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o #,17° = 12 1f they are not.

Because from the computation of the characteristic polynomial of I'5° in Section 2
and the sequence in (4.4) one gets that

dim H*(X{)) = »  dim H*(X,), = 58,
Ab=]

(where X7/ is defined in the proof of (5.3)). On the other hand, from Theorem (5.5)
one gets that:

#H(T70)) = dim HA(X}) = 46 + 6,

where § = dim H?(X}), X{ being the hypersurface in P3 defined by zd = fe,
i.e., the 6-fold cyclic covering of P* branched along the curve X°°. The possible
values of 6 are known to be 2 if the six cusps are on a conic or 0 if they are not (cf.
[27, VIII, Sect. 3]), and then the result follows.

APPENDIX: On the local invariant cycle theorem
by R. Garcia Lopez and J.H.M. Steenbrink

In this note all cohomology groups will be assumed to have coefficients in the field
Q of rational numbers. We prove the following two theorems:

THEOREM 1. Let X be a complex analytic space which can be embedded in a
projective variety as an open analytic subset. Let m: X — D be a flat projective
holomorphic map onto the unir disk D in the complex plane. Let Z be the singular
locus of X, set Y = 71 (0) and assume that Z C Y. Let X; be the generic fiber
of m. Let k € N and let T" € Aut(H*(X})) be the monodromy transformation of
around the critical value 0. Then the sequence

HMX ~ Z) — HR(X,) S5 BR(X)
Is exact,

REMARKS. 1. The first map in the sequence above is the restriction map.

2.1t Z = 1, the theorem is due to Katz in the setting of [-adic cohomology and
to Clemens and Schmid in the Kihler case ([3]).

3. The hypothesis Z < 7w 1(0) is equivalent to the generic fiber of 7 being
smooth.

Proof. After possibly shrinking [, we may assume that the restriction of m over
the punctured disk 12 — {0} is a - fiber bundle and that the inclusion }” — X isa
homotopy equivalence. Let then X be the limit fiber of 7, defined as X = X X p H,
where H is the universal covering space of D — {0}. We recall that .X; and X are
of the same homotopy type. In the sequence

HE(X - 7)< Ry - vy AL 5k

b} "
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one has Im(3) = Ker(7T' ~ Id) by the Wang sequence. The terms in this sequence
carry mixed Hodge structures (MHS) such that o and § become morphisms of
MHS. We use Saito’s formalism of mixed Hodge modules ({18]).

o For H¥(X) one has the limit MHS ([20], [23]) given by H*(X) ~ HF¥(Y,

U Qx):
o Let C C Y be any closed analytic subset, let 2:Y < X and 7: X — (' — X

be the inclusion maps. Then
H¥(X - C) ~ H¥Y,*Rj.7* Q%)
gives H*(X — C') aMHS.
By [20], Ker(T —1Id) has weight < k. Hence it suffices to show that W, H ’“(X —

Y) = a(WiH¥(X — Z)), where W, denotes the corresponding weight filtration.
One has the exact sequence of MHS

HYX -272)> HYX -Y) - B (X - Z,X - Y).

Fix a projective variety W containing X as an open analytic subset. Without loss
of generality we can assume that W — Z is smooth. By excision we have an
isomorphism of MHS H** (W — Z, W =Y )~ H** (X - Z, X - Y). We also
have the exact sequence of MHS

HY(W - Z) = HYW -=Y) - H*YY (W - Z,W - Y) - H*Y(W - 2).

Now WkH‘““(W — 7)) = 0as W — Z is smooth, moreover Wka(W — 7)) =
Im(H¥W) — H¥(W — Z)) and similarly for W, H*(W —Y), so W, H¥W —
Z) — W H*(W ~Y)is surjective. We conclude that WkH"’“(W-—- Z,W-Y) =
0.Hence o : Wi H¥(X — Z) — Wi H"(X —Y) is surjective, -,

REMARK. M. Saito has informed us that the theorem above follows also from
the results in [19]. Actually, if I H*(X') denotes the intersection cohomology of X
then, with the notations above one has a factorization

THY(X) = HYX = Z) —» H¥( X))

and Theorem 1 follows then from [19, (3.8)].

If the central fiber has only isolated complete intersection singularities (icis)
then we have:

THEOREM 2. In addition to the hypothesis of Theorem 1 and with the same
notations, assume that Y = ©~'(0) has only icis and set dim(X) = n+ 1. Then
there IS an isomorphism.

ker[T - Id: H"(X;) — H"(X,)]
im[sp*: H*(Y) — H™(X,)]

~ ‘Hg“](*’v)a

where sp™ denotes the morphism induced in cohomology by the specialization map.
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REMARKS. (1) The isomorphism above is also an isomorphism of mixed Hodge
structures.

(2) In the applications in Section 5-6 of the paper above, X is a hypersurface
with isolated singularities. Givenp € Z, let g,,: (C*** 0) — (C, 0) be a map germ
defining the germ (X, p) and let F},, T, be the corresponding Milnor fiber and local
monodromy acting on H™*!(F,). Then we recall that there is an isomorphism:

Hf}jg‘ (.X') = coker[T, — Id: H"T1(F,) — H™(F,)).

Proof. We claim first that there is an isomorphism W, H*(X - Z) ~ W, H" (X —
7). One can prove as in the proof of Theorem 1 that W, H* (X - Z, X -Y) = (,
so from the exact sequence of the pair (X — Z, X — Y) it follows that in
order to prove the claim it is enough to show that the map H* /(X - V) —
H™(X — Z,X —Y) is surjective. Since the singularities of Y are icis, it follows
from the long exact sequence of vanishing cycles that the monodromy acts as the
identity on Y(X) for k 5 n. Assume that n > 2. Then the map above fits in a
commutative diagram with exact row:

H2(X)(~1)

\
Y

HY™ (X = 2) —H" (X =) —HYX - Z,X = ¥)

and the MHS of H "‘“"'Q(X’)(w 1) is pure of weight n. Since the singularities of the
total space .\ are also icis, we have that H* /(X' - Z) ~ H* (X)) ~ H* (V)
and since Y is complete the weights of H™*~'(Y) are < n — 1., It follows then that
the map v above is injective. On the other hand, one has 1somorphisms:

HYXN - Z, X = Y)x HVHY ~ Z)(~1)
~ HV (Y)Y (1) 22 HY2(X)(=1).

The first 18 a Thom isomorphism, the second follows from the fact that the
singularities of 1" are 1cis (so & }}”"2(}’) = H}}”"' (Y") = 0) and the third 1s induced
by the specialization map. So dim H*"(X - Z, X - Y) =dim H n=2( X'), thus
1s an isomorphism and the claim follows. The case n =1 is similar and left to the
reader.

Since Y < X' is a homotopy equivalence, from the exact sequence of the
couple (.\, .\ — £) we get the exact sequence:

]I'n(},.) ......f:.“} ”&?n I (A_,Y - Z) . H’"rn Hr?}-}-l (.:“Y) —_ I/an_In'H (y’)

Since the singularities of ¥ and X are isolated, it follows from [24], [12] that
W, H™ (YY) = 0 and W, H3" (X)) ~ H3*'(X). So we have:
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H™(Y)
5 wj
! . T -1 .
0—> W,H™(X — 2) — HY(X) — H™(X)

with coker(§) ~ HZ*!(X). The horizontal sequence comes from the Wang
sequence and is exact by the claim above and the fact that the weights of ker(7'—1d)

are < n. The theorem follows then from an easy diagram-chase. C
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