

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Developing agent Web service agreements.

Shamimabi Paurobally1 *
Nicholas R. Jennings2

1 Department of Computer Science, University of Liverpool
2 School of Electronics and Computer Science, University of Southampton

* Shamimabi Paurobally is now based within the School of Informatics, University of
Westminster

Copyright © [2005] IEEE. Reprinted from Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence. IEEE, Los
Alamitos, USA, pp. 464-470. ISBN 0769519326.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161114378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Developing Agent Web Service Agreements

Shamimabi Paurobally
University of Liverpool

Department of Computer Science
Liverpool L69 7ZF, UK.

sha@csc.liv.ac.uk

Nicholas R. Jennings
University of Southampton

School of Electronics and Computer Science
Southampton SO17 1BJ, UK.

nrj@ecs.soton.ac.uk

Abstract

Web services have emerged as a new paradigm that sup-
ports loosely-coupled distributed systems in service discov-
ery and service execution. Next generation web services
will evolve from performing static invocations to engag-
ing in flexible interactions and negotiations for dynamic
resource procurement. To this end, this paper applies an
agent-oriented based approach over a recent web service
language, WS-Agreement, in order to facilitate conversa-
tions of sufficient expressiveness between adaptive and au-
tonomous services. We discuss how such agent web service
agreements can be implemented over IBM’s Emerging Tech-
nologies Toolkit (ETTK) that itself includes an implementa-
tion of the WS-Agreement specification.

1. Introduction
Generally speaking, the aim of the web services endeavour
is to obtain an environment where service customers and
providers can locate each other, connect with one another
dynamically, set (negotiate) the terms and conditions of
service invocation automatically and then execute the nec-
essary actions according to the prevailing contract. Given
the increasing popularity of web services, next generation
web services are to be embedded in goal-driven environ-
ments where dynamic resource procurement, business to
business collaboration and adaptation to changes will be
common. The Web Service Agreement specification (WS-
Agreement) [1] starts to capture such high-level service in-
teractions. However, the web service effort will not ful-
fill its full potential because current web service propos-
als, including the WS-Agreement specification, are limited
to simple request-response exchanges in which a web ser-
vice remains a self-contained application without any abil-
ity to collaborate with other web services in order to satisfy
a request. In particular, such simple message types are un-
suitable for coordinating transactions between multiple web

services because of the explosion in the amount of commu-
nication. Moreover advanced transactional systems where
participants continuously tailor their needs and offers are
also beyond the scope of request-response messages be-
cause of the absence of negotiations. It is thus fundamental
to develop protocols and mechanisms enabling dynamic ne-
gotiations between services rather than present static single-
shot interactions.

Given this and because such issues have been exten-
sively researched upon in the software agents community,
this paper argues that work on enabling interaction between
web services would benefit from the insights and techniques
from the field of multi-agent systems. In more detail, we
build over the WS-Agreement templates, while remaining
compatible to the specification, to propose richer message
types and XML-based interaction protocols. We say that our
approach facilitates agent web service agreements. We also
discuss the beginning of an implementation for develop-
ing agent web service agreements over IBM’s ETTK toolkit
[4]. The work in this paper considers more pragmatic issues
than our previous work in [7]. Compared to [7], here, 1) we
ground our work with a scenario in the insurance sector, 2)
since WSCL (Web Service Conversation Language) has be-
come obsolete, we adapt our approach to only be compati-
ble with WS-Agreement rather than propose a WSCL/WS-
Agreement extension as in [7] and, 3) we discuss our first
attempts at implementing agent web service agreements.

This paper advances the state of the art through a frame-
work that extends the conversational capabilities of web ser-
vices by supporting non-trivial interactions in which several
messages have to be exchanged before the service is com-
pleted and/or the conversation may evolve in different ways
depending on the state and the needs of the participants.
This increase in flexibility and expressiveness is achieved
through the use of speech-acts [2] such as inform and bids
(rather than just offer-accept as is the case currently). Sec-
ond, as the number of services to be integrated grows and
the environment becomes more dynamic, our work should
help developers to understand how to write clients that flex-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

ibly interact with a service and to develop automated tools
to dynamically bind to a service based on the specified char-
acteristics. We also contribute to research in agent interac-
tions, where, to date, much of the work has yet to be put to
test in open and dynamic environments. While multi-agent
systems research provides intelligent techniques for broker-
ing, negotiation and market design in grid computing, grid
technologies are also useful testbeds for large scale deploy-
ment of agent systems.

The paper is structured as follows. Section 2 presents a
scenario with negotiations in the car insurance sector. Sec-
tion 3 critically analyses the WS-Agreement specification.
Section 4 describes our layers over the WS-Agreement layer
to enable agent web service agreements. Section 5 is an
overview of a starting implementation of agent Web Ser-
vice Agreement. Section 6 presents our conclusions.

2. Scenario of Service Negotiations
We analyse a scenario [9] from the car insurance sector
because it involves various actors and information flow
between them in claims handling. Currently, the insur-
ance market mostly relies on traditional ways of handling
claims, which can be slow and costly because of the inter-
dependency between the multiple parties involved in expe-
diting a claim. Thus, automating the various steps in claims
handling can help save costs and time, integrate chains
of services and encourage interactions between insurance
companies which would otherwise have not trusted each
other. The various actors are considered as being part of a
grid and offering grid or web services. We present two cases
to illustrate the interactions when handling claims for car
accidents: 1) Repair Claims. Managing repair claims and
involved businesses. 2) Detecting Fraudulent Claims. De-
tecting duplicate claims at different insurance companies.

2.1. Repair Claims Scenario
In figure 1, a customer is insured at a company offering in-
surance services. Car repair services are carried out by the
damage repair company. The manager is a company that
provides services for managing the businesses involved in
dealing with car damage claims to insurance companies.
The manager service aims to enhance the quality and ef-
ficiency in handling damage claims.

Before any repair claims are received, the repair service
can negotiate a contract with the manager service and in-
surance companies for bidding on repair jobs from insured
customers. The terms of a contract may include price of ma-
terial and labor, speed and quality of repair jobs. All parties
to the contract can re-negotiate their contracts if they are not
satisfied with the repairs or payments. Customers buy ser-
vices from insurance companies which negotiate with the
manager service on the best price and quality for their in-

Customer

Manager

Insurance
Services

Repair Services

Surveyor − Expert Services

i5

i3

i4i2

i1

Figure 1. Interactions in repair claims

sured customers. After an accident, the following interac-
tions to handle a claim occur between the services:

• i1: A customer makes a claim to the insurance service.

• i2: The insurance service requests the manager to find
the most appropriate repair service based on a descrip-
tion of the damage.

• i3: The manager selects a number of repair services
and ask them to provide an offer. The repair companies
analyse the damages and make an offer to the manager,
who decides which proposal to accept or reject.

• i4: The manager can employ the services of an expert
surveyor to analyse the quality of repairs on the dam-
ages and the charged costs. If a party is not satisfied,
the contract between the manager and repair services
may be revised.

• i5: The insurance company will pay the repair com-
pany and/or the victims of the accident.

On analysing the above scenario, it can be seen that ne-
gotiation arises at various points between the services – be-
fore and when any specific accident and claim is handled.
During the claims process itself, there is a negotiation fol-
lowing a contract net protocol between the manager and re-
pair services. The manager makes a call for proposal for a
repair job, the repair services send offers to carry out the re-
pairs and the manager selects the most appropriate offer.
Thus the interactions between the various services are not
always static and pre-determined.

2.2. Fraudulent Claims Scenario
The second scenario [9] we consider involves detecting
fraudulent claims, where the same claim is made at two or
more (international) insurance companies. In current sys-
tems, these claims are often not detected because insurance
companies, especially if located in different countries, do
not share information with each other about their clients and
reported damages. Insurance companies place high impor-
tance on preserving privacy of information about their cus-
tomers for commercial reasons or because they can be li-
able to violating privacy laws. Therefore, insurers are not

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

allowed free access to the data of other insurance compa-
nies, but rather they can only ask specific questions about a
specific customer. The actors in this scenario are the insur-
ance services, customers, police authorities and the Fraud-
Manager. The FraudManager helps the insurance services
to communicate with one other about questionable clients
and questionable damage reports in a rapid and low profile
way to avoid encroaching privacy laws.

Customer Authorities

Insurance Services

Insurance

FraudManager
i5

i5

i3

i1

i4
i2

Figure 2. Detecting fraudulent claims

Before dealing with a claim, an insurance service s1

may negotiate with the FraudManager about s1 querying the
FraudManager regarding a particular customer in return of
s1 providing information to the FraudManager about other
customers. On receiving the FraudManager’s report, the in-
surance service may choose whether to accept, reject or ne-
gotiate the terms of the insurance with the customer. The
interactions when an insurance company receives a doubt-
ful claim are shown in figure 2 and are as follows:

• i1: A customer sends a claim to the insurance service.

• i2: If the insurance service doubts its client’s claim, it
requests the FraudManager to check the claim.

• i3: The FraudManager contacts other registered in-
surance services and performs a bilateral negotation
with them to decide how much information can be ex-
changed and would be enough for detecting whether
the claim has already been reported elsewhere.

• i4: The FraudManager sends its conclusions about
whether a fraud was detected to the insurance service.

• i5: The insurance service either accepts or rejects the
client’s claim. The authorities may also be contacted in
case frauds are detected.

As for the repair claim scenario, there are negotiations
beforehand between the parties to contract relevant services.
On receiving a claim or a request to register as a client, the
insurance services (through the FraudManager) have to ne-
gotiate about what information they are willing to pass to
one other. The insurance services have different ways to ver-
ify client registrations and car claims. For example, in order

to verify a claim to an insurance service I1, the FraudMan-
ager asks the insurance service I2 to check its records. I2

requests the name and address of the client and his car’s
mileage, to which I1 refuses and offers the car’s license
plate and date of accident instead. As can be seen in this
scenario, information is sensitive and valuable, giving rise
to negotiation between the services regarding the exchange
of clients’ information.

3. Web Services Agreement (WS-Agreement)
The above scenarios show negotiations occuring between
the various services. Thus the next generation of web ser-
vices have to be capable of flexible interactions and nego-
tiations in open environments. In this section, we analyse
whether the web services agreement specification [1] can
answer to this need.

3.1. Web Services Agreement Structures
WS-Agreement specifies an XML-based language for cre-
ating contracts, agreements and guarantees from offers be-
tween a service provider and a client. In this case, an agree-
ment may involve multiple services and includes fields for
the parties, references to prior agreements, service defini-
tions and guarantee terms. Here the service definition is part
of the terms of the agreement and is established prior to the
agreement creation. In more detail, an agreement is defined
as being composed of:

1. Name identifies the agreement and is used for refer-
ence in other agreements.

2. Context includes parties to an agreement, reference to
the service provided and to possibly other related or
prior agreements.

3. Service Description Terms provide information to in-
stantiate or identify a service to which the agreement
pertains.

4. Guarantee Terms specify the service levels that the
parties are agreeing to and may be used to monitor and
enforce the agreement (e.g. the penalty upon failure to
meet the objective or the strength of a commitment by
a service provider).

An agreement template follows the above structure. A
service provider publishes an agreement template describ-
ing the service and its guarantees. Negotiation then involves
a service consumer retrieving the template of agreement for
a particular service from the provider and filling in the ap-
propriate fields. The filled template is then sent as an offer
(of type wsag:offer) to the provider. The provider de-
cides whether to accept (of type wsag:agree) or reject
the offer, depending on its resources.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

3.2. Weaknesses of WS-Agreement Contracts
There are a number of significant shortcomings in the WS-
Agreement specification.

Limited Message Types The first significant weakness
lies in the fact that messages in WS-Agreement are limited
to two types – offer and agree, according to a template pub-
lished by a service provider. The WS-Agreement specifica-
tion is only used at the last stage in a transaction where the
parties are closing their interaction with a contract specified
as a WS-Agreement. The offer and agree templates are not
sufficient or appropriate for modelling the negotiations de-
scribed in the insurance scenarios in section 2.

No Interaction Protocols Even with a more varied set
of messages, WS-Agreement still suffers from the lack of
an interaction protocol specified between parties. This is
the second significant weakness. There is only a two step
conversation, an offer followed by an agree. Without an
adequate set of speech-acts and specification of how to
construct interaction protocols, the usefulness of a WS-
Agreement exchange is limited to cases such as buying from
catalogues, with take-it or leave-it offers from the seller
or buyer. For example the WS-Agreement specification is
not expressive enough to specify the Contract Net protocol
which is probably the most widely used interaction proto-
col in the multi-agent systems field and which occurs in the
insurance scenario for repair claims (section 2). Even if we
increase the WS-Agreement schema with various speech-
acts, there is no concept of how to sequence messages to
form a valid conversation.

Lack of Semantics On the whole, WS-Agreement is
a complex specification, with vague and unclear seman-
tics. Significant work is required in clarifying the inter-
faces before it is successful in enabling web services inter-
actions. Furthermore, the WS-Agreement specification only
defines a higher-level template for agreements and offers.
There is the need of a language to express the elements in
the Service Description Terms and Guarantee
Terms. Thus there is no indication of how to access or pro-
vision a service from an agreement, for example labelling
of messages that are mutually understandable to all parties.
Projects such as Ontogrid [6] are investigating how to ren-
der grid services semantically aware. Finally, currently the
interaction is biaised towards a service provider since the
customers rely on the agreement templates published by the
provider to create agreements that the latter will understand.

4. Agent Web Service Agreements
As discussed in the previous section, messages in WS-
Agreement are limited to two types – offer and agree. To
remedy this, we specify other types of WS-Agreement
messages in terms of the information contained in the
Context, Service Description Terms and
Guarantee Terms fields in a WS-Agreement mes-

sage. The additional message types (which can be re-
garded as speech-acts [8]) that we define in XML are:
inform and bid. Other speech-acts may be similarly de-
fined. These messages are commonly used in agent inter-
actions [2]. First we add two types to the WS-Agreement
Context field to express perpetrators and recipients of (1)
exchanged speech-acts and (2) process executions. We de-
fine a speech-act in XML as a complex type, called
Speech-Act, with attributes the sender, the list of re-
cipients and any action to be executed by a particular ser-
vice. For example, if the web service s sends a speech-act
sa(r,α) to web service r, the details about the partici-
pants (s and r) and the action α in sa are added to the con-
text field. Thus, there is one initiator (the sender s) of the
speech-act, a list of recipients r, and the action α. The ac-
tion α itself may be associated with those services respon-
sible for executing it and those services receiving the re-
sult of its execution.

<xs:complexType> xs:Name="Speech-Act "

<xs:attribute> Name="xs:NCName" </xs:attribute>

<xs:sequence>

<xs:element name="Initiator" type="xs:NCName"/>

<xs:simpleType name="Respondents" use="optional">

<xs:list item Type="xs:NCName"/>

</xs:simpleType>

<xs:element name="Process" type="wsdl:Operation"/>

</xs:sequence>

</xs:complexType>

4.1. New Speech-Act Messages in XML

The inform speech-act is a basic one that that can
be used to define others. Here the meaning of an in-
form is that the sender s informs the receiver r that a
given proposition φ is true. From the XML representa-
tion of inform given below, it can be seen that s and r are
included in the Context field and φ of type boolean in-
cluded in the ServiceDescriptionTerm field.

<wsag:Inform>

<wsag:Name> NCName </wsag:Name>

<wsag:Context>

<wsag:Initiator> Sender "s" </wsag:Initiator>

<wsag:Respondents> Receiver "r" </wsag:Respondents>

</wsag:Context>

<wsag:Terms>

<wsag:ServiceDescriptionTerm wsag:Name="inform"

wsag:ServiceName="xs:NCName">

<xs:element name="inform" type="xs:boolean"

value="φ"/>

</wsag:ServiceDescriptionTerm>

</wsag:Terms>

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

</wsag:Inform>

In the case of a bid message, let sender s make a bid
to receiver r with attributes γ in the bid. Here r may be
a web service acting as an auctioneer such as the man-
ager in the repair claims scenario in figure 1. Receiver r
may be a web service outsourcing a task and accepting
bids from other web services. Such bids and auctions can
allow web services to collaborate and form an agreement
about task execution. As for inform, bids are defined in
the Context and the ServiceDescriptionTerms
fields. In this case, the condition for s to execute γ in the bid
is that its bid is received by r and is the winning bid, requir-
ing received(r, bid(s,γ)) & winning bid(bid(s,γ)) to be true.
Other message types such as accept, call for proposal, re-
ject, cancel, propose and request can be similarly specified
by encoding the semantics of the message in the Context
and ServiceDescriptionTerms fields of messages
of type wsag, and thus remaining compatible with the WS-
Agreement specification.

4.2. Sequencing Messages
Interaction protocols enable sequencing of messages to
form conversations and are currently absent from the WS-
Agreement specification. In order to support messages se-
quences and conversations with web services, we intro-
duce a layer above the WS-Agreement compatible mes-
sages layer for specifying agent interaction-like protocols,
as shown in figure 3.

Basic WS−RF Profile

WS−Agreement Messages: Agree, Offer, Speech−Acts

Interaction Protocols: Sequencing of WS−Agreement Messages

Service Composition

Universal Description Discovery Integration (UDDI)
Service Discovery and Publication

Service Description

Network Layer HTTP, FTP, e−mail

Simple Object Access Protocol (SOAP)XML−based Messaging

Web Services Description Language (WSDL)

Figure 3. Protocols over WS-Agreement

The lower layers are established web services standards,
and are included in the WS-Resource Framework (WS-RF)
basic profile [3]. WS-RF is a family of specifications aimed
at providing mechanisms for exposing and manipulating
web service resources. Interaction protocols are found at
the topmost layer in figure 3. To develop interaction pro-
tocols in XML over these layers, we specify in XML tem-
plates for states and transitions. As in finite state automata,

transitions, here through exchanging WS-Agreement com-
patible messages, lead to a change in states – from source
state to target state. For example, in the source state offered,
sending an agree message triggers the target state agreed.
We define the type state in XML as having a name, a
boolean attribute (whether the state holds or not), and op-
tionally includes the service that triggered the state, the re-
cipients and any action needed. By way of illustration, the
state offered triggered by sender s when sending a message
to receiver r offering to do action α is expressed as follows
in XML:
<State Name="offered" value="true" >

<Initiator> s </Initiator>

<Respondent> r </Respondent>

<Process> α </Process>

</State>

The type Transition is defined in XML as having at-
tributes name, source and target states, sender (perpetror)
and recipients of the transition. A transition is of type wsag
(WS-Agreement). Exchanged messages such as offer, agree
and the new types of messages we can define as shown in
section 4.1 (bid, accept, cancel) are also of type
wsag. These messages are the transitions in an interaction
protocol. Thus our specification of ACL-like messages and
interaction protocols in XML remain compatible with WS-
Agreement specification.

A transition that initialises a conversation may not
have a source state and therefore the source state is
an optional field. In contrast, the target state is a com-
pulsory field. A Transition also has an optional
Process field to encode relevant information such as of-
fering to carry out an action α, where the transition is the
message type and α is the process attribute. For exam-
ple, a transition named bid from sender s to receiver r, with
source state posted and target state sold and with process α
as part of the bid (s may bid to do α) is expressed as fol-
lows:

<Transition Name="Bid" >

<Source State> posted </Source State>

<Target State> sold </Target State>

<Initiator> s </Initiator>

<Respondent> r </Respondent>

<Process> α </Process>

</Transition>

We may also define a complex type called
Complex Transitions which can be an atomic
action, a WS-Agreement message as above, a sequence, al-
ternation or iteration of Complex Transitions or
simply the null transition. Given the above exten-
sions to WS-Agreement and the new types we defined
in XML, it is now possible to express richer interac-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

tions between web services. Interaction protocols such as
the Contract Net protocol, auctions and bilateral negotia-
tion protocols can now be expressed using our approach.
We do not show this in this paper because it is straightfor-
ward and instead we discuss the issues in implementing
these agent web services interactions.

5. Implementing Agent WS Agreements
Given the above specifications for interactions and agree-
ments between web services leading to contracted execu-
tions, both service providers and consumers need an in-
frastructure to create and manage offers and agreements. In
this section, we discuss the implementation of a framework
supporting agent web services agreement. Such a frame-
work should help service providers to manage agreement
templates, decide whether to accept or reject incoming of-
fers, or choose another response according to the interaction
protocol, after analysing available services and capacities,
and finally to execute and comply with the agreement terms.
In the case of service consumers, the framework should al-
low them to request agreement templates, create offers from
the templates, respond appropriately to received messages
and dynamically monitor the state of an agreement.

5.1. Cremona and Emerging Technologies Toolkit
Cremona (Creation and Monitoring of Agreements) [5] pro-
poses an API for implementing the WS-Agreement spec-
ification as a middleware for supporting contract agree-
ments between web services. An implementation of Cre-
mona is incorporated in IBM’s Emerging Technologies
Toolkit (ETTK) [4]. ETTK helps programmers in design-
ing and developing potentially autonomic web services and
contains implementations of various web service specifica-
tions such as WS-Agreement, WS-Resource Framework,
WS-Notification and WS-Addressing [3]. In this sec-
tion, we summarise the components in Cremona that are
salient for developing web services negotiation.

Core Functions:

Domain Specific Functions:

WS−Agreement and Protocol

Common Library Functions: Agreement Management

Execute Agreements: Agreement Service Role Management

Create Agreements: Agreement Protocol Role Management

Strategic Agreement Management

Figure 4. Layers in the Cremona Architecture

Figure 4 shows the layered architecture provided by Cre-
mona for creating and managing agreements and their tem-

plates [5]. The lowest layer contains the core functions
based on the web services standards SOAP, WSDL, UDDI
and WS-Resource Framework. The second layer, Common
Library Functions, implements the WS-Agreement speci-
fication. The Common Library Functions are a set of li-
braries, agreement management and monitoring functions
that are public to providers and customers complying to the
WS-Agreement specification. Different agreement manage-
ment functions are provided according to the role of a ser-
vice – service provider or customer.

The Agreement Protocol Management (APRM) compo-
nent implements interfaces to create agreements and access
the agreement state at run-time. It contains a template set
containing valid agreement templates that customers use to
submit offers. On receiving an offer, the agreement factory
consults the provider’s decision maker regarding whether
the offer can be accepted. If an offer is accepted, an agree-
ment instance is created and registered in the agreement
set. Eventually, the agreement is announced to the agree-
ment implementer which checks and readies the service for
when the agreement is to be executed. Finally, an agreement
is sent to the service customer through an agreement
instance proxy. A status monitor interface allows to
retrieve the status of an agreement, the service description
terms and the guarantee terms, for example, whether the
agreement state is fulfilled or delayed or a processing job
is waiting or completed.

The Agreement Service Role Management (ASRM)
component is located over the APRM (see figure 4) and fa-
cilitates provisioning and consuming services, while mon-
itoring compliance to an agreement at run-time. The
ASRM of a service provider contains an admission con-
trol component which interacts with the service imple-
menting system to determine whether there are enough
resources to satisfy the resource requirements in an agree-
ment. If there are sufficient resources, an agreement im-
plementation plan (for example a provisioning workflow)
is generated and submitted to the provisioning system. Fi-
nally a compliance monitor checks whether the guarantees
in an agreement instance are met. If guarantees are vio-
lated, the compliance manager interface is invoked and
may cause a change in job scheduling or system configura-
tion.

The topmost layer, Strategic Agreement Management,
defines domain specific functions such as strategic decision
making, job scheduling and resource management and that
are implemented by web service providers and customers.

5.2. Implementing Flexible Interactions
The above Cremona implementation in IBM’s ETTK lies
underneath our intended implementation for more flexi-
ble agent-oriented interactions and negotiations between
web services. Service providers and customers are imple-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

mented to use the Cremona interfaces and our implemen-
tation for automated negotiation, according to their roles,
and to create agreements, offers and other speech-act-like
message types that are compliant with WS-Agreement. Im-
plementations of the service provider and client applica-
tion are respectively based on aprm.provider and on
aprm.initiator packages. A provider advertises the
kinds of services it offers and exposes its interfaces to the
Agreement Manager (in the APRM) for potential customers
to submit offers.

In addition, our layers over WS-Agreement – various
message types and message sequencing to form interac-
tion protocols – and their semantics are encoded in the
agents’ knowledge bases as libraries of messages and inter-
action protocols. The interaction protocols are implemented
as XML documents which are consulted by the customer
and provider at start up when they read the configuration
files. Negotiation strategies are programmed in the Strate-
gic Agreement Management component to help an agent
choose between templates and decide which offer or re-
sponse to make or accept. These are system and domain
specific functions.

In more detail, on the provider’s side, the java pack-
age has to implement interfaces for the agreement decision
maker, agreement implementer and status monitor compo-
nents as classes. Each of those classes have a factory func-
tion to determine and create a corresponding instance for
a particular agreement or message type. Depending on an
agent’s role and the interation protocol, we may implement
the provider as an auctioneer or seller with its own pref-
erences and strategies encoded in the decision maker. In
the case of the client application, who is the one who initi-
ates an interaction with an offer, its implementation is based
on the classes exposed in the Cremona initiator package.
The client implementation should allow connection to one
or more provider factories, normally through proxy inter-
faces. The client application is implemented to have strate-
gies and associated utilities, located in its own Strategic
Agreement Management component, allowing it to select
templates published by the provider and to fill the templates
to create an offer at the factory. Similar to the provider, the
client also implements the agreement implementer and sta-
tus monitor. The decision maker creates an agreement deci-
sion object that may contain a decision, a context and a re-
ply sent to the other party.

As future work, we intend to implement the Strategic
Agreement Management component and the negotiation
mechanisms in it for the decision making interface. We will
implement brokering protocols using the semantic registry
of the WS-Resource Framework to enable coalition and vir-
tual organisation formation between web services. Resource
allocation between services will be carried out through Eng-
lish auctions with deadlines, while the contract net proto-

col will enable task allocation, as occuring in the insur-
ance scenarios in section 2. Bargaining strategies will be
implemented through bilateral alternating offers protocols
and used in the insurance scenarios implementation.

6. Conclusions
In this paper, we have focussed on enabling flexible inter-
actions between web services because they are fundamen-
tal if web services are to reach their full potential in fu-
ture networked environments. In such environments, there
are a number of limitations on the applicability of the web
service agreement (WS-Agreement) proposal. Specifically,
this paper addresses the need for developers to code client
and provider applications that can bind to and interact with
services of a specific type. To achieve this , we have spec-
ified speech-acts as WS-Agreement schemas in XML for
richer messages in conversations than just offer and agree.
Consequently, protocols of realistic expressiveness (such
as the Contract Net, auctioning) can be specified in our
WS-Agreement extended language. Finally we provided an
overview of our initial attempts at implementing agent web
service agreements over IBM’s ETTK toolkit.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, and et al. Web Services
Agreement Specification (WS-Agreement). World-Wide-Web
Consortium (W3C), 2004.

[2] F. for Intelligent Physical Agents. FIPA Communicative Act
Library Specification. http://www.fipa.org, 2002.

[3] Globus Alliance and IBM Software Development
and Research Labs. WS-Resource Framework.
http://www.globus.org/wsrf/.

[4] IBM Software Development and Research
Labs. Emerging Technologies Toolkit: ETTK.
http://www.alphaworks.com/tech/ettk.

[5] H. Ludwig, A. Dan, and R. Kearney. Cremona:an architec-
ture and library for creation and monitoring of ws-agreements.
In Proc. of 2nd International Conference on Service Oriented
Computing 04, ACM, pages 65 – 74, 2004.

[6] Ontogrid Project. Paving the way for Knowledgeable Grid
Services and Systems. http://ontogrid.net/.

[7] S. Paurobally and N. Jennings. Protocol engineering for web
service conversations. Engineering Applications of Artificial
Intelligence, Special Issue on Agent-oriented Software Devel-
opment, 18(2):237–254, 2005.

[8] J. R. Searle. Speech acts: An essay in the philosophy of lan-
guage. Cambridge University Press, 1969.

[9] J. Smulders, C. Van Aart, P. Van Hapert, V. Fintelman, and
P. Storms. Ontogrid, Deliverable 9.1, Businesss Cases and
User Requirement Analysis. http://ontogrid.net/.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

