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Abstract—We examine the problem of digital filtering of 
band-limited signals by means of a linear digital filter with one or 
more stopbands. The main target of the study is to filter the 
signals using lower than Landau sampling rates, where the 
Landau rate is defined as the total bandwidth of the input signal. 
In order to reach such low rates Periodic Nonuniform Sampling 
is employed. We derive necessary and sufficient conditions for 
perfect filtering, and propose a practical algorithm for 
constructing PNS grids that allow for sub-Landau sampling and 
filtering. Finally, we present a reconstruction system and provide 
a numerical result illustrating the proposed method. 

I. INTRODUCTION 
The traditional DSP theory and applications are based on 

the classical Whittaker-Kotelnikov-Shannon theorem [1] which 
states that if a signal’s spectrum is entirely placed inside the 
frequency interval [ )0 0,= −F f f , then the signal can be 
reconstructed from uniformly distributed samples taken at least 
at the rate 02=Sf f , which is known as the Nyquist rate. When 
lowpass signals are processed the minimum sampling rate 
required for signal reconstruction is equal to the total 
bandwidth of the signal which is 02B = f . If lowpass filtering 
of such signal is needed a sub-Nyquist uniform sampling rate 
could be used if the resulting aliasing is present only in the 
rejected stopbands. However, if highpass filtering is required 
then the minimum uniform sampling rate is the Nyquist rate, or 

02B = f . In the case of bandpass and multiband signals, i.e. for 
which 02B < f , uniform sampling, reconstruction and filtering 
at the rate B is possible only if the aliases of the signal’s 
spectrum ( ) 0≠X f + nB , n  do not overlap with the passbands 
which are to be preserved. In that situation most often than not 
Nyquist sampling rate is the minimum one that can be 
achieved. 

In order to reach lower than Nyquist sampling rates when 
processing bandpass and multiband signals, different sampling 
schemes were explored, amongst which was Periodic 
Nonuniform Sampling (PNS). Various authors ([2], [3], [4], 
and [5]) showed that PNS can be used for sampling and 
reconstruction of bandpass and multiband signals using lower 
than Nyquist rates. Landau [6] proved that the minimum 
sampling rate for arbitrary sampling and reconstruction of 
multiband signals asymptotically reaches the signal’s total 
bandwidth B  which may be significantly lower than the 
Nyquist rate. This result was exploited and several methods for 

sampling and reconstruction of passband and multiband signals 
were introduced ([7], [8], [9], [10], and [11]). 

However, all of the summarized work has focused primarily 
on the sampling and reconstruction of bandlimited signals. 
Digital filtering using lower than Nyquist, or even lower than 
Landau sampling rates, has not been studied widely. This work 
explores a practical topic – digital filtering of band-limited 
signals by means of a linear digital filter characterized by one 
or more stopbands. In this situation the output signal’s 
bandwidth will be lower than the input’s bandwidth which 
implies that lower than Landau sampling rate could possibly be 
used. The employed sampling scheme is PNS. We show that 
many digital filtering problems could be effectively tackled 
with by using the proposed method, which is most efficient 
when digital filtering of bandpass and multiband signals is 
required. 

II. PNS AND THE PROPOSED METHOD 
PNS is a sampling scheme with sampling instants taken at 

times = +l+qL lt t qT , where 0,..., -1=l L . This sampling 
sequence is periodic with period T , L  denotes the number of 
sampling instants per period: 0 1 L-10 ...= < < < <t t t T , and q  
is an arbitrary integer indicating to which period the given 
sample time belongs. Let us assume that each sampling time 

,  0, 1, 2 3,...= ± ± ±nt n is a multiple of a short interval d : 

 ∈ In nt  = c d, n . (1) 

A PNS scheme can be described as L  parallel branches each 
using uniform sampling with period T  but shifted in time with 
respect to each other. This is illustrated in Figure 1. 

We begin our analysis by dividing the frequency axis into 
an infinite number of frequency cells kF : 

 0.5 0.5� �
��� �

k
k - k +F = ,

T T
. (2) 

Each frequency cell has length 1kF = / T . Here T  is a long 
enough period such that its inverse 1Tf = / T  provides 
satisfactory resolution in the frequency domain. We assume 
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that the signal occupies a finite number of not necessary 
adjacent cells 

1 2m Mn n n nF : F ,F ,...,F . M is the number of the 
occupied cells. The numbers Mn do not have to be put in a 
monotonic order. Let the first PM  cells represent the bands of 
the processed signal which will be preserved. For simplicity we 
assume that the frequency response of the filter at these bands 
is one. The remaining SM  frequency cells coincide with the 
stopbands of the filter; hence the filter’s frequency response at 
these bands is zero. Here, M = P+ S . We request that each 
cell 

mnF  is fully occupied by either the passbands or the 
stopbands of the filter. (An example of the proposed analyzed 
scheme is illustrated in Figure 2.) The spectrum of the 
processed signal is thus: 

 ( )
1

� �
	 �

 �

� m

M
m

n
m=

n
X f = X f -

T
, (3) 

where the subspectra ( )
mnX f  are defined by: 

 ( )
0,otherwise.

� � � ∈ 	 �= � 
 �

�

m

m

m
n

n

nX f + , f F
X f T . (4) 

The discrete spectrum ( )d,lX f  in the l– th branch of the PNS 
system is: 

 ( ) 1 ∞

∞

� �
	 �

 �

� l
kj2� t
T

d,l
k=-

kX f = X f +  e
T T

. (5) 

Substituting (3) and (4) in (5) we find the relation between the 
components ( ) ( )

1 Mn nX f ,...,X f , and the discrete–time spectra 

( ) ( )0 1d, d,L-X f ,...,X f .  Then  we  confine  our  analysis  to  the 

baseband frequency interval [ )0.5 / ,0.5 /∈ −f T T : 

 ( ) 1 ∞ ∞

∞ ∞

� �� �� �= 	 �	 �	 � 	 �
 �
 �
 �
� �

l

m

m

kt
j2�m T

d,l n
k=- n =-

k - nX f X f + e
T T

. (6) 

Considering the fact that if [ )0 0 1∈f f , f + / T , ( )
mnX f - k / T  

takes nonzero values inside this interval only if 0=k , we can 
simplify (6): 

 ( ) ( )
1

1 � m

m

M
n

d,l n l
m=

X f = X f z
T

. (7) 

where 
ltj2�

T
lz = e . Note that 0  1=z . Expanding (7) to all l  

branches of the PNS scheme and presenting it in the matrix 
form, we can write: 

 

( )
( )

( )

1 1

1 1

0

1 1 1 1 1

1 1 1 1 1

1 ... 1 | 1 ... 1
... | ...1

... ... ... | ... ...
... | ...

� � � �
� �� � � �
� �� � � �= − − −� �� � � �
� �� � � � � �

� � � �� �

X

X

Z Z

P P+ M

P P+ M

d,
Pn n n n

d,

Sn n n n
d,L- L- L- L- L-

P S

X f
X f z z z z

T
X f z z z z��������������

,  (8) 

or in short: 

 ( )1X Z X Z Xd P P S S= +
T

, (9) 

where 

( )

( )

1

...

� �
� �

=� �
� �
� �

X

P

n

P

n

X f

X f
, 

( )

( )

1

...

� �
� �

=� �
� �
� �

X
P+

M

n

S

n

X f

X f
, 

1

1

1 1

1 1

1 ... 1
...

... ... ...
...

� �
� �
� �=
� �
� �
� �

Z
P

P

n n

P

n n
L- L-

z z

z z

,  and  
1

1

1 1

1 1

1 ... 1
...

... ... ...
...

� �
� �
� �=
� �
� �
� �

Z
P+ M

P+ M

n n

S

n n
L- L-

z z

z z

. 

The solution to (9) with respect to XP  will obtain the spectral 
components ( ) ( )

1 Mn nX f ,...,X f , thus allowing for 
reconstruction of the passband frequencies. However, the main 
problems we address here are: 

1) Knowing the vector Xd , and the matrices ZP  and ZS , 
under what conditions can we find XP ? 

 
Figure 1.   Periodic Nonuniform Sampling scheme. 

( )X f

 
Figure 2.    Frequency domain division of input signal’s spectrum. 
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2) What is the smallest number L  of sampling instants 
inside one period T  for which all solutions to (9) give correct 
results for XP ? 

III. CONDITIONS FOR PERFECT FILTERING 
The following theorem summarizes the necessary and 

sufficient conditions required for the recovery of PX . 

Theorem: If a band-limited signal x(t), described in the 
context of (3) and (4), is sampled using Periodic Nonuniform 
Sampling scheme, the necessary and sufficient conditions  for 
its perfect filtering with respect to XP  are: 

[ ] [ ]rank , , rank ,=X Z Z Z Zd P S P S , 

[ ]rank =ZP P , 

[ ] [ ] [ ]rank |   rank  rank = +Z Z Z ZP S P S . 

(The proof of the theorem is presented in the Appendix.) 
Resorting on Theorem 1, we can find XP  by: 

 X � XP P d= T , (10) 

where: 

 ( ) 1T T T  
−

= +� Z Z Z Z ZP P P P S S . (11) 

Taking the inverse Fourier transform of XP , we derive: 

 =x � xP P dT , (12) 

where ( ) ( )
1

[ ] '=x
PP n nx t ,...,x t  contains the samples carrying 

information of each passband component, and 
( ) ( )0 1[ ]'=xd d, d,L-x t ,...,x t . 

IV. DESIGN OF PNS SEQUENCES 
In this section we propose an algorithm that aims at 

reducing the values of L  for which all solutions to (9) still give 
correct results for XP .  

The third condition of Theorem 1 states that 
[ ] [ ] [ ]rank | rank rank = +Z Z Z ZP S P S . Hence: 

 [ ]1 rank + ≤ ≤ + ZSP L P . (13) 

To reduce the value of L , we have to find sampling instants lt  
such that [ ]rank ZS  is minimum, and [ ]rank =ZP P . Or, in 
other words, find sampling instants lt  such that ZS  has as 
many pairs of linearly dependent columns as possible, while all 
columns of ZS  are linearly independent from each other and 
the columns of ZP . ZS  can be presented as: 

 
1 1 1

1 1 1

1 1� �
� �
� �= � �
� �
� �� �

Z
p+ M

L- p+ L- M

j2�t n j2�t n

S

j2�t n j2�t n

...

e ... e
... ...

e ... e

. (14) 

Since the first element of each column of ZS  is one, then the 
pairs of linearly dependent columns of ZS  have to be identical. 
Comparing the first two columns of ZS , we have: 

 

1 1 1 2 1

1 1 -1 2 1

.

.

P P

L P L P L

t n t n k

t n t n k

+ +

− + + −

= +

= +

. (15) 

Denoting  

 1 2 1 2Δp+ ,p+ p+ p+ = n  - n , (16) 

we write 

 1, 2 ,  0,..., -1p p lt l LΔ + + ∈ =I . (17) 

Similarly, 2, 3Δ + + ∈ Ip p lt , 3, 4Δ + + ∈ Ip p lt , etc. Having as many 

i, j ltΔ ∈ I , 1i, j = p+ ,...,M  as possible will minimize 

[ ]rank ZS , and hence L . Referring back to (1), we have 
,  Δ Δ= ∈ ∈I Ii, j l i, j l lt c d c . There is no known analytical 

expression for finding the optimum d  which will guarantee 
finding the minimum L , and thus reaching the minimum 
average sampling rate 

aveSf = L / T . However, an exhaustive 
search for d  would be confined to a finite number of iterations 
since lt  and T  are multiples of d . Based on the conclusions 
drawn above, we propose the following algorithm for optimal 
PNS sequence design: 

Step 1: Choice of period T : T  must be a long enough 
period which will allow for dividing the input and output 
signals’ spectra in the context of (3) and (4). A good choice for 
an initial T  can be the least common multiple of the spectral 
support functions’ frequencies. 

Step 2: Choice of d  and L : choose d  such that 
∈ Id = T / N,N . A practical guide to finding an optimal d  is 

to check if after uniform sampling of the signal with period d  
the passbands should be alias-free. The aim is to create a 
“constructive aliasing” which concentrates in the rejected 
bands, or the stopbands of the filter. The total bandwidth of all 
spectral components inside the interval [ )0.5 / ,0.5 /∈ −f d d  
will present the minimum number of sampling instants L  
inside one period T , and hence the minimum average 
sampling rate 

aveSf = L / T  . 
Step 3: Choice of  lt :  choose lt  such that ∈ Il l lt = c d,  c . 
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Step 4: Necessary and sufficient conditions check : check 
if the matrices ZP  and ZS , constructed with the chosen T , d  
and lt , meet the conditions from the Theorem. If not, restart the 
algorithm from Step 2 by choosing a different d , or from Step 
1 by choosing a different period T . 

V. IMPLEMENTATION OF THE DIGITAL FILTER 
We propose and compare two filter implementation 

systems. The first realization is described as follows. After 
sampling the input signal using PNS with period T  and 
sampling instants lt , derived using the algorithm, we upsample 
the signals ( )d,lx t  to a sampling rate df = 1 / d = R / T , where 
d  is defined by (1) and found with the use of the outlined 
algorithm. The reconstruction matrix is calculated using (11) 
and each upsampled ( )d,lx t is multiplied by the corresponding 

element of �P . Subsequently, each ( )xP t  is lowpass filtered 

in the baseband frequency interval [ )0.5 / ,0.5 /∈ −f T T , and 
frequency-shifted to the original band position. The 
reconstruction formula is thus: 

 ( ) [ ] ( ) ( )
-1

- 0 1

φ
∞

= ∞ = =

= ��� �
L P

P d,l l p lpl
q l p

x t T x t +qT t - t - qT , (18) 

where: 

 ( ) sincφ � �
	 �

 �

pn
j2� t

T
p

R tt = e
T T

. (19) 

We will denote this filter implementation scheme as Filter A 
which is shown in Figure 3.  

The second realization of the filter is a direct extension of 
the reconstruction method for PNS [10]. If the implementation 
is performed along the branches of PNS, that is there is a 
synthesis filter ( )Ψ l f  after each upsampler, the 
implementation scheme can be described as: 

 ( ) [ ] ( ) ( )
-1

- 0 1

ψ
∞

= ∞ = =

= ��� �
L P

P d,l l l lpl
q l p

x t T x t +qT t - t - qT , (20) 

where the filters ( )ψ l t  are described by: 

 ( ) [ ] ,

0 , otherwise
Ψ Τ

�
 ∈= �

�

�
l p

p

t n
j2�

T
P npl

l

R e  f Ff , (21) 

and ( )Ψ l f  is the Fourier transform of ( )ψ l t . The latter 
reconstruction scheme is shown in Figure 4, and will be 
denoted as Filter B. The two filter implementation schemes are 
equivalent because they produce identical results, as will be 
later confirmed by a numerical example. The difference is in 
the filters that are used. Filter A scheme uses one lowpass filter 
for each passband, whereas Filter B scheme uses L  passband 
filters with piece-wise constant frequency response. In practice 
causal, linear-phase FIR or IIR filters could be used, which 
introduce some delay and distortion. Therefore, additional care 
must be taken that the group delays in each branch of the filter 
structure are equalized. 

VI. A NUMERICAL EXAMPLE 
Consider a random test signal which has the following 

spectral support (in normalized frequencies): 

( ) ( ) ( )7.5, 5.5 2.5, 1.5 0.5,0.5= − − ∪ − − ∪ − ∪inSSF  

( ) ( )1.5, 2.5 5.5,7.5∪ ∪ . 

Let the filter passbands be: 

( ) ( ) ( ) ( )6.5, 5.5 2.5, 1.5 1.5, 2.5 5.5,6.5outSSF = − − ∪ − − ∪ ∪ . 

Figure 5 shows the power spectrum density of the input and 
output signals estimated from a periodogram taken over a 
window [0,108T]. The Nyquist uniform sampling rate for this 
signal is max2 2*7.5 15= = =Nyquistf f . The Landau rate, or the 
minimum average sampling rate for sampling and 
reconstruction of the input signal, is 7=Landauf . Initiating the 
algorithm described in section IV, we choose 1=T . Hence, the 
input and output spectral supports can be represented as: 

[ ]7  6  2  0  2  6  7= − − −inF , and      [ ]6  2  2  6= − −outF . 
We choose 1/ 1/ 7= =Landaud f , as uniform sampling of the 
input signal with rate 1/ 7= =df d  does not induce aliasing in 
the passbands. Also, uniform sampling of the input signal with  
such  rate  shows that  the total bandwidth of the spectral 
components in the interval [ )7 / 2,7 / 2−  is 5. Hence, we 
choose 5=L . The vector lt  of the sampling instants inside a 

 
Figure 3.    Digital filter implementation – Filter A. 

 
Figure 4.    Digital filter implementation – Filter B. 
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period  T  is then selected to be [ ]0  2   3   5   6=lt d d d d . Step 
4 of the proposed algorithm confirms the proper choice of T , 
d , and lt . Note that ZS  is thus: 

                                    

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

� �
� �
� �
� �=
� �
� �
� �� �

Z S
 , 

or in other words [ ]rank 1=ZS , which confirms that  the 
achieved average sampling rate of / 5=

aveSf = L T  is the 
optimal rate, a 29% lower sampling rate than the Landau rate 
for signal reconstruction. The results presented below confirm 
the feasibility of the proposed approach. Figure 6 shows that 
when both implementation schemes, Filter A and Filter B, are 
realized with ideal filters, they produce identical outputs. 
Figure 7 shows the magnitude of the spectrum of filtering error 
when Filter A scheme has been constructed using a lowpass 
equiripple FIR filter [12] of order 221, which has a transition 
band of 0.25/T, 0.3 dB passband ripple and -48.99 dB stopband 
attenuation. Figure 8 shows the magnitude of the spectrum of 
filtering error when Filter B scheme has been realized, using 
multiband Chebyshev FIR filters [13] of order 221, with 
transition band of 0.25/T, 0.3 dB passband ripple and -57.8 dB 
stopband attenuation. Figure 9 shows the magnitude of the 
spectrum of the filtering error when Filter A scheme has been 
constructed using a lowpass IIR filter of order 10, acquired 
from the lowpass FIR filter used above through  balanced 
model reduction [14]. The IIR filter has the same bandwidth 
and transition band as the lowpass FIR filter, and has 0.5 dB 
passband ripple and -47 dB stopband attenuation. All three 
realizations produced almost identical results. (Note that the 
peak errors are due to the wide transition bands of the filters.) 
However, Filter A scheme has the advantage of using one 
lowpass filter, whereas Filter B scheme uses three different 
multiband filters (two pairs of the branches of Filter B structure 
happen to use the same filters). 

VII. CONCLUSIONS 
We have discussed the possibility of perfect filtering of 

band-limited signals using sub-Landau average sampling rates. 
We have shown that many signals can be filtered at such rates, 

specifically signals with sparse passband or multiband spectra 
used in high frequency applications, and in the cases when it is 
possible, necessary and sufficient conditions have been 
derived. A procedure for designing PNS schemes which 
facilitates the proposed approach has been proposed. Two 
different filter realizations have been developed and compared 
– the first, Filter A, uses one lowpass filter, whereas the 
second, Filter B,  uses up to L different passband or multiband 
filters. A numerical result has confirmed the feasibility of the 
proposed method, suggesting that the quality of filtering highly 
depends on the quality of the real FIR or IIR filters that are 
used in practice. 
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APPENDIX 
Proof of Theorem: We remark that because of the structure 

of the vector Xd  and the matrices ZP  and ZS , the equation 

 ˆ ˆ= +X Z X Z Xd P P S S , (Α.1) 

can always be solved with respect to X̂P  and X̂S . We only 
need to choose ˆ =X XP P  and ˆ =X XS S . We therefore expect 
that: 

 [ ] [ ]rank , , rank ,=X Z Z Z Zd P S P S . (Α.2) 

Next, the conditions under which all solutions to (A.1) are such 
that: 

 ˆ =X XP P , (Α.3) 

have to be found. Then we will be able to reconstruct the 
filtered signal. Let us denote ˆΔ = −X X XP P P , and 

ˆΔ = −X X XS S S . We prove that all solutions to (A.1) satisfy 
(A.3) if and only if: 

 
Figure 5.   Power spectrum density of input and output signals: a) solid 

line – input signal; b) dotted line – output signal. 

 
Figure 6.   Power spectrum density of filtered signals using ideal filters: a) 
solid line – ideal output; b) dash-dot line – Filter A output; c) dotted line 

– Filter B output.  
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1) The only solution of  0Δ =Z XP P   is  0Δ =XP ; 

2) All solutions to Δ Δ= −Z X Z XP P S S  satisfy 
0Δ Δ= − =Z X Z XP P S S . 

Both conditions are necessary. If the first condition is not 
satisfied then we could find nonzero ΔXP  such that 

0Δ =Z XP P  and construct the following solution (A.1): 
ˆ Δ= +X X XP P P , ˆ =X XS S , which does not satisfy (A.3). 

Similarly, if the second condition is not satisfied, we could find 
a solution to Δ Δ= −Z X Z XP P S S  such that 

0Δ Δ= − ≠Z X Z XP P S S . By choosing ˆ Δ= +X X XP P P  and 
ˆ Δ= +X X XS S S  we get a solution to (A.1) that does not 

comply with (A.3). 

The above conditions are also sufficient. We demonstrate 
this by proving that if there exists a solution to (A.1) that 
contradicts (A.3), then at least one of the above conditions is 
violated. Let ˆ ˆ= +X Z X Z Xd P P S S , and ˆ ≠X XP P . Subtracting 

(A.3) from (A.1) gives ( ) ( )ˆ ˆ− = − −Z X X Z X XP P P S S S . If the 

second condition is to be satisfied, then ( )ˆ 0− =Z X XP P P . 
Consequently, if the first condition is satisfied, we get 
ˆ =X XP P , which contradicts our earlier assumption that 
ˆ ≠X XP P . We note that it is necessary that the matrix ZP  has 

full column rank. If this was not satisfied then there would be 
nonzero values ΔXP  such that 0Δ =Z XP P . In such cases, if 

XP  and XS  solve (9) then ( )ˆ Δ= − +X Z X X Z Xd P P P S S . 

Having 0Δ =Z XP P , we get ˆ= +X Z X Z Xd P P S S , which 
contradicts (9) and (A.1). 
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Figure 7.   Magnitude of the spectrum of filtering error –  Filter A scheme 

using lowpass FIR filter. 

 
Figure 8.   Magnitude of the spectrum of filtering error –  Filter B scheme 

using multiband FIR filters. 

 
Figure 9.   Magnitude of the spectrum of filtering error –  Filter A scheme 

using lowpass IIR filter. 
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