

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

A comparative analysis of maintainability approaches for web
applications.

Emad Ghosheh1
Jihad Qaddour2
Matthew Kuofie2
Sue Black3 *

1 IBM-Global Services, Kansas City, MO 64138, USA
2 School of Information Technology, Illinois State University
3 School of Business, Computing and Information Management, London South Bank
University

* Sue Black now works within the Harrow School of Computer Science at the University of
Westminster

Copyright © [2006] IEEE. Reprinted from the Proceedings of the IEEE
International Conference on Computer Systems and Applications, 2006, pp.
1155-1158.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161115604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comparative Analysis of Maintainability
Approaches for Web Applications

Emad Ghosheh , Jihad Qaddour , Matthew Kuofie and Sue Black

Abstract—
Web applications incorporate important business assets and offer a con-

venient way for businesses to promote their services through the internet.
Many of these web applications have evolved from simple HTML pages
to complex applications that have high maintenance cost. The high main-
tenance cost of web applications is due to the inherent characteristics of
web applications, to the fast internet evolution and to the pressing mar-
ket which imposes short development cycles and frequent modifications.
In order to control the maintenance cost, quantitative metrics and models
for predicting web applications’ maintainability must be used. Since, web
applications are different from traditional software systems, models and
metrics for traditional systems can not be applied to web applications. The
reason for that is that web applications have special features such as hyper-
text structure, dynamic code generation and heterogenousity that can not
be captured by traditional and object-oriented metrics. In this paper, we
will provide a comparative analysis of the different approaches for predict-
ing web applications’ maintainability and point out areas that need further
research.

Index Terms—Maintainability, web applications, regression analysis,
WebMo, WAMM.

I. INTRODUCTION

MANY World Wide Web applications incorporate impor-
tant business assets and offer a convenient way for busi-

nesses to promote their services through the Internet. Many of
these web applications evolved from simple HTML pages to
complex applications which have high maintenance cost. This is
due to the laws of software evolution and to some special char-
acteristics of web applications. The following are two software
evolution laws [1] that affect the evolution of web applications:

1. The law of continuing change: A program used in real
world must change or eventually it will become less useful
in the changing world.

2. The law of increasing complexity: As a program evolves
it becomes more complex and extra resources are needed
to preserve and simplify its structure.

In addition to the reasons above, web applications have some
characteristics that make their maintenance costly such as het-
erogenousity, technology advancement, speed of evolution, dy-
namic code generation, duplicated code, and tangled and scat-
tered code.

Emad Ghosheh
IBM-Global Services,
Kansas City, MO 64138, USA.
Phone: +1 816 761-8754 email: eghosheh@us.ibm.com

Dr. Jihad Qaddour
School of Information Technology,
Illinois State University, Normal, IL 61790-5150, USA.
Phone: +1 309 438-8146 email: jqaddou@ilstu.edu

Dr. Matthew Kuofie
School of Information Technology,
Illinois State University, Normal, IL 61790-5150, USA.
Phone: +1 309 438-3741 email: mkuofie@ilstu.edu

Dr. Sue Black
School of Business, Computing and Information Management,
London South Bank University, London SE1 0AA, UK.
Phone: +020 7815 7471 email: blackse@lsbu.ac.uk

Web applications are different from traditional software sys-
tems: Models and metrics for traditional systems can not be
applied to web applications. The reason for that is that web ap-
plications have special features such as hypertext structure, dy-
namic code generation and heterogenousity that can not be cap-
tured by traditional and object-oriented metrics. Another dif-
ference is the difference in the unit of measurement of a metric
for each application domain. For traditional systems, the unit of
measurement of a metric can be a file, procedure or an attribute.
For object-oriented systems, the unit of measurement can be a
class, interface or attributes. For web applications, the unit of
measurement is a web object which can be either an HTML file,
JSP, Servlet or client scripts.

The remainder of this paper is organized as follows: Section
2 provides a review on related research. Section 3 provides a
comparative analysis of the different approaches for predicting
web applications’ maintainability. Finally, section 4 provides a
conclusion and describes future wok to be undertaken.

II. RELATED WORK

The cost of software maintenance accounts for a large portion
of the overall cost of a software system [2], [3]. Software main-
tenance can be categorized into perfective, adaptive, corrective
and preventive maintenance.

Perfective maintenance improves the functionality of the soft-
ware system by expanding requirements. Adaptive maintenance
deals with porting a software system to a new hardware or soft-
ware environment. Corrective maintenance deals with modifi-
cations associated with errors in the software system. Preven-
tive maintenance deals with software modifications that prevent
possible future errors. One of the main concerns of system
stakeholders is to increase the maintainability of the software
system. Maintainability can be defined as the ease with which a
software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed
environment [2], [4]. Maintainability can be measured by mea-
suring some of the sub-characteristics of maintainability such
as understandability, analyzability, modifiability and testabil-
ity. Some studies have measured maintainability by measuring
both modifiability and understandability [5], [6], [7]. Under-
standability is an important sub-characteristics of maintainabil-
ity, since professionals spend at least half of their time analyzing
software to understand it [8]. In some studies the maintainabil-
ity has been quantified in the Maintainability Index (MI) [9],
[10], [11]. The Maintainability Index is measured as a function
of directly measurable attributes A1 through An as shown in
Equation 1:

M = f(A1 + A2 + + An) (1)

The measure (M) is called a Maintainability Index which can

11551-4244-0212-3/06/$20.00/©2006 IEEE

differ depending on the attributes being used in the measure-
ment. For example, Sneed [12] proposed a software quality
assessment environment called SOFTING. SOFTING uses the
following design attributes: modularity, portability, integrity, re-
dundancy, complexity, generality, time and span-utilization with
associated metrics to calculate the maintainability index. Other
studies used the effort for measuring maintainability [13]. In
[14] change effort, which is the total analysis and programming
effort spent on a particular change is used to measure maintain-
ability. There has been a lot of effort in constructing formulas
for measuring maintainability. The following are the different
approaches used to quantify maintainability from software met-
rics [9]:
• Hierarchical Multidimensional Assessment: In this tech-

nique the attributes are defined in a hierarchy. The top level
is divided into three levels control structure, information
structure and documentation. Each level is assigned to cer-
tain metrics. The total maintainability index is calculated
by adding up all the metrics in the hierarchy [4].

• Aggregate Complexity Measure: In this technique the
maintainability is calculated using a function of entropy
[15].

• Regression Analysis Models: In this technique a polyno-
mial equation is constructed to measure maintainability us-
ing a function of metrics [4].

• Factor Analysis: This is a statistical technique where met-
rics are grouped into clusters where each cluster has met-
rics that are highly correlated to each other and lowly cor-
related to metrics in other clusters. Each group of metrics
presents a single underlying factor [15].

• Principal Components Analysis: This is also a statistical
technique that reduces the collinearity between indepen-
dent variables. It will reduce the number of independent
variables used to construct a maintainability regression
model [16].

All these models were tested and validated on Hewlett-
Packard systems. They showed accurate measures of maintain-
ability from simple metrics. Out of the five two were named as
being the most practical ones namely, Regression Analysis and
Hierarchical Multidimensional Assessment. Most of the stud-
ies related to maintainability measurements have been on struc-
tured and object-oriented systems. Little work has been done
with this regard on web applications.

III. COMPARISON AND ANALYSIS

Most of the studies related to maintainability measurements
have been on structured and object-oriented systems. Little
work has been done with this regard on web applications. Most
of the studies applied on web application measure maintainabil-
ity using the effort or the Maintainability Index. None of the
studies has used understandability, analyzability, modifiability
and testability in measuring maintainability. Most studies used
source code metrics for measuring maintainability. The draw-
back of using source code metrics is that prediction can only
be made later in the development project. Early measurements
are much better since they help in mitigating risks early in the
development process.

Table I shows a comparison between the different approaches

used for predicting maintainability of web applications. The
first approach used the Oman and Hagemeister Hierarchical
Tree model. WAMM [11] used source code metrics and the
maintainability was measured using the Maintainability Index.
In WAMM new metrics were defined but there is still a need to
validate those metrics empirically and theoretically. There is a
need to prove how practical WAMM will be in an industrial en-
vironment since WAMM captures a lot of metrics which might
make it unpractical to implement unless there is a tool that can
capture all the metrics and provide a single Maintainability In-
dex with a click on a button. The most common approach used
is the Regression Analysis approach. There a couple of studies
in the literature using Regression Analysis to define and validate
metrics and models for web applications. In [17] design and au-
thoring effort were the dependent variables. The independent
variables were based on source code metrics. There is still a
need to do more empirical studies to validate the new defined
metrics in order to make general conclusions. In [18] design
metrics were introduced based on W2000 which is a UML like
language. In the study the dependent variables were variations
of design effort. The independent variables were measured from
the presentation, navigational and information models. Some
data for the presentation model was discarded in the study due to
lack of participation from all subjects. It is not known how use-
ful this approach would be, since it is not known if the W2000
language is used outside the educational environment and if it
will become popular in industrial environments. In [19] Mainte-
nance Time is used as the dependent variable and some metrics
based on the Navigational model are used as independent vari-
ables. In this approach like the previous one it is not known how
practical this approach is. WebMo [20] introduces the notion of
Web Objects as size measures for predicting the effort of de-
veloping web applications. There is a need for more empirical
studies to prove the benefit of WebMo. Case Based Reasoning
[21], [22] is an approach that uses a number of projects’ features
stored in a database to predict the effort of the current project.
The main problem with this approach is that web applications
keep changing and new technologies are introduced all the time.
Therefore, there is a need to always update the features database
by adding new projects and removing obselete projects that use
old technologies. This might become unpractical unless there is
a way to automate that process.

IV. CONCLUSION

Web applications are one of the fastest growing classes of
software systems. They have diffused in many and different
business domains such as scientific activities, product sale and
distribution and medical activities[23], [24]. These web appli-
cations have evolved into complex applications that have high
maintenance cost. The high maintenance cost of web applica-
tions is due to the inherent characteristics of web applications,
to the fast Internet evolution and to the pressing market which
imposes short development cycles[24] and frequent modifica-
tions. An example for Internet evolution is amazon.com a lead-
ing e-commerce web application. Amazon.com started with 0
customers in 1995. In 2003 it had around 20 million customers
and the largest online store in 220 countries[25]. In order to
control the maintenance cost of web applications, quantitative

1156

Ghosheh ET AL: A COMPARATIVE ANALYSIS OF MAINTAINABILITY APPROACHES FOR WEB APPLICATIONS

Study Dependent Variable Independent Variable Validation Comments
WAMM [11] Maintainability

Index
Oman and Hagemeister source tree
(Control Structure and Information
Structure at System and Component
level)

Empirical Validation Little Empirical Validation, No
Theoritical Validation

Regession
Analysis [17]

Design and Author-
ing Effort

Source Code Metrics (PageCount,
MediaCount, ProgramCount, Total-
PageAllocation, TotalMediaAlloca-
tion, TotalEmbeddedCodeLength,
ReusedMediaCount, ReusedPro-
gramCount, TotalReusedMediaAl-
location, TotalReusedCodeLength,
Connectivity, ConnectivityDensity,
TotalPageComplexity, Cyclomatic-
Complexity, SizeCFSU, Structure)

Empirical Validation Little Empirical Validation, No
Theoritical Validation

Regession
Analysis [18]

Information Effort,
Navigation Effort,
Presentation Effort,
and Total Design
Effort

W2000 UML like language (design
metrics for Navigational Model,
Informational Model, Presentation
Model)

Empirical Validation Little Empirical Validation, No
Theoritical Validation, Metrics for
Presentation Model were excluded
since it was not mandatory in the
experiment.

Regession
Analysis [19]

Maintenance Time Navigational Model Metrics (Num-
ber of Navigational Contexts
(NNC), Number of Navigational
Links (NNL), Density of a Navi-
gational Map (DeNM), Depth of a
Navigational Map (DNM), Breadth
of a Navigational Map (BNM),
Minimum Path Between Naviga-
tional Contexts (MPBNC), Number
of Path Between Navigational
Contexts (NPBNC), Compactness
(Cp))

Empirical Validation
and Theoritical Vali-
dation

Little Empirical Validation

WebMo [20] Effort and Duration Size Metrics called Web Objects
(Computed using Halsteads equa-
tion for volume)

Empirical Validation Little Empirical Validation, No
Theoritical Validation

Case Based
Reasoning
[21], [22]

Design and Author-
ing Effort

Project Features (Total Web Pages,
Total Images, Total Animations,
Total Effort)

Empirical Validation The number of projects used is still
small, Need more projects to gener-
alize results, No Theoritical Valida-
tion

TABLE I

A COMPARISON OF WEB MAINTAINABILITY APPROACHES

metrics and models for predicting web applications’ maintain-
ability must be used. The maintainability metrics and models
can be useful for:

• Predicting the maintenance cost to provide accurate esti-
mates in a project lifecycle[13].

• Comparing different design documents to select the docu-
ments that have the highest maintainability.

• Identifying risky components to mitigate risks early in the
project by reengineering or allocating experienced devel-
opers to the risky components[26].

• Improving the software development process[27].

In this paper we have provided an introduction to the high
maintenance cost problem for web applications. We discussed
related research in the area of maintainability models. Towards
the end of the paper we provided a comparative analysis of dif-
ferent approaches for predicting maintainability of web applica-
tions and pointed out areas that were lacking and needed further
research.

A. Future Work

As a conclusion, there are many avenues of research in build-
ing metrics and models for predicting web applications’ main-
tainability. Most of the studies are still exploratory and need

1157

further validation. Some metrics have been defined for web ap-
plications. But still, there is a need to provide theoretical and
empirical validation for these metrics so that they can be ac-
cepted in the software community. In our future work we will
build a maintainability prediction model for web applications
using early design metrics based on Web Application Extension
(WAE) [28]. WAE is a modeling language that has extensions
for UML to capture the special features of web applications.
We will use the following design attributes as a basis for defin-
ing the metrics for WAE: Coupling [5], Cohesion [5], Clarity
[5] Complexity and Size [13], Simplicity [5] and Reusability.
We will measure two important components of design main-
tainability for web applications namely: understandability and
modifiability. These two components have been used for devel-
oping maintainability models for object oriented systems[5] and
still have not been used in the context of web applications. To
summarize our future work will include the following:
• Provide a maintainability prediction model for web appli-

cations based on statistical regression analysis. This model
will provide prediction measures for different maintain-
ability measures, such as Understandability Time, Modifi-
ability Time, Understandability Correctness, Modifiability
Correctness and Modifiability Rate.

• Provide a validation of a number of product design metrics
for web applications. This validation includes the statis-
tical significance and magnitude that the design product
metric has on maintainability measures. The validation of
the product metrics will be done using correlation and re-
gression analysis.

• Provide a complete set of empirical experiments for web
applications that can be generalized to other settings.
These experiments will build on previous research and pro-
vide a starting point for further research on web applica-
tion’s maintainability.

• Provide a comparison between our prediction model and
other models.

• Provide an environment for the maintainability prediction
model that includes tools and procedures so that it can be
used in an industrial environment.

REFERENCES

[1] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski, “Metrics
and laws of software evolution the nineties view,” in Proceedings of the
4th International Software Metrics Symposium. IEEE Computer Society
Press, 1997, pp. 20–32.

[2] Pankaj Bhatt, Gautam Shroff, and Arun Misra, “Dynamics of software
maintenance,” ACM SIGSOFT Software Engineering Notes, vol. 29, no.
4, pp. 1–5, 2004.

[3] Norman Wilde and Ross Huitt, “Maintenance support for object-oriented
programs,” IEEE Transactions on Software Engineering, vol. 18, no. 12,
pp. 1038–1044, 1992.

[4] Paul Oman and Jack Hagemeister, “Construction of testing polynomials
predicting software maintainability,” Journal of Software Systems, vol.
27, no. 3, pp. 251–266, 1994.

[5] Lionel Briand, Christian Bunse, and Jong Daly, “A controlled experiment
for evaluating quality guidelines on the maintainability of object-oriented
designs,” IEEE Transactions on Software Engineering, vol. 27, no. 06,
pp. 513–530, 2001.

[6] Marcela Mario, Esperanza Manso, and Giovanni Cantone, “Building
uml class diagram maintainability prediction models based on early met-
rics,” in Proceedings of the 9th International Software Metrics Sympo-
sium. IEEE Computer Society Press, 2003, pp. 263–278.

[7] Matinee Kiewkanya, Nongyao Jindasawat, and Pornsiri Muenchaisri, “A
methodology for constructing maintainability model of object-oriented

design,” in Proceedings of the 4th International Conference on Quality
Software. IEEE Computer Society Press, 2004, pp. 206–213.

[8] Thomas Corbi, “Program understanding: challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[9] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman, “Using metrics
to evaluate software system maintainability,” IEEE Computer, vol. 27, no.
8, pp. 44–49, 1994.

[10] Welker Kurt and Paul Oman, “Software maintainability metrics models in
practice,” Crosstalk, Journal of Defense Software Engineering, vol. 8, no.
11, pp. 19–23, 1995.

[11] Giuseppe DiLucca, Anna Fasolino, Porfirio Tramontana, and Corrado Vis-
aggio, “Towards the definition of a maintainability model for web ap-
plications,” in Proceeding of the 8th European Conference on Software
Maintenance and Reengineering. IEEE Computer Society Press, 2004,
pp. 279–287.

[12] Harry Sneed and Andrs Merey, “Automated software quality assurance,”
IEEE Transactions on Software Engineering, vol. 11, no. 9, pp. 909–916,
1985.

[13] Fabrizio Fioravanti and Paolo Nesi, “Estimation and prediction metrics
for adaptive maintenance effort of object-oriented systems,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 12, pp. 1062–1084, 2001.

[14] Wiebe Hordijk and Roel Wieringa, “Surveying the factors that influence
maintainability,” in Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering. ACM Press, 2005, pp.
385–388.

[15] John Munson and Taghi Khoshgoftaat, “The detection of fault-prone pro-
grams,” IEEE Transactions on Software Engineering, vol. 18, no. 5, pp.
423–433, 1992.

[16] Fang Zhuo, Bruce Lowther, Paul Oman, and Jack Hagemeister, “Con-
structing and testing software maintainability assessment models,” in
Proceedings of the 1st International Software Metrics Symposium. IEEE
Computer Society Press, 1993, pp. 61–70.

[17] Emilia Mendes, Nile Mosley, and Steve Counsell, “Web metrics - esti-
mating design and authoring effort,” IEEE Multimedia, vol. 08, no. 01,
pp. 50–57, 2001.

[18] Luciano Baresi, Sandro Morasca, and Paolo Paolini, “Estimating the de-
sign effort of web applications,” in Proceedings of the 9th International
Software Metrics Symposium. IEEE Computer Society Press, 2003, pp.
62–72.

[19] Silvia Abraho, Nelly Condori-Fernndez1, Luis Olsina, , and Oscar Pastor,
“Defining and validating metrics for navigational models,” in Proceedings
of the 9th International Software Metrics Symposium. IEEE Computer So-
ciety Press, 2003, pp. 200–210.

[20] Donald Reifer, “Web development: estimating quick-time-to-market,”
IEEE Software, vol. 17, no. 8, pp. 57–64, 2000.

[21] Emilia Mendes, Nile Mosley, and Steve Counsell, “Early web size mea-
sures and effort prediction for web costimation,” in Proceedings of the
9th International Software Metrics Symposium. IEEE Computer Society
Press, 2003, pp. 18–39.

[22] Emilia Mendes, Nile Mosley, and Steve Counsell, “A comparison of de-
velopment effort estimation techniques for web hypermedia applications,”
pp. 131–140, 2002.

[23] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher,
“Leveraging user-session data to support web application testing,” IEEE
Transactions on Software Engineering, vol. 31, no. 3, pp. 187–202, 2005.

[24] Fillipo Ricca, “Analysis, testing and re-structuring of web applications,”
in Proceedings of the 20th IEEE International Conference on Software
Maintenance. IEEE Computer Society Press, 2004, pp. 474–478.

[25] Len Bass, Paul Clements, and Rick Kazman, Software Architecture in
Practice, Addison-Wesley, 2 edition, 2003.

[26] Khaled EL-Emam, “A methodology for validating software product met-
rics,” Tech. Rep. NRC 44142, National Research Council Canada, 2000.

[27] Shahid Bhatti, “Why quality? iso 9126 software quality metrics (func-
tionality) support by uml suite,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 2, pp. 1–5, 2005.

[28] Jim Conallen, Building Web Applications with UML, Addison-Wesley, 2
edition, 2003.

1158

