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ABSTRACT

Psychophysical image quality assessments have shown that subjective quality depended upon the pictorial content of the
test images. This study is concerned with the nature of scene dependency, which causes problems in modeling and
predicting image quality. This paper focuses on scene classification to resolve this issue and used K-means clustering to
classify test scenes. The aim was to classify thirty two original test scenes that were previously used in a psychophysical
investigation conducted by the authors, according to their susceptibility to sharpness and noisiness. The objective scene
classification involved: 1) investigation of various scene descriptors, derived to describe properties that influence image
quality, and 2) investigation of the degree of correlation between scene descriptors and scene susceptibility parameters.
Scene descriptors that correlated with scene susceptibility in sharpness and in noisiness are assumed to be useful in the
objective scene classification. The work successfully derived three groups of scenes. The findings indicate that there is a
potential for tackling the problem of sharpness and noisiness scene susceptibility when modeling image quality. In
addition, more extensive investigations of scene descriptors would be required at global and local image levels in order
to achieve sufficient accuracy of objective scene classification.

Keywords: scene dependency (scene susceptibility) of image quality, scene classification, scene descriptors (image
analysis tools)

1. INTRODUCTION

Image quality can be defined as the overall impression of image excellence and depends upon the pictorial content of the
test images [1, 2]. This study is concerned with the nature of scene dependency, which causes problems in modeling and
predicting image quality, especially in device dependent image quality measures. This is because objective quality
measures tend to perform relatively well on individual average-looking scenes, but they provide lower correlation with
subjective assessments when working with non-standard looking scenes.

There are several ways of overcoming the problems caused by scene dependency [3]. One commonly employed is to
exclude results obtaining from ‘odd scenes’ in quality measurements. These, however, do not effectively represent the
range and variety of different scenes that photographers, artists and consumers may wish to record and reproduce
faithfully [3]. Furthermore, scenes that deviate in content from a representative set (e.g. ISO set of test scenes [4]) may
not be reproduced appropriately, since they are not in accordance with the ‘average’ reproduction derived from image
quality results.

Keelan [5] suggests test scene classification with respect to image quality. The classification he proposes which is based
on test scene content and it’s impact of quality attributes, is as follows; a) most susceptible scenes 25%, b) least
susceptible scenes 25% and c) intermediately susceptible scenes 50%. In addition, Triantaphillidou et al [3] propose test
scene classification, using objective scene descriptors that correlate with subjective criteria on scene susceptibility to
image quality attributes. Scene descriptors are derived to describe basic inherent scene properties that human observers
refer to when they judge the quality of images.

The aim of the research describe here was to classify thirty two original test scenes that were previously used in a
psychophysical investigation conducted by the authors [2], according to their susceptibility (see section 3.1) to sharpness
and noisiness. The objective scene classification involved: 1) investigation of various scene descriptors, derived to
describe properties that influence image quality, and 2) investigation of the degree of correlation between scene
descriptors and scene susceptibility parameters.
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2. SCENE DESCRIPTORS

The first step in the objective scene classification was to investigate scene descriptors, derived to describe a number of
scene properties. The algorithms deriving these descriptors were implemented in global and local image regions. The
reason for local region implementation was that some researchers [6, 7] believe that a local measure of image quality is
probably more useful than a global one. A Kadir and Brade’s saliency model [8] was applied in MATLAB [9] for this
purpose. The implementation involved in following:

the division of a 20x20 grid on the image

the calculation of the local entropy in each grid, using a radius from 3 to 70 pixels
the detection of 30 high in saliency points

the erosion of the non-saliency areas to amplify the saliency areas

Figure 1 illustrates the saliency process for one test image and presents local regions derived from the saliency model
implementation for another four test scenes.

Original image Saliency image Saliency segmented image
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Figure 1. Saliency process for one test image (top row) and local regions for another four test scenes.
A number of scene descriptors were derived using first-order and second-order statistical measures as well as edge
detection. Some of these measures (sections 2.1, 2.2 and 2.3) were applied to the grayscale version of the image, which
was obtained from the 8-bit per channel SRGB image by [9]:
Grayscale_image = 0.2989R + 0.5870G+ 0.1140B.

where R, G, B correspond to the pixel value of the R,G and B channels, respectively.

Further, first-order statistical measures were employed to derived measures from the image represented in CIELAB
coordinates (section 2.4).



2.1 First-order statistical measures

First-order statistical measures were derived from the Probability Density Functions (PDF) of the grayscale image. The
ones investigated in this work are listed below:
e Mean: is the average value in PDF.
e Median: is that value of the middle term of PDF when all the observations are arranged is ascending or
descending order.
e Mode: is the value that occurred most often in PDF.
e \Variance: is a measure of contrast in PDF, the second power of standard deviation.
e Skewness: is a measure of imbalance of the PDF. We get a value close to zero when the distribution of
grey level is balanced (symmetric PDF).
e Entropy: is a measure of information content of the PDF.
2.2 Second-order statistical measures
Second-order statistical measurements, which reveal textural information in images, were calculated from the gray-level
co-occurrence matrix (GLCM) [9, 10]. Implementation was carried out in MATLAB [9] using default angle and distance

values: 0 and 1 in pixels, respectively. The ones investigated for this work are listed below:

e Inertia (or contrast (Co)):
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e Homogeneity (H):

e Correlation (or linearity (Cor)):
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Where P(i.j) is the the joint probability distribution of pairs of pixels (i, j). m; and m; are the

mean values of the pair of gray levels i and j. o; and oj are the standard deviation value of
the pair of gray levels i and j [10].

o Energy (Ene):



2.3 Measurement from edge detection

The Sobel, Prewitt and LOG (Laplacian of Gaussian) edge detection algorithms were used to quantify the presence and
strength of edges in the grayscale image [11]. The Sobel and Prewitt edge detectors performed using a 3 x 3 kernel size
and 0.04 for sigma [3]. The LOG edge detector was set to a 5 x 5 kernel size and 0.5 for sigma, which is the default
value employed in MATLAB [9]. All edge detectors were operated with the ‘replicate’ boundary option in MATLAB,
where the boundaries were assumed to be equal the nearest border value. During the edge detection, the magnitude of
edge (G) was computed by the square-root operation [11]:

G= / GZ + G?
where G, and G, are the horizontal and vertical edge gradients of the image respectively.
Then all individual edge gradients were averaged. Figure 2 illustrates two original images and the corresponding

threshold images after Sobel edge detection with the average edge gradient, related to the edges’ strength as well as the
amount of edge information in the image.

Average edge gradient: 11.68 Average edge gradient: 66.19

Figure 2. Example of average edge gradient
2.4 Measurement from the CIELAB image

The variance in chroma and saturation were considered as measures of color information. They have been shown to
correlate successfully with the perceived image colorfulness [3] and perceived color strength, respectively [12]. The

variance in chroma (VC*) was calculated [3]:
Ve = /aaz* + of,

In addition, color strength metric (VS*), based on the definition of saturation:Saturation = Chroma/Lighntness,
derived by [12]:

VS* =vCr /L
where the lightness (L") is L* = Liyg + ILiia — Ll
where L* ;4 =50.

3. CORRELATION BETWEEN SCENE DESCRIPTORS AND SCENE SUSCEPTIBILITY
PARAMETERS

The second step in the objective scene classification was to investigate the degree of correlation between scene
descriptors and scene susceptibility parameters, described in reference [2]. Scene descriptors that successfully correlated
with scene susceptibility in sharpness and in noisiness provided means toward the objective scene classification.



3.1. Scene susceptibility parameters

The scene susceptibility parameters were collected from previous experimental work on ‘Perceptual image attribute
scales derived from overall image quality assessments’ [2] (Table 1). They were based on the visual quality loss that
occurred to individual test scenes with sharpness and noisiness distortions.

Susceptibility to | Susceptibility to Susceptibility to | Susceptibility to
sharpness noisiness sharpness noisiness

African tree 0.32 1.96 Baby 1.06 1.06
Bike 1.21 0.72 China town 0.95 0.97
Exercise 1.15 0.51 Formula 1.00 1.14
Glasses 0.86 1.17 Group 1.07 0.66
Human 0.91 1.10 Human2 0.32 1.07
Human3 1.24 0.55 Human4 1.08 1.11
Kids 1.18 1.15 Landscape 0.86 1.44
Landscape2 0.63 1.82 Landscape3 1.05 1.31
London Eye 0.86 1.09 London Eye2 0.93 1.28
Louvre 1.16 1.03 National gallery 1.07 0.96
Old building 1.29 0.92 Plantl 1.15 0.34
Plant2 0.79 0.85 Plant3 0.87 1.13
Plant4 0.80 1.12 Plant5 1.09 0.99
Plant6 0.97 1.04 St. Pauls 1.40 0.50
St. Pauls2 1.10 0.87 Saules 143 0.19
Sungsil 1.24 0.83 Yellow flower 0.91 1.14

Table 1. Subjective scene susceptibility parameters for sharpness and noisiness

A scene susceptibility parameter was identified for each test scene, by calculating the gradient of the straight line
connecting average subjective quality ratings (calculated from the entire test-set) and individual quality ratings for the
test scene. When the gradient of the line is one, the subjective scale values for the individual scene are the same with
these of the combined scenes - for the specific attribute. When the gradient is larger than one the individual scene is more
susceptible than the ‘average scene’ to changes in the specific attribute. The reverse is true when the gradient is smaller
than one. An example is shown in Figure 3 for the test scene ‘Saules’, with gradients for scene susceptibility to noisiness
and sharpness equal to 0.1858 and 1.4289 respectively.
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Figure 3. Scene susceptibility parameters for the test scene “Saules” (shown in Figure 7)



3.2. Scene descriptors versus susceptibility parameter for noisiness and sharpness

The Spearman’s correlation coefficient, rs, was derived to investigate correlation between scene descriptors and scene
susceptibility to noisiness and to sharpness. The coefficient is useful when data have a ranking but no clear numerical
interpretation, such as when assessing preferences for data on an ordinal scale [13]. The correlation coefficients range
between -1.0 (indicating perfect anti-correlation) and 1.0 (indicating perfect correlation), with O denoting no correlation
at all.

Successful correlations® were obtained between noisiness susceptibility parameters and most second order statistical
measures, as well as measures derived from edge detection. Table 2 shows the successful correlation coefficients for
noisiness. An example of correlating susceptibility with a scene descriptor is shown in Figure 4.

. Correlation coefficient (rs) Correlation coefficient (rs)
Scene descriptors o e .
for scene susceptibility to noisiness | for scene susceptibility to sharpness
Inertia (Contrast): -0.694 0.802
Homogeneity 0.738 -0.781
Correlation (Linearity) 0.644 -0.550
Energy 0.577 -0.647
Average Sobel gradient -0.701 0.786
Average Prewitt gradient -0.701 0.786
Average LOG gradient -0.593 0.747
Table 2. Successful correlation coefficients
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Figure 4. Relationship between the homogeneity descriptor and the susceptibility parameter for noisiness

Successful correlations were also obtained between sharpness susceptibility parameters and, again, most second order
statistical measures and measures derived from the edge detection?. Table 2 shows also the successful correlation
coefficients obtained for sharpness. An example is shown in Figure 5.

! When a correlation coefficient is larger than a level of significance at 1% probability level, it indicates statically significant [13].
2 For both sharpness and noisiness susceptibility predictions, correlations were more successful when the measures were applied at

global image level.
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Figure 5. Relationship between the average Sobel descriptor and the susceptibility parameter for sharpness

There were several interesting relationships between scene content and scene susceptibility to noisiness and sharpness.
The results confirmed that the higher the texture in the scene content, the lower the susceptibility to noisiness and the
higher the susceptibility to sharpness. For example, the correlation coefficients between the homogeneity and scene
susceptibility to noisiness and to sharpness were 0.738 and -0.781 respectively. In addition, high presence and strength of
edges in the image significantly decreased the perception of noise and increased the susceptibility to sharpness. For
example, the correlation coefficients between the average Sobel metric and scene susceptibility to noisiness and to
sharpness were -0.701 and 0.786 respectively. It is also evident and confirmed that the relationship between sharpness
and noisiness is complimentary i.e. high amount of blur in the image significantly decreased the perception of noise, and
high noise decreased perceived blur [2, 7].

Correlations were more significant when the descriptors were derived from the entire image (algorithms were applied
globally). Further investigation is required for the derivation of scene descriptors from specific image regions of interest
(algorithm application locally). For example, using the central part of the image, as by Keelan and Jin have suggested [7]
as a sharpness-critical region and the periphery of the image as a noisiness-critical region. Also, further investigation is
required toward the combination of various scene descriptors to derive scene metrics that may describe more
successfully the susceptibility of test scenes to noisiness and sharpness.

Overall the results indicated that there is association between selected scene descriptors and scene susceptibility
parameters. Thus, the scene descriptors that correlated with sharpness and noisiness scene susceptibility can be used to
objectively classify scenes.

4. CLUSTERING FOR NATURAL SCENES

Finally, k-means partitional clustering was implemented to objectively group the 32 test scenes according to their
susceptibility to both sharpness and noisiness.

The k-means partitional clustering consists of several steps [14]. The first step of is to define a fixed humber of clusters,
k. The choice of k is exceedingly important in clustering: an inappropriate choice of k may yield poor results while the
correct choice of k is often ambiguous. Possible methods for choosing k include empirical and numerical methods [15].
The empirical method is usually preferred [15]. In relevant image quality investigations k is usually chosen to be equal to
3.0 [5, 16]. Once k is chosen, then modifications of the distances between all points in n" cluster (n varying from 1 to k)
and the centre of the cluster are applied. The main idea for modification is that the average distances between all points
in cluster and the central point is minimal. During these modifications, new cluster centers are allocated using Euclidean
distances. The modification stops when the averages distance from all points in n™ cluster and the new central point is
minimized.



Two scene descriptors that correlated successfully with both noisiness and sharpness susceptibility, i.e. the homogeneity
and average Sobel edge gradient descriptor, were used for testing the clustering. Clustering was implemented in SPSS
programming environment [17]. Figure 6 presents the three clusters with the initial and final centres of the cluster, and
then the images corresponding to each of the three clusters (or groups) are shown in Figure 7.
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Figure 6. Initial and final centre in three groups

5. CONCULSION

A number of scene descriptors were successfully derived from first-order and second-order statistical measurements as
well as edge detection. They were concerned with the extraction of image features, such as brightness, contrast, texture,
edges, color contrast etc.

The degree of correlation between scene descriptors and scene susceptibility parameters was investigated using
Spearman’s correlation coefficient. Successful correlations were obtained between: scene susceptibility parameters for
noisiness and the homogeneity descriptor; and scene susceptibility parameters for sharpness and the average edge
gradient descriptors. These correlations indicated that the selected scene descriptors successfully represented sharpness
and noisiness susceptibility and can be used to classify the test scenes used in image quality investigations.

Using the selected scene descriptors and applying K-mean clustering, three groups of scenes were successfully derived,
i.e. scenes with: 1) low susceptibility to sharpness distortions and high susceptibility to noisiness 2) average
susceptibility to sharpness distortions and noisiness, 3) high susceptibility to sharpness distortions and low susceptibility
to noisiness.

The findings indicate that there is a potential for tackling the problem of sharpness and noisiness scene susceptibility
when modeling image quality. More extensive investigations of scene descriptors with respect to both global and local
image features will help further toward objective scene classification of test scene used in image quality investigations.
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Figure 7. Images in three clusters (groups)
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