

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Design metrics for web application maintainability
measurement.

Emad Ghosheh1
Sue Black2
Jihad Qaddour 3

1 Department of Electrical and Electronic Engineering, Eastern Mediterranean
University
2 School of Electronics and Computer Science, University of Westminster

3 School of Information Technology, Illinois State University

Copyright © [2008] IEEE. Reprinted from the proceedings of the 6th
IEEE/ACS International Conference on Computer Systems and Applications,
Doha, Qatar, March 31 - April 4, 2008. IEEE, pp. 778-784. ISBN
9781424419678.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161117799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design Metrics for Web Application Maintainability Measurement

Emad Ghosheh
AT& T, One Bell Center
Saint Louis, MO, USA.

eg2534@att.com

Sue Black
University of Westminster

Department of Information and Software Systems,
Harrow School of Computer Science

London HA1 3TP, UK
s.e.black@westminster.ac.uk

Jihad Qaddour
Illinois State University

School of Information Technology,
Normal, IL 61790-5150, USA

jqaddou@ilstu.edu

Abstract

Many web applications have evolved from simple HTML
pages to complex applications that have a high maintenance
cost. This high maintenance cost is due to the heterogeneity
of web applications, to fast Internet evolution and the fast-
moving market which imposes short development cycles and
frequent modifications. In order to control the maintenance
cost, quantitative metrics for predicting web applications
maintainability must be used. This paper provides an ex-
ploratory study for new design metrics used for measur-
ing the maintainability of web applications from class di-
agrams. The metrics are based on Web Application Exten-
sion (WAE) for UML and will measure the following design
attributes: size, complexity, coupling and reusability. In this
study the metrics are applied to two web applications from
the telecommunications domain.
Keywords: Web applications, metrics, maintainability,
UML.

1 Introduction

Many World Wide Web applications incorporate impor-
tant business assets and offer a convenient way for busi-
nesses to promote their services through the Internet. A
large proportion of these web applications have evolved
from simple HTML pages to complex applications which
have high maintenance cost. This is due to the laws of soft-
ware evolution [11] and to some special characteristics of
web applications. Two software evolution laws [11] that af-

fect the evolution of web applications are:

• First Law-Continuing change: a program used in the
real world must change or eventually it will become
less useful in the changing world.

• Second Law-Growing complexity: as a program
evolves it becomes more complex and extra resources
are needed to preserve and simplify its structure.

In addition to this, web applications have some charac-
teristics that make their maintenance costly: heterogeneity,
speed of evolution, and dynamic code generation. In order
to control the maintenance cost of web applications, quanti-
tative metrics for predicting web applications maintainabil-
ity must be used. Web applications are different from tradi-
tional software systems, because they have special features
such as hypertext structure, dynamic code generation and
heterogeneity that can not be captured by traditional and
object-oriented metrics, hence metrics for traditional sys-
tems can not be applied to web applications.

This paper provides an exploratory study for new design
metrics used to measure the maintainability of web appli-
cations from class diagrams. The metrics are based on the
Web Application Extension (WAE) for UML and measure
the following design attributes: size, complexity, coupling
and reusability. The remainder of this paper is organized as
follows: Section 2 gives a review of web application mod-
eling using UML and discusses related research. Section 3
introduces the new design metrics used for measuring the
maintainability of web applications. Section 4 applies the
design metrics to two case studies from the telecommuni-

978-1-4244-1968-5/08/$25.00 ©2008 IEEE 778

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

ServerPage

ClientPage Form

«HTMLSubmit»

ClientPage2

«HTMLLink»

Web Page

builds

ServerPage2

ServerPage3

«JSPInclude»

«JSPForward»

ScripletsFrames

*
*

*

Figure 1. Web Applications Model

cation domain. Finally, section 5 provides a conclusion and
describes future work to be undertaken.

2 Background & Related Work

2.1 Web Application Modeling using the
Unified Modeling Language(UML)

Modeling is a technique used to represent complex sys-
tems at different levels of abstraction, and helps in man-
aging complexity. UML is an object-oriented language [5]
that can be used to model object-oriented systems. Web
applications are not inherently object-oriented, therefore, it
is difficult to use UML to model them, but UML has now
been enhanced with extensions to capture web applications
various elements. Conallen proposed an extension of UML
for web applications [5], Figure 1 shows the elements of the
Conallen web application model.

The important elements of Conallen’s model are as fol-
lows [5]:

• Web Page: a web page is the primary element of a web
application. It is modeled with two separate stereo-
typed classes, the client page and the server page. The
client page contains client side scripts and user inter-
face formatting. The server page contains server meth-
ods and page scoped variables.

• Relationships: the model defines the following rela-
tions between different components: builds, redirects,
links, submit, includes, and forwards. The builds re-
lationship is a directional relationship from the server
page to the client page. It shows the HTML output

coming from the server page. The redirects relation-
ship is a directional relationship that requests a re-
source from another resource. The links relationship
is an association between client pages and server or
client pages. It models the anchor element in HTML.
The links relationship can have parameters which are
modeled as attributes in the relationship. The submit
relationship is a relationship between the form and the
server page that processes it. The include relationship
is a directional association between a server page and
another client or server page. The forward relationship
is a directional relationship between a server page and
a client or server page. This presents delegating the
server request to another page.

• Forms: forms are defined to separate the form process-
ing from the client page. The form element contains
field elements. Forms are contained in client pages.
Each form submits to a different action page.

• Components: components run on the client or server
page. ActiveX controls and Applets are examples of
components.

• Scriplet: a scriplet contains references to components
and controls that are re-used by client pages.

• Framesets: a frameset divides the the user interface
into multiple views each containing one web page.
Frames can contain more than one client page, but they
must contain at least one client page.

• XML: an XML element is a hierarchical data represen-
tation that can be passed back and forth between client
and server pages.

779

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

Metric Type Description

Size Total number of server pages (NServerP)

Total number of client pages (NClientP)

Total number of web pages (NWebP)=(NServerP + NClientP)

Total number of form pages (NFormP)

Total number of form elements (NFormE)

Total number of client components (style sheet and JavaScript compo-
nents)(NClientC)

Structural Complexity Total number of link relationships (NLinkR)

Total number of Submit relationships (NSubmitR)

Total number of builds relationships (NbuildsR)

Total number of forward relationships(NForwardR)

Total number of include relationships(NIncludeR)

Total number of use tag relationships(NUseTagR)

Control Coupling Number of relationships over number of web pages: WebControlCoupling =
(NLinkR + NSubmitR + NbuildsR + NForwardR + NIncludeR + NUseTagR)/
NWebP)

Data Coupling Number of data exchanged over number of server pages: WebDataCoupling =
(NFormE / NServerP)

Reusability Number of include relationships over number of web pages: WebReusability =
(NIncludeR / NWebP)

Table 1. Web Application Design Metrics

2.2 Related Work

One of the main concerns of system stakeholders is to
increase the maintainability of the software system. Main-
tainability can be defined as:

The ease with which a software system or

component can be modified to correct faults, improve per-
formance or other attributes, or adapt to a changed envi-
ronment [3].

Maintainability can be measured by measuring some of
the sub-characteristics of maintainability such as under-
standability, analyzability, modifiability and testability.
Kiewkanya et al [10] measured maintainability by measur-
ing both modifiability and understandability. In Coleman et
al [4] quantify maintainability via their Maintainability In-
dex. The Maintainability Index is measured as a function of
directly measurable attributes A1 through An as shown in
Equation 1:

M = f(A1, A2,, An) (1)

The measure (M) is called a Maintainability Index which
can differ depending on the attributes being used in the
measurement, Fioravanti et al [8] used effort for measuring
maintainability.

Most of the studies related to maintainability measure-
ments have looked at structured and object-oriented sys-
tems. Little work has been done in this regard with web
applications. The Web Application Maintainability Model

(WAMM) [6] used source code metrics measuring the main-
tainability using the Maintainability Index. In WAMM new
metrics were defined, but not validated empirically or the-
oretically. There is also a need to prove how practical
WAMM will be in an industrial environment. Two studies
use regression analysis to define and validate metrics and
models for web applications: in [13] design and authoring
effort were the dependent variables. The independent vari-
ables were based on source code metrics. There is still a
need for more empirical studies to validate these newly de-
fined metrics in order to make general conclusions. In [2]
design metrics were introduced based on W2000 which is
a UML like language. In the study the dependent variables
were variations of design effort. The independent variables
were measured from the presentation, navigational and in-
formation models. Some data for the presentation model
was discarded in the study due to lack of participation from
all subjects. It is not known how useful this approach would
be, since it is not known if the W2000 language is used out-
side the educational environment and if it will become pop-
ular in industrial environments. In [1] maintenance time
is used as the dependent variable and some metrics based
on the navigation model are used as independent variables.
WebMo [15] introduces the notion of Web Objects as size
measures for predicting the effort of developing web appli-
cations. Case Based Reasoning [14] is an approach that uses
a number of projects features stored in a database to predict
the effort of the current project. Further details of web ap-
plication maintainability approaches are given in [9].

780

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

Metric Type Metric Name Measurement

Size (NServerP) 4

Size (NClientP) 3

Size (NWebP) 7

Size (NFormP) 1

Size (NFormE) 3

Size (NClientC) 0

Structural
Complexity

(NLinkR) 6

Structural
Complexity

(NSubmitR) 1

Structural
Complexity

(NBuildsR) 3

Structural
Complexity

(NForwardR) 1

Structural
Complexity

(NIncludeR) 2

Structural
Complexity

(NUseTagR) 0

Control Cou-
pling

(WebControlCoupling) 1.86

Data Coupling (WebDataCoupling) 0.75

Reusability (WebReusability) 0.28

Table 2. Measurements of Sample Class Dia-
gram

3 UML Web Design Metrics

There are several design quality attributes defined in the
literature that have an effect on maintainability such as cou-
pling, cohesion and complexity. This study defines metrics
for the following design attributes: size, complexity, cou-
pling and reusability. The metrics are shown in Table 1,
and are based on UML class diagrams for web applications.
Figure 2 shows a sample class diagram and Table 2 shows
the results of calculating the metrics from the sample class
diagram. A description of the design attributes is given as
follows:

• Size: size can be measured by counting Lines of Code
[8]. In this approach the size of a UML class diagram
is measured by counting the number of components in
the diagram.

• Complexity: complexity can be measured by calculat-
ing the number of loops and branches in a component.
McCabe Cyclomatic Complexity [12] is a common
measure for complexity. This study uses the number
of associations and relations in UML class diagrams to
measure complexity.

• Coupling: coupling is the degree of interaction be-
tween two components [16]. This study measures con-

Characteristic WebApp1 WebApp2

Application Domain Telecom Telecom

Age (years) 4 5

Lines Of Code (LOC) 20K 15K

Language Java Java

Web Server WebLogic 7.0 Tomcat 4.1

Application Server WebLogic 7.0 None

Framework Struts 1.1 None

Database Oracle MySql

Configuration Manage-
ment Tool

CVS None

Design Tool Rational Rose None

Table 3. Characteristics of Web Applications

trol and data coupling by analyzing the relationships
and data passed between different web components.

• Reusability: reusability is taking components of one
product in order to facilitate the development of a dif-
ferent product with different functionality. The study
measures the reusability by looking at the percentage
of web components that are reused in the whole appli-
cation.

4 Case Study

The proposal of new metrics is not helpful if their prac-
tical use is not proved through case studies [7]. This study
demonstrates the approach using two web applications case
studies. The case studies are exploratory in nature and pro-
vide a basis for future research. Both web applications de-
scribed are from the telecommunication Operational Sup-
port System (OSS) domain. Table 3 shows the characteris-
tics of both web applications.

4.1 Case Study Context

The first web application is a provisioning application
which is used to provision and activate the wireless service
in the network. This study refers to the first web application
as WebApp1. WebApp1 has around 10,000 users of which
2,500 are concurrent. It is a critical application that is used
by customer care advocates to resolve provisioning issues
for wireless subscribers. WebApp1 is built using the lat-
est web technologies and frameworks such Struts, and EJBs
and uses Oracle for the database.

In order to further evaluate the metrics this methodology
is applied to a second web application. This study refers
to the second web application as WebApp2. WebApp2 is a
fault management application that is used to automate the
configuration management for fault management applica-
tions. It is used to automate password resets, creation of

781

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

updateUser.jsp

help.jsp

shoppingCart.jsp

createUser.jsp

help.jsp_Client1

shoppingCart.jsp_Client1
updateUser.jsp_Client1

updateUserForm

+ «HTMLInput» FIRSTNAME : hidden = <%=frstName%>
+ «HTMLInput» LASTNAME : hidden = <%=lstName%>
+ «HTMLInput» HOMETEL : hidden = <%=homeTel%>

«HTMLLink»

«HTMLLink»
«HTMLLink»

«HTMLLink»

«Build»

«HTMLLink» «Build»

«JSPInclude»

«Build»
«JSPInclude»

«JSPForward»

«HTMLLink»

«HTMLSubmit»

Figure 2. Sample Class Diagram

new users, and creation of configuration management tick-
ets. WebApp2 uses basic web application technologies such
as Javascript, servlets, and mysql database.

Both web applications are considered to be of medium
size. Due to space limitations the case studies cannot be
presented in detail. This study will analyze the web appli-
cations based on system metrics.

4.2 Hypothesis

This study aims to answer the following question: Is
there a relationship between the metrics identified in Ta-
ble 1 and maintainability? Since the study is explorative
in nature, it measures maintainability in a subjective man-
ner. The maintainability is measured by getting input from
the developers on the modifiability maintainability sub-
characteristic. The modifiability is based on how easy it
is to make changes to the web application.

The following hypotheses are investigated: H1: the
lower the size metrics of the class diagram, the higher the
modifiability. H2: the lower the structural complexity met-
rics of the class diagram, the higher the modifiability. H3:

the lower the coupling metrics of the class diagram, the
higher the modifiability. H4: the lower the reusability met-
rics of the class diagram, the lower the modifiability.

4.3 Data Collection

In this case study an IBM tool: Rational XDE is used
to reverse engineer these web applications. Rational XDE
combines the visual modeling with a Java forward and re-
verse engineering tool. The metrics are measured directly
from generated class diagrams. This can become cumber-
some if the application is large since a tool was not available
to calculate these metrics. In the future we plan to build a
tool that can compute these metrics from class diagrams.

In this study several attributes of web applications that
are expected to affect maintainability are considered. These
attributes include size, complexity, coupling, and reusabil-
ity. Table 1 gives a description of the metrics that were used
in the case studies. This study provided two levels of modi-
fiability measures: low and high. The team lead of each web
application was asked to provide a measure for the modifi-
ability based on these two levels.

782

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

Metric Type Metric Name WebApp1 WebApp2

Size (NServerP) 35 9

Size (NClientP) 37 74

Size (NWebP) 72 83

Size (NFormP) 11 10

Size (NFormE) 20 117

Size (NClientC) 22 158

Structural Complexity (NLinkR) 44 468

Structural Complexity (NSubmitR) 8 9

Structural Complexity (NBuildsR) 35 9

Structural Complexity (NForwardR) 0 0

Structural Complexity (NIncludeR) 39 0

Structural Complexity (NUseTagR) 71 0

Control Coupling (WebControlCoupling) 2.73 5.85

Data Coupling (WebDataCoupling) 0.57 13

Reusability (WebReusability) 0.54 0

Maintainability Measurement Modifiability high low

Table 4. Results

4.4 Results and Analysis

The results are recorded in Table 4. The analysis is as
follows:

Looking at the size attribute for WebApp1 one may no-
tice that this application has more server side pages than
WebApp2. As a conclusion WebApp2 needs developers
with server side development experience, while WebApp1
needs developers with client side development experience.
When comparing the structural complexity of WebApp1 to
WebApp2, one can notice that WebApp2 has ten times more
link relationships than WebApp1 even though the number
of web pages for both application is almost the same. We-
bApp1 and WebApp2 have similar number of submit rela-
tionships, but WebApp1 has more form elements per form
page, which means it will pass more data for each submit
relationship. WebApp1 uses quite a few tags and has many
include relationships. On the other hand WebApp2 does
not use tags and has no include relationships. While look-
ing at the control coupling for both web applications, one
can see that WebApp1 and WebApp2 both have high con-
trol coupling due to the number of control relationships in
both applications. The data coupling for WebApp2 is very
high due to the high number of data elements that are passed
between components in the web application. If one looks at
reusability one can notice that WebApp1 has good reusabil-
ity due to the number of include relationships. On the
other hand WebApp2 does not demonstrate good reusability
that makes maintenance more difficult and makes WebApp2
more prone to error propagation.

WebApp2 has higher size metrics, structural complex-
ity metrics, coupling metrics and lower reusability metrics

than WebApp1. It is expected to have lower modifiability.
According to the results in Table 4 the modifiability for We-
bApp1 is high, while the modifiability for WebApp2 is low.
Thus we can accept hypothesis H1, H2, H3, and H4.

As a conclusion, this study can serve as a basis for future
studies, and can provide a first indication of the use of the
newly introduced metrics.

4.5 Threats to Validity

It is important to look at the internal and external validity
of this study. In terms of internal validity, firstly, there was
no automated tool for collecting the metrics from the design
artifacts. There can be some human error in the process of
computing the metrics from the class diagrams. Secondly,
there was no configuration management tool for WebApp2.
As a result some of the components might be out of synch
and not representative of the actual application. Also the
maintainability is measured in a subjective manner which is
less accurate than objective measures. With regard to ex-
ternal validity, one can see that the results can be general-
ized to other settings. The web applications used are from
the telecommunication domain, but they are still using tech-
nologies that are similar to other applications in the market.
The design of the application was collected using Rational
XDE, which requires a license and might not be available
for everyone to conduct a similar study, but still the out-
come design is based on UML and there are many freeware
tools in the market that can be used to generate the design.

783

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

5 Conclusions and Future Work

Web applications have evolved into complex applica-
tions that have high maintenance cost. The high cost is due
to the inherent characteristics of web applications, to the
rapid evolution of the Internet, and to the pressing market
which imposes short development cycles and frequent mod-
ifications. In order to control the maintenance cost of web
applications, quantitative metrics for predicting web appli-
cations maintainability must be used.

The maintainability of web applications is a new re-
search area that is becoming important and interesting for
researchers in software engineering. Most research in this
area is still exploratory and needs further validation. Some
metrics have been defined for web applications, but there is
still a need to provide theoretical and empirical validation
for these metrics so that they can be accepted in the soft-
ware community. This study has introduced metrics for the
following design attributes: coupling, complexity and size,
and reusability. This study has provided two explorative
case studies from the telecommunication domain utilizing
the metrics.

The results give a first indication of the usefulness of
the UML design metrics. There is a relationship between
maintainability and the metrics. However, the amount and
strength of the relationship cannot be determined without
further empirical studies. One drawback of the study is the
subjective measurement of maintainability, in the future we
will measure maintainability objectively and provide sta-
tistical analysis to determine the strength of the relation-
ship between the metrics and the measured maintainability.
We will provide a maintainability prediction model for web
applications based on statistical regression analysis which
will provide prediction measures for different maintainabil-
ity measures.

References

[1] S. Abraho, N. Condori-Fernndez, L. Olsina, and O. Pas-
tor. Defining and validating metrics for navigational mod-
els. In Proceedings of the 9th International Software Metrics
Symposium, pages 200–210. IEEE Computer Society Press,
2003.

[2] L. Baresi, S. Morasca, and P. Paolini. Estimating the design
effort of web applications. In Proceedings of the 9th Inter-
national Software Metrics Symposium, pages 62–72. IEEE
Computer Society Press, 2003.

[3] P. Bhatt, G. Shroff, and A. Misra. Dynamics of software
maintenance. ACM SIGSOFT Software Engineering Notes,
29(4):1–5, 2004.

[4] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using met-
rics to evaluate software system maintainability. IEEE Com-
puter, 27(8):44–49, 1994.

[5] J. Conallen. Building Web Applications with UML. Addison-
Wesley, 2 edition, 2003.

[6] G. DiLucca, A. Fasolino, P. Tramontana, and C. Visaggio.
Towards the definition of a maintainability model for web
applications. In Proceeding of the 8th European Conference
on Software Maintenance and Reengineering, pages 279–
287. IEEE Computer Society Press, 2004.

[7] N. Fenton and S. Pfleeger. Software Metrics A Rigourous
and Practical Approach. PWS, 2 edition, 1998.

[8] F. Fioravanti and P. Nesi. Estimation and prediction metrics
for adaptive maintenance effort of object-oriented systems.
IEEE Transactions on Software Engineering, 27(12):1062–
1084, 2001.

[9] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black. A com-
parative analysis of maintainability approaches for web ap-
plications. In Proceedings of the 4th ACS/IEEE Interna-
tional Conference on Computer Systems and Applications,
page 247. IEEE Computer Society Press, 2006.

[10] M. Kiewkanya, N. Jindasawat, and P. Muenchaisri. A
methodology for constructing maintainability model of
object-oriented design. In Proceedings of the 4th Inter-
national Conference on Quality Software, pages 206–213.
IEEE Computer Society Press, 2004.

[11] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski.
Metrics and laws of software evolution the nineties view. In
Proceedings of the 4th International Software Metrics Sym-
posium, pages 20–32. IEEE Computer Society Press, 1997.

[12] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308–320, 1976.

[13] E. Mendes, N. Mosley, and S. Counsell. Web metrics -
estimating design and authoring effort. IEEE Multimedia,
08(01):50–57, 2001.

[14] E. Mendes, N. Mosley, and S. Counsell. Early web size mea-
sures and effort prediction for web costimation. In Proceed-
ings of the 9th International Software Metrics Symposium,
pages 18–39. IEEE Computer Society Press, 2003.

[15] D. Reifer. Web development: estimating quick-time-to-
market. IEEE Software, 17(8):57–64, 2000.

[16] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design. IBM Systems Journal, 13(2):115–139, 1974.

784

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:07:34 EST from IEEE Xplore. Restrictions apply.

