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Abstract

Interactive problem solving environments are gaining wjdead acceptance within the Grid community. While
developing applications and frameworks to support and tieghate with these interactive environments, it is also
necessary to treat the legacy applications with the samerianpce. In this paper, we report an ongoing effort in
enabling a legacy application to support, integrate witth @revolve as a scalable problem solving environment.

Our strategy is to componentise the existing legacy framewaugment each component with metadata, and
using the metadata to address different issues arising weegarming component composition. We emphasise on
the issues relating to the metadata and describe the measpefifying, publishing and using the metadata in solving
two different but crucially important issues when perfanmicomponent composition, model validation and model
efficiency.

1 Introduction

Interactive problem solving environments are gainingéasing interest from end users and finding their widespread
acceptance within the Grid community. The intuitive partsath frameworks is how the complexities of solving
computationally demanding problems are hidden from thewes®its by visually appealing front-ends.

Component-based programming is a suitable methodologiefegloping applications and frameworks to support,
to integrate with and to evolve as a problem solving envirenimin the context of component-oriented programming,
a framework or an application is seen as a composition of corapts, on which some of them might have been de-
veloped outside the context of the application domain. Assalt, when composing an application from components,
performing a strict validation on the bindings of interfa@nd semantics of the composition are important to guaran-
tee that the composition if functionality valid. Althoudhig process has been relatively simplified with the modern
programming languages, when considering legacy appicatr frameworks, a number of issues still remain to be
addressed.

Majority of legacy applications do not have any explicitinatof components and performing a composition based
on these legacy codes is often complicated. Although fanatiaspects of legacy-code can be componentised without
any explicit modernisation (such as rewriting in an objegénted language), such componentised versions do not
match their counterparts in many aspects.

We argue that when each component is augmented with adalififiormation, metadata, the task of performing
valid and efficient compositions becomes relatively sifigdiand can be automated. Such an approach involves appro-
priately specifying, publishing, extracting and corrgctsing the metadata for different operations. The (spetitia
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of the) metadata for a component highlights all salientuiest of a component. This information can voluntarily be
embedded by developers in the form of annotations [6, 102p,at by the compilers. Though compilers may cap-
ture and provide substantial amount of information, higel, domain-specific details are better captured by manual
specification or by specialised tools. Metadata for a cormpbnan be furnished as part of the binary or externally.
For instance, for a selected class of binaries, such as Jéacbde or .NET-based binaries [11], these metadata can
examined or extracted using reflective introspection [, Where such facilities are infeasible or limited, for in-
stance when the metadata cannot be embedded, the metasl&teblesfurnished separately. Once the metadata for a
component is extracted (either through reflective introgpa mechanisms or by examination of external metadata),
the information can be staged to address different issues.

However, legacy software pose many challenges in all thegects. Lack of support for appropriately express-
ing components, limited techniques for specifying andaettng metadata, and limited availability of well defined
mechanisms for using the metadata contribute towards toksqm.

In this paper, we report our findings in addressing theseesssusing a legacy application as a driving example.
Although we use the legacy-code based case study as a rmgjieample to illustrate our techniques, the techniques
are equally applicable to modern component-oriented ismisitand across many different application domains. The
key step is to find methods for specifying, publishing andasting the metadata from legacy codes. Techniques for
using the metadata to address different issues are the a0®s egacy and contemporary systems. We illustrate how
we plan to use component-specific metadata to address ter@gting problems arise when performing component
composition, especially when evolving a legacy code-baigedn interactive problem solving environment.

The main contributions of this paper are as follows:

1. We formulate methods for specifying, publishing anda&oting metadata for/from legacy software components
2. We present a number of complementary strategies foryuegithe validity of compositional patterns

3. We discuss our plan in using the metadata for performifigj@fit component composition by using a real-world
component-based application.

The rest of this paper is organised as follows: In Section 2describe our underlying example, GENIE - a
component based modular platform for simulating long tevwlwdion of Earth’s climate. Section 3 describes the
motivation for our work. The overall mechanism for speaifyj publishing and extracting metadata are discussed
in Section 4. Section 5 discusses how the metadata coulddzbtasaddress two different issues: verification of
validity of composition and performing efficient componenmpositions. In Section 6, we discuss previous work
immediately related to ours and Section 7 concludes therpeifiedirections for further research.

2 GENIE Application

2.1 Overview

GENIE (Grid ENabled Integrated Earth system modelling)iflg scalable modular platform used to produce and sim-
ulate a range of Earth system models in order to understandig-term changes in Earth’s climate. The framework
includes different variants afdarth modulesuch as the atmosphere, ocean, sea-ice, marine sedinsmntsurface,
vegetation and soil and ice sheets. A typical Earth systemefrie a composition of different variants of these earth
modules (or different instances of earth modules), whiehimfact differenttonfigurationssuited for different simu-
lation scenarios. Each Earth module is bound to the nataned bf physics that govern the exchange of energy, fluxes,
water and other physical or biogeochemical tracers. Fyréaeh Earth module uses their own module-specific com-
putational models and module-specific data representat@rrepresenting boundary surfaces where the exchanges
occur.

Figure 1 shows a sample Earth system model (or configurafldv® model uses different instances of each of the
Earth system modules (instance types are shown within geasises). Interactions between different (instances of)
Earth modules are shown by arrows. In addition to Earth syst@dules, a configuration may also use modules to
represent exchanged or accumulated physical or biogeachkmacers (for example, Surface flux in the Figure).
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Figure 1: A sample configuration representing an Earth systedel

2.2 The Past, the Present and the Future

In the original implementation, the GENIE was implementeg@ire FORTRAN without any explicit notion of com-
ponents and services. The framework included a driver nedfdulorchestrating the execution, inter- and intra-module
communications and data exchanges for a given configuration

At present, these earth-modules have been componentisedacilitate inter-operatability between different
language-specific implementations and to expose theseawengs on the Web-Services front, these components have
been wrapped through Java interfaces [13]. With these verapp place, the overall composition of these components
(and thus different earth system models) may include recaigonents and remote services.

Currently, the simulation of a given model could be subrditteanaged and executed on the Grid using the Globus
Toolkit [7] or Condor [16].

In the context of Grid, problem solving environments or pen solving portals are finding broader range of
audience including scientists. Evolving GENIE as a, or aaraqf a portal is an interesting challenge. This includes
creating component repositories, building automated $sgian, management, scheduling and execution mechanisms
and building/supporting visualisation platforms. In agiling this challenge, although we could potentially mades u
of existing techniques to handle different issues which arége within, there are still issues need to be addressed. We
use one of these issues, discussed in Section 3 as a key tiootifa this paper and to illustrate our techniques.

3 Motivation

One of our goals in improving the GENIE platform to evolve #zne as a or as a part of a portal where end-users
could visually compose a simulation model. Such a visual pmsition will include different visual components
representing various earth modules, which may be web ssracnative components. Each component is permitted
to have different variants (with varying models, differgatrameterised configuration, costs, locations, perfooman
and interfaces) whose properties can be configured, atdaetstlly. In effect, the overall properties of a compasitj

i.e. the configuration of the model, can be configured by esgtas There are at least two immediate issues arising
in supporting such user configurable simulation modelsstliyjrthe validity of a composed simulation model should
be verified against the law of nature, or more specificallyjreggahe domain-specific facts of Earth system modelling.
Secondly, the composition should be made efficient in terieest, performance and usage of resources.

The task of verifying the validity of a composition requireserent knowledge of components (such as appli-
cability information, parameters, their ranges, pattavhiteractions and other similar information) and reqgsiire
substantial exposure to the domain-specific details othEgrstem modelling. Although it is possible to embed these
information as part of the application, such an approachdvprevent the scalability issue to be handled efficiently,
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i.e. components cannot be added or removed dynamicallyoupdiag the platform from possessing any component-
specific information (component metadata) leads us tostrtiie same metadata through an external source. However,
in the current setup of GENIE, components cannot carry army fif metadata in their own.

Secondly, when composing components to build a model, oppities may arise for improving the efficiency
of compositions. Efficiency of a composition is a multivégidunction. However, we restricted our cost model to
have only one parameter, namely runtime (performancejntpldy the process. Opportunities for optimisation may
also arise during runtime and using the metadata may ressignificant improvement in performance. For example,
performance is highly correlated to the location of websweis and choosing a service whose proximity is closer to
the client has desirable advantages on performance.

A closer inspection of these requirements show that if eachponent is augmented with metadata, it is at least
partially possible to overcome some of the challenges. Weudis the nature and specification of the metadata in
Section 4 and our means to exploit the metadata in Section 5.

4 Metadata for Legacy Components

The specification of the metadata should permit informatidre equally expressed across different components while
permitting salient and domain-specific features of compt® be highlighted. Towards this, the metadata should
capture any implementation-specific and compositionifipeénformation and details relating to the domain of the
application. The organisation of the metadata, in terms afimgement and usage, is also equally important to the
contents of the metadata. We follow the organisationat#ire outlined in [17] to organise our metadata. Metadata
related to components are externally supplied as discumded (in contrast to the approach of being supplied by the
binary itself).

In our case, we manually specified the metadata for each coemtised version of the legacy-code. The metadata
is then associated to the matching component and placed assotiated repository. Service enabling our compo-
nentised versions results in additional advantage of &tsokmetadata being served as part of the services cantract
When not accessed through services, the external metadatpplied by explicit method calls produced by component
wrappers.

The exact information to be captured/specified can be diMidé¢hree different groups: basic component-specific
information, domain-specific information and experiespecific information. However, in terms of implementation,
it may not be entirely possible to avoid any overlaps or gneg@from occurring. The component-specific information
specifies the interfaces and interactions to the compomnehtas inputs, outputs, their types and other compositional
information (such as containment relationships and paremtule information). The domain-specific information are
often in the form of constraints, specifying valid rangealids values, valid units and additional conditions which
are fully derived through the knowledge of the componemakly, experience-specific information are accumulated
across runs.

5 Staging the Metadata

The next step is to appropriately use the metadata to addifés®nt problems. In our case, we are considering two
different issues: model validation and efficient compositiwhich are discussed in the following sub-sections.

5.1 Model Validation

In an Earth simulation model, different instances relatmglifferent Earth modules may coexist. This means, for
instance, there may be two different atmospheric models eoayist inside a single simulation model, perhaps to
represent different atmospheric conditions over differegions of the Earth. Each instance interacts with eacéroth
for exchanging physical and/or biogeochemical tracemsi§ipally through their ports. Since different instancesym
share common interface properties, validating interfseeific details alone may not be sufficient enough to guaeant
that the model is valid. We use the different parts of metdathe process of validating a model.

e Physical units of ports Wherever applicable, each physical tracer (such as speedyy) and/or biogeochem-
ical tracer (such as CQdust, Alkalinity) is related to a unit (such &s, ms~2). When verifying a coupling
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between instances of different modules, their physical sindeochemical couplings need to be verified to
ensure that the connections between tracers of coupledlesaie valid.

e Resolution/Dimension of computational modelsAs outlined earlier, each component may be configured to
use a specific computational model, for instance the rasaolaiff spatial grids and/or dimension of the spatial
grids. In many cases, these models do not match and this issappropriately handled depending on the
context. For example, when spatial grids are differentgraalues are appropriately interpolated/extrapolated.
However, this often comes with correction factor to guagarthe conservation of energy/fluxes. Validating
whether a coupling leads to large deviation in values oremimns may result in verifying whether there are
violations of physical laws of conservation.

e Number of instances An Earth module may mandate an upper or lower bound on nuaflestances that may
be present in a model. Verifying that the instances do ndatédhis requirement, provides an extra scoring.

e Value range A possible range of values that an input/output tracer cume is specified as part of the
metadata, for example value range for temperature. Depegradi the model, the value range may help arresting
invalid models at pre-simulation stage or during simulatio

e Existing models/couplings Capturing and recording outcomes of models and coupliagsiet of the metadata
(as part of the experience-specific metadata) may help mgwesiperience-specific data in identifying invalid
models/couplings.

e Interface- and type-specific informationt In addition to existing details, interface- and type-sfiedetails of
coupled tracers need to be matched.

We are continuing our effort in identifying more domain-sifie metadata parameters to be used against validation
of simulation models. An added advantage of using the compometadata is that it partly guarantees that the
application (or component) is free from value specific lggic

5.2 Performance Optimisation

An Earth system model is simulated for a long period, foranse for multi-millennial periods, and it is both time
consuming and computationally intensive. Although eacdul®may be optimised for best performance (or for other
objective functions), the overall composition cannot be-pptimised. One of the reasons for a composition to yield
sub-optimal performance is that components are not awdheaverall behaviour of the composition. The use of the
metadata in performing efficient component compositiongrasiously been demonstrated by many authors [10, 4].
The key idea in our approach is to tailor the metadata to dellbmain-specific and experience-specific information
in addition to the component/interface-specific detaile We the following metadata for resolving key performance
issues.

e Location/type of component As outlined already, a composition may include locallyimlde, native com-
ponents and remote web-services. Since, the communidatemcies are highly correlated to the overall per-
formance of the composition, wherever applicable, locallgilable components should be preferred to web-
services and services in close proximity to services witfhHatencies. However, this issue may be further
complicated if a second optimisation parameter is addegih as cost.

e Computational models Some of the computational models of a given component meg imatching compu-
tational model such that they all yield almost similar résblt exhibiting significant difference in performance.
For example, when simulating maximum Atlantic meridionakdurning circulation (MOC), resolutions of
36 x 36 x 8 and72 x 72 x 16 for oceans, results in similar MOC figures for higher flux eations. Further,
the choice of a faster resolution may be justified by subssignterpolations/extrapolations for corrections.

e Data from past runs: Instance of some Earth modules always have similar (ortaat)sstartup or input values.
Wherever possible, the past data can be used to save coropatdime. Very frequently, similar simulation
models may overlap in time period and thus the data. Fornestaexploring the stability of the ocean thermo-
haline circulation (THC) is very repetitive in nature angipossible that the simulation span to overlap with an
existing (similar) model.
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We are investigating the issue of staging these metadatapimie the overall performance of simulation models,
THC in particular.

6 Related Work

Problem solving and modular visualisation environmentsaork-flow editors for composing operations are based
on providing high level abstract view of components/modite exploring problem/solution spaces [8, 4, 2]. Our
work is aligned with similar interests to theirs, but we makéensive use of component and domain-specific metadata
to simplify the process of our goals.

The Bespoke Framework Generator (BFG) [14] is a prototygsementation of the Flexible Coupling Approach
(FCA) and partially being used as a coupling framework witthie GENIE application. BFG permits rules relating
to compositions to be built and wrapper codes to be gener@edwork has similar goals and results to theirs but
we make extensive use of metadata from which the compostiles are inferred. Our work is more suitable in a
scalable environment where exact rules are difficult to ispaxspecially when nature of evolving components are not
known in advance. Further, our metadata supports spewiicaf rules where necessary but does not depend upon
on them for its operations. In addition to this, our work @i the runtime correlated metadata to seek optimisation
opportunities.

The THEMIS framework [10] demonstrates how component sjgenietadata can be used to perform cross
component optimisations. Using component metadata famigihg resources and applications in the context of Grid
is considered in [9]. Organisation of metadata for compoweiented compositions are discussed in [17]. Our work
utilises some of their principles and techniques in advantie solutions. We also make extensive use of some or
part of the wrapping techniques outlined in [5, 12, 3]. Hoarwur implementation of wrappers also function as part
of the web-service so that the metadata can be publishediasf plae service.

OASIS4 [15] offers a component model description and conéition for coupled models. The framework is
specifically aligned towards issues related to climatehesystem modelling. Although it proposes earth-specific
metadata, the metadata does not capture the details wigicblavant to our work.

7 Conclusions

In this paper we have highlighted two issues that arise wieefopning composition of components, namely validity
and efficiency. We also discussed the importance of addigs$isese two issues both in the context of legacy ap-
plications and modern component-oriented programming.pWWeed a particular emphasis on providing additional
information related to components, which we call metadartal using the same to automate or semi-automate the
process of component composition.

Carefully specifying the metadata such that it capturestimeponent and domain-specific information leads to
potential benefits, which we outlined in Section 5. We usezbady application as a driving example to illustrate the
details and nature of the metadata for components basedacyleode. We also highlighted our plans in staging the
metadata for validating the models and improving the efficyeof models.

However, we discussed only a subset of the issues arisingrforqming compositions of components. A number
of interesting issues remain to be addressed.

e Currently, we do not capture or specify any information as pithe metadata to parallelise the simulation and
to improve the performance. This issue is partly addressddrecluded in the BFG framework through rules.
However, we intend to take a different approach where thalleéism can also be inferred from metadata if not
specified explicitly.

e The experience-specific metadata may dramatically inergesize and may affect the overall performance. We
plan to separate this aspect of the metadata in a separaelidated storage (such as a common database).

e Manually specifying the metadata for legacy componentizmaplex process. Diminishing or ageing skills in
legacy systems, unavailability of up-to-date documeatativillingness of new programmers to get a deeper un-
derstanding of the code are some of the contributing redsotise difficulty in keeping pace with the changes.
However, fortunately, GENIE is based on FORTRAN code-baskitis not entirely impossible to cope with
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the ageing code exposure — if FORTRAN code is assumed to b marallel with modern programming
languages.

e One of the interesting outcomes of using the metadata is hewapplication or component becomes free from
value-specific logics. It is possible to take an aggresgipe@ach here to migrate more issues into the metadata
from the component/application. For instance, computalionodels of components may consists of or may
have access to alternative solvers/smoothers. This camtered inside the metadata. However, such an
aggressive approach may increase the overheads in hatidéngetadata. There is an optimum amount of
information that can be passed as metadata and rest in thieadiom/component logic. It is interesting to
observe the optimality and defining metrics for such optitpal

e As mentioned in Section 3, efficiency of a composition is ativaiiate function. We simplified the model and
assumed that performance is the primary concern. Howavarréal setup, factors such as cost may also need
to be considered.

At present, we are investigating means for unifying and gaising the metadata specification across different
components and across the whole domain. We are also implemméhe framework for extracting and staging the
metadata in performing compositions. We are certain traptioposed approach could be used to solve associated
issues in other domains of applications and in contempa@mponent-based systems.
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