

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

A metadata extracting tool for software components in grid
applications

Jeyarajan Thiyagalingam
Vladimir Getov

Harrow School of Computer Science

Copyright © [2006] IEEE. Reprinted from the IEEE John Vincent Atanasoff
2006 International Symposium on Modern Computing (JVA'06). IEEE, Los
Alamitos, USA, pp. 189-196. ISBN 0769526438.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161115262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Metadata Extracting Tool for Software Components in Grid
Applications

Jeyarajan Thiyagalingam and Vladimir Getov
Harrow School of Computer Sciences, University of Westminster, Watford Road,

Northwick Park, Harrow HA1 3TP, U.K.
Email:V.S.Getov@westminster.ac.uk

Abstract

Component-based programming aims at pro-
ducing higher quality software, increasing the re-
use of components and permitting late composition.
In the context of component-based programming,
applications are treated as composition of compo-
nents. Given an application composition, some of
the components might have been developed outside
the context of the application or its domain. As
a result, the overall efficiency of the composition,
in terms of cost and performance, becomes non-
deterministic — may not be guaranteed to be ef-
ficient enough, even if the individual components
have been proven to be efficient. In other words,
two primary goals of software practice, efficiency
and quality, do conflict with each other. In this
paper, we argue that, this problem can partly be
overcome by paying more attention to component-
specific information, component metadata, during
composition. We describe a possible means of ex-
tracting and organising the metadata and formats
for specifying the metadata. Our scheme is inde-
pendent of component- and programming-models
and extensible. We see our work as a precursor to
a possible runtime scheme, where we intend to fa-
cilitate extraction, maintenance and usage of com-
ponent metadata at runtime.

Keywords components, composition, perfor-
mance, context, metadata

1. Introduction

Software components are independently devel-
oped, separately deployable, self-contained units
that form a part of a larger software system.
Component-based programming, where a software
application is built using components, aims at pro-
ducing higher quality software, increasing the re-
use of components and permitting late composi-
tion. In this setup, it is valid and often the case,
to have compositions of non-native software com-
ponents, components which are outside the current
application domain. For example a generic mathe-
matical component primarily developed for a finan-
cial application may be used inside a computational
fluid dynamics application. Such a composition
of non-domain-specific components challenges the
overall efficiency of the composition (throughout
this paper, we use the phrase “efficient component
composition” to mean a set of collective proper-
ties: optimal performance, optimal cost and op-
timal resource utilisation). This is because, opti-
mality properties of each component do not neces-
sarily mean optimality to be preserved for a com-
position it constitutes. In other words, these two
goals of software practice, componentisation and
efficiency of composition, are conflicting between
them. Partly, this is due to the fact that components
are developed to be separately deployable and little
or no attention is paid about the context of use or
possible future compositions, which is impractical.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Efficient component composition aims to seek
a balance between these two conflicting goals of
software engineering: efficiency and componenti-
sation. In order to do that we need two different
types of information, firstly detailed information
about components and secondly the current con-
text information. If each component is augmented
with additional data, which is called metadata in
the literature [7, 3, 4], describing the characteris-
tics and functional behaviours of the component
such that they are accessible outside the compo-
nent’s boundaries, then the composition can be ad-
justed accordingly. However, behaviour of some of
the components may be subject to the current con-
text of use, for instance the underlying architecture.
This forces us to consider context information dur-
ing composition, which at some point may become
part of the metadata. In this paper, our reference to
the term “metadata” includes context information,
if not specified explicitly.

If components in a composition or the applica-
tion developer do have access to the metadata, ef-
ficient component composition is about appropri-
ately using, maintaining and staging the metadata
and context information of components. However,
the key challenge is to consistently maintaining and
using the information, independent of component
models and programming models. The main idea
behind this paper is to decouple this task of main-
taining metadata from component and program-
ming models.

The main contributions of this paper are as fol-
lows:

1. We formulate a decoupled mechanism for ex-
tracting, maintaining and using the metadata
from/in components

2. We develop a prototype framework for consis-
tently extracting, maintaining and facilitating
the usage of the metadata

3. We illustrate the use of our framework using
two different examples.

4. A clear discussion relating previous work to
ours

The rest of this paper is organised as follows:
Section 2 serves both as a background and a re-
lated work section, where we review some exist-
ing component/programming models, sources for
extracting metadata and compositional information
and previous work in this area. In Section 3 we de-
scribe the metadata, classifying them in to various
levels and we formulate a means for describing the
metadata. Section 4 describes the exact information
reported at different levels. The overall functional-
ity of the framework, both as a tool and as an API,
is discussed in Section 5. The same section briefly
discusses the issues relating to extraction, categori-
sation, consolidation and maintenance of metadata.
Section 6 illustrates two different applications of
our framework and Section 7 concludes the paper
with directions for further research.

2. Related Work and Background

Paul Kelly et.al. describe the THEMIS
project [7], aiming at designing a programming
model and run-time library to support cross-
component performance optimisation by permit-
ting explicit manipulation of computation’s itera-
tion space at run-time. Their work demonstrated
how the metadata and context information can be
used to exploit the resource utilisation and exposed
a number of possible optimisations across compo-
nents for a chosen example. In their work, they ex-
plicitly assume that each component carries its own
metadata as an internal data structure and methods
are provided to query those metadata. In addition to
this, the overall composition is also maintained as
an internal data structure. They envisioned that fu-
ture components should be built following the same
blue-print.

In [5], Edwards describes a reflective metadata
wrappers for formally specified components. Their
strategy is to inject a wrapper module inside com-
ponents (at source level) so that the properties of
the components can be explored reflectively, based
on the supplied formal specification of the compo-
nent.

Orso et.al. describe component metadata for
software engineering tasks [9]. They rely on devel-

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

oper supplied annotations or metadata to construct
different documents, which will eventually assist in
different software engineering tasks, by extracting
these annotations whenever necessary.

The recent release of Java [6] adds a new lan-
guage construct called annotation. Annotation is a
generic mechanism for associating declarative in-
formation (metadata) with program elements. The
compiler is then expected to store the metadata in
the class files. Later, the VM or other programs can
use these metadata for interacting with the program
elements or for changing their behaviour. This ap-
proach relies on the underlying compiler to pack
the metadata for each component and on the virtual
machine for providing support in extracting meta-
data. Although it is an added advantage that more
internal details can be exposed by these developer
annotations, the mechanism cannot cross the com-
ponent boundaries.

All these approaches entirely rely on the devel-
oper or designer of the component to supply ade-
quate information. However, in a distributed setup,
especially in the context of Grid, where the need to
support legacy applications is very crucial, it may
not be expected that the components are annotated
enough. Further, developers or designers may not
necessarily supply useful information. In contrary
to these approaches, we rely on automatic extrac-
tion of metadata from component binaries, where
user provided annotations are supported.

Further, deliverables of components have
changed from source code to well sophisticated
mechanisms such as packages and assemblies. As
part of the sophistication, most of the component
models support dynamic introspection to limited
amount of information. Examples include object
browsers in Microsoft’s .NET environment [1]. We
intend to advance this functionality one step further
by enriching the metadata and to use these informa-
tion in making compositions efficient.

In doing that, we rely on Fractal [4], which is
a component model that natively supports compo-
sition. Such a support is enabled through com-
position specification using its own architecture
description language (ADL). In cases, where we
cannot rely on Fractal-like component model, it

is still possible for us to adhere to a composi-
tion specification similar to ADL. Although Fractal
component-model (and reference implementation
of Fractal, such as ProActive [3]) do support com-
position, they do not explicitly provide any support
for metadata manipulation. The Grid Component
Model [2], which builds on the Fractal component
model and aims at providing component model to
support the Grid environment, includes a support
for specifying the metadata for components. How-
ever, the specification does not specify how to in-
clude metadata nor the details of those metadata.

Our work extends the capabilities of these com-
ponents models by providing a mechanism for
metadata extraction, maintenance and manipula-
tion, especially in a distributed, Grid environment.

3. Component Metadata

The exact details of information which can cap-
tured from components may vary depending on
the underlying component model and programming
model. However, we see that the information which
should be treated as metadata (and as context infor-
mation) can be classified into three different levels.

• Higher-level component information. This is
essentially configuration information of com-
ponents, such as dependence metadata, struc-
tural composition of components, and inter-
face details of components.

• Internal-level component information. This is
a detailed description of internals of compo-
nents, such as iteration space, storage layouts
used, tunable parameters and alike.

• Context information for a component. This is
not associated to the previous two and may
vary independently of the other two types of
information. Information in this category in-
clude, platform specific information, possi-
ble context sensitive optimisation settings, and
alike.

Information extracted from components do not
necessarily have clear boundaries, but generally,

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

extracted information can be classified in to these
levels. As stated earlier, depending on the program-
ming model and component model chosen, some
of the information may not be extractable (for any
given level) and some of the information may be-
come overlapping (between levels). In addition to
this, the availability of the source code for com-
ponents may provide additional means of informa-
tion. However, we restrict our attention to compo-
nent binaries.

The key point here is to have a decoupled mech-
anism for accessing, specifying and updating asso-
ciated metadata independent of the component or
programming model. We provide a lightweight,
extensible framework to manipulate the metadata
of components/applications based on their binary -
again assuming that source is not available.

3.1. High-Level Component Informa-
tion

High-Level component information is mostly
associated with structural dependencies between
components such as interfaces, bindings, attributes,
containment relationships of components or inter-
component control/data flow.

This information is readily available for cer-
tain programming and component models. For
instance, the Fractal component model offers
ADL (Architecture Description Language) provid-
ing higher-level component information and their
interactions. However, this is not always possible,
especially in cases where components are devel-
oped using without any explicit notion of compo-
nents. In these cases, other mechanisms have to be
sought, such as extending the compile-time infor-
mation or by using reflection mechanisms if avail-
able.

3.2. Internal-Level Component Infor-
mation

Internal-level component information provides
detailed description of internals of components
such as iteration space, iteration domain, storage
layouts used, etc. Some of the component-specific

information may be obtained dynamically through
reflection. However, in the setting of a real applica-
tion with large number of classes, it is not realistic
to derive all these information at runtime. It is more
convenient to compile all these information offline.

3.3. Context Information

Context information is entirely independent of
the former two and updated (either manually
or automatically) depending on the context of
use. These include any platform- or deployment-
specific parameters, optimal values for tunable pa-
rameters of components and availability informa-
tion of components. Wherever possible, target
function (which could be performance or cost) is
expressed as a function of the context information.

4. Organisation and Description of
Metadata

If components do not carry their metadata im-
plicitly and if the associated metadata are kept in a
decoupled way, there is a danger that the metadata
to become outdated or even dangling. This issue is
further complicated by the fact that, in a distributed
setup, locations of a component and its associated
metadata may not be the same. As a result, the or-
ganisation of available information is challenging.
We assume that this information is maintained con-
sistently by an authoritative server and accessed or
cached appropriately. In addition to this, we intend
to make the API responsible for guaranteeing that
up-to-date information is supplied.

Since the amount of information is overwhelm-
ingly large, we simplify the organisation in a hierar-
chical, need-to-know basis. Towards this, the meta-
data is represented at four different levels (named
L0 to L3). In this way, the organisation of the
metadata becomes simplified, matches the com-
positional structures and can handle multiple ver-
sions. However, this organisation is transparent to
the components or applications - meaning that the
format is flexible as required. The API we are in-
tending to provide will serve the data, hiding the
underlying organisation of the metadata. This way,

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

the applications or components are completely de-
coupled from the content and organisation of the
metadata yet they can access the information. The
storage of the metadata is carefully chosen to per-
mit multiple versions while restricting duplicates.
In addition to these metadata, the framework main-
tains a registry for all components, organised ac-
cording to versioning. The query results for a com-
ponent is an XML based stream — “component
summary”. The component summary provides ba-
sic information about a component (such as its ver-
sion, authoritative location of latest code, date of
last update) and the links to the collections for three
levels of information described in Section 3.

The exact form for describing the metadata has
to be descriptive enough for components to make
use of that information, extensible and should eas-
ily be manipulatable. Since the granularity of the
information ranges from very low level detail to ap-
plication level dependencies, various formats may
be preferred at various levels of description. For
instance, describing the internal aspects of a com-
ponent, such as iteration space details, uses and de-
fines are easy using a handle to the intermediate
format of the component. However, this would be
a serious limitation to portability. Therefore, we
make extensive use of XML for the description of
metadata. Resulting XML files can either be stored
in their native form, or could be stored as text ob-
jects inside a database.

4.1. Component Summary

As outlined above, the component summary
provides the overall connectivity information for
a component. In the overall organisation of the
metadata, component summary is realized as ze-
roth level (L0). The component summary for a
component provides the following details: com-
ponent name, link to parent component summary
(if applicable), search keywords, versioning infor-
mation, authoritative location, and 1st,2nd and 3rd
level (L1,L2 and L3) information.

Part of the information represented at this level
(L0) can be extracted from ADL, if such a descrip-
tion is available.

4.2. High-level Component Informa-
tion

The high-level component information (infor-
mation at L1), as discussed in the previous section,
intends to provide the following information: com-
ponent name , link to parent component summary ,
roles of components, interfaces (provides/expects),
bindings, attributes and containment relationships.

4.3. Internal Level Component Infor-
mation

Internal aspects of a component are of interest
to performance optimisation and resides at Level
2 of the metadata hierarchy. For each component,
following details are captured/represented: com-
ponent name, link to parent component summary,
loop specific information (such as iteration space,
arrays accessed, traversal order of arrays), data
structures (such as arrays) and their storage layouts,
“uses” and “defines”.

4.4. Context Information of a Com-
ponent

Context information of a component is set to
be at the 3rd level of the metadata hierarchy and
the exact details to be captured under the context
information may vary depending on the compo-
nent. Generally, the context information may be-
come available progressively at various stages and
across runs. In some cases, automatic capturing
these context information is possible and there-
fore the context information may be updated as
necessary, particularly across runs. Examples in-
clude, run-time performance information (profile
information), hot-path information, most occurring
data-sizes across runs and other similar informa-
tion. However, it is not possible to compile a
complete list of interesting information to be de-
scribed as part of the context information. The pro-
posed metadata format covers wide range of inter-
esting information and to facilitate extensibility by
incorporating a owner-configurable format-specific
placeholder for specifying additional information.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

 Tool

Metadata Extraction

L2

L3

L0

L1

ADL
C2

C0_0

C0_1

C0

C1

A

Figure 1. The overall operation of the Metadata extraction tool

L0

L1

L2

L3

L0

L0

L1

L2

L3
L0A

A

A

C0

C1

C2

C0

C0

C0

.

Figure 2. The overall organisation of the extracted metadata

5 Tools and API for Extracting Meta-
data

To study the feasibility of the idea, we have
implemented a prototype tool to extract metadata
from components. The tool is implemented in Java,
based on the Soot Library [10] and using extensive
XML technologies. The extraction process uses the
Soot library for manipulating the Java binaries so
that all possible information can be extracted from
Java binaries. Once extracted, this extracted infor-
mation is filtered using DTD/XSL technologies for
appropriately separating the information into dif-
ferent levels. The tool uses any ADL-based de-
scription for complementing the Soot-based extrac-
tion process. This process effectively guarantees

that component metadata meets the required stan-
dards. This process will be recursive given that hi-
erarchical composition exists.

The overall operation of the tool is shown in Fig-
ure 1, using an example where an application A is
produced as a composite of components C0, C1 and
C2. The component C0 is a composite of C00 and
C01 while the other two components are atomic
(no sub-components). The resulting organisation
of the metadata is shown in Figure 2. The tool pro-
duces different levels of metadata for each of these
components. All these information are linked using
metadata descriptors at level-0. The tool is still in a
prototype stage, but successfully extracts majority
of the information associated to the levels 1 and 2
of binary components, written using the ProActive
Library. In addition to the metadata at various lev-

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

els, the framework maintains a central registry of
components along with their version information.

The API part of the tool intends to support
querying, updating and maintaining the metadata
along with suggestive feedbacks. Currently, meta-
data are organised and stored hierarchically and
mapped to the underlying file system.

6 Applications

The overall goal of our work is to apply the
extracted metadata in improving the efficiency of
composition of components. Towards this, we il-
lustrate two applications which are under investi-
gation.

6.1 Reconfigurable Software Sys-
tems

Reconfiguration of component-based software
systems is possible by dynamically managing the
composition of components. Such a reconfigura-
tion may be necessary as part of a service provi-
sion or as part of a QoS-driven strategies, for in-
stance reconfiguration followed by a failure of a
component. One of the crucial features that need
to be in place in reconfigurable systems is the ca-
pability of finding equivalent components. This
is trivial if components are explicitly marked for
their equality. However, if such explicit notions are
not available, which is possible when introducing
new components, the metadata of components can
be used to identify equivalent components. How-
ever, the task of establishing the equivalency be-
tween unknown components is non-trivial. The
process involves checking that functional seman-
tics of the concerned components are equal in ad-
dition to verifying their interface semantics (inputs,
outputs, types etc). This, in turn may have to utilise
statement-level metadata. The metadata framework
we described in previous sections captures all pos-
sible information, including architectural level in-
terfaces and statement-level details. The process of
verifying the equality components is currently un-
der investigation.

6.2 Cross Component Performance
Optimisation

Optimising the performance of composition is
one of the goals of efficient component composi-
tion. In [7], Paul Kelly et.al. demonstrated the ad-
vantages of performing such optimisation assum-
ing that components are well annotated. In our
work we intend to extract the metadata from bi-
naries and seeking opportunities for performance
optimisation. However, some of the information
which are essential for seeking opportunities have
already been lost when the extraction takes place.
Namely, not all information pertaining to the static
analysis are preserved at the binary level. Further,
only stage where this performance optimisation can
take place is at run-time as no source code is avali-
able. Since, we do not have explicit control over
the process of JVM jitting, we are forced to con-
sider binary patching when opportunities are de-
tected. We also seeking opportunities to simplify
this process.

7 Conclusions and Future Work

In this paper, we have outlined a simple, but
comprehensive means for organising the metadata
associated with components in a hierarchical fash-
ion. The mechanism we illustrated here in this
paper is decoupled from programming and com-
ponent model and extensible through the API. We
then illustrated the application of metadata in per-
forming efficient component composition. We have
also highlighted other possible applications of such
metadata. However, number of interesting issues
remain for addressing:

• In implementing the prototype, we relied on
the Fractal component model for simplifying
the demonstration process. However, depart-
ing from this specific component model may
be necessary to demonstrate the applicabil-
ity of the approach across different compo-
nent and programming models. In doing that,
one of the additional process we might en-
counter is deriving the compositional infor-
mation from binaries. Although this could

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

be constructed through various methods (e.g.
through call graph analysis), the process may
prove to be difficult if there are too many com-
positional patterns or, for instance, if at least
one of the components has restrictions in its
usage (e.g. obfuscated components).

• Currently, the API or the tool may only fa-
cilitate the usage or maintenance of metadata.
We would like to investigate how the API or
tool could actively provide suggestive feed-
backs. Although the tool is in a position
to know more about individual components,
such a suggestive feedback requires additional
knowledge about the domain of the target ap-
plication/composition. If implemented, such a
scheme would improve the overall efficiency
of the composition.

• The hierarchical organisation of the metadata
may not be optimal if too many nesting levels
are present in components. Although this or-
ganisation is transparent to the end users, the
performance impacts may not necessarily be
transparent. More investigation is needed in
terms of balancing the management, perfor-
mance and other issues (such as storage, re-
trieval and versioning).

• We have not analysed the security issues re-
lating to composition of components. Our as-
sumption that the system level policy would
be enforced at composition level may not be
valid if domain- or application-specific restric-
tions need to be placed, perhaps across runs.

• In our framework, extraction of metadata from
component binaries is possible given that the
binary is Java-byte-code based. As a result, in
an application where multi-language compo-
nents are used, available metadata is restricted
to Java-based components. However, in the
.NET framework, binaries generated from dif-
ferent source languages share a common inter-
mediate language, MSIL [8], given that source
languages are .NET compliant. If we extend
our framework to work under the .NET en-
vironment, regardless of the source language

on which components are based, the frame-
work should be able to extract metadata from
all components.

Acknowledgements

This research work is carried out under the FP6 Net-
work of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

References

[1] Microsoft .NET, http://www.microsoft.com/net.
[2] Proposal for a Grid Component Model, CoreGRID

Deliverable, D.PM.002, Nov. 2005, accessible via
http://www-sop.inria.fr/oasis/
personnel/ludovic.henrio/coregrid/
gcm-proposal.pdf.

[3] F. Baude, D. Caromel, and M. Morel. From Dis-
tributed Objects to Hierarchical Grid Components.
In International Symposium on Distributed Objects
and Applications (DOA), Catania, Italy, volume
2888 of LNCS, pages 1226 – 1242. Springer, 2003.

[4] E. Bruneton, T. Coupaye, and J. B. Stefani. Re-
cursive and Dynamic Software Composition with
Sharing. In Proceedings of the Seventh Inter-
national Workshop on Component-Oriented Pro-
gramming (WCOP2002), 2002.

[5] S. H. Edwards. Toward reflective metadata wrap-
pers for formally specified software components,
2001.

[6] D. Flanagan and B. McLaughlin. Java 1.5 Tiger:
A Developer’s Notebook. O’ Reilly & Associates,
Inc., 2004.

[7] P. H. J. Kelly, O. Beckmann, T. Field, and S. B.
Baden. THEMIS: Component Dependence Meta-
data in Adaptive Parallel Applications. Parallel
Processing Letters, 11(4):455–470, Dec. 2001.

[8] S. Lidin. Inside Microsoft .NET IL Assembler. Mi-
crosoft Press, 2002.

[9] A. Orso, M. J. Harrold, and D. S. Rosenblum.
Component Metadata for Software Engineering
Tasks. In W. Emmerich and S. Tai, editors, EDO,
volume 1999 of Lecture Notes in Computer Sci-
ence, pages 129–144. Springer, 2000.

[10] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java Optimiza-
tion Framework. In Proceedings of CASCON 1999,
pages 125–135, 1999.

IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06)
0-7695-2643-8/06 $20.00 © 2006

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

