

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Design patterns for automation of marketing authorisations in
pharmaceutical industry.

Stephen Williams
Radmila Juric
Peter Milligan

School of Informatics

Copyright © [2005] IEEE. Reprinted from the 27th International Conference
on Information Technology Interfaces, 2005. IEEE Computer Society, pp. 565-
570. ISBN 953713802X.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161114218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design Patterns for Automation of Marketing Authorisations
in Pharmaceutical Industry

Stephen Williams, Radmila Juric, Peter Milligan*
Cavendish School of Computer Science, University of Westminster, London, UK

*Enterprise Architecture, DCSIT, GlaxoSmithKline, London, UK

williast@wmin.ac.uk, juricr@wmin.ac.uk, pete.s.milligan@gsk.com

Abstract. This paper reports on the experiences
of using existing and creating new design
patterns when deploying layered and component
based software architecture that automates
procedures for marketing authorization. We use
the strategy pattern within the generic
architecture and deploy the architectural
components with the Model-View-Controller
(MVC) and front controller patterns. Three
domain specific patterns have been created and
named as: look-up, submission and evaluation.
We advocate that our combination of general and
domain specific patterns (i) facilitate the design
of distributed software applications, (ii) can be
reused in any problem domain where workflows
similar to submission and evaluations of
application licenses occur, and (iii) comprise
commercial-off-the-shelf (COTS) components
that fit within our software architecture.

Keywords. Design patterns, marketing
authorizations, COTS components, EJB.

1. Introduction

Component based software engineering has
become a ‘sine qua non’ in software
development, aiming to address its complexity,
increase its productivity and decrease the
development costs [20]. A development of
software architecture contributes towards flexible
and secure design of software systems [2]. We
often describe software architectures in terms of
components, interactions between them and
patterns that guide a composition of components
into systems. Design patterns [7] add more
towards software development by representing
knowledge, experiences and solutions for a class
of reoccurring design problems, hence achieving
higher software reusability and flexibility.
Design patterns are often given in the form of
structured descriptions of solutions for problems
targeted by patterns. Precise design pattern
specifications lead towards pattern based

software development [4,18], where we can build
software solutions from pattern specifications
and systematically assemble them into a design
[6]. However, informal description of patterns
proved to be effective when communicating
them to a wider audience, which could be
underpinned by extraction of pattern solutions
within existing software designs.

In this paper we report on experiences of
using existing and creating new design patterns
when deploying layered and component based
software architecture that automates procedures
for marketing authorisations of medicinal
product licences. We do not formally specify our
design patterns, but give examples and
description of their role in our design. We also
comment on their applicability across problem
domains where workflows similar to marketing
authorisations in the pharmaceutical industry
occur. Our design patterns were extracted and
enhanced after initial deployment of the
architectural components took place. The choice
of the J2EE technology has influenced our
software design decisions and design patterns.
Any discussion on the suitability of EJB
[http://java.sun.com] and its impact to our design
decisions, is outside the scope of this paper, but
is available in our other publications [12,13,14].

We start with a layered and component based
software architecture that automates procedures
for marketing authorisations of medicinal
product licences across the world, detailed in
[10]. Please note that the ‘marketing
authorisation of medicinal product licences’ is
the procedure out of which a licence may be
granted. In this paper we refer to this as
‘marketing authorisation’. When deploying
architectural example components we identify
three kinds of design patterns that facilitate the
design and implementation. We use the strategy
pattern from [7], which is built into our software
architecture. The MVC and front controller
patterns [1] have been applied on the
architectural example components after the

27th Int. Conf. Information Technology Interfaces ITI 2005, June 20-23, 2005, Cavtat, Croatia

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

decision on using the EJB technology had been
made. A set of our own design patterns, named
as look-up, submission and evaluation, are
problem domain specific. They have been
created when deploying architectural
components and implementing their
functionality. We advocate that such a
combination of general and domain specific
patterns (i) facilitate the design of our distributed
software application, (ii) can be reused in any
problem domain where workflows similar to
submission and evaluations of application
licences occur, and (iii) comprise COTS
components that fit within our architecture.

Section 2 details the related background and
outlines our previous work on the automation of
the marketing authorisations. Section 3
describes each pattern and emphasises the
creation of our own patterns in the process of
deploying a component-based model for the
automation of marketing authorisations. In
section 4 we comment on the role of COTS
components within our design patterns. We
conclude in section 5.

2. Related Background

Marketing authorisation procedures are very
important tasks undertaken by government health
departments and their regulatory authorities in
every country in the world. However, each
country has its own regulatory systems and
marketing authorisation procedures, which
represents a serious drawback for their efficient
local and worldwide registration. The
automation of such procedures in terms of
adequate software support is a critical task that
can improve the efficiency of regulatory
authorities and interoperation of regulatory
systems across the world.

We have analysed the local needs of
regulatory authorities and have extracted their
common practices across the world, which is
essential if any interoperation between regulatory
systems is to take place [8,9]. A software solution
that automates such evaluation practices is a large-
scale distributed application that requires sharing
of data and processes associated with evaluations.
In Fig. 1 we show the generic, layered and
component based architectural model that allows
automation of marketing authorizations. Each
regulatory authority may apply their own
authorization or any other available
internationally. We define the generic marketing

authorization that illustrates our software
architecture from Fig. 1 as two workflows:
(i) submission of a licensing application for a

marketing authorisation under local
regulatory authority rules (Ri),

(ii)evaluation of a successfully submitted
licensing application, under an evaluation
procedure and its rules D(Ei) available
locally/internationally.

Details on both workflows and their operating
environments are available at [14].

The application layer provides the basic GUI
functionality and controls the interaction
between users and any other layers within the
system. This includes the right choice of Ri and
Di(Ei) components involved in a particular
submission and evaluation of a medicinal
product. The domain layer consists of two
families of components: the Ri family contains a
set of rules that are to be followed if we want to
have an automated application submission within
a particular regulatory authority; the Di(Ei)
family contains all available evaluation

procedures Ei that originate in different
regulatory authorities and which can be applied
to any submitted application (after the
application has conformed to a set of submission
rules in Ri). With Di we denote that we chose
any combination of evaluation procedures Ei,
which are relevant for a particular Ri, and of
interest for a particular country/regulatory
authority. Components from the domain layer

use various data repositories stored within
components of the persistence layer, where data
on submissions and evaluations are kept. Our
persistence and domain layers can be seen as a
common repository of data and processes, where
various applicants, such as pharmaceutical
companies, regulatory authorities and hospitals,

Domain
Specific

GUI
Component

Analyse Users’
Request component

Figure 1: The Generic Software Architecture

Application
Specific Layer

Persistence
Layer

……
D1

E
D2

E2 E3

Dn

Ei Ej…

Submitted
Applications

Submission
Rules

Evaluation
Rules

Healthcare
DBs

……R2 RnR1

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

can share data and services defined in our
component architecture.

We have implemented a prototype, where
example components from Fig. 1, are modelled
as an EJB application, using Studio Enterprise 7
[13]. A full data-model that supports the
example has been generated in ORACLE 8i [19].
We chose the J2EE platform for our
implementation, because of our positive
experiences of implementing software
architecture for interoperable databases as an
EJB application [12].

We are not aware of any work involving
component-based solutions and design patterns
when automating marketing authorisations. Our
work on designing and implementing software
architecture that addresses workflows (i) and (ii)
is unique because each country uses local rules
Ri for submission, and any available international
evaluation procedure D(Ei). Thus, no specific
design patterns have been available for and
applicable to this problem. However, we are
reusing the strategy pattern [7] for the same
purpose and in the similar context as in our
works on architectures for interoperable
databases [11].

3. Design Patterns

We use existing design patterns and a set of our
own that facilitate the design and implementation
of our architectural components. The Strategy
pattern [7] is built into our software architecture.
The MVC and front controller patterns [1] were
applied after the decision on using the EJB
technology had been made. A set of our own
design patterns is problem domain specific. It
contains patterns called look-up, submission and
evaluation that have been created when
deploying our architectural components.

3.1 The Strategy Pattern

The Strategy pattern from [7] is used within the
domain specific layer of Fig. 1 when generating
Ri and D(Ei) components. They implement the
functionality of the two workflows given in (i)
and (ii) from section 2: submissions and
evaluation of licensing applications. These
families of Ri and D(Ei) components provide
different implementations of the same behaviour,
where the user’s request (and user’s

understanding of the problem) decides the most
suitable implementation or combination of Ri

and D(Ei) components. This pattern helps to
vary one part of our architectural structure
independently to some other parts, making our
system more robust to change, addressing
reusability and achieving extensibility. We
argue that:
1) submission rules and evaluation procedures,

as parts of software that are likely to change
(for instance to be extended or optimised) are
isolated from the rest of the system;

2) we may define as many variants of the same
submission rules or evaluation procedures as
possible, i.e. a family of submission rules
and evaluations. We may generate new
submission rules and evaluation through
previous experiences, new legislations etc.

3) the user of the system chooses the most
suitable combination of submission rules and
evaluation procedure (N.B. the user is aware
of different rules/procedures – this is a
requirement of the Strategy pattern);

3.2 Applying the MVC Pattern

The components from the application specific
layer of Fig. 1 are represented by JSP and
Servlets in order to accept a user input, analyse
it, make invocations to the EJB components, and
issue a response to a user. We use Servlets as the
common entry point into the application. It is
supported by a controller role given to Servlets in
the JSP/Servlet/EJB scenarios of the MVC
pattern. It enforces a separation of Model (Entity
Beans or/and JavaBeans), View (any HTML file
and/or JSP) and Controller (Servlets and Session
Beans) aspects. We do not show an example of
the MVC pattern explicitly, but it can be found
within Figs. 3, 4 and 5 where the separation of
View and Controller is emphasised. Our Servlets
implement workflows (i) and (ii) as in Figs. 4
and 5. This means that they control the flow of
the application and do not engage in any business
logic and do not control any of its data.

3.3. Using a J2EE Front Controller

We also follow the J2EE patterns [1]. Fig. 2
shows the front controller: ChoiceButServlet
controls the whole application by allowing the
user to click Submission, View or Evaluation
buttons in order to carry out any of these
functionalities.

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

Figure 2: The Front Controller

3.4.Creating our own Design Patterns

We have already mentioned that our Servlets
control the application functionality. They
control submission of new applications through
Ri and evaluation of submitted applications
through Di(Ei) components, which are the two
workflows (i) and (ii) from section 2. In both
cases we need an Entity Bean, which retrieves a
stored rule for checking the submission and a
chosen evaluation procedure for evaluating the
submission (<<EvaluationEntityBean>> or
<<RuleEntityBean>>). They both PLUG-IN to
Session Beans that perform rule checking for
submissions and evaluations, which may be
available locally or at remote nodes.

Our Servlets also allow access to DB
elements either directly through Entity Beans or
using Session Beans as an intermediary. In our
design we decided to use:
a) An Entity Bean, if the result of retrieval is a

single record
b) A Session and an Entity Bean, if multiple

records are to be retrieved. Such a Session
Bean is named as ‘Look-up’.

Thus we have discovered patterns that mirror the
way we compose our components.

3.4.1 Look-up Pattern

To illustrate the look-up pattern, we give an
example of retrieving all submitted applications
for an applicant. Each applicant can have more
than one licensing application within the system.
If we want to retrieve all of them, we have to use
Session Bean and Entity Bean as in b) from 3.4.

Fig. 3 shows an example of a “look-up”
Session Bean for retrieving all submitted
applications for a given applicant. For retrieving
all applications, Login.Servlet delegates
<<Look-upAllApplications.SessionBean>>,
hence the double broken arrow between the
Session Bean and Application database.

Figure 3: Look-up pattern

3.4.2. Submission Patterns

To illustrate the submission pattern we give an
example of plugging a checking rule into a
Session Bean. I.e. each licensing application
must be submitted according to the submission
rules Ri, which are stored within the Submission
Rules database. If the submission does not
adhere to the submission rules, a licensing
application cannot be created within the system.

Figure 4: Submission Pattern.

Fig. 4 shows the submission of an application,
which is controlled by the SubmissionServlet. It
delegates <<RuleCheckingSessionBean>> to
carry out the automatic submissions, i.e.
checking the adherence to submission rules Ri.
An Entity Bean <<RuleEntityBean>> retrieves a

Submission Given

Plug-in

No

Submission
Rules

Reports

SessionBean
RuleChecking

Ri

EntityBean
Rule

EntityBean
Report

SubmissionServlet

Yes

Applications

EntityBean
Application

Application

Specific
Layer

Domain

Specific

Layer

Persistence

Layer

ChoiceButServletAppLoaderServlet ViewServlet

EvalServlet

SubmissServlet

Authentication Passed

LoginServlet

Applications

SessionBean
Lookup

allApplications

EntityBean
Application

AppLoaderServlet

DisplayApps.jsp

Application

Specific Layer

Domain

Specific Layer

Persistence

layer

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

rule for checking the submission, which is stored
within Submission Rules database and plugs it
into <<RuleCheckingSessionBean>>. After
checking the adherence to submission rules Ri,
<<RuleCheckingSessionBean>> either creates
an application with <<ApplicationEntityBean>>
if the results of the checking are positive (Yes),
or creates a report on unsuccessful submission
with <<ReportEntityBean>> if the results of
checking are negative (No).

3.4.3. Evaluation Pattern

To illustrate the evaluation pattern we give an
example of executing an evaluation procedure
using the Di(Ei) component which is applied to
successfully submitted licensing applications.
However, all available evaluation procedures
have to be retrieved and displayed first, before
choosing the most appropriate one.

Figure 5: Evaluation Pattern

In Fig. 5 the evaluation of a submitted
application is controlled by ApplyEvalServlet,
which delegates <<SessionBeanEvaluating>>,
i.e. Di(Ei) to carry out the evaluation. However,
before the evaluation starts EvaluationServlet
uses a look-up session bean called
<<SessionBeanLook-upAllEvaluations>> for
retrieving all evaluation procedures available
locally or globally, which are stored within the
persistence layer. After displaying them through
DisplyEvals.jsp we chose one suitable evaluation
procedure. We use an entity bean
<<EntityBeanEvaluation>> to retrieve a chosen
evaluation procedure from an adequate

persistence. The <<EntityBeanEvaluation>>
PLUGS into <<SessionBeanEvaluating>> Di(Ei)
that perform evaluations. The result is stored
using the <<ReportEntityBean>>. The
evaluation pattern comprises look-up pattern:
there may be more than one evaluation procedure
available for each successfully submitted
licensing application. Hence the need for the
look-up pattern to retrieve them.

4. Design Patterns and COTS

The set of Ri and Di(Ei) components can be
extendible, standardized and dynamically
generated. They are candidates for COTS
components: they represent an implementation of
certain functionality, which can serve a family of
related applications [15]. In our example we
could use Ri and Di(Ei) components when
submitting and evaluating any licensing
application in any country in the world, i.e.
according to any evaluation procedure.
However, our Ri and Di(Ei) components could
also be applied to any other problem domain
where workflows similar to (i) and (ii) from
section 2 take place (see our future works).

The Ri and Di(Ei) components operate on the
principle of ‘plugging-in’ submission rules Ri or
evaluation procedures Di(Ei) – both stored in a
persistent data store - into Session Beans that
implement these functionalities, which is shown
in both patterns from Figs. 4 and 5. Therefore,
the programming code stored within our
<<SessionBeanEvaluating>> and
<<SessionBeanRuleChecking>> could
remain the same for a variety of evaluations (and
submissions). What changes, are the submission
rules and evaluation procedures stored within our
Evaluation and Rule databases, which are
plugged into an adequate Session Beans using
EntityBeans [13]. Having COTS components, as
part of the design patterns is an important
feature: it facilitates design patterns reusability
and addresses COTS components interoperability
and dependability on component platforms [5].

5. Conclusions and Future Works

This paper reports on our experiences of using
existing and creating new design patterns when
deploying layered and component based software
architecture that automates procedures for
marketing authorisations. Some of the patterns
are general and dictated by the use of component
technology, and some of them are problem

Persistence

Layer

Domain Specific
Layer

Evaluation Chosen

Plug-in
Yes/No

EvaluationServlet

EvaluationsReports

SessionBean
Lookup

allEvaluations

SessionBean
Evaluating

Di(Ei)

EntityBean
Evaluation

EntityBean
Report

DisplyEvals.jsp

ApplyEvalServlet

Applications

EntityBean
Application

Application
Specific

Layer

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

domain specific. All design patterns contributed
to the final design decisions, they are reusable
across a family of related application and can
accommodate COTS components.

We currently use a similar software
architecture and our design patterns in two
problem domains: (a) an automation of visa
application submissions and their evaluations at
the UK Home Office, and (b) the availability of
undergraduate places and entry requirements
across the universities in the UK and abroad. We
are also developing a pattern language [3] that
assists in the development of distributed
component applications and enhances the
reusability of business components as in [16].
We also plan to see how the set of Ri and Di(Ei)
components with design patterns affects design
decisions, if we place them within frameworks
that manage components’ dependencies when
assembling them into an application [17].

6. References
1. Alur D., Crupi J., Malks D. (2003) Core

J2EE Patterns, 2nd edition, Prentice Hall
2. Bass L., P. Clements, R. Kazman (1998),

Software Architecture in Practice, Addison
Wesley

3. Brown K., Eskelin F., Pryce N. (1999) A
Mini-Pattern Language for Distributed
Design, in proceedings of the PLoP conf., pp

4. Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad and M. Stal, A System of

Patterns: Pattern-Oriented Software

Architecture. Wiley, 1996.
5. Chiang C.C.(2002), Development of

Reusable Components through the Use of
Adaptors, Proc. of the 36th Hawaii Int. Conf.
on System Sciences (HICSS), IEEE, 2002.

6. France, R., S. Ghosh, E. Song and D.-K.
Kim, A Metamodelling Approach to Pattern-
Based Model Refactoring, IEEE Software,

vol. 20, no. 5, Sept./Oct. 2003.
7. Gamma E, Helm R, Johnson R and Vissides

J (1995) Design Patterns, Addison-Wesley
Professional; 1st edition (January 15, 1995)

8. Juric, R, and J. Juric (1999) The Application
of the UML to the Modelling of Automated
Support of Evaluating Medicinal Products
across Different Regulatory Requirements, in
D. Kalpic, V. Hljuz-Dobric (eds.) Proc. of the

21
st

Int. Conference on ITI’99, Pula Croatia,

pp. 283-291, ISSN 1330-1012.
9. Juric R. J. Juric (2000) Applying The UML

Modelling Elements in Complex Business
Environment, in M.M. Tanik and A. Ertas

(eds.) Proc. of 5
th IDPT 2000 Conference,

June, Dallas, Texas, US, ISSN 1090 – 9389
10. Juric R., and J. Juric (2002) Applying

Component Based Modelling in the Process
of Evaluation of Medicinal Products, in the
proc. of the IDPT-2002 conference,
Pasadena, CA, US, ISSN 1090 – 9389

11. R. Juric, J. Kuljis, P. Paul (2004), Software
Architecture Style for Interoperable
Databases, Proceedings of the 26

th
Int. Conf.

on ITI ’04, Croatia, 2004
12. R. Juric R. and LJ. Beus-Dukic (2005),

COTS components and DB Interoperability,
in Proc. of the 4th International Conference
COTS-Based Software Systems ICCBSS
2005, Spain, LNCS 3412, pp. 77-89.

13. R Juric, S. Williams, L. Slevin, R. Shojanori
S. Courtenage, P. Milligan (2005)
Component Based Automation of Marketing
Authorisations, submitted to the Journal of
Healthcare Informatics.

14. R Juric, L. Slevin, R. Shojanori S. S.
Williams (2005a) Software Support in
Automation of Medicinal Product
Evaluations, to appear in proc. of the
ICMCC event, Hague, 1-3 June 2005.

15. Juric, R., and Williams, S., (2005),
Experiences of Generating COTS
Components when Automating Medicinal
Product Evaluations, submitted to The 7th

Int.

Conference on Software Engineering and

Knowledge Engineering, SEKE ’05.

16. Neill C.J. and Bharminder G. (2003)
Refactoring Reusable Business Components,
in ITPro, IEEE, Jan/Feb 2003, pp 33-38

17. Northcott M. and M. Vigder (2005)
Managing Dependencies between Software
Products, in in Proc. of the 4th International
Conference COTS-Based Software Systems
ICCBSS 2005, Bilbao, Spain, LNCS 3412,
Springer-Verlag, pp. 201-211.

18. Rising, L. (1998) The patterns Handbook:
Techniques, Strategies, and Applications,
SIGS Books, Cambridge University Press

19. Slevin, L., R. Shojanori and R. Juric (2005),
A DB Environment for Automating
Regulatory Affairs in the Pharmaceutical
Industry, to appear in Proc. of the 8th Int.
Conference on Integrated Design and
Process Technology (IDPT), Beijing, China

20. Szypersky C., (2002) “Component Software-
Beyond Object Oriented Programming”,
Addison Wesley.

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 05:55 from IEEE Xplore. Restrictions apply.

