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The hydrolases aminopeptidase A and dipeptidyl peptidase 
IV, both present in the kidney on the brush borders of the 
proximal tubule epithelial cells and podocytes, are involved 
in the induction o f experimental membranous glomerulo
nephritis in the mouse. However, little is known about their 
(co) distribution in other tissues and their function in health 
and disease. A detailed insight into the localization of these 
two enzymes is a prerequisite to elucidation of their func
tion. Therefore, we investigated the presence and co-dis
tribution o f aminopeptidase A and dipeptidyl peptidase 
IV by immunohistology with two different rat monoclonal 
antibodies, the specificity of which was determined by an 
immunodepletion technique. In addition, the molecular 
weight o f the hydrolases was analyzed by SDS-PAGE after

isolation by solid-phase immunoprécipitation from glomer
uli, renal brush borders, and thymus. Both hydrolases showed 
different molecular weights in renal corpuscle, renal brush 
borders, and thymic cells, A widespread organ distribution 
of the two hydrolases was observed, with co-localization in 
kidney, liver, small intestine, thymus, brain, spleen, and 
lymph nodes, either on the same cells or on different cells 
in the same organ. This distribution and partial co-localiza
tion suggests that the two hydrolases, acting either alone or 
in concert, have a role in many diverse biological processes.
( J Histochem Cytochem 44:445-461, 1996)
KEY WORDS: Aminopeptidase A; Dipeptidyl peptidase IV; Organ 
distribution; Mouse,

Introduction
Antibodies that interact with intrinsic antigens on podocytes can 
induce a membranous glomerulonephritis, which can be used as 
an experimental model for the human form of this disease (1,2). 
O ne of these antigens which has extensively been studied in the 
rat is the Heymann antigen (3-5). However, this antigen is not pres
ent on mouse podocytes and is therefore not involved in the devel
opm ent of membranous glomerulonephritis in this species (6). We 
have found that two other antigens present on podocytes, i.e., the 
hydrolases aminopeptidase A (APA; EC 3.4.11.7) and dipeptidyl 
peptidase IV (DPP IV; EC 3.4.14.5), can participate as targets in 
the induction of a passive membranous glomerulonephritis in the 
mouse (6- 9). Both enzymes have also been reported to be involved 
in other experimental and human forms of nephropathy, such as 
the renal ablation model (10), passive anti-DPP IV nephritis (11-13), 
Heymann nephritis (14-16) in the rat, lupus nephritis in the mouse 
(17,18), and glomerulosclerosis (19), diabetic nephropathy (20), and 
chronic interstitial nephritis (21,22) in humans.
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Both APA and DPP IV are cell membrane-bound hydrolases, 
assumed to be involved in diverse biological processes such as pep
tide degradation (23,24) and B- andT-cell differentiation (23,25). 
Previous studies have shown that APA and DPP IV are also present 
on various cell types of many organs other than the kidney. There
fore, studies on the organ distribution of APA have been carried 
out in the rat and mouse with enzyme histochemical methods 
(26,27) and on a restricted number of organs in the mouse with 
a monoclonal antibody (MAb) against the BP1/6C3 antigen which 
was recently identified as APA (28). The organ distribution of DPP 
IV has been examined in a more or less restricted way in the mouse, 
rat, and rabbit by enzyme histochemistry (29) or immunohistol
ogy using MAbs (13,30,31). Previously, we studied the localization 
of DPP IV in the mouse with polyclonal antibodies (6,8,31) that 
may lack the ultimate specificity of MAbs. In our laboratory we 
have generated a panel of rat MAbs to different antigens present 
on podocytes, several of which were directed to APA and DPP IV. 
For this study we selected two clones, ASD-4 and ASD-36, which 
bind respectively to APA and DPP IV (7). These two MAbs en
abled us to study more thoroughly the organ distribution and puta
tive co-localization of APA and DPP IV in the mouse. Because the 
functional roles o f the two enzymes are largely unknown, we stud
ied the organ distribution of APA and DPP IV, thus looking in 
greater detail at their distribution in kidney and thymus.
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Materials and Methods
Animals. Balb/c and Balb/c, nu/nu mice were originally obtained from 

the Jackson Laboratory (Bar Harbor, ME) and were kept in the breeding 
farm facility of the Central Laboratory of Animals of our university by con
tinuous brother-sister matings. Male Lou rats used for the production of 
MAbs were obtained from Harlan Olac (Blackthorn, Bicester, UK).

Preparation of Solubilized Suspensions from Renal Brush Borders, Re
nal Corpuscles, and Thymus. An enriched suspension of mouse renal brush 
border membrane vesicles from proximal tubule epithelial cells was pre
pared from Balb/c kidneys according to the method of Malathi et al. (32), 
using a 2-mM THs-HCl buffer, pH 7.2, containing 50 mM mannitol, the 
protease inhibitors EDTA (20 mM), PMSF (1 mM), benzamidine (1 mM), 
Trasylol (10 U/ml), and 0 ,02% NaN3 as described (7). The brush border 
suspension was solubilized with 2% Triton X414 in 50 mM Tris-HCl at 
4°C for 30 min and subjected to Triton X-114 phase separation at 37°C 
for 20 min, followed by centrifugation at 300 x g for 5 min (33). The 
obtained brush border preparation enriched in integral membrane pro
teins served as immunogen for the production of MAbs. In the immuno
précipitation procedure, a brush border fraction was used that was solubi
lized with 1% sodium deoxycholate (brush border Doc) in 50 mM Tris-HCl, 
pH 8.5, with protease inhibitors and was subsequently centrifuged at 100,000 
x g for 1 hr at 4°C. For the fluorimetric enzyme assay, brush border'mem- 

brane vesicles were solubilized for 30 min at 4°C with 1% Doc in 50 mM 
Tris-HCl, pH  8.5, without protease inhibitors. Renal corpuscles were iso
lated from kidneys of young Balb/c mice as previously described (34). The 
kidneys were perfused with ferric oxide and subsequently pushed through 
a 90-M.m pore size stainless steel sieve, after which the renal corpuscles were 
separated from other renal components with a magnet. The highly enriched 
renal corpuscle suspension, containing <5 % tubule or vascular fragments, 
was solubilized in 1% Doc and used in the immunoprécipitation. A com* 
pie te thymus from a young Balb/c mouse was solubilized in 1% Triton X-100. 
This preparation of solubilized thymic antigens was used in the immuno
précipitation technique. Protein concentrations were determined by the 
method of Lowry (35).

Monoclonal Antibodies to APA and DPP IV, Male Lou rats were im
munized IP with the detergent phase of the Triton X-114 extract of mouse 
brush border preparation, as described (7). Spleen cells from the Lou rats 
were fused with SP 2/0  mouse myeloma cells by the procedure of Kohler 
and Milstein (36). Hybridomas were grown in 96-well tissue culture plates 
(Costar; Cambridge, MA) with HEPES-buffered RPMI-1640 culture medium 
(MA Bioproducts; Bethesda, MD)t containing 10% decomplemented fetal 
calf serum, genramicin (40 jxg/ml), 1 mM kglutamine, 1 mM sodium pyru
vate, and 10% supernatant o f  a human umbilical vein cell culture, sup
plemented with HAT Hybridomas were selected for production of anti
bodies to antigens present on both brush border membrane and podocytes 
by indirect immunofluorescence (IF) on acetone-fixed cryostat sections from 
normal mouse kidneys. Selected hybridomas were cloned several times by 
limiting dilution until all subclones showed the same reactivity pattern in 
the indirect IF screening procedure. Ascites containing MAbs was subse
quently produced in Balb/c, nu /nu  mice, and was purified by ammonium 
sulfate precipitation. The MAbs coded ASD-4 and ASD-36 were selected 
for this study. The IgG content of the MAb preparations was measured 
by radial immunodiffusion (37). IgG subclasses were determined with an 
isotyping kit for rat MAbs according to the instructions of the manufac
turer (Serotec; Oxford, UK), The test system is based on rat ceJl agglutina
tion with highly specific antibodies directed to isotypes of rat IgG attached 
to sheep erythrocytes (38).

Immunoprécipitation, By a solid-phase immunoprécipitation proce
dure (39), APA and DPP IV were isolated from suspensions of detergent

solubilized renal corpuscles (1% Doc), brush border vesicles (1% Doc), and 
thymus (1% Triton X-100) and were analyzed by SDS-PAGE. All three frac
tions were radiolabeled with 125I (Amersham; Buckinghamshire, UK) using 
iodobeads (Pierce Chemical; Rockford, IL) as a coupling reagent (40). Free 
,25I was removed by Sephadex G-25 chromatography. Polystyrene microti- 
ter plates (Costar) were precoated with 10 jag/well affinity-purified goat 
anti-rat Ig antibodies (Cappel-Organon Teknika; Boxtel, The Netherlands) 
in PBS for 18 h at 4°C  After five washes with PBS containing 0.05% Tween, 
the wells were coated with 100 jil/well of purified ascites containing 10 mg 
Ig/ml of MAb for 3 hr at 37°C. After five further washes the wells were 
blocked for 3 hr at 21°C with PBS containing 1% BSA and 1% normal rat 
serum, and then again washed five times. The wells were next incubated 
for 2 hr at 2VC with the 125I-labeled kidney or thymic suspensions. The 
wells were then washed 10 times with immunoprécipitation (IP) buffer (150
mM NaCl, 50 mM Tris, 5 mM EDTA, 0 .1% Triton X-100, 0.02% SDS, 10 
U/ml Trasyîol, 1 mM PMSF, and 1 mM benzamidine; pH 7.4). Next, IQQ 
fil/weJl of reducing (2.3% SDS, 200 mM dithiothreitol, 10% glycerol, 60 
mM Tris-HCl, pH 6.8 ) or nonreducing (2.3% SDS, 10% glycerol, 60 mM 
Tris-HCl, pH 6 ,8) SDS sample buffer was added, after which the wells were 
incubated for 15 min at 60°C and then for 5 min at 100°C. The immuno- 
isolated proteins were analyzed by SDS-PAGE in 7.5% acrylamide accord
ing to Laemmli (4l). For autoradiography, the gels were dried and exposed 
at -70°C  with preflashed X-ray film (Kodax X-Omat).

Fluorimetric Enzyme Assay. The specificity of ASD-4 for APA and ASD- 
36 for DPP IV was determined by a solid-phase immunodepletion proce
dure as described (7,42), The purified MAb was first coupled to cyanogen 
bromide-activated Sepharose 4B (S4B) according to the instructions of the 
manufacturer (Pharmacia; Uppsala, Sweden). Briefly, 5 mg of the selected 
MAb in 1 ml of 0.1 M carbonate buffer, pH 8.4, containing 0.5 M NaCl, 
was added per ml of S4B. Residual binding sites were saturated with 1 M 
ethanolamine. A brush border suspension solubilized in 1% Doc contain
ing 4 mg protein was dissolved in 5 ml buffer (20 mM Tris-HCl, pH 8.4, 
containing 0.1% Doc) and was incubated for 17 hr at 4°C under constant 
stirring with 1 ml of S4B coupled with MAb. In a control experiment, a 
brush border solution was incubated with S4B beads to which no MAb 
had been coupled. The supernatant was removed and the beads were washed 
several rimes with buffer. Elution of the antigen bound to 1 ml of beads 
was performed with 5 ml of 50 mM diethylamine containing 0.1% sodium 
deoxycholate, pH  11,5, for 5 min. The eluted proteins were neutralized 
with 2 M Tris, pH 7.4. The enzymatic activities for APA, DPP IV, and APN 
were measured fluorime tricall y in the control brush border-Doc solution, 
the immunodepleted solution, and the eluate, using L-glutamic acid-a-7- 
amido-4-methylcoumarin (Glu.AMC), glycyl-L-proline-7-amido-4-methyl- 
coumarin-HBr (Gly.Pro.AMC; both from Bachem, Bubendorf, Switzer
land), and L-alanine-7-amido-4-methylcourmarin (Ala.AMC; from Serva, 
Heidelberg, Germany) as specific and sensitive substrates for APA, DPP 
IV, and APN, respectively (43). For determination of APA activity, the three 
fractions and the substrates were solubilized in 0.1 M Tris-HCl buffer con
taining 1.25 mM CaCh, pH 7.0. For APN activity, 0.1 M Tris-HCL buffer, 
pH  7.0, and for DPP IV activity 0.1 M Tris-HCl buffer, pH 8.0, were used 
as solutions. Ten fj.1 of one of the three fractions was incubated with 100 
\i\ of one of the three substrates (2 -10“̂  M) for 20 min at 37°C. The reac
tion was stopped by addition of 890 [i\ of 0.2 M Tris-NaOH, pH 11. The 
enzyme activities were determined by the fluorescence of 7-amino-4-methyl- 
coumaiin cleaved from the substrates (43). The fluorescence was mea
sured at 375 nm (excitation) and 440 nm (emission) using a luminescence 
spectrometer (LS5; Perkin Elmer, Norwalk, CT). The enzyme activities of 
the various fractions are expressed as nkatal/ml, 1 nkatal being the amount 
of enzyme that converts 1 nmol of substrate/sec under the given assay con
ditions, or as percentages of the activities present in the control brush bor
der solution.
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Indirect Immunofluorescence. Because in preliminary studies we had 
found no differences in the localization of both hydrolases between male 
and  female mice, except for the reproductive organs, we present the local
ization found in male mice. Fragments of organs from a 2-month-old male 
Balb/c mouse, as listed In Table 1, were snap-frozen in liquid nitrogen. For 
indirect IF of the female reproductive organs, a 2-month-old female Balb/c 
mouse was used. Two jim-thick, acetone-fixed cryostat sections were in
cubated with MAbs ASD-4 and ASD-36 for 30 min at room temperature. 
Binding of the two MAbs to the various tissues was visualized with FITC- 
labeted goat anti-rat IgG containing 1.5% normal mouse serum (Cap- 
pel-O tganon Teknika). We differentiated in some organs the presence of 
both hydrolases from B-cells or endothelial cells by additional double labeling 
experiments in which incubation of ASD-4 or ASD-36 was followed by in
cubation of TRITC-labeled goat anti-mouse Ig for identification of B-cells 
or of the TRITC-conjugated lectin Griffonia simplicifolia (Sanbio; Uden, 
The Netherlands), which identifies specifically mouse endothelial cells (44). 
To define more precisely in the thymus the presence of APA, sections were 
double  labeled with ASD-4 (APA) and a mouse MAb to cytokeratin 2/8 
{RCK 102) (45). The thymic sections were first incubated with ASD-4 diluted 
1:100 in PBS/1% BSA, washed, and incubated with FITC-Iabeled goat anti-rat 
Ig G  diluted 1:25. After this binding the sections were preincubated with 
rab b it  anti-mouse IgG diluted 1:100 in PBS/1% BSA, followed by a short 
wash in PBS. The sections were then incubated with an MAb against cytoker
a t in  and washed again in PBS. TRITC-labeled rabbit anti-mouse IgG (ITK 
Diagnostics; Uithoorn, The Netherlands) was diluted 1:100 in PBS/1% BSA, 
a n d  washed in PBS. Ail sections were embedded in Aquamount (BDH 
Chemicals, Poole, UK), and examined in a fluorescence microscope equipped 
w ith  Ploemopak Epi-illumination (Leitz; Wetzlar, Germany). The stain
in g  intensity was recorded semiquantitatively on a scale from 0 to 4 + , as 
described previously (9).

Enzyme Histochemistry. To correlate the localization of APA and DPP 
IV protein in the kidney and thymus with their enzymatic activities, we 
examined the enzymatic activities with specific substrates by the enzyme 
histochemistry technique. For enzyme histochemistry, a kidney and a thy
m us from a young Balb/c mouse were removed and snap-frozen in liquid 
nitrogen. For demonstration of APA and DPP IV activity, 5 nm-thick, 
acetone-fixed sections were incubated for 10 min for the kidney and for 
30 -45  m in for the thymus at 37°C in substrate buffer containing 100 mM 
Tris-HCl, pH 7.0, 2 mM CaCh, 1.1 mM Fast Blue salt (Serva) 1.6 mM L-glu
tamic acid-a-methoxy-(3-naphtylarnide for APA, or 1.6 mM glycyl-L-proline- 
a-methoxy-p-naphtylamide for DPP IV (Bachem). After rinsing with PBS, 
th e  sections were embedded in Aquamount and examined by conventional 
light microscopy.

Immunoelectron Microscopy. The localization of APA and DPP IV in 
a restricted number of organs, i.e., kidney, liver, small intestine, thymus, 
and  lung of a normal Balb/c mouse, was examined by indirect immuno- 
electron microscopy (IEM) using immunoperoxidase labeling on 20-nm frozen 
sections. A Balb/c mouse was first perfused retrogradely via the aorta with 
PBS for 5 min and subsequently with a mixture of 10 mM periodate, 75 
mM lysine, and 2% paraformaldehyde, pH 6.2 (PLP) for 10 min (6). The 
organs selected for IEM were removed and small pieces were further fixed 
by immersion for an additional 3 hr in PLP. After rinsing several times in 
PBS, the fragments were cryoprotected by immersion in 2.3 M sucrose, pH  
7.2, for 1 hr, and then frozen in liquid nitrogen. Twenty nm-thick sections 
were rinsed in PBS for 1 hr, then incubated with MAbs ASD-4 and ASD- 
36 diluted in PBS containing 1% BSA for 18 hr at 4°C, followed, after sev
eral washes with PBS, by incubation for 1.5 hr with a peroxidase-labeled 
rabbit anti-rat IgG diluted in PBS containing 1% BSA and 2% normal 
mouse serum. After three washes in PBS, the sections were incubated in 
PBS, p H  7.4, containing diaminobenzidine (DAB) medium for 10 min,

followed by DAB with addition of 0.003% H 2O 2 for 7 min. The sections 
were washed in distilled water, postfixed in palade buffer containing 1% 
OsO<i for 30 min at 4°C, dehydrated, and embedded in Epon 812. Thin 
sections were prepared on a LKB ultratome (LKB Instruments; Bromma, 
Sweden) and examined by electron microscopy (JEOL1200EX2; JEOL, Tokyo, 
Japan).

Results

Characterization o f  the MAbs
The two rat MAbs that were selected for this study, ASD-4 and 
ASD-36, were o f the IgGi and IgGjb subclass, respectively (7 ). The 
molecular weights of the antigens isolated by the MABs in the solid 
phase immunoisolation technique on radiolabeled preparations of 
renal corpuscles, renal brush borders (Figure 1), and thymus (Fig
ure 2) were determined by SDS-PAGE under reducing conditions. 
ASD-4 precipitated a protein of 140 KD from both renal brush 
borders (Figure 1, Lane 1) and thymus (Figure 2, Lane 1), represent
ing the monomeric form of APA as described earlier (23,24,46). 
The monomeric APA protein in renal corpuscles had a higher mo
lecular weight of 163 KD (Figure 1, Lane 2). A high molecular weight 
protein of more than 200 KD was also seen in renal corpuscles and 
renal brush borders (Figure 1, Lanes 1 and 2), and thymus (Figure
2, Lane 1), representing the intact homodimer of APA that resisted 
the reducing conditions as described previously (23). ASD-36 iso
lated a protein of 116 KD from both renal corpuscles (Figure 1, Lane 
5) and thymus (Figure 2, Lane 2), representing the monomeric DPP 
IV form (23)* The monomeric DPP IV form from renal brush borders 
had a lower molecular weight o f 103 KD (Figure 1, Lane 4). In con
trol experiments using normal rat serum instead of MAbs no pro
teins were isolated from the radiolabeled renal corpuscles and re
nal brush borders (Figure 1, Lanes 3 and 6). An additional low 
molecular weight-protein of 43 KD was precipitated by both ASD-
4 and ASD-36 from the thymus (Figure 2, Lane 2), renal corpus
cles, and renal brush borders (data not shown). The protein recog
nized by ASD-36 is most probably the enzyme adenosine deaminase 
(47), and the band isolated by ASD-4 is actin that co-precipitated 
with APA (48). These immunoprécipitation experiments show that 
there are differences in molecular weight of APA as well as DPP 
IV from different organs (kidney vs thymus), and from different 
structures within the same organ (renal corpuscles vs brush borders).

Specificity of the MAbs
The specificity of the MAbs for the brush border hydrolases APA 
and DPP IV was determined by an immunoadsorption procedure 
using Sepharose-4B beads coated with either ASD-4 or ASD-36 
MAb. Enzymatic activities for APA, DPP IV, and aminopeptidase 
N  (APN; EC 3.4.11.2) detected in the sodium deoxycholate (Doc) 
solubilized brush border fraction using specific substrates in the 
fluorimetric assay were 5.3, 17.1, and 50,7 nkatal, respectively. The 
APA activity was selectively depleted from the brush border-Doc 
solution by ASD-4 (3%), whereas DPP IV activity was selectively 
depleted by ASD-36 (3%) (Figures 3A and B). In both cases, the 
activities for the other two enzymes remained unaltered. Subsc-
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Figure 1. Autoradiogram of the Immunoprécipitation analysis of radiolabeled 
suspensions of mouse renal brush orders (Lanes 1,3, 4, and 6), and renal cor
puscles (Lanes 2 and 5) after SDS-PAGE (10%) under reducing conditions. 
Lanes 1 and 2 (ASD-4), a rat MAb against mouse A PA; Lanes 4 and 5 (ASD-36), 
a rat MAb against mouse DPP IV; Lanes 3 and 6, normal rat serum, Numbers 
at left indicate the molecular mass of the markers.

4 3

quendy, absorbed enzyme could be recovered from the column by 
elution, The low reactivity of the eluates (25% for APA and 30% 
for DPP IV) is probably due to inactivation of the enzyme caused 
by the elution procedure. The selective depletion of APA activity 
by ASD-4 and of DPP IV activity by ASD-36 indicates that ASD-4 
is directed against APA and ASD-36 is directed against DPP IV.

*

Organ Distribution of APA and DPP IV
By indirect IF and IEM, both APA and DPP IV showed a wide
spread organ distribution, as summarized in Table 1. In some or
gans the two enzymes were located on the same cells, such as in 
the cortex of the kidney (Figures 4A and B), small intestine (Figures 
IDA and 10B)t liver (Figures 10E and 10F), various glands, visceral 
yolk sac of the placenta, choroid plexus of the eye (Figure 12F), 
and perineurium, in other organs the enzymes were present in sep
arate segments of the same epithelium, such as in the uterus, with 
DPP IV predominantly being localized on the inner lining of the 
uterus and APA more on the ductal side o f the epithelium (Figures 
121 and 12J). On the other hand, APA and DPP IV were present 
on separate cells in the thymus (Figures 8 and 9), brain (Figures 
12A and 12B), and spleen and lymph nodes (Figures 12C and 12D). 
In contrast to DPP IV, APA was also found in almost all organs 
on the endothelial cells of capillaries (Figures 4C, 5C, 10C, and

Figure 2. Autoradiogram of the immunopreciptation analysis of radiolabeled 
proteins from mouse thymus after SDS-PAGE (10%) under reducing conditions* 
Lane 1 (ASD-4), a rat MAb against mouse APA; Lane 2 (ASD-36), a rat MAb 
against mouse DPP IV, Numbers at left Indicate the molecular mass of the 
markers.

12 A), but not of arteries and veins, although sometimes a hetero
geneous distribution was seen, such as in the kidney (Figures 4A 
and 4C). In addition, APA could be found on smooth muscle cells 
of the media of arterioles (Figure 12 C). DPP IV, however, was pres
ent on cells of serosal cavities (Figure 11D), cells in fibrous capsules 
around many organs, and astrocytes in cerebrum and spinal cord 
(Figure 12B).

In the kidney, APA and DPP IV are co-expressed mainly on iden
tical cells in the cortex, but not in the medulla. In the glomerulus, 
both enzymes are located on the cell membranes of the podocytes, 
but not on the endothelial or messangial cells as seen by indirect 
IF and IEM (Figures 4A, 4B, 5 A, and 6A). The enzymes were also 
present on the brush borders of the proximal tubule cells, i.e.> APA 
predominantly on the convoluted parts (Si and S2), whereas DPP 
IV was present along the entire proximal tubule (Figures 4A, 4B, 
5B, and 6B). In contrast to DPP IV, APA was observed on the jux
taglomerular granular cells, the cells of the arteriolar media, and 
endothelial cells of the peritubular capillaries, especially o f the
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Figure 3. Enzymatic activities of APA, DPP IV, and APN measured in two im- 
munodepletion experiments with ASD-4, an MAb against APA (A) and ASD-36, 
an MAb against DPP IV (B) in three fractions using a fluorimetric enzyme as
say. A detergent-solubilized brush border fraction (T, black bars), a brush bor
der fraction immunodepleted with ASD-4 or ASD-36 coupled to Sepharose*4B 
beads (A, hatched bars), and a fraction eluted from the beads (E, open bars). 
The enzymatic activities are given as percentages of the activities in the start
ing material (100%).

each other and were both found on cortical epithelial cells (Figures 
8C, and 8D). APA was not present on cells in the medulla (Figure 
8A). DPP IV was present on cells in the medulla (Figure 8A). DPP 
IV was present on thymocytes, as shown by immunohistological 
staining with ASD-36 and enzyme histochemistry (Figures 8E and 
8F). The expression o f DPP IV varied from cortex to medulla, with 
higher expression in the thymic cortex, corresponding to earlier
reports (49). IEM with ASD-4 showed staining of the cell m em 
branes of the cortical epithelial cells with its finger-like cell protru
sions interdigitating between surrounding thymocytes (Figure 9A). 
ASD-36 stained all thymocytes, as shown in Figure 9B. In the pe
ripheral lymphoid organs, DPP IV was found on T-cells and not 
on B-cells, as examined by double labeling with antibodies to IgM. 
In the spleen these T-cells were located around arterioles, which 
showed the presence of APA on the smooth muscle cells (Figures
12C and 12D).

Both APA and DPP IV were abundantly co-expressed on the 
brush botders of the small intestine, which diffusely stained with 
ASD-4 and ASD-36, respectively, by indirect IF (Figures 10A and 
10B), and IEM (Figure llC). The same co-expression was observed 
in the liver, in which APA and DPP IV were present in various 
amounts on sinusoidal Jining cells, bile canaliculi and, to a lesser 
extent, on hepatocyte/ (Figures 10E and 10F). Their localization 
was more clearly demonstrated by indirect IEM (Figures 11A and 
1 IB). In the lung, as in most other organs, APA was present on 
the endothelial cells o f the alveolar walls. In addition, it could be 
seen on the large Type II alveolar cells, but not on the smaller Type 
I alveolar cells (Figures IOC and HE). DPP IV was mainly located 
on Type I cells (Figures 10D and 11F). In the brain and spinal cord, 
APA was present only on endothelial cells of the capillaries, whereas 
DPP IV was shown on astrocytes (Figures 12A and 12B). Promi
nent staining with ASD-4 was also seen on follicle cells of the ovary 
and, to a lesser extent, on the cornea (Figures 12K and 12E). Fi
nally, DPP IV could be found on cells of the islets o f  Langerhans 
(Figure 12H), the epithelium of the Harderian gland of the eye, 
and the germinal epithelium of the ovary.

medulla (Figures 4C and 5B). DPP IV, on the other hand, was found 
on the cells of Henle’s loops, as demonstrated by a double labeling 
IF procedure and by IEM (Figures 4D and 6C). The localization 
of APA and DPP IV, as revealed by immunohistology with ASD-4 
and ASD-36, respectively, matched the enzymatic activities as 
demonstrated by enzyme histochemistry using specific substrates 
(Figure 7).

In contrast to the co-localization of APA and DPP IV in the 
kidney, there was clearly a different expression of the two hydro
lases on cells in the thymus, spleen, and lymph nodes, suggesting 
different functions related to the development of thymocytes and 
activation o f the T-cells (Figures 8, 12C, and 12D). APA was ex
pressed only on cortical epithelial cells of the thymus, as confirmed 
in a double labeling experiment with an MAb specific for cytoker- 
atin 2/ 8, which is present only on thymic epithelial cells (Figures 
8A and SB). APA expression, as demonstrated by ASD-4, and its 
enzymatic activity, as shown by enzyme histochemistry, matched

Discussion
This study examined the presence of two important hydrolases, APA 
and DPP IV, in organs of the mouse. This pattern of localization 
might enable us to provide more insight into the various biological 
functions that are attributed to them, APA and DPP IV are well- 
known differentiation markers of lymphoid and myeloid progeni
tors and are believed to participate in stromal cell-dependent. 
B- and T-cell differentiation and in T-cell activation (23,24,50). In 
general, two ill-defined processes are related to the functions of 
these two enzymes. First, both hydrolases are involved in degrada
tion and uptake o f  peptides by epithelial cells, such as the cells 
o f the renal proximal tubules and the small intestine. Second, by 
breaking down ligands such as peptide hormones, growth factors, 
cytokines, or other regulatory proteins involved in cell activation, 
growth, and differentiation, APA and DPP IV can reduce or limit 
the cellular response induced by these ligands. It is in this second 
field that some progress has been made in recent years.

APA is a disulfide-linked homodimer that could easily be im-



Table 1. Organ distribution o f APA and DPP lVa

Organ Distribution APA DPP IV

K id n e y G lo m e r u lu s + + + + 4-4-
P ro x im a l  t u b u le s  BB m icrovill i S i + + + + +

S2 + + + + +

S3 + +

D is ta l  t u b u le s — —

L oops o f  H e n le ~ +

P e r i t u b u l a r  capillaries + /  + + —

Pars m e d i a  arteries + + —

J u x t a g lo m e r u l a r  g r a n u l a r  cells + —

C a p su le — + +

Pros ta te E p i th e l i u m _ + +

V esicu lar  g la n d E p i th e l i u m — +
E p id id y m is E p i t h e l i u m -4̂ + /  + +
Vas d e fe ren s E p i t h e l i u m — •+*/+ +
O vary G e r m in a l  e p i t h e l i u m — + + / +  +  +

Folicle  cells 4- + + —

O v id u c t E p i t h e l i u m -  /  ± 4- +
U te ru s E p i t h e l i u m -  / ± + + +

C r y p t  e p i t h e l i u m + /  + + + + +
P lacen ta Visceral yolk  sac +  + + +
T o n g u e S erous  g la n d s +  + + +
Sm all in te s t in e D u o d e n u m  BB m icrovilli 4~ 4- + + + +

J e j u n u m  BB microvilli +  + + + + + +
I l e u m  BB m icrovill i 4- +  + + + + +

Large in te s t in e E p i t h e l i u m — /  ± +
Liver S in u so id a l  l i n in g  cells +  4- 4- +

H e p a to c y te s 4" +
Bile  c a n a l ic u lu s 4* 4- + + + +
B ile  d u c t 4- +

G a l lb la d d e r E p i th e l i u m + /  4" 4- ~ / ±
T rach ea S erous  g la n d s + +
L u n g A lv e o la r  w all

E n d o t h e l i u m 4- 4- 4- —

A lv eo la r  cell T y p e  I — + +
A lv eo la r  cell T y p e  II 4- +  + +

P itu i ta ry  g la n d i n t e r m e d i a t e  lo b e + —

A d re n a l  g la n d C o r te x ,  s in u ses 4-4-4*
Salivary g la n d s

P aro t id E p i t h e l i u m + 4" + + +
S u b m a n d ib u l a r E p i t h e l i u m — + +
S u b l in g u a l E p i th e l i u m — 4" +

Pancreas Islets o f  L a n g e rh a n s ± 4- +
E p i t h e l i u m  o f  sm all  d u c ts + + + +

T h y m u s T h y m o c y te s  (T-cells) — + +
C o rt ica l  e p i th e l i a l  cells 4- 4. —

Spleen L y m p h o c y te s  (T-cells) — 4" +
L y m p h  n o d e L y m p h o c y te s  (T-cells) — + +

S in uses 4* —.

Skin H a i r  fo ll ic le  (basis) + 4* + +
Eye C o r n e a 4*

Iris Hh +
C ilia ry  b o d y i +
C h o r o id 4 - 4 - 4 - + +
H a r d e r i a n  g l a n d — +
L acr im al  g l a n d • 4 - 4 - 4 - + + +

C e re b ru m C o r t ic a l  as trocy tes — + + +
C e re b e l lu m P ia  m a t e r — +
S p in a l  cord A strocy tes — 4- +
N erv es P e r i n e u r i u m + + + +
S m o o th  m usc le Pars  m e d i a  a r te r ie s +  + —

M u lt io rg a n C a p i l la ry  e n d o t h e l i u m —

Serosal layer — + + +
C a p s u le  cells — + + +
F ib ro b la s ts + +

^BB, brush border.

4 5 0
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Figure 4. Indirect Immunofluorescence of a 
norma! Balb/c kidney incubated with ASD-4 
(A,C), and ASD-36 (B,D). (A) Incubation with 
ASD-4 caused strong homogeneous bind
ing along the capillary wall of the glomeru
lus and the brush borders of the proximal 
tubules. In addition, a faint granular stain
ing of the juxtaglomerular granular cells is 
present (arrows). (C) In the medulla, ASD-4 
bound strongly to the endothelial cells of the 
peritubular capillaries. (B) ASD-36 also 
strongly stained the glomerular capillary wall 
and the brush borders of the proxima tub
ules. (D) In the medulla, ASD-36 did not stain 
the endothelial cells of the capillaries, but 
the cells of Henle’s loops were positive as 
detected with a double labeling technique 
using a lectin specific for mouse endothe
lial cells. Original magnifications: A x 850; 
B x 700; C x 550; D x 400. Bars = 25 \im.

munoprecipitated from the kidney and the thymus by ASD-4. The 
different molecular weights of A PA isolated in this study from re
nal corpuscles, renal brush borders of proximal tubule epithelial 
cells, and thymus are not the products of different APA isoforms 
but probably reflect differences in glycosylation. Several arguments 
support this presumption. First, the isolated mouse cDNA sequence 
predicts a Type II, 945-amino-acid, integral cell membrane-bound 
protein o f about 108 KD with a large extracellular domain, con
taining nine possible N-glycosylation sites (51). Second, incuba
tion of APA with glycolytic enzymes also yielded an identical pro
tein backbone of almost 110 KD (52) (personal observation). Third, 
Northern blotting experiments on poly A+ RNA from different 
mouse organs always showed a single hybridizing band of approxi
mately 4 KB (28). APA has a short-18-amino-acid cytoplasmic tail 
that is covalently coupled to actin, as reported by us (48,51), indi

cating a role of actin in the transport of APA in various cells. APA 
digests N-terminal glutamyl and aspartyl residues from peptides 
(53). APA that is expressed on early B-cells and on stromal cells 
in the bone marrow has an incompletely defined function in early 
B-cell development (51,54,55). One o f the best known functions 
of APA is its regulatory effect on the renin-angiotensin system, 
since APA converts angiotensin II, the most active component of 
this system, into angiotensin III by removal of the N-terminal aspar
tyl residue (56). Angiotensin II has several effects on the cardiovas
cular system by its vasopressor and growth-promoting actions. The 
hemodynamic effects in the kidney are related to its regulatory role 
of the renal blood flow, glomerular filtration rate, sodium reab
sorption in the proximal tubules, and induction of cell growth and 
hypertrophy o f epithelial and muscle cells (57). All of these effects 
are mediated by its binding to several receptors (58,59). It has been
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Figure 5. Indirect immunoelectron microscopy of a normal Balb/c 
kidney incubated with ASD-4, immunoperoxidase labeling. (A) Ho
mogeneous staining of the ceJI membranes of the podocyte and the 
brush borders of the parietal epithelial cell is seen. The glomerular 
endothelial cell is negative (arrow). Cap, capillary lumen; Pod, podo
cyte; US, urinary space. (B) Proximal epithelial cell with staining 
of the brush borders. The endothelial cell of the peritubular capil
lary adjacent to the proximal tubule cell also shows faint staining 
(arrow). Original magnifications: A x 7000; B x 9500. Bars = 2 nm.
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Figure 6. Indirect im mu noelectron microscopy of a normal Balb/c kidney incubated with ASD-36, immunoperoxidase labeling. (A) Diffuse staining of the cell mem
branes of the podocyte. Glomerular endothelial and mesangial cells are negative. Cap, capillary lumen; Pod, podocyte; US, urinary space (8 ) Proximal tubuie 
cell with homogeneous staining of the brush borders. The endothelial cell of the adjacent capillary is negative. (C) Medulla: homogeneous staining of the cell 
membranes of Henle’s loops (asterisks). The endothelial ceil (arrow) is negative. Original magnifications: A x 6700; B x 5000; C x 2700. Bars *  2 nm.
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Figure 9. Indirect immunoelectron microscopy showing the binding of an MAb against APA (A, ASD-4) and DPP IV (B, ASD-36) to cortical cells of mouse thymus. 
(A) Among negative thymocytes, a dendritic process of an epithelial cell demonstrates staining of the cell membrane. (B) A cluster of round and oval thymocytes 
with relatively large nuclei shows cell membrane staining. Original magnifications: A x 4800; B x 9800, Bars: A = 2 ¿im; B *« 1 nm.

shown that the hemodynamic effects of angiotensin II are regu
lated via the ATI receptor (60). In the kidney, the presence of the 
ATI receptor is closely associated with the presence of APA, i.e., 
the glomerulus, the juxtaglomerular cells, the proximal tubule ep
ithelial cells, the endothelial cells of the peritubular capillaries, and 
the arteriolar smooth muscle cells. This supports a regulatory role 
for APA on the actions of angiotensin II in the kidney. Recently, 
we have found evidence for this in an anti-APA-mediated glomer
ulonephritis in the mouse (7). A single IV injection of ASD-4, an 
MAb that can block the enzymatic activity after binding to APA, 
induces an acute albuminuria that is not dependent on well-known 
systemic mediators, such as complement, platelets, fibrin, neutro
phils, or monocytes. Treatment with the angiotensin-converting en
zyme inhibitor enalapril and the ATI receptor antagonist losartan 
considerably reduced this albuminuria, strongly indicating a role 
of angiotensin II in this model (61). We presume that blocking of 
the glomerular APA activity causes a prolonged effect of angioten
sin II on the glomerular hemodynamics or glomerular filter, lead
ing to enhanced permeability for proteins. A function of APA in

several forms o f chronic nephropathy is also suggested by others 
who found an association between the extent of the glomerular 
lesions and the reduction o f the APA activity as determined by en
zyme histochemistry (22).

DDPIV is a heterodimer composed of two noncovalently linked, 
structurally related subunits that could be immunoprecipitated by 
ASD-36 from the kidney and thymus. The different molecular 
weights ranging from 103 to 116 KD, as analyzed in SDS-PAGE un
der reducing conditions, largely correspond with the state of giycosy- 
lation, as reported (62). The assumption that differences in glycosy- 
lation are the basis for the differences in molecular weight of DPP 
IV is supported by the fact that only a single protein can be precipi
tated from thymus and kidney (63,64), which is encoded by a sin
gle cDNA and can be digested with glycolytic enzymes, resulting 
in the predicted 87.5-KD protein backbone (23,50). This is also sup
ported by the fact that only a single DPP IV RNA isoform has been 
identified in kidney and thymus (62). Nevertheless, it has been 
described that a different cDNA coding for a variant DPP IV iso
form (DPPX-L) has been cloned from bovine brain, but this iso-

*4—------------------------------------------------------------------------------------------------------------ ---- ---------- -------------------------------------------------------------------------------

Figure 8. Indirect immunofluorescence and enzyme histochemistry on murine thymus. (A,B). Double staining of 2-jj,m-thick sections of mouse thymus incubated 
with MAbs against APA (A, ASD-4), and against cytokeratin 2/8 (B, RCK 102). Binding of the MAbs is detected by a second FITC-labeled anti-rat and TRITC-labeled 
anti-mouse antibody, respectively. APA is expressed solely on epithelial cells in the cortex of mouse thymus, as evidenced by the identical localization of cytokeratin 
that additionally is expressed in medullary epithelial cells. (C,E). Sections of the cortex of mouse thymus stained with MAbs against APA (C) and DPP IV (E). 
Binding of the MAb Is visualized by an FITC-labeled anti-rat antibody. APA is present on dendrite-like epithelial cells, whereas DPP iV is localized on thymocytes. 
(D,F). Enzyme histochemistry staining of 5-^m-thick section of mouse thymus. Cells in the cortex of the thymus, which were stained with an MAb against APA 
by IF (C), also showed enzyme activity for APA (D) by enzyme histochemistry using an APA-specific substrate. Cortical cells stained with an MAb against DPP 
IV by IF (E) also showed enzyme activity for DPP IV (F) using a DPP IV-specific substrate. Original magnifications: A,B x 125; C -F  x 350. Bars: A,B = 100 nm; 
C-F = 25 nm.



Figure 10. Indirect immunofluorescence of a normal Balb/c intestine (A,B), lung (C,D), and liver (E.F) incubated with ASD-4 (A.C.E) and ASD-36 (B,D,F). (A,B) 
Strong homogeneous binding of the cell membranes of the brush borders of the small intestine after incubation with ASD-4. (A) and ASD-36 (B) ASD-4 stains 
only the endothelial ceils of the lung and the large alveolar cells (arrow) (C). ASD-36 stains predominantly the small alveolar cells (D). In the liver, both ASD-4 
(E) and ASD-36 (F) faintly stain the sinusoidal lining ceils and the bile canaliculi, although staining of these latter structures was stronger after staining with ASD-36. 
Original magnifications: A x 300; B x 260; C,D x 450; E,F x 500. Bars « 25 urn.
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Figure 11. Indirect immunoelectron microscopy of a normal Balbfc liver (A,B), small intestine (C,D), and lung (E,F) incubated with ASD-4 (A,C,E) and ASD-36 
(B,D,F). Immunoperoxldase labeling. Both ASD-4 (A) and ASD-36 (B) stain the cell membranes of the bile canaliculi (arrows), the sinusoidal lining cells (arrow
heads), and the liver cells (L). ASD-4 diffusely stained the brush borders of the small intestine and some extracellular material (C). In addition, ASD-36 stained 
the mesothelial cells covering the peritoneal cavity (D). Note the many stained vacuoles in the cytoplasm (arrow). Ct, connective tissue. In the lung, the large 
alveolar cells (arrows) and endothelial cells (arrowhead) are stained by ASD-4 (E), whereas ASD-36 binds predominantly to the small alveolar cells (arrow) (F). 
Original magnifications: A x 10,000; B x 4800; C x 4600; D x 12,000; E x 6800; F x 9000. Bars = 2 urn.
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*

Figure 12. Indirect immunofluorescence of various organs of a normal Balb/c mouse incubated with ASD-4 or ASD-36. (A) Cerebrum; staining of the endothelial 
cells by ASD-4. (B) Cerebrum; ASD-36 stains astrocytes in the cortex, (C) Spleen; ASD-4 stains smooth muscle cells of arterioles (D). Spleen; staining of T-cells 
around the arterioles by ASD-36. (E) Eye; ASD-4 binds to the epithelial and stromal cells of the cornea. (F) Eye; ASD-4 also binds to the choroid plexus (arrow) 
and endothelial cells of the retina. (G) Adrenal; ASD-4 stains sinusoidal lining cells of the cortex. (H) Pancreas; DPP IV is present in the cells of the Langerhans1 
islets. (0 Uterus; ASD-4 stains epithelial cells of the mucosal ducts. (J) Uterus; ASD-36 stains mainly the mucosal cells lining the uterine cavity. (K) Ovary; luteal 
cells of the follicles are positive for ASD-4. (L) Prostate; staining of the epithelial cells of the ducts by ASD-36. Original magnifications: A x 300; B,C x 125; C-F.H-J  
x 250; K x 100; L x 200. Bars: A,C-F,H-J,L » 25 |im; B,G,K -  50 ^m.

form is expressed predominandy in brain (65). Mouse DPP IV cDNA 
predicts a Type II, 760-amino-acid, membrane-bound glycopro
tein with a calculated size of 87 KD and with a large extracellular 
and a short>cytoplasmic domain (62). It is a multifunctional mole
cule involved in signal transduction, hydrolysis and uptake of pep
tides» and cell adhesion. DPP IV is a serine proteinase that N-ter
minally digests peptides and proteins with penultimate proline 
or alanine residues (66). DPP IV is known to hydroly2e many natu
ral proline-containing peptides such as cytokines, growth factors, 
hormones, neurotransmitters, and vasoactive components, indicat
ing its important role in regulatory processes. Many brain, kidney, 
and intestinal peptides contain a penultimate proline or alanine 
residue that makes them susceptible to hydrolysis (23*24). Like A PA, 
DPP IV participates in the final degradation and uptake of proline- 
containing peptides in the renal proximal tubules and small intes

tine. The necessity of intact DPP IV acdvity in this process was nicely 
demonstrated in the Fischer 344 rat strain, which lacks functional 
DPP IV and shows reduced digestion of proline-containing pep
tides in kidney and small intestine (67). DPP IV was originally known 
as aT-cell differentiation marker designated as CD26. It is the only 
ectoenzyme that functions as a co-signaling molecule in the pro
cess of T-cell activation and proliferation (68). For the signaling 
function, the enzymatic activity of DPP IV is not required (69). 
DPP IV, however, is unable to stimulate T-cells by itself but re
quires the expression of the T-cell receptor (TCR)/CD3 complex 
(70). DPP IV may also function as an auxiliary adhesion molecule, 
because it can bind with low affinity to the extracellular matrix 
components fibronectin and collagen (14,71). Recently, a role for 
DPP IV in the uptake of the human immunodeficiency virus in 
CD4+ T-cells has been proposed (72). Finally, DPP IV appears to
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participate in some forms of membranous glomerulonephritis in 
the mouse and rat (6,8,11-14,16,73,74). However, in contrast to the 
well-defined role of APA in the passive glomerulonephritis in mice, 
the involvement of DPP IV in several experimental forms of glo
merulonephritis is controversial at the moment and is not well un
derstood. Using polyclonal and monoclonal anti-mouse DPP IV 
antibodies, we could induce a membraneous glomerulonephritis 
morphologically characterized by granular immune deposits in the 
subepithelial space of the glomerulus and without the involvement 
of systemic mediators. However, wc never could induce a sustained 
enhanced glomerular permeability as seen in our anti-APA model 
or in the Heymann nephritis model in the rat. In the membranous 
glomerulonephritis in the so-called graft-vs-host mice, it was sug
gested that DPP IV was also involved in the formation of the im
m une complexes in the glomerulus, but we could not confirm this 
observation (17,18,75). Moreover, the participation of this enzyme 
as an additional antigen next to the Heymann antigen in the in
duction of the Heymann nephritis is controversial (15,76). The func
tion of DPP IV in the glomerulus is not fully understood at pres
ent. It is also not known whether DPP IV acts as an ectoenzyme 
or as an adhesion molecule in the various forms of glomerulone
phritis.

In the thymus, APA is localized on cortical epithelial cells, 
whereas DPP IV is present on thymocytes. It is known that progen
itors of T-lymphocytes develop into mature T-cells characterized 
by a rearranged T-celi receptor/CD3 complex and the CD4 or CDS 
molecules, by interacting with a variety of stromal or epithelial cells 
that compose the microenvironment of the thymus (77). It is be
lieved that these stromal cells in the thymic cortex provide specific 
signals in the T-cell differentiation that starts beneath the subcap- 
sular region and evolves along the cortex to the medulla. Epithe
lial cells with their cytoplasmic extensions are organized in an 
elaborate network along which the thymocytes migrate during the 
differentiation process. How these stromal cells act on the develop
m ent of T-cells is not well understood, but it is assumed that cell- 
associated MHC antigens play an important role in this process 
o f maturation, requiring a direct contact between thymocytes and 
stromal cells. The cortical thymocytes that show high CD4+/8+ ex
pression and no or low TCR expression are submitted to an MHC- 
restricted ''positive" selection and a tolerance-inducing "negative” 
selection before they become a mature T-cell population that recog
nizes peptides only in the context of self (77-79). Which role APA 
plays in the maturation of thymocytes is completely unknown at 
the moment. DPP IV in the thymus is known as a co-stimulatory 
molecule of thymocytes, possibly in association with other activat
ing factors such as IL-2 and CD4 or CD8 (64,80). Although the 
strict separation in expression of APA and DPP IV suggests some 
form of counteractive enzymatic activity between the cortical epi
thelial cells and thymocytes, such an effect remains to be confirmed.

Acknowledgment
We thank Mr J. Koedam for excellent technical assistance.

Literature Cited
1. Brentjens JR, Andres GA. Interaction of antibodies with renal cell sur

face antigens. Kidney Int 1989;35:954-968

2. Couser WG. Mediation of immune glomerular injury. J  Am Soc Nephrol 
1990;1:13-29

3. Kerjaschki D, Farquhar MG. The pathogenic antigen of Heymann 
nephritis is a membrane glycoprotein of the renal proximal tubule brush 
border. Proc Natl Acad Sci USA 1982;79:5557-5561

4. Kerjaschki D, Farquhar MG. Immunocytochemical localization of the 
Heymann nephritis antigen (gp330) in glomerular epithelial cells of 
normal Lewis rats. J Exp Med 1983;157:667-686

5. Kerjaschki D. Molecular pathogenesis of membranous nephropathy.
Kidney Int 1992;41:1090-1105

6 . Assmann KJM, Ronco P, Tangelder MM, Lange WPH, Verroust P, Koene 
RAP. Comparison of antigenic targets involved in antibody-mediated 
membraneous glomerulonephritis in the mouse and rat. Am J Pathol 
1985;121:112-122

7. Assmann KJM, van SonJPHF, Dijkman HBPM, Koene RAP. A nephrito- 
genic rat monoclonal antibody to mouse aminopepcidase A. Induc
tion of massive albuminuria after a single intravenous injection, J  Exp 
Med 1992;175:623-635

8 . Assmann KJM, Ronco P, Tangelder MM, Lange WPH, Verroust P, Koene 
RAP, involvement of an antigen distinct from the Heymann antigen 
in membranous glomerulonephritis in the mouse. Lab Invest 1989; 
60:138-146

9. Assmann KJM, Tangelder MM, Lange WPH, TademaTM, Koene RAP. 
Membranous glomerulonephritis in the mouse. Kidney Int 1983;24: 
303-312

10. Wolf GB, Thaiss F, Scherberich JE, Schoeppe W, Stahl RAK. Glomer
ular angiotensinase A in the rat: increase of enzyme activity following 
renal ablation, Kidney Int 1990;38:862-868

11. Mendrick DL, Rennke HG. Induction of proteinuria in the rat by a 
monoclonal antibody against SGP-115/107. Kidney Int 1988;33:818-830

12. Natori Y, Hayakawa I, Shibata S. Passive Heymann nephritis with acute 
and severe proteinuria induced by heterologous antibody against renal 
tubular brush border glycoprotein gp 108. Lab Invest 1986;55:63-70

13. Ronco P, Allegri L, Melcion C, Pirotsky E, Appay M, Bariety J, Pontil- 
lon F, Verroust P. A monoclonal antibody to brush border and passive 
Heymann nephritis. Clin Exp Immunol 1984;55:319-332

14. Hogendoorn PCW, BruijnJA, van den Broeck LJCM, de Heet E, Foidart 
JM, Hoedemaeker PHJ, Fleuren GJ. Antibodies to purified renal tubular 
antigens contain activity against laminin, fibronecrin and type IV col
lagen. Lab Invest 1988;58:831-842

15. Bagchus WM, Hoedemaeker PJ, SiegersJFG, Baker WW. The specific
ity of nephritogenic antibodies. V. Glomerular localization of anti-gp3 30 
and anti-gp90 antibodies present in passive Heymann serum. BrJ Exp 
Pathol 1988;69:855-864

16. van Leer EHG, de Roo GM, BruijnJA, Hoedemaeker PHJ, de Heer
E. Synergistic effects of anti-gp330 and dipeptidyl peptidase type IV 
antibodiesin the induction of glomerular damage. Exp Nephrol 1993; 
1:292-300

17. BruijnJA, van Leer EHG, Baelde HJJ, Corver WE, Hogendoorn PCW, 
Fleuren Gj. Characterization and in vivo transferof nephritogenic auto- 
antibodiesdirected against dipeptidyl peptidase IV and laminin in ex
perimental lupus nephritis. Lab Invest 1990;63:350-359

18. van Leer EHG, Bruijn JA, Prins FA, Hoedemaeker PJ, de Heer E. Redis
tribution of glomerular dipeptidyl peptidaselV  in experimental lupus 
nephritis. Lab Invest 1993;68:550-556.

19. Scherberich JE, Matthess A, Remelius W, Schoeppe W. Aminopepti- 
dase A ( * angiotensinase A) in human progressive renal disease, Miner 
Electrolyte Metab 1992;18:97-100

20 . Nukada O, Kobayashi M, Moriwake T, Kanzaki S, Himei H, 'toda T, 
Seino Y. Urinary glycylprolyl dipeptidyl aminopeptidase (GP-DAP) in 
insulin-dependent diabetic patients. Acta Paediatr 1992; 81:907-911



460 MENTZEL, DIJKMAN» VAN SON, KOENE, ASSMANN

21. Scherberich JE, Wolf GB, Albers C, Nowack A, Stuckhardt C, Schoeppe 
W. Glomerular and tubular membrane antigens reflecting cellular adap
tation in human renal failure. Kidney Int 1989;36:S38-S51

22. Scherberich JE, W iem erJ, Schoeppe W. Biochemical and imm uno
logical properties of urinary angiotensinase A and d ipep tidy lam i nope p- 
tidase IV. Their use as markers in patients with renal ceil injury. Eur 
J Clin Chem Clin Biochem 1992;30:663-668

23. Shipp MA, Look AT. Hematopoietic differentiation antigens that are 
membrane-associated enzymes; cutting is the key! Blood 1993:82:1052-  
1070

24. Kenny AJ, Stephenson SL, Turner AJ. Cell surface peptidases. In Kenny 
AJ, Turner AJ, eds. Mammalian ectoenzymes. Amsterdam: Elsevier 
Science Publishers, 1987:169-210

25. Tidmarsh GF, Dailey MO, Whitlock C, P illem er, Weissman IL. Trans
formed lymphocytes from Abelson-diseased mice express levels of a 
B-lineage transformation-associated antigen elevated from that found 
on normal lymphocytes. J  Exp Med 1985;l62:l42H434

26. Kugler P. Localization of aminopeptidase A (angiotensinase A) in the 
rat and mouse kidney Histochemistry 1981;72:269-278

27. Lojda Z, Gossrau R. Study of aminopeptidase A. Histochemistry 1980; 
67:267-290

28. Li L, Wu Q, WangJY, Bucy RP, Cooper MD. Widespread tissue distri
bution of aminopeptidase A, an evolutionariiy conserved ectoenzyme 
recognized by the Bp-1 antibody. Tissue Antigens 1993;42:488-496

29. Gossrau R. Peptidasen II. Zur Lokalisation der Dipeptidylpeptidase 
IV (DPP IV). Histochemische und biochemische Untersuchung. 
Histochemistry 1979;60:231-248

30. Chatelet F, Brianti E, Ronco P, Roland J, Verroust P. Ultrastructural 
localization by monoclonal antibodies of brush border antigens expressed 
by glomeruli. II. Extrarenal distribution. A m J Pathol 1986;122:512-519

31. Assmann KJM, Lange WPH, Tangelder MM, Koene RAP, The organ 
distribution of gp-330 (Heymann antigen) and gp-90 in the mouse 
and rat. Virchows Arch 1986;408:541-553

32 . Malathi P, Preiser H, Fairdough P, Mallett P, Crane RK, A rapid method 
for the isolation of kidney brush border membrane. Biochim Biophys
Acta 1979;554:259-263

33. Bordier C. Phase separation of integral membrane proteins in Triton 
X-114 solution. J Biol Chem 1981;2 56:1604-1607

34. Assmann KJM, van Son JPHF, Koene RAP. Improved method for the 
isolation of mouse glomeruli. J  Am Soc Nephrol 1991;2:944-946

35. Lowry OH, Rosebrough RL, Farr RL, Randall RJ. Protein measurement 
with the Folin phenol reagent. J  Biol Chem 1951;193:265-275

36. Köhler G, Milstein C. Continuous cultures o f  fused cells secreting an 
tibody of predefined specificity. Nature 1975;256:495-497

37. Mancini G, Carbonara AO, HeremansJF. Immunochemical quantita
tion of antigens by single radial immunodiffusion. Immunochemistrv 
1965;2:235-254

38. Coombs RRA, Scott ML, Cranage MP. Assays using red cell-labeled 
antibodies. J Immunol Methods 1987;101:1-14

39. Taue M, Chatelet F, Verroust P, Vandewalle A, Poujeol P, Ronco P. Char
acterization of monoclonal antibodies specific for rabbit renal brush- 
border hydrolases: application to immunohistological localization. J 
Hiscochem Cytochem 1988;36:523-532

40. Markwell MAK. A new solid state reagent to iodinate proteins. 1. Con
ditions for the efficient labeling of antiserum. Anal Biochem 1982; 
125:427-432

41. Laemmli UK. Cleavage of structural proteins during the assembly of 
the head of bacteriophage T4. Nature 1970;227:680-685

42. Verroust P, Ronco P, Chatelet F. Antigenic targets in membranous glo
merulonephritis. Springer Semin Immunopathol 1987;9:341-358

43. Castillo MJ, Nakajima K, Zimmerman M, Powers JC. Sensitive sub
strates for human leucocyte and porcine pancreatic elastase: a study 
of the merits of various chromophoric and fluorogenic groups in assays 
for serine proteases. Anal Biochem 1979;99:53-64

44. Laitinen L, Virtanen I, Saxen L. Changes in glycosylation pattern dur
ing embryonic development of mouse kidney as revealed with lectin 
conjugates. J  Histochem Cytochem 1989;35:55-65

45. BroersJLV, Carney DN, Klein Rot M, Schaart G, Lane EB, Vooys GP. 
Intermediate filament proteins in classic and variant types of small cell 
lung carcinoma cell lines: a biochemical and immunochemical analy
sis using a panel of monoclonal and polyclonal antibodies. J  Cell Sci 
1986;83:37-60

46. Cooper MD, Mulvaney D, Coutinho A, Ca2enave P. A novel cell sur
face molecule on early B-lineage cells. Nature 1986;321:616-618

47. KameokaJ, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct 
association of adenosine deaminase with a T cell activation antigen,
CD26. Science 1993;261:466-469

48. Mentzel S, de Leeuw EPH, van Son JPHF, Dijkman HBPM, Koene RAP, 
Assmann KJM. Actin is directly associated to aminopeptidase A (APA) 
in brush border membranes from mouse kidney. Hoppe Seylers Biol
Chem 1994;375:623-627

49. Geppert TD, Davis LS, Gur H, Wacholtz MC, Lipsky PE, Accessory 
cell signals involved in T-cell activation. Immunol Rev 1990;117:5-66

50. Fleischer B, CD26 —a surface protease involved in T-cell activation. 
Immunol Today 1994;15:180-184

51. Wu Q, Lahti JM, Air GM, Burrows PD, Cooper MD. Molecular cloning 
of the murine BP-1/6C3 antigen: a member of the zinc-dependent metal- 
lopeptidase family, Proc Natl Acad Sci USA 1990;87:993-997

52. Wu Q, Tidmarsh GF, Welch PA, Pierce JH, Weissman IL, Cooper MD.
The early B lineage antigen Bp-1 and the transformation-associated
antigen 6C3 are on the same molecule. J  Immunol 1990;143:3303-3308

53. Glenner GG, McMillan PJ, FolkJE. A mammalian peptidase specific 
for the hydrolysis of N-terminal a -L-glutamyl and aspartyl residues.
Nature 1962;194:867

54. Sherwood PJ, Weissman IL. The growth factor IL-7 induces expression 
of a transformation-associated antigen in normal pre-B cells. In t Im 
munol 1990;2:399-406

55. Ulmer AJ, Mattern T, Flad HD. Expression of CD26 (dipeptidyl p ep ti
dase IV) on memory and naive T lymphocytes. Scand J  Im m unol
1992;35:551-55 9

56. Erdos EG, Skidgel RA. Renal metabolism of angiocensin I and II. K id
ney In t 1994;38:S24-S27

57. Ichikawa 1, Harris RC. Angiotensin actions in the kidney: renewed in
sight into the old hormone. Kidney Int 1991;40:583-596

58. Douglas JG, Hopfer U. Novel aspect of angiotensin receptors and sig
nal transduction in the kidney. Annu Rev Physiol 1994;56:649-669

59. Smith RD, Timmermans PBMWM. Human angiotensin receptor sub- 
types. Curr Opin Nephrol Hypertens 1994;3:112-122

60 . Reid I A, Morris BJ, Ganong WF. The renin-angiotensin system. A nnu 
Rev Physiol 1978;40:377-410

61. Mentzel S, Assmann KJM, van Son JPHF, Dijkman HBPM, Koene RAP. 
Enalapril and losartan reduce considerably the acute album inuria 
induced by injection of a monoclonal antibody against am inopepti
dase A. J Am Soc Nephrol 1993;4:620

62. Marguet D, Bernard A, Vivier I, Darmoul D, Naquet P, Pierres M. cDNA 
cloning for mouse thymocyte-activating molecule. J  Biol Chem 1992; 
267:2200-2208

63. Elleder M, Stejskal J. Induction of dipeptidyl peptidase IV activity in 
human renal glomeruli —a histochemical study. Acta Histochem 1983; 
77:75-78



AMINOPEPTIDASE A AND DIPEPTIDYL PEPTIDASE IV IN MICE 461

64. Dang NH, Torimoto Y, Shimamura K, Tanaka T, Daley JF, Schlossman 
SF, Morimoto C. 1F7 (CD26): a marker of thymic maturation in the 
differential regulation of the CD3 and CD2 pathways of human thymo
cyte activation. J  Immunol 1991;147:2825-2832

65. Wada K, Yokotani N, Hunter C, Doi K, Wenthold RJ, Shimasaki S. 
Differential expression of two distinct forms of mRNA encoding m em 
bers of a dipeptidyl aminopeptidase family. Proc Natl Acad Sci USA 
1992;89:197-201

66 . Smith RE, Reynolds CJ, Elder EA. The evolution of proteinase sub
strates with special references to dipeptidylpeptidase IV Histochem
J 1992;24:637-647

67. Erickson RH, Suzuki Y, Sedlmayer A, Kim YS. Biosynthesis and degra
dation of altered immature forms of intestinal dipeptidyl peptidase 
IV in a rat strain lacking the enzyme. J Biol Chem 1992;267:21623-21629

68 . Naquet P, MacDonald HR, Brekelmans P, Barber J, Marchetto S, van 
Ewijk W, Pierres M. A novel T cell-activating molecule (THAM) highly 
expressed on CD4-CD8- murine thymocytes. J  Immunol 1988;l4l:
4101-4109

69. Hegen M, Mittrucker HW, Hug R, Demuth HU, Neubert K, Barth
A, Fleischer B. Enzymatic activity of CD26 (dipeptidylpeptidase IV) 
is not required for its signaling function in T cells. Immunology
1993;189:483-493

70. Naquet P, Vivier I, GorvelJ, Brekelmans P, Barad M, Bernard A, Pierres 
M. Activation of mouse T lymphocytes by a monoclonal antibody to 
a developmental^ regulated surface aminopeptidase (THAM). Immunol
Rev 1989;111:177-193

71. Hanski C, Huhle T, Gossrau R, Reutter W. Direct evidence for the bind
ing of rat liver DPP IV to collagen in vitro. Exp Cell Res 1988;178:64-72

72. Miyamoto Y, Ganapathy V, Barlas A, N eubert K, Barth A, Leibach 
FH. Role of dipeptidyl peptidase IV in uptake o f  peptide nitrogen from 
p-casomorphin in rabbit renal BBMV. Am J Physiol 1987;252:F670-F 677

73. Natori Y, Hayakawa I, Shibata S. Role o f  dipeptidyl peptidase IV (gpl08) 
in passive Heymann nephritis. Use of dipeptidyl peptidase IV-deficient 
rats. Am J  Pathol 1989;134:405-410

74. Bruijn JA, van Elven EH, Hogendoorn PCW, Corver WE, Hoedemaeker 
PJ, Fleuren GJ. Murine chronic graft-versus-host disease as a model for 
lupus nephritis. Am J Pathol 1988;81:334-338

75. Termaat RM, Assmann KJM, van Son JPHF, Dijkman HBPM, Koene 
RAP, Berden JHM. Antigen-specificity of antibodies bound to glomeruli 
of mice with systemic lupus erythematosus-iike syndromes. Lab Invest
1993;68:164-173

76. Susani M, Schulze M, ExnerM, Kerjaschki D. Antibodies to glycolipids 
activate complement and promote proteinuria in passive Heymann 
nephritis. Am J Pathol 1994;144:807-819

77. van Ewijk W. T-cell differentiation is influenced by thymic microen
vironments. Annu Rev Im m unol 1991;9:591-615

78. von Boehmer H. Positive selection of lymphocytes. Cell 1994;76:219-228

79. van Ewijk W. Cell surface topography of thymic microenvironments. 
Lab Invest 1988;59:579-590

80. Bristol LA, Sakaguchi K, Appella E, Doyle D, Takacs L. Thymocyte 
costimulating antigen is C D 26 (dipeptidyl peptidase IV). J  Immunol 
1992;149:367-372


