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Abstract 

 
In this paper, we describe a rough sets approach to 
classification and attribute extraction of a small 
biomedical dataset.  The dataset contains 148 
entries with 19 attributes on patients that were 
suspected to have a lymphoma.  Our primary goal 
was to be able to create a set of rules that allow the 
prediction of the decision class based on the values 
of relevant attributes.  Our preliminary study of this 
dataset indicated that seven of the 19 attributes 
were predictive in this dataset.  Our classification 
accuracy was approximately 85%, with a high 
sensitivity and specificity.  In addition to the 
promising classification results, rough sets 
provided a means of dimensionality reduction and 
rule generation.  
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1. Introduction 
 

Lymphoma is a general term for a group of cancers 
that originate in the lymphatic system. The 
lymphomas are divided into two major categories: 
Hodgkin lymphoma and all other lymphomas, 
called non-Hodgkin lymphomas. Hodgkin 
lymphoma was named for Thomas Hodgkin, an 
English physician who described several cases of 
the disease in 1832. Hodgkin lymphoma will 
represent about 12.7 percent of all lymphomas 
diagnosed in 2004 [1].  About 62,250 Americans 
will be diagnosed with lymphoma in 2004. This 
figure includes  
 
 
 

 
approximately 7,880 new cases of Hodgkin 
lymphoma (4,330 males and 3,550 females), and 
54,370 new cases of non-Hodgkin lymphoma 
(28,850 males and 25,520 females). The annual 
incidence of lymphoma has nearly doubled over 
the last 35 years. The cause of Hodgkin lymphoma 
is uncertain [1]. Many studies of environmental, 
especially occupational, linkages have been 
conducted with ambiguous results. For example, 
woodworking exposure has been associated with 
the disease, but causality has not been established. 
The Epstein-Barr virus has been associated with 
about one-third of cases of the disease. It has not 
been established conclusively as a cause of 
Hodgkin lymphoma, however. Persons infected 
with HTLV and HIV also have an increased 
probability of developing Hodgkin lymphoma [1].  

 
In this study, we investigate a dataset 

containing data on 148 with four decision classes 
(2 normal, 81 metastases, 61 with malignant 
lymphoma, and 4 with fibrosis) patients that were 
hospitalised for suspected lymphoma.  The dataset 
contains 19 attributes including the decision 
attribute  (see section 2.1 for a listing of the 
attributes) with 0 missing values.  We investigated 
this dataset with respect to the following: i) 
attribute pruning, ii) classification accuracy and iii) 
rule induction. Pruning (dimensionality reduction) 
removes variables that are not directly related to 
the classification process.   This feature of rough 
sets makes the dataset much easier to work with 
and may help to highlight the relevant 
classification features of the data.  Once the 
redundant features have been pruned from the 
dataset, rough sets is used in the classification 
process, mapping attributes and their values to 
decision classes.  In many cases, rough sets are 
able to produce classification accuracy that is 
superior to more ‘traditional’ classification 



algorithms.  Lastly, rough sets provide a set of 
decision rules that are readily interpretable by a 
domain expert.  These rules map attributes and 
their values to decision classes.   These three 
facilities available in the rough set paradigm 
provide a unique and consistent approach to 
extracting knowledge from data.  In the next 
section, we present an overview of rough sets, 
followed by the use of rough sets to classify this 
particular dataset, followed by a results section and 
lastly a summary of this work. 

 
1.1  Data mining 

 
Rough set theory is a relatively new data-mining 
technique used in the discovery of patterns within 
data first formally introduced by Pawlak in 1982 
[7,8].  Since its inception, the rough sets approach 
has been successfully applied to deal with vague or 
imprecise concepts, extract knowledge from data, 
and to reason about knowledge derived from the 
data [5,6]. We demonstrate that rough sets has the 
capacity to evaluate the importance (information 
content) of attributes, discovers patterns within 
data, eliminates redundant attributes, and yields the 
minimum subset of attributes for the purpose of 
knowledge extraction. 

The first step in the process of mining any 
dataset using rough sets is to transform the data 
into a decision table.  In a decision table (DT), each 
row consists of an observation (also called an 
object) and each column is an attribute, one of 
which is the decision attribute for the observation 
{d}.  Formally, a DT is a pair A = (U, A∪{d}) 
where d  A is the decision attribute, U is a finite 
non-empty set of objects called the universe and A 
is a finite non-empty set of attributes such that  
a:U->Va is called the value set of a. Once the DT 
has been produced, the next stage entails cleansing 
the data. 

There are several issues involved in small 
datasets – such as missing values, various types of 
data (categorical, nominal and interval) and 
multiple decision classes. Each of these potential 
problems must be addressed in order to maximise 
the information gain from a DT.  Missing values is 
very often a problem in biomedical datasets and 
can arise in two different ways.  It may be that an 
omission of a value for one or more subject was 
intentional – there was no reason to collect that 
measurement for this particular subject (i.e. ‘not 
applicable’ as opposed to ‘not recorded’).  In the 
second case, data was not available for a particular 
subject and therefore was omitted from the table. 
We have 2 options available to us: remove the 
incomplete records from the DT or try to estimate 
what the missing value(s) should be.  The first 

method is obviously the simplest, but we may not 
be able to afford removing records if the DT is 
small to begin with.  So we must derive some 
method for filling in missing data without biasing 
the DT.  In many cases, an expert with the 
appropriate domain knowledge may provide 
assistance in determining what the missing value 
should be – or else is able to provide feedback on 
the estimation generated by the data collector.  In 
this study, we employ a conditioned mean/mode 
fill method for data imputation.  In each case, the 
mean or mode is used (in the event of a tie in the 
mode version, a random selection is used) to fill in 
the missing values, based on the particular attribute 
in question, conditioned on the particular decision 
class the attribute belongs to.   There are many 
variations on this theme, and the interested reader 
is directed to [3,4] for an extended discussion on 
this critical issue.  Once missing values are 
handled, the next step is to discretise the dataset. 
Rarely is the data contained within a DT all of 
ordinal type – they generally are composed of a 
mixture of ordinal and interval data.  Discretisation 
refers to partitioning attributes into intervals – 
tantamount to searching for “cuts” in a decision 
tree.  All values that lie within a given range are 
mapped onto the same value, transforming interval 
into categorical data.  As an example of a 
discretisation technique, one can apply equal 
frequency binning, where a number of bins n is 
selected and after examining the histogram of each 
attribute, n-1 cuts are generated so that there is 
approximately the same number of items in each 
bin.  See the discussion in [4,9] for details on this 
and other methods of discretisation that have been 
successfully applied in rough sets.  Now that the 
DT has been pre-processed, the rough sets 
algorithm can be applied to the DT for the purposes 
of supervised classification. 

The basic philosophy of rough sets is to 
reduce the elements (attributes) in a DT based on 
the information content of each attribute or 
collection of attributes (objects) such that the there 
is a mapping between similar objects and a 
corresponding decision class.  In general, not all of 
the information contained in a DT is required: 
many of the attributes may be redundant in the 
sense that they do not directly influence which 
decision class a particular object belongs to.  One 
of the primary goals of rough sets is to eliminate 
attributes that are redundant.  Rough sets use the 
notion of the lower and upper approximation of 
sets in order to generate decision boundaries that 
are employed to classify objects.  Consider a 
decision table A = (U, A∪{d}) and let � and  X ⊆ 
U. What we wish to do is to approximate X by the 
information contained in B by constructing the B-



lower (BL) and B-upper (BU) approximation of X.  
The objects in BL (BLX) can be classified with 
certainty as members of X, while objects in BU are 
not guaranteed to be members of X.  The 
difference between the 2 approximations: BU  - BL, 
determines whether the set is rough or not: if it is 
empty, the set is crisp otherwise it is a rough set.   
What we wish to do then is to partition the objects 
in the DT such that objects that are similar to one 
another (by virtue of their attribute values) are 
treated as a single entity.  One potential difficulty 
arises in this regard is if the DT contains 
inconsistent data.  In this case, antecedents with the 
same values map to different decision outcomes (or 
the same decision class maps to two or more sets of 
antecedents).  This is unfortunately the norm in the 
case of small biomedical datasets, such as the one 
used in this study.  There are means of handling 
this and the interested reader should consult [6,10] 
for a detailed discussion of this interesting topic. 
The next step is to reduce the DT to a collection of 
attributes/values that maximises the information 
content of the decision table.  This step is 
accomplished through the use of the 
indiscernibility relation IND(B) and is defined for 
any subset � (�) as follows: 

IND(B)=
( ){ }x y U U a B a x a y, : ( ) ( )∈ × ∈ =for every   

The elements of IND(B) correspond to the notion 
of an equivalence class.  The advantage of this 
process is that any member of the equivalence class 
can be used to represent the entire class – thereby 
reducing the dimensionality of the objects in the 
DT.  This leads directly into the concept of a 
reduct, which is the minimal set of attributes from 
a DT that preserves the equivalence relation 
between conditioned attributes and decision values.  
It is the minimal amount of information required to 
distinguish objects with in U. The collection of all 
reducts that together provide classification of all 
objects in the DT is called the CORE(A).  The 
CORE specifies the minimal set of elements/values 
in the DT which are required to correctly classify 
objects in the DT.  Removing any element from 
this set reduces the classification accuracy.  It 
should be noted that searching for minimal reducts 
is an NP-hard problem, but fortunately there are 
good heuristics that can compute a sufficient 
amount of reducts in reasonable time to be usable. 
In the software system that we employ an order 
based genetic algorithm (o-GA) which is used to 
search through the decision table for approximate 
reducts [9].  The reducts are approximate because 
we do not perform an exhaustive search via the o-
GA which may miss one or more attributes that 
should be included as a reduct.  Once we have our 
set of reducts, we are ready to produce a set of 

rules that will form the basis for object 
classification. 

 Rough sets generates a collection of 
‘if..then..’ decision rules that are used to classify 
the objects in the DT.  These rules are generated 
from the application of reducts to the decision 
table, looking for instances where the conditionals 
match those contained in the set of reducts and 
reading off the values from the DT.  If the data is 
consistent, then all objects with the same 
conditional values as those found in a particular 
reduct will always map to the same decision value.  
In many cases though, the DT is not consistent, and 
instead we must contend with some amount of 
indeterminism.  In this case, a decision has to be 
made regarding which decision class should be 
used when there are more than 1 matching 
conditioned attribute values.  Simple voting may 
work in many cases, where votes are cast in 
proportion to the support of the particular class of 
objects.  In addition to inconsistencies within the 
data, the primary challenge in inducing rules from 
decision tables is in the determination of which 
attributes should be included in the conditional part 
of the rule. If the rules are too detailed (i.e. they 
incorporate reducts that are maximal in length), 
they will tend to overfit the training set and classify 
weakly on test cases.  What are generally sought in 
this regard are rules that possess low cardinality, as 
this makes the rules more generally applicable.  
This idea is analogous to the building block 
hypothesis used in genetics algorithms, where we 
wish to select for highly accurate and low defining 
length gene segments [11].  There are many 
variations on rule generation, which are 
implemented through the formation of alternative 
types of reducts such as dynamic and approximate 
reducts.  Discussion of these ideas is beyond the 
scope of this paper and the interested reader is 
directed towards [10] for a detailed discussion of 
these alternatives. 

The rules that are generated are in the 
traditional conjunctive normal form and are easily 
applied to the objects in the DT.  What we are 
interested in is the accuracy of the classification 
process – how well has the training rule set 
classified new objects?  In addition, what sort of 
confidence do we have in the resulting 
classification of particular validation training set? 
These are standard issues that hold true for any 
machine learning application. In addition questions 
arise regarding methods for handling biomedical 
datasets that contain an unequal distribution of 
decision class objects.   Traditionally in rough sets, 
validation is accomplished through N-fold 
validation, where the N is dependent upon the 
particular dataset at hand – but generally a 70/30 



training/validation scheme is used, repeated 10-20 
times and the average of these runs are computed 
and reported.  In the next section, we describe the 
dataset that was used in this study.  In addition, we 
describe how we analysed this dataset with respect 
to handling missing values, discretisation and our 
validation procedure strategy. 

 
2. Methods 

 
The structure of the dataset consisted of 19 
attributes, including the decision attribute (labelled 
‘result’) which is displayed for convenience in 
table 1 below.  There were 2,664 entries in the 
table with 0 missing values. Since the data was 
essentially completely ordinal, no discretisation 
was performed on this dataset. We determined the 
Pearson’s Correlation Coefficient of each attribute 
with respect to the decision class.  The correlation 
values can be used to determine if one or more 
attributes are strongly correlated with a decision 
class. In many cases, this feature can be used to 
reduce the dimensionality of the dataset prior to 
classification. We selected the attributes with the 
largest correlation coefficient, which left us with a 
total of seven attributes.  In addition, we removed 
the ‘normal’ class, which only had 2 objects, 
leaving us with 3 decision classes.  With these pre-
processing steps completed, we then applied the 
rough sets algorithm to the dataset.  After several 
experiments, we decided to use dynamic reducts 
based on the resulting classification accuracy. With 
the collection of dynamic reducts, we went on to 
produce the final classification.  We tried 
variations in the number of training and testing 
objects, and found that a 70/30 split provided the 
best result.  We also filtered the dataset based on 
the attributes with the highest correlation 
coefficients – to see if we could reduce the 
dimensionality of the dataset without 
compromising classification accuracy. We 
 

 
3. Results 

 
The classification accuracy obtained in this study 
was significantly affected by the extent of the pre-
processing procedure.  Without any pre-processing 
at all, we obtained an average classification 
accuracy of approximately 60% (10 trials). As a 
first pre-processing step, we calculated the Pearson 
Correlation coefficients for all attributes in the 
decision table (excluding the decision attribute). 
The summary results for the correlation analysis 
are displayed in Table 1 below. From our 
experience, attributes with very low correlation 
coefficients (positive or negative) can be removed 
from the decision table without compromising 
classification accuracy [4,9]. 
 
Table 1. Attributes along with the Pearson 
Correlation coefficient for the elements in the 
decision table. Please note the ‘*’ next to the 
correlation values were those that were maintained 
in the reduced dataset 
 
 

Attribute Name Correlation 
coefficient 

Lymphatics 0.0176 
Block of efferents    d 0.093 
Block of lymphatics c 0.176 * 
Block of lymphatics s 0.169 * 
By pass 0.157 * 
Extravasates 0.197 * 
Regeneration of nodes -0.083 
Early uptake 0.251 * 
Lymph node 
diminishing 

-0.031 

Lymph nodes enlarging -0.112 
Change in lymph 0.101 * 
Defect in nodes 0.077 
Changes in nodes -0.181 
Changes in structure -0.047 
Special forms -0.012 
Dislocation -0.060 
Exclusion of lymph 0.101 * 
Number of nodes 0.081 

then repeated the classification process 20 times, 
selecting randomly with replacement. The results 
we obtained are described in the next section. 

 
 

 
 
 
 
 
 
 

Table 2. Confusion matrices from a randomly 
selected set of classification tasks.  We used 
dynamic reducts with no reduct/rule filtering, a 
70/30 split on training /testing.  The sensitivity is 
Listed in the top right column and the specificity is 
directly underneath the sensitivity (both are 
highlighted. Please note – ‘0’ corresponds  
to metastases, ‘1’ to malignant and ‘2’ to fibrosis 
 



 
 

 

 
Test1 0 1 2  
0 19 2 1 0.863 
1 3 13 1 0.765 
2 0 0 5 1.0 
 0.863 0.867 0.714 0.845 
Test2 0 1 2  
0 18 2 2 0.818 
1 2 12 3 0.706 
2 1 0 4 0.80 
 0.818 0.857 0.444 0.7405 
Test1 0 1 2  
0 18 3 1 0.818 
1 3 12 2 0.706 
2 0 1 4 0.80 
 0.818 0.857 0.571 0.7616 

 
 

4. Conclusion 
 
We were able to achieve a high classification rate 
for this dataset, with an average of 89%.  Our 
results provide reasonable classification accuracy, 
surpassing several reported values [2,3]. In the 
process of classifying the data, we were also able 
to reduce the dimensionality of the dataset to 7 
attributes.  In addition, rough sets generates a set of 
easy to interpret decision rules in the form if ‘if 
ATTR 1 = ‘X’ and ATTR 2 = ‘Y’ then decision = 
‘Z’.  These rules are directly interpretable by a 
domain expert and can serve as the basis for a 
decision support system.  Lastly, rough sets are 
able to work with datasets that are small and 
incomplete.  These properties of rough sets – 
makes this a very suitable tool for mining small 
biomedical datasets.  
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