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Abstract-In this paper we present a method of estimating
power spectrum density of random ergodic signals. The method
allows use of arbitrarily low sampling rates to achieve the goal.
We compare our method with similar schemes reported in re-
search literature and argue superiority of our approach in terms
of its suitability for practical implementations. The most visible
difference between our approach and the previously reported
ones consists in replacing Poisson additive random sampling
with deterministic sampling. Comparing with the approaches
based on the Poisson additive random sampling, where theoreti-
cally infinitely large resources are needed to implement them ac-
curately, our approach clearly relies on limited and well defined
resources.

I. INTRODUCTION
Spectrum estimation problems of the signal can be divided

into two domains: estimation of Fourier transform of the de-
terministic signals and estimation of Power Spectral Density
(PSD) of the stationary processes. Uniform sampling is a
popular scheme used in both areas. In most cases it is required
that the processed signal is sampled at a rate exceeding at
least twice the signal bandwidth. If the spectrum estimation is
carried out in wide frequency ranges such sampling rates may
be economically or technically not feasible. For example, a
leading manufacturer of Analog to Digital Converter (ADC)
Maxim Dallas offers a range of converters [1] whose fastest
sampling rates are up to about 100 times slower than the dou-
bled bandwidths of converters. Therefore it is not surprising
that significant research has been carried out to circumvent
such limitations of uniform sampling and alternative solutions
based on various forms of nonuniform sampling have been
explored. The idea is to use sub-Nyquist average sampling
rates that would still allow proper estimation of signal spec-
trum. How much the sampling rates can be lowered depends
very much on which aspect of spectrum estimation is tackled.

In the case of Fourier transform, the average sampling rate
can be as low as the Landau rate which is theoretically the
lowest sampling rate that still allows perfect reconstruction of
the sampled signal. It equals to the total bandwidth of the
processed signal. The research reported so far indicates that
such methods can be formulated even if the actual spectral
support of the processed signal is not known. In [2] unbiased
spectrum estimators have been proposed. In [3] we have ex-
tended these results [2] by incorporating a larger class of ran-

dom sampling schemes and minimizing the errors of the esti-
mators. Masry [4-5] have further developed this concept by
investigating statistical properties of the estimates, including
precise expressions and rate of convergence of the mean-
square errors. In [6-7] it has been demonstrated that use of Pe-
riodic Nonuniform Sampling (PNS) can facilitate the estima-
tion of Fourier transform ofthe bandpass/multiband signals.

In the case of PSD estimation, the average sampling rate
can be arbitrarily slow. In order to elaborate on these issues
more precisely we introduce two notions of sampling fre-
quencies for nonuniform sampling: (a) the average sampling

rate, defined by f, = lim N
N--> tN -O

where N is the total num-

ber of collected samples and tn are sampling instants; and (b)

the instantaneous sampling rate defined by fn =
I

Note that fn may change all the time. In [8] Shapiro and
Silverman proposed an additive random sampling scheme that
facilitated alias-free PSD estimation of ergodic signals while
using arbitrarily low average sampling rates. Masry [9] fur-
thered this concept. In [10-11] he investigated the quadratic-
mean consistency of various estimates of PSD for Poisson
sampling process, including the performance of consistent
PSD estimates constructed from finite sets of signal samples.
In [12] the authors presented a method for estimating PSD of
a stochastic, stationary process. However, in order to imple-
ment data acquisition systems satisfying requirements de-
scribed in [8-12] the sampling instants have to be generated
using additive random scheme, tn+l = tn + en where the ran-

dom variables en have Poisson distribution. Although the av-
erage sampling rate could be arbitrarily low the method does
not impose an upper limit either on the instantaneous sam-
pling rate or on the duration of time over which the high in-
stantaneous sampling rates are used. This means that these
sampling schemes do not guarantee any minimum distance
between two consecutive and even nonconsecutive sampling
times. Therefore, those methods are not suitable for practical
applications.
In this paper we revisit a method that allows estimating PSD

of ergodic signals using arbitrarily low average sampling rates
by use ofPNS while the instantaneous sampling rates are kept
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under control to match the capabilities of used hardware. It
has to be emphasized that PNS has been recommended for
use in DSP in many publications [6-7, 13-15]. This sampling
scheme is mainly used to process multiband signals at the
rates that are just slightly above the Landau rate. In our paper
we depart from these classical uses of PNS and propose a
sampling scheme that utilizes two ADCs working in parallel.
We demonstrate that if such hardware is properly deployed
one can construct sampling sequences with arbitrarily slow
average sampling rates and also acceptable instantaneous
sampling rates, and still accomplish the estimation ofPSD.
In the next section we review the concept ofPSD estimation

of a stationary process. In section III, a double-sampler PNS
scheme for PSD estimation of a stationary process is intro-
duced. In section IV numerical examples are presented to il-
lustrate the proposed method.

II. THE ESTIMATION OF PSD FUNCTION
Let X(t) be a real-valued, ergodic, zero-mean random proc-

ess. The autocorrelation function (ACF) of the process is de-
fined as

RX(r) = E{X(t)X(t + r)} (1)
and its Power Spectral Density is

00

Px,() JRx() exp(-j2zct)dr (2)
_00

Consider a single realization of X(t) . Following [16], if

tim 1 fR(_)l 2dzr =0 then
T

T-r

RX (r) = T X(t)X(t + r)dt is an unbiased estimator of
0

Rx(r) when 0 < z < T . Here we estimate ACF using dis-
crete-time observations of X(t)

RX()=i X(tk + )X(tk) (3)
n=1

where tk E [0, T - r] are time instants such that signal X(t)

is sampled at both tk and tk + r, and N is the number of

such pairs. As shown in [17], (3) is an unbiased estimator of
ACF. In practical cases Rx(r) has a finite bandwidth fmax.
Hence PSD (2) can be calculated from the samples of RX (Z)

oo

Px.(f)=LE RX(mL)exp(-j2ifmL) if L<0.5/fmax
m =-oo

Further simplifications are obtained by exploiting the fact that
Rx (r) is an even function and that RX (r) (or its estimate) is
most often known only inside a window of a finite-length.
Therefore we replace the "target" PSD Pxo (.f) with its win-
dowed-version counterpart

M

Px (f) 2LZ RX (mL) cos(24fml) + LRx (0) (4)
m=l

The estimate of Px(f), Px(f) , is obtained by replacing
ARX (mL) with RX (mL)

A M A A
Px (f) = 2LZ RX (mL) cos(2;fml) + L RX (0)

m=1
(5)

It is not difficult to note that P, (f) is an unbiased estimator.

In fact E Px (f)] = 2LZ ELRx (mL)] cos(2)zfml) +

M~~~~=
LELRX (0)] = 2LE'Rx (miL) cos(2&fml) + LRX (0) = Px (f)

ml

In this paper we use (5) to estimate signal's PSD.

I II. PERIODIC NONUNIFORM SAMPLING
Most of the data acquisition systems rely on uniform sam-

pling signals using sampling rates at least twice as large as the
bandwidth of the processed signals. While this approach
works well for relatively low frequency ranges it may be eco-
nomically or technically not viable when processing signals
in the frequency ranges starting around 1GHz. This is con-
firmed by the fact that the processing bandwidths ofthe ADCs
are much wider than the maximum sampling rates at which the
ADCs can be triggered [1]. This particular deficiency does not
have to prevent us from using them in PSD estimation sys-
tems and still exploit full bandwidth of the converters. When
designing a sampling scheme we request that the following
conditions are met:
(cl) Each sampling instant is a multiple of time interval L
such that L < 0.5/fmax -
(c2) The time distance between any two samples collected by
the same ADC is not shorter than H = rL , where r is a
whole number.
The first constraint guarantees that by using (3) we can esti-
mate Rx(r) at the right points while the second one allows
accommodating ADCs with unduly long processing intervals.
Periodic nonuniform sampling sequence takes samples at
tNlk+n =kT, + r, , where T, = pL is the period of PNS, N1 is

the number of sampling points during each period, 1 < n < N1
and ° < rl < ... <TN < T are the sampling points in the first

period. When selecting a particular sampling sequence we
ought to make sure that it provides sufficiently large numbers
of pairs of sampling instants that are L,2L,...ML apart so that
one can estimate all ACF values required in (5). As we dem-
onstrate in the following subsections, design of such se-
quences would not be possible if a single ADC was used.
However, having two, even slow converters, makes this task
achievable.

A. PNS with a Single ADC
The problem of designing PNS that uses single ADC satis-

fying constraints (cl) and (c2) has been tackled in [6-7]. In
those cases however, the objective of processing the signal
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was to estimate the Fourier transform of deterministic signals.
It is easy to note that because of (c2) single ADC PNS cannot
generate pairs of sampling points that are closer to each other
than H = rL . Therefore, (4) cannot be used directly to esti-
mate PSD. To circumvent this problem we propose using two
ADCs working in parallel.

B. PNS Designedfor Two ADCs
When two ADCs are used to alternately take samples it is

possible to create pairs of sampling instants that are
L,2L,...ML apart. We review this by an example when

Ts =2000L, H=20L and To =200000L. Here [0, To] is
the window within which we observe the signal. Fig. 1
shows the resultant numbers of pairs, characterised by dis-
tances from 1 to 99 times L, as fractions of the total number
of samples N. It has to be emphasised that these numbers
have been achieved without violating (cl) or (c2). Moreover,
the resources needed to get them are well defined - two ADC.
These features contrast favourably with the requirements im-
posed by Poisson additive random sampling where no finite
number ofADCs can guarantee that the resources are plenti-
ful enough to perfectly implement the sampling scheme. It is
also worth comparing the proposed PNS scheme with uni-
form sampling. In order to avoid aliasing the uniform sam-
pling time ought to be at most L . Since for a single ADC the
minimum distance between samples has to be 20L we
would need 20+ multiplexed converters to implement such
scheme.

IV. NUMERICAL EXAMPLES
In this section we present numerical analysis of the pro-

posed method of estimating PSD. The results are compared
with those where the data was collected using uniform and
additive random, Poisson sampling. The scenario we deal
here with is as follows. A random signal of unknown spectral
support is placed somewhere between 0 and 2GHz. In other
words the signal could be located anywhere between 0 and
2GHz. The test signal was actually band-limited to
[300,500] MHz. We use three sampling schemes: uniform,
PNS and additive random. In each case we maintain identical
average density of sampling instants (240MHz) and collect
the samples inside the observation window of length 100s.
For PNS analysis we use the two-ADC sampling scheme de-
signed in the previous section. The maximum sampling rate
of the ADC we use is 200MHz. We chose
L = H /20 = 0.25 ns and Ts = 2000L . The rectangular win-
dow applied to estimate R(r) was (-25 25) ns for double-
sided Fourier transform or equivalently (0 25) ns for the
single-sided cosine transform. For uniform and PNS schemes
we use (3) and (5) to estimate the PSD. In the case of Poisson
additive random scheme we follow [11, 18] and use the fol-
lowing estimate ofPSD:

N-1 N-n

PXN ( ) aN E X(t+n)X(tn )cos 2i(tk+n tl ) (6)

where fa is the average sampling rate and N is the total
number of samples.
The average and maximum instantaneous sampling rates are

listed in table 1 for uniform, Poisson additive and PNS sam-
pling. Note that the average sampling rate fa = 240MHz was
the same for all three sampling schemes. The results are
shown in Fig. 2-7. Fig. 2 shows the target spectrum ofthe sig-
nal. Note that although the signal was strictly limited to fre-
quency range [300,500]MHz our target spectrum has been
derived using windowed ACF. Therefore the ripples and
power leakage to neighbouring frequencies are visible. Fig. 3
shows the estimate obtained from uniform sampling. Obvi-
ously the sampling rate is much below the required 4GHz and
the aliasing badly affects the results. Fig. 4 shows the out-
come of spectrum estimation using Poisson additive sampling.
Ten results for different realisations of the random process
and random sampling sequences are superimposed. Finally
Fig. 5 shows the results when PNS is used. Once again ten
different realisations of the same random process were tested.
The figures confirmed that low rate uniform sampling is not
suitable for such tasks. Suitably chosen nonuniform sampling
delivers acceptable results.

Fig. 6-7 presents the standard deviation of the estimated
spectra. These plots have been created by processing results
shown in Fig. 2, 4-5. Among them, PNS is characterised by
slightly larger errors than the estimation based on Poisson ad-
ditive random sampling. At first these differences may look
strange if taking into account that the same number of sam-
ples was used for processing the signals and similar methods
of spectrum estimation were deployed. However by examin-
ing (3) and (6) we realise that this is not the number of sam-
ples which directly affects the quality of spectrum estimation.
More importantly we should be looking at the number of pairs
of samples that are within the distance of the window which
was used to truncate Rx(T) . We analysed two examples from
this point of view. PNS generates 167739 such pairs while
Poisson additive random sampling generates 194577. Clearly,
Poisson additive random sampling had generally larger num-
ber of closely placed pairs than PNS. This is further illustrated
by Fig. 8 where we show the histogram of the numbers of
pairs of samples as percentage ofthe total number of collected
samples at distances shorter than H = 20L = 5 ns. Note that
the number of sample pairs apart from each other less than L
is 1455. In fact this overwhelming presence of closely placed
samples is one of the reasons why such sampling scheme is
difficult to implement in practice. The quality of spectrum es-
timation of both nonuniform sampling schemes is very similar.
However, PNS used here has the advantage of controlling the
instantaneous sampling frequencies for ADC used in data ac-
quisition.

V. CONCLUSIONS
In this paper we have proposed a method that allows esti-

mating Power Spectrum Density of ergodic signals using ar-
bitrarily low sampling rates. Use of low sampling rates re-
moves the burden and possibly large cost of deploying very
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fast ADCs that could otherwise be needed if traditional ap-
proaches based on uniform sampling were used. As we have
mentioned earlier there are reports in research literature on
possibility of using low sampling rates to alias-free estima-
tion of PSD. However in these approaches the guarantees of
low sampling rates apply to the average values. At the same
time, the instantaneous sampling rates could be arbitrary high
and could last for arbitrary long periods. In the approach we
propose here we suggest use of two ADCs. When designing
sampling schemes we are able to accommodate upper limits
on the instantaneous sampling frequencies for each of them.
The proposed method has been compared with two other

approaches that put much more demanding requirements on
the data acquisition hardware than what we propose here.
Without doubts our method imposes the least stringent re-
quirements on the speed and quantity of hardware used. The
quality of the results can be further improved by using either
of two methods proposed below. First one can use longer ob-
servation windows to collect more data and obtain better es-
timate. The other possibility is to gradually enhance hardware
either by increasing the number of ADCs or by increasing
their sampling rates. In either case the number of data col-
lected per second and, more importantly, the number of suffi-
ciently closely placed pairs of samples generated every sec-
ond will increase. Further research will be devoted to search
for methodologies of designing such sampling schemes.
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TABLE I
COMPARISON OF AVERAGE AND INSTANTANEOUS SAMPLING RATES FOR

DIFFERENT SAMPLING SCHEMES
Sampling Avarage Maximum instantaneous
Scheme sampling rate sampling rate [MHz]

[MHz]

Uniform 240 240
Poisson 240 Infinity
additive
PNS for 240 4000
sampling
scheme

PNS for each 120 200
ADC

1.4

1.2

Cl)aU 068n

Xu 0.6-
.2)
0 0.4-

Fig. 2. The original PSD of the signal.
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Fig. 3. The PSD estimation obtained from uniform sampling method

( To = 1OO,us and fa =240MHz).
Fig. 6. Standard deviation of the PSD estimation for Poisson additive random

sampling case.
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Fig. 4. The PSD estimation obtained from Poisson additive random sampling
method (To =lOO,us and fa =240MHz).

Fig. 7. Standard deviation of the PSD estimation for PNS case.
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Fig. 5. The PSD estimation obtained from double-sampler PNS method
(To =1OO,us and fa =240MHz).
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