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In 1970, Aroesty and Gross investigated the influence of local plasma convection in between 

two successive red blood cells (RBC) in a capillary on the local oxygen transfer into tissue by 

combining convectional and diffusional oxygen transport, They concluded that the effect of local 

plasma convection on oxygen transport in the capillaries was insignificant. Here it is shown that 

this result was due to their choice of flat oxygen concentration profiles as boundary conditions.

In fact, the plasma motion can be of importance when more realistic oxygen concentrations are 

used as boundary conditions. The fluxes of oxygen through the capillary wall could be up to 

50% larger as compared to those of Aroesty and Gross, especially for low hematocrit values 

and for maximally working muscle. Since the boundary concentrations in the model of the current 

paper are fixed, chosen not to be influenced by the transport processes, calculations will not 

show to what extent motion really enhances the oxygen transport, and should be considered as 

rough indications of the effect of plasma motion. The results in this investigation indicate that 

in capillaries motion has to be taken into account under conditions of low hematocrit or high

RBC velocity. © 1996 Academic Press, Inc.

INTRODUCTION

In the microcirculation, both diffusion and convection play an important role in 
oxygen transport to tissue. Of these two transport phenomena, the former is the 

better defined and relatively easy to incorporate in mathematical models of tissue 

oxygenation. It was the first to be modelled (Krogh, 1919). The latter is more compli

cated and in most models only partly implemented. In these models, only the global 

transport of blood, including red blood cells (RBC), is taken into account. In this type 

of ‘global’ convection, radial components of the velocity of the plasma are neglected. 

A large number of authors investigated tissue oxygenation by means of diffusion and 

global convection (e.g., Groebe, 1990; Tsai and Intaglietta, 1993; Secomb et aL, 1993; 

Sharan et aL, 1991). A major difference among these models is how the oxygen 

transport phenomena in the capillaries are described. There is more to be said about

convection in the capillaries.
In small capillaries the RBCs fill the capillary completely or at least almost com-

1 To whom correspondence and reprint requests should be addressed. Fax: -1*31 24-3540535. E-Mail: 

C.Bos@fysio.kun.nl.

39

0026-2862/96 $12.00
Copyright © 1996 by Academic Press, Inc. 

All rights of reproduction in any form reserved.

mailto:C.Bos@fysio.kun.nl


40 BOS, HOOFD, AND OOSTENDORP

pletely in the transverse direction. Between the RBCs there will be gaps of various 

lengths filled with plasma. In these gaps local convection may induce motion of the 

plasma, which might enhance the oxygen transport into the tissue. This can be investi

gated by coupling the local convection to the diffusion by use of the plasma velocity 

components in the mass-balance equations. For this purpose, a model of the local

convection is needed.
Convection was extensively investigated for relatively simple geometries in the

sixties and reviews of these studies can be found in literature (Gross and Aroesty, 

1972; Huang, 1971; Leonard and J0rgensen, 1974). Both (semi-) analytical (Duda and 

Vrentas, 1971; Lew and Fung, 1969; Wang and Skalak, 1969) and numerical solutions 

(Aroesty and Gross, 1970; Bugliarello and Hsiao, 1970) are to be found. An analogue 

of oxygen diffusion is heat transfer. The effect of motion on heat transport was 

investigated experimentally by, for instance, Prothero and Burton (1961). They found 

motion could improve heat transfer by up to twofold. However, Aroesty and Gross 

(1970) showed that one has to be careful in extrapolating these results to oxygen 

transport. Therefore they developed a mathematical model which combined local 

convection and diffusion. They concluded from this model that the effect of plasma 

motion on local oxygen transport was insignificant. Their study was the basic justifica

tion for omitting local plasma convection in investigations of oxygen transport in 

capillaries.

When one carefully looks at the concentration gradients that are calculated with 

models based on diffusion and net convection, it is obvious that the oxygen concentra

tion profile at the plasma-tissue and the plasma-RBC interface is curved, with a 

higher value at the upstream RBC and a lower value at the downstream RBC (Groebe 

and Thews, 1989; Groebe, 1990; Hoofd, 1992). These curved profiles originate from 

the particulate nature of blood and the difference in concentration at the up- and 

downstream RBC is caused by the oxygen loss of the RBCs. Aroesty and Gross, 

however, set the concentration at the plasma-tissue interface and the plasma-RBC 

interfaces to constant values, with the same value at both RBCs. This discrepancy in 

concentration at the boundary of the plasma between the model of Aroesty and Gross 

and the values that are available from current tissue models, will be considered in 

this paper. If the outcome of the study of Aroesty and Gross does not depend on the 

choice of boundary concentrations, their conclusion will be generally applicable. In 

other words, if local plasma convection never affects oxygen transfer, this should be 
true for every type of boundary condition.

In this study more realistic boundary conditions are applied to the model of Aroesty 

and Gross (1970). The results will show whether the influence of plasma motion on 

local oxygen supply really can be ignored or that further study is needed.

MATHEMATICAL MODEL

The model is developed for a cylindrical plasma gap between two RBCs. Conse

quently the cylindrical coordinate system r — (r, c/>, z) is used. Because of axial 

symmetry there is no dependence on the azimuthal angle 4>, consistent with the layout 

of the model of Aroesty and Gross. In Fig. 1 it is indicated that half the distance 

between the RBCs is L, the radius of the capillary is R and the velocity of the RBCs 

is v/ŒC. Since only the effect of local convection was investigated the plasma motion
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Fig. 1. Lay-out of model (upper part) and boundary concentrations (lower part). A rough depiction of 

the streamlines is shown for RIL = 1.0.

was considered relative to the RBCs, which simplifies the describing equations. This 

is similar to a moving wall with fixed RBCs where the wall moves with velocity 

—vRBC. The equations are extensively described by Aroesty and Gross (1970). Next 

the major equations that set up the model will be shown.

The fluid dynamics is modelled by two equations: the equation of continuity, which 

is the mass balance, and the equation of motion, which is the momentum balance. 

Unlike blood, plasma is considered to be a Newtonian fluid, i.e., with a constant 

density p and a constant viscosity This leads to the Navier-Stokes equation, but 

for low Reynolds numbers, with a characteristic distance d (Re = p'v*dl\i < 0.1), 

the equation can be simplified to Stokes flow (Bird et al, 1960). In capillaries the 

Reynolds number is approximately 10-3. Thus, the fluid dynamics is described by

f(V-U) -0
( l )[V/? = /¿V v,

where p is the pressure, v is the velocity of the fluid, the dot denotes the inner product 

of two vectors, V is the gradient operator, and V2 is the Laplace operator. For the 

chosen coordinate system the gradient and Laplace operator are defined as

V

d_

dr

d

dz

2 S2 i d  d2
V  =  — - + --- +

dr r dr dz
(2)

The equations of motion and continuity are solved by means of the stream function 

where the velocity components are expressed as derivatives of \P. For this case 

the stream function is defined as the solution of
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1 d #  1 d $
— 5 Mr » v

r dr r dz

where u~ and ur are, respectively, the axial and radial component of the dimensionless 

velocity u, where Ti ^  v!vrhC' The stream function can either be solved from a fourth 

order partial differential equation (PDE) or from a system of two second order PDEs. 

Here, we follow Aroesty and Gross (1970) by solving a system of two equations, 

since the number of grid points needed in numerical computation is less than with 

the fourth order equation. To solve the stream function, two simultaneous equations

have to be solved:

E2ÿ = tÇ dur duz J a2 1 d d2
with L -------- and E — — r -----+ — ^ , (4)

E2(rQ = 0’ dz dr dr2 r dr dz2

where £ is the vorticity, which is the curl of the velocity (V X 2). The boundary 

condition for the fluid dynamics is zero slip at the boundary surfaces, which leads to

stream lines of constant similar to those in Fig. 1.

The velocity components derived from the stream function are needed for the mass 

transfer equation. When steady state is assumed, the mass conservation equation 

becomes

(U ■ Vc) = DV2c, (5)

where c is the concentration, and D is the diffusivity. The motion is introduced in the 

left-hand side and the diffusion is defined in the right-hand side. The equations are 

made dimensionless by means of the characteristic length L, the characteristic velocity 

vRBC, and the dimensionless concentration c* = (c - Co)/ct, which is calculated from 

the equation

_ . de* ôc*\ c) c* 1 dc* d c*
Pel uz--- f- ur-- 1 — — -—h ---- H----— , (6)

dz dr I dr r dr dz

where Pe = vRBC-LID is the Peclet number. It can easily be seen that Pe is zero if 

the local convection is neglected. Then, the local mass transfer is entirely based on 
diffusion.

To calculate the dimensionless concentration profile, boundary conditions for the 

concentration at the borders of the plasma are needed. Aroesty and Gross used (dimen

sionless) concentrations of 1 at the tissue-plasma intexface and 0 at the RBC-plasma 

interface, which implies oxygen uptake by the RBCs. Exactly the same effect of 

plasma motion will be found when the boundary concentrations are set to 0 for the 

tissue-plasma interface and 1 for the RBC-plasma interface, implying oxygen release 

from the RBCs. It is obvious that these are unrealistic conditions, resulting in singulari

ties in the describing equations at the comers of the gap. Still, these concentrations 

are useful indeed as a first investigation of the effect of motion. More realistic boundary 

concentrations might be obtained from models that rely on diffusion and global convec-
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tion, even though these models do not take into account the motion of plasma. The 

curved concentration profiles as obtained from such models (Bos el a i, 1995; Groebe 
and Thews, 1989; Groebe, 1990; Hoofd, 1992) can be used as boundary concentrations. 
For simplicity these boundary concentrations will be approximated by second order 
polynomials. In this study we use the model of Bos et a i (1995) to approximate these 
boundary concentrations. The equations are

where a, is the concentration drop from the center of the RBC to the border, and a2 

is the concentration drop between two successive RBCs. Note that there is a maximum 

and a minimum for c* of 1 and 0, respectively, and that the concentrations are 
continuous at the edges.

Similar to the convection, the oxygen flux through the capillary wall can also be 

considered on a local and a global scale. To investigate the effect of motion on the 

local mass transfer Aroesty and Gross introduced a ratio m of gradients at each location 
along the boundary of the gap, defined as

m is defined along all boundaries: at the capillary wall m = (dd dr)PJ(dddr)Pe=n and 

along the RBC rh = (dc/dz)pj(dc/dz)pe=n* This ratio shows the effect of motion on the

an easy estimate of the change in overall oxygen fluxes through the capillary wall. The 
change in the local gradient does not necessarily show whether the global flux is changed, 

since a large change of a small gradient might be compensated for by a small change of 
a large gradient. Therefore we introduce (p, the ratio of the global flux across the entire

flux at the capillary wall can be calculated by means of a flux ratio which is defined as:

R
upstream RBC (z = —L)

c* = i — a2 _  r2 downstream RBC (z = L)
R

c* = rf z2 ~ ~ j z + a4 capillary border (r = R)
JLj Z*Lj

(7)

Local mass transfer rate (convection 4- diffusion)
(8)m

Local mass transfer rate (diffusion only)

local mass transfer. Although this provides interesting information, it does not provide

boundary with plasma motion to the global flux without motion. The difference in oxygen

(9)

Essentially, m and tp describe the same phenomenon, m local and ip global.
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The results of model calculations will be presented and compared both for situations 

as considered by Aroesty and Gross and for more realistic boundary concentiations. 

Similarities between the two approaches are that calculation of the local convection 

is identical and that the calculation of the oxygen transfer is based on the use of fixed 
oxygen concentration profiles as boundary conditions. The difference is the shape of 

the oxygen profiles that are used as boundary conditions for the calculation of the

oxygen concentrations throughout the plasma.

RESULTS

The model was used to perform calculations for rat heart. The diameter of capillaries 

varies, but since in the present model the RBC fills the capillary, only a small radius 

is considered. The volume of an RBC is 61 (//,m)3 (Altman et al, 1958). For R = L 

and a 40% hematocrit this results in a capillary radius of 2.44 ¿¿m, which is a typical 

value for rat heart capillaries. The diffusion coefficient of oxygen in plasma is about 

2* 10~9 m ^s"1 (Groebe, 1990; Nair et aL, 1990). Based on a average RBC velocity 
of 1 mm-sH (Rakusan and Blahitka, 1974), Hoofd et a l (1990) calculated a value 

for aF/f which leads to v/D = (aFli)l(7rR2) = 0.565 (/¿m)”1 for “resting” rat heart 

muscle (i.e., nonexercising rat). These values can be used to calculate the Peclet 

number, which is indicative of the amount of convection. Therefore, to investigate 

the effect of motion the equations were solved for different Peclet numbers. The 

maximal value for Pe is found for a low hematocrit together with a high velocity. 

Here, the lowest hematocrit is 20% and maximal value for v/D is five times 0.565

which results in Pe = 18. This maximal value for v/D is chosen since for 

different species, the coronary flow can increase about five times for heavy work 

(Honig, 1981; Lochner, 1971; Van Citters and Franklin, 1969).

In Fig. 2 the calculated oxygen profiles are shown for Pe = 1 and Pe = 10. To 

show the effect of local plasma convection on the profiles the difference between 

those two profiles is also depicted. These figures can also be used to get an impression 

of the concentration profiles that are used as boundary conditions. In Fig. 3 the 
corresponding local gradients are shown for A, B, C, and D. The RBCs move from 
left to right.

In Figs. 3A and 3C, the effect of motion on tn is shown for boundary conditions 

similar to those used by Aroesty and Gross (1970). They showed only the rh along 

the capillary for R/L = 1.0, and it is obvious that motion does alter the local mass 

transfer but the impact is rather small, since the enhancement at the downstream side 

is almost cancelled by the changes at the upstream side. When the RBC spacing

conditions of Aroesty and Gross (not shown). It can also be seen that the flux at the 

upstream RBC increases while the flux at the downstream RBC decreases, so the 

contribution of the upstream RBC to the tissue oxygenation increases at the expense 

of the downstream RBC. This raises the question as to whether the effect of motion 

is more important when both RBCs have different oxygen concentrations.

This question is addressed together with the investigation of the effect of more 

realistic continuous oxygen profiles as boundary concentrations. In Table 1 the effect 
of motion on the total oxygen flux at the capillary border is shown through ip( ) 

with various boundary concentrations. It can easily be seen that the effect of motion 

is insignificant for the boundary conditions of Aroesty and Gross. When either a



(a) (b) (c)

A

B

C

D

upstream
RBC

V

upstream
RBC

downstream
RBC

upstream 
RBC

downstream
RBC

downstream
RBC

upstream
RBC

ic’

upstream
RBC

downstream
RBC

upstream
RBC

*

downstream
RBC

downstream
RBC

R downstream 
RBC

P downstream 
RBC

upstream 
RBC

R downstream 
RBC

downstream 
RBC

d downstream 
R RBC

m
o
H

o

r
O
o
>
r

r
>
in

>
O
o
2:
<
m
o
H
o

o
'Z

Q
X
<
o
m
2

X
>
:zin
*u
O
50

-p*
Lf\

F ig . 2. Oxygen concentration profiles for Pe = 1 (a) and Pe = 10 (b) and concentration difference (c) between Pe = 10 and Pe = 1. A , B, C, and D are 

for the same hematocrit and boundary conditions as their corresponding examples in Fig. 3 and Table I. The RBCs move from left to right.
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e 1.00

° ̂  .0

Fig. 3. Local mass transfer ratio at the gap borders: upstream (a), tissue (b), and downstream (c). The 

boundary concentrations are identical to those in Fig. 2 and in Table 1.

concentration drop between two successive RBCs or curved boundary concentrations 

are introduced separately (not shown here) the effect of motion becomes visible. In 
Table 1 a combination of both the concentration drop and the curved profile is used

TABLE 1

Effect of Motion on the Flux at the Capillary Wall

Fig. 2 Hct a2 R/L

Pe

(Rest)

Pe

(Max) ¥>(1) <P(2) ¥>(10)

<p( Pe) 

(Rest)
¥>(Pe)
(Max)

A 40% 0 0 1.0 1.4 6.8 1.00 1.00 1.00 1.00 1.00
B 40% 0.34 0.18 1.0 1.4 6.8 1.01 1.03 1.15 1,02 1.10
C 20% 0 0 0.4 3.7 18 1.00 1.00 1.00 1.00 1.00
D 20% 0.23 0.12 0.4 3.7 18 1.01 1.02 1,24 1.07 1.51

Note. ax and a2 from equation (7), and tp( ) from equation (9). Rows with ax = a2 = 0 are boundary 

concentrations as used by Aroesty and Gross (1970), and in the remaining rows a{ and a2 are estimated 
from Bos el al (1995).
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Hct = 20% Hot - 40%

Fig . 4. Effect of coefficients ai and a2 from equation (7) on the overall oxygen flux at Pe = 10, and 
hematocrit values of 0.2 and 0.4.

(where both a{ and a2 are nonzero). This results in a significant effect of motion on 
the oxygen transport.

The interpretation of the coefficient a2 is straight forward. It is the average difference 
in p02 at the plasma-RBC interface of the up- and downstream RBC. In Fig. 4 it is 

shown that ip is primarily influenced by a2. The other coefficient, au affects both the 
curvature of the oxygen profile at the plasma-RBC interfaces and the profile at the 

plasma-tissue interface. An increase of <X\ results in a steeper profile at the RBC wall 

and the opposite happens at the tissue wall. The coefficient a{ hardly influences the 

oxygen flux through the plasma-tissue interface. This can be inteipreted either as 

insignificant contribution of the curvature of the oxygen profiles or as a cancelation 
of the effects of the change in curvature of the two profiles.

DISCUSSION

Oxygen transport is based on two phenomena: diffusion and convection, Some 

of the effects of both of these on oxygen transport can be determined from the 

local mass transfer rate ratio. Some of the differences in m as depicted in Fig. 3 
for RIL “ 1.0 and 0,4 with the boundary conditions of Aroesty and Gross (Figs. 

3A and 3C) can be explained by the difference in characteristic time for diffusion 

(rD = a2ID) and the one for convection (rv = a/v), where a is the characteristic 

distance. The characteristic distance for diffusion to the surrounding tissue is R, 

which is a constant, and the characteristic distance for convection between two 
successive RBCs is L. For the data used here r Dlr v = (i£/L)2*Pe, which shows 

that the characteristic times are equal for Pe = 1.0 and RIL = 1.0. The streamlines 
are independent of the velocity, but they depend on the ratio RIL. For RIL = 1.0 

the radial velocity component in the plasma is significant at z — 0.25 L, resulting 

in relatively well-mixed gaps. For low ratios the shape of the streamlines is much 

flatter and the radial velocity only plays a role close to the RBCs (Bugliarello 

and Hsiao, 1970). This clarifies the different shapes of m for RIL =1.0 and 0.4, 

In Fig. 3C, the shift to the right of the intersection at m - 1 near z = 0 for higher 

Pe can be associated with the increase of the ratio t d I t v. The same arguments 

hold for Figs. 3B and 3D, but it is much more complicated to understand the 

implications here, since the boundary concentrations are continuous, nonlinear



48 BOS, HOOFD, AND OOSTENDORP

functions of r or z- Since the ratio m is hard to interpret, the ratio of flux at the 

capillary border is introduced. Therefore the Figs. 3B and 3D will not be discussed

in detail.
The ratio ) as defined in Eq. (9) depends on the same phenomena as m, but 

the contribution of each of these phenomena cannot be determined separately. It does 

demonstrate, however, the difference in flux at the capillary wall. In Table 1 it is 

shown that for resting rat heart muscle, an increase in flux of 2 to 7% is calculated 

depending on the hematocrit. The impact of an increase in flux of, say, 5% is still 

rather small, since the supplied volume will increase 5% too and therefore the Krogh 

cylinder radius will only increase with a factor of about J1.05, which is an increase 

of 2%. For maximal flow and a hematocrit of 20% the flux is up to 51% higher than 

without motion, which would imply a 23% larger radius of the Krogh cylinder. This 

is a substantial increase. The hematocrit in the capillaries is usually about half the 
systemic hematocrit, hence the calculations suggest a substantial increase for high

flow conditions in rat heart.
Although these results are interesting, no final word can be said about the 

effect of motion on the oxygen transport. First of all, the influence of the chosen 

geometry has not been investigated. The geometry used here is applied often in 

modelling but is certainly not the geometry in vivo. Bugliarello and Hsiao (1970) 

showed that a small flow along the RBCs or a small curvature of the RBCs hardly 

alters the streamlines. For large deviations of the cylinder geometry, though, or 

with interaction of RBCs the streamlines are substantially different (Sugihara- 

Seki, 1992; Sugihara-Seki and Skalak, 1988; Wang and Skalak, 1969) and the 

oxygen transport is likely to be different, since even without local convection 

the RBC shape has a large influence on the oxygen concentration profiles (Wang 

and Popel, 1993). Secondly, the concentrations at the plasma boundaries are 

assumed to be the same for different Pe numbers. To incorporate changes in 

boundary concentrations, the model has to be extended to include the binding of 

oxygen to hemoglobin inside the RBCs and to myoglobin in the tissue and possi

bly also to convection inside the RBCs. Finally, the values for maximal flow are 

rough estimates. Values for RBC velocities for maximal working muscle are hard 
to find in the literature. For resting rat skeletal muscle values of down to 0.1 

mm - s-1 are reported (Fisher et aL, 1992; Tyml et aL, 1992). For these values 

the motion is likely to be insignificant. Tyml (1991) found an average RBC 

velocity of 0.08 ± 0.07 mm-s™1 for resting rat skeletal muscle and a value of

1.0 ± 0.36 mm*s_1 for moderately contracting muscle. For contracting muscle 

the highest value was in the range 2.1-2.2 mm-s“1. For maximally working 

muscle a much higher value for the RBC velocity can be expected than for resting 

muscle. Even if the maximal flow is half of that assumed here, there still is a 

notably higher oxygen transfer rate with motion than without motion. It is obvious 

that it is important to obtain accurate measurements of the upper end of the RBC

velocity range, since the effect of motion starts to be important at velocities 
around 1 mm * s“1.

The tissue around the capillary is also a factor of importance. The changes in 

gradient at the tissue—plasma interface depend on both the gradient in the plasma and 

the gradient in the tissue. Therefore an accurate model should also calculate the 

gradient in the tissue adjacent to the capillary. Modelling of an additional thin layer 
of tissue will suffice, since the gradients damp out quickly (Bos et aL, 1995),
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CONCLUSION

Aroesty and Gross (1970) stated that the effect of motion is negligible. The outcome 

of their investigation was determined by their choice of concentrations at the gap 
boundaries. If the effect of motion were always negligible, then their statement should 

also be true for boundary concentrations originating from models that neglect the 

motion. It is shown here that the outcome of their study is often true, but that motion 

can be a significant factor in oxygen transport when boundary concentrations are used 

that are similar to those found with the nonmotion models. Although there are some 

assumptions made in the current model that need further investigation, it is clear that 

motion of plasma is likely to play a role in the oxygen transfer from the RBCs to the 
tissue for low hematocrit values and high RBC velocities.
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