

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Temporal specification and deductive verification of a
distributed component model and its environment.

Alessandro Basso
Alexander Bolotov
Vladimir Getov

School of Electronics and Computer Science

Copyright © [2009] IEEE. Reprinted from the proceedings of the Third IEEE
International Conference on Secure Software Integration and Reliability
Improvement, 2009 (SSIRI 2009). IEEE, pp. 379-386. ISBN 9780769537580.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161119145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The 1st Workshop on Model-Based Verification & Validation
Temporal Specification and Deductive Verification

of a Distributed Component Model and Its Environment

Alessandro Basso, Alexander Bolotov and Vladimir Getov
School of Electronics and Computer Science

University of Westminster
Watford Road, Northwick Park

Harrow HA1 3TP, London, U.K.
(A.Basso,A.Bolotov,V.S.Getov)@westminster.ac.uk

Abstract—In this paper we investigate the formalisation of
distributed and long-running stateful systems using our norma-
tive temporal specification framework. We analyse aspects of
a component-oriented Grid system, and the benefits of having
a logic-based tool to perform automated and safe dynamic
reconfiguration of its components. We describe which parts of
this Grid system are involved in the reconfiguration process
and detail the translation procedure into a state-based formal
specification. Subsequently, we apply deductive verification
to test whether dynamic reconfiguration can be performed.
Finally, we analyse the procedure required to update our model
for reconfiguration and justify the validity and the advantages
of our methodology.

Keywords-Grid Component Model, Grid IDE, Automated
Reconfiguration, Formal Specification, Deductive Reasoning.

I. INTRODUCTION

Component models enable modular design of software
applications that can be easily reused and combined, ensur-
ing greater reliability. Furthermore, in distributed systems
where parallel running components must be taken into
consideration, the need for reliable dynamic reconfiguration
is higher. In these models, components interact through in-
terface bindings, however, there is need for a method which
ensures correct composition of components and especially
their interaction with the environment.

The Grid Component model (GCM) [1] is an extension
of Fractal [14] built to accommodate requirements for dis-
tributed systems, in particular, those developed within and
following the CoreGRID [16] project. The GCM specifica-
tion defines a set of notions characterising this model, an
API (Application Program Interface), an ADL (Architecture
Description Language) [9] and a Deployment Descriptor
file. In the GCM, when the bindings of a component is
changed, this component must be stopped, more precisely, to
avoid disruption to the system, when unplugging a compo-
nent, such component must be stopped before severing its
connections to other components. Afterwards, invocations
on controller interfaces are enabled and the content of the
component can be reconfigured.

The recent development of a Grid Integrated Development
Environment (GIDE) based on the GCM specification [8]
opens new possibilities for the dynamic reconfiguration
scenario in large distributed systems. We are able to take
advantage of pre-built components in the GIDE (namely
the component’s hierarchical composition, their API, the
deployment file and the monitoring of both components and
resources) to form a basis for a reconfiguration framework
which exploits the underlying properties of the specification
language and deductive reasoning verification methods used
in our research. We consider the monitoring specification
of [15] and the state information that can be retrieved
through calls to the LifeCycleController interface for
components, as well as other monitoring techniques for the
environment.

The aim of this paper is to apply rigorous formal (tempo-
ral) reasoning to a component-based distributed system and
the environment in which this systems performs. Thus, we
apply formal specification technique based on the language
of branching-time temporal logic to specify both the system
and the environment. Subsequently, the deductive verifica-
tion method based on the clausal resolution technique is
applied to the obtained specifications. In previous research
[3], [2], we have showed that this is particularly crucial
during critical procedures, such as reconfiguration; and the
verification of these type of models can be better achieved
through the application of deductive reasoning methods as
opposed to others used in similar circumstances.

The rest of this paper is organised as follows. First, in
order to make the presentation self-explanatory, we describe
the GCM in Section II. Then, an introduction to the nor-
mative temporal specification framework follows in Section
III, while its application to the GCM and the environment
is presented in Section IV. In Section V we describe the
resolution-based verification technique and in Section VI we
introduce the concept of dynamic reconfiguration and apply
the introduced temporal reasoning framework to specify and
formally verify reconfiguration scenarios. In Section VII
we discuss relevant work, draw conclusions and describe

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.61

365

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.61

379

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.61

379

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

Figure 1. Component’s Lifecycle States

directions for future research.

II. THE GRID COMPONENT MODEL

In order to understand how we can formalize a grid system
composed of components and resources, and clarify their
places and interactions with each other, we must first have
a detailed picture of the structure of such a grid system, and
what are the relevant parts we must consider.

A. Behaviour of stateful components/resources

The basic lifecycle of components, and thus the resources
being managed, can be retrieved at runtime by the use
of the Component Monitoring and Resources Monitoring
systems, built in the GIDE, through: components state calls
(implemented by all component objects), specialised param-
eters monitoring for some specific components, resources
availability monitors and others. This state system is often
restricted, in that it supports the deployment processes
used by the framework and models only the deployment
state of the system, not its operational characteristics. Each
deployment component independently represents the state
of the deployed resource which it is managing. The system
as a whole must also represent a reasonable depiction of
the overall state of many components. The core lifecycle
is defined by the states, allowed transitions and operations
shown in Figure 1.

As a component is such that it conforms to a set of defined
states, and to the GCM, we can therefore consider composite
components (large components which are composites of
primitive components and/or other composite components)
as components that inherit the same properties and conform
to state composition. In a system with multiple compo-
nents, the lifecycle of the whole system is defined by the
relationships between the individual component lifecycles.
The state of each component is bound to the state of the
components it relies on. The hierarchy of the system defines
relationships where related components lifecycles are linked.
The component model and the ADL specification help define
explicit semantics for guiding lifecycle transitions.

B. ADL and Deployment Descriptor

It is well known that Architecture Description Languages
(ADLs) generally cannot provide sufficient insight into
the post-deployment (and thus any runtime reconfiguration)
[21]; although they can be used to describe components,
connectors and configurations as well as the hierarchical
structure of the system. We have to therefore rely on specific
characteristics about the states of instantiated components
(also known as “live components”) using standard runtime
monitoring tools. We can retrieve the specific state infor-
mation as messages passed to the system thus describing
the runtime behaviour of states of the component. Similarly,
the overall view of behaviour of states of the components’
system and resources, describes the runtime behaviour of the
environment.
Similarly to the ADL, the Deployment Descriptor file details
only information about the resources where the components
are being deployed on (in terms of nodes, jvms, etc), disre-
garding any other resource which the system may require in
order to function correctly. The problem has been solved by
allowing to manually specify, for each component, specific
requirements (or “external resources”), which can then be
monitored at runtime.

III. NORMATIVE TEMPORAL SPECIFICATION

FRAMEWORK

In this section we introduce the temporal specification
framework. It is based upon the language of the normal
form (SNFCTL) defined initially in [11] as the underlying
language for the clausal resolution method for the computa-
tion tree logic CTL. Here we extend this setting to capture
a fusion of the logic ECTL+ (extended CTL, [19]) and the
deontic logic [20]. Thus, we first start with the introduction
of this expressive framework and then show how SNFCTL

can be extended to TDS (temporal deontic specifications)
so that any formula of ECTL+

D can be translated into a
corresponding TDS.

A. ECTL+
D Syntax and Semantic

In the language of ECTL+
D, where formulae are

built from the set, Prop, of atomic propositions
p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . ., we use the
following symbols:
classical operators: ¬,∧,⇒,∨;
temporal operators: – ‘always in the future’; ♦ – ‘at
sometime in the future’; !– ‘at the next moment in time’;
U – ‘until’; W – ‘unless’;
and path quantifiers: A – ‘for any future path; E – ‘for
some future path.

For the deontic part we assume a set Ag = {a, b, c . . .}
of agents (processes), which we associate with deontic
modalities Oa(ϕ) read as ‘ϕ is obligatory for an agent a’
and Pa(ϕ) read as ‘ϕ is permitted for an agent a’.

366380380

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

In the syntax of ECTL+
D we distinguish state (S) and path

(P) formulae, such that S are well formed formulae. These
classes of formulae are inductively defined below (where C
is a formula of classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP |PaS|OaS
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P | S|♦S| !S|S U S|

S W S| ♦S|♦ S
Definition 1 (literal, deontic literal): A literal is either p,

or ¬p where p is a proposition. A deontic literal is either
Oil, ¬Oil, Pil, ¬Pil where l is a literal and i ∈ Ag.

ECTL+
D Semantics. We first introduce the notation of

tree structures, the underlying structures of time assumed
for branching-time logics.

Definition 2: A tree is a pair (S,R), where S is a set
of states and R ⊆ S × S is a relation between states of S
such that s0 ∈ S is a unique root node, i.e. there is no state
si ∈ S such that R(si, s0); for every si ∈ S there exists
sj ∈ S such that R(si, sj); for every si, sj , sk ∈ S, if
R(si, sk) and R(sj , sk) then si = sj .

A path, χsi is a sequence of states si, si+1, si+2 . . . such
that for all j ≥ i, (sj , sj+1) ∈ R. Let χ be a family of
all paths of M. A path χs0 ∈ χ is called a fullpath. Let
X be a family of all fullpaths of M. Given a path χsi and
a state sj ∈ χsi , (i < j) we term a finite subsequence
[si, sj] = si, si+1, . . . , sj of χsi a prefix of a path χsi and
an infinite sub-sequence sj , sj+1, sj+2 . . . of χsi a suffix of
a path χsi abbreviated Suf(χsi , sj).

Following [19], without loss of generality, we assume that
underlying tree models are of at most countable branching.

Definition 3 (Total countable ω-tree): A countable ω-
tree, τω , is a tree (S,R) with the family of all fullpaths,
X , which satisfies the following conditions: each fullpath
is isomorphic to natural numbers; every state sm ∈ S has
a countable number of successors; X is R-generable [19],
i.e. for every state sm ∈ S, there exists χn ∈ X such
that sm ∈ χn, and for every sequence χn = s0, s1, s2 . . .
the following is true: χn ∈ X if, and only if, for every
m (1 ≤ m), R(sm, sm+1).

Since in ω trees fullpaths are isomorphic to natural
numbers, in the rest of the paper we will abbreviate the
relation R as ≤.

Next, for the interpretation of deontic operators, we in-
troduce a binary agent accessibility relation.

Definition 4 (Deontic Accessibility Relation): Given a
total countable tree τω = (S,≤), a binary agent accessibility
relation Di ⊆ S × S, for each agent i ∈ Ag, satisfies the
following properties: it is serial (for any k ∈ S, there exists
l ∈ S such that Di(k, l)), transitive (for any k, l,m ∈ S, if
Di(k, l) and Di(l,m) then Di(k,m)), and Euclidian (for
any k, l,m ∈ S, if Di(k, l) and Di(k,m) then Di(l,m)).

Let (S,≤) be a total countable ω-tree with a root s0

defined as in Def 3, X be a set of all fullpaths, L :
S × Prop −→{ true , false} be an interpretation function
mapping atomic propositional symbols to truth values at

each state, and every Ri ⊆ S × S (i ∈ 1, . . . , n) be
an agent accessibility relation defined as in Def 4. Now
a model structure for interpretation of ECTL+

D formulae is
M = 〈S,≤, s0, X, L,D1, . . . , Dn〉.

Reminding that since the underlying tree structures are
R-generable, they are suffix, fusion and limit closed [19],
in Figure 2 we define a relation ‘|=’, which evaluates well-
formed ECTL+

D formulae at a state sm in a model M.

〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop
〈M, sm〉 |= AB iff for each χsm , 〈M, χsm〉 |= B
〈M, sm〉 |= EB iff there exists χsm such that

〈M, χsm〉 |= B
〈M, χsm〉 |= A iff 〈M, sm〉 |= A, for state

formula A
〈M, χsm〉 |= B iff for each sn ∈ χsm , if m ≤ n

then 〈M, Suf(χsm , sn)〉 |= B
〈M, χsm〉 |= "B iff 〈M, Suf(χsm , sm+1)〉 |= B
〈M, χsm〉 |= AU B iff there exists sn ∈ χsm

such that m ≤ n
and 〈M, Suf(χsm , sn)〉 |= B
and for each sk ∈ χsm ,
if m ≤ k < n
then 〈M, Suf(χsm , sk)〉 |= A

〈M, χsm〉 |= AW B iff 〈M, χsm〉 |= A or
〈M, χsm〉 |= AU B

〈M, sm〉 |= OaB iff for each sn ∈ S, if Da(m, n)
then 〈M, sn〉 |= B

〈M, sm〉 |= PaB iff there exists sn ∈ S,
such that Da(m, n)
and 〈M, sn〉 |= B

Figure 2. ECTL+
D semantics

Definition 5 (Satisfiability): A well-formed ECTL+
D for-

mula, B, is satisfiable if, and only if, there exists a model
M such that 〈M, s0〉 |= B.

Definition 6 (Validity): A well-formed ECTL+
D formula,

B, is valid if, and only if, it is satisfied in every possible
model.

B. SNFD
CTLLanguage

To define a concept of propositional deontic temporal
specification we extend a normal form defined for the logic
ECTL+, SNFCTL, which was developed in [11], [13]. Recall
that the core idea of the normal form is to extract from
a given formula the following three types of constraints.
Initial constraints represent information relevant to the ini-
tial moment of time, the root of a tree. Step constraints
indicate what will happen at the successor state(s) given
that some conditions are satisfied ‘now’. Finally, sometime
constraints keep track on any eventuality, again, given that
some conditions are satisfied ‘now’.

The SNFD
CTL language is obtained from the ECTL+

D
language by omitting the U and W operators, and adding
classically defined constants true and false, and a new
operator, start (‘at the initial moment of time’) defined as
〈M, si〉 |= start iff i = 0.

367381381

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

Similarly to SNFCTL, we incorporate the language for
indices which is based on the set of terms
IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . .},
where f, g, h . . . denote constants. Thus, EA〈f〉 means that
A holds on some path labelled as 〈f〉. All formulae of
SNFCTL of the type P ⇒ E !Q or P ⇒ E♦Q, where
Q is a purely classical expression, are labelled with some
index.

Definition 7 (Deontic Temporal Specification - DTS):
DTS is a tuple 〈In, St, Ev,N,Lit〉 where In is the set of
initial constraints, St is the set of step constraints, Ev is
the set of eventuality constraints, N is a set of normative
expressions, and Lit is the set of literal constraints, i.e.
formulae that are globally true. The structure of these
constraints called clauses, is defined below where each αi,
βm, γ or le is a literal, true or false, de is either a literal
or a deontic literal involving the O or P operators, and
〈ind〉 ∈ IND is some index.

start ⇒
∨k

i=1 βi Initial Clause∧k
i=1 αi ⇒ E ![

∨n
m=1 βm]〈ind〉 E !clause

∧k
i=1 αi ⇒ A ![

∨n
m=1 βm] A !clause∧k

i=1 αi ⇒ E♦γ〈LC(ind)〉 E♦ clause∧k
i=1 αi ⇒ A♦γ A♦ clause

true ⇒
∨n

e=1 de Deontic Clause
true ⇒

∨n
e=1 le Literal Clause

IV. FORMALISING GCM COMPONENTS AND

RESOURCES

When considering what parts in the GCM can be used for
formal specification, we have considered four main sections,
each of which follows specific criteria and can be easily
fed into our set of specification “patterns”. We examine the
main details below. Please note that not full specification
is included for space reasons. As an example, we consider
an Application (the out most component which must be
activated first) which contains 4 components Comp1 (a
composite component with a sub component SubComp1.1)
which is the first to be started after the application is as it is
the first and only component, two components CompA and
CompB running in parallel from a broadcast of Comp1 (and
SubComp1.1 to start in parallel with CompA or CompB),
and Comp2 a component from the gathercast of CompA and
CompB.

Complexity. While our initial papers on the resolution
based verification of the component model model specifi-
cations [3] opened a theoretical prospect of developments
in runtime reconfiguration, the complexity of the resolution
based verification has raised some concerns with the feasibil-
ity of applying this method to a full scale component model.
Therefore, there has been a need for complexity reduction.
Unlike model checking, where the complexity lies in the
specification part, namely in extracting a model, deductive
reasoning ‘suffers’ in the verification process. One of the

Figure 3. Sequential and Parallel Processes

ways to overcome the problem is to modify the underlying
specification language to obtain a lower complexity similar
to the linear time resolution framework [18]. The other
main and straightforward approach is to limit the actual
amount specification properties considered, and therefore not
needing to describe all possible combinations of states and
functions of the system, as we do not need to analyse the
inner working of each component, but only their stateful
relations with other components and resources. In other
words, the complexity of the underlying algorithm is not
the length of the input formula but its structure, i.e. the way
what type of subformulae are embedded in it and how.

A. Hierarchical Components Composition

Components in the GCM have a strict hierarchical nature.
The application can then be described as:

start ⇒ Application

and components of the application in the form of:

Application ⇒ A !Comp1

Application ⇒ A♦Comp2

Comp1 ⇒ A !(SubComp1.1 ∧ (CompA ∧ CompB))

B. Inferring parallel processes from interfaces

When we consider interfaces in the GCM, we can
group them in two different types: one to one, and broad-
cast/gathercast. In the former we have a simple connection
of one server interface to a client one, while in the latter
we have a single server interface which can be bound to
multiple client ones.

In either case, interfaces can be very useful to determine
whether the communication between components is carried
out in a sequential or parallel manner. Imagine a component
with a broadcast server interface (or several one to one server
interfaces): we can easily assume that the components at
the client side of those interfaces can be run in a parallel
manner. On the other hand, a component which has only one
server interface, can only run in a sequential manner with

368382382

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

the component on the client interface side (see Figure: 3).
Sequential specification looks like:

Comp1 ⇒ A♦Comp2

while Parallel specification looks like:

Comp1 ⇒ A !(CompA ∧ CompB)

When in a sequential process is easy to understand that
component will be started sequentially, in a parallel process,
there is no real certainty - component might be all started
at the next step, or first one and then the others, or perhaps
none.

C. State of resources

When considering resources, we are able to formally
specify the environment thanks to information provided in
the GCM deployment file as well as other metadata infor-
mation gathered at development time through a development
interface. Furthermore the current state of each resource can
be monitored at runtime giving us a complete picture of the
mapping between resources and any components that might
be deployed on, or requesting the use of the resource.

D. Types of mappings

The one to one mapping. If a components is deployed
to a single resource and does not require any other resource
to run correctly, we define this as a one to one mapping.
This is the simplest scenario.

The big component mapping. If a component is mapped
to two or more resources, we define it as a big component.
Such component is often a composite component, where its
subcomponents have a one to one mapping with different re-
sources, although this might not be the case as a component
might have more than one resource associated to it (for ex.
when a component is deployed to one resource and requires
to be connected to a database which is located on another
resource).

The big resource mapping. If a resource is mapped to
two or more components, we define this as a big resource.
This is often the case as one resource could run several
virtual machine, each one running one or more components
(for ex. nodes in a cluster).

E. Formalizing mappings

Independently from the type of mapping, the hierarchi-
cal structure of both components (composite and primitive
components) and resources (nodes and virtual machines) is
crucial in order to simplify the way we can formally describe
such relations; we can in fact always translate mappings of
fat components or resources as a collection of one to one
mappings (sometimes with the same component or resource
appearing in more than one of these mappings).
External resources are defined as:

Comp1 ⇒ A♦Res1

Deployment resources are defines as:

Node1 ⇒ Res1

and at runtime we can have definitions like:

Res1 ⇒ A (Comp1 ∧ Comp2)

F. State of components

While the states of components could have a wide
spectrum of definition points (such as initialized, started,
suspended, terminated, . . . for the moment we can only
consider the ones defined in the GCM - i.e. started and
stopped. In a way this simplifies further the formalism by
representing the specification as:

Comp1

for a started component, and:

¬Comp2

for a stopped one.

V. RESOLUTION BASED VERIFICATION

For the specification of behaviour we can use a rich
temporal framework [19] with subsequent application of
either model checking or deductive reasoning as a verifi-
cation technique. Model checking [17], which verifies the
properties of the components against the specification, has
already been tested in various circumstances, one particular
application of this method been tested in [10]; it is a pow-
erful and well established technique allowing to incorporate
a number of algorithms and tools to deal even with the
famous state explosion problem. However, when applied to
a component system, it has one indicative drawback, namely
it has an explorative nature and it cannot efficiently handle
infinite state systems; in fact, model checking is used to take
“snapshots” of various static states of a system, and quickly
verify them, but when we consider a long running system
- possible even infinite - it is easy to understand that this
procedure becomes not feasible.

As a consequence, model checking cannot consider the
environment in which a component system has been devel-
oped. At the same time, in building a large scale distributed
system, we cannot afford any more not to take into con-
sideration the entire infrastructure, as we have extensively
analysed in our previous research [7]. Deductive methods,
on the other hand, can deal with such large or even infinite
state systems - as the technique has been developed precisely
to solve this problem - and furthermore can be applied to
reconfiguration scenarios, where we must consider future
system states as a whole, and taking a series of “snapshots”
would just be impractical. Resolution based verification
framework for the fusion of temporal and deontic logics has
been described in our previous works [2]. In [26] the original
resolution method for CTL [11] has been improved by

369383383

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

making the set of resolution rules more effective. This means
that since in our system there is no interaction between
the normative and temporal dimensions we can take this
improved set of resolution rules coping with the temporal
setting instead of the one we considered in [2] thus obtaining
a more efficient resolution system. The correctness of the
system follows from the correctness argument for both parts
- temporal (as these new developments in [26] guarantee the
correctness) and deontic (as shown in [2]). As a satisfactory
example for deductive verification would be too long to
include in this document, we refer to a simplified example
we have include in our research [3] for reference.

VI. RECONFIGURATION

A. Static and Dynamic Configuration.

We define static configuration in a component model as
the hierarchical structure of the components and the specific
binding of interfaces which connects them. As this is a static
view of the system, it cannot include the infrastructure which
would complete the system - for example the resources the
components will be deployed on. This process is ideal for
the application of the static validation of a system, such as
model checking.
Dynamic Configuration. We define dynamic configuration
as the process in which the static configuration of the com-
ponent model is applied to the infrastructure of resources,
i.e. the deployment process.
Dynamic Reconfiguration We define dynamic reconfigura-
tion as the process in which the mapping of components to
resources varies, whether it is the removal of a component
or a resource, the addition of one, the change of resources
required by a specific component and so forth. This process
has been historically carried out through a series of runs
with model checkers at various stages of the reconfiguration,
rising the complexity of the procedure. Through deductive
reasoning this complexity could be reduced and applied
more easily to this types of systems.

B. Formalizing Components for Reconfiguration

The need for a safe and reliable way to dynamically re-
configure systems at runtime, especially distributed, resource
depending and long running, has led us to investigate a
formal way to describe and verify them before risking to
take some action. Utilising the extension to the specification
language SNFD

CTL, which considers deontic modalities as a
way to define obligations and permissions for specific states
of components and resources, we can facilitate the reconfig-
uration procedure. Consider the specification requests for a
component X to take place of a component C as following:

CompA ⇒ A !(CompC ∨ CompX)

and

ReconfigurationRequest ⇒ A♦CompX

In other words, each component is specified so that it has a
possible “reconfiguration” component in place whether there
will eventually be one to take its place.

C. Dynamic Reconfiguration procedures

At the abstract level used for our research, reconfiguration
can take place following three levels of procedure.

At the first level some predefined event triggers the recon-
figuration process where the abstract model that describes
the grid system inclusive of components and resources has
the new configuration introduced (for ex. a new component)
and limits the old configuration where necessary. This new
configuration does not require any additional change to the
abstract model (we call this optimization), it can be verified
and the job is then passed on to a tool to perform the
reconfiguration.

At the second level, we have that the new configuration
requires some additional change to the abstract model (for
ex. the activation of a resource). The model is not updated
and the request is passed back to the user for changes to
be made before attempting the reconfiguration again. This
may require additional changes to the model, but they can
easily be added as an extra specification introduced before
the model is verified.

At the third level, we automate the process of some cases
that would normally apply to the second level (we call it
automation), by making use of information embedded in the
original specification which can suggest us the course of
action to take to achieve reconfiguration without intervention
from outside sources.

D. Model Update

Following the research in [25] we can adapt the system
for model update to suit the needs of a state behaviour
based distributed system. The procedure describes a way to
design a model updater with built in error repair - the aim is
to create a new model from the original one which ensures
that only the most minimal changes are applied, by retaining
as much information as possible represented in the original
model. In this scenario, the model is an abstraction of our
grid system inclusive of components’ and resources’ state
behaviour; and a (satisfiable) SNFD

CTLformula represents
the new component - and all its resources connections -
specified for the reconfiguration. In order to update the
model to satisfy the formula, we can apply a series of
operations:
(1) Adding one relation element. Given a model, its
updated model is obtained by adding only one new relation
element.
(2) Removing one relation element. Given a model, its
updated model is obtained by removing only one existing
relation element.
(3) Changing labelling function on one state. Given a
model, its updated model is obtained by changing labelling

370384384

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

function on a particular state.
(4) Adding one state. Given a model, its updated model is
obtained by adding only one new state.
(5) Removing one isolated state. Given a model, its
updated model is obtained by removing only one isolated
state.

It is now easy to see how these properties can be applied
in our framework. Similarly to the idea of using “patterns”
during the specification of our grid system model, we can
apply the operations above to create our model update
formula. If we intend for example to update a component
with another which performs the same function but requires
an extra resource to be present, we follow this procedure:
we begin from the specification provided for the original
component. We identify the the property which the model
does not satisfy (in this case that the extra resource is
not defined in the model and it is not bound to the new
component). We can then identify the two possible minimal
updates (1) and (4) to add the resource and bound it to the
component. After the update, we can verify that the model
satisfies our formula and it has minimal change from the
original. Finally we can proceed with the reconfiguration of
our grid system.

E. Reconfiguration Framework

In order to give a formalisation of the reconfiguration
process we adapt the approach given in [23] extending it
to the usage of norms. We assume that with the notion of
reconfiguration the following entities are associated:

• a set, P , of specification properties,
• a set of invariants I ⊆ P .
• the current system state, Scurrent,
• the target system state, Starget,
• a set of norms, N .
We can now define a reconfiguration, R, as follows.
Definition 8 (Reconfiguration): Reconfiguration is a tuple

〈P, R, Scurrent, Starget, I, N〉 which satisfy the follow-
ing conditions:
- R commences when the current state Scurrent is not
operating any more and finishes before the target state to
be updated, Starget, becomes compliant with the system.
- Starget is the appropriate choice for the target specification
at some point of time during R.
- Time for R is less or equal than the time for the transition
from Scurrent to Starget.
- The transition invariant(s), I , holds during R.
- The norms, N , for Scurrent are true at the time when R
completes.
- The lifetime of R is bounded by any two occurrences of
the same specification, P .

The conditions for reconfigurations can be considered as a
set of restrictions, which when true allow for the model to be
replaced. The reconfiguration conditions above give a clear

indication which states in the model can be changed and
when, while the temporal specification sets the conditions
for the change and defines the acceptable states which will
replace the current ones.

VII. CONCLUSION

To the best of our knowledge there are no analogous
works in the application of the temporal reasoning tech-
niques (with deductive verification) to the problem setting
of component model and its configuration/re-configuration.
Among other applications of formal methods in this area we
mention formal approaches in configuration [24], [22] and
the application of model checking methods [10]. However,
while the former work is too general the latter approach does
not consider the environment.

On the other hand, a formal approach to analyse the
concept of a model update, considering various types of
updates and even an attempt to design some mathematical
structure of a set of updates for a given model can be found
in [25]. We believe that incorporating these ideas in our
work deeper would bring more light on the definition of re-
configuration and on the desired automation to the process
of model reconfiguration.

The formal specification procedure of component-based
model and its environment introduced in this paper has been
applied in reconfiguration scenarios to prevent inconsistency.
Additionally, we are able to suggest possible corrections to
the distributed system. Note, however, that while we have
applied this framework to a GCM system, due to a generic
nature of our methodology, such procedure could be applied
to other systems and scenarios.

An interesting and promising prospect is seen in using the
deductive reasoning to assist other verification methods such
as model checking by filling the gaps in those areas where
these other well established methods cannot be used. For
example, such application can inform the model checking
approach, which is very efficient when applied to a finite
state system with the reasonable amount of state, but suffers
from the state explosion problem when the underlying
system is large.

Future works will also include a prototype development
along the Grid IDE project, performance testing (and pos-
sibly some further complexity reduction analysis), as well
as considering other approaches and methods which can be
used and could enhance the verification procedure (such as
natural deduction as a verification tool).

ACKNOWLEDGMENT

This research has been carried out under the European
research and development project GridCOMP (Contract IST-
2005-034442) funded partially by the European Commis-
sion.

371385385

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Basic Features of the Grid Component Model. Deliverable
D.PM.04, CoreGRID, March 2007.

[2] A. Basso and A. Bolotov Towards GCM re-configuration -
extending specification by norms. Submitted to: CoreGRID
Workshop on Grid Programming Model, Grid and P2P Systems
Architecture, Grid Systems, Tools and Environments, Herak-
lion, 2007.

[3] A. Basso and A. Bolotov and A. Basukoski and V. Getov
and L. Henrio and M. Urbanski Specification and verification
of reconfiguration protocols in grid component systems. In:
Proceedings of the 3rd IEEE International Conference on
Intelligent Systems (IS-2006). IEEE, Los Alamitos, USA, pp.
450-455.

[4] A. Basso and A. Bolotov and V. Getov. Automata-based For-
mal Specification of Stateful Systems. In Proc. of Automated
Reasoning Workshop, 2008.

[5] A. Basso and A. Bolotov and V. Getov. Behavioural Model of
Component-based Grid Environments. From Grids To Service
and Pervasive Computing, pages 19-30, Springer, 2008.

[6] A. Basso and A. Bolotov and V. Getov. State-Based Behavior
Specification for GCM Systems. In Proc. of Automated
Reasoning Workshop, 2009.

[7] A. Basso and A. Bolotov and V. Getov and L. Henrio. Dy-
namic reconfiguration of GCM components. Technical Report,
CoreGRID 2008.

[8] A. Basukoski and V. Getov and J. Thiyagalingam and S.
Isaiadis. Component-Based Development Environment for
Grid Systems: Design and Implementation. Making Grids
Work, Springer, 2008.

[9] T. Barros and L. Henrio and A. Cansado and E. Madelaine
and M. Moreland V. Mencl and F. Plasil. Extension of the
Fractal ADL for the Specification of Behaviours of Distributed
Components Accepted for poster presentation at the 5th Fractal
Workshop (part of ECOOP’06), Nantes, France, July 2006.

[10] T. Barros and L. Henrio and E. Madelaine. Verification
of Distributed Hierarchical Components. In Proc. of the
International Workshop on Formal Aspects of Component
Software (FACS’05). Electronic Notes in Theor. Computer Sci.
160. pp. 41-55 (ENTCS), 2005.

[11] A. Bolotov. Clausal Resolution for Branching-Time Temporal
Logic. PhD thesis, Department of Computing and Mathemat-
ics, The Manchester Metropolitan University, 2000.

[12] A. Bolotov and C.Dixon and M. Fisher. On the Relationship
between Normal Form and w-automata (with M.Fisher and
C.Dixon). Journal of Logic and Computation, Volume 12, Issue
4, August 2002, pp. 561-581, Oxford University Press.

[13] A. Bolotov and M. Fisher. A Clausal Resolution Method for
CTL Branching Time Temporal Logic. Journal of Experimental
and Theoretical Artificial Intelligence, volume 11, 1999, pages
77-93, Taylor & Francis.

[14] E. Bruneton and T. Coupaye and J.B. Stefani. Recursive and
dynamic software composition with sharing. In Seventh Int.
Workshop on Component-Oriented Programming (WCOP02),
at ECOOP 2002, Malaga, Spain, 2002.

[15] E. Bruneton and T. Coupaye and J.B. Stefani.
The Fractal component Model. Electronic resource:
http://fractal.objectweb.org/specification/fractal-
specification.pdf. February 2004.

[16] CoreGRID - The European Research Network on
Foundations, Software Infrastructures and Applications for
large scale distributed, GRID and Peer-to-Peer Technologies.
http://www.coregrid.net/

[17] E. M. Clarke and A. Fehnker and S. Jha and H. Veith.
Temporal Logic Model Checking., Handbook of Networked
and Embedded Control Systems, 2005, pages 539-558.

[18] C. Dixon and M. Fisher and B. Konev. Tractable Temporal
Reasoning. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), pages 318-
323, January 6-12th 2007, Hyderabad, India.

[19] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science:
Volume B, Formal Models and Semantics., pages 996–1072.
Elsevier, 1990.

[20] A. Lomuscio and B. Wozna. A complete and decidable
axiomatisation for deontic interpreted systems. In DEON,
volume 4048 of Lecture Notes in Computer Science, pages
238–254. Springer, 2006.

[21] J. Matevska-Meyer and W. Hasselbring and R.H. Reussner.
Software architecture description supporting component de-
ployment and system runtime reconfiguration. Proceedings
of the Ninth International Workshop on Component-Oriented
Programming, Oslo, Norway, 2004.

[22] M. Niamanesh and N.F. Nobakht and R. Jalili and F. H.
Dehkordi. On Validity Assurance of Dynamic Reconfiguration
for Component-based Programs Electronic Notes in Theoreti-
cal Computer Science Volume 159, 24 May 2006, Pages 227-
239 Proceedings of the First IPM International Workshop on
Foundations of Software Engineering (FSEN 2005)

[23] E.A. Strunk and J.C. Knight. Assured Reconfiguration of
Embedded Real-Time Software. DSN ’04: Proceedings of the
2004 International Conference on Dependable Systems and
Networks (DSN’04), 2004, p. 367, IEEE Computer Society.

[24] M. Wermelinger and J. L. Fiadeiro. A Graph Transformation
Approach to Software Architecture Reconfiguration. Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transforma-
tion Systems GraTra2000.

[25] Y. Zhang and Y. Ding. CTL Model Update for System
Modifications. Journal of Artificial Intelligence Research,
2008; 31:113-155.

[26] L. Zhang and U. Hustadt and C. Dixon. First-order resolution
for CTL. Technical Report ULCS-08-010, Department of
Computer Science, University of Liverpool, 2008.

372386386

Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 05:46:52 EST from IEEE Xplore. Restrictions apply.

