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Abstract

In this work we present an approach for the formal specification and gatidin of the reconfiguration protocols
in Grid component systems. We consider Fractal, a moduldreatensible component model. As a specification
tool we invoke a specific temporal language, separatedalaoesmal form, which has been shown to be capable of
expressing any ECTL expression, thus, we are able to express the complex faipteperties of a component sys-
tem. The structure of the normal enables us to directly ath@yeductive verification technique, temporal resolution
defined in the framework of branching-time temporal logic.

1 Introduction

There are two approaches to building long-lived and flexibled systems: exhaustive and generic. The former
approach provides rich systems satisfying every servipeast from applications but consequently its implemeaoiati
suffers from very high complexity. In the latter approacle, kepresent only the basic set of services (minimal and
essential) and thus overcome the complexity of the exhauagiproach. However, to achieve the full functionality of
the system, we must make this lightweight core platformmégarable and expandable. One of the possible solutions
here is to identify and describe the basic set of featuresetbmponent model and to consider any other functions
as pluggable components [31] which can be brought on-linenstier necessary [27].

Establishing the theoretical foundations of the genecesses involved in designing and functioning of such Grid
systems is highly important. A significant part of this rasédies in the area of formal specification and verification
of the core component model and the properties of the deGireblsystems.

Among various approaches to representing a component mededy specific attention to the Fractal component
model [18]. The advantage of the Fractal framework is thdefines the structure of the components, gives a basic
classification of components, and has the mathematicatifations, e.g., the Kell calculus [8]. The Fractal specifica-
tion defines the basic (non-functional) controls which dtddne defined especially to enable dynamic reconfiguration
of components, and a number of constraints on the intermayden functional and non-functional operations. The

This research work is carried out under the FP6 Network oeHlewce CoreGRID funded by the European Commission (Conitgl-2002-
004265).

1This technical report is an extended version of [6]



reconfiguration is obtained by triggering appropriateawion specific types of the components’ interfaces. These
explicit dynamic properties of the Fractal component madelparticularly suitable for Grid systems and environ-
ments. In this work we focus on predefined categories of fggarations and also on proving properties of these
reconfigurations.

Given a formal specification of a distributed system theestano major approaches to formal verification of this
specification: algorithmic and deductive [29]. While thga@ithmic approach is fully automated, as in the case of
model checking, its application, in general, is restridedinite state systems. On the other hand, methods of the
second, deductive approach, can handle arbitrary systewisling uniform proofs. To the best of our knowledge, the
only technique currently used in the verification of distitéd hierarchical components is model checking. We started
from the point of view developed in [5, 4]. The basic bloks icaanponent model (calleprimitive components in
the sequel) are provided by the programmer as black boxeallyén a programming language of their choice. The
starting point for model checking of components is the dfmtion of the primitives, either by the programmer, or by
static analysis of the source code. The research in [5] showdgo generate the behaviour for asynchronous systems
of components from these basic blocks in the form of a pLT $aipeterized labeled transition system). This enables
the verification of system properties by employing modek&irgg techniques.

In a similar way, we can provide the formal framework for tlenponents in a specific branching-time tempo-
ral logic, or SNk (Separated Normal Form for Computation Tree Logic) [151 #men directly apply temporal
resolution as a deductive verification tool.

CTL type branching-time temporal logics play a significasierin potential applications such as the specification
and verification of concurrent and distributed systems.[2d]particular, two combinations of future time temporal
operators® (‘sometimes’) and_] (‘always’), are useful in expressirfgirness[20]: < [1p (p is true along the path
of the computation except possibly for some finite initigkival of it) and[ ] p (p is true along the computation
path at infinitely many moments of time). It has been showh3hN 1, can express these simple fairness constraints
and their Boolean combinations [11, 12]. Furthermore, asdaresolution over the set of SNF, clauses has been
defined [10, 11]. Recently, the search strategies for thihatewere presented in [13].

These developments allow us to reason about the configaf@gdconfiguration protocols of a Grid component
model on behalf of the following formal framework:

FCM —s SNF.(FCM) — BTR

Here we suggest the translation of the Fractal componeneh{6@M) into the SN, (FCM), the SNk, based
formal specification of FCM, and to apply the ‘branching temg resolution’ method (BTR), the temporal resolution
technique defined over the set of SINF, clauses.

In this paper we show how to extract the desired giNFbased temporal specification for a given component
model. The output system would have an intelligent veriiicaengine strengthened with the corresponding search
techniques as well as with the possibility of invoking pofuérefinement methods developed for the resolution in the
classical setting.

Moreover, we also derive the problem structure to achiewn eyreater level of intelligence of the developed
system by invoking therotetic frameworK16]. The Inferential Erotetic Logic (IEL) [32, 35] is a powel tool
in the area of analyzing and modelling such components efligént activity as planning, problem solving, and
searching for information in massive data/knowledge b§38&s Important developments within the framework of
IEL are Erotetic Search Scenarios (ESS) [34] and SocratiofB(SP) [36]. ESS is based on the idea of providing
conditional instructions for solving an initial problemnforming us which questions should be asked and when they
should be asked. Moreover, an erotetic search scenaricssitbere to go if a direct answer to a query appears to be
acceptable and does so with respect to any direct answechaeery. SP is a very specific technique, which reduces
the complexity of standard problem-solving methods by gipiare questioning only.

The structure of the paper is as follows. In Section 2 we oetihe Fractal approach to a component model and its
reconfiguration. In Section 3 we present SN based formal specification technique for a Fractal compiomedel.
Here we first, discuss main approaches to verification in &tlun 3.1, then we review the syntax and semantics of
the specification language, Sif, in Subsection 3.2, and finally, in Subsection 3.4 we apply SNFto specify
a concrete example. Next, in Section 4, we apply the claesalution technique as a verification tool. Thus, in
Subsection 4.1 we review the temporal resolution and in &tlon 4.2 we apply this method to the verification of the
component model (previously specified in Section 3). Finall Section 5, we draw conclusions and discuss future
work.

CoreGRID TR-0042 2



2 Reconfiguration Scenario for Component Model

2.1 Component Model

Fractal is a modular and extensible component model. Thedtrspecification defines a set of notions characterizing
this model, an API (Application Program Interface), and dLAArchitecture Description Language).

Components are characterized by tlwintentand themembrane The content of a component can be hidden (in
which case it is simply a black box) or it can be constitute@lsystem of some other components (sub-components).
In the former case we would call a componpritnitive while the latter case represents@mpositecomponent. The
membrane, or controller, controls the compon€&mntrollersaddress non-functional aspects of the component.

Fractal is a multi-level specifications. Depending on tl@informance level, Fractal components can feature
introspection and/or configuration. Tleentrol interfaces are used in the Fractal model to allow configomatie-
configuration), and are defined asn functional On the other hand, the functional interfaces of a compoasnt
associated with its functionalities. #nctionalinterface can provide the required functionalities and a# it the
serverinterface. Alternatively, alientinterface requires some other functionalities.

Component interfaces are linked togethembloydings In this paper, we will only consider primitive bindings tha
are simple bindings transmitting invocations from therdilmterface to the connected server interface.

There are four controllers that have been already definedbict&l (but others may be user-defined depending on
the needs of the model):

e Theattribute controlleris used to configure a property within a component, when tiseme need to take into
consideration bindings of interfaces.

e Thebinding controlleris used when the attribute controller is not applicable astda binding/unbinding of
interfaces is required.

e Thecontent controllelcan be used to retrieve the representation ostliecomponentnd add or remove them
accordingly; note that if a sub componensisaredby one or more other components, the scenario must be
defined so that also these other components are taken intaeoation.

e Thelife cycle controllerallows to start and stop a component, it is used for dynangierrégguration so that all
other controls can be applied safely to the component whdebmponent is not in execution.

These are the basic controls which should be defined eslyetiabe able to have dynamic reconfiguration of
components.

The Fractal specification defines a number of constrainthermterplay between functional and non-functional
operations:

e Content and binding control operations are only possiblemthe component is stopped.

e When stopped, a component does not emit invocations andancspt invocations through control interfaces;
whether or not an invocation to a functional interface isgilae is undefined.

2.2 Configuration/Reconfiguration Scenario

In general, the initial configuration of a Fractal comporiergiven by the description of the component using Fractal
ADL.

From this first state, reconfiguration is obtained by trigggeappropriate actions on the the life-cycle, the binding,
and the content control interfaces. A reconfiguration carriggered by any component that has a reference to a
correct non-functional interface.

In this work we focus on predefined categories of reconfigmmatand on proving properties on these reconfig-
uration. As far as the reconfiguration is concerned we useltssical assumption that replacing a component by a
similar one is safe for the system.

CoreGRID TR-0042 3



3 Specification of the Scenario in Temporal Logic Framework

3.1 Formal Specification and Verification of Components

We distinguish the specification of the primitives and of teenposite component. The primitives are specified as a
black box, usually in a programming language of our choidee Fomponent composition is specified using Fractal
ADL (Fractal Architecture Definition Language), and fronistispecifications it is possible to extract the bindings

between interfaces of subcomponents and the controlléheafomponent itself.

3.2 Specification Language: Normal Form for ECTL"

As our specification tool we utilize the language of a normatf, SNF-11, developed for a number of branching-time
logics, CTL [9, 15], ECTL [11] and ECTE [12]. The SNR 1, language is based upon the extended set of classical
logic operators\, vV, =, —, the set of future time temporal operatdrs (always), (sometime) O (next time)
and path quantifier& (on all future paths) an& (on some future path).

We precede the presentation of the SNE language by the introduction of notations of tree structutiee un-
derlying structures of time assumed for the logic under ictamation.

Definition 1 (Tree) Atree 7, is a pair (S, R), whereS is a set of states an® C S x S is a relation between states
of S such that

e sp € Sisaunique root node, i.e. there is no statec S such thatR(s;, so);
o for everys; € S there exists; € S such thatR(s;, s;);
o foreverys;, s;, sy € S,if R(s;, sp) andR(s;, si) thens; = s;.

A path, x, is a sequence of states s; 1, sit2 ... such that for allj > 4, (s;,s;4+1) € R. A pathys, is called
afullpath. Let X be a family of all fullpaths of7. Given a pathy,, and a state; € xs,, (i < j) we term a finite
subsequence;, s;] = s;, Si+1, - - -, s; Of x5, @ prefixof a pathy,, and an infinite sub-sequengg s;41, sj+2, ... of
Xs; a suffixof a pathy, abbreviatedsu f(xs,, ;).

Definition 2 (Countablew-tree) A countablev-tree, 7., is a tree(S, R) with the family of all fullpaths X, which
satisfies the following conditions:

e each fullpathy € X is isomorphic to natural numbers;

e every states; € S has a countable number of successors.

Definition 3 (Branching degree of a state) The number of immediate successors of a state S in a tree(S, R)
is called thebranching degreef s;.

Since underlying models are countabidrees, a state in such a model can have an infinite number oéssar
states. However, following [24] (Theorem 3.2), if a Formdilas satisfiable in a CTL(hence SNErr) model then it
has a (finite) model, where each state has a branching degiBe(where< |F| is the length of’). More precisely,
given an interpretatiogM, so) for a set,GG, of SNF1y, clauses, there exists a special interpretatien4 1)-ary
canonical tree interpretation [37))M’, \), wheren is the number of existential path quantifiersin such that is
satisfied in(M, so) iff G is satisfied ifM’, \). As shown in [10, 11], this justifies our interpretation oétlabeled
SNFc 7, clauses given below (see section 3.3).

Closure properties of ECTL™ models. When trees are considered as models for distributed systeatiss
through a tree are viewed as computations. The naturalneagents for such models would be suffix and fusion
closures. Following [20], the former means that every suffia path is itself a path. The latter requires that a system,
following the prefix of a computation, at any points; € -, is able to follow any computation;; originating from
Sj.

Finally, we might require that “if a system can follow a patibigarily long, then it can be followed forever”.
This requirement is known as the limit closure property, @fnéd in [20]. More specifically, it means that for any
fullpath v,, and any paths,, ¢s,, ... such thaty,, has the prefiXso, s;], 7, has the prefixs;, sz], s, has the

CoreGRID TR-0042 4
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Figure 1: Limit closure

prefix [sg, si], etc, and) < j < k < [, the following holds (see Figure 1): there exists an infipis¢ha,, that is a
limit of the prefixesso, s;], [s;, k), [Sk, s1], - - -

In our definition of an SNEr1, model structureM the set of fullpathsX is R-generable. Therefore, following
[20], it satisfies all three closure properties, i.e. it iffigufusion and limit closed.

Now we are ready to define the formal syntax and semanticsN&¢-$;,. A set of SNk, clauses is interpreted
in a structureM = (S, R, so, X, L), where(S, R) is a countablev tree with a rootsy, X is a set of all fullpaths and

L is an interpretation function mapping atomic propositi@yanbols to truth values at each state and the following
conditions are satisfied:

e X is R-generable [20], i.e. for every staiec S, there existg; € X such thak; € x;, and for every sequence
X; = So, 51, 82, . . ., the following is true:x; € X if, and only if, for everyi, R(s;, sit+1);

e atree(S, R) is of at most countable branching.

Syntax. First, we fix a countable seBrop = z,v, z, . . ., of atomic propositions. The core idea of SNF, is
to represent temporal information in the following threpesg of constraintdnitial constraintsrepresent information
relevant to the initial moment of time, the root of the congtian tree.Step constraint;dicate what will happen at
the successor state(s) given that some conditions aréezhtisow’. Finally, Sometime constrainteep track on any
eventuality, again, given that some conditions are satisfiew’. Additionally, to enable sound reasoning within a
specific path context during the verification, we incorpeiatlices.

Indices. The language for indices is based on the set of terms

IND = {{f), (g), (h), (LC(f)), (LC(g)), (LC(h)) ...}

wheref, g, h... denote constants. ThugBA will be taken to mean that holds on some path labelled &3. A
designated type of indices in SNf, are indices of the typéL.C(ind)) which represent a limit closure of prefixes
associated withiind). All Formulae of SNitr, of the typeP = EQQ or P = E<OQ, whereQ is a purely classical
expression, are labeled with some index. As previously meetl, the labelling of the clauses of the normal form by
indices makes paths explicit and is related to the brandhictgr of the canonical model.

Additionally, we introduce classically defined constantse andfalse, and a new operatastart (‘at the initial
moment of time’ with the intended meaning that it is true aatiyhe initial moment of time).

Definition 4 (Separated Normal Form SNR~y,) AsetofSNFory, clauses is a set of Formulae! ] [\, (P; = F;)]
where each of thelauses?; = Fj is further restricted as below, eacly, oy, o, v, Bi, B, Br OF 7y is a literal, true
or false and(ind) € IND is some index.

start = /', 46 an initial clause
Nj—ia; = AO[Vr_ Bn]  anAstepclause

o = EOV)_ Bilingy @NE step clause
N = Ay anA sometime clause
No1 @ = EOyc(ingy) anE sometime clause

CoreGRID TR-0042 5



3.3 Interpreting SNFcpy,.

Below we define a relatiop- which evaluates the SNft|, clauses at a statg in a modelM.

1. (M,s;) Ep iff pe L(s;), for atomic p.

3. M,s;) EAAB iff (M,s;) E Aand (M,s;) E B

4. (M,s;) EAVB iff (M,s;)) = Aor({M,s;) EB

5. M,s;) EA=DB iff (M,s;) E=Aor(M,s;) =B

6. (M,s;) EAB iff foreach xs,, (M, xs,) E B.

7. (M,s;) EEB iff thereexists x5, such that (M, xs,) E B.

8. (M,xs,) ELIB iff foreachs; € xs,, if i <jthen (M, Suf(xs,,s,)) = B.

9. (M,xs,) EOB iff thereexistss; € xs, suchthati < jand (M, Suf(xs,,s;)) = B.
10. (Moxe) EOB it (M, Suf(xe,si1)) = B.

>

the SNFT1, these operators are defined via the basic set of@iNBperators [9].

Definition 5 (Satisfiability) An SNF-ry, clause,C, is satisfiable if, and only if, there exists a model such that
<Ma SO> ): C.

Definition 6 (Validity) AnSNFcry, clause,C, is valid if, and only if, it is satisfied in every possible rabd

The natural intuition behind SN, is that the initial clauses provide starting conditionsle/istep and sometime
clauses constrain the future behaviour. An initial SNF clausestart = F', is understood asF' is satisfied at the
initial state of some modeW”. Any other SNk, clause is interpreted taking also into account that it c&authe
scope ofA [ ].

pq P Py D
X i

%‘c

Figure 2: Interpretation of step and sometime clauses.

Thus, a claus@& [J(z = AOp) (see Figure 2) is interpreted a®f any fullpathy and any state; € x (0 < i),
if z is satisfied at a state; then means that must be satisfied at the moment, nex¢;ialong each path which starts
froms;”.

Next, a clauséA [ |(z = EOgq(nqgy) (2 model for which is given again in Figure 2) is interpreted‘®r any
fullpath y and any state; € x (0 < i), if z is satisfied at a state; then means that must be satisfied at the moment,
next tos;, along a path which starts from; and which is associated witind”. Speaking informally, we interpret
A[J(z = EOqqnqgy) Such that given a state in a model which satisfigthe left hand side of the clause), the label,
ind, indicates the direction, in which the successor state lwbétisfies; can be reached (see similar developmentsin
the construction of logic DCT [28]).

Finally, the labelling of theE sometime clause is justified based upon its fixpoint charaetéon. Consider
A[J(z = E<Opc(ingy)- This has the following meaninddr any fullpathy and any states; € x (0 < 4), if 2 is
satisfied at a state; thenp must be satisfied at some state, sayi < j), along some pathy;, which is the limit
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closure of(ind) which departs frons,”. Note that our interpretation of aoC index corresponds to the concept of a
linear interpretation [37].
As an example let us consider the following set of SNF clauses.

1. start =« 4. x = EQOuwy
2. start =y 5. y=AO—p
3. start =p 6. true = AO(—-zV p)

It is easy to establish that the given set of SNE clauses is unsatisfiable. Indeed, clauses 1 and 4 ensure ithat
satisfied at every state along a fullpath labeledfbyLet us consider this fullpath. Taking also into accountisks

3 and 6, we derive that must be true at every state along the considered fullpatithésame time, from 2 and 5
we conclude thatp must be satisfied at least at one state along any path of thelinedce we have a contradiction.
This proves that the set of Formulae above are unsatisfiable.

Note that in the full ECTL language the standard ‘untid¥ and ‘unless’/ operators are used:

(M, xs;) EAUB ff there exists s; € xs, suchthati < j and (M, Suf(xs,,s;)) = B and for each
Sk € Xs,, iT 1 < k < jthen (M, Suf(xs,,sk)) E A.

For example, the following rules can be applied to remove ieoperator in the scope of either of the path
quantifiers [9] where: is a new proposition:

Removal of EW
P = E®Wa)(Lc(ind)
P = qV(pha)
r = EO(qV(PAT))(ng

Removal of AW

P = ApPWq)

P = ¢qV(pAx)

x = EO(@@V(pAx))

3.4 Example Specification

Let us consider a simple printing queue component modelwtoosists of a client and one printing queue component
as primitives. The client interfaces of the client are ofetyji/, and the server interfaces of the printing queue are of
type S1,.. Finally, we have a simplified version of a life-cycle conligothat allows to safely add or remove a binding
between a client and the printing queue.

Formal specification of non-functional aspectsin order to allow for reconfiguration, not only the scenariosin
be formally specified, but also everything else which all@lysamic reconfiguration. Although in the fractal model
four controller interfaces are defined, for reasons of spaeewill only specify the safe-unbinding part of a reduced
Life-Cycle Controller (LCC) so that it can be used in the dedie reasoning. Note that it is always possible to create
new controllers if needed, in this case an appropriate detrofal specifications for each controller must be provided
using a similar procedure. If a controller follows the startiFractal model, a standard set of general temporal logic
rules can be called and then modified to match the specificatiberwise, in the case of user-made definitions, the
programmers themselves must provide the rules matchingriteeia followed in the creation of the definition.

Next we will let the proposition8oundy, . . . , Bound,, denote the bindings between components. The format that
each may take iBound; (C1,,SI,) (1 <i < n)which is a proposition that (when true) specifies that a camepb
with Client Interface”' I, is bound to the Server Interfaéd,.. In this example we have two primitive components, one
for the Printing Queue and one for the Client using the Rrqn@ueue. We would add as many of these propositions
as necessary to describe the system.

LCC'is a proposition which when true signifies that the Life CyClntroller is active.

Before introducing the Life Cycle Controller Formula we viduneed to specify how components are started and
stopped. However, for illustration in the context of thippawe will only provide a partial specification of the Life
Cycle Controller and two primitive components; we only deéh the formula that captures the bindings of the two
components. We will model the start of the components byhithg them tastart .

CoreGRID TR-0042 7



Now we introduce the formula for our version of the Simpliflate-Cycle Controller:

- LCC A —~(Boundy (Cl,, SI)V Boundy(C1I,, SI}))
= A[ILCC = (Boundy (Cl,, SI,) A Bounds(Cl,, SI,))

which states that if neither of the components are boundr@d@C is not active then in all possible computations
when the LCC is active then we must have the two componentscou

In the following example the Client can send a request famtjprg: req(C1,) abbreviated below aseq. When
true, this proposition states that a printing request has baised by the client which possesses the client interface
C1,. Similarly print is a proposition stating that a printing request has beésfigak by the printer.

Formal specification of reconfiguration scenarios.

For this section, we consider a simple printing queue corappmodel (see figure 3) which consists of one client
and one printing queue component as primitives. The clietetrface of the client is labelled'l,, and the server
interfaces of the printing queue is labell&d,. We will also consider a simplified life-cycle controller BCthat
allows us to safely remove a binding between a client and thipg queue. This simple example is sufficient to
demonstrate the potential of deductive reasoning, appdiedractal model.

LC Controller (LCC)

T

Printing Queue

Client I I
Cla Slr

Figure 3: Example in Fractal

We will take in consideration the safety part of the spediiitaand its requirements [30]. The Life-Cycle Con-
troller LCC does not have a set specification being a nontiomal component. We suggest that the system has a
common protocol of communication (both Client and Print@igeue must follow a common process when a request
is raised).

Client specification:

Q) req = Request is kept until it
A(reqU (req A print)) is possible to execute it

(2) req = A(—req2U print) | There will be no other

request until job

is printed

(3) req = AO—req The request for print will

be eventually released

The complete specification of the primitive:
start = —reqg A (1) A (2) A (3)

CoreGRID TR-0042 8



where—req defines the initial state for Client primitive.

Printing queue specification:

(DA —(print A print2) | Mutual Exclusion property:
at every point in time,

the printer can perform at
most one printing operation:

(5) A(—print Wreq) There is no printing unless
requested

(6) print = AO—print Printing will eventually end

(7)req = Adprint The request for printing

should be granted

The complete specification of the primitive:
start = —print A (4) A (5) A (6) A (7)

Finally we specify the Life-Cycle Controller properties ie affect the receiving of a printing request and the
printing itself:

start = [(-LCC A —(req V print)) = ALI(LCC = (req A print))]

When the life-cycle controller is activated, it ensureg thigent Interface and Server Interface are bound, theeefor
allowing for requests to be sent from the Client, and priatbe carried out by the Printing Queue, for the specific
binding.

We believe that the branching-time framework is appropfiiat our specification targets because of the following
reasons. Assume that after unbinding a client Cl, it has besoved forever. Now, from this moment of time it is
true to say thaf [ ]—-req (in all possible futures from now on, there will be no moreuests from the Client Interface
to the Server Interface) and therefore at the previous moofaime it was true to say th&OA[ ]-req (in some
future it will not be possible for the Client interface to sem request to the Server Interface). The branching-time
framework used shows how significant its use can be even msople example.

To apply deductive reasoning to this model, various pragedould be taken into consideration. As a relatively
simple example we consider the following property. pettands for-req(CI,, SI.) A —print(CI,, ST.). Assume
now that during the reconfiguration of the system the follayyproperty should be verified:

P A(OOpASTp)

In the next section we will show how this formula can be repnésd in terms of SNErr, and then apply to this
specification the resolution technique as a verificatiorhoet

4 The Verification Method - Clausal Temporal Resolution

4.1 Temporal Resolution Method for Branching-Time Logics

In order to achieve a refutation of the generated specifioative incorporate two types of resolution rules already
defined in [9, 15]:stepresolution (SRES) antgmporalresolution (TRES).

Step Resolution Rules.Step resolution is used between Formulae that refer tedheeinitial moment of time or
samenext moment along some or all paths. In the formulation ofSRES rules belowis a literal and” and D are
disjunctions of literals. Two step resolution rules thall e used in our example are given below.

SRES 1 SRES 3
start = C VI P=A0O(CVI)
start = DV -l Q=EO (D V =) (ing)
start =C V D (PAQ)=EO(CV D)ing
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When an empty constraint is generated on the right hand $itte conclusion of the resolution rule, we introduce
a constantfalse to indicate this situation and, for example, the conclusibrthe SRES 1 rule, when resolving
start = [ andstart = —I, will be start = false, which is the terminating clause.

Temporal Resolution Rules.In the rules below is a literal and the first premises in the TRES rules abbrevisA
andE loops inl [14], i.e. the situation where, given thEtis satisfied at some point of timépccurs always from that
point on all or some path respectively. Again, here we priesely two temporal resolution rules that will be used in
our verification example.

TRES 2 TRES 3
P=AOA[]l P = EOEL1c(ind))
Q = EOlnoing) Q= Al

Q = E(=PW=l)(Lc(nd)) Q= A(=PWAI)

4.2 Example Verification

To verify (1) we apply the resolution method to the set of SNE clauses SNEry, (). We commence the resolution
proof presenting at steps 1 — 13 the clauses of &N}) in the following order: initial clauses, step clauses and,
finally, any sometime clauses.

1. start =z 8. x1=AQy

2. start = —ax Vy 9. 21 =A0n

3. start = -2 Vo 10. 21 = EO-pg
4. start = —zV -p 11. 21 = EOz1¢s
5. start = -z V 2z 12. y=AOp

6. true = AQO (—‘Z \% —‘p) 13. == E<>Z<Lc(f)>

7. true = AO (-2 V 21)

We apply step resolution rules between 1 and 2, and 1 and 3. dde 8RES rules are applicable. Formula 12 is an
eventuality clause, and therefore, we are looking for a inopp (see [14] for the formulation of the loop searching
procedure). The desired lodp[ [EO —p..c(f)) (given that condition, is satisfied) can be found considering clauses
10and 11. Thus, we apply the TRES 3 rule to resolve this lodgkruse 12, obtaining 16. Next we remdv#®) from

16 deriving a purely classical Formula 17 i6 a new variable). Simplify the latter, apply TEMP (the ‘teonising’
rule, see [9], obtaining, in particular, 19 and 20, and thearges of SRES rules to newly generated clauses.

14. start = y 1,2, SRES'1

15. start = 1,3, SRES'1

16. y = A(-z1 Wp) 10,11,12 TRES 3
17. y = pV-ozAv 16, AW Removal
18. v = AO(DV-zAv) 16, AW Removal
19. start = -yVpV-zy 17, SIMP, TEMP
20. true = AO(-yVpV-z) 17, SIMP, TEMP
21. start = pV -z 14,19, SRES 1
22. start = pV -z 5,21, SRES 1
23. start = -z 4,22, SRES 1
24. 1 = AO([pV-z) 8,20, SRES 3
25. 7 = AO(pV-2) 7,24, SRES 3
26. 1 = AO-z 6,25, SRES 3

Now, as no more SRES rules are applicable, we find anothetwealéy, Formula 13, and thus we next look for a
loop in—z. This loop can be found considering Formulae 9 andR& A [ ]—-z given that condition:; is satisfied.
Thus, we can apply TRES 2 to resolve this loop and 13 derivihgThen we remov& )V from the latter (on step
28, wherew is a new variable, we use only one of its conclusions). Apigysimplification and temporising to 28 we
obtain 29. The desired terminating classart = false is deduced by applying SRES 1 to steps 1, 15 and 23.
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27. xr = E(—‘Zl WZ)(LC(f)> 9,26,13 TRES 2
28. r = zV-oriAw 27 EW Removal
29. start = - VzV-x 28 SIMP, TEMP

30. start = false 1,15,23 SRES' 1

We have found a contradiction, meaning that SNE(f), hencef itself is unsatisfiable.

5 Conclusions and Future Work

As we mentioned, there are two major approaches to formalifsgstion and verification of distributed systems:
explorative and deductive. To the best of our knowledge tihg@utomated technique currently used in the verification
of distributed hierarchical components is model checkimgthis paper we have introduced a formal framework for
the deductive verification of modular specification. As acHieation tool we use the branching-time temporal logic.
Specified properties and requirements of the system ardriduesiated into the language of a normal form, SNE,
thus enabling the application of a powerful resolution methAn obvious benefit of this approach is avoiding the
construction of a finite model (needed for the model chedking

Future extensions of this work will be in the application bétinferential Erotetic Logic (IEL) tools aiming at
optimisation of the process of reconfiguration of a componesdel.
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