services for example). The concept has evolved to include or inspire

many others, like Object-oriented Architecture (where instead of on components, the focus is

on modelling real world objects), Service-oriented Architecture (where a component becomes a

service), and so forth. The idea of a component being stateless has also changed to adapt to

different needs, mostly by assuming components to be inherently stateful. In frameworks like

Corba [OMG06], we can see a similar description of components as to the one analysed in this

research, where components are essentially black boxes in terms of functionality, but provide a

defined set of interfaces to allow communication.

CHAPTER 3. GRIDS AND COMPONENT MODELS 29

3.2.1 The Grid Component Model

Among various approaches to representing a component model specific attention is paid to

the Fractal component model [BCS02]. The advantage of the Fractal framework is that it

defines the structure of the components, gives a basic classification, and has a mathematical

foundation, e.g., the Kell calculus [BS03]. The Fractal specification defines the basic (non-

functional) controls which should be defined especially to enable dynamic reconfiguration of

components, and a number of constraints on the interplay between functional and non-functional

operations. The reconfiguration aspect in this case, is obtained by triggering appropriate actions

on specific types of the components’ interfaces. These explicit dynamic properties of the Fractal

component model are particularly suitable for Grid systems and environments.

Fractal is a modular and extensible component model. The Fractal specification defines a

set of notions characterizing this model, an API (Application Program Interface), and an ADL

(Architecture Description Language).

Components are containers for some programming functionality; they are characterized by

their content and the membrane that wraps them. The content of a component can be hidden

(in which case it is simply a black box), or it can have some aspects of its inner functionality and

structure revealed (grey boxes); and a component can be constituted by a system of some other

components (referred as to sub-components). In the former case a component would be called

primitive while the latter case represents a composite component. The membrane, or controller,

controls the component. Controllers address non-functional aspects of the component.

Fractal is a multi-level specification. Depending on their conformance level, Fractal com-

ponents can feature introspection and/or configuration. The control interfaces are used in the

Fractal model to allow configuration (and reconfiguration), and are defined as non-functional.

On the other hand, the functional interfaces of a component are associated with its functional-

ities. A functional interface can provide the required functionalities and it is called the server

interface. Alternatively, a client interface requires some other functionalities.

CHAPTER 3. GRIDS AND COMPONENT MODELS 30

Component interfaces are linked together by bindings. In the following, we will consider

some primitive bindings, simple bindings transmitting invocations between the client interface

and the connected server interface.

There are four controllers that have been already defined in Fractal (but others may be

user-defined depending on the needs of the model):

• The attribute controller is used to configure a property within a component, when there

is no need to take into consideration bindings of interfaces.

• The binding controller is used when the attribute controller is not applicable and actual

binding/unbinding of interfaces is required.

• The content controller can be used to retrieve the representation of the sub components

and add or remove them accordingly; note that if a sub component is shared by one or

more other components, the scenario must be defined so that also these other components

are taken into consideration.

• The life cycle controller allows to start and stop a component; it is used for dynamic

reconfiguration so that all other controls can be applied safely to the component while

the component is not in execution.

These are the basic controls which should be defined especially to be able to have dynamic

reconfiguration of components.

The Fractal specification defines a number of constraints on the interplay between functional

and non-functional operations:

• Content and binding control operations are only possible when the component is stopped.

• When stopped, a component does not emit invocations and must accept invocations

through control interfaces; whether or not an invocation to a functional interface is pos-

sible is undefined.

CHAPTER 3. GRIDS AND COMPONENT MODELS 31

The Grid Component model (GCM) [BCD+09] is an extension of Fractal built to accommo-

date requirements in distributed systems, in particular, those developed within and following

the CoreGRID [oE] project. The GCM specification defines a set of notions characterising this

model, an API (Application Program Interface), and an ADL (Architecture Description Lan-

guage) [BHC+06]. In Fractal, when changing the bindings of a component, this component must

be stopped (in other words, to avoid disruption to the system, when unplugging a component,

such component must be stopped before severing its connections to other components); at the

same time, invocation on controller interfaces must be enabled in order to send the stop signal

to the component, making it de facto impossible to reconfigure the component controller. In

GCM section 8.1 of [DD07], the life-cycle controller is extended allowing to separate partially

the life-cycle states of the controller and of the content. When a component is functionally

stopped (which corresponds to the stopped state of the Fractal specification), invocation on

controller interfaces are enabled and the content of the component can be reconfigured. When

a component is stopped, only the controllers necessary for configuration are still active (mainly

binding, content, and lifecycle controllers), and the other components in the membrane can be

reconfigured. It is possible to make use of these extended capabilities and monitor the changes

in states of components.

The recent development of a Grid Integrated Development Environment (GIDE) based on

the GCM specification [BGTI08] opens new possibilities for the dynamic reconfiguration sce-

nario in large distributed systems. It is possible to take advantage of pre-built properties in the

GIDE (namely the components’ hierarchical composition, their API, and the monitoring of both

components and resources) to form a basis for a reconfiguration framework which exploits the

underlying properties of the specification language and deductive reasoning verification methods

used in this research. We consider the monitoring specification of [BCS04] and the state infor-

mation that can be retrieved through calls to the LifeCycleController interface (getFcState

operation) for components, as well as other monitoring techniques for the environment.

CHAPTER 3. GRIDS AND COMPONENT MODELS 32

Behaviour of states

The lifecycle of components in a component model is defined by states, allowed transitions and

operations. As each component is such that it conforms to a set of defined states, it is possible

to consider composite components (large components which are composites of primitive com-

ponents and/or other composite components) as components that inherit the same properties

and conform to state composition. In a system with multiple components in fact, the lifecycle

of the whole system is defined by the relationships between the individual component lifecycles,

and the state of each component is bound to the state of the components it relies on. Further-

more, the hierarchy of the system defines relationships where related components’ lifecycles are

linked: it is possible to define explicit semantics for guiding lifecycle transitions by using the

component model itself, the ADL specification and the deployment information.

The basic lifecycle of components described in the GCM, and thus the resources being

managed, can be retrieved at runtime by the use of the Component Monitoring and Resources

Monitoring systems, built in the GIDE, through:

• components state calls (implemented by all component objects)

• specialised parameters monitoring for some specific components

• resources availability monitors

• metadata information

The state system is often restricted, in that it supports the deployment processes used by the

framework and models only the deployment state of the system, not its operational character-

istics. However, since each deployment component independently represents the state of the

deployed resource which it is managing, the system as a whole must also represent a reasonable

depiction of the overall state of many components.

The lifecycle of a component is assumed to behave as an automaton, whose states repre-

sent execution states of the component; it corresponds to an automaton with two states called

CHAPTER 3. GRIDS AND COMPONENT MODELS 33

STARTED and STOPPED, where all the four possible transitions are allowed. It is how-

ever possible to define completely different lifecycle controller Java interfaces to use completely

different automatons, or to define sub interfaces of this interface to define automatons based

on this one, but with more states and more transitions [BBC+06]. A great number of compo-

nent models in fact consider by default a number of substates to the most generic STARTED

state, allowing for a deeper introspection on the behaviour of states of components (initialized,

suspended, failed. . .).

3.3 The GCM: Composing, monitoring and steering

The Grid Component Model, a powerful framework for building Grid applications based on

Fractal, provides a number of useful structural definitions for Grid developers as well as users.

Its main features in fact include a strict foundation for hierarchical composition of applications,

as well as structural designs for the monitoring and dynamic steering of such applications. In

this section, the GCM framework is analysed, focusing on the aspect of reconfiguration, how it

is achieved, and the problems which may arise during one.

3.3.1 Hierarchical composition

In the GCM, the hierarchical composition of the application is defined through the Architectural

Description Language (ADL), which has the capabilities to describe components, connectors and

configurations as well as the hierarchical structure of the system; however it is known that ADLs

generally cannot provide sufficient insight into the post-deployment / runtime reconfiguration

[MMHR04]. Although there is some research on how to extend the capabilities of ADLs to

capture dynamic composition [PFT03], the simplest approach to surpass these restrictions is

to rely on specific characteristics about the states of instantiated components (also known

as ‘live components’) using standard runtime monitoring tools. It is possible to retrieve the

specific state information (described in the previous section) as messages passed to the system

CHAPTER 3. GRIDS AND COMPONENT MODELS 34

thus describing the runtime behaviour of states of the component. Similarly, the overall view of

behaviour of states of the system of components and resources, describes the runtime behaviour

of the environment.

3.3.2 Monitoring of components and resources

Grid systems are often very large and complex, and monitoring of the application and its

resources becomes an essential tool [AAB+04]; the benefits range from optimization to failure

detection and debugging. In the case of this research, monitoring of components and resources

at runtime allows to recurrently pull state information of components and resources at any given

moment. This is essential during a reconfiguration procedure in order to have a picture of the

current overall state of the system and its environment. It is possible to create a direct mapping

of the snapshot of the states taken during monitoring, to the state trees constructed during the

formal specification process, effectively giving a starting point for the prediction of potential

failures in the system - a crucial aspect which is lacking from other formal developments in the

area [BHM05].

3.3.3 Dynamic reconfiguration in Grids and the GCM

In general, the initial configuration of GCM component is given by the description of the

component using the GCM ADL.

From this first state, reconfiguration is obtained by triggering appropriate actions on the

life-cycle, the binding, and the content control interfaces. A reconfiguration can be triggered

by any component that has a reference to a correct non-functional interface.

Architecture

Let us now examine an overall picture of the architecture involved in the reconfiguration ap-

proach of this thesis, and where each part of a Grid system fits with the specification/verification

scenario. Three main parts of the architecture can be identified: the primitive components, their

CHAPTER 3. GRIDS AND COMPONENT MODELS 35

composition into composite components through the Architecture Description Language (ADL)

file and the infrastructure (see Figure 3.1).

Figure 3.1: Architecture

The first two parts above are combined to deduce the stateful component system behaviour

- a high-level behaviour distinct from the one of a single component, which is assumed to be

already formally verified through other techniques being recently researched. The specification

is partially given as an input by the developer in the case of resources, and partially auto-

matically extrapolated using different sources, such as the ADL file and deployment file. The

infrastructure is specified mainly according to the user’s need, and following well-defined and

accepted constrain such as those for safety, fairness, etc. [MP92] and in relation to the resources

required and services provided. The formal specification derived through this process is a fusion

of deontic and computation tree temporal logic, extended from the previous developments in

[BBB+06], which is a suitable input format for the deductive reasoning tool. The properties to

be specified and verified by these techniques are the ones which cannot possibly be considered

when a system is specified in a static way, including but not limited to: presence of resources

and services, availability of distributed components, etc.

In the classical approach to component behaviour specification, the term ‘behaviour’ refers

to the component’s inner functionality - if the component is supposed to calculate the factorial,

CHAPTER 3. GRIDS AND COMPONENT MODELS 36

is it doing it correctly? When considering the stateful component system behaviour instead, it

is taken into consideration a different aspect: we are looking for those requirements that will

make the component ‘behave correctly’ in its environment. As a simple comparison, consider a

parser which checks if all the libraries required by the component are present to calculate the

factorial. Furthermore, what happens when we talk about a distributed system, where changes

might be needed to be done at runtime? What if we require to replace a component, but the

component we want to replace should not be stopped? These types of situations have been

considered in this research while developing a specification procedure. It has been analysed the

life cycle of a component and defined its states in a formal way so that they can be used in the

system specification. Past developments within the GCM and other state aware grid systems

[SK04] have been considered in order to define a set of states to be generated that would be

monitored by specific software [GBT+07]. This lifecycle is restricted, in fact it only models

the deployment state of the system (and, consequently, the transitions of its states during the

lifecycle), not its operational characteristics. For example, once a component is in running

state, it is available. On the other hand, the service may fail for other unforeseen circumstances

(hence the need for a component monitoring system during runtime which will report a need

for changes into the state behaviour specification).

In this chapter, some basic concepts and related works in the areas of Grid Computing and

Component Models and their frameworks have been analysed, paying close attention to their

benefits and/or shortcomings in the area of dynamic reconfiguration which is a core aspect

in this research. The Grid Component Model (GCM) has been identified as the framework

considered in this research, as well as analysing how the reconfiguration process is achieved and

determining what are the aspect that make the GCM approach unsafe for the system.

Chapter 4

Formal Specification and

Deductive Verification

In [BH95] it is argued that formal methods should follow the system engineering context for

‘method’, where it is given an underlying model of development, a language to express it, some

steps to follow and some guidance on how to proceed between them. [Cro97] expands on this

by identifying six phases:

1. Characterization: understanding of the application and its domain

2. Modelling: mathematical representation of the overall application

3. Specification: logical formalization of relevant parts of the application

4. Analysis: validation of the specification

5. Documentation: record assumptions and motivate decisions

6. Maintenance and Generalization: modify the specification as required

The aim of this chapter is to address the central phases identified above. Related works in

formal methods for specification will be identified, describing the languages that were adopted,

37

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 38

and the verification process used to prove properties and invariants of the system, including

author’s contributions in the extension of these languages.

4.1 Formal Methods

“The term Formal Methods refers to the use of techniques from logic and discrete mathematics

in the specification, design, and construction of computer systems and software” [Cro97]. In

this section it is analysed how formalism can be used to approach the problem of formally

specifing the Grid Component Model and verifing certain properties. Specific areas of the Grid

system will be focused on, as defined previously in the Model Abstractions, and given an insight

on the reasons for choosing one technique over the other.

4.1.1 Formalism in software development

Formal approaches to software development are widely used and researched [All97, BBC05,

WK02]. Unfortunately, the habit of systematically embedding formalism in implementation is

not. It is in fact common to find formal approaches which complement software developments

[CW96]. It may be the case that the need for a formal approach is only discovered at a late

stage of developments, or that it might just not be fundamental and therefore be used in a

second stage. In most cases, the job is left to pre-existing tools which can create a formal

specification of a system (usually through some ad-hoc implementation) and others to verify

their properties. As a problem presents itself in a system where the best solution is through

some formalism, one of these tools is usually chosen to perform these tasks. In the case of this

research, the tools were just not present. It was therefore developed an approach to software

formalism, and in particular the formalism of Grid Component Models that is novel and non-

restrictive. The author is not aware of any other developments which place so much importance

on the formal specification of grid environments. Furthermore, the integration process has been

generalized so that this type of formalism can be adapted to a number of other component

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 39

models, and does not only have to be restricted to Grids, but possibly open to other types of

distributed systems, large scale and long running software, and parallel computing applications.

4.1.2 GCM Approach

The Grid Component Model exposes a clear structure and insight on the functionality of the

developed Grid system. Thanks to the definitions in [CCH+08] and their formal fundamentals

[DD07], it is possible to deduce what formal method to use in order to ensure that the needs in

critical assessments, assurance consideration and architectural characteristics [Cro97] are met.

First it is essential to focus on the GCM components’ definitions, where each deployed compo-

nent MUST expose a state resource property, which implements the Component’s Monitoring

capability. To satisfy this requirement, a deployment component must contain States and

State Transition elements. Additionally, a deployment component may include additional

information as an opaque quantity that an external consumer may be able to process. The

Component Status property will be exposed by every component object of a system.

These properties can be defined in the XML based system architecture as:

<ComponentStatus>

<State>Undef inedState | I n s t a n t i a t e d S t a t e | I n i t i a l i z e d S t a t e |

RunningState | Fa i l edSta te | TerminatedState</ State>

<L i f e c y c l e T r a n s i t i o n>Sta teTr ans i t i on</ L i f e c y c l e T r a n s i t i o n>

</ComponentStatus>

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 40

where:

Element

InstantiatedState

InitializedState

RunningState

FailedState

TerminatedState

Description

State representing the presence of a component instance.

State in which a component has been properly initialized.

Operational state.

State in which the component has failed either a lifecycle

operation or its operation has failed.

State in which a component instance has been terminated.

As the failed state may have been arrived at due to failures during many parts of the lifecycle,

it is RECOMMENDED that the component take action to ensure the services of the resources

are not available while in this state, particularly if the transition occurred from the running

state.

Similarly, it is possible to map the state of resources and monitor changes through state

change notifications fired by resource monitoring software implemented in the GIDE.

4.1.3 Agents

While speaking of software formalism for components and resources, it is easy to see the con-

nection with the agent realm. Of course, a direct comparison between components and agents

should be avoided, as in components we clearly do not see a sign of automated reasoning which

we would find in agents [Fon93]. On the other hand, agent-oriented conceptual modelling has

been thoroughly researched [VGK04] and has also seen some implementation [SBS09]. Agents

have the capability of triggering and responding to actions, but only the latter is present in

components, as they are required only to react to messages passed through their interface bind-

ings (although there might be some cases in which they are required to perform otherwise). It

is also the case for the reverse, where components are used to construct agents [KMWM03].

Another aspect in which agents are connected to the approaches described in this thesis, is

the way in which the formal specification process is described in this research. It is easy to

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 41

see how the automata approach used behaves in a similar fashion to agents when building the

specification, reacting to the scenario presented and making decisions on how to construct in a

formal way the interaction between components and resources.

4.1.4 Model checking vs deductive reasoning

For the specification of behaviour, this research uses a rich temporal framework [Eme90] with

subsequent application of either model checking or deductive reasoning as a verification tech-

nique. In [Cla97], Clarke defines Model Checking as an “automatic technique for verifying

finite-state concurrent systems”. In simpler terms, when a system is built to perform a specific

task, with a specific set of properties to satisfy, model checking is used to test whether those

properties are satisfied. It is commonplace to use a model of a system to automatically test

whether it meets the specification containing safety requirements. The technique has already

been tested in various scenarios [CFJV05], one particular application of this method has also

been applied in similar circumstances [BHM05] to verify the inner behaviour of components (in

other words, to ensure that the components perform the calculations they are supposed to);

this is a powerful and well-established technique which allows to incorporate a number of algo-

rithms and tools to deal even with the famous state explosion problem. However, when applied

to a component system, it has one significant drawback, namely it has an explorative nature

and it cannot efficiently handle infinite state systems [Eme08] (i.e. non-terminating systems);

in fact, model checking is used to take “snapshots” of various static states of a system, and

quickly verify them, but when considering a long running system - possible even infinite - it

is easy to understand that this procedure becomes often infeasible. Although there has been

much research on obviating this problem [And94, VAHL02], solutions are often restricted in

solely the realm of cleverly designed abstractions [CDG01]. As a consequence, model checking

has troubles considering the environment in which a component system has been developed.

At the same time, in building a large scale distributed system, it is not possible to afford any

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 42

more not to take into consideration the entire infrastructure, as it has been extensively anal-

ysed throughout previous research [BBGH08]. Deductive methods, on the other hand, can deal

with such large or even infinite state systems - as the technique has been developed precisely

to solve this problem - and furthermore can be applied to reconfiguration scenarios, where we

must consider future system states as a whole, and taking a series of “snapshots” would just be

impractical. A resolution based verification framework for the fusion of temporal and deontic

logics will be outline later in this chapter. In [ZHD08] the original resolution method for CTL

[Bol00] has been improved by making the set of resolution rules more effective. This means that

since in this system there is no interaction between the normative and temporal dimensions it

is reasonable to take this improved set of resolution rules coping with the temporal setting in-

stead of the one initially considered in [BB07] thus obtaining a more efficient resolution system.

The correctness of the system follows from the correctness argument for both parts - temporal

(as these new developments in [ZHD08] guarantee the correctness) and deontic (as shown in

[BB07]).

4.2 Languages

The notations which will be analysed in the next section have been chosen while having in mind

the overall task that was set out to be achieved, developing an environment-aware dynamic

verification tool. The requirements would therefore have to be:

• To achieve a level of expressiveness hight enough to describe a stateful grid application

as well as its environment.

• To allow to consider all the different paths the application might take in its lifetime (which

could be infinite)

• To reduce the aspects which can be overly descriptive in order to keep complexity to a

minimum.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 43

• To have feature that would ease an automated reconfiguration of the specification pro-

duced.

While existing notations can provide all of the above points separately, there is no language

capable of combining them into a suitable notation system. In fact, different types of logic

languages are used to formally specify different types of systems, and the choice is left to the

researcher to select one depending on the level of expressiveness required for the system in

question; the advantages of choosing one over the other is simple to identify thanks to the fact

that each of them has rigorous mathematical definitions. As this research had to describe a

system which would possibly run forever, and may be subject to changes over time, it was logic

to begin by looking into the realm of temporal logic, finally identifying branching time logic

ECTL+ as the best suited for this approach. The defining characteristic that led to this choice

are, among others, the ability to integrate well in component based scenarios, adaptability in

light of a possible reconfiguration as well as interoperability with the infrastructure. However,

the fact that a Grid system might be dynamically reconfigured at runtime, posed some concerns

on the level of expressiveness of ECTL+, and its inability to describe a model update of its

state tree. To allow this, ECTL+ was extended with Deontic modalities ECTL+
D. These

techniques can all be unified under their normal form, and the final extended logic utilized for

this research falls under the SNFDCTLlanguage, which is the final result contribution for this part

of the thesis. It is now possible to construct a specification using the SNFDCTLlanguage which

solves the shortfall of ECTL+ in the area of dynamic re-configurability of its tree structure.

4.2.1 ECTL+

The language ECTL+ is an extension of linear-time temporal logic, to incorporate the notion of

branching time. Furthermore, it expands on the expressiveness of its predecessor ECTL allowing

nested temporal operators, in order to express boolean combination of fairness properties or

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 44

temporal operators when applied to path quantifiers [BB06]. This language extends linear-

time logic temporal operators (always), ♦ (sometime), g(next time), U (until) and W

(unless), with path quantifiers A (for any future paths) and E (for some future path). Similarly

to CTL we have also, state (S) and path (P) formulae, such that well formed formulae are state

formulae. These classes of formulae are inductively defined below (where C is a formula of

classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P |

S|♦S| gS|S U S|SW S| ♦S|♦ S

Table 4.1: ECTL+ state and path formulae

Underlying Tree Structures. Assuming familiarity of the reader with the basic tree

structure concepts, let us continue with the presentation of the ECTL+ language by the intro-

duction of the notation utilized as described in [BB06].

Definition 1 (Tree) A tree, T , is a pair (S,R), where S is a set of states and R ⊆ S×S is a

relation between states of S such that (a) s0 ∈ S is a unique root node (b)for every si ∈ S there

exists sj ∈ S such that R(si, sj); and (c) for every si, sj , sk ∈ S, if R(si, sk) and R(sj , sk)

then si = sj.

By χsi it is possible to abbreviate a path departing from si. A path χs0 is called a fullpath.

Let X be a family of all fullpaths of T . Given a path χsi and a state sj ∈ χsi , (i < j) we

term a finite subsequence [si, sj] = si, si+1, . . . , sj of χsi a prefix of a path χsi and an infinite

sub-sequence sj , sj+1, sj+2, . . . of χsi a suffix of a path χsi abbreviated Suf(χsi , sj).

Assuming that the underlying trees are countable ω-trees, i.e. any fullpath χ ∈ X is

isomorphic to natural numbers and every state si ∈ S has a countable number of successors.

Definition 2 (Countable ω-tree) A countable ω-tree, Tω, is a tree (S,R) with the family of

all fullpaths, X, which satisfies the following conditions:

• each fullpath χ ∈ X is isomorphic to natural numbers;

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 45

• every state si ∈ S has a countable number of successors.

Definition 3 (Branching degree of a state) Now it is possible to define the formal syntax

and semantics for ECTL+. A well-formed ECTL+ formula is interpreted in a structure M =

〈S,R, s0, X, L〉, where (S,R) is a countable ω tree with a root s0, X is a set of all fullpaths and

L is an interpretation function mapping atomic propositional symbols to truth values at each

state and the following condition is satisfied:

• X is R-generable [Eme90], i.e. for every state si ∈ S, there exists χj ∈ X such that

si ∈ χj, and for every sequence χj = s0, s1, s2, . . ., the following is true: χj ∈ X if, and

only if, for every i, R(si, si+1).

• a tree (S,R) is of at most countable branching.

4.2.2 SNFCTL

The language of a normal form, SNFCTL developed for a number of branching-time logics, CTL

[Bol00, BF99], ECTL [Bol03] and ECTL+ [BB06], uses the same language as ECTL+ (defined

above) without the U (until) and W (unless) operators, and is extended by the use of indices.

In the definition in [BB06] of an SNFCTL model structure M the set of fullpaths X is R-

generable. Therefore, following [Eme90], it it is suffix, fusion and limit closed.

Syntax. First, begin by fixing a countable set, Prop = x, y, z, . . ., of atomic propositions.

The core idea of SNFCTL is to represent temporal information in the following three types of

constraints. Initial constraints represent information relevant to the initial moment of time,

the root of the computation tree. Step constraints indicate what will happen at the successor

state(s) given that some conditions are satisfied ‘now’. Finally, Sometime constraints keep

track on any eventuality, again, given that some conditions are satisfied ‘now’. Additionally, to

enable sound reasoning within a specific path context during the verification, it is necessary to

incorporate indices.

Indices. The language for indices is based on the set of terms

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 46

IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . .}, where f, g, h . . . denote constants.

Thus, EA〈f〉 means that A holds on some path labelled as 〈f〉. A designated type of indices in

SNFCTL are indices 〈LC(ind)〉 which represent a limit closure of prefixes associated with 〈ind〉.

All Formulae of SNFCTL of the type P ⇒ E gQ or P ⇒ E♦Q, where Q is a purely classical

expression, are labeled with some index.

Definition 4 (Separated Normal Form SNFCTL) A set of SNFCTL clauses is a set of

Formulae A [
∧
i(Pi ⇒ Fi)] where each of the clauses Pi ⇒ Fi is further restricted as below,

each αj , αp, αt, αv, βi, βm, βr or γ is a literal, true or false and 〈ind〉 ∈ IND is some index.

start ⇒
∨k

i=1 βi an initial clause
∧l

j=1 αj ⇒ A g[
∨n

m=1 βm] an A step clause
∧q

p=1 αp ⇒ E g[
∨s

r=1 βr]〈ind〉 an E step clause
∧u

t=1 αt ⇒ A♦γ an A sometime clause
∧w
v=1 αv ⇒ E♦γ〈LC(ind)〉 an E sometime clause

Table 4.2: SNFCTL clauses

Interpreting SNFCTL

A relation |= is defined which evaluates the SNFCTL clauses at a state si in a model M. The

evaluation of the classical connectives in the states is standard. Below it is represented the

evaluation of the temporal operators and path quantifiers.

〈M, si〉 |= AB iff for each χsi , 〈M, χsi〉 |= B.

〈M, si〉 |= EB iff there exists χsi

such that 〈M, χsi〉 |= B.

〈M, χsi〉 |= B iff for each sj ∈ χsi , if i ≤ j

then 〈M, Suf(χsi , sj)〉 |= B.

〈M, χsi〉 |=♦B iff there exists sj ∈ χsi

such that i ≤ j and 〈M, Suf(χsi , sj)〉 |= B.

〈M, χsi〉 |= fB iff 〈M, Suf(χsi , si+1)〉 |= B.

Table 4.3: SNFCTL evaluation of the temporal operators and path quantifiers

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 47

Definition 5 (Satisfiability, validity) An SNFCTL clause, C, is satisfiable if, and only if,

there exists a model M such that 〈M, s0〉 |= C. An SNFCTL clause, C, is valid if, and only if,

it is satisfied in every possible model.

An initial SNFCTL clause, start ⇒ F , is understood as “F is satisfied at the initial state

of some model M”. Any other SNFCTL clause is interpreted taking also into account that it

occurs in the scope of A .

Thus, a clause A (x ⇒ A gp) is interpreted as “for any fullpath χ and any state si ∈

χ (0 ≤ i), if x is satisfied at a state si then p must be satisfied at the moment, next to si, along

each path which starts from si”.

Next, a clause A (x ⇒ E gq〈ind〉) is interpreted as “for any fullpath χ and any state

si ∈ χ (0 ≤ i), if x is satisfied at a state si then q must be satisfied at the moment, next to si,

along a path which starts from si and which is associated with ind”. Speaking informally, it is

possible to interpret A (x ⇒ E gq〈ind〉) such that given a state in a model which satisfies x

(the left hand side of the clause), the label, ind, indicates the direction, in which the successor

state which satisfies q can be reached (see similar developments in the construction of logic

DCTL∗ [HT87]).

Finally, it is important to point out that the interpretation of an LC index corresponds to

the concept of a linear interpretation [Wol95].

Note that in the full ECTL+ language the standard ‘until’ (U) and ‘unless’ (W) operators

are used:

〈M, χsi〉 |= AU B iff there exists sj ∈ χsi such that i ≤ j and 〈M, Suf(χsi , sj)〉 |= B

and for each sk ∈ χsi , if i ≤ k < j then 〈M, Suf(χsi , sk)〉 |= A and AW B = A ∨ AU B

In the SNFCTL these operators are defined via the basic set of SNFCTL operators [Bol00].

The rules considered for the translation to SNFCTL are the removal of EW and AW , for the

full procedure refer to [BB06].

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 48

4.2.3 ECTL+

D

In this section it is introduced the temporal specification framework, which is based upon the

language of the normal form (SNFCTL) defined initially in [Bol00] as the underlying language

for the clausal resolution method for the computation tree logic CTL. Here this setting is

extended to capture a fusion of the logic ECTL+ (extended CTL, [Eme90]) and the deontic

logic [LW06]. Thus, let us first start with the introduction of this expressive framework and

then show how SNFCTL can be extended to TDS (temporal deontic specifications) so that any

formula of ECTL+
D can be translated into a corresponding TDS, which preserves satisfiability.

Definition 6 (Temporal Deontic Specification - TDS) TDS is a tuple 〈In, St, Ev,N, Lit〉

where In is the set of initial constraints, St is the set of step constraints, Ev is the set of even-

tuality constraints, N is a set of normative expressions, and Lit is the set of literal constraints,

i.e. formulae that are globally true. The structure of these constraints called clauses, is defined

below where each αi, βm, γ or le is a literal, true or false, de is either a literal or a modal

literal involving the O or P operators, 〈ind〉 ∈ IND is some index, and the clauses are supposed

to be in the scope of the A modality.

start ⇒
∨k

i=1 βi (In)

∧k

i=1 αi ⇒ A g[
∨n

m=1 βm] (St A)
∧k
i=1 αi ⇒ E g[

∨n
m=1 βm]〈ind〉 (St E)

∧k
i=1 αi ⇒ A♦γ (Ev A)

∧k

i=1 αi ⇒ E♦γ〈LC(ind)〉 (Ev E)

true ⇒
∨n
e=1 de (D)

true ⇒
∨n

e=1 le (Lit)

Table 4.4: TDS clauses

In the rest of the thesis, to simplify reading, the prefix A , common for all TDS clauses,

will be omitted.

The language of ECTL+
D follows the definitions of ECTL+ above, and is extended by deontic

modalities: assume a set Ag = {a, b, c . . .} of agents (processes), which are associated with

deontic modalities Oa(ϕ) read as ‘ϕ is obligatory for an agent a’ and Pa(ϕ) read as ‘ϕ is

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 49

permitted for an agent a’.

In the syntax of ECTL+
D are distinguished state (S) and path (P) formulae, such that S are

well formed formulae. These classes of formulae are inductively defined below (where C is a

formula of classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP |PaS|OaS
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P | S|♦S| gS|S U S|

SW S| ♦S|♦ S

Table 4.5: ECTL+
D state and path formulae

Definition 7 (literal, deontic literal) A literal is either p, or ¬p where p is a proposition.

A deontic literal is either Oil, ¬Oil, Pil, ¬P il where l is a literal and i ∈ Ag.

ECTL+
D Semantics. For the interpretation of deontic operators, it is introduced a binary

agent accessibility relation.

Definition 8 (Deontic Accessibility Relation) Given a total countable tree τω = (S,≤), a

binary agent accessibility relation Di ⊆ S × S, for each agent i ∈ Ag, satisfies the following

properties: it is serial (for any k ∈ S, there exists l ∈ S such that Di(k, l)), transitive (for

any k, l,m ∈ S, if Di(k, l) and Di(l,m) then Di(k,m)), and Euclidian (for any k, l,m ∈ S, if

Di(k, l) and Di(k,m) then Di(l,m)).

Let (S,≤) be a total countable ω-tree with a root s0, X be a set of all fullpaths, L :

S×Prop −→ {true , false} be an interpretation function mapping atomic propositional symbols

to truth values at each state, and every Ri ⊆ S × S (i ∈ 1, . . . , n) be an agent accessibility

relation defined as in Def 8. Now a model structure for interpretation of ECTL+
D formulae is

M = 〈S,≤, s0, X, L,D1, . . . , Dn〉.

Recalling that, since the underlying tree structures are R-generable, they are suffix, fusion

and limit closed [Eme90], below it is defined a relation ‘|=’, which evaluates well-formed ECTL+
D

formulae at a state sm in a model M.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 50

〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop

〈M, sm〉 |= AB iff for each χsm , 〈M, χsm〉 |= B

〈M, sm〉 |= EB iff there exists χsm such that

〈M, χsm 〉 |= B

〈M, χsm〉 |= A iff 〈M, sm〉 |= A, for state

formula A

〈M, χsm〉 |= B iff for each sn ∈ χsm , if m ≤ n

then 〈M, Suf(χsm , sn)〉 |= B

〈M, χsm〉 |= fB iff 〈M, Suf(χsm , sm+1)〉 |= B

〈M, χsm〉 |= AU B iff there exists sn ∈ χsm

such that m ≤ n

and 〈M, Suf(χsm , sn)〉 |= B

and for each sk ∈ χsm ,

if m ≤ k < n

then 〈M, Suf(χsm , sk)〉 |= A

〈M, χsm〉 |= AW B iff 〈M, χsm 〉 |= A or

〈M, χsm 〉 |= AU B

〈M, sm〉 |= OaB iff for each sn ∈ S, if Da(m,n)
then 〈M, sn〉 |= B

〈M, sm〉 |= PaB iff there exists sn ∈ S,

such that Da(m,n)
and 〈M, sn〉 |= B

Table 4.6: Well-formed ECTL+
D formulae

Definition 9 (Satisfiability) A well-formed ECTL+
D formula, B, is satisfiable if, and only if,

there exists a model M such that 〈M, s0〉 |= B.

Definition 10 (Validity) A well-formed ECTL+
D formula, B, is valid if, and only if, it is

satisfied in every possible model.

4.2.4 SNFD

CTL

To define a concept of propositional deontic temporal specification, the normal form defined

for the logic ECTL+, SNFCTL, which was developed in [Bol00, BF99] is extended. Recall that

the core idea of the normal form is to extract from a given formula the following three types of

constraints. Initial constraints represent information relevant to the initial moment of time, the

root of a tree. Step constraints indicate what will happen at the successor state(s) given that

some conditions are satisfied ‘now’. Finally, sometime constraints keep track on any eventuality,

again, given that some conditions are satisfied ‘now’.

The SNFDCTL language is obtained from the ECTL+
D language by omitting the U and W

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 51

operators, and adding classically defined constants true and false, and a new operator, start

(‘at the initial moment of time’) defined as

〈M, si〉 |= start iff i = 0.

Similarly to SNFCTL, the language for indices is incorporated, based on the set of terms

IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . .}, where f, g, h . . . denote constants.

Thus, EA〈f〉 means that A holds on some path labelled as 〈f〉. All formulae of SNFCTL of the

type P ⇒ E gQ or P ⇒ E♦Q, where Q is a purely classical expression, are labelled with some

index. Also, as in SNFCTL, the rules considered for the translation to SNFDCTL are the removal

of EW and AW , in a similar fashion as to [BB06].

4.2.5 Automata based approach to Formal Specification

In building the specification protocol, the well known automata constructions are followed. A

simple finite state automaton on finite strings is considered, and a set of specification “patterns”

is applied. The automata is used for the creation of labels defining various states in which the

considered components and resources can be, and the derived model is then directly specified

in a formal manner.

Automata Construction

A finite automaton on finite words is utilized in constructing the specification protocol. Let Σ

be a finite alphabet. A finite word over Σ is an element of Σ⋆.

Definition 11 (Finite Word Automaton) A finite word automaton [Wol01], A, is a tuple

A = (Σ, Q,Qi, Qf ,∆) where Σ is a finite alphabet, Q is a set of states, Qi ⊆ Q is a set of initial

states, Qf ⊆ Q is a set of accepting states, and ∆ : Q× Σ −→ 2S is a transition function.

A run, R, of A over a word w = a1, a2, . . . , an − 1, w ∈ Σ⋆ is abbreviated as Rw and it

is a sequence of states s1, s2, . . . , sn such that for any i, (0 ≤ i < n), si+1 ∈ ∆(si, ai). A run,

R = s1, s2, . . . , sn, is successful if s1 ∈ Qi and sn ∈ Qf . An automaton A accepts a word w if

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 52

Figure 4.1: Automata Based Model

it has a successful run Rw. In this case an automaton A is not empty.

When constructing such an automaton at the component level, it is called Ac and the

following is assumed:

• Initial states, Qi, are either ’running / waiting’ or has not yet entered a state;

• The set of states, Q, corresponds to the states of the component;

• The acceptance condition is defined as reaching one of the following states: terminated,

suspended state or fail. These states are in the set Qf and the acceptance condition is to

reach one of these states in Qf

• The transition conditions are determined by the state change calls of the component.

When the assumed automatonAc (non-)emptiness procedure establishes that the automaton

is not empty, it returns a successful run of Ac. Thus, for any component cycle, when the

corresponding automaton has an accepting run, it means that the component’s behaviour will

eventually hit an accepting state. A simple function Lab(Ac) is defined which returns the

following parameters:

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 53

• < at > - when a component has met the acceptance condition “terminate”

• < as > - when a component a has met the acceptance condition “suspended”

• < af > - when a component has met the acceptance condition “terminate after going

through fail state”

• < ¬a > - when component a has not met any acceptance condition

These labels generated by the function Lab(Ac) will be subsequently collected as a state

tree of the environment, the order in which these labels constitute a tree is defined by the order

of the same labels passed to it during runtime monitoring.

In the construction of this tree automaton, every state is labelled according to state of

components and resources. In this case the transition function is not only related to the state

transition of components, but is also tightly bound to the deontic logic accessibility relation.

Here it is expected to be able to specify the automaton in the normal form for ECTL+, SNFCTL.

Although a rigorous proof of this is not given, it is possible to anticipate that the situation here

would be similar to the one in the linear-time case. Namely, in [BCF02], it was shown that

a Buchi word automaton can be represented in terms of SNFPLTL, a normal form for PLTL.

Similarly, it is reasonable to expect to be able to represent a Buchi tree automaton in terms of

SNFCTL. Subsequently, this representation of the automaton is enriched by deontic constraints

[BB07] and a resolution based verification technique is applied as a verification procedure.

4.3 Formal verification

Different types of deductive verification techniques are available that can deal with the logic

SNFCTL. Each of them offer benefits over the others, and two of them have been the focus of this

research. Temporal resolution [BB05] has an established search algorithm and has been recently

implemented with impressive performance results [BB04]; while Natural deduction, althoug

implemented only for linear time settings, has been argued to have the capacity to reduce

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 54

complexity [BBG09] in the length of the resolution rather than in its structure. Furthermore,

natural deduction has been successfully used in protocol verification [CJM98], in a similar

setting to that considered in this research.

4.3.1 Deductive Verification techniques

Among the many proof procedures for temporal logic, the most commonly used in the branching-

time setting are Tableau [Wol85, Eme90] and Temporal resolution [BB05]. The choice of one

over the other often falls on the development at hand, although in the case of this research,

these were two main reasons behind the choice. First, as the developments in branching time

logic resolution are quite limited, the choices for formal verification also became limited. Sec-

ondly, as the complexity of the specification of a large scale distributed system can grow at

a quick pace simply depending on the number of components and resources which constitute

the system, it was important to consider developments which have the possibility of reduc-

ing the computational requirements, especially when the verification process might have to be

performed dynamically at runtime.

In Tableau-based methods, validity of a formula is proven by refutation; the aim of its

algorithm is to generate a model from the negated formula’s structure: if a model cannot be

generated because the structure is empty, then the negated formula is unsatisfiable, and the

original formula is therefore valid [Eme90]. This technique, unfortunately, has the downside of

not being capable of dealing with the famous induction principle [BD00]. For this research it

was concluded that Temporal resolution would be the most beneficial approach to verification,

an implementation of which is also available to experiment with [ZHD08]. It was also left open

the possibility of utilizing Natural deduction as a verification technique due to its potential in

complexity reduction, which could prove essential in applying the procedure to other systems

[BBG09].

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 55

4.3.2 Temporal resolution for branching time logic

In order to achieve a refutation of a generated specification, two types of resolution rules already

defined in [Bol00, BF99] are incorporated: step resolution (SRES) and temporal resolution

(TRES).

Step resolution is used between Formulae that refer to the same initial moment of time or

same next moment along some or all paths. The step resolution rules are given below (where l

is a literal and C and D are disjunctions of literals).

SRES 1 SRES 2

start ⇒ C ∨ l
start ⇒ D ∨ ¬l
start ⇒ C ∨D

P ⇒ A g(C ∨ l)
Q⇒ A g(D ∨ ¬l)
(P ∧Q) ⇒ A g(C ∨D)

SRES 3 SRES 4

P ⇒ A g(C ∨ l)
Q⇒ E g(D ∨ ¬l)〈ind〉
(P ∧Q) ⇒ E g(C ∨D)〈ind〉

P ⇒ E g(C ∨ l)〈ind〉
Q⇒ E g(D ∨ ¬l)〈ind〉
(P ∧Q) ⇒ E g(C ∨D)〈ind〉

Table 4.7: S tep resolution rules

When an empty constraint is generated on the right hand side of the conclusion of the

resolution rule, a constant false is introduced to indicate this terminating clause.

Now let us present the temporal resolution rules; in the formulation of the rules below l is a

literal and the first premises abbreviate the A and E loops in l [BD00], i.e. the situation where,

given that P is satisfied at some point of time, l occurs always from that point on all or some

path respectively.

TRES 1 TRES 2

P ⇒ A gA l
Q⇒ A♦¬l
Q⇒ A(¬P W ¬l)

P ⇒ A gA l
Q⇒ E♦¬l〈LC(ind)〉

Q⇒ E(¬P W¬l)〈LC(ind)〉

TRES 3 TRES 4

P ⇒ E gE l〈LC(ind)〉

Q⇒ A♦¬l
Q⇒ A(¬P W ¬l)

P ⇒ E gE l〈LC(ind)〉

Q⇒ E♦¬l〈LC(ind)〉

Q⇒ E(¬P W ¬l)〈LC(ind)〉

Table 4.8: Temporal resolution rules

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 56

Example Verification - SNFCTL

It is now considered a sample property that should be verified in the formula

‡ A(♦p ∧♦ ¬p)

Below it is shown how this formula can be represented in terms of SNFCTL and then applied to

this specification the resolution technique as a verification method, using the resolution rules

detailed in the previous section.

To verify (‡) the resolution method is applied to the set of SNFCTL clauses SNFCTL(‡).

The resolution proof commences by presenting at steps 1 – 13 the clauses of SNFCTL(‡) in the

following order: initial clauses, step clauses and, finally, any sometime clauses.

1. start ⇒ x

2. start ⇒ ¬x ∨ y

3. start ⇒ ¬x ∨ x1

4. start ⇒ ¬z ∨ ¬p

5. start ⇒ ¬z ∨ z1

6. true ⇒ A g(¬z ∨ ¬p)

7. true ⇒ A g(¬z ∨ z1)

8. x1 ⇒ A gy

9. x1 ⇒ A gx1

10. z1 ⇒ E g¬p〈f〉

11. z1 ⇒ E gz1〈f〉

12. y ⇒ A♦p

13. x⇒ E♦z〈LC(f)〉

Step resolution rules are applied between 1 and 2, and 1 and 3. No more SRES rules are

applicable. Formula 12 is an eventuality clause, and therefore, we are looking for a loop

in ¬p (see [BD00] for the formulation of the loop searching procedure). The desired loop,

E E g¬p〈LC(f)〉 (given that condition z1 is satisfied) can be found considering clauses 10 and

11. Thus, apply the TRES 3 rule to resolve this loop and clause 12, obtaining 16. Next it is

removed EW from 16 deriving a purely classical Formula 17 (y is a new variable). Simplify

the latter, apply TEMP (the ‘temporising’ rule, see [Bol00], obtaining, in particular, 19 and

20, and then a series of SRES rules to newly generated clauses. Now, as no more SRES rules

are applicable, we find another eventuality, Formula 13, and thus proceed to look for a loop in

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 57

¬z. This loop can be found considering Formulae 9 and 26: A gA ¬z given that condition

x1 is satisfied. Thus, apply TRES 2 to resolve this loop and 13 deriving 27. Then remove

EW from the latter (on step 28, where w is a new variable, used only one of its conclusions).

Applying simplification and temporising to 28 it is obtained 29. The desired terminating clause

start ⇒ false is deduced by applying SRES 1 to steps 1, 15 and 23.

14. start ⇒ y 1, 2, SRES 1

15. start ⇒ x1 1, 3, SRES 1

16. y ⇒ A(¬z1 W p) 10, 11, 12 TRES 3

17. y ⇒ p ∨ ¬z1 ∧ v 16, AW Removal

18. v ⇒ A g(p ∨ ¬z1 ∧ v) 16, AW Removal

19. start ⇒ ¬y ∨ p ∨ ¬z1 17, SIMP,TEMP

20. true ⇒ A g(¬y ∨ p ∨ ¬z1) 17, SIMP,TEMP

21. start ⇒ p ∨ ¬z1 14, 19, SRES 1

22. start ⇒ p ∨ ¬z 5, 21, SRES 1

23. start ⇒ ¬z 4, 22, SRES 1

24. x1 ⇒ A g(p ∨ ¬z1) 8, 20, SRES 3

25. x1 ⇒ A g(p ∨ ¬z) 7, 24, SRES 3

26. x1 ⇒ A g¬z 6, 25, SRES 3

27. x ⇒ E(¬x1 W z)〈LC(f)〉 9, 26, 13 TRES 2

28. x ⇒ z ∨ ¬x1 ∧w 27 EW Removal

29. start ⇒ ¬x ∨ z ∨ ¬x1 28 SIMP,TEMP

30. start ⇒ false 1, 15, 23 SRES 1

A contradiction is found, meaning that SNFCTL(‡) itself is unsatisfiable; in fact, correctness

of the transformation of ECTL+ formulae into SNFCTL [BB06], as well as termination and

correctness of the resolution method defined over SNFCTL [Bol00, BF99], allows to utilize the

latter as refutation procedure for ECTL+.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 58

A sample of the SNFCTL state tree is shown in figure 4.2, here it is possible to identify

where the proof looks for a loop in ¬p (bottom branch), and a loop in ¬z (top branch), and

the contradiction of z and ¬z led by the eventuality in clause 13.

Figure 4.2: States Tree Example

Example Verification - SNFDCTL

Let us now analyze more in detail the core concept of Temporal Deontic Specification (TDS).

It is supposed that the given specification is either directly written in terms of TDS or in the

language of ECTL+
D. In the latter case the formulae of the specification must be transformed

into the desired form of TDS. Since ECTL+
D extends ECTL+ by allowing deontic constraints

and similarly since TDS is a deontic extension of SNFCTL, a normal form for the logic ECTL+,

[BB06] it is possible to simply enrich the transformation procedure of [BB06] by the correspond-

ing rules dealing with the deontic operations. Indeed, due to the fact that there is no interaction

between temporal and deontic constraints, the only rule that is needed for the transformation

of the formulae with deontic constraints is the renaming rule, which would work in a similar

way to [DFB02], i.e. which would allow renaming of an embedded deontic subformula by a new

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 59

proposition.

Renaming

Given P ⇒ Q(F) it is possible to derive P ⇒ Q(F/x) and x ⇒ F , where Q(F) is a

formula with the designated subformula F and Q(F/x) means a result of replacing F by a new

proposition symbol x in Q.

Temporising

Given a purely classical expression A⇒ B it is possible to transform it into start ⇒ ¬A∨B

and true ⇒ A g(¬A ∨B). In particular, the following case of this rule can be applied: from

true ⇒ A ∨B derive start ⇒ ¬A ∨B and true ⇒ A g(¬A ∨B).

Removal of AW

Recall that the formula of the type A(AW B) or E(AW B) can appear as a result of the

application of Temporal Resolution rules. Hence, it is necessary to transform a resolvent of this

type into the desired form. This is first achieved by the application of the W removal rule. In

particular, by applying the AW removal rule: given P ⇒ A(AW B) derive P ⇒ B ∨ (A ∧ x)

and x⇒ A g(B ∨ (A ∧ x)) [Bol00].

Example. Now, consider an example specification in which essentially a normative framework

is used for reconfiguration, and where a model is requested to be updated.

Let r and s represent two components that can be bound to the system. Further let q

be a new composite component, a composition of r and s. Next, let r and s be such that r

always requires its counterpart component, s, not to be active in any of the next states and s

requires r not to be bound (i.e. enabled) in some possible development of the system, i.e. at

the successor state in the direction 〈f〉. Additionally, let us assume that the specification of

the system requires that this new component, q, should not be bound at the next state. This

is represented by the following formula of ECTL+
D:

(†) A (r ⇒ (A gs ∧ Oi¬q)) ∧A (s⇒ (E gr ∧ Oi¬q))

Finally, let the system receive a request for the permission to eventually bind q whichever way

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 60

it evolves:

(‡) start ⇒ A♦P iq

The specification technique requires to transform formulae (†) and (‡) to the structure required

by TDS. This translation, as mentioned above, when it concerns the temporal part, is described

in the previous work [BBB+06, BB06] and if it involves deontic constraints then additionally

it uses standard classical transformations towards normal forms and the renaming rule. To

simplify the reading of the thesis, the rules involved in the examples are presented below.

In the table below the conditions of the component system and their representations in

the language of TDS (note that w is a new (auxiliary) proposition introduced to achieve the

required form of TDS clauses) are summarized. Recall that each clause of TDS is in the scope

of the A and this common prefix for the TDS clauses is omitted in the rest of the thesis to

simplify reading. Also, recall that each E step clause would have to be labelled by a specific

label f while every E sometime clause by some index LC(ind) [Bol00].

Conditions of the System Constraints of TDS
Dependency between counterpart components r ⇒ A gs

true ⇒ ¬r ∨ Oi¬q
s⇒ E gr
true ⇒ ¬s ∨ Oi¬q

A request for the permission to eventually bind q start ⇒ x
x⇒ A♦w
true ⇒ ¬w ∨ Piq

Table 4.9: Conditions of the system and Constraints of TDS

The procedure begins by updating the set of resolution rules developed for SNFCTL [BF99]

by new resolution rules capturing the deontic constraints. Recall that among the set of the

TDS clauses are initial clauses, step clauses, eventuality formulae, and deontic clauses. In order

to achieve refutation three types of resolution rules are applied: Step Resolution (classical

resolution) (SRES), Temporal Resolution (TRES) - described in the previous section, and

deontic resolution (DRES).

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 61

When TDS clauses contain eventualities then the resolution procedure tackles the cases

where such promises for the events to occur contradict some invariants, or loops [Bol00]. It

is only noted here that loops are formulae that constrain some proposition to be always true

(on all or some paths) given some conditions hold. Finally, when two deontic clauses contain

complementary constraints, Oil and Pi¬l then it is allowed to apply the new, deontic resolution

rule, which, in fact, works similarly to the modal resolution rule in [DFB02].

DRES
true ⇒ D ∨Oil
true ⇒ D′ ∨ Pi¬l
true ⇒ D ∨D′

Table 4.10: Deontic resolution rule

Here is presented a resolution based refutation for the set of clauses of TDS obtained for

the component system analysed in the previous section.

TDS

1. r ⇒ A gs

2. true ⇒ ¬r ∨ Oi¬q

3. s ⇒ E gr〈f〉

4. true ⇒ ¬s ∨Oi¬q

5. start ⇒ x

6. x ⇒ A♦w

7. true ⇒ ¬w ∨ P iq

Proof

8. true ⇒ ¬s ∨ ¬w DRES 4, 7

9. r ⇒ A g¬w SRES 2, 1, 8

10. s ⇒ A g¬w from 8

11. r ∨ s ⇒ E g ¬w〈f〉 1, 3, 9, 10

12. x ⇒ ¬(r ∨ s)W w TRES, 6, 11

13. x ⇒ w ∨ ¬(r ∨ s) W removal, 12

14. x ⇒ w ∨ ¬r classical, 13

15. x ⇒ w ∨ ¬s classical, 13

16. start ⇒ ¬x ∨ w ∨ ¬r temporising, 14

17. start ⇒ ¬x ∨ w ∨ ¬s temporising, 15

18. start ⇒ ¬s ∨ ¬w temporising, 8

19. start ⇒ ¬s SRES1, 5, 17, 18

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 62

In this proof, step 8 is obtained by the application of deontic resolution to 4 and 7. Step 9 is

the application of Step Resolution to 1 and 8 (recall that from true ⇒ ¬s∨¬w by temporising

it is possible to derive start ⇒ ¬s ∨ ¬w and true ⇒ A g(¬s ∨ ¬w), and use the latter to

resolve with 1). Thus, from true ⇒ A g(¬s ∨ ¬w) we also have step 10.

Now, since there is an eventuality clause 6, x ⇒ A♦w, the resolution based verification

technique searches for a loop in ¬w. The desired loop can be found combining together clauses

1, 3, 9 and 10 to give us: r ∨ s⇒ E g ¬w〈f〉. This loop being resolved with the eventuality

clause, produces the resolvent on step 12. Remove W from this resolvent, deducing 13. Sub-

sequent classical transformation and the temporising rule guide the deduction of steps 14-18.

Finally, applying Step Resolution, step 19 is derived.

As mentioned, it is possible to describe how our system can identify normative invariants

which should be preserved, and also detect hidden invariants, i.e. those that are not explicitly

given in the specification.

Analysing the proof above it is known that s should not be initially active. Note that the

procedure has detected a loop (invariant) in ¬w which is immediately obvious from the set of

TDS clauses. Additionally, this loop, in conjunction with clauses 2 and 7 indicates a hidden

‘deontic invariant’ property, that s fires the condition Oi¬q and w fires the condition P iq. Now,

if it is assumed that r is initially active, then it is possible to continue the proof above and

derive a contradiction as follows:

20. start ⇒ r assumption

21. start ⇒ w SRES 1, 1, 16, 20

22. start ⇒ P iq SRES1, 7, 21

23. start ⇒ Oi¬q SRES1, 2, 20

24. start ⇒ false DRES, 22, 23

Thus, a request to bring a composite component, q to the system can only be satisfied if r

is not active. Otherwise, if r is bound to the system, the request to bind q should be rejected.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 63

In the deontic language, it is possible to set up some predefined accessibilities (on the top

of those that are defined for every model - such as transitivity, etc) which are called in this

research ‘deontically accessible worlds’. During the reconfiguration it is intended to arrive at a

deontically accessible world to update the model, it is possible to do this in two ways:

1. When such a world that corresponds to the reconfiguration specification can be found in

the model and it is deontically accessible;

2. When we cannot find such a world we want to update the model, this update should then

satisfy both, the criteria of reconfiguration and this deontic accessibility.

4.3.3 Natural deduction

Natural deduction is an approach to deductive verification that aims at providing a deductive

proof system that would be “as close as possible to actual reasoning” [Gen35], in contrast with

a proof through axioms. The importance of natural deduction procedures has grown over time,

mainly due to its ability to emphasize the goal-directed nature of proofs, which can give a more

human understandable insight into the proof results.

The computer science community has become more interested in Natural Deduction systems

[BMV96, Pfe01] for being applicable in many AI areas, most notably, in agent engineering

[Woo00]. This, together with the recent interest in normative systems (see for example, DEON

workshop series [LW06]), makes the development of a natural deduction technique an important

task. Among other interesting and even surprising applications of ND systems is for example

their use in the verification of security protocols [CJM98].

Here is presented the formulation of CTLD with a slightly different set of rules for its

temporal part in comparison with its original formulation in [BGS06]. In particular, it is

introduced a new rule for the U operation paired with a path quantifier, which reduces the

overall number of the rules in the temporal part of the system (see details below).

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 64

Extended CTLD Syntax and Semantics

To define the rules of the natural system the syntax of CTLD is extended by introducing labelled

formulae.

Firstly, it is defined the set of labels, terms of the set Lab = LabS ∪ LabP where LabS =

{x, y, z, . . .} is a set of variables interpreted over states of a tree and LabP = {α, β, γ, . . .} is a

set of variables over paths of a tree.

Universal and rigid variables are distinguished. This second type of variables is linked with

the restrictions on the application of some of the rules which will be explained later. In the rest

of the chapter it is referred to the sets of labels that represent universal and rigid variables as

to LabunivS , LabunivP and LabrigidS , LabrigidP , respectively.

The equality over the labels, ≃ is needed, and the generalisation of the operations ‘≺’ and

‘�’ introduced in the linear-time case [BBGS06, BGS07] such that (i ≺ j)ϕ and (i � j)ϕ

abbreviate, respectively, that i ≺ j and i � j, hold in an (arbitrary or specific) branch ϕ

(depending on whether ϕ is universal or rigid), which starts at state i and includes j. In other

words, it is assumed that the starting point of path ϕ is the state that corresponds to the first

state variable, i, in the relations ≺ and �. The following properties for these relations hold.

For any i, j, k ∈ LabS and ϕ, ψ ∈ LabP

• (i � i)ϕ (reflexivity),

• if (i � j)ϕ and (j � k)ψ then (i � k)χ (transitivity), where

– χ is a new label from LabrigidP if one of the ϕ or ψ, or both of them, are from LabrigidP ,

– otherwise, χ ∈ LabunivP ;

Now, it is defined the relation Next corresponding to the ‘predecessor-successor’ relation in

a tree, again, generalising it from the linear-time case as follows: Next(i, j)ϕ means that j is

an immediate successor of i on an arbitrary (if ϕ ∈ LabunivP) or specific (if ϕ ∈ LabrigidP) path.

Next satisfies the seriality property requiring that any state has a successor state.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 65

Let ′ abbreviate the operation which being applied to a state label i gives us the state label

i′ such that Next(i, i′)ϕ.

Finally, it is introduced the deontic accessibility relation, D, over the state labels as follows:

• for all i ∈ LabS there exists j ∈ LabS such that Da(i, j), for all a ∈ Ag (seriality of Da);

• if Da(i, j) and Da(j, k), then Da(i, k) (transitivity of Da) for all a ∈ Ag;

• if Da(i, j) and Da(i, k), then Da(j, k) (Euclidian).

As previously, following [Sim94], the expressions representing the properties of relations

above are called relational judgements.

Definition 12 (CTLD

ND
Syntax) If A is a CTLD formula and i ∈ LabS then i : A is a

CTLDND formula. Any relational judgement of the type Next(i, i′)ϕ, Next(i, i
′)sfϕk

, (i � j)ϕ,

and (i � j)sfϕ, Da(i, j) where i, j ∈ LabS, ϕ ∈ LabP , and a ∈ Ag is a CTLDND formula.

Some useful and rather straightforward properties relating operations on labels are given

below.

• if (i ≺ j)ϕ then (i � j)ϕ,

• if Next(i, j)ϕ then (i � j)ϕ.

It is easy to see, looking at the properties of all these relational judgements introduced

above, that they correspond to the properties of the deontic extension of CTL models.

CTLD

ND
Semantics. For the interpretation of CTLDND formulae the semantic construc-

tions previously defined for the logic CTLDare adapted. From now on, the capital letters

A,B,C,D, . . . are used as metasymbols for CTLD formulae, and calligraphic letters A,B, C,D . . .

to abbreviate formulae of CTLDND, i.e. either labelled formulae or relational judgements. The

intuitive meaning of i :A is that A is satisfied in the world i ∈ LabS . Let Γ be a non-empty

set of CTLDND formulae, let LabΓS = {x | x :A ∈ Γ}, LabΓP = {ϕ | Bϕ ∈ Γ} (where B abbreviates

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 66

relational judgements), let M = 〈S,R, s0, X, L〉 be a model, and let χ be a set of paths. For

the purpose of constructing semantics for CTLDND we shall use very natural functions gMS and

gMP from LabΓS to S and from LabΓP to χ respectively. Now it is possible to introduce direct

analogs of the notions of satisfiability and validity for the extended semantics. For example,

formula i :A is satisfiable in extended semantics if it is satisfiable in the usual sense in some

model M at some point gMS (i).

CTLD

ND
Rules

Below it is defined the sets of elimination and introduction rules for Booleans, where ‘el’ and

‘in’ that follow a Boolean operation abbreviate an elimination or an introduction rule for this

operation.

Elimination Rules :

∧ el1
i :A ∧B
i :A

∧ el2
i :A ∧B
i :B

∨ el
i :A ∨B i :¬A

i :B

⇒ el
i :A⇒ B i :A

i :B

¬ el
i :¬¬A
i :A

Introduction Rules :

∧ in
i :A i :B
i :A ∧B

∨ in1
i :A

i :A ∨B
∨ in2

i :B
i :A ∨B

⇒ in
[i :C] i :B
i :C ⇒ B

¬ in
[j :C] i :B i :¬B

j :¬C

Table 4.11: CTLDND rules for Boolean

In the formulation of the rules ‘⇒ in’ and ‘¬ in’ formulae [i :C] and [j :C] respectively must

be the most recent non-discarded [BBGS05] assumptions occurring in the proof. When it is

applied one of these rules on step n and discharge an assumption on step m, all formulae from

m to n− 1 are discarded. It is possible to write [m− (n−1)] to indicate this situation.

Next, it is introduced the sets of rules for the temporal part.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 67

Elimination Rules

A gel
i :A gA

Next(i, i′)ϕ, i′ : A
i′ : A ∈M1

E gel
i :E gA

Next(i, i′)ϕr
, i′ : A

i′ : A ∈M1

A el
i :A A

(i � j)ϕ, j :A
E el i :E p

(i � j)ϕr
, j :A

E♦el i :E♦A
(i � jr)ϕr

, j :A
j 7→ i, ∀C(j :C 6∈M1)

A♦el i :A♦A
(i � jr)ϕ, j :A
j 7→ i, ∀C(j :C 6∈M1)

Oel
i :OaA

Da(i, j), j :A
Pel

i :PaA
Da(i, jr), j :A j 7→ i, ∀C(j :C /∈M1)

PU el i :P(AU B), i :A (B ⇒ C), i :A (A ∧P gC) ⇒ C
i :C

Table 4.12: CTLDND elimination rules for temporal and deontic operations

• If a type of a variable in a premise of a rule is not indicated then it can be either universal

or rigid. A variable which is not indicated as rigid is universal.

• In A g
el and E g

el rules the conclusion i′ : A is marked by M1. The condition ∀C(j :

C 6∈M1) means that the label j should not occur in the proof in any formula, C, that is

marked by M1 while the condition j :A 6∈M1 means that j :A is not marked by M1.

• In A in, E in and Oin, the abbreviation ‘[]’ for a relational judgement in their premises

mean that if (i � j)ϕ or Da(i, j) is an assumption, then it must be the most recent

assumption that must be discarded. Applying the rule on step n of the proof, it is

discarded (i � j)ϕ and all formulae until the step n.

• When it is applied a rule where rigid variables are introduced in its conclusion, it is

picked a new variable from a list of available rigid variables. A newly introduced rigid

world variable relatively binds the other variable in the relational judgement; it is similar

to PLTL - this binding relation is transitive but cannot be reflexive.

Below the rules for relational judgements are introduced.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 68

E g
in i′ :A Next(i, i′)ϕ

i :E gA
A g

in

i′ :A Next(i, i′)ϕ
i :A gA

ϕ 6∈ LabrigidP , i′ 6∈ LabrigidS

A in
j :A, [(i � j)ϕ]⋆

i : A A
ϕ 6∈ Labrigidp , j 6∈ Labrigids ,
j :A 6∈M1

E in
j :A, [(i � j)ϕ]⋆

i : E A
j 6∈ Labrigids , j :A 6∈M1

A♦in

j :A, (i � j)ϕ
i : A♦A
ϕ 6∈ Labrigidp

E♦in

j :A, (i � j)ϕ
i : E♦A

EU in
i :B ∨ (A ∧E gE(AU B))

i :E(AU B)
AU in

i :B ∨ (A ∧A gA(AU B))
i :A(AU B)

Oin
j :A, [Da(i, j)]⋆

i :OaA
j 6∈ Labrigids , j :A 6∈M1

P in j :A, Da(i, j)

i :PaA

Table 4.13: CTLDND introduction rules for temporal and deontic operations

� reflexivity
(i � i)χ

where i ∈M1

� transitivity
(i � j)χ, (j � k)ϕ

(i � k)ψ

gseriality

Next(i, i′)χ

g/ �
Next(i, i′)χ
(i � i′)χ

≺ / �
(i ≺ j)χ
(i � j)χ

D seriality
Da(i, k)χ

D transitivity
Da(i, j), Da(j, k)

Da(i, l)
D Euclidian

D(i, j), Da(i, k)
Da(j, k)

Table 4.14: CTLDND rules for relational judgements

The � transitivity rule requires that ψ ∈ LabrigidP is a new label, if at least one of χ or ϕ

are elements of LabrigidP , and ψ ∈ LabunivP otherwise.

Definition 13 (CTLDND proof) An ND proof of a CTLD formula B is a finite sequence of

CTLDND formulae A1,A2, . . . ,An which satisfies the following conditions: every Ai (1 ≤ i ≤ n)

is either an assumption, in which case it should have been discarded, or the conclusion of one of

the ND rules, applied to some foregoing formulae, the last formula, An, is x : B, for some label

x, no rigid variable – world or path label – occurs in the conclusion or relatively binds itself.

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 69

Correctness

The following two theorems characterise the correctness argument.

Theorem 1 [Soundness of CTLDND]

Let D = 〈A1,A2, . . . ,Ak〉 be a proof of CTLDND formula B. Then |=ND B.

Theorem 2 [CTLDND Completeness] For any CTLD formula, A, if |=ND A then there exists a

CTLDND proof of A.

Proofs of these theorems can be found in the technical report available from [BG08].

Natural Deduction Example

Here it is given an example of some proofs including the famous induction principle in CTL.

Note that this proof in turn uses some other derived rules and it is again referred the reader

to the technical report mentioned above for the full account of details. Note that in the proofs

below it is allowed to introduce theorems as steps of these proofs and some derived rules.

⊢ ¬E♦A⇒ A ¬A (4.1)

1. x : ¬E♦A assumption

2. (x � y)α assumption

3. y : A assumption

4. x : E♦A 2, 3,E♦in

5. y : ¬A 1, 4,¬in, [3 − 4],

6. x : A ¬A 5,A in, [2 − 5], α 6∈ LabPRigid, y 6∈ LabSRigid

7. x : ¬E♦A⇒ A A 6,⇒in, [1 − 6]

⊢ ¬A A⇒ E♦¬A (4.2)

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 70

1. x : ¬A A assumption

2. x : ¬E♦¬A assumption

3. x : ¬E♦¬A⇒ A A theorem (4.1)

4. x : A A 2, 3,⇒ el

5. x : ¬¬E♦¬A 1, 4, ¬in, [2 − 4]

6. x : E♦¬A 5, ¬el

7. x : ¬A A⇒ E♦¬A 6, ⇒in, [1 − 6]

Hence, it is possible to use the derived rule ¬A : ‘from ¬A A infer E♦¬A.

Now it is shown that the following (induction) rule, which are used in the example verification

in the text, is indeed derivable, where j 6∈M1 and j 6∈ LabSRigid

i : A, (i � j)α, j : A (A⇒ A gA)

i : A A

(4.3)

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 71

1. x : A (p⇒ A gp) ∧ p assumption

2. x : A (p⇒ A gp) 1,∧el

3. x : p 1,∧el

4. x : ¬A p assumption

5. x : E♦¬p 4, derived rule ¬A

6. x : E♦¬p⇒ E(true U ¬p) theorem

7. x : E(true U ¬p) 5, 6,⇒el

8. x : A (¬p ⇒ ¬p) theorem

9. x � v assumption

10. v : p⇒ A gp 2, 9, A el

11. v : ¬A gp⇒ ¬p 10, rule contraposition

12. v : E g¬p⇒ ¬A gp derived rule

13. v : E g¬p⇒ ¬p 11, 12, ⇒ transitivity

14. v : (true ∧E g¬p) ⇒ E g¬p theorem

15. v : (true ∧E g¬p) ⇒ ¬p 13, 14, ⇒ transitivity

16. x : A ((true ∧E g¬p) ⇒ ¬p) A in, 9, 15, [9 − 15]

15. x : ¬p 7, 8, 16, U el

16. x : ¬¬A p ¬in, 3, 17, [3 − 17]

17. x : A p ¬el, 16

18. x : (A (p ⇒ A gp) ∧ p) ⇒ A p 17,⇒in, [1 − 17]

4.4 Complexity and complexity reduction

While the initial research on the resolution based verification of the component model speci-

fications [BBB+06] opened a theoretical prospect of developments in runtime reconfiguration,

the complexity of the resolution based verification has raised some concerns with the feasibility

of applying this method to a full scale component model. Therefore, there has been a need

for complexity reduction. Unlike model checking, where the complexity lies in the specification

CHAPTER 4. FORMAL SPECIFICATION AND DEDUCTIVE VERIFICATION 72

part, namely in extracting a model, deductive reasoning ‘suffers’ in the verification process.

One of the ways to overcome the problem is to modify the underlying specification language to

obtain a lower complexity similar to the linear time resolution framework [DFK07]. The other

main and straightforward approach is to limit the actual amount of the specification properties

considered thus avoiding the description of all possible combinations of states and functions of

the system. Indeed, it is not needed to analyse the inner working of each component, but only

its stateful relations with other components and resources.

In this chapter, the application of formal methods in software development are analysed,

and the fundamental behaviour of the GCM approach is defined, in order to identify the most

appropriate specification language and validation strategy to utilize. Also it has been given

mathematical fundamentals of the specification languages, describing the approach to extend

the language ECTL+with deontic modalities to benefit from a logic which allows for model up-

dates. Finally it has been analysed methods of formal verification of the specification, weighing

their benefits, and given an example for the chosen approaches.

Chapter 5

Formalizing Behaviour of Grid

Components

Behavior Protocols is a term used when formally specifying the behaviour in terms of “ordering

of method invocation events” [PV02], where the behaviour of a component is specified by its

“frame protocol”. In other words, when components are composites of subcomponents, we

check the compliance between the protocol and the architecture; instead, when dealing with

primitive components, the implementation is checked for compliance; the latter being achieved

by the use of a model checker [PPK06]. Similar developments utilize other procedures for the

formal specification and verification of the inner components [RBBM04], but unfortunately

all of these procedures lack a complementary technique to formalize behavioural interaction

of components and environment. In this chapter these issues are addressed and methods are

analysed outlining the approach taken in this research.

73

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 74

5.1 Formal specification of components

When considering what parts in the GCM can be used for formal specification, clusters of

sections of the GCM specification were created, each of which follows specific criteria and can

be easily fed into to a table of specification “patterns”. The main details below were examined

giving a simplified specification in CTL as reference. As an example, it was considered an

Application (the outmost component which must be activated first) which contains four main

components Comp1 (a composite component with a sub component SubComp1.1) which is

the first to be started after the application is started as it is the first and only component,

two components CompA and CompB running in parallel from a broadcast of Comp1 (and

SubComp1.1 to start in parallel with CompA and/or CompB), and Comp2 a component from

the gathercast (a type of interface connector where multiple bindings are ‘gathered’ to a single

interface) of CompA and CompB. A section from the state tree generated from the specification

is shown in Figure 5.1.

Figure 5.1: States Tree - Sample section

Hierarchical Components Structure. Components in the GCM have a strict hierarchi-

cal nature. The application can then be described as: start ⇒ Application and components

of the application in the form of: Application ⇒ A gComp1, Application ⇒ A♦Comp2,

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 75

Comp1 ⇒ A g(SubComp1.1 ∧ (CompA ∨ CompB))

Inferring parallel processes from interfaces. When considering interfaces in the GCM,

it is possible to group them in two different types: one to one, and broadcast/gathercast. In

the former there is a simple connection of one server interface to a client one, while in the latter

there is a single server interface which can be bound to multiple client ones and vice versa.

Figure 5.2: Parallelism and Sequential Processes

In either case, interfaces can be very useful to determine whether the communication be-

tween components is carried out in a sequential or parallel way. Imagine a component with

a broadcast server interface (or several one to one server interfaces): it is possible to easily

assume that the components at the client side of those interfaces can be run in a parallel

way. On the other hand, a component which has only one server interface, can only run

in a sequential way with the component on the client interface side (see Figure: 5.2). Se-

quential specification looks like: Comp1 ⇒ A♦Comp2 while Parallel specification looks like:

Comp1 ⇒ A g(CompA ∨ CompB), etc.

When in a sequential process it is easy to understand that a component will be started sequen-

tially, in a parallel process, there is no real certainty - components might be all started at the

next step, or first one and then the others, or perhaps none; all the possible scenarios must be

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 76

therefore considered.

5.1.1 State Behaviour of components

The basic lifecycle of components and managed resources, as outlined in 3.2.1, is defined by the

states, allowed transitions and operations shown in Figure 5.3.

Figure 5.3: Component’s Lifecycle States

As a component is such that it conforms to a set of defined states, and to the GCM, it

is possible to therefore consider composite components as components that inherit the same

properties and conform to state composition. The analysis of the components’ instances be-

comes now crucial. When a component is in the instance state, this component (and all its

requirements) will be deployed to the appropriate system, and any operations will be performed

that are part of the component’s instantiation process. This state also presumes that whatever

activation is required in order for the resource handler of the component to be valid has been

performed. As shown in the diagram, the initialize and destroy state change commands are

supported in this state. The component will then move to initialization, where it will wait

until a call is made to run; passing on to the runtime state, which indicates that the services

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 77

provided by the resources that are being deployed are available for use. This state does not

indicate any information regarding the operational capabilities of the service, only that it has

completed initialization and not failed. At any time, state actions may not complete correctly

or the service itself may fail. In response to these failures, the component will transition to

the fail state. The component may remain active in the system, but its managed resource is

presumed to no longer be operational. Once the component is running or has failed it should

either eventually or immediately be terminated to stop its services. The terminated state

represents a state where a component is no longer running and cannot be returned to the run-

ning state without redeployment. This state, however, does not eliminate the resource from the

system. Upon invocation of the destroy command, the component’s corresponding resource will

be freed. In a system with multiple components, the lifecycle of the whole system is defined

by the relationships between the individual component lifecycles. The state of each component

is bound to the state of the components it relies on. The hierarchy of the system defines rela-

tionships where related components’ lifecycles are linked. The component model and the ADL

specification help define explicit semantics for guiding lifecycle transitions.

Suspended state

Further analysis should be considered into the runtime state above. The suspended state is

considered a special state in which the components my be transitioning to and from the runtime

state. In this particular state, called the suspended state, special attention has to be paid

to the states of the resources relative to the component in question (ie. the resources may be

released while a component is a suspended state). These factors help refine the way components

and relative resources are handled in respect to their stateful behaviour.

Wait state

The case of the wait state is a very particular one. This particular case is often referred to

when a component is ready to receive the input required for continuing its process (although

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 78

some other special cases could arise depending on the specific component). This state often

fails back into the generic runtime state, since resources are not released by the component

although they may not even be “used” (eg. the component may be deployed on a node but

not utilizing the processing power). This research is currently forced to consider this state as

a particular case of runtime state as there are no implemented ways to monitor this situation

through the lifecycle controller.

GCM limitations

Although the GCM allows for all theoretical states described in Figure 5.3, introspection in

these states is limited to only Started and Stopped, the first grouping runtime states, while

the second describing the terminated or not yet instantiated state. Throughout this research,

all states have been considered in order to give a more clear picture of the potential use of the

full set; however, during prototype development, it has been possible to utilise only the two

exposed states. Nevertheless, it is important to clarify that his ‘simplification to two states

still leaves plenty of material for investigation in the context of the thesis work, and does not

invalidate the proof of concept developed, which will be demonstrated to be functional with

these two basic states present.

5.2 State mapping

When considering the state of components and resources in a GCM model, and the runtime

monitoring of the environment, we analyse the following introspections.

• For components, by accessing the LifeCycleController interface it is possible to know

the state of the requested component (namely Started and Stopped, which relate to

the Runtime and Terminated states above).

• For resources, it is possible to monitor their availability status as long as these resources

are specified during composition by some deployment descriptor, or at runtime some

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 79

metadata provider. As the former is mandatory when using some specific components

[ACD+08], it is not mandatory for all. It is assumed that if the developer is interested in

using this formal specification for safe reconfiguration of components, he will provide some

accessibility to metadata information on runtime availability (as well as list of required

resources for the corresponding components), which can be monitored at runtime.

5.2.1 Types of mappings

Each component is mapped at runtime to one or more resources, whether because it is simply

deployed to a specific node in a resource, or because such a resource is required by the component

to function. Understanding this mapping is helpful when formalizing components and resources

by giving us a picture of invariant relationships. The three main types of mappings are defined

below.

The one to one mapping. If a component is deployed to a single resource and does not

require any other resource to run correctly, this is defined as a one to one mapping. This is the

simplest scenario, and it will entail in its formalism the presence of just the single component

and the single resource.

The big component mapping. If a component is mapped to two or more resources, this is

defined as a big component. Such a component is a composite, where its subcomponents have a

one to one mapping with different resources, or a component which has more than one resource

associated to it (for example when a component is deployed to one resource and requires to

be connected to a database which is located on another resource). In this case the formalism

will entail the presence of multiple resources with one component (which could always be a

composite one).

The big resource mapping. If a resource is mapped to two or more components, this

is defined as a big resource. This is often the case as one resource could run several virtual

machines, each one running one or more components (for example nodes in a cluster). Much

like the big component, the formalism in this case will entail multiple components and only one

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 80

resource.

5.2.2 Formalizing mappings

Independent of the type of mapping, the hierarchical structure of both components (composite

and primitive components) and resources (nodes and virtual machines) is crucial in order to

simplify the way it is possible to formally describe such relations; in fact it is possible to always

translate the mappings above as a collection of one to one mappings (with the same component

or resource appearing in more than one of these mappings).

State of components. While the states of components could have a wide spectrum of

definition points (such as initialized, started, suspended, terminated, . . .), and we allow for

them to be specified as described above, in the GCM only two states are currently available

- i.e. started and stopped. In a way this simplifies further the formalism by representing the

specification as: Comp1 for a started component, and: ¬Comp2 for a stopped one.

State of resources. When considering resources, it is possible to formally specify the

environment thanks to information provided in the GCM deployment file as well as other

metadata information (such as availability, performance, reliability levels . . .) gathered at

development time through a development interface. Furthermore the current state of each

resource can be monitored at runtime giving a complete picture of the resources at every given

moment in time and any components that might be deployed on or requesting the use of the

resource. As an example, external resources are defined as: Comp1 ⇒ A♦Res1. Deployment

resources are defined as: Node1 ⇒ Res1 and at runtime it is possible to have definitions like:

Res1 ⇒ A (Comp1 ∧ Com2).

5.3 Dynamic reconfiguration

In this section the specification language based on the fusion of Computation Tree Logic (CTL)

and deontic logic outlined in the previous chapter is utilized to represent the properties of the

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 81

behaviour protocol. The requirements of the protocol are understood as norms and specified

in terms of deontic modalities ”obligations” and ”permission”. Note that the introduction of

this deontic dimension not only increases the expressiveness of the system, but also allows to

approach the reconfiguration problem in a novel way.

The reconfiguration aspect is an essential one in this research and we argue that the re-

searched approach brings some important novelty compared with other similar formal ap-

proaches to specification and verification. It is needed therefore to introduce this notion and

give some definitions and descriptions on how to tackle the problem.

Static and Dynamic Configuration.

• Static configuration in a component model is defined as the hierarchical structure of the

components and the specific binding of interfaces which connects them. As this is a static

view of the system, it cannot include the infrastructure which would complete the system

- for example the resources the components will be deployed on. This process is ideal for

the application of the static validation of a system, such as model checking.

• Dynamic configuration is defined as the process in which the static configuration of the

component model is applied to the infrastructure of resources, i.e. the deployment process.

• Dynamic reconfiguration is defined as the process in which the mapping of components

to resources varies, whether it is the removal of a component or a resource, the addition

of one, the change of resources required by a specific component and so forth.

We now focus on the reconfiguration aspect. We refer to reconfiguration as the process

through which a system halts operations under its current source specification and begins

operations under a different target specification [SK04], both during development and/or de-

ployment (dynamic reconfiguration). Due to the underlying structure of generic Grid systems,

the dynamic reconfiguration process is considered as an unforeseen action at development time

(known as ad-hoc reconfiguration [BJC05]), therefore programmed reconfiguration is not con-

sidered. An insightful example could be the replacement of a software component by the user,

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 82

or an automated healing process activated by the system itself. In the case that the system is

not yet deployed, the verification of the overall system behaviour (inconsistency check) can be

triggered manually at any step of the development process; at this stage it is possible to simply

detect inconsistencies and trigger the healing process or complete the verification and return

to the user. When the system is deployed, the verification tool will run continuously and the

system will report back the current states for model mapping; if a reconfiguration procedure is

requested or inconsistency detected, the healing process is triggered.

The dynamic reconfiguration process works in a circular way [Figure: 5.4] and it is divided

into three majors steps: model update request (where a request from a user or the system itself

is fired), model mapping (where a snapshot of the current state of the system is captured) and

finally the healing process (where the actual reconfiguration takes place). The approach here

is to specify general invariants for the infrastructure and to accept any change to the system,

as long as these invariants hold. We assume that the environment has some pre-defined set of

norms which define the constraints for the system, in order to ensure system safety, mission

success, or other crucial system properties which are critical especially in distributed systems.

Figure 5.4: Reconfiguration Cycle

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 83

5.3.1 Model update

A model update request can be triggered by a user’s intention to reconfigure the system, or by

an inconsistency detection from the verification tool. It refers in the model as a change to the

behaviour specification and it is constrained by the infrastructure restrictions. For example, the

user might want to upgrade a component, but these changes must conform to the limitations

set for such component. If the changes themselves are safe for the system, the tool passes

to the next step. For the verification process to understand its current state in the temporal

tree, there is a need for a constant ‘model mapping’; in other words, a background process

needs to be present in order to map the structure of the system into a model tree. This can be

easily implemented alongside a current monitoring system which will keep track of this mapping

indicating which parts of the system are currently in which states in the model tree [BCH+02].

This process is essential to ensure that no ‘past’ states are misused by the tool during the

healing process.

If the model behaviour needs to be updated according to the new external input, parts of

the system specification need to be changed. This process is the key to this type of model

update architecture and is necessary because, unlike model revision in which the description

is simply corrected but the overall system remains unchanged, by updating the specification

we are fundamentally changing the system by adding, deleting and replacing states in the

model behaviour [EG92]. Here different types of changes are dealt with in a similar fashion,

independently from the origin of the update (external user input or self healing process). The

behaviour specification is ‘extended’ to a new type of specification and the verification process

is resumed from this point forward [Figure: 5.5]. This model update process consists of:

(i) Norms/Invariant check. Utilise norms and invariants in the specification for con-

straints on the set of states to be updated. Here it is possible to detect the deontic properties

in the specification which could be utilised in the healing process.

(ii) Compatibility check. Check if the supplied update to the model conforms with the

CHAPTER 5. FORMALIZING BEHAVIOUR OF GRID COMPONENTS 84

Figure 5.5: Model Update

the set of states to be updated, in other words, the system must check for the presence of the

standard bindings of the components, controllers, etc; if so, the model is updated, otherwise,

the healing is triggered.

(iii) Healing process. Search the tree model for a set of states which conform with the

norms and invariants, and is applicable for this set of states. Note that candidate states for

such an update in relation for some state si, do not have to be in an ‘achievable’ future of si,

i.e. do not have to belong to a subtree with the root si, but only have to be ‘accessible’ from

the current state according to the norms set by the infrastructure. The candidate set of states

(or a more readable parsed version) is reported to the user/developer as a possible solution to

the inconsistency detected. (Note that healing is also triggered if there was no supplied update

as in the case of inconsistency detection).

In this chapter it has been analysed the researched approach in the specification of be-

havioural interaction of component models and the environment they sit upon. It has been

identified how to specify the state behaviour of components without having to consider the

compliance of their implementation (which can be left to other methods), and has been defined

how the running states of deployed components and the resources they utilize can affect the

dynamic reconfiguration of the Grid system.

Chapter 6

Implementation

In this chapter it is described the process involved in building the prototype which allows to

demonstrate the capabilities of the methods and techniques described in this thesis, completing

the author’s contributions in this research. An overview is given of how the prototype is

utilized and integrated in the related work of the Grid development environment, the features

and capabilities of the tool developed, and a how the prototype was tested against use case

scenarios.

6.1 Strategies

When implementing a prototype to demonstrate the capabilities of the method researched, the

focus has been on streamlining a process of formal specification and verification which would

be integrated in the development environment for the programmer, as well as transparent to

the grid user, and most importantly, as automated as possible. The ideal approach to such a

development would have been in the case where the underlying structure of the development

process would be based on logic, such as in a project like [Bol05]. Unfortunately, such a system

has never been developed before, and would have been an impossible task to accomplish for this

research due to the fact that an entire framework needs to be clearly defined and constructed.

85

CHAPTER 6. IMPLEMENTATION 86

The focus has been shifted to the tools present at the time of development, and making the

most of what was available to construct a working prototype. The implementation process be-

gan by analysing what was already available, and developed the tool around it. The first step

was to construct a method for the formal specification of the behaviour of states of the system.

Secondly, an appropriate tool for the verification of the specification needed to be plugged-in,

in conjunction with an engine to allow for model update and handle reconfiguration requests.

The task was divided into three parts: the ‘static’ specification tool in the development envi-

ronment; the Monitoring engine, which would handle reconfiguration requests, state mapping

and verification responses; and the Verification engine. In figure 6.1, it is possible to see how

this prototype has been constructed, the blue parts denoting prototype developments, and the

grey parts denoting third party developments.

The intended functionalities of the verification tool implemented are as follow:

• To provide a formal specification of the dynamic application, based on it state transitions.

This includes hierarchical components, interfaces, bindings and controllers.

• To construct a formal specification of the grid environment, including (but not limited

to) resources upon which the components run, external resources and services, and any

other real or virtual parts which are needed by the grid application to perform correctly.

• To create a verification engine capable of prove the validity of the application in respect

to the grid environment it relies upon.

• To automate the process of reconfiguration in a safe and stable manner.

Furthermore, the requirements of the tool for it to integrate correctly with the development

and deployment environment are as follow:

• A fully constructed grid application, created using the Grid development environment.

CHAPTER 6. IMPLEMENTATION 87

• A deployment file describing the resources available and the initial location of the grid

application’s component on these resources.

• External resources specified through the Grid development environment, defining re-

sources not present in the deployment file which might be needed by the application

to run correctly.

• A monitoring and steering application which exposes the states of components and re-

sources at runtime and allows for their reconfiguration.

It is important to note that although this prototype has been implemented to work side by

side with the Grid development environment, it can be modified to work with any other similar

application, as long as it exposes the same set of basic functionalities.

Figure 6.1: Prototype Structure

6.2 The GridComp IDE

Since it was possible to collaborate with the GridComp project on the development of the

prototype for this research, it was formally included in the specifications of the GridComp IDE

project as a non-functional plug-in (a structure of the project can be seen in Figure 6.2 where

CHAPTER 6. IMPLEMENTATION 88

‘Verification Tool’ denotes the plug-in). The development environment has been implemented

as a way for grid developers to take advantage of a graphical interface to easily construct Grid

application by making use of a selection of tools. The GridComp IDE (GIDE) is essentially

a plug-in in itself for the Eclipse environment [Fou09], which allows to graphically construct

a component model of the grid application, as well as adding functionality to the components

through the use of the ProActive API [BBC+06]. Furthermore, the GIDE provides the user

with a deployment view that allows to specify and run the application on a Grid environment,

as well as a monitoring and steering tool for monitoring of the application as well as dynamic

reconfiguration of its structure.

Figure 6.2: GIDE Structure

6.3 Verification tool Features

The Verification tool was developed as a plug-in for the GridComp IDE, and as such it was

able to utilize anything that could be provided through its interface or API, but it should not

modify any part of its pre-existing structure. As such, the development started by selecting

which built-in tools in the GIDE development could be utilized for the development of this

prototype and which part would have to be developed or whether a third party tool would be

required. In this section it is outlined its main features and code snippets are added to describe

CHAPTER 6. IMPLEMENTATION 89

essential procedures of the prototype.

6.3.1 Object Model Parser

The Object Model Parser is a tool developed in this research which allows to make use of the

GIDE Object Model, which is a view of the structure of the Grid application, which includes

the hierarchical structure of components given from the ADL, their interfaces and bindings.

The parser translates the Object Model into a language understandable by the verification en-

gine, i.e. the formal specification developed in this thesis. Furthermore, the parser can create a

specification also from the ‘extended properties view’ - a part of the GIDE development environ-

ment which allows the developer to define extra connectivity characteristics of components and

resources, effectively further extending the details in the specification. The parser makes use of

hard coded patterns to match generic specification formulae to specific structural information

on the object model of the application.

Components Hierarchy

As each component is bound by a strict hierarchical nature which defines the order by which

each component should be instantiated and terminated, started and stopped etc., it is important

to ensure that the appropriate specification is included which would restrict a reconfiguration

from, for example, stopping a component before its subcomponents are stopped as well.

Listing 6.1: Method processing the components’ hierarchy (partial code snippet)

/∗ This method c r ea t e s formulae r e l a t i v e to components h i e rarchy ∗/

public void processObjModComp(ComponentDesc root , S p e c i f i c a t i o n spec

) {

i f (root == null) {

//System . out . p r i n t l n (”WARNING: root ComponentDesc empty . ”) ;

return ;

}

CHAPTER 6. IMPLEMENTATION 90

root = ComponentDesc . unwrap(root) ;

L i s t<ComponentDesc> outerCompsList = new ArrayList<ComponentDesc>()

;

outerCompsList . add (root) ;

L i s t<ComponentDesc> innerCompsList = new ArrayList<ComponentDesc>()

;

spec . addToCompSpec (this . addStartImp (root . getName())) ;

while (outerCompsList . s i z e ()>0){

for (int i =0; i<outerCompsList . s i z e () ; i++){

Lis t<ComponentDesc> tempInnerCompsList = new ArrayList<

ComponentDesc>() ;

tempInnerCompsList = outerCompsList . get (i) . getInternalComponents

() ;

i f (tempInnerCompsList . s i z e ()>0){

St r ing tempSpec ;

tempSpec = this . appendImp (outerCompsList . get (i) . getName ()) ;

for (int j =0; j<tempInnerCompsList . s i z e () ; j++){

St r ing interName = tempInnerCompsList . get (j) . getName () ;

tempSpec = tempSpec + interName ;

innerCompsList . add (tempInnerCompsList . get (j)) ;

i f (j<tempInnerCompsList . s i z e () −1){

tempSpec = this . appendAnd (tempSpec) ;

}

}

spec . addToCompSpec (tempSpec) ;

CHAPTER 6. IMPLEMENTATION 91

}

else{

innerCompsList . c l e a r () ;

}

tempInnerCompsList . c l e a r () ;

}

// c l e a r ou ter component and r ep l a c e wi th f i r s t inner

i f (innerCompsList . s i z e ()>0){

outerCompsList . c l e a r () ;

for (int i =0; i<innerCompsList . s i z e () ; i++){

outerCompsList . add (innerCompsList . get (i)) ;

}

}

//we have reached p r im i t i v e comp

else{

outerCompsList . c l e a r () ;

}

innerCompsList . c l e a r () ;

}

}

Interfaces and Bindings

Similarly to the hierarchical nature of the components, their connections through bindings

between interfaces needs to be addressed during the formal specification. This process can give

an insight on the communication flow as well as on parallel execution of components.

CHAPTER 6. IMPLEMENTATION 92

Listing 6.2: Method processing the components’ bindings and interfaces (partial code snippet)

/∗ This method c r ea t e s formulae r e l a t i v e to i n t e r f a c e s and b ind ings

∗/

public void processObjModIntfBind (ComponentDesc root , S p e c i f i c a t i o n

spec) {

Lis t<ComponentDesc> compList = new ArrayList<ComponentDesc>() ;

i f (root == null) {

//System . out . p r i n t l n (”WARNING: root ComponentDesc empty . ”) ;

return ;

}

root = ComponentDesc . unwrap(root) ;

compList . add (root) ;

L i s t<In te r fa c eDes c> i n t f L i s t = new ArrayList<In te r fa c eDes c >() ;

L i s t<BindingDesc> b indL i s t = new ArrayList<BindingDesc >() ;

// proces s comps l i s t

for (int i =0; i<compList . s i z e () ; i++){

i n t f L i s t = compList . get (i) . g e t I n t e r f a c e s () ;

// proces s i n t e r f a c e s o f comps

for (int j =0; j< i n t f L i s t . s i z e () ; j++){

St r ing intfName = i n t f L i s t . get (j) . getName() ;

// found i n t e r f a c e

b indL i s t = compList . get (i) . g e t I n t e r f a c e B i n d i n g s (compList . get (i) .

getName () , intfName) ;

for (int k=0; k<b indL i s t . s i z e () ; k++){

St r ing bindName = bindL i s t . get (k) . getLabe l () ;

// found b ind ing

CHAPTER 6. IMPLEMENTATION 93

}

b indL i s t . c l e a r () ;

}

i n t f L i s t . c l e a r () ;

}

}

6.3.2 GIDE Extended properties View

An important step in the development was to identify parts of the Grid architecture which

were lacking in detail of resource connections to components. All the information regarding the

resource structure in fact is included in the deployment file which is loaded before running the

Grid application. This file contains information about the resources where the components are

to be deployed, such as nodes and virtual machines, but it lacks information on other resources

which might be required, for example a database or a service. A view was created in the

GIDE which allows the developer to specify such occurrences (see Figure 6.3), which is then

automatically parsed to create a suitable specification at deployment phase.

Listing 6.3: Method processing the external resources (partial code snippet)

/∗ This method c r ea t e s formulae r e l a t i v e to e x t e rna l resources ,

s e r v i c e s , e t c ∗/

public void pr oce s sE xte r na l (DB myDB, S p e c i f i c a t i o n spec) {

Lis t<Str ing> compList = myDB. getComponentNames () ;

// proces s compList from e x t e r n a l s database

for (int i =0; i<compList . s i z e () ; i++){

for (int j =0; j<myDB. getExtens ions (compList . get (i)) . s i z e () ; j++){

CHAPTER 6. IMPLEMENTATION 94

St r ing mySpec = this . appendObl igat ion (this . appendImp (compList . get

(i)))

+this . appendAnd (myDB. getExtens ions (compList . get (i)) . get (j) .

getType ())

+myDB. getExtens ions (compList . get (i)) . get (j) . getExt () ;

spec . addToExtSpec (mySpec) ;

//System . out . p r i n t l n (mySpec) ;

}

}

}

6.3.3 Formal Specification Database

The Formal Specification Database was developed as a concrete file, instead of a volatile in-

stance, in order to be as versatile as possible. It is in fact possible that the Grid application

developer and the user may be two different people, making it difficult for the application de-

veloped (and therefore the specification created during the development) to be run right after

its implementation. The specification had to be made as a concrete part of the application

which could be moved across different machines similarly to the way other files created by the

GIDE could. It was decided that the best location for storing this file would be alongside other

files defining the structure of the developed grid application, while ensuring that its presence

(or absence) would not conflict with the normal functioning of the GIDE.

6.3.4 GIDE Monitoring and Steering

Monitoring and steering is an important component in every Grid infrastructure [AAB+04];

unfortunately, this feature was not fully completed in the GIDE, and some important aspects,

such as support for skeletons [ACD+08], was an integral part of testing for the prototype

CHAPTER 6. IMPLEMENTATION 95

Figure 6.3: GIDE Verification View

developed. For this reason, all the possible features integrated within the GIDE were developed,

such as calls to the monitoring view, but were left out from the final prototype and instead it

was opted for a simulation environment, where better control over steering was enabled. The

implications for the results of using a simulated environment over a fully integrated system are

minimal in this case, as the prototype has been developed to allow for the same features, while,

from testing on the system, it has been tested that monitoring and steering does not impact in

a considerable way on the verification and reconfiguration process, the most important parts

being the validity of the specification reported and the time taken to run the verification itself.

CHAPTER 6. IMPLEMENTATION 96

6.3.5 Monitoring Engine

The Monitoring engine uses calls to the State monitor in the GIDE through the getFcState

interface of the LifeCycleController. This in return gives the state of components, in terms of

started and stopped. Through this, two integral parts of the current state of components can

be inferred:

1. If the component is in a started state, the component is in use, and therefore its subcom-

ponent and the composite component it sits within, are directly affected by its status. It

is possible to stop this component only if its subcomponents (if any) are stopped first, and

this is a recursive behaviour. This in turn affects its composite component (which always

exists apart from the main composite component, i.e. the application), which cannot be

stopped unless the component in question is stopped first.

2. If the component is in a stopped state, it might never have been initiated, it may be

terminated, or might have stopped its functionality to be restarted at a later stage. In

this case, the prototype would add specification that the component in question must not

start until a possible reconfiguration of such component would be finished, so that the

Grid application would simply wait for the component to start after the reconfiguration

takes place. A possible extended implementation on the suspended / wait state might

be developed assuming that if the component has never been started, it is not in the

suspended / wait state. This kind of insight would be useful in the case that the component

utilises some external resource and would activate them at initialization - if that is the

case, the resource might be active while the component appears to be stopped.

A first run of the verification takes place after deployment, to ensure correct initial con-

figuration. After that, the Monitoring engine awaits calls from the GIDE Steering (simulated

in this prototype development) for reconfiguration; these calls might be initiated externally by

the user, or internally by the tool itself. If such a call is fired, a new mapping of the current

states is called through the GIDE monitoring and the new set of specification is passed to the

CHAPTER 6. IMPLEMENTATION 97

Verification Engine. In both cases (initial configuration and reconfiguration), the Monitoring

engine will handle the result of the verification and pass an appropriate message to the GIDE

event handler, and, if allowed, perform the reconfiguration. The reconfiguration is left to the

Steering framework of the GIDE and is outside the scope of this research, and will not be

analysed. However, if the reconfiguration cannot take place because of a failed verification, the

message passed to the GIDE event handler will reference to the portion of the verification that

failed, giving an insight to the user on the reasons why the reconfiguration cannot take place.

6.3.6 Verification Engine

In the Verification engine, two main components can be identified, a handler and a theorem

prover. The handler essentially converts any part of the specification which cannot be under-

stood by the prover - if any (as it is a third party tool) and acts as a sort of debugger in case

that the prover malfunctions. Furthermore, it interprets the results from the prover and relays

them back to the Monitoring engine. The prover utilized is CTL-RP [ZHD08] developed by L.

Zhang at the Unversity of Liverpool. This is as of time of writing, the only fully implemented

resolution based prover for CTL available; it accepts as input formula in the form:

AGp < − > EF pand(implies(AG(p), not(EF (not(p)))), implies(not(EF (not(p))), AG(p)))

As this prover does not support language SNFDCTL with deontic modalities, this is left to

future developments. There is no impact on the specification from this - only the automated

reconfiguration process is limited by it. It is possible in fact to prove the validity of a possible

reconfiguration scenario using SNFCTL and returning to the user a notification if the reconfig-

uration will not be able to proceed. Recall that deontic modalities are in fact used in the case

of a failed reconfiguration to search for a similar scenario in either suggest possible changes to

the user based on the similar scenario, or if possible, apply the same set of rules, and proceed

with the reconfiguration automatically (healing process). With this it is possible for the system

CHAPTER 6. IMPLEMENTATION 98

to identify common traits in the way that the application performs during a reconfiguration,

and apply the same set of rules in a similar process. Consider for example that the user has

added a new resource to the system which requires a specific component to be always running;

if these requirements are specified beforehand, the reconfiguration can take place without the

need for adjustments, but if it is not, the user would normally have to stop the entire applica-

tion in order to proceed set the requirements in place. If on the other hand the new resource is

given in a specification that allows for the required deontic modalities, the tool would now be

capable to automatically find a similar structure in the system, and perform the reconfiguration

autonomously.

As there is currently no implemented prover for SNFDCTL, the healing process cannot be

demonstrated in the prototype, however as the CTL-RP prover offers the possibility of seeing

the complete proof of the verification process, this allows the handler to interpret any failure

and report relevant parts back to the Monitoring engine, and the reconfiguration can be done

manually. A complete proof of the formula above can be found in Appendix A.

6.4 Use Cases and experimental work

In testing the tool, it was considered the use cases described in [faEIG]. This use case was devel-

oped by IBM for testing the developments in the GridComp project and the GIDE [GBT+07].

It seemed only fitting to utilize one of these use cases for the testing. The IBM biometric

identification use case’s (BIS) objective is to demonstrate a sample biometric identification

system which requires the computational power of a Grid application due to the fact that it

would be applied to a large set of fingerprint biometrics connected to a wide user population.

It is constructed using GCM components and makes use of particular components constructs

- skeletons [ACD+08] - which was important to include in testing. A complete report on the

developments related to this use case can be found on [WADG09]. An overview of the BIS

CHAPTER 6. IMPLEMENTATION 99

architectural design is given in Figure 6.4 (figure taken from [WADG09]).

Figure 6.4: BIS Architectural Design

6.4.1 Testing

Although testing on the use case has been performed internally by the GridComp project,

these particular results were not of great interest, as they do not apply to a (re)configuration

scenario. However, the simulation of a run of the application had been applied to the prototype

for constraints on the dynamic reconfiguration timing (details on the reconfiguration of this

use case can be found on section 5 of [WADG09]). Results given below are therefore based

on the specification and verification, plus the reconfiguration, of the use case, and as this is a

simulation, should not be taken as real world settings, but as indicative figures. In testing the

prototype, the specification was constructed automatically from the given component model

in Figure 6.5. The component model comprises of multiple parts, but the ones of interest

to the research are the BIS handler, in charge of sending the identification requests, and the

workers (referred in the model as IDMatchers), in charge of running the comparison with the

information retrieved from the identity database. The workers are enclosed by a composite

CHAPTER 6. IMPLEMENTATION 100

component, and their number can change depending on available resources. In the component

model figure below the identity database can be seen; but, because of the its limitations, this

is not the case in the ADL, therefore it was added as an external resource connected to each

IDMatcher component present. This allowed to test the scenario in which a required resource

was not present during (re)configuration. The formal specification of the component was tested

in multiple variations, some were created from the full object model with skeleton construction

(the farmer/worker construction in which the creation of IDMatcher components is automated

by the skeleton), some from full object model without skeletons (manual creation of IDMatcher

components), some not considering the database as an external , etc. The range of the tests

spans across multiple parts, but was focused on the following points:

• Quality of the formal specification

• Speed of formal specification process (runtime only)

• Speed of formal verification process

• Quality of verification results

• Processing power requirements of the tool

Please note that the speed of the creation of the formal specification has been measured only

during runtime, i.e. the part of the specification relevant to the current state of the resources

and eventual new components introduced. The speed by which the formal specification of the

object model and environment was constructed is not of particular interest as it happens during

development, and does not impact on reconfiguration or other time sensitive processes.

6.4.2 Results

Before detailing the results from the testing, the timing on which the simulator was running

should be outlined, following the results detailed in [WADG09], and assuming average, or near

to, scenario. Although most of the results provided below are from a simulation environment,

CHAPTER 6. IMPLEMENTATION 101

Figure 6.5: BIS Component Model

the utmost care to follow real settings has been preserved, in order to give the best indicative

results possible. In order to tune the system, the considered parts were: speed by which each

worker is able to process biometric information, and timing of workers reconfiguration in a grid

setting. For the first part, it was reported that on a normal laptop CPU, a worker was typically

able to process about 1000 fingerprints per second (assuming that all data was previously stored

in RAM). As for the time required for reconfiguration, the BIS tool was tested on Grid5000

[Pro08] and was reported that every reconfiguration operation took about 9 seconds including

a complete redistribution of the database between the workers. The tool was tested with 50

workers and 50000 fingerprint database, meaning that for the given database size, each iden-

tification request required about 10 seconds to be processed. With this knowledge in hand, it

was possible to gather the following results in terms of timing based on a normal laptop CPU.

Note that the third scenario considered has a slightly greater complexity in terms of number

of components due to the structure of the skeleton configuration, which adds extra function-

alities to the application and therefore making the specification more complex. Although this

approach adds more computation on the verification, it should be noted that it also adds more

introspection in the application’s workflow, allowing for a potentially safer and more accurate

reconfiguration of components.

CHAPTER 6. IMPLEMENTATION 102

• For the simplest specification, considering a non-skeleton based scenario, 53 composite

and primitive components (including bindings and interfaces) and no external resource,

the runtime specification process was completed on average in less than 0.1 seconds and

required 0.2% CPU power to be generated. In terms of verification of the given specifica-

tion, the time required was about 2 seconds and around 1% CPU power.

• For the slightly higher level of specification, which changed from the previous by adding

the database as external resource, the runtime specification process was completed on

average in less than 0.1 seconds and required 0.2% CPU power to be generated, just as

above. For the formal verification, the time required was just over 2 seconds and 1% CPU

power.

• Finally, for the specification which considered the skeleton based scenario, 57 composite

and primitive components (including bindings and interfaces) plus the external resource,

the runtime specification process was completed on average in less than 0.2 seconds and

still required 0.2% CPU power to be generated. In terms of verification of the given

specification, the time required was about 5 seconds and around 2% CPU power.

Note that processing power is given here as reference but might not play an important part

as generally the verification tool would run on the main machine and not be distributed to a

node, or it might not be an issue altogether if the verification tool is run on a separate machine.

From these results, in terms of the reconfiguration process, an extra 2 to 5 could be added

on top of the 9 seconds required per reconfiguration as tested in [WADG09]. The use of the

tool might add an extra 40 seconds to the initial deployment if each addition of a worker (7

workers were automatically added by the skeleton structure) is tested for consistency. On the

other hand, if a malfunction during the redistribution of the database is simulated with the

tool, the prototype is able to detect it and halt the reconfiguration, pointing to the database

as the culprit. The quality of the specification (and therefore the verification results as those

are linked to the initial specification) have been satisfactory in general, although they lack the

CHAPTER 6. IMPLEMENTATION 103

deontic modalities which would allow for autonomous healing. In more than 20 tested scenarios

(10 successful reconfiguration and 10 unsuccessful), the tool was able to always produce the

correct specification, and point to the component or resource which was the culprit for the

unsuccessful reconfigurations.

In this chapter it has been demonstrated how the research in this thesis can be implemented

in a prototype, and proven that it can be successfully used in a (re)configuration scenario. The

structure of the implementation has been outlined, as well as details of its working parts and

their correlation to the theoretical fundamentals. The implementation was also tested on a grid

application use case, and the results obtained are reported, outlining possible improvements

that could be applied in the future to newer versions of the prototype.

Chapter 7

Conclusions

In this thesis, many points have been touched, from formal specification of Grid component

models, to deductive verification of distributed applications, to safe reconfiguration of Grid sys-

tems. All these points together though, allow for a different prospective in the way formalism

is conceived. When talking about behaviour formalism of applications, it is common to think

as to whether the software is performing the given task correctly, disregarding the side effect

that the application might have on the environment. These prospectives in fact should be com-

plementary: allowing for both aspects to be thoroughly analysed. As the developments into

the formalism of software applications have been already successfully implemented with vari-

ous techniques, the focus of this research has been on the less researched part of environment

formalism. It has been discovered that the infrastructure of a software application, especially a

distributed one, plays an important role in the lifetime of the application itself, restricting and

driving its behaviour in ways that can easily influence aspects such as dynamic reconfiguration.

It has been determined that, while the component models which could be used to construct the

application offer a series of advantages during the development process, it lacks in safety func-

tionalities during dynamic reconfiguration of distributed applications, making this the perfect

scenario to apply an approach to environment formal specification and deductive verification.

104

CHAPTER 7. CONCLUSIONS 105

In order to do this though, the critical aspect of integration had to be analysed: it is important

in fact to determine the way by which a process of software formalism can be combined with

the one of software development, which traditionally have not been developed in parallel.

Contributions Details

In this thesis it has been analysed the process of integration of models abstraction for formal

specification with distributed applications and their environment. This approach is a novel way

to address integration which has never been conceived before in the realm of Grid systems.

It allows for a deeper introspection into the structure and interoperability of components and

resources, making this technique essential when considering formal tools in developments. We

have in fact demonstrated that this procedure is ideal for complementing techniques, such as

model checking, because it considers an abstraction of the system which is not part of the one

used by these tools (such as the working code abstraction), and, because it does not interfere

with that domain, it can be simply run in conjunction.

This thesis contributes in the aspect of component-based Grids development by identifying

aspects of the development of Grid applications which are not normally considered influential

in the safe running of distributed applications. The environment on which a Grid application

lays on is assumed to be able to handle unforeseen circumstances of the applications it hosts;

and while the environment might be able to recuperate from these occurrences, it is not always

the case that the application will. During this research it has been outlined which parts of the

Grid system have to be considered in order to prevent this, and illustrated a technique that can

be used to store and use this knowledge about the system to our advantage when dealing with

failure prone scenarios.

As a technique for formal specification and verification, this thesis contributes in the area

of temporal specification and resolution. In this research it has been developed an autonomous

CHAPTER 7. CONCLUSIONS 106

methodology for, not only clearly specifying the structure and environment of distributed ap-

plications, but also for automated healing of the application through the extension of a formal

language - ECTL+ - with deontic constraints in ECTL+
D. This innovative approach has been

proven to add a level of introspection into the way formal models can be updated and applied

to real world reconfiguration of large scale systems. It is now possible to define constrains in the

system which can detect a future failure and trigger an automated healing process, effectively

bypassing the user altogether and becoming an invisible process. This can be a great advantage

to users of the system who are not familiar with its inner workings.

The dynamic reconfiguration aspects in Grid computing has also been addressed in this

thesis, identifying this process as the main contributing factor to resources related failures. It

is understood that resources play a significant role in the reconfiguration process of parallel

applications, and the availability and reliability of these resources is cause of great concern

during reconfiguration as it is often difficult to manually keep track of changes in the system.

The issue of dynamic reconfiguration has been a focus point in this thesis, and the creation of

a novel technique to enable safe and automated reconfiguration has been a main contribution,

since this approach takes into consideration parts of the Grid system which have not been

considered before. As the developed approach can consider dynamic reconfiguration, it is also

able to consider static configuration, as both are based on the same formalism. Furthermore,

the approach described in this thesis is easily transferable to similar distributed systems, as

their basic structure is very similar.

In this research a proof of concept has also been implemented in terms of a prototype

implementation. This prototype is used to demonstrate the possibility of the approach and its

real world applications. It is shown that the implementation can easily integrate with a given

development environment, and can be used for the dynamic reconfiguration of components,

while maintaining its properties of ensuring the safety of the process.

CHAPTER 7. CONCLUSIONS 107

Future developments

Finally, future developments in the area could include further insight in the use of deontic

modalities in order to obtain a better updated model with more insights into future events,

eventually leading to a system where the user is not required to do manual changes for certain

types of reconfiguration failures. This could be integrated in the prototype, given that a ver-

sion of the verification tool which supports deontic modalities has been implemented. As the

approach provided in this research is easily translated for other types of distributed computing

applications, the research should be applied to other developments, potentially discovering alter-

native views or improved techniques, expanding the current capabilities to include all applicable

scenarios.

Appendix A

CTL-RP [ZHD08] Sample Proof

Listing A.1: A sample proof generated by CTL-RP

==================================== CTL−RP

===================================

====TWB input :

((AG(p) −> ˜(EF(˜(p)))) & (˜(EF(˜(p))) −> AG(p)))

====c t l :

and ((AG(p) => ˜(EF(˜(p)))) , (˜ (EF(˜(p))) => AG(p)))

====c t l : add negat ion

˜(and ((AG(p) => ˜(EF(˜(p)))) , (˜ (EF(˜(p))) => AG(p))))

====c t l :NNF

or (and(AG(p) , EF(˜(p))) , and (AG(p) , EF(˜(p))))

====c t l :SNF

==== c lau s e [1] : imp l i e s (s ta r t , new0001)

==== c lau s e [2] : imp l i e s (T, or (not (new0001) , new0002 , new0003))

==== c lau s e [3] : imp l i e s (new0003 , EF 1(not (p)))

==== c lau s e [4] : imp l i e s (new0004 , AX(new0004))

108

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 109

==== c lau s e [5] : imp l i e s (T, or (not (new0004) , p))

==== c lau s e [6] : imp l i e s (T, or (not (new0003) , new0004))

==== c lau s e [7] : imp l i e s (new0002 , EF 2(not (p)))

==== c lau s e [8] : imp l i e s (new0005 , AX(new0005))

==== c lau s e [9] : imp l i e s (T, or (not (new0005) , p))

==== c lau s e [1 0] : imp l i e s (T, or (not (new0002) , new0005))

==================== Number o f s a tu r a t i on : 1 ====================

Input Problem :

1 [0 : Inp] | | −> new0001 (0) ∗ .

2 [0 : Inp] | | new0001 (U)∗ −> new0002 (U) new0003 (U) .

3 [0 : Inp] | | new0004 (U) −> new0004 (app (V,U)) ∗ .

4 [0 : Inp] | | new0004 (U) −> p(U) ∗ .

5 [0 : Inp] | | new0003 (U)∗ −> new0004 (U) .

6 [0 : Inp] | | new0005 (U) −> new0005 (app (V,U)) ∗ .

7 [0 : Inp] | | new0005 (U) −> p(U) ∗ .

8 [0 : Inp] | | new0002 (U)∗ −> new0005 (U) .

This i s a monadic Non−Horn problem without equa l i t y .

This i s a problem that has , i f any , a f i n i t e domain model .

There are no funct ion symbols .

This i s a problem that con ta in s s o r t in fo rmat ion .

The f o l l ow in g monadic p r ed i c a t e s have f i n i t e ex t en s i on s : new0001 .

Axiom c l au s e s : 8 Conjecture c l au s e s : 0

I n f e r e n c e s : IORe=1

Reductions : RFMRR=2 RObv=1 RTaut=1 RFSub=1 RBSub=1 RCon=1

Extras : No Input Saturat ion , No S e l e c t i on , No Sp l i t t i n g , Fu l l

Reduction ,

Ratio : 5 , FuncWeight : 1 , VarWeight : 1

Precedence : div > id > app > p > new0001 > new0002 > new0003 >

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 110

i nd 1 > new0004 > i nd 2 > new0005 > wind 1p > wind 2p > 0 > l s >

s t a r t > T

Ordering : KBO

Processed Problem :

Worked Off Clauses :

Usable Clauses :

1 [0 : Inp] | | −> new0001 (0) ∗ .

7 [0 : Inp] | | new0005 (U) −> p(U) ∗ .

4 [0 : Inp] | | new0004 (U) −> p(U) ∗ .

8 [0 : Inp] | | new0002 (U)∗ −> new0005 (U) .

5 [0 : Inp] | | new0003 (U)∗ −> new0004 (U) .

2 [0 : Inp] | | new0001 (U)∗ −> new0003 (U) new0002 (U) .

6 [0 : Inp] | | new0005 (U) −> new0005 (app (V,U)) ∗ .

3 [0 : Inp] | | new0004 (U) −> new0004 (app (V,U)) ∗ .

Given c l au s e : 1 [0 : Inp] | | −> new0001 (0) ∗ .

Given c l au s e : 7 [0 : Inp] | | new0005 (U) −> p(U) ∗ .

Given c l au s e : 4 [0 : Inp] | | new0004 (U) −> p(U) ∗ .

Given c l au s e : 8 [0 : Inp] | | new0002 (U) ∗ −> new0005 (U) .

Given c l au s e : 5 [0 : Inp] | | new0003 (U) ∗ −> new0004 (U) .

Given c l au s e : 2 [0 : Inp] | | new0001 (U) ∗ −> new0003 (U) new0002 (U) .

Given c l au s e : 9 [0 : Res : 1 . 0 , 2 . 0] | | −> new0003 (0) new0002 (0) ∗ .

Given c l au s e : 1 0 [0 : Res : 9 . 1 , 8 . 0] | | −> new0003 (0) ∗ new0005 (0) .

Given c l au s e : 1 1 [0 : Res : 1 0 . 0 , 5 . 0] | | −> new0005 (0) new0004 (0) ∗ .

Given c l au s e : 6 [0 : Inp] | | new0005 (U) −> new0005 (app (V,U)) ∗ .

Given c l au s e : 3 [0 : Inp] | | new0004 (U) −> new0004 (app (V,U)) ∗ .

==================== der iv ed by MRR: 0 ====================

==================== der iv ed c l au s e s : 3 ====================

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 111

==================== subsumed c l au s e s : 0 ====================

==================== Number o f s a tu r a t i on : 2 ====================

[. . .]

==================== Number o f s a tu r a t i on : 6 ====================

Input Problem :

2 9 [0 : Inp] | | new0003 (U) p(U) ∗ −> wind 1p (U) .

3 0 [0 : Inp] | | wind 1p (U) p(app(ind 1 ,U)) ∗ −> wind 1p (app(ind 1 ,U)) .

3 1 [0 : Inp] | | new0003 (U) p(U) ∗ new0004 (U) −> .

3 2 [0 : Inp] | | new0003 (U) p(U) ∗ new0005 (U) −> .

3 3 [0 : Inp] | | wind 1p (U) p(app(ind 1 ,U)) ∗ new0004 (app (ind 1 ,U)) −> .

3 4 [0 : Inp] | | wind 1p (U) p(app(ind 1 ,U)) ∗ new0005 (app (ind 1 ,U)) −> .

5 2 [0 : Inp] | | new0002 (U) p(U) ∗ −> wind 2p (U) .

5 3 [0 : Inp] | | wind 2p (U) p(app(ind 2 ,U)) ∗ −> wind 2p (app(ind 2 ,U)) .

5 4 [0 : Inp] | | new0002 (U) p(U) ∗ new0004 (U) −> .

5 5 [0 : Inp] | | new0002 (U) p(U) ∗ new0005 (U) −> .

5 6 [0 : Inp] | | wind 2p (U) p(app(ind 2 ,U)) ∗ new0004 (app (ind 2 ,U)) −> .

5 7 [0 : Inp] | | wind 2p (U) p(app(ind 2 ,U)) ∗ new0005 (app (ind 2 ,U)) −> .

This i s a monadic Horn problem without equa l i t y .

This i s a problem that has , i f any , a f i n i t e domain model .

There are no funct ion symbols .

This i s a problem that con ta in s s o r t in fo rmat ion .

Axiom c l au s e s : 12 Conjecture c l au s e s : 0

I n f e r e n c e s : IORe=1

Reductions : RFMRR=2 RObv=1 RTaut=1 RFSub=1 RBSub=1 RCon=1

Extras : No Input Saturat ion , No S e l e c t i on , No Sp l i t t i n g , Fu l l

Reduction ,

Ratio : 5 , FuncWeight : 1 , VarWeight : 1

Precedence : div > id > app > p > new0001 > new0002 > new0003 > i nd 1 >

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 112

new0004 > i nd 2 > new0005 > wind 1p > wind 2p > 0 > l s > s t a r t > T

Ordering : KBO

Processed Problem :

Worked Off Clauses :

3 [0 : Inp] | | new0004 (U) −> new0004 (app (V,U)) ∗ .

6 [0 : Inp] | | new0005 (U) −> new0005 (app (V,U)) ∗ .

1 1 [0 : Res : 1 0 . 0 , 5 . 0] | | −> new0005 (0) new0004 (0) ∗ .

1 0 [0 : Res : 9 . 1 , 8 . 0] | | −> new0003 (0) ∗ new0005 (0) .

9 [0 : Res : 1 . 0 , 2 . 0] | | −> new0003 (0) new0002 (0) ∗ .

2 [0 : Inp] | | new0001 (U)∗ −> new0003 (U) new0002 (U) .

5 [0 : Inp] | | new0003 (U)∗ −> new0004 (U) .

8 [0 : Inp] | | new0002 (U)∗ −> new0005 (U) .

4 [0 : Inp] | | new0004 (U) −> p(U) ∗ .

7 [0 : Inp] | | new0005 (U) −> p(U) ∗ .

1 [0 : Inp] | | −> new0001 (0) ∗ .

Usable Clauses :

5 2 [0 : Inp] | | p(U) ∗ new0002 (U) −> wind 2p (U) .

2 9 [0 : Inp] | | p(U) ∗ new0003 (U) −> wind 1p (U) .

5 5 [0 : Inp] | | new0005 (U) p(U) ∗ new0002 (U) −> .

5 4 [0 : Inp] | | new0004 (U) p(U) ∗ new0002 (U) −> .

3 2 [0 : Inp] | | new0005 (U) p(U) ∗ new0003 (U) −> .

3 1 [0 : Inp] | | new0004 (U) p(U) ∗ new0003 (U) −> .

5 3 [0 : Inp] | | wind 2p (U) p(app(ind 2 ,U)) ∗ −> wind 2p (app(ind 2 ,U)) .

3 0 [0 : Inp] | | wind 1p (U) p(app(ind 1 ,U)) ∗ −> wind 1p (app(ind 1 ,U)) .

5 7 [0 : Inp] | | wind 2p (U) new0005 (app (ind 2 ,U)) p (app (ind 2 ,U))∗ −> .

5 6 [0 : Inp] | | wind 2p (U) new0004 (app (ind 2 ,U)) p (app (ind 2 ,U))∗ −> .

3 4 [0 : Inp] | | wind 1p (U) new0005 (app (ind 1 ,U)) p (app (ind 1 ,U))∗ −> .

3 3 [0 : Inp] | | wind 1p (U) new0004 (app (ind 1 ,U)) p (app (ind 1 ,U))∗ −> .

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 113

Given c l au s e : 5 2 [0 : Inp] | | p(U) ∗ new0002 (U) −> wind 2p (U) .

Given c l au s e : 5 9 [0 : Res : 7 . 1 , 5 2 . 0] | | new0002 (U) ∗ −> wind 2p (U) .

Given c l au s e : 6 0 [0 : Res : 9 . 1 , 5 9 . 0] | | −> new0003 (0) ∗ wind 2p (0) .

Given c l au s e : 6 1 [0 : Res : 6 0 . 0 , 5 . 0] | | −> wind 2p (0) new0004 (0) ∗ .

Given c l au s e : 2 9 [0 : Inp] | | p(U) ∗ new0003 (U) −> wind 1p (U) .

Given c l au s e : 6 2 [0 : Res : 4 . 1 , 2 9 . 0] | | new0003 (U) ∗ −> wind 1p (U) .

Given c l au s e : 6 4 [0 : Res : 6 0 . 0 , 6 2 . 0] | | −> wind 2p (0) wind 1p (0) ∗ .

Given c l au s e : 6 5 [0 : Res : 1 0 . 0 , 6 2 . 0] | | −> new0005 (0) ∗ wind 1p (0) .

Given c l au s e : 5 5 [0 : Inp] | | new0005 (U) p(U) ∗ new0002 (U) −> .

Given c l au s e : 3 2 [0 : Inp] | | new0005 (U) p(U) ∗ new0003 (U) −> .

Given c l au s e : 6 7 [0 : Res : 7 . 1 , 5 5 . 1] | | new0002 (U) ∗ −> .

Given c l au s e : 7 0 [0 : Res : 9 . 1 , 6 7 . 0] | | −> new0003 (0) ∗ .

Given c l au s e : 7 1 [0 : Res : 7 0 . 0 , 6 2 . 0] | | −> wind 1p (0) ∗ .

Given c l au s e : 7 2 [0 : Res : 7 0 . 0 , 5 . 0] | | −> new0004 (0) ∗ .

Given c l au s e : 3 1 [0 : Inp] | | new0004 (U) p(U) ∗ new0003 (U) −> .

Given c l au s e : 7 3 [0 : Res : 4 . 1 , 3 1 . 1] | | new0003 (U) ∗ −> .

==================== der iv ed by MRR: 6 ====================

==================== der iv ed c l au s e s : 18 ====================

==================== subsumed c l au s e s : 23 ====================

==== CTL−RP ve r s i on 00.10 (alpha)

==== Lan Zhang , U l l r i c h Hustadt and Clare Dixon

==== Univer s i ty o f L iv e rpoo l

==================== Resu lt : Valid

==================== Time consumed by input : 0 : 00 : 00 . 0144

==================== Time consumed by deduct ion : 0 : 00 : 00 . 0069

==================== Derived c l au s e s in the main loop : 27

APPENDIX A. CTL-RP [ZHD08] SAMPLE PROOF 114

==================== Subsumed c l au s e s in the main loop : 29

==================== Succ e s s f u l ERES app l i c a t i o n s : 2

==================== der iv ed c l au s e s : 28

==================== subsumed c l au s e s : 8

==================== Fai l ed ERES app l i c a t i o n s : 0

==================== der iv ed c l au s e s : 0

==================== subsumed c l au s e s : 0

==================== Total de r iv ed c l au s e s : 55

==================== Total subsumed c l au s e s : 37

Bibliography

[AAB+04] Arshad Ali, Ashiq Anjum, Julian Bunn, Richard Cavanaugh, Frank van Lingen,

Richard McClatchey, Harvey Newman, Wahas ur Rehman, Conrad Steenberg,

Michael Thomas, and Ian Willers. Job monitoring in an interactive grid analysis

environment. In Computing in High Energy Physics. Interlaken, Switzerland, 2004.

[ACD+08] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Peter Kil-

patrick, Patrizio Dazzi, Domenico Laforenza, and Nicola Tonellotto. Behavioural

skeletons in gcm: Autonomic management of grid components. Parallel, Dis-

tributed, and Network-Based Processing, Euromicro Conference on, 0:54–63, 2008.

ISSN 1066-6192. URL http://dx.doi.org/10.1109/PDP.2008.46.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

Seti@home: an experiment in public-resource computing. Commun. ACM, 45(11):

56–61, 2002. ISSN 0001-0782.

[All97] Robert John Allen. A formal approach to software architecture. PhD thesis,

Pittsburgh, PA, USA, 1997. Chair-Garlan, David.

[And94] Henrik Reif Andersen. On model checking infinite-state systems. In In Nerode and

Matiyasevich, editors, LFCS’94: Logic at St. Petersburg. Symposium on Logical

Foundations of Computer Science, pages 11–14. Springer-Verlag, 1994.

[BB04] A. Bolotov and A. Basukoski. Clausal Resolution for Extended Computation

115

BIBLIOGRAPHY 116

Tree Logic ECTL+. In Proceedings of the Time-2004/International Conference

on Temporal Logic. IEEE, Normandie, July 2004.

[BB05] A. Bolotov and A. Basukoski. Search strategies for resolution in ctl-type logics:

Extension and complexity. In Proceedings of the 12th International Symposium

on Temporal Representation and Reasoning, (TIME 2005), pages 195–197. IEEE

Computer Society, 2005.

[BB06] A. Basukoski and A. Bolotov. A Clausal Resolution Method for Branching Time

Logic ECTL+, volume 46(3), chapter Annals of Mathematics and Artificial Intel-

ligence, pages 235–263. Springer, 2006.

[BB07] A. Basso and A. Bolotov. Towards gcm re-configuration - extending specification

by norms. In CoreGRID Workshop on Grid Programming Model, Grid and P2P

Systems Architecture, Grid Systems, Tools and Environments, 2007.

[BBB+06] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. Henrio, and M. Urbanski. Spec-

ification and verification of reconfiguration protocols in grid component systems.

In Proceedings of the 3rd IEEE International Conference on Intelligent Systems

(IS-2006), pages 450–455. IEEE, Los Alamitos, USA, 2006.

[BBC05] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to com-

ponent adaptation. J. Syst. Softw., 74(1):45–54, 2005. ISSN 0164-1212.

[BBC+06] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice

Huet, Matthieu Morel, and Romain Quilici. Grid Computing: Software En-

vironments and Tools, chapter Programming, Composing, Deploying, for the

Grid. Springer-Verlag, January 2006. URL http://www-sop.inria.fr/oasis/

proactive/userfiles/file/papers/ProgrammingComposingDeploying.pdf.

[BBG09] Alessandro Basso, Alexander Bolotov, and Oleg Grigoriev. Deontic extension of

deductive verification of component model: Combining computation tree logic and

BIBLIOGRAPHY 117

deontic logic in natural deduction style calculus. In International Indial Conference

on Artificial Intelligence, 2009.

[BBGH08] A. Basso, A. Bolotov, V. Getov, and L. Henrio. Dynamic reconfiguration of gcm

components. Technical Report TR-0173, CoreGRID, 2008.

[BBGS05] Alexander Bolotov, Vyacheslav Bocharov, Alexander Gorchakov, and Vasilyi

Shangin. Automated first order natural deduction. In IICAI, pages 1292–1311,

2005.

[BBGS06] A. Bolotov, A. Basukoski, O. Grigoriev, and V. Shangin. Natural deduction cal-

culus for linear-time temporal logic. In Joint European Conference on Artificial

Intelligence (JELIA-2006), pages 56–68, 2006.

[BCD+09] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir

Getov, Ludovic Henrio, and Christian Pérez. Gcm: a grid extension to fractal for

autonomous distributed components. Annals of Telecommunications, 64(1):5–24,

02 01, 2009. URL http://dx.doi.org/10.1007/s12243-008-0068-8.

[BCF02] A. Bolotov, C.Dixon, and M. Fisher. On the Relationship between Normal Form

and w-automata (with M.Fisher and C.Dixon), volume 12, pages 561–581. Oxford

University Press, 2002.

[BCH+02] Françoise Baude, Denis Caromel, Fabrice Huet, Lionel Mestre, and Julien

Vayssière. Interactive and descriptor-based deployment of object-oriented grid

applications. In HPDC ’02: Proceedings of the 11th IEEE International Sym-

posium on High Performance Distributed Computing, page 93. IEEE Computer

Society, Washington, DC, USA, 2002. ISBN 0-7695-1686-6.

[BCS02] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and dynamic software com-

position with sharing. In Seventh Int. Workshop on Component-Oriented Pro-

gramming (WCOP02), at ECOOP, 2002.

BIBLIOGRAPHY 118

[BCS04] E. Bruneton, T. Coupaye, and J.B. Stefani. The fractal compo-

nent model. 2004. URL http://fractal.objectweb.org/specification/

fractal-specification.pdf.

[BD00] A. Bolotov and C. Dixon. Resolution for Branching Time Temporal Logics: Ap-

plying the Temporal Resolution Rule. In Proceedings of the 7th International Con-

ference on Temporal Representation and Reasoning (TIME2000), pages 163–172.

IEEE Computer Society, Cape Breton, Nova Scotia, Canada, 2000.

[BF99] A. Bolotov and M. Fisher. A Clausal Resolution Method for CTL Branching Time

Temporal Logic. Journal of Experimental and Theoretical Artificial Intelligence.,

11:77–93, 1999.

[BFH03] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the

Global Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA,

2003. ISBN 0470853190.

[BG08] A. Bolotov and O. Grigoriev. Combining computation tree logic and deontic logic

in natural deduction style calculus. Technical report, 2008.

[BGS06] A. Bolotov, O. Grigoriev, and V. Shangin. Natural deduction calculus for compu-

tation tree logic. In IEEE John Vincent Atanasoff Symposium on Modern Com-

puting, pages 175–183, 2006.

[BGS07] Alexander Bolotov, Oleg Grigoriev, and Vasilyi Shangin. Automated natural de-

duction for propositional linear-time temporal logic. In TIME ’07: Proceedings

of the 14th International Symposium on Temporal Representation and Reason-

ing, pages 47–58. IEEE Computer Society, Washington, DC, USA, 2007. ISBN

0-7695-2836-8.

[BGTI08] A. Basukoski, V. Getov, J. Thiyagalingam, and S. Isaiadis. Component-Based

Development Environment for Grid Systems: Design and Implementation, chapter

BIBLIOGRAPHY 119

Making Grids Work, Institute of Computer Science, Foundation for Research and

Technology, pages 119–128. Springer, Hellas in Crete, Greece, 2008.

[BH95] Jonathan P. Bowen and Michael G. Hinchey, editors. Applications of Formal Meth-

ods. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995. ISBN 0133669491.

[BHC+06] T. Barros, L. Henrio, A. Cansado, E. Madelaine, M. Moreland V. Mencl, and

F. Plasil. Extension of the fractal adl for the specification of behaviours of dis-

tributed components. In Accepted for poster presentation at the 5th Fractal Work-

shop (part of ECOOP’06), 2006.

[BHM05] T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical

components. In Proc. of the International Workshop on Formal Aspects of Com-

ponent Software (FACS’05), pages 41–55. Electronic Notes in Theor. Computer

Sci (ENTCS), 2005.

[BJ08] LT. Bao and M. Jones. Refinement for predicate abstraction in the context of

abstract component model. Technical Report TR SMC-BYU-0109, Dept. of Com-

puter Science, Brigham Young University, Provo, UT, 2008.

[BJC05] Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic reconfigura-

tion in component-based systems. In Software Architecture, volume 3527 of Lecture

Notes in Computer Science, pages 1–17. Springer Berlin / Heidelberg, 2005. URL

http://dx.doi.org/10.1007/11494713_1.

[BMV96] David Basin, Sean Matthews, and Luca Vigano. Natural deduction for non-

classical logics, 1996.

[Bol00] A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD the-

sis, Department of Computing and Mathematics, The Manchester Metropolitan

University, 2000.

BIBLIOGRAPHY 120

[Bol03] A. Bolotov. Clausal resolution for extended computation tree logic ectl. In Proceed-

ings of the Time-2003/International Conference on Temporal Logic 2003. IEEE,

2003.

[Bol05] A. Bolotov. Autogrid: Temporal modelling of intelligent grids. CoreGRID

WP3 meeting, 2005. URL http://www.di.unipi.it/~marcod/WP3homepage/

JuneMeeting/Contrib/AlexanderBolotov.pdf.

[Box98] Don Box. Essential COM. Addison-Wesley, 1998.

[BR00] Thais Batista and Noemi Rodriguez. Dynamic reconfiguration of component-

based applications. Software Engineering for Parallel and Distributed Systems,

International Symposium on, 0:32, 2000. ISBN 0-7695-0634-8.

[BS03] P. Bidinger and J. Stefani. The kell calculus: operational semantics and type

system. 2003.

[CC99] Patrick Cousot and Radhia Cousot. Refining model checking by abstract interpre-

tation. Automated Software Engg., 6(1):69–95, 1999. ISSN 0928-8910.

[CCH+08] Antonio Cansado, Denis Caromel, Ludovic Henrio, Eric Madelaine, Marcela

Rivera, and Emil Salageanu. The Common Component Modeling Ex-

ample: Comparing Software Component Models, volume 5153 of Lecture

Notes in Computer Science, chapter A Specification Language for Dis-

tributed Components implemented in GCM/ProActive. Springer, 2008.

http://agrausch.informatik.uni-kl.de/CoCoME.

[CDG01] Marsha Chechik, Benet Devereux, and Arie Gurfinkel. Model-checking infinite

state-space systems with fine-grained abstractions using spin. In In Proceedings

of the 8th SPIN Workshop on Model Checking Software, volume 2057 of LNCS,

pages 16–36. Springer, 2001.

http://agrausch.informatik.uni-kl.de/CoCoME

BIBLIOGRAPHY 121

[CFJV05] E. M. Clarke, A. Fehnker, S. Jha, and H. Veith. Temporal Logic Model Check-

ing, volume Handbook of Networked and Embedded Control Systems of Control

Engineering, chapter IV, pages 539–558. Birkhauser Boston, 1 edition, 2005.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and

abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994. ISSN

0164-0925.

[CIY95] Rance Cleaveland, S. Purushothaman Iyer, and Daniel Yankelevich. Optimality

in abstractions of model checking. In SAS ’95: Proceedings of the Second Interna-

tional Symposium on Static Analysis, pages 51–63. Springer-Verlag, London, UK,

1995. ISBN 3-540-60360-3.

[CJM98] E. M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a

natural deduction style message derivation engine to verify security protocols.

In In Proc. IFIP Working Conference on Programming Concepts and Methods

(PROCOMET), 1998.

[Cla97] Edmund Clarke. Model checking. Foundations of Software Technology and Theo-

retical Computer Science, pages 54–56, 1997. URL http://dx.doi.org/10.1007/

BFb0058022.

[Cor] Microsoft Corp. Introduction to activex controls. URL http://microsoft.com/.

[CR94] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems.

In CONCUR’94. LNCS 836, Springer, 1994. ISBN 3-540-58329-7.

[Cro97] J. Crow, editor. NASA Formal Methods Guidebook Vol. 2, volume 2 of Formal

Methods Specification and Analysis Guidebook for the Verification of Software and

Computer Systems. NASA-GB-001-97, 1997.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and

future directions. ACM Comput. Surv., 28(4):626–643, 1996. ISSN 0360-0300.

BIBLIOGRAPHY 122

[CXDM04] S. Caballe, F. Xhafa, T. Daradoumis, and J.M. Marques. Towards a generic plat-

form for developing cscl applications using grid infrastructure. Cluster Computing

and the Grid, IEEE International Symposium on, 0:200–207, 2004. ISBN 0-7803-

8430-X.

[DD07] CoreGRID Deliverable D.PM.04. Basic features of the grid component model.

March 2007.

[DFB02] C. Dixon, M. Fisher, and A. Bolotov. Clausal Resolution in a Logic of Rational

Agency. Artificial Intelligence, 2002.

[DFK07] C. Dixon, M. Fisher, and B. Konev. Tractable temporal reasoning. In Proceedings

of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-

07), pages 318–323, 2007.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive

systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997. ISSN 0164-0925.

[DJ93] J.V. D’Anniballe and P.J. Koopman Jr. Towards execution models of distributed

systems: A case study of elevator design. In International Workshop on Hardware-

Software Co-Design, page 9, 1993.

[EDD+04] Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif,

Eckehard Schnieder, and Engelbert Westkämper, editors. Integration of Software

Specification Techniques for Applications in Engineering, Priority Program Soft-

Spez of the German Research Foundation (DFG), Final Report, volume 3147 of

Lecture Notes in Computer Science. Springer, 2004. ISBN 3-540-23135-8.

[EG92] Thomas Eiter and Georg Gottlob. On the complexity of propositional knowledge

base revision, updates, and counterfactuals. Artif. Intell., 57(2-3):227–270, 1992.

ISSN 0004-3702.

BIBLIOGRAPHY 123

[Eme90] E. A. Emerson. Temporal and Modal Logic, pages 996–1072. Elsevier, 1990.

[Eme08] E. Allen Emerson. The beginning of model checking: A personal perspective.

Lecture Notes in Computer Science, 5000:27–45, 2008. ISBN 978-3-540-69849-4.

[faEIG] GridComp An Advanced Component Platform for an Effective Invisible Grid. The

gridcomp ibm use case. URL http://gridcomp.ercim.org/content/view/41/

39/#IBM.

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The physiology

of the grid: An open grid services architecture for distributed systems integration.

2002.

[Fon93] Leonard N. Foner. What’s an agent anyway? - a sociological case study. FTP

Report - MIT Media Lab, May 1993.

[Fou09] Eclipse Foundation. Eclipse open development platform, November 2009. URL

http://www.eclipse.org/.

[Fra95] Frederick K. Frantz. A taxonomy of model abstraction techniques. In WSC ’95:

Proceedings of the 27th conference on Winter simulation, pages 1413–1420. IEEE

Computer Society, Washington, DC, USA, 1995. ISBN 0-7803-3018-8.

[FT05] Ian Foster and Steven Tuecke. Describing the elephant: The different faces of it

as service. Queue, 3(6):26–29, 2005. ISSN 1542-7730. URL http://dx.doi.org/

10.1145/1080862.1080874.

[GBT+07] V. Getov, A. Basukoski, J. Thiyagalingam, Y. Yulai, and Y. Wu. Grid program-

ming with components : an advanced component platform for an effective invisible

grid. Technical report, GRIDComp Technical Report, 2007.

[Gen35] G. Gentzen. Untersuchungen uber das logische schliessen. Mathematische

BIBLIOGRAPHY 124

Zeitschrift, 39:176–210, 1935. English translation in The Collected Papers of Ger-

hard Gentzen, M.E. Szabo (Ed.), North-Holland, Amsterdam, 1969.

[GRSF04] C. Goble, D. De Roure, N.R. Shadbolt, and A.A.A. Fernandes. Enhancing services

and applications with knowledge and semantics. The Grid 2: Blueprint for a New

Computing Infrastructure, pages 431–458, 2004.

[Hig00] James A. Highsmith. Adaptive software development: a collaborative approach to

managing complex systems. Dorset House Publishing Co., Inc., New York, NY,

USA, 2000. ISBN 0-932633-40-4. URL http://portal.acm.org/citation.cfm?

id=323922.

[HL98] Y.-W. Hsieh and S. P. Levitan. Model abstraction for formal verification. In DATE

’98: Proceedings of the conference on Design, automation and test in Europe, pages

140–147. IEEE Computer Society, Washington, DC, USA, 1998. ISBN 0-8186-

8359-7.

[HT87] T. Hafer and W. Thomas. Computation tree logic ctl∗ and path quantifiers in the

monadic theory of the binary tree. ICALP, 267:269–279, 1987.

[JCK98] Task Lead John C. Kelly, editor. NASA Formal Methods Guidebook Vol. 1, volume

Volume I: Planning and Technology Insertion. NASA/TP-98-208193, 1998.

[Kel94] P. Kelb. Model checking and abstraction: A framework approximating both truth

and failure information. Technical report, University of Oldenburg, 1994.

[KF98] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann Publishers, November 01, 1998.

ISBN 1558604758. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/1558604758.

[KMWM03] Richard Krutisch, Philipp Meier, Martin Wirsing, and Ludwig Maximilians. The

agent component approach, combining agents and components. In In Proceedings

BIBLIOGRAPHY 125

of MATES-03, Springer series of Lecture Notes on Artificial Intelligence. Univer-

stitat Munchen, 2003.

[KPP+04] Mikhail F. Kanevski, Roman Parkin, Aleksey Pozdnukhov, Vadim Timonin,

Michel Maignan, Vasiliy V. Demyanov, and Stéphane Canu. Environmental data

mining and modeling based on machine learning algorithms and geostatistics. En-

vironmental Modelling and Software, 19(9):845–855, 2004.

[Lin01] Jürgen Lind. Relating agent technology and component models, 2001.

[LW06] A. Lomuscio and B. Wozna. A complete and decidable axiomatisation for deontic

interpreted systems, volume 4048, pages 238–254. Springer, 2006.

[Mar94] Assaf Marron. Method of operating a data processing system having a dy-

namic software update facility. (5359730), October 1994. URL http://www.

freepatentsonline.com/5359730.html.

[Mci68] D. Mcilroy. Mass-produced software components. In Proceedings of the 1st Inter-

national Conference on Software Engineering, Garmisch Pattenkirchen, Germany,

pages 88–98, 1968.

[MHW03] Richard Monson-Haefel and A. K. Weissinger. Enterprise JavaBeans. O’Reilly &

Associates, Inc., Sebastopol, CA, USA, 2003. ISBN 059600530X.

[MMHR04] J. Matevska-Meyer, W. Hasselbring, and R.H. Reussner. Software architecture

description supporting component deployment and system runtime reconfigura-

tion. In Proceedings of the Ninth International Workshop on Component-Oriented

Programming, 2004.

[MP92] Z. Manna and A. Pnueli. Temporal specification and verification of reactive mod-

ules. Technical report, Weizmann Institute of Science, 1992.

BIBLIOGRAPHY 126

[oE] CoreGRID Network of Excellence. Coregrid - the european research network on

foundations, software infrastructures and applications for large scale distributed,

grid and peer-to-peer technologies. URL http://www.coregrid.net/.

[OMG06] Object Management Group OMG. Corba component model specification, 2006.

[Pfe01] Frank Pfenning. Logical frameworks. pages 1063–1147, 2001. ISBN 0-444-50812-0.

[PFT03] Mónica Pinto, Lidia Fuentes, and Jose Maŕıa Troya. Daop-adl: an architecture

description language for dynamic component and aspect-based development. In

GPCE ’03: Proceedings of the 2nd international conference on Generative pro-

gramming and component engineering, pages 118–137. Springer-Verlag New York,

Inc., New York, NY, USA, 2003. ISBN 3-540-20102-5.

[PPK06] Pavel Parizek, Frantisek Plasil, and Jan Kofron. Model checking of software

components: Combining java pathfinder and behavior protocol model checker.

Software Engineering Workshop, Annual IEEE/NASA Goddard, 0:133–141, 2006.

ISSN 1550-6215.

[Pro08] The Grid5000 Project. An infrastructure distributed in 9 sites around france,

for research in large-scale parallel and distributed systems, 2008. URL http:

//www.grid5000.fr.

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software compo-

nents. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002. ISSN 0098-5589.

[RBBM04] Tomas Barros Rabea, Tomás Barros, Rabéa Boulifa, and Eric Madelaine. Param-

eterized models for distributed java objects. In In Forte’04 conference, Madrid,

2004. LNCS 3235, Spinger Verlag, pages 43–60. Spinger Verlag, 2004.

[Rus02] John C. Russ. Image Processing Handbook, Fourth Edition. CRC Press, Inc., Boca

Raton, FL, USA, 2002. ISBN 084931142X.

BIBLIOGRAPHY 127

[SBS09] Ali Selamat, Siti Dianah Bujang, and Md. Hafiz Selamat. Agent verification de-

sign of short text messaging system using formal method. In KES-AMSTA ’09:

Proceedings of the Third KES International Symposium on Agent and Multi-Agent

Systems: Technologies and Applications, pages 514–522. Springer-Verlag, Berlin,

Heidelberg, 2009. ISBN 978-3-642-01664-6.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software

– Beyond Object-Oriented Programming – Second Edition. Addison-Wesley and

ACM Press, 2002. ISBN 0-201-74572-0.

[She94] Wei-Min Shen. Autonomous Learning from the Environment. W. H. Freeman &

Co., New York, NY, USA, 1994. ISBN 0716782650.

[Sim94] Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic.

PhD thesis, University of Edinburgh, 1994. URL http://homepages.inf.ed.ac.

uk/als/Research/thesis.ps.gz.

[SK04] E. A. Strunk and J.C. Knight. Assured reconfiguration of embedded real-time soft-

ware. In Proceedings of the 2004 International Conference on Dependable Systems

and Networks (DSN’04), page 367. IEEE Computer Society, 2004.

[Ste99] Benno Stein. Generating heuristics to control configuration processes. Applied

Intelligence, 10(2-3):247–255, 1999. ISSN 0924-669X.

[Sto07] Heinz Stockinger. Defining the grid: a snapshot on the current view. J. Super-

comput., 42(1):3–17, October 2007. ISSN 0920-8542. URL http://dx.doi.org/

10.1007/s11227-006-0037-9.

[Tal02] Domenico Talia. The open grid services architecture: Where the grid meets the

web. IEEE Internet Computing, 6(6):67–71, 2002. ISSN 1089-7801.

[TIG04] J. Thiyagalingam, S. Isaiadis, and V. Getov. Towards Building a Generic Services

Platform: A Components-Oriented Approach. Springer-Verlag, 2004.

BIBLIOGRAPHY 128

[TL02] Peter A. Tanner and Po-Tak Law. Effects of synoptic weather systems upon the

air quality in an asian megacity. Water, Air, & Soil Pollution, 136(1):105–124, 05

01, 2002. URL http://dx.doi.org/10.1023/A:1015275404592.

[VAHL02] Mauricio Varea, Bashir Al-Hashimi, and Michael Leuschel. Finite and infinite

model checking of dual transition petri net models (extended abstract). In Second

Workshop on Automated Verification of Critical Systems (AVOCS), pages 265–

269. Birmingham, UK, 2002.

[VGK04] Sergiy A. Vilkomir, Aditya K. Ghose, and Aneesh Krishna. Combining agent-

oriented conceptual modelling with formal methods. Australian Software Engi-

neering Conference, 0:147, 2004. ISSN 1530-0803.

[WADG09] Thomas Weigold, Marco Aldinucci, Marco Danelutto, and Vladimir Getov. Inte-

grating autonomic grid components and process-driven business applications. In

Proc of Autonomics: 3rd Intl. ICST Conference on Autonomic Computing and

Communication Systems. Springer, 2009.

[WK02] Martin Wirsing and Alexander Knapp. A formal approach to object-oriented

software engineering. Theor. Comput. Sci., 285(2):519–560, 2002. ISSN 0304-

3975.

[Wol85] P. Wolper. The tableau method for temporal logic: An overview. Logique et

Analyse, (110–111):119–136, 1985.

[Wol95] P. Wolper. On the relation of programs and computations to models of temporal

logic. In Leonard Bolc and Andrzej Sza las, editors, Time and Logic, a computa-

tional approach, chapter 3, pages 131–178. UCL Press Limited, 1995.

[Wol01] Pierre Wolper. Constructing automata from temporal logic formulas: A tutorial.

Lectures on Formal Methods and PerformanceAnalysis, pages 261–277, 2001. URL

http://dx.doi.org/10.1007/3-540-44667-2_7.

BIBLIOGRAPHY 129

[Woo00] M. Wooldridge. Reasoning about Rational Agents. MIT Press, July 2000.

[WS01] R. Weinreich and J. Sametinger. Component-based software engineering: putting

the pieces together, chapter Component models and component services: concepts

and principles, pages 33–48. Addison-Wesley Longman Publishing Co., Inc., 2001.

[XZ08] Zhi Bin Xue and Jian Chao Zeng. A novel exponential type swarming of foraging

and obstacle-avoidance behaviour modelling and simulating research on collective

motion in multi-obstacle environment. In ISICA ’08: Proceedings of the 3rd Inter-

national Symposium on Advances in Computation and Intelligence, pages 454–460.

Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-92136-3.

[ZHD08] L. Zhang, U. Hustadt, and C. Dixon. First-order resolution for ctl. Technical

report, ULCS-Department of Computer Science, University of Liverpool, 2008.

08–010 pp.

[Zit07] Matthew Zito. The many flavors of grid computing, 2007. URL http://www.

gridapp.com/resources/pdf/nov27webinar.pdf.

Index

abstraction, 20

component model, 21

distributed execution, 22

reduction by abstraction, 21

agents, 40

Application Program Interface, 29

Architecture Description Language, 29

automata, 51

behaviour, 35

behaviour of states, 32

behaviour protocols, 73

complexity, 71

component, 29

binding, 30

black box, 29

composite, 29

controller, 30

life cycle, 30

grey box, 29

interface, 29

primitive, 29

started, 33

stopped, 33

component model, 28

component state, 39

component state transition, 39

configuration, 80

dynamic, 81

dynamic reconfiguration, 81

static, 81

extended properties, 93

formal method, 38

formal verification, 53

natural deduction, 63

temporal resolution, 55

Fractal, 29

GCM limitations, 78

GIDE, 87

Grid Component Model, 31, 39

grid computing, 25

cluster grids, 26

collaboration grids, 26

computational grids, 26

130

INDEX 131

data grids, 26

enterprise grids, 26

exhaustive, 25

generic, 25

global grids, 26

networking grids, 26

utility grids, 26

Grid Integrated Development Environment, 31

healing, 84

hierarchical composition, 33

integration, 18, 23

patterns, 23

kell calculus, 29

live component, 33

logic languages, 42

ECTL+
D, 48

ECTL+, 43

SNFDCTL, 50

SNFCTL, 45

CTL, 45

ECTL, 43

indices, 45

TDS, 48

model checking, 41

model update, 83

monitoring, 34

object model, 89

open grid architecture, 27

prototype, 85

reconfiguration, 34

state of components, 76

runtime mapping, 78

suspended, 77

wait, 77

use case, 98

verification tool, 88

	Abstract
	Declaration
	Acknowledgements
	Introduction
	Overview and orientation
	Thesis Organization

	Integration
	Model Abstraction
	Component Model Abstraction
	Distributed Execution Abstraction

	Integrating Abstract Models

	Grids and Component Models
	Grid types and structures
	Classifications
	Grid Structure

	Component Models
	The Grid Component Model

	The GCM: Composing, monitoring and steering
	Hierarchical composition
	Monitoring of components and resources
	Dynamic reconfiguration in Grids and the GCM

	Formal Specification and Deductive Verification
	Formal Methods
	Formalism in software development
	GCM Approach
	Agents
	Model checking vs deductive reasoning

	Languages
	ECTL+
	SNFCTL
	ECTLD+
	SNFDCTL
	Automata based approach to Formal Specification

	Formal verification
	Deductive Verification techniques
	Temporal resolution for branching time logic
	Natural deduction

	Complexity and complexity reduction

	Formalizing Behaviour of Grid Components
	Formal specification of components
	State Behaviour of components

	State mapping
	Types of mappings
	Formalizing mappings

	Dynamic reconfiguration
	Model update

	Implementation
	Strategies
	The GridComp IDE
	Verification tool Features
	Object Model Parser
	GIDE Extended properties View
	Formal Specification Database
	GIDE Monitoring and Steering
	Monitoring Engine
	Verification Engine

	Use Cases and experimental work
	Testing
	Results

	Conclusions
	CTL-RP ZHD-CTL-RP Sample Proof
	Bibliography

