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Abstract

In this work1 we present an approach for the formal specification and verification of the reconfiguration protocols
in Grid component systems. We consider Fractal, a modular and extensible component model. As a specification
tool we invoke a specific temporal language, separated clausal normal form, which has been shown to be capable of
expressing any ECTL+ expression, thus, we are able to express the complex fairness properties of a component sys-
tem. The structure of the normal enables us to directly applythe deductive verification technique, temporal resolution
defined in the framework of branching-time temporal logic.

1 Introduction

There are two approaches to building long-lived and flexibleGrid systems: exhaustive and generic. The former
approach provides rich systems satisfying every service request from applications but consequently its implementation
suffers from very high complexity. In the latter approach, we represent only the basic set of services (minimal and
essential) and thus overcome the complexity of the exhaustive approach. However, to achieve the full functionality of
the system, we must make this lightweight core platform reconfigurable and expandable. One of the possible solutions
here is to identify and describe the basic set of features of the component model and to consider any other functions
as pluggable components [31] which can be brought on-line whenever necessary [27].

Establishing the theoretical foundations of the generic processes involved in designing and functioning of such Grid
systems is highly important. A significant part of this research lies in the area of formal specification and verification
of the core component model and the properties of the desiredGrid systems.

Among various approaches to representing a component modelwe pay specific attention to the Fractal component
model [18]. The advantage of the Fractal framework is that itdefines the structure of the components, gives a basic
classification of components, and has the mathematical foundations, e.g., the Kell calculus [8]. The Fractal specifica-
tion defines the basic (non-functional) controls which should be defined especially to enable dynamic reconfiguration
of components, and a number of constraints on the interplay between functional and non-functional operations. The

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1This technical report is an extended version of [6]
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reconfiguration is obtained by triggering appropriate actions on specific types of the components’ interfaces. These
explicit dynamic properties of the Fractal component modelare particularly suitable for Grid systems and environ-
ments. In this work we focus on predefined categories of reconfigurations and also on proving properties of these
reconfigurations.

Given a formal specification of a distributed system there are two major approaches to formal verification of this
specification: algorithmic and deductive [29]. While the algorithmic approach is fully automated, as in the case of
model checking, its application, in general, is restrictedto finite state systems. On the other hand, methods of the
second, deductive approach, can handle arbitrary systems providing uniform proofs. To the best of our knowledge, the
only technique currently used in the verification of distributed hierarchical components is model checking. We started
from the point of view developed in [5, 4]. The basic bloks in acomponent model (calledprimitive components in
the sequel) are provided by the programmer as black boxes, usually in a programming language of their choice. The
starting point for model checking of components is the specification of the primitives, either by the programmer, or by
static analysis of the source code. The research in [5] showshow to generate the behaviour for asynchronous systems
of components from these basic blocks in the form of a pLTS (parameterized labeled transition system). This enables
the verification of system properties by employing model checking techniques.

In a similar way, we can provide the formal framework for the components in a specific branching-time tempo-
ral logic, or SNFCTL(Separated Normal Form for Computation Tree Logic) [15], and then directly apply temporal
resolution as a deductive verification tool.

CTL type branching-time temporal logics play a significant role in potential applications such as the specification
and verification of concurrent and distributed systems [21]. In particular, two combinations of future time temporal
operators⋄ (‘sometimes’) and (‘always’), are useful in expressingfairness[20]: ⋄ p (p is true along the path
of the computation except possibly for some finite initial interval of it) and ⋄p (p is true along the computation
path at infinitely many moments of time). It has been shown that SNFCTL can express these simple fairness constraints
and their Boolean combinations [11, 12]. Furthermore, a clausal resolution over the set of SNFCTL clauses has been
defined [10, 11]. Recently, the search strategies for this method were presented in [13].

These developments allow us to reason about the configuration/(re)configuration protocols of a Grid component
model on behalf of the following formal framework:

FCM −→ SNFctl(FCM) −→ BTR

Here we suggest the translation of the Fractal component model (FCM) into the SNFCTL(FCM), the SNFCTL based
formal specification of FCM, and to apply the ‘branching temporal resolution’ method (BTR), the temporal resolution
technique defined over the set of SNFCTL clauses.

In this paper we show how to extract the desired SNFCTL based temporal specification for a given component
model. The output system would have an intelligent verification engine strengthened with the corresponding search
techniques as well as with the possibility of invoking powerful refinement methods developed for the resolution in the
classical setting.

Moreover, we also derive the problem structure to achieve even greater level of intelligence of the developed
system by invoking theerotetic framework[16]. The Inferential Erotetic Logic (IEL) [32, 35] is a powerful tool
in the area of analyzing and modelling such components of intelligent activity as planning, problem solving, and
searching for information in massive data/knowledge bases[33]. Important developments within the framework of
IEL are Erotetic Search Scenarios (ESS) [34] and Socratic Proofs (SP) [36]. ESS is based on the idea of providing
conditional instructions for solving an initial problem, informing us which questions should be asked and when they
should be asked. Moreover, an erotetic search scenario shows where to go if a direct answer to a query appears to be
acceptable and does so with respect to any direct answer to each query. SP is a very specific technique, which reduces
the complexity of standard problem-solving methods by using pure questioning only.

The structure of the paper is as follows. In Section 2 we outline the Fractal approach to a component model and its
reconfiguration. In Section 3 we present SNFCTL based formal specification technique for a Fractal component model.
Here we first, discuss main approaches to verification in Subsection 3.1, then we review the syntax and semantics of
the specification language, SNFCTL in Subsection 3.2, and finally, in Subsection 3.4 we apply SNFCTL to specify
a concrete example. Next, in Section 4, we apply the clausal resolution technique as a verification tool. Thus, in
Subsection 4.1 we review the temporal resolution and in Subsection 4.2 we apply this method to the verification of the
component model (previously specified in Section 3). Finally, in Section 5, we draw conclusions and discuss future
work.
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2 Reconfiguration Scenario for Component Model

2.1 Component Model

Fractal is a modular and extensible component model. The Fractal specification defines a set of notions characterizing
this model, an API (Application Program Interface), and an ADL (Architecture Description Language).

Components are characterized by theircontentand themembrane. The content of a component can be hidden (in
which case it is simply a black box) or it can be constituted bya system of some other components (sub-components).
In the former case we would call a componentprimitive while the latter case represents acompositecomponent. The
membrane, or controller, controls the component.Controllersaddress non-functional aspects of the component.

Fractal is a multi-level specifications. Depending on theirconformance level, Fractal components can feature
introspection and/or configuration. Thecontrol interfaces are used in the Fractal model to allow configuration (re-
configuration), and are defined asnon functional. On the other hand, the functional interfaces of a componentare
associated with its functionalities. Afunctional interface can provide the required functionalities and we call it the
serverinterface. Alternatively, aclient interface requires some other functionalities.

Component interfaces are linked together bybindings. In this paper, we will only consider primitive bindings that
are simple bindings transmitting invocations from the client interface to the connected server interface.

There are four controllers that have been already defined in Fractal (but others may be user-defined depending on
the needs of the model):

• Theattribute controlleris used to configure a property within a component, when thereis no need to take into
consideration bindings of interfaces.

• Thebinding controlleris used when the attribute controller is not applicable and actual binding/unbinding of
interfaces is required.

• Thecontent controllercan be used to retrieve the representation of thesub componentsand add or remove them
accordingly; note that if a sub component issharedby one or more other components, the scenario must be
defined so that also these other components are taken into consideration.

• The life cycle controllerallows to start and stop a component, it is used for dynamic reconfiguration so that all
other controls can be applied safely to the component while the component is not in execution.

These are the basic controls which should be defined especially to be able to have dynamic reconfiguration of
components.

The Fractal specification defines a number of constraints on the interplay between functional and non-functional
operations:

• Content and binding control operations are only possible when the component is stopped.

• When stopped, a component does not emit invocations and mustaccept invocations through control interfaces;
whether or not an invocation to a functional interface is possible is undefined.

2.2 Configuration/Reconfiguration Scenario

In general, the initial configuration of a Fractal componentis given by the description of the component using Fractal
ADL.

From this first state, reconfiguration is obtained by triggering appropriate actions on the the life-cycle, the binding,
and the content control interfaces. A reconfiguration can betriggered by any component that has a reference to a
correct non-functional interface.

In this work we focus on predefined categories of reconfigurations and on proving properties on these reconfig-
uration. As far as the reconfiguration is concerned we use theclassical assumption that replacing a component by a
similar one is safe for the system.

CoreGRID TR-0042 3



3 Specification of the Scenario in Temporal Logic Framework

3.1 Formal Specification and Verification of Components

We distinguish the specification of the primitives and of thecomposite component. The primitives are specified as a
black box, usually in a programming language of our choice. The component composition is specified using Fractal
ADL (Fractal Architecture Definition Language), and from this specifications it is possible to extract the bindings
between interfaces of subcomponents and the controllers ofthe component itself.

3.2 Specification Language: Normal Form for ECTL+

As our specification tool we utilize the language of a normal form, SNFCTL developed for a number of branching-time
logics, CTL [9, 15], ECTL [11] and ECTL+ [12]. The SNFCTL language is based upon the extended set of classical
logic operators∧, ∨, ⇒, ¬, the set of future time temporal operators (always),⋄ (sometime), g(next time)
and path quantifiersA (on all future paths) andE (on some future path).

We precede the presentation of the SNFCTL language by the introduction of notations of tree structures, the un-
derlying structures of time assumed for the logic under consideration.

Definition 1 (Tree) A tree, T , is a pair(S, R), whereS is a set of states andR ⊆ S × S is a relation between states
of S such that

• s0 ∈ S is a unique root node, i.e. there is no statesi ∈ S such thatR(si, s0);

• for everysi ∈ S there existssj ∈ S such thatR(si, sj);

• for everysi, sj , sk ∈ S, if R(si, sk) andR(sj , sk) thensi = sj .

A path, χsi
is a sequence of statessi, si+1, si+2 . . . such that for allj ≥ i, (sj , sj+1) ∈ R. A pathχs0

is called
a fullpath. Let X be a family of all fullpaths ofT . Given a pathχsi

and a statesj ∈ χsi
, (i < j) we term a finite

subsequence[si, sj ] = si, si+1, . . . , sj of χsi
a prefixof a pathχsi

and an infinite sub-sequencesj , sj+1, sj+2, . . . of
χsi

a suffixof a pathχsi
abbreviatedSuf(χsi

, sj).

Definition 2 (Countableω-tree) A countableω-tree,Tω , is a tree(S, R) with the family of all fullpaths,X , which
satisfies the following conditions:

• each fullpathχ ∈ X is isomorphic to natural numbers;

• every statesi ∈ S has a countable number of successors.

Definition 3 (Branching degree of a state) The number of immediate successors of a statesi ∈ S in a tree(S, R)
is called thebranching degreeof si.

Since underlying models are countableω trees, a state in such a model can have an infinite number of successor
states. However, following [24] (Theorem 3.2), if a FormulaF is satisfiable in a CTL⋆ (hence SNFCTL) model then it
has a (finite) model, where each state has a branching degree≤ |F | (where≤ |F | is the length ofF ). More precisely,
given an interpretation〈M, s0〉 for a set,G, of SNFCTL clauses, there exists a special interpretation ((n + 1)-ary
canonical tree interpretation [37])〈M′, λ〉, wheren is the number of existential path quantifiers inG, such thatG is
satisfied in〈M, s0〉 iff G is satisfied in〈M′, λ〉. As shown in [10, 11], this justifies our interpretation of the labeled
SNFCTL clauses given below (see section 3.3).

Closure properties of ECTL+ models. When trees are considered as models for distributed systems, paths
through a tree are viewed as computations. The natural requirements for such models would be suffix and fusion
closures. Following [20], the former means that every suffixof a path is itself a path. The latter requires that a system,
following the prefix of a computationγ, at any pointsj ∈ γ, is able to follow any computationπsj

originating from
sj .

Finally, we might require that “if a system can follow a path arbitrarily long, then it can be followed forever”.
This requirement is known as the limit closure property, as defined in [20]. More specifically, it means that for any
fullpath γs0

and any pathsπsj
, ϕsk

, . . . such thatγs0
has the prefix[s0, sj], πsj

has the prefix[sj , sk], ϕsk
has the
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sj sk sl αs0
s0

γs0
πsj

ϕsk

sj+1

sj+2

sk+1

sk+2

sl+1

sl+2

Figure 1: Limit closure

prefix [sk, sl], etc, and0 < j < k < l, the following holds (see Figure 1): there exists an infinitepathαs0
that is a

limit of the prefixes[s0, sj ], [sj , sk], [sk, sl], . . ..
In our definition of an SNFCTL model structureM the set of fullpathsX is R-generable. Therefore, following

[20], it satisfies all three closure properties, i.e. it is suffix, fusion and limit closed.

Now we are ready to define the formal syntax and semantics for SNFCTL. A set of SNFCTL clauses is interpreted
in a structureM = 〈S, R, s0, X, L〉, where(S, R) is a countableω tree with a roots0, X is a set of all fullpaths and
L is an interpretation function mapping atomic propositional symbols to truth values at each state and the following
conditions are satisfied:

• X is R-generable [20], i.e. for every statesi ∈ S, there existsχj ∈ X such thatsi ∈ χj , and for every sequence
χj = s0, s1, s2, . . ., the following is true:χj ∈ X if, and only if, for everyi, R(si, si+1);

• a tree(S, R) is of at most countable branching.

Syntax. First, we fix a countable set,Prop = x, y, z, . . ., of atomic propositions. The core idea of SNFCTL is
to represent temporal information in the following three types of constraints.Initial constraintsrepresent information
relevant to the initial moment of time, the root of the computation tree.Step constraintsindicate what will happen at
the successor state(s) given that some conditions are satisfied ‘now’. Finally, Sometime constraintskeep track on any
eventuality, again, given that some conditions are satisfied ‘now’. Additionally, to enable sound reasoning within a
specific path context during the verification, we incorporate indices.

Indices. The language for indices is based on the set of terms

IND = {〈f〉, 〈g〉, 〈h〉, 〈LC(f)〉, 〈LC(g)〉, 〈LC(h)〉 . . .}

wheref, g, h . . . denote constants. Thus,EA〈f〉 will be taken to mean thatA holds on some path labelled as〈f〉. A
designated type of indices in SNFCTL are indices of the type〈LC(ind)〉 which represent a limit closure of prefixes
associated with〈ind〉. All Formulae of SNFCTL of the typeP ⇒ E gQ or P ⇒ E⋄Q, whereQ is a purely classical
expression, are labeled with some index. As previously mentioned, the labelling of the clauses of the normal form by
indices makes paths explicit and is related to the branchingfactor of the canonical model.

Additionally, we introduce classically defined constantstrue andfalse , and a new operator,start (‘at the initial
moment of time’ with the intended meaning that it is true onlyat the initial moment of time).

Definition 4 (Separated Normal Form SNFCTL) A set ofSNFCTL clauses is a set of FormulaeA [
∧

i(Pi ⇒ Fi)]
where each of theclausesPi ⇒ Fi is further restricted as below, eachαj , αp, αt, αv, βi, βm, βr or γ is a literal, true

or false and〈ind〉 ∈ IND is some index.

start ⇒
∨k

i=1 βi an initial clause
∧l

j=1 αj ⇒ A g[
∨n

m=1 βm] anA step clause
∧q

p=1 αp ⇒ E g[
∨s

r=1 βr]〈ind〉 anE step clause
∧u

t=1 αt ⇒ A⋄γ anA sometime clause
∧w

v=1 αv ⇒ E⋄γ〈LC(ind)〉 anE sometime clause
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3.3 Interpreting SNFCTL.

Below we define a relation|= which evaluates the SNFCTL clauses at a statesi in a modelM.

1. 〈M, si〉 |= p iff p ∈ L(si), for atomic p.

2. 〈M, si〉 |= ¬A iff 〈M, si〉 6|= A

3. 〈M, si〉 |= A ∧ B iff 〈M, si〉 |= A and 〈M, si〉 |= B

4. 〈M, si〉 |= A ∨ B iff 〈M, si〉 |= A or 〈M, si〉 |= B

5. 〈M, si〉 |= A ⇒ B iff 〈M, si〉 6|= A or 〈M, si〉 |= B

6. 〈M, si〉 |= AB iff for each χsi
, 〈M, χsi

〉 |= B.

7. 〈M, si〉 |= EB iff there exists χsi
such that 〈M, χsi

〉 |= B.

8. 〈M, χsi
〉 |= B iff for each sj ∈ χsi

, if i ≤ j then 〈M, Suf(χsi
, sj)〉 |= B.

9. 〈M, χsi
〉 |= ⋄B iff there exists sj ∈ χsi

such that i ≤ j and 〈M, Suf(χsi
, sj)〉 |= B.

10. 〈M, χsi
〉 |= gB iff 〈M, Suf(χsi

, si+1)〉 |= B.

In the SNFCTL these operators are defined via the basic set of SNFCTL operators [9].

Definition 5 (Satisfiability) An SNFCTL clause,C, is satisfiable if, and only if, there exists a modelM such that
〈M, s0〉 |= C.

Definition 6 (Validity) AnSNFCTL clause,C, is valid if, and only if, it is satisfied in every possible model.

The natural intuition behind SNFCTL is that the initial clauses provide starting conditions while step and sometime
clauses constrain the future behaviour. An initial SNFCTL clause,start ⇒ F , is understood as “F is satisfied at the
initial state of some modelM”. Any other SNFCTL clause is interpreted taking also into account that it occurs in the
scope ofA .

start

xx

pq pppq

Figure 2: Interpretation of step and sometime clauses.

Thus, a clauseA (x ⇒ A gp) (see Figure 2) is interpreted as “for any fullpathχ and any statesi ∈ χ (0 ≤ i),
if x is satisfied at a statesi then means thatp must be satisfied at the moment, next tosi, along each path which starts
from si”.

Next, a clauseA (x ⇒ E gq〈ind〉) (a model for which is given again in Figure 2) is interpreted as “for any
fullpathχ and any statesi ∈ χ (0 ≤ i), if x is satisfied at a statesi then means thatq must be satisfied at the moment,
next tosi, along a path which starts fromsi and which is associated withind”. Speaking informally, we interpret
A (x ⇒ E gq〈ind〉) such that given a state in a model which satisfiesx (the left hand side of the clause), the label,
ind, indicates the direction, in which the successor state which satisfiesq can be reached (see similar developments in
the construction of logic DCTL∗ [28]).

Finally, the labelling of theE sometime clause is justified based upon its fixpoint characterization. Consider
A (x ⇒ E⋄p〈LC(ind)〉). This has the following meaning “for any fullpathχ and any statesi ∈ χ (0 ≤ i), if x is
satisfied at a statesi thenp must be satisfied at some state, saysj (i ≤ j), along some pathαsi

which is the limit

CoreGRID TR-0042 6



closure of〈ind〉 which departs fromsi”. Note that our interpretation of anLC index corresponds to the concept of a
linear interpretation [37].
As an example let us consider the following set of SNFCTL clauses.

1. start ⇒ x

2. start ⇒ y

3. start ⇒ p

4. x ⇒ E gx〈f〉

5. y ⇒ A⋄¬p

6. true ⇒ A g(¬x∨ p)

It is easy to establish that the given set of SNFCTL clauses is unsatisfiable. Indeed, clauses 1 and 4 ensure thatx is
satisfied at every state along a fullpath labeled byf . Let us consider this fullpath. Taking also into account clauses
3 and 6, we derive thatp must be true at every state along the considered fullpath. Atthe same time, from 2 and 5
we conclude that¬p must be satisfied at least at one state along any path of the model hence we have a contradiction.
This proves that the set of Formulae above are unsatisfiable.
Note that in the full ECTL+ language the standard ‘until’U and ‘unless’W operators are used:

〈M, χsi
〉 |= AU B iff there exists sj ∈ χsi

suchthat i ≤ j and 〈M, Suf(χsi
, sj)〉 |= B and for each

sk ∈ χsi
, if i ≤ k < j then 〈M, Suf(χsi

, sk)〉 |= A.

〈M, χsi
〉 |= AW B iff 〈M, χsi

〉 |= A or 〈M, χsi
〉 |= AU B.

For example, the following rules can be applied to remove theW operator in the scope of either of the path
quantifiers [9] wherex is a new proposition:

Removal of EW
P ⇒ E(pW q)〈LC(ind)〉

P ⇒ q ∨ (p ∧ x)
x ⇒ E g(q ∨ (p ∧ x))〈ind〉

Removal of AW

P ⇒ A(pW q)
P ⇒ q ∨ (p ∧ x)
x ⇒ E g(q ∨ (p ∧ x))

3.4 Example Specification

Let us consider a simple printing queue component model which consists of a client and one printing queue component
as primitives. The client interfaces of the client are of type CIa and the server interfaces of the printing queue are of
typeSIr. Finally, we have a simplified version of a life-cycle controller that allows to safely add or remove a binding
between a client and the printing queue.

Formal specification of non-functional aspects.In order to allow for reconfiguration, not only the scenario must
be formally specified, but also everything else which allowsdynamic reconfiguration. Although in the fractal model
four controller interfaces are defined, for reasons of space, we will only specify the safe-unbinding part of a reduced
Life-Cycle Controller (LCC) so that it can be used in the deductive reasoning. Note that it is always possible to create
new controllers if needed, in this case an appropriate set offormal specifications for each controller must be provided
using a similar procedure. If a controller follows the standard Fractal model, a standard set of general temporal logic
rules can be called and then modified to match the specification; otherwise, in the case of user-made definitions, the
programmers themselves must provide the rules matching thecriteria followed in the creation of the definition.

Next we will let the propositionsBound1, . . . , Boundn denote the bindings between components. The format that
each may take isBoundi(CIa, SIr) (1 ≤ i ≤ n) which is a proposition that (when true) specifies that a component
with Client InterfaceCIa is bound to the Server InterfaceSIr. In this example we have two primitive components, one
for the Printing Queue and one for the Client using the Printing Queue. We would add as many of these propositions
as necessary to describe the system.

LCC is a proposition which when true signifies that the Life CycleController is active.
Before introducing the Life Cycle Controller Formula we would need to specify how components are started and

stopped. However, for illustration in the context of this paper we will only provide a partial specification of the Life
Cycle Controller and two primitive components; we only dealwith the formula that captures the bindings of the two
components. We will model the start of the components by attaching them tostart .

CoreGRID TR-0042 7



Now we introduce the formula for our version of the SimplifiedLife-Cycle Controller:

¬LCC ∧ ¬(Bound1(CIa, SIr) ∨ Bound2(CIa, SIr))

⇒ A LCC ⇒ (Bound1(CIa, SIr) ∧ Bound2(CIa, SIr))

which states that if neither of the components are bound and the LCC is not active then in all possible computations
when the LCC is active then we must have the two components bound.

In the following example the Client can send a request for printing: req(CIa) abbreviated below asreq. When
true, this proposition states that a printing request has been raised by the client which possesses the client interface
CIa. Similarly print is a proposition stating that a printing request has been satisfied by the printer.

Formal specification of reconfiguration scenarios.
For this section, we consider a simple printing queue component model (see figure 3) which consists of one client

and one printing queue component as primitives. The client interface of the client is labelledCIa, and the server
interfaces of the printing queue is labelledSIr. We will also consider a simplified life-cycle controller LCC that
allows us to safely remove a binding between a client and the printing queue. This simple example is sufficient to
demonstrate the potential of deductive reasoning, appliedto a fractal model.

LC Controller (LCC)

Printing Queue

Client

CIa SIr

Figure 3: Example in Fractal

We will take in consideration the safety part of the specification and its requirements [30]. The Life-Cycle Con-
troller LCC does not have a set specification being a non-functional component. We suggest that the system has a
common protocol of communication (both Client and PrintingQueue must follow a common process when a request
is raised).

Client specification:

(1) req ⇒ Request is kept until it
A(req U (req ∧ print)) is possible to execute it

(2) req ⇒ A(¬req2U print) There will be no other
request until job
is printed

(3) req ⇒ A⋄¬req The request for print will
be eventually released

The complete specification of the primitive:

start ⇒ ¬req ∧ (1) ∧ (2) ∧ (3)
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where¬req defines the initial state for Client primitive.

Printing queue specification:

(4)A ¬(print ∧ print2) Mutual Exclusion property:
at every point in time,
the printer can perform at
most one printing operation:

(5) A(¬printW req) There is no printing unless
requested

(6) print ⇒ A⋄¬print Printing will eventually end
(7) req ⇒ A⋄print The request for printing

should be granted

The complete specification of the primitive:

start ⇒ ¬print ∧ (4) ∧ (5) ∧ (6) ∧ (7)

Finally we specify the Life-Cycle Controller properties which affect the receiving of a printing request and the
printing itself:

start ⇒ [(¬LCC ∧ ¬(req ∨ print)) ⇒ A (LCC ⇒ (req ∧ print))]

When the life-cycle controller is activated, it ensures that Client Interface and Server Interface are bound, therefore
allowing for requests to be sent from the Client, and prints to be carried out by the Printing Queue, for the specific
binding.

We believe that the branching-time framework is appropriate for our specification targets because of the following
reasons. Assume that after unbinding a client CI, it has beenremoved forever. Now, from this moment of time it is
true to say thatA ¬req (in all possible futures from now on, there will be no more requests from the Client Interface
to the Server Interface) and therefore at the previous moment of time it was true to say thatE gA ¬req (in some
future it will not be possible for the Client interface to send a request to the Server Interface). The branching-time
framework used shows how significant its use can be even in such simple example.

To apply deductive reasoning to this model, various properties could be taken into consideration. As a relatively
simple example we consider the following property. Letp stands for¬req(CIa, SIr) ∧ ¬print(CIa, SIr). Assume
now that during the reconfiguration of the system the following property should be verified:

‡ A( ⋄p ∧ ⋄ ¬p)

In the next section we will show how this formula can be represented in terms of SNFCTL and then apply to this
specification the resolution technique as a verification method.

4 The Verification Method - Clausal Temporal Resolution

4.1 Temporal Resolution Method for Branching-Time Logics

In order to achieve a refutation of the generated specification, we incorporate two types of resolution rules already
defined in [9, 15]:stepresolution (SRES) andtemporalresolution (TRES).

Step Resolution Rules.Step resolution is used between Formulae that refer to thesameinitial moment of time or
samenext moment along some or all paths. In the formulation of theSRES rules belowl is a literal andC andD are
disjunctions of literals. Two step resolution rules that will be used in our example are given below.

SRES 1 SRES 3

start ⇒ C ∨ l

start ⇒ D ∨ ¬l

start ⇒C ∨ D

P ⇒A g(C ∨ l)
Q⇒E g(D ∨ ¬l)〈ind〉

(P ∧ Q)⇒E g(C ∨ D)〈ind〉
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When an empty constraint is generated on the right hand side of the conclusion of the resolution rule, we introduce
a constantfalse to indicate this situation and, for example, the conclusionof the SRES 1 rule, when resolving
start ⇒ l andstart ⇒ ¬l, will be start ⇒ false , which is the terminating clause.

Temporal Resolution Rules.In the rules belowl is a literal and the first premises in the TRES rules abbreviate theA
andE loops inl [14], i.e. the situation where, given thatP is satisfied at some point of time,l occurs always from that
point on all or some path respectively. Again, here we present only two temporal resolution rules that will be used in
our verification example.

TRES 2 TRES 3
P ⇒ A gA l

Q ⇒ E⋄¬l〈LC(ind)〉

Q ⇒ E(¬P W ¬l)〈LC(ind)〉

P ⇒ E gE l〈LC(ind)〉

Q ⇒ A⋄¬l

Q ⇒ A(¬P W ¬l)

4.2 Example Verification

To verify (‡) we apply the resolution method to the set of SNFCTL clauses SNFCTL(‡). We commence the resolution
proof presenting at steps 1 – 13 the clauses of SNFCTL(‡) in the following order: initial clauses, step clauses and,
finally, any sometime clauses.

1. start ⇒ x

2. start ⇒ ¬x ∨ y

3. start ⇒ ¬x ∨ x1

4. start ⇒ ¬z ∨ ¬p

5. start ⇒ ¬z ∨ z1

6. true ⇒ A g(¬z ∨ ¬p)
7. true ⇒ A g(¬z ∨ z1)

8. x1 ⇒ A gy

9. x1 ⇒ A gx1

10. z1 ⇒ E g¬p〈f〉
11. z1 ⇒ E gz1〈f〉

12. y ⇒ A⋄p

13. x ⇒ E⋄z〈LC(f)〉

We apply step resolution rules between 1 and 2, and 1 and 3. No more SRES rules are applicable. Formula 12 is an
eventuality clause, and therefore, we are looking for a loopin ¬p (see [14] for the formulation of the loop searching
procedure). The desired loop,E E g¬p〈LC(f)〉 (given that conditionz1 is satisfied) can be found considering clauses
10 and 11. Thus, we apply the TRES 3 rule to resolve this loop and clause 12, obtaining 16. Next we removeEW from
16 deriving a purely classical Formula 17 (y is a new variable). Simplify the latter, apply TEMP (the ‘temporising’
rule, see [9], obtaining, in particular, 19 and 20, and then aseries of SRES rules to newly generated clauses.

14. start ⇒ y 1, 2, SRES 1
15. start ⇒ x1 1, 3, SRES 1
16. y ⇒ A(¬z1 W p) 10, 11, 12 TRES 3
17. y ⇒ p ∨ ¬z1 ∧ v 16, A W Removal

18. v ⇒ A g(p ∨ ¬z1 ∧ v) 16, A W Removal

19. start ⇒ ¬y ∨ p ∨ ¬z1 17, SIMP, TEMP

20. true ⇒ A g(¬y ∨ p ∨ ¬z1) 17, SIMP, TEMP

21. start ⇒ p ∨ ¬z1 14, 19, SRES 1
22. start ⇒ p ∨ ¬z 5, 21, SRES 1
23. start ⇒ ¬z 4, 22, SRES 1
24. x1 ⇒ A g(p ∨ ¬z1) 8, 20, SRES 3
25. x1 ⇒ A g(p ∨ ¬z) 7, 24, SRES 3
26. x1 ⇒ A g¬z 6, 25, SRES 3

Now, as no more SRES rules are applicable, we find another eventuality, Formula 13, and thus we next look for a
loop in¬z. This loop can be found considering Formulae 9 and 26:A gA ¬z given that conditionx1 is satisfied.
Thus, we can apply TRES 2 to resolve this loop and 13 deriving 27. Then we removeEW from the latter (on step
28, wherew is a new variable, we use only one of its conclusions). Applying simplification and temporising to 28 we
obtain 29. The desired terminating clausestart ⇒ false is deduced by applying SRES 1 to steps 1, 15 and 23.
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27. x ⇒ E(¬x1 W z)〈LC(f)〉 9, 26, 13 TRES 2
28. x ⇒ z ∨ ¬x1 ∧ w 27 EW Removal

29. start ⇒ ¬x ∨ z ∨ ¬x1 28 SIMP, TEMP

30. start ⇒ false 1, 15, 23 SRES 1
We have found a contradiction, meaning that SNFCTL(‡), hence‡ itself is unsatisfiable.

5 Conclusions and Future Work

As we mentioned, there are two major approaches to formal specification and verification of distributed systems:
explorative and deductive. To the best of our knowledge the only automated technique currently used in the verification
of distributed hierarchical components is model checking.In this paper we have introduced a formal framework for
the deductive verification of modular specification. As a specification tool we use the branching-time temporal logic.
Specified properties and requirements of the system are thentranslated into the language of a normal form, SNFCTL,
thus enabling the application of a powerful resolution method. An obvious benefit of this approach is avoiding the
construction of a finite model (needed for the model checking).

Future extensions of this work will be in the application of the Inferential Erotetic Logic (IEL) tools aiming at
optimisation of the process of reconfiguration of a component model.
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