

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

A system for calculating the greatest common denominator
implemented using asynchrobatic logic.

David J. Willingham
Izzet Kale

School of Electronics and Computer Science

Copyright © [2008] IEEE. Reprinted from Ellervee, Peeter, Jervan, Gert and
Nielsen, Ivan Ring, (eds.) 26th Norchip Conference, Tallinn, Estonia, 17 - 18
November 2008. Formal proceedings. IEEE, pp. 194-197. ISBN
9781424424924.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by WestminsterResearch

https://core.ac.uk/display/161117315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A system for calculating the Greatest Common
Denominator implemented using Asynchrobatic Logic

David J. Willingham and �zzet Kale
Applied DSP and VLSI Research Group,

University of Westminster,
London, Great Britain.

Email: D.Willingham@wmin.ac.uk kalei@wmin.ac.uk

Abstract—An Asynchrobatic system that uses Euclid’s Algorithm
to calculate the greatest common denominator of two numbers is
presented. This algorithm is a simple system that contains both
repetition and decision, and therefore demonstrates that
Asynchrobatic logic can be used to implement arbitrarily
complex computational systems. Under typical conditions on a
0.35μm process, a 16-bit implementation can perform a 24-cycle
test vector in 2.067μs with a power consumption of 3.257nW.

Index Terms—Asynchrobatic logic, adiabatic logic, charge-
recovery logic, low power circuit techniques.

I. INTRODUCTION
Asynchrobatic logic [1] is a low-power design

methodology that uses asynchronous control to drive an
adiabatic or quasi-adiabatic data-path. These authors’
previous works have shown that it is possible to implement
both simple and more complex data-path structures using
this design methodology [1][2]. This work provides a brief
explanation of the Asynchrobatic logic style, an explanation
Euclid’s method, and then provides details of the
implementation and testing of the complete system. It shows
that more complex control structures can be implemented
using Asynchrobatic Logic.

II. ASYNCHROBATIC LOGIC
As noted in the introduction, Asynchrobatic logic is a

low-power methodology that combines an asynchronous
controller with an adiabatic or quasi-adiabatic data-path to
produce processing structures that can operate both
asynchronously and adiabatically. There are several
components to any Asynchrobatic logic system. The
asynchronous control logic takes components of four-phase
bundled-data asynchronous systems, and combines these
with self-timed Stepwise Charging (SWC) circuits. The
SWC circuits use tank capacitors to perform their charge
recycling.

The asynchronous controller is complemented by an
adiabatic data-path. This data-path is pipelined, and each

pipeline stage requires a SWC controller to generate its local
power-clock signal.

A. Asynchronous Logic
The asynchronous systems described herein use Muller

C-Elements [3] as their basic building block. As well as
simple sequential pipeline stages, the other components used
from four-phase bundled-data asynchronous are the logic and
control portions of the MUX and DEMUX elements. A
more complex system could also use arbitrators to control
access to shared resources, although it is not necessary in this
example. The various control functions use four-phase
bundled data.

B. Adiabatic Logic
Adiabatic logic is also known as “Charge Recovery” or

“Clock-powered” logic. Adiabatic logic uses less energy
than standard logic because charge is used more than once.
The various charge-recycling schemes obviously have
power-overheads, but if these can be amortised against
savings elsewhere in the system, there will still be power
benefits. In this case, it operates using a four-phase local
power-clock, which complements the four-phase signalling
used in the asynchronous portion of the circuit. In this
example, the adiabatic logic family chosen to implement the
data-path logic was Positive Feedback Adiabatic Logic
(PFAL) [4].

1) Positive Feedback Adiabatic Logic (PFAL)
PFAL is a dual-rail logic family that, like many adiabatic

logic families, is loosely based upon a modification to
Differential Cascode Voltage Switch Logic (DCVSL) [5]. It
uses a pair of evaluation paths, constructed from nFETs,
connected between the power-clock and the complementary
outputs; these are combined with a pair of cross-coupled
inverters, driven by a power-clock. A simple PFAL buffer is
shown in Fig. 1. PFAL was chosen, as it is one of the
simplest adiabatic logic families and in appropriate
applications, it has the potential to operate in a fully
reversible fashion [6]. The link with DCVSL is very useful,

1-4244-2493-1/08/$20.00 ©2008 IEEE 194

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:45:35 EST from IEEE Xplore. Restrictions apply.

as there are efficient design methodologies for DCVSL
circuits [7][8], that can be used to design PFAL gates.

Figure 1. A PFAL Buffer [4]

III. EUCLID’S ALGORITHM
There are two basic structures required by any

programmable system in order to execute arbitrary
algorithms: repetition and decision. A very simple
algorithm, which can be implemented using a single
repetition and a single decision, is that suggested by Euclid
for calculating the Greatest Common Denominator (GCD)
[9]. This functions by repeatedly subtracting the smaller of
the two numbers from the larger. It can be expressed as
shown in the following segment of pseudo-code, although
the actual implementation does vary slightly from this.

In this work, the asynchronous structure presented by
Sparsø and Furber [10] has been modified to operate using
the Asynchrobatic methodology. The main differences
between the design previously presented and the one
presented herein are as follows. Firstly, both of the
inequalities are calculated in a merged block, the two results
being propagated as necessary. Secondly, the selection and
creation of the minuend and subtrahend is performed using a
plurality of XOR gates to generate the ones’ complement,
and a MUX operator feeds this into the bypass buffers. The
minuend being the larger of the two inputs is consumed by
the subtractor. Finally, the outputs are re-ordered, with the
subtrahend always being assigned to variable “A”, and the
difference always being assigned to variable “B”.

IV. DESIGN
There are two major and complex components to this

GCD calculating circuit, the asynchronous controller
circuitry and a subtractor. In addition to these blocks, there
are also some more simple blocks, including a comparator,
and the interfacing between the asynchronous control
domain and the adiabatic data-path domain where
multiplexers are used to select data inputs.

This design was implemented using a sixteen-bit wide
data-path, with each of the inputs interpreted as an unsigned
positive integer. The subtraction was performed using
standard two’s complement arithmetic. The schematic for
the design is shown in Fig. 2.

A. Subtractor
The subtractor design used was a radix-four parallel-

prefix design. It is based upon the adder detailed in these
authors’ previous work [2]. The adder detailed in that paper
has been converted into a selectable subtractor or reverse
subtractor by the inclusion of an input pre-processing stage.
This consists of XOR gates that selectively complement one
of the inputs.

B. Asynchronous control
When constructing loops in asynchronous designs, it is

necessary to create an initialisation token. This initial
asynchronous token is pre-programmed using the global
reset signal to force one of the SWC controllers into a
charged state, concurrently with forcing the single-bit data-
path cell into a state representing the completion condition of
the loop (equality). This causes the input MUXes to be set to
request a new pair of inputs. In Fig. 2., this token is marked
“T0”.

C. Comparator
The inputs are processed by a comparator. This produces

one output to signal equality of the two inputs, which is used
to control the while loop, and another output to indicate
which of the two inputs is the greater. This controls the
programmable subtractor. Like the subtractor, the
comparator used radix-four operations to reduce the number
of pipeline stages. Equality is derived by comparing each bit
with the corresponding bit of the other input and returning
true only if all bits are equal (a bus of XNOR functions
followed by an AND tree). The comparison is performed by
reusing the equality bits and checking if the first input is
greater than the second. This is only true if the first input is
high and the second input is low. These generate the
comparison result using a radix-four method that returns the
comparison result for the most-significant bit-pair whose bits
are not equal, and reuse the multi-input AND-OR gates from
the adder design.

while (a != b) do
 if (a > b) then
 a = a – b
 else
 b = b – a
 end if
end while

Vpc

Z_H
Z_L

A_HA_L

195

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:45:35 EST from IEEE Xplore. Restrictions apply.

V. VERILOG MODELLING
The initial design work was carried out using the

Hardware Description Language (HDL), Verilog to model
the circuits. The design was then translated into SPICE
netlists. These were then verified against the Verilog. This
also demonstrates that it would in principle be possible to
directly translate an Asynchrobatic system designed using
Verilog into a SPICE netlist, and also alludes to the potential
of being able to synthesis more complex systems using
HDLs. The behavioural descriptions of the data-path can be
for either single rail or dual rail operation, and for dual rail,
the alternative of switch-level models could be used. The
behavioural description of the data-path is achieved by
evaluating on the “posegde” of the power-clock and clearing
it on the “negedge” of the power-clock.

VI. TESTING
Two simple tests are ideal to demonstrate the

performance of the GCD algorithm on binary systems will be
described. The short test that will complete quickly and the
longer test that exercises more logic paths, but still completes
within a reasonable simulation time.

The short test used three prime numbers: 2, 3 and P. To
ensure that the GCD engine has sufficient bit-width to
process the inputs, the prime P is required to meet the
constraint shown in (1).

3×P � 2W-1 (1)

The initial inputs to the system are 2×P and 3×P. This
causes the GCD function to generate the result P after two
cycles. The constants used for a sixteen-bit example are
shown in (2).

W=16, P=21841, 2×P=43682 & 3×P=65523 (2)

The longer test used the Fibonacci numbers F(n) and F(n-1).
To ensure that the GCD engine has sufficient bit-width to
process the inputs, the nth Fibonacci number F(n) is required
to meet the constraint shown in (3).

F(n) � 2W-1 (3)

If one was to observe the internal nodes of the circuit just
prior to the output MUX, then one would be able to see the
entire Fibonacci series from F(n) to 1 as the engine performed
its iterative calculations. The constants used for a sixteen-bit
example are shown in (4).

W=16, F(n)=46368, F(n-1)=28657 & n=24 (4)

The choice of test vectors is important for such
simulations, because this simple implementation uses
repeated subtraction. This means that a poorly chosen set of
test inputs could lead to the circuit functioning as a down
counter. This would not constitute an efficient test
methodology!

VII. RESULTS
Results are provided for front-end simulation only, with

SPICE netlists that do not include any parasitic capacitance.
These were implemented and simulated using an Alcatel
(AMIS) 0.35μm process. These tests were performed using
the Eldo MACH fast-SPICE simulator. The SPICE results
are only presented for the longer Fibonacci-based test, as this
exercises the design more. The results for delay and power
obtained when varying process, but keeping the voltage and
temperature the same are shown in Table I. The delay was
measured from the input request handshake rising to the
output handshake rising, and to avoid inaccuracies due to
startup, these measurements were taken on the second
simulation cycle.

Process;
3.3V; 25°C

Delay
(μs)

Controller
Power (nW)

Data-path
Power (nW)

Total Power
(nW)

ff 1.022 2.627 0.8034 3.430
tt 2.067 2.577 0.6801 3.257
ss 5.205 2.353 0.6252 2.978

TABLE I. POWER AND PERFORMANCE OF ASYNCHROBATIC GCD WHEN
VARYING PROCESS CONDITIONS

The results show that in the slower process corners, the
logic runs slower, and that at slower speeds, overall, the
system uses less power. These are both obvious results. It
can be seen that the power consumption of the controller
blocks dominates data-path power consumption by a factor
of about three, this demonstrates the importance of using
radix-four arithmetic blocks. It again highlights that
Asynchrobatic logic is best suited to high data-width
applications. Finally, it suggests that some further work is
needed to reduce overheads associated with one-bit wide
signals on some of the paths. The suggested direction of this
is to consider using asynchronous DCVSL circuits in single-
bit control signals.

VIII. CONCLUSIONS:
It has previously been shown that both simple and

complex combinational functions can be implemented using
Asynchrobatic logic. This work has shown that arbitrarily
complex systems can be implemented using Asynchrobatic
logic. Consequently, it shows that Asynchrobatic logic can
be applied to real-world problems and algorithms, and that it
could be applied to practical applications. Furthermore, the
use of Verilog to model the design shows that there is
potential for design automation. It also demonstrates that the
design of these systems is not overly complex.

ACKNOWLEDGMENT
This research was partially funded by a Quintin Hogg

Research Scholarship from the University of Westminster.

196

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:45:35 EST from IEEE Xplore. Restrictions apply.

REFERENCES
[1] Willingham D.J. & Kale I., “Asynchronous, quasi-Adiabatic

(Asynchrobatic) Logic for Low-Power very Wide Data Width
Applications”, Proc. ISCAS 2004.

[2] Willingham D.J. & Kale I., “An Asynchrobatic, radix-four, carry
look-ahead adder”, Proc. PRIME 2008, pp 105-108.

[3] Muller D.E. & Bartky W.S., “A theory of asynchronous circuits”
Proc. Int. Symp. Theory of Switching, pp. 204-243, 1959.

[4] Vetuli A., Pascoli S.D. & Reyneri L.M., “Positive Feedback in
Adiabatic Logic”, Elec. Lett., 32(20):1867-1869, 26 Sept. 1996.

[5] Heller L., Griffin W., Davis J. & Thoma, N., “Cascode voltage switch
logic: A differential CMOS logic family”, ISSCC Dig. Tech. Papers,
1984, pp. 16-17.

[6] Willingham D.J. & Kale I., “Using Positive Feedback Adiabatic
Logic to implement Reversible Toffoil Gates”, submitted to
Norchip‘08.

[7] Chu K.M. & Pulfrey D.L., “Design Procedures for Differential
Cascode Voltage Switch Logic Circuits”, IEEE J-SSC, 21(6):1082-
1087, 1986.

[8] Karoubalis T., Alexiou G.Ph. and Kanopoulos N., “Optimal synthesis
of differential cascode voltage switch (DCVS) ogic circuits using
ordered binary decision diagrams (OBDDs)”, Proc Euro-DAC 1995,
pp. 282-287.

[9] Euclide, ”Elements”, Book VII, John Daye, London, 1570.
[10] Sparsø J. & Furber S.B., “Principles of Asynchronous Circuit Design:

A Systems Perspective”, Kluwer Academic, 2002, ISBN 0-7923-
7613-7.

Figure 2. Asynchrobatic GCD

A
Z

A!=B
A>B

B

A
B

RST_L

Z = S ? (-A+B) : (+A-B)

MX DX

T0

197

Authorized licensed use limited to: University of Westminster. Downloaded on March 12,2010 at 05:45:35 EST from IEEE Xplore. Restrictions apply.

