

University of Westminster Eprints
http://eprints.wmin.ac.uk

Experiences of generating COTS components when
automating medicinal product evaluations.

Radmila Juric
Stephen Williams
Peter Milligan*

School of Informatics
* Enterprise Architecture, DCSIT, GlaxoSmithKline, Greenford, UK.

This is an electronic version of a paper presented at the 17th International
Conference on Software Engineering and Knowledge Engineering (SEKE'05),
14-16 Jun 2005, Taipei, Taiwan, Republic of China.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Experiences of Generating COTS Components when
Automating Medicinal Product Evaluations

Radmila Juric, Stephen Williams, Peter Milligan*
Cavendish School of Computer Science, University of Westminster,

115 New Cavendish Street, London W1W 6UW, UK
*Enterprise Architecture, DCSIT, GlaxoSmithKline, Greenford UB6 0NN, UK

juricr@wmin.ac.uk, williast@wmin.ac.uk , pete.s.milligan@gsk.com

ABSTRACT
This paper reports on experiences of generating COTS
components when designing and deploying component based
software architecture for automation and interoperation of
medicinal product evaluations across different countries in the
world. Our generic architectural model renders two sets of
software components that are candidates for COTS components.
We identify which role such COTS components may play and
outline our approach of generating them. We advocate that such
COTS components are developed with a specific component
platform in mind and must adhere to constraints of our software
architecture.

KEY WORDS
COTS components, healthcare, design patterns, EJB

1. Introduction
COTS Based Software Development configures software systems
from reused components, which are plugged-in into software
applications and bought/sold at their marketplaces [18]. The
research into the CBSD is numerous and range from COTS
component acquisition [21], problems and risks of selecting them
[20][4], developing and deploying COTS components to deliver
tailored software systems [2], to their the role in requirements
engineering [7] and in software architecture [22]. The most
intriguing is the problem of making them compatible with other
heterogeneous components that make complex software systems
[8], [6], [11].

Our work adds more to the above research and shows how
COTS components can be generated, if they cannot be found at
their marketplace. They can also be integrated to fit within our
software solution and be reused by a family of related
applications. We use a layered and component based software
architecture that automates procedures for medicinal product
evaluations [13]. When deploying our software architecture we
identify two families of software components that are candidates
for COTS components. We recognize which role such COTS
components may play and outline our approach of generating
them. Our COTS components are specific: they are developed
with a certain component platform in mind, they comprise design
patterns and they adhere to constraints of our software
architecture. We believe that with such an approach we have not
only alleviated the deployment of software components from our
architecture by discovering COTS components, but have also
addressed the problem of COTS components dependability on
component technologies [6] and interoperability in run-time
environments [8].

Section 2 details the related background and outlines our previous
work. In section 3 we raise the issue of using COTS components
within our problem domain. We give the aim of the paper and
comment on related works. Section 4 describes how we generate
COTS components: the constraints of our software architecture,
the creation of design patterns and design decisions dictated by a
component technology have created a set of COTS components.
Section 5 lists their characteristics. We conclude and list future
works in section 6.

2. Related Background
Medicinal product evaluation is one of the most important tasks
undertaken by government health departments and their regulatory
authorities in every country in the world. Each country has its
own systems and procedures for evaluating medicinal products,
which represents a serious drawback for their efficient local and
worldwide registration. The automation of such evaluation
procedures and adequate software support is a critical task that can
improve the efficiency of regulatory authorities and interoperation
of regulatory systems across the world.

In our previous works [13] we derived the layered and component
based generic architectural model given in Fig.1 that allows
automation of medicinal product evaluations, according to any
regulatory authority evaluation procedure.

The application layer provides a basic GUI functionality and
controls interaction between users and any other layers within the
system. The domain layer consists of two families of

Domain Specific
Layer

GUI
Component

Analyse Users’
Request component

Figure 1. The Generic Software Architecture

Application
Specific Layer

Persistence
Layer

…… R2 Rn R1

…… D1
E1

 D2
E2 E3

 Dn
Ei Ej …

Submitted
Applications

Submission
Rules

Evaluation
Rules

Healthcare
DBs

components. The Ri family of components contains a set of rules
that are to be followed if we want to have an automated
application submission within a particular regulatory authority.
The Di(Ei) family of components contains all available evaluation
procedures Ei that originate in different regulatory authorities and
which can be applied to any submitted application (after the
application has conformed to a set of the submission rules in Ri).
With Di we denote that we chose any combination of evaluation
procedures Ei which are relevant for a particular Ri and of interest
for a particular country/regulatory authority. Components from
the domain layer use various data repositories stored within
components of the persistence layer, where data on submissions
and evaluations are kept. We have implemented a prototype,
where example components, placed within Fig.1, are modelled as
an EJB application, using Studio Enterprise 7 [17].

3. Problem Formulation and Related Work
Our experiences from the previous works and from the prototype
implementation have raised two issues:

(a) The deployment of components from our architecture requires
a component technology whose communication infrastructure is
embedded within our example components hence compromises
their independence and our solution.
(b) The complexity of the problem domain should lead us towards
acquiring COTS components, which may alleviate the
implementation of the software architectural model from Fig. 1
and address the issue (a) above. Could we claim that some of or
components are COTS component and if yes, which
characteristics should they have?

The aim of this paper is to primarily address the question in (b)
and see which role such COTS components may have when
populating our generic software architecture.

We are not aware of any other work involving both COTS
components and the problem of automation of medicinal products
evaluations. There are related works within the EMEA
http://www.emea.eu.int/htms/human/presub/q24.htm (European
Medicine Agency) and within the US Food and Drug Agency -
guidelines for Computer Assisted New Drug Application are at
http://va.evolvingtech.com/etc/resources/FDAGuide94TOC.html).
However, none of these solutions gives a generic architectural
model that may serve any regulatory authority across the world
and make medicinal evaluation practices interoperable. Bringing
in new applications such as Updating Electronic Medical Records
takes our architecture closer to the Distributed Healthcare
Environment (DHE) which has been formalised in European
Health Information Systems Architecture (HISA) [5]. Our
components from the domain layer (and some from the application
layer) can find a place within the CEN middleware [9] of common
services.

4. Generating COTS Components
The potential COTS components have emerged from the final
model of our application that automates medicinal product
evaluations, i.e. after the decision on component technology was
made and after a few design patterns that suited our application
were generated. Therefore in this section we describe the process
of modelling the application, i.e. designing the application
components, using and generating design patterns and extracting
potential COTS components.

4.1 Designing the Application Components
When designing our application we adopted the four principles in
the following order:

(i) Choosing an adequate component technology,
(ii) Adhering to the layering principle and constraints from the

architectural model and
(iii) Applying the Model-View-Controller (MVC) pattern [1]

and generating design patterns.

We briefly comment on each of them.

(i) Choosing an adequate component technology:
Our analysis of available component platforms has short-listed the
EJB and the J2EE platform, the CORBAmed standards and the
Artemis architecture from [12]. The complexity of the
CORBAmed framework and experimental status of the Artemis
prototype lead us towards EJB. We have been geared towards
J2EE because of our previous positive experiences of
implementing software architecture for interoperable database as
an EJB application [14]. Our decision to use EJBs has also been
based on the fact that (a) EJBs are portable between various
vendor implementations of J2EE, (b) EJB standard has been
adopted by a number of vendors in order to provide EJB-
compliant servers EJB and (c) EJB containers could shield us
from component implementation complexities [16].

 (ii) Adhering to the layering principle and constraints from the
architectural model
(a) We separate components into layers, which conform to [3].
The components from the domain layer push away application
specific requirements from generic functionality of computing
platforms, making systems more adaptable to changes.

(b) The content of a particular component may be decided upon
which layer it is appropriate to reside, i.e. knowing the layer in
which the component resides, we know which functionality it
implements.

(c)We can extend families of domain specific components Ri and
Di(Ei) without affecting existing components in the same and
adjacent layers. Furthermore, we may generate in advance
domain specific Ri and Di(Ei) components to suit new
requirements/applications.

The architecture from Fig.1 shows the Strategy pattern [10]. We
generate a family of Ri and Di(Ei) components that implement the
functionality of checking the adherence to rules for submitting an
applications and the functionality of evaluating submitted
applications. These families of Ri and Di(Ei) components provide
different implementations of the same behaviour, where the user’s
request (and user’s understanding of the problem) decides the
most suitable combination of Ri and Di(Ei) components.

(iii) Applying the MVC pattern
The components from the application specific layer are
represented by JSP and Servlets in order to display and obtain
information from the user. Servlets also implement workflow and
session management. Components from the application layer
accept a user input, analyse it, make invocations to the EJB
components, and issue a response to a user. We use Servlets as
the common entry point into the application. It is supported by a
controller role given to Servlets in JSP/Servlet/EJB scenarios of
the MVC pattern. It enforces a separation of Model (Entity Beans,
JavaBeans), View (HTML, JSP) and Controller (Servlets, Session

Beans) aspects. The MVC pattern in Fig. 2 shows accessing DB
records and performing the functionality of evaluating submitted
medicinal product.

Servlets control submission of new applications through Ri and
evaluation of submitted applications through Di(Ei). We show in
Fig. 2 the evaluation part, which is executed by component Di(Ei).
Components Ri, their servlets/JSPs that assist in submissions are
available in [17]. In Fig.2 the evaluation of a submitted
application is controlled by ApplyEvalServlet, which
delegates SessionBeanEvaluating to carry out the
evaluation. However, before the evaluation starts
EvaluationServlet uses a look-up session bean called
SessionBeanLook-upEvaluations for retrieving all
evaluation procedures available locally or globally, which are
stored within the persistence layer. After displaying them through
DisplyEvals.jsp we chose one suitable evaluation
procedure. We use an entity bean EntityBeanEvaluation to
retrieve a chosen procedure from an adequate persistence. In
other words EntityBeanEvaluation PLUGS into Di(Ei)
SessionBeanEvaluating that perform evaluations. The
results of the evaluation are stored using Report entity bean.
Fig. 2 shows our design pattern named evaluation pattern [24],
which can be used for applications of different evaluation
procedures.

Figure 2: Evaluation Pattern

4.2 Candidates for COTS Components
The constraints from our generic architectural model listed in (ii)
from section 4.1 allow the set of Ri and Di(Ei) components to be
extendible, standardized and dynamically generated or posted
from any persistent data stores. They are ideal candidates for
COTS components because they represent an implementation of
certain functionality, which can serve a family of related
applications. In our example we could use Ri and Di(Ei)
components when evaluating medicinal products in any country
and according to any evaluation procedure. Thus our Ri and
Di(Ei) components could be applied to a problem domain where
we automate submissions of various kinds of applications and
perform their evaluations according to a prescribed procedure (e.g.
visa applications and their evaluation for the Home Office).

What makes the Ri and Di(Ei) components very suitable for COTS
components is that they operate on the principle of ‘plugging-in’

submission rules or evaluation procedures - stored in a persistent
data store - into Session Beans that implement these
functionalities, as in Fig.2. Thus, the programming code stored
within SessionBeanEvaluating could remain the same for
a variety of evaluations and submissions. What changes, are the
submission rules and evaluation procedures stored within our
Evaluation and Rule DB, which are plugged-in, using EntityBean
into a SessionBeans. Thus SessionBeanEvaluating from
Fig.2 is an example of Di(Ei).

5. Characteristics of COTS Components
The COTS components, which can populate our generic software
architecture in Fig.1, are sets of Ri and Di(Ei) components that
populate the core layer of the software architecture. However,
they are also EJB components, which means that they may
participate in their own composition and exercise bindings with
some other components according to communication principles
dictated by the J2EE technology.

Furthermore, our COTS components comprise a functional core of
the software that automates evaluation of medicinal products.
However, they are generated according to constraints of the given
software architecture, various design patterns used and design
decisions dictated by the J2EE component technology. In the
application specific layer we have JSP and Servlet components,
which need services from the EJB (or COTS) components from
the domain specific layer in order to carry out the required
functionality. Thus the procedure of extracting the COTS
components renders their main characteristics:

(a) Our COTS components are EJBs, i.e. we develop them
having a dedicated component platform in mind;

(b) Our COTS components conform to our software architecture:
a family of Ri and Di(Ei) components belong to the domain
specific layer and participate in the Strategy pattern [10]. We also
create and use our own design pattern called evaluation pattern,
given in Fig.2, which emphasises that a given set of components
are carrying out an evaluation procedure. Hence, the patterns and
constraints from our software architecture put the Servlets and
EJB components into a certain ‘context’ [24] [15] in which our
application layer and COTS (Ri and Di(Ei)) components may co-
operate. The user defines the ‘context’ by choosing the most
suitable implementation or combination of Ri and Di(Ei)
components and their associated Servlets.

(c) Our COTS components are not necessarily middleware
components: they are part of the MVC pattern where Ri and Di(Ei)
are ‘controllers’, delivering business functionality.

6. Conclusions
In this paper we report on our experiences of implementing
component based architecture for the automation of medicinal
product evaluations, which generates COTS components.
However, our COTS components have specific characteristics as
outlined in (a)-(c) above: they are generated with an exact
component platform in mind and they must adhere to constraints
of the generic architecture.

Our views on the issue of COTS components integration into an
application are rather strong. In today’s world of ubiquitous
computing, where the problem of interoperability is rapidly

Yes/No

Persistence
layer

Evaluation Chosen

Plug-in

EvaluationServlet

Evaluations Reports

SessionBean
Lookup

allEvaluations

SessionBean
Evaluating

Di(Ei)

EntityBean
Evaluation

EntityBean
Report

DisplyEvals.jsp

ApplyEvalServlet

Domain
Specific Layer

Application
Specific Layer

growing, we need to start trading-off and paying the price for
heterogeneities we encourage in software systems. COTS
components can alleviate the problem, but they raise the issue of
their interoperability and dependability on component platforms
[6], [8]. Hence our COTS characteristics from (a)-(c) in section 5
are the answers to such concerns. Furthermore, component’s
deployments are often given in the perspective of deploying EJBs
or .NET-based components. From this point of view our proposal
is not different.

We plan test our solution it in a real life example where more
complex submission rules and evaluation procedures take place.
Consequently we will be able to examine the way of marketing
our Ri and Di(Ei) as COTS components. We also plan to test them
for their interoperability, by placing them within frameworks such
as [19] that manage components’ dependencies when assembling
them into an application. We want to see if Health Level Seven
(HL7) (http://www.hl7.org) can act as a deployment mechanism
for our component model. Such a work might give an insight into
a role and different characteristics of COTS components,
generated from the same generic software architecture in Fig. 1
and might also address (a) from section 5.

7. References:
[1] Alur D., Crupi J., Malks D. Core J2EE Patterns, 2nd edition,

Prentice Hall, 2003
[2] Bandini S., De Paoli F., Manzoni S., Mereghetti P. A Support

System to COTS-based Software Development for Business
Services, Proc. of the SEKE ’02, Ischia, Italy, 2002, pp. 307-
314.

[3] Bass L., P. Clements, R. Kazman, Software Architecture in
Practice, Addison Wesley, 1998, ISBN 0-201-199300.

[4] Bhuta, J. and B. Boehm, A Method for Compatible
Components Selection, Proceedings of the 4th International
Conference COTS-Based Software Systems ICCBSS 2005,
Bilbao, Spain, LNCS 3412, Springer-Verlag, pp. 132-143.

[5] Blobel B. Application of the component paradigm for
analysis and design of advanced health systems
architectures, International Journal of Medical Informatics,
60(2000), pp. 281-301.

[6] Chiang C.C. Development of Reusable Components through
the Use of Adaptors, Proceedings of the 36th Hawaii Int.
Conf. on System Sciences (HICSS), IEEE, 2002.

[7] Chung L and Cooper K A Knowledge-Based COTS-Aware
Requirements Engineering Approach, Proceedings of the
SEKE ’02, Ischia, Italy, 2002, pp. 175-182.

[8] Davis L., Gamble R.F., Payton J. The Impact of Component
Architectures on Interoperability, The Journal of Systems
and Software, 61(2002), pp. 31-45.

[9] Ferrara F.M. The standard ‘Healthcare Information Systems
Architecture and DHE middleware, International Journal of
Medical Informatics, Volume 52(1998) , pp. 39-51

[10] Gamma E, Helm R, Johnson R and Vissides J Design
Patterns, Addison-Wesley Professional; 1st edition (January
15, 1995)

[11] Goebel S., Nestler M. Composite Component Support for
EJB, Proc. of the Winter Int. Symp. on Information and
Communication Technologies, Cancun, Mexico, 2004.

[12] Jagannathan W., The Careflow Architecture, A Case Study in
Medical Transcription, in IEEE Internet Computing,
May/June 2001, Volume pp. 59-63.

[13] Juric R., and J. Juric Applying Component Based Modelling
in the Process of Evaluation of Medicinal Products,

Proceedings of the IDPT-2002 conference, June 2000,
Pasadena, CA, US, Society for Design and Process Science
Press, ISSN 1090 – 9389

[14] R. Juric, J. Kuljis, R. Paul, A Software Architecture to
Support Interoperability in Multiple Database Systems, Proc.
22nd IASTED Int. Conf. on Software Engineering, Insbruck,
Austria, Feb. 2004.

[15] R. Juric, J. Kuljis and R. Paul, Contextualising Components
when Addressing the DB Interoperability, in Proc. of the
IASTED – Int. Conf. on Software Engineering Applications,
Boston, MA, Nov. 2004.

[16] R. Juric R. and LJ. Beus-Dukic, COTS components and DB
Interoperability, Proceedings of the 4th International
Conference COTS-Based Software Systems ICCBSS 2005,
Bilbao, Spain, LNCS 3412, Springer-Verlag, pp. 77-89.

[17] R Juric, S. Williams, L. Slevin, R. Shojanori S. Courtenage,
P. Milligan., Component Based Automation of Regulatory
Affairs in the Pharmaceutical Industry, submitted to the
Journal of Healthcare Informatics, 2005

[18] Morisio M., Seaman C.B., Basili V.R., Parra A.T., Kraft S.E.,
Condon S.E. COTS-based software Development: Processes
and Open Issues, The Journal of Systems and Software,
61(2002), pp. 189-199.

[19] M. Northcott and M. Vigder Managing Dependencies
between Software Products, Proceedings of the 4th
International Conference COTS-Based Software Systems
ICCBSS 2005, Bilbao, Spain, LNCS 3412, Springer-Verlag,
pp. 201-211.

[20] Torchiano M, Jaccheri L, Sorensen C.F. Wang A I COTS
Product Characterization, Proceedings of the SEKE ‘02
Conference, Ischia, Italy, pp 335-338

[21] Ulkuniemi P and Seppanen V. COTS Component Acquisition
in an Emerging Market, In IEEE Software, Nov/Dec 2004,
pp 76-82

[22] Vigder M. and Dean J. An Architectural Approach to
Building Systems from COTS Software Components, 22nd SE
Workshop, NASA/Goddard Space Flight Center SEL,
Greenbelt, MD, December 1997, NRC Report Number
40221, pp.99-131.

[23] Szypersky C., Component Software-Beyond Object Oriented
Programming, Addison Wesley, 2002

[24] Williams, S., R. Juric and P. Milligan Design Patterns for
Marketing Authorisation in Pharamceutical Industry, to
appear in the 26th Int. Conf. On Information technology
Interfaces (ITI ’05), University of Zagreb, June 2005, Croatia

