
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

A Simpler formulation of natural deduction calculus for linear-

time temporal logic

Bolotov, A., Grigoriev, O. and Shangin, V.

A conference paper published in: Bhanu, P. (ed.) The Proceedings of the 3rd Indian

International Conference on Artificial Intelligence, Pune, India, December 17-19, 2007.

IICAI. pp. 1253-1266.

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161116801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simpler Formulation of Natural Deduction
Calculus for Linear-Time Temporal Logic

Alexander Bolotov*, Oleg Grigoriev** and Vasilyi Shangin**

* Harrow School of Computer Science
University of Westminster

Watford Road, Harrow HA1 3TP, UK.
A.Bolotov@wmin.ac.uk

http://www2.wmin.ac.uk/bolotoa/index.html

** Department of Logic, Faculty of Philosophy, Moscow State University, Moscow,
119899, Russia.

{shangin,grig}@philos.msu.ru

Abstract. The paper continues our studies of natural deduction calcu-
lus for the propositional linear-time temporal logic PLTL. We present a
new formulation of natural deduction calculus for PLTL. The system is
shown to be sound and complete. This new formulation is simpler than
the previous one, and this fact is believed to be crucial for possible appli-
cations of our technique as an automatic reasoning tool in a deliberative
decision making framework across various AI applications.

1 Introduction

The paper is a sequel to the authors’ studies of natural deduction calculus for
the propositional linear-time temporal logic PLTL [6]. In the previous paper,
we presented a natural deduction proof system for PLTL and established its
correctness [1]. Being based on the techniques for a variety of classical and non-
classical logics [1–3], that system served as a background for a natural deduction
system for computation temporal logic CTL [4], in turn.

In this paper, we present a new formulation of natural deduction calculus
accompanied with the updated correctness argument. A new system is simpler
than the previous one, and this fact is believed to be crucial for possible applica-
tions of our technique as an automatic reasoning tool in a deliberative decision
making framework across various AI applications.

In a new formulation of the system two rules for Until operator elimination
together with the induction rule are replaced with only one rule for Until operator
elimination. Moreover, instead of three rules for Until operator introduction, we
now present only one simple introduction rule. This effect appears as a result of
making use of a new rule, which is an analog of the least fixpoint axiom in the
standart axiomatization of the system PLTL.

A simpler formulation of the system allows us to make the correctness ar-
gument more transparent. Therefore, we update the correctness argument (es-
pecially, the soundness argument). We believe that a new formulation of the
system will improve the efficiency of the proof searching procedures.

The paper is organized as follows. In §2 we review the syntax and semantics
of PLTL in §2.1. In §2.2 we describe the ND for PLTL henceforth referred to as
PLTLND and give an example of the construction of the proof. Subsequently, in
§3, we provide the correctness argument. Finally, in §4, we provide concluding
remarks and identify future work.

2 Natural Deduction System PLTLND

In this section we review the logic PLTL and the calculus PLTLND.

2.1 Syntax and Semantics of PLTL

In the syntax of PLTL we identify a set, Prop, of atomic propositions:

p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . .

classical operators: ¬,∧,⇒,∨, and temporal operators: (‘always in the fu-
ture’), ♦ (‘at sometime in the future’), g(‘at the next moment in time’), and
U (‘until’).

The set of well-formed formulae of PLTL, wffPLTL is defined as follows.

Definition 1 (PLTL syntax).

1. All atomic propositions (members of Prop) are in wffPLTL.
2. If A and B are in wffPLTL, then so are A ∧B, ¬A, A ∨B, and A ⇒ B.
3. If A and B are in wffPLTL, then so are A, ♦A, gA, and AU B.

For the semantics of PLTL we utilise the notation of [5]. A model for PLTL
formulae, is a discrete, linear sequence of states σ = s0, s1, s2, . . . which is iso-
morphic to the natural numbers, N , and where each state, si, 0 ≤ i, consists of
the propositions that are true in it at the i-th moment of time. If a well-formed
formula A is satisfied in the model σ at the moment i then we abbreviate it by
〈σ, i〉 |= A. Below, in Figure 1, we define the relation |=, where indices i, j, k ∈ N .

Definition 2 (PLTL Satisfiability). A well-formed formula, A, is satisfiable
if, and only if, there exists a model σ such that 〈σ, 0〉 |= A.

Definition 3 (PLTL Validity). A well-formed formula, A, is valid if, and
only if, A is satisfied in every possible model, i.e. for each σ, 〈σ, 0〉 |= A.

2.2 The Calculus PLTLND

Here we present the formulation of PLTLND with a slightly different set of rules
in comparison with its original formulation in [1]. Namely, now we have new
rules, application of negation to U and ♦ operators, and the rule representing
one of the De Morgan laws, but fewer rules for U (see details below).

〈σ, i〉 |= p iff p ∈ si, for p ∈ Prop
〈σ, i〉 |= ¬A iff 〈σ, i〉 6|= A
〈σ, i〉 |= A ∧B iff 〈σ, i〉 |= A and 〈σ, i〉 |= B
〈σ, i〉 |= A ∨B iff 〈σ, i〉 |= A or 〈σ, i〉 |= B
〈σ, i〉 |= A ⇒ B iff 〈σ, i〉 6|= A or 〈σ, i〉 |= B
〈σ, i〉 |= A iff for each j if i ≤ j then 〈σ, j〉 |= A

〈σ, i〉 |=♦A iff there exists j such that i ≤ j and 〈σ, j〉 |= A
〈σ, i〉 |= fA iff 〈σ, i + 1〉 |= A
〈σ, i〉 |= AU B iff there exists j such that i ≤ j and 〈σ, j〉 |= B and for each k,

if i ≤ k < j then 〈σ, k〉 |= A

Fig. 1. Semantics for PLTL

The core idea of a natural deduction proof technique for a logic L is to
establish rules of the following two classes: elimination rules which decompose
formulae and introduction rules aimed at constructing formulae, introducing new
logical constants. Given a task to prove some formula A of L, we aim at syn-
thesising A. Every proof commences with an assumption and, in general, we
are allowed to introduce assumptions at any step of the proof. In the type of
natural deduction that we are interested in, assumptions have conditional inter-
pretation. Namely, given that a formula A is preceded in a proof by assumptions
C1, C2, . . . Cn we interpret this situation as follows: if C1, C2, . . . Cn are satisfi-
able in L then A is satisfiable in L. Thus, if A is a theorem (a valid formula in
L) and we want to obtain its proof then we must interpret A ‘unconditionally’,
i.e. it should not depend on any assumptions. In our system, the corresponding
process is called discarding of assumptions, which accompanies the application
of several introduction rules. As we will see below, in a proof of a theorem in
our system the set of non-discarded assumptions should be empty.

Another feature of our construction of PLTLND is the use of the labeling
technique. In the language of PLTLND we use labeled PLTL formulae and a spe-
cific type of expressions that use labels themselves, called relational judgements.
Thus, additionally to elimination and introduction rules, we also establish rules
to manipulate with relational judgements.

Extended PLTL Syntax and Semantics.

We extend the PLTL language by introducing labels. Labels are terms, el-
ements of the set, Lab = {x, y, z, x1, x2, x3, . . .}, where x, y, z . . . are variables.
When constructing a PLTLND proof, we associate formulae appearing in the
proof with a model σ described in §2.1 such that labels in the proof are inter-
preted over the states of σ. Since σ is isomorphic to natural numbers, we can
introduce the operations on labels: ', which stands for the equality between
labels, ¹ and ≺, which are syntactic analogues of the ≤ and < relation in σ.
Thus, ¹ satisfies the following properties:

(2.1) For any i ∈ Lab : i ¹ i (reflexivity),

(2.2) For any i, j, k ∈ Lab if i ¹ j and j ¹ k then i ¹ k (transitivity).
(2.3) For any i, j, k ∈ Lab if i ¹ j and i ¹ k then j ≺ k or k ≺ j or j ' k

(linearity).
(2.4) For any i ∈ Lab, there exists j ∈ Lab such that i ¹ j (seriality).

Now, we define a relation Next ⊂ Lab2 : Next(x, y) ⇔ x ≺ y and there is no
z ∈ Lab such that x ≺ z and z ≺ y.

Next is the ‘predecessor-successor’ relation which satisfies the seriality prop-
erty: for any i ∈ Lab, there exists j ∈ Lab such that Next(i, j).

Let ′ abbreviate the operation which being applied to i ∈ Lab gives us i′ ∈
Lab such that Next(i, i′).

As we have already mentioned above, now we are able to introduce the ex-
pressions representing the properties of relations ‘¹’, ‘≺’, ‘'’ and ‘Next’, and
the operation ′ which, following [7], we call relational judgements.

Definition 4 (PLTLND Syntax).

– If A is a PLTL formula and i ∈ Lab then i :A is a PLTLND formula.
– Any relational judgement of the type Next(i, j), i ¹ j, i ≺ j and i ' j is a

PLTLND formula.

Some useful and rather straightforward properties relating operations on la-
bels are given below.

(2.5) For any i, j ∈ Lab if Next(i, j) then i ¹ j.
(2.6) For any i, j ∈ Lab if i ≺ j then i ¹ j.

For the interpretation of PLTLND formulae we adapt the semantical con-
structions defined in §2.1 for the logic PLTL. In the rest of the paper we will
use capital letters A,B,C, D, . . . as metasymbols for PLTL formulae, and cal-
ligraphic letters A,B, C,D . . . to abbreviate formulae of PLTLND, i.e. either la-
belled formulae or relational judgements. The intuitive meaning of i : A is that
A is satisfied at the world i.

Let Γ be a set of PLTLND formulae, let DΓ = {x|x :A ∈ Γ}, let σ be a model
as defined in §2.1 and let f be a function which maps elements of DΓ into N
(recall that a PLTL model σ is isomorphic to natural numbers).

Definition 5 (Realisation of PLTLND formulae in a model). Model σ
realises a set, Γ , under a mapping, fσ:Lab −→ σ, if the following conditions
hold:

(1) For any x ∈ Lab, and for any PLTLND formula A, if x : A ∈ Γ then
〈σ, f(x)〉 |= A,

(2) For any x, y, if x ¹ y ∈ Γ , and fσ(x) = i, and f(y) = j then i ≤ j,
(3) For any x, y, if Next(x, y) ∈ Γ , and fσ(x) = i, and fσ(y) = j then j = i+1.

The set Γ in this case is called realisable in σ under a mapping fσ. If a model
and a mapping are clear from the context, the set Γ is simply called realisable.

Definition 6 (PLTLND Logical Consequence). A set of PLTLND formulae
Γ logically implies a PLTLND formula A, denoted Γ |=ND A, if

1. All elements of Γ and A are of the form i : C (for some PLTL formula C)
and prefixed with the same label, i,

2. a PLTLND formula A is realisable whenever a set Γ is, for each mapping fσ

and every model σ.

Definition 7 (PLTLND Validity). A well-formed PLTLND formula, A = i :
B, is valid (abbreviated as |=ND A) if, and only if, the set {A} is realisable in
every possible model, for any function f .

Rules of Natural Deduction System.

In Figure 2 we define these sets of elimination and introduction rules, where
prefixes ‘el’ and ‘in’ abbreviate an elimination and an introduction rule, respec-
tively.

Elimination Rules :

∧ el1
i :A ∧B

i :A

∧ el2
i :A ∧B

i :B

∨ el
i :A ∨B, i :¬A

i :B

⇒ el
i :A ⇒ B, i :A

i :B

¬ el
i :¬¬A

i :A

Introduction Rules :

∧ in
i :A, i :B

i :A ∧B

∨ in1
i :A

i :A ∨B

∨ in2
i :B

i :A ∨B

⇒ in
[i :C], i :B

i :C ⇒ B

¬ in
[j :C], i :B, i :¬B

j :¬C

Fig. 2. PLTLND-rules for Booleans

– In the formulation of the rules ‘⇒ in’ and ‘¬ in’ formulae [i :C] and [j :C]
respectively must be the most recent non discarded [3] assumption occurring
in the proof. When we apply one of these rules on step n and discard an
assumption on step m, we also discard all formulae from m to n−1. We will
write [m - (n−1)] to indicate this situation.

We keep the notions of flagged and relatively flagged label with the meaning
similar to the notions of flagged and relatively flagged variable in first order logic
[3]. By saying that the label, j, is flagged, abbreviated as 7→ j, we mean that
it is bound to a state and, hence, cannot be rebound to some other state. By

saying that a variable i is relatively flagged (bound) by j, abbreviated as j 7→ i
we mean that a bounded variable, j, restricts the set of runs for i that is linked
to it in the relational judgment, for example i ¹ j.

Now in Figure 3 we introduce the following rules to manipulate with relational
judgements which correspond to the properties (2.1)-(2.6).

reflexivity

i ¹ i

fseriality

Next(i, i′)

≺ / ¹
i ≺ j

i ¹ j

f/ ¹
Next(i, i′)
i ¹ i′

transitivity
i ¹ j, j ¹ k

i ¹ k

¹ linearity
i ¹ j, i ¹ k

(j ¹ k) ∨ (j ' k) ∨ (k ¹ j)

Fig. 3. PLTLND-rules for relational judgements

The linearity rule needs some additional comments. Strictly speaking, in the
PLTLND language, to avoid unnecessary complications, we do not allow either
Boolean combination of relational judgements or their negations. Obviously, the
conclusion of the¹ linearity rule violates this constraint. However, it expresses an
obvious property of the linear time model structure and to make our presentation
more transparent we explicitly formulate a corresponding rule.

Next, in Figure 4 we define elimination and introduction rules for the tem-
poral logic operators.

? When applying g
el the conclusion i′ : A becomes marked by M1. This

affects other rules:
- the condition ∀C(j :C 6∈ M1) in the rule ♦el means that the label j should

not occur in the proof in any formula, j :C, that is marked by M1,
- the condition j :A 6∈ M1 in the rule in means that j :A is not marked by

M1.
?? In in formula i ¹ j must be the most recent assumption and a variable

j is new in a derivation. Applying the rule on the step n of the proof, we discard
i ¹ j and all subsequent formulae until the step n.

Finally, we add the following three rules:

¬U
i :¬(AU B)

i : ¬B ∨ ¬B U (¬A ∧ ¬B)

¬♦
i :¬♦A
i : ¬A

¬∨
i :¬(A ∨B)
i :¬A ∧ ¬B

Elimination Rules :

el
i : A, i ¹ j

j : A

♦el
i :♦A

i ¹ j, j : A

∀C(j :C 6∈ M1)
7→ j, j 7→ i

fel?
i : fA

i′ :A
i′ :A ∈ M1

U el

i : (B ⇒ C), i : ((A ∧ fC) ⇒ C)

i :AU B ⇒ C

Introduction Rules :

in?? j :A, [i ¹ j]

i : A
j :A 6∈ M1
7→ j, j 7→ i

♦in
j :A, i ¹ j

i :♦A

fin
i′ :A, Next(i, i′)

i : fA

U in
i :B

i :AU B

Fig. 4. Temporal ND-rules

The third rule, ¬∨, simply represents one of De Morgan laws and is derivable
from the set of classical rules mentioned above. The rule ¬U is not derivable
from the set of rules for temporal operators given above. Their addition, together
with the use of fewer rules for U , leads us to a new ND formulation of PLTL.

Definition 8 (PLTLND Derivation). A derivation D of a PLTLND formula
A from a set of PLTLND formulae Γ , which are called premises, is a nonempty
sequence of PLTLND formulae such that

1. All elements of Γ and A are of the form i : C (for some PLTL formula C
and i ∈ Lab) and prefixed with the same label, i,

2. each member of D is either an element of a set Γ , or an assumption, or a
result of an application of one of the derivation rules of PLTLND system,

3. none of labels occurring in D is flagged twice or flagges itself,
4. a label of A is not flagged in D,
5. a set of nondiscarded assumptions is empty.

An expression Γ `ND A denotes the fact that there is a PLTLND derivation of
A from Γ .

Definition 9 (PLTLND Proof). An ND proof of a PLTL formula B is a
finite sequence of PLTLND formulae A1,A2, . . . ,An which satisfies the following
conditions:

– every Ai (1 ≤ i ≤ n) is either an assumption, in which case it should have
been discarded, or the conclusion of one of the ND rules, applied to some
foregoing formulae,

– the last formula, An, is x :B, for some label x,

– no variable - world label is flagged twice or relatively binds itself.

When B has a PLTLND proof we will abbreviate it as `ND B indicating that B
is a theorem.

Examples
Here we present the proof of the induction principle and some exam-

ples of the reasoning based on the application of the natural deduction system
introduced above that are needed for the proof of induction.

Firstly, it is easy to justify the generalisation principle [1], and show that
contraposition and transitivity of ⇒ rules are derivable:

If `ND A then `ND A. (1)

A ⇒ B
¬B ⇒ ¬A

(2)

A ⇒ B, B ⇒ C
A ⇒ C

(3)

The following theorem is also easily (classically) proved:

`ND (true ∧A) ⇒ A (4)

Next we present proofs for PLTL theorems that characterise some properties of
g, ♦, and U operators:

`ND
g¬A ⇒ ¬ gA (5)

1. x : g¬A assumption
2. x′ : ¬A g

el, 1
3. x : ¬¬ gA assumption
4. x : gA 3, ¬el

5. x′ : A 4, g
el

6. x : ¬¬¬ gA ¬in, 2, 5, [3− 5]
7. x : ¬ gA ¬el, 6
8. x : g¬A ⇒ ¬ gA ⇒in, 7, [1− 7]

`ND ¬♦A ⇒ ¬A (6)

1. x : ¬♦A assumption
2. x ¹ y assumption
3. y : A assumption
4. x :♦A 2, 3,♦in

5. y : ¬A 1, 4,¬in, [3− 4]
6. x : ¬A 5, in, [2− 5], 7→ y, y 7→ x
7. x : ¬♦A ⇒ ¬A 6,⇒in, [1− 6]

`ND ¬ A ⇒♦¬A (7)

1. x : ¬ A assumption
2. x : ¬♦¬A assumption
3. x : ¬♦¬A ⇒ A theorem (6)
4. x : A 2, 3,⇒ el
5. x : ¬¬♦¬A 1, 4, ¬in, [2− 4]
6. x :♦¬A 5, ¬el

7. x : ¬ A ⇒♦¬A 6, ⇒in, [1− 6]

`ND AU false ⇒ false (8)

1. x : A ∧ gfalse ⇒ false classical theorem
2. x : (A ∧ gfalse ⇒ false) 1, rule (1)
3. x : false ⇒ false classical theorem
4. x : (false ⇒ false) 3, rule (1)
5. x : AU false ⇒ false 2, 4, U el

`ND ♦A ⇒ (true U A) (9)

1. x :♦A assumption
2. x ¹ y 1,♦el, 7→ y, y 7→ x
3. y : A 1,♦el

4. x : ¬(true U A) assumption
5. x : ¬A ∨ ¬AU (¬A ∧ false)) 4, ¬U
6. x : ¬A ∨ ¬AU false 5, classical
7. x : ¬A 6, rule 8, classical
8. y : ¬A 7, 2, el

9. x : ¬¬(true U A) 3, 8, ¬in, [4− 8]
10. x : true U A 9, ¬el

11. x :♦A ⇒ (true U A) 10,⇒in, [1− 10]

`ND
g♦A ⇒♦A (10)

1. x : g♦A assumption
2. Next(x, x′) gseriality
3. x′ :♦A 1, g

el

4. x ¹ x′ 2, Next/ ¹
5. x′ ¹ z 3,♦el, 7→ z, z 7→ x′

6. z : A 3,♦el

7. x ¹ z 4, 5,¹ transitivity
8. x :♦A ♦in, 6, 7
9. x : g♦A ⇒♦A ⇒in, [1− 9]

From theorem (10) we can easily derive

`ND (true ∧ g♦A) ⇒♦A (11)

From theorem (11) by generalisation rule (1) we have

`ND ((true ∧ g♦A) ⇒♦A) (12)

Now we are ready to prove the induction:

`ND ((A ⇒ gA) ∧A) ⇒ A (13)

1. x : (A ⇒ gA) ∧A assumption
2. x : (A ⇒ gA) 1,∧el

3. x : A 1,∧el

4. x : ¬ A assumption
5. x : ¬ A ⇒♦¬A theorem (7)
6. x :♦¬A 4, 5,⇒el

7. x :♦¬A ⇒ (true U ¬A) theorem (9)
8. x : (true U ¬A) 6, 7,⇒el

9. x : (¬A ⇒ ¬A) rule (1) applied to classical theorem
10. x ¹ v assumption
11. v : A ⇒ gA 2, 10, el

12. v : ¬ gA ⇒ ¬A 11, rule (2)
13. v : g¬A ⇒ ¬ gA theorem (5)
14. v : g¬A ⇒ ¬A 12, 13, rule (3)
15. v : (true ∧ g¬A) ⇒ g¬A theorem (4)
16. v : (true ∧ g¬A) ⇒ ¬A 14, 15, rule (3)
17. x : ((true ∧ g¬A) ⇒ ¬A) in, 10, 16, [10− 16], 7→ v, v 7→ x
18. x : (true U ¬A) ⇒ ¬A 9, 17, U el

19. x : ¬A 8, 18,⇒el

20. x : ¬¬ A ¬in, 3, 19, [4− 19]
21. x : A ¬el, 20
22. x : ((A ⇒ gA) ∧A) ⇒ A 21,⇒in, [1− 21]

3 PLTLND Correctness

3.1 PLTLND Soundness

Now let us turn to the proof of a soundness theorem for a system of PLTLND.
But before we should prove an important lemma which is substantial for the
main theorem. The formulation of this lemma involve a number of details and
may seem a bit sophisticated. But the main idea here is quite clear. We want
to be convinced that if a set of given premises and non-discarded assumptions
is realisable, i.e. has a model in a sense, then a set of all other formulae in a
derivation (which are obtained by applications of the rules) is also realisable.
Then a proof of soundness theorem follows from this result almost directly.

Lemma 1. Assume that the following conditions are given:

– Let D be a derivation of some PLTLND formula B from a set of PLTLND

formulae Γ ,
– Φm ⊆ D is a union of Γ and a set of non-discarded assumptions Θm which

are contained in D at some step m.

– Λm is a set of PLTLND formulae of D at the step m such that for any B, if
B ∈ Λm, then it is obtained by an application of some derivation rule, and
let ∆ be a conclusion of a PLTLND rule which is applied at step m + 1.

– Φm+1 consists of the set Γ and all assumptions from Θm that have not been
discarded by the application of this rule; Λm+1 consists of the non-discarded
members of Λm and the elements of a set ∆.

Then, for all fσ and σ, if Φm+1 is realisable in a model σ under fσ then Λm+1

is also realisable in σ under fσ.

Proof. We prove this lemma by induction on the number of PLTLND rules ap-
plied in the derivation. Thus, assuming that lemma is correct for the number, n
(n ∈ N), of the applications of the PLTLND rules, we must show that it is also
correct for n + 1.

Case ⇒in. Suppose that x : B is some PLTLND formula in the derivation and
x : A is the most recent assumption contained in the set Φm. An application of
the rule ⇒in results in a PLTLND formula x : A ⇒ B in D. To prove the lemma
for this case, we should consider several subcases depending on the place in the
proof where x : B is positioned or the whole structure of the proof.
Subcase 1. Let x : B ∈ Λm and an initial part of D consists of the elements of
Γ directly followed by all the elements of Θm. Let us refer to this configuration
by expression that Φm is an initial part of the derivation. After application of
the rule ⇒in we have x : A ⇒ B on m + 1-th step of the proof and also the
sets Φm+1 = Φm − {x : A} (because x : A is the most recent assumption),
Λm+1 = ∆ = {x : A ⇒ B} (because all steps starting from the most recent
assumption until the result of the application of the rule are discarded). Thus
it should be shown that the set {x : A ⇒ B} is realisable under each fσ in
every model σ provided that realisability of Φm+1 is assumed. Note that if some
model realises Φm+1 but rejects formula A, then this model realises the set
{x : A ⇒ B} by the truth condition for implication. So, assume that for some
model both Φm+1 and {x : A} are realisable. Recall that the union of these sets
is the set Φm. By induction hypothesis we know that realisability of Φm implies
realisability of Λ. But x : B ∈ Λ, hence {x : A ⇒ B} is realisable.
Subcase 2. In this case we consider the situation when x : B ∈ Λ but some
elements of Θm appeared in the proof after a number of applications of PLTLND

rules have been made. This time the set Λm+1 may contain some elements apart
from x : A ⇒ B. The difficult part is concerned with the case when some model,
say σ′, realises the set Φm+1, under some f ′σ, but not realises {x : A}. As before,
we know that this model realises the set {x : A ⇒ B} but the realisability of
the rest of Λm+1 is in question. Let us denote Λm+1 − {x : A ⇒ B} as Λ∗m+1.
Now we should appeal to the structure of the proof. Let Φp

m+1 be a subset
of Φm+1 consisting of all assumptions which precede the formulae of Λ∗m+1 in
the proof. As we know, some applications of the rules were made after all of
the elements of Λ∗m+1 have appeared in the proof. So, by induction hypothesis
we have that realisability of Φp

m+1 implies realisability of Λ∗m+1. Suppose that
Λ∗m+1 is not realisable in σ′ under a mapping f ′σ. Then the set Φp

m+1 is also not
realisable in this model. But Φp

m+1 ⊆ Φm+1 and Φm+1 is realisable in σ′, which

is a contradiction. The case when Φm+1 and {x : A} are both realisable in σ′

follows from the induction hypothesis as was shown in the previous subcase.
Subcase 3. Assume that x : B ∈ Θm. In this case Φm+1 = Φm − {x : A},
Λm+1 = Λ∗m+1 ∪ {x : A ⇒ B}, where Λ∗m+1 ⊆ Λm. In this case an argument
similar to the previous subcases should work.

In the subsequent part of the proof we will not specially consider the situation
as in the subcase 2 above, because the proof for the situation of this kind uses
essentially the same routine and then the reasoning similar to that one in subcase
1. So, henceforth we restrict ourselves to the assumption that Φm is an initial
part of the derivation.

Case ¬in. Let x : A be an element of Φm and the most recent non-discarded
assumption in the proof. An application of the rule ¬in at step m + 1 gives a
PLTLND formula x : ¬A as a conclusion. This means that at some earlier steps
of the proof we have y : C and y : ¬C. Here we should consider several subcases
that depend on which sets these contradictory PLTLND formulae belong to. We
now prove the lemma for some of these cases.
Subcase 1. Both y : C and y : ¬C are in Φm but nor y : C neither y : ¬C coincides
with x : A. After an application of the rule ¬in we have Φm+1 = Φm − {x : A}.
Then the statement that the realisation of Φm+1 implies the realisation of Λm+1

is true simply because Φm+1 is not realisable.
Subcase 2. Assume that both y : C and y : ¬C are in the set Λm. Then, by
induction hypothesis, if the set Φm realisable, the set Λm should be realisable
as well. But, as assumed, Λm is not realisable. Therefore, Φm also can not be
realisable. Note that Φm = Φm+1 ∪ {x : A}. So, if we suppose that Φm+1 is
realisable in some model σ under some fσ then the set {x : A} is not realisable.
Hence, {x : ¬A} is realisable.
Subcase 3. One of the contradictory PLTLND formulae, say y : C, belongs to
the set Φm, while another to Λm. Assume that Φm is realisable in some model σ
under some mapping fσ. Applying the induction hypothesis, we conclude that
Λm should be realisable in σ under fσ. But then realisable the union of these
sets, which contains the contradictory elements. So, Φm is not realisable. Now we
should prove that a realisation of Φm+1 implies a realisation of {x : A}. Suppose
that some σ′ and f ′σ provide a realisation of Φm + 1. So, taking into account
that Φm cannot be realisable, we can conclude that {x : A} is not realisable.
This means that {x : ¬A} is realisable.

The are some cases to consider when one of the contradictory PLTLND for-
mulae coincides with the most recent assumption in the derivation. But these
are only slight modifications of the cases shown above.

Case in. Suppose that for some PLTL formula A and label, y, y : A is con-
tained in D after m-th application of PLTLND rule and there is also a relational
judgment x ¹ y ∈ Φm, which is the most recent non-discarded assumption. An
application of the rule in provides a new PLTLND formula, x : A, in the
derivation. Again, several subcases are required, depending on the place of x : A
in D.
Subcase 1. Φm is an initial part of the derivation, x : A ∈ Λm and Λm+1 = ∆ =

{x : A}. As the induction hypothesis suggests, if the set Φm is realisable in
a model σ under some fσ, so then Λm is also realisable. Suppose that Φm+1 is
realisable in a model, say σ1, under a mapping fσ

1 . Now let j be an element of
σ1 such that f1(x) 6 j. Note that the function fσ

1 is defined for the variable x
because of the presence of x : A in Φm+1 but not defined for y as we have
deleted from D all the formulae containing y. Also note that x and y are neces-
sarily different variables because the situation when 7→ x, x 7→ x is prohibited
in a derivation. Next extend fσ

1 to fσ
2 in a way that fσ

2 = fσ
1 ∪ {(y, j)}. It is

easy to see that Φm is realisable under fσ
2 and, by induction hypothesis, Λm is

also realisable under fσ
2 . But y : A is in Λm, so 〈σ, j〉 |= A. By virtue of an

arbitrary choice of element j we can conclude that 〈σ, fσ
2 (x)〉 |= A. In view of

f2(x) = f1(x) we have 〈σ, fσ
1 (x)〉 |= A as required.

Subcases 2 and 3 describe a situation which is similar to what presented in
the corresponding subcases of the case ⇒in and exploit an analogous reasoning.

Case el. For some PLTL formula A and labels x, y PLTLND formulae
x : A and x ¹ y are in the derivation D. Let us just consider the case when
both x : A and x ¹ y are in the set Λm. After an application of the rule

el we have Φm+1 = Φm, Λm+1 = Λm ∪ {y : A}. By induction hypothesis,
realisation of Φm for some σ and fσ implies realisation of Λm, which means that
〈σ, fσ(x)〉 |= A and fσ(x) ≤ fσ(y). By the truth condition for necessity, we
derive that 〈σ, fσ(y)〉 |= A. So, Λm+1 is realisable.

Case U el. Both x : (B ⇒ C) and x : ((A ∧ gC) ⇒ C) are in Λm.
An application of the rule U el does not affect the set Φm, so Φm = Φm+1. Also
Λm+1 = Λm∪∆. Now assume that Φm+1 is realisable. It follows that Λm+1−∆ is
realisable. It remains to show that ∆ is realisable. Let fσ and σ be corresponding
function and model. We have to show that 〈σ, f(x)〉 |= AU B ⇒ C. Suppose that
〈σ, f(x)〉 |= AU B. First consider the case when 〈σ, f(x)〉 |= B. By induction
hypothesis we know that 〈σ, f(x)〉 |= (B ⇒ C) (recall that x : (B ⇒ C)
is in Λm), hence 〈σ, f(x)〉 |= B ⇒ C and then 〈σ, f(x)〉 |= C as required. Now
let f(x) < j and 〈σ, j〉 |= B and for all i such that f(x) 6 i < j we have
〈σ, i〉 |= A. So, 〈σ, j〉 |= B ⇒ C and then 〈σ, j〉 |= C. Also it is true that
〈σ, j − 1〉 |= A and 〈σ, j − 1〉 |= gC. This means that 〈σ, j − 1〉 |= C because
of x : ((A ∧ gC) ⇒ C). By the same argument 〈σ, i〉 |= C for all i such that
f(x) 6 i 6 j. In particular 〈σ, f(x)〉 |= C and we are done.
(End)

Theorem 1 (Soundness of PLTLND).
Let D = 〈A1,A2, . . . ,Ak〉 be a derivation of PLTLND formula B from the set Γ .
Then Γ |=ND B.

Proof. According to the definition 9, Ak is of the form x : B for some label x.
In general x : B belongs to some set Λ of non-discarded PLTLND formulae of
the derivation. Note that a set of non-discarded assumptions in the derivation is
empty. Then by lemma 1, realisation of Γ implies realisation of Λ. In particular
if the set Γ is empty, then it is realisable in arbitrary model under any mapping
fσ, by definition 5. Consequently Λ is also realisable in every model σ under any
mapping fσ. Thus, each formula in Λ is valid. In particular x : B is valid. (End)

3.2 PLTLND Completeness

Theorem 2 (PLTLND Completeness).

Proof. We can also show that with the addition of the new rules, ¬♦ and ¬U ,
we are able to prove all the theorems of the logic PLTL. This completeness proof
would be very similar to that contained in [1] being different only in establishing
the fact that all the axioms of PLTL are derivable in a new system with these
new rules.(End)

4 Discussion

We have presented a new formulation of natural deduction system for proposi-
tional linear time temporal logic and shown that the new system is sound and
complete. The new formulation where few rules being replaced with only one is
more elegant, and we believe this fact would be useful in possible applications
and implementations. Therefore, such a topic of future research as a design of a
proof-searching technique for a new system follows immediately from the results
of this paper. The former system served as a background for a natural deduction
system for computational temporal logic CTL[4]. Therefore, a new formulation
may be treated analogously as well as it may make more efficient the proof
searching procedure already designed for CTL. This is another point for future
research.

References

1. A. Bolotov, A. Basukoski, O. Grigoriev, and V. Shangin. Natural deduction cal-
culus for linear-time temporal logic. In Joint European Conference on Artificial
Intelligence (JELIA-2006), pages 56–68, 2006.

2. A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov, and V. Shangin. Let Computer
Prove It. Logic and Computer. Nauka, Moscow, 2004. (In Russian), Implementation
of the proof search technique for classical propositional logic available on-line at
http://prover.philos.msu.ru.

3. A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order
natural deduction. In Proceedings of IICAI, pages 1292–1311, 2005.

4. A. Bolotov, O. Grigoriev, and V. Shangin. Natural deduction calculus for computa-
tion tree logic. In IEEE John Vincent Atanasoff Symposium on Modern Computing,
pages 175–183, 2006.

5. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic (TOCL), 1(2):12–56, 2001.

6. D. Gabbay, A. Phueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In Proceedings of 7th ACM Symposium on Principles of Programming Languages,
pages 163–173, Las Vegas, Nevada, 1980.

7. A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, College of Science and Engineering, School of Informatics, University of Ed-
inburgh, 1994.

