

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Software architecture style for interoperable databases.

Radmila Juric1
Jasna Kuljis2
Ray Paul2

1 School of Electronics and Computer Science, Westminster University
2 Department of Information Systems and Computing, Brunel University

Copyright © [2004] IEEE. Reprinted from ITI 2004: Proceedings of the 26th
International Conference on Information Technology Interfaces, Cavtat,
Croatia, Jun 07-10, 2004. University of Zagreb, pp. 159-166. ISBN
9539676991.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.westminster.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

159

Software Architectural Style for Interoperable Databases

Radmila Juric’, Jasna Kuljis’, Ray Paul’
‘Cavendish School of Computer Science, Department of Information Systems,

University of Westminster, 115 New Cavendish Street, London W l W 6UW
juricr~iu: \imrin.oc.uk , priutles~’ao1. coni

’Depurrttreni o/’In/i/r.nration Svsrcms ancl Compuring, Brunrl lJniuer:siry - -
Uxbridge, Middlesex UB8 3PH UK

Jus~a.Kuliis~briinel.ac.~rk Rny. Paul(dbrund.ac.uk.

Abs t rac t We propose a layered and component
based software architecture style which supports
interoperability in multiple databases (DB). The
architectural style’s building blocks and its
constraints are described and the deployment of
two design patterns outlined Components
pluced in our architectural layers exhibit a
linear topology and requestheply processing
slyle. The constraints include communications
between components which are not in the
adjacent architectural layers and extension of
the intuitive many : one bindings between
components towards many : many. We comment
on similarities with mediation architectures and
outline some implementation issues.

Keywords. Software architecture style, DB
interoperability, components.

1 In t roduc t ion

The problem of DB interoperability has been
in the focus of research in the DB community
since the early 1990s. There exist a numerous
work which covers both theoretical and
pragmatic issues that deal with semantics of the
interoperability problem in multiple DB systems.
This has been delivered through varying degrees
and configuration of integration,
interdependency and exchange amongst multiple
DBs in order to achieve effective sharing and use
of each other data and functionality [SI. The DB
interoperability problem has been addressed
through (a) migration between various DB
systems (e.g. from relational and object DB)
[13,21,27,31,32], (b) multidatabase and federated
architectures as defined in [29] and exploited in
works from [4,23,25,10,16] and (c) mediator
paradigm from [34.35], which has culminated in
research projects [28,22,1,6] and many more.
Each of these approaches suffer from drawbacks,

and today’s trend in DB centric applications is (i)
to allow the individual data structures to evolve
naturally within their own environments, and (ii)
to build/offer services that will provide
transparent facilities across different DB systems
[SI. A component based software architecture,
which accommodates interoperation and allows
extendibility and scalability of the multiple DB
systems and data repositories, while preserving
the autonomy of their individual elements, might
be a solution to the DB interoperability problem.

In this paper we propose a software
architectural style for interoperable DBs by
exploiting the role of software architecture as
defined in [30,3], and using a generic
component-based software architecture model
given in [ZO]. Our solution avoids integration,
centralization of data and structures, and use of
common database languages. The proposed
architectural style resembles mediation
architectures, but contains a distinctive set of
constraints imposed on the nature of architectural
components and the way they interact with other
components within multiple DB system.

Section 2 details the reference architectural
model, section 3 describes our architectural style
and its constraints, section 4 comments on our
architectural style and related work, section 5
outlines some implementation issues and section
6 concludes with the overview of future works.

2. A Layered Reference Mode l

The five layered reference architectural model
for interoperable DBs from [20] is given in Fig.
1 . We use a component-based technology [33]
and proposed layering is based on how
specific/general to our problem requirements
each component is. We use layered architecture
as described in [2] where layers are “allowed to
use” public facilities of the nearest lower level.

26th Int. Conf. Information Technology lnfeifaces IT1 2004, June 7-10,2004, Cavtat, Croatia

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

http://imrin.oc.uk
http://Paul(dbrund.ac.uk

Consequently, the usage of layers in layered
architectures flows downwards.

layer is the most specific
layer, whose components are responsible for:
* providing GUI functionality
0 managing interaction between users and

software layers,
analyzing the functionality of user’s requests
imposed on multiple DBs and routing such
requests towards appropriate components of
the lower layer(s),
managing value added services, such as
querying metadata or adding user’s
intervention, which might be essential when
resolving heterogeneity problems in multiple
DB systems (particularly important when
dealing with semantic and schematic
heterogeneity, various expressiveness of
database languages and smilar)

Components from this layer encapsulate
user/application specific code, which may be
distinct and not re-usable in, or interoperable
with, any other applications. For example:
requests for DB retrieval written in a specific DB
language might not be reusable across all
applications that use a multiple DB system.

The application

Application Layer

TranslationIModification Layer

Data Source Layer

Figure 1. Layered software architecture ref. model

The translation/modification layer is a core
layer which contains a family of components that
are responsible for translating the user’s request
to a targeted operating environment. For
example: we may need to translate a relational
SQL-query into a set of different joint queries
that range from object to XML data retrieval; or
we can translate an existing relational schema
declaration into class declarations of an object
DB, etc.

Components from this layer encapsulate a
code that can be shared amongst requests
originated in various DB applications, i.e. the
code can be used by a family of related
applications. For example all applications that

place relational SQL-like requests may use the
same components from the translation layer in
order to translate the request to a set of different
queries to match the targeted DB environment.

Important: the code in these components is
dependent on translation needs originated in the
application specific layer. Hence services from
the components in this layer might not be
required in some systems, such as a centralised
DB system, or fully replicated distributed DB
with shared DB architecture, or multiple DB
systems deployed with the same DB technology
and which exhibits no semantic and schematic
heterogeneity.

The domain specific layer is a core layer
which manages user’s workspace and contains a
family of components that are responsible for: - adhering to a particular application domain

in order to manage users’ requests . implementing the functionality of user’
requests by applying it to domain specific
components that are derived from general-
purpose persistent components from the data
source level below.

Components from this layer encapsulate a
code that may be used from different places
within the same application and by a family of
related applications. For example: components
housed within the domain specific layer may
implement functionality of (a) joining a
relational table and XML document for retrieval
or (b) executing a family of data definition
statements in order to create various data
structures or schemas simultaneously across
multiple DBs, etc.

The data source layer handles entity business
logic (‘entity’ taken from the EJB technology
[361). It is made up of components that provide
persistence and programming infrastructure
services for generakpurpose persistent
components. Components from this layer
encapsulate potentially reusable code across
many application domains.

The platform layer accommodates components
that underpin the application and which include
everything from operating systems, Database
Management Systems, GUI class libraries and
similar.

3. Our Architectural Style

A number of distinct architectural styles have
been given in [30]. They all describe their
building blocks through: (i) the nature of
architectural components i.e. the nature of their

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

computation, (ii) the way they interact with other
components when composing a system and (iii)
constraints on the way this composition is done.
Many real life problem domains combine more
than one architectural style into a specific one,
by incorporating useful aspects from several of
them.

3.1. Building Blocks of our Architectural
Style

The building blocks of our architectural style
are shown in Fig. 2. We identify some primitive
and composite components through their
participation in our architectural layers, we give
their substructure if they are composite and
declare what each component implements.

Component A, Analyzing User's Request is a
primitive component, but it implements
extensive functionality. It analyses user's
requests and determines in the following order:
a. translation requirements: e.g. the user's

request may be executed within its own
operating environment and there will be no
need for translation services or V.V.

b. functionality: e.g. the request could be for the
creation of a new structure or DB element, or
manipulation of existing DB elements etc.

Translation of a particular user's request is
required from components Tri in the translation
layer only if the user's request is to be executed
outside the environment where it originates.

If the received request needs translation, we
determine its functionality, before routing it
towards a particular Tr, component.
If the received request needs NO translation,
its functionality has to be determined first in
order to route un-translated requests directly
towards an appropriate set of D,', ... 0,'
components in the domain specific layer that
implement this functionality.

Components Tr, belong to a family of primitive
components where each of them implements a
different algorithm for translation of users'
requests to a targeted DB environment. In other
words, each Tri component provides different
implementations of the same behaviour (i.e.
translation), where the received request and
user's understanding of the problem decide the
most suitable implementation. Note: translation
algorithms might include value added services
such as user's interventions for resolving DB
semantic and schematic inconsistencies during
translation (if this has not been done by the A
component).

Components D,' ... D,,' belong to a family of
D,' components where each D,' component may
encapsulate any combination of Di components.
Each primitive 0, component is a subset of
general-purpose persistent component from the
data source layer. Each Di' implements certain
functionality, which is required by the
application specific layer, and which can be
performed on any combination (D, , 4. D,)
of persistent dita components. We may group
the functionality of received request into various
categories. One grouping is suggested in b.
above: data definition (DD), data manipulation
(DM) and data entry (DE). Note that the
functionality of each received request is
determined regardless of its need for translation.

Application I I GU' Specific ay er component
AH Analyse Users' , I 1

Request component

FigureZ. The building blocks of our architectural style

3.2. Constraints on our Architectural
Style

The layering principle given in the reference
model from Fig. 1 aims to achieve a certain level
of flexibility, reusability and extensibility of the
architectural solution for the interoperable DBs.
This principle of software layering is not new. It
has been used as a reference model in network
layering [17] and it is also a recognized software
architectural style [7].

3.2.1. Our Architectural Style and the IS0
model

In the I S 0 reference model [17] software
modules from one layer communicate directly
only with the layers above and below it. We can
partially map our reference architecture and the
IS0 model: the presentation and session layers
from h e I S 0 model may accommodate our core

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

layers of translation and domain specific
components. However, there is a difference:

Our architectural components communicate
from one layer to any other lower layer, hence
communication is not limited to adjacent layers.

The IS0 reference model assumes that
heterogeneity is managed at the lower levels of
the model and that the higher levels need not be
aware of any lower level differences. However,
our architecture produces an explicit
architectural support for managing heterogeneity
through the extensible set of components from
the translation and domain specific layers
positioned immediately below the top level.
Furthermore, the level and nature of
heterogeneity directly determines the
communication pathway between components
(i.e. layers), which is built-in into our
architectural model.

3.2.2. Combining Architectural Styles and
Connecting Layers

In spite of organising our components in
layered topology, Fig. 2 shows that we allow a
certain level of ‘a one way data-flow through a
network of filters’, i.e. linear topology within the
application specific layer, e.g. the user’s requests
are ‘filtered’ through the ‘analyse users’ request’
component before we proceed to any other layer.
However, the connection between layers might
exhibit the requestheply processing style. Our
architectural style from Fig. 2 allows
components to require and offer services from
components that are not in adjacent layers and
the execution order is partially determined by a
format of incoming users’ requests (see 3.2.1).
This points towards the star topology, where
requests and replies are bound according to
components needs.

3.3. Using Design Patterns

The Strategy pattem is used within the core
layers when generating a family of translation
algorithms encapsulated in the Tr, components
and a family of 0; components that implement
the functionality of user’s requests. In both cases
we provide different implementations of the
same behaviour where the user’s request (and
user’s understanding of the problem’) decide the
most suitable implementation. The Chain of

’ This user intervention is very important in building
an automated tool for translation algorithms’ support.

responsibilify pattern is used throughout the
model: all tasks are handled by the different
components in the chain (A.Tr,D’J and
forwarded ultimately to the component, which
executes it. We allocate components
dynamically in the chain, i.e. according to the
functionality of user’s requests, and bypass some
(e.g. Tr, components).

Both patterns help us to vary one part o f our
architectural structure independently to some
other pirts, making our system more robust to
change, addressing reusability and achieving
extensibility. We argue that:
1) translation algorithms, as parts of software

that are likely to change in future’(e.g. to be
extended, optimized or to be changed
completely) are isolated;

2) we define as many different variants of the
same algorithm as possible, i.e. a family of
related algorithms;

3) we generate new algorithms through
previous knowledge/experiences and
properties of operating environments as in
evolutionary programming, or machine
learning techniques;

4) the user chooses the most suitable algorithm,
i.e. different tactics according to trade-offs
when executing DB transactions (N.B. the
user is aware of different algorithms - the
requirement of the Strategy pattem);

5) loose coupling between components allows
easier modification/extension of the system’s
functionality:
i. some components can be bypassed if we do

not need them and
ii. the implementation code of components in

the Chain ofresponsibility pattern might be
simplified, because we do not need to
know which component in the chain is
going to handle a particular request.

3.4. Summarizing the Characteristics of
our Architectural Style

1. We separate components into layers
according to their specificity within the
application. Layer ordering is based on
compile time dependencies. The higher a
component in the model is, the more specific
it is and the more dependent on other
components (i.e. less reusable) and V.V.

2 . Our core (translation and domain) layers
push away application specific requirements
from generic functionality of data sources

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

3.

4.

5 .

6 .

I.

4.

1

and computing platforms, making systems
more adaptable to changes.
The content of a particular component may
be decided upon which layer it is appropriate
to reside, i.e. knowing the layer in which the
component resides, we know which services
it offers.
There is a possibility of extending families of
core layer components without affecting
existing components in the same and
adjacent layers. In addition, we may
generate in advance core layer components
to suit new requirementdapplications.
Our layering architecture allows components
from a particular layer to use services of
components from any other layer and not
only from adjacent layers. Components
within a particular layer can also me each
other’s services.
When binding services we allow that an
intuitive many ; one relationship between
requirements and provisions is extended
towards many ; many, i.e. each required
service may be bound to more than one
provided service.
Composite components of our core layers
may contain a variable number of primitive
components and consequently a variable
number of interfaces. They are determined
by
i. the functionality that a particular family of

components implements (see (b) in 3.1);
ii. the desired level of granularity of

individual primitive components.
Aiming to generate fine-grained components
with discrete functionality and low overhead
will increase the number of components
needed within the core layers and V.V.

Comments on our Architectural Style
and Related Works

Our generic reference architecture from Fig.
and the architectural style from Fig. 2,

resemble mediation architectures introduced in
[34,35,36] elaborated in [37,38], and compared
in [5]. Mediator software modules, placed in
between data resources and applications, provide
intermediate services in heterogeneous,
autonomous, distributed and evolving
information systems. Their aim is also to ‘avoid
the integration of data resources’ and to give an
‘integrated and consistent view’ of
heterogeneous and distributed datahformation
available, hence avoiding any centralization.

Our Analyze user‘s request component
may play a role of a ‘mediator’ in order to chose
the best pathway through the layers when
implementing required functionality. However,
the mediation [37] assumes that the retrieved
data from heterogeneous environments is to be
abstracted and transformed in order to be
integrated through matching keys, and processed
to increase the density of information.
Furthermore, the mediation architecture, which
extends the client-server model includes
integrators, whose role is to combine resources
that could be shared and generalized. Wrapping
of the existing data repositories or DB
applications is an essential interface/input
towards a mediation process: wrappers deal with
data model and platform heterogeneity and
mediators’ role is to resolve semantic and
schematic heterogeneity [SI.

Many research projects based on mediation
have been developed: Garlic [28], Information
Manifold [22], SIMS [I] , InfoMaster [9], DIOM
[24], COIN [I51 etc. Our architecture overlaps
with the TSIMMIS [6,14]: - information from heterogeneous and

autonomous information sources are
combined without having a global view of
integrated information or a global database
schema;
translators are used to convert data models
and queries; . mediators can automate information
integration and use expert knowledge and
value added services in order to process
specific information.

However, they differ in some aspects: - translation of information, i.e. data model
and queries, into a common object model
called OEM is essential in TSIMMIS;
queries written in OEM are submitted to a
mediator(s) and successively translated into.
local queries (i.e. queries of local database
sources) and the user is expected to write
queries in OEM;
browsing of information and/or information
exchange is allowed (OEM is an information
exchange model), but no update or creation
of new data structures are considered.

5. Implementation Issues

We are confdent that our architectural style
can be evaluated. Our layered architectural
model of extensible set of domain specific
components has been applied in the problem of

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

interoperability of medicinal product evaluation
practices in healthcare systems [19]. We are
currently implementing a simple example of DB
interoperability as an EJB [l l] application: a
user’s request f o r creating a new DB structure,
written in a relational SQL, results in
simultaneous creation of three different
structures: relational table, a class for the object
database and a DTD for an XML document [ZO].
It is essential that the user is not required to use
any other DB language except a relational SQL,
and he/she might not be aware that any
translation between relational SQL creation
command and class/DTD declaration statements
is taking place. This trivial example is needed at
our postgraduate tutorials within the IS
curriculum, where students are prepared to
discuss the DB interoperability problem, to
evaluate component technologies and to design
and deploy an example of distributed application
within the J2EE platform available at the
University. Students have designed a multi-tier
EJB application, with the Web container which
hosts Web components responsible for handling
the GUI, and the EJB containers, which host the
application components: A, Tri and Di’:

(a) The Tri components are model examples of
stateless session beans: each Tr, contains a
simple request and response functionality (e.g.
translation from relational to the 00 DD
statement). They call only one method per
session, operate on arguments that client passes
to it (e.g. table name, attribute names and types
for Tr,), they can be used sequentially by many
different clients and need no tailoring to suit a
specific client. Students have found the
ConverterEJB example from the JZEE
Reference Implementation at [I21 very useful
when coding the Tr, methods of the bean class
and its remote interfaces.
(b) The Di’ components have been designed as
statefull session beans, because they contain
more complex interactions and maintain
conversational state between a client and EJBs,
they may call more than one method per a
session and consequently may manipulate one or
more entity beans within a single session. These
session beans may access DBs using JDBC and
the J2EE connector architecture, which may
eliminate any need for entity beans.

(1). The PointBase Server 4.2
We outline two ‘controversial’ issues:

[26] installed
within the Sun ONE Studio 4 IDE for
implementing entity beans triggered

different views on (a) the extent to which
the EJB platform addresses the DB
interoperability problem itself and how it
might picture our architectural style as
‘redundant’ and (b) the JZEE Reference
Implementation’s assumption that legacy
systems are always from relational
environments [12].

(2) The A component’s functionality, designed
as a statefull session bean provoked
discussions on:
a. the role of value added services,

ontology, metadata and user’s
intervention when addressing
heterogeneity in multiple DB systems;

b. the decision of giving a control of the
whole application to the A component
which manages interaction between all
layers of the application from Fig. 2
and equalizing it with the role of
controller objects [181 rendered from
the requirement analysis model of such
an application.

All of these will be addressed in future works.

6. Conclusions

This paper addresses the DB interoperability
problem through component based software
architectural style and moves away from
migrations between technologies, federated
architectures, multi-database languages and
similar works from the 1990s. Our solution uses
a layered software architecture, populated with
components that exhibit linear topology and
requestheply processing styles. The most
important constraints allow components to
communicate with any layer, i.e. their
communication is not restricted to adjacent
layers only, and their binding is extended
towards many : many. In spite of these two
distinctive constraints, our software architectural
style resembles mediation architectures and their
ideas of how to tackle the DB interoperability
problem. Various mediators, adapters,
integrators and wrappers found in mediation
architectures, all serve to ease the
interoperability of today’s DB applications, by
addressing at various levels their heterogeneity,
autonomy, need for evolution and unavoidable
distribution. Some of our components can be
mapped to and play a role of mediators and
adapters/wrappers. From this respect our
architectural style does not represent a significant
change in the way the DB interoperability is

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

165

tackled today. However, our contribution is
centred on the following two:
1. We address the problem of semantic and

schematic heterogeneity, needs for value
added services, involvements of metadata
and access to possible ontology at the top
most layer of our architecture, i.e. within
component A. In other words, our mediation
or modifications or wrapping, happen very
early, i.e. users will have to deal immediately
with certain kinds or levels of heterogeneity,
which we see as very reasonable. If we
allow a multitude of DB languages, schemas
or DB system, to be available for today’s DB
applications, we either pay a conceptual
price for this or seek users interventions
when trying to automate or solve problems
arising from heterogeneities.

2. We have proposed in section 3 the analysis
of functionality of user requests in order to
determine the best possible pathway for our
components’ executions. The reasons are in
(a) categorising the functionality of user

request may affects the granularity of our
components and simplify the
implementations of algorithms of
components from the translation and
domain specific layers [21,20].

(b) contextualising and contracting software
components as in [33] may also have an
impact on the granularity of our
components. This will also allow us to
go beyond published required/provided
services of our components. We may
specify conditions attached to
components’ contracts that extend the
management of structured and semi-
structured data towards continuous data
streams of multimedia applications.

In our current work we map the functionality
of user requests issued upon multiple DBs to
components’ contracts. We contextualize
components within such a contract through
categorizations of user requests.

References
[I] Arens Y, Cluet S, Milo T. Query Processing

in the SIMS Information Mediator. In Tate
A, editor. Advanced Planning Technology,
AAA1 Press, 1996, 61-69.

[21 Bass L, Kazman R. Architecture-Based
Development, Technical Report, CMU/sei-
99-TR-007, esc-TR-99-007, 1999.

[3] Bass L, Clements P. Kazman R. Software
Architecture in Practice, Addison Wesley
Longman Inc., 1998.

Object-Oriented Multidatabase Systems: A
Solution for Advanced Applications,
Englewood Cliffs: Prentice Hall, 1996.

[SI Busse S, Kutsche RD, Leser U, Weber H.
Federated Information Systems: Concept,
Terminology and Architectures, Technical
report No 99-9, TU Berlin, Germany,l999.

[6] Chawathe S, Garcia-Molina H, Hammer J,
Ireland K, Papakonstantinou Y, Ulamn J,
Widom J. The TSIMMIS project: Integration
of Heterogeneous Information Sources,
Proceedings. of the IPSJ Conference, Tokyo,
Japan, 1994, 7-18.

[7] Clements, P, Bachman F, Bass L, Garland D,
Ivers J, Little R, Nord R, Stafford J.
Documenting Software Architecture: Views
and Beyond, Addison Wesley 2003.

[8] Dulay N, Juric R. On Interoperability in DB
Environments, An Analysis of Past and
Current Trends in the DB field, under review
for Journal of Integrated Design and Process
Science.

[9] Duschka OM, Genesereth MR. Querry
Planning in InfoMaster, In Proceedings of
the 12’h ACM Symposium on Applied
Computing, 1997, San Jose, CA.

[lO]Elmagarmid M, Rusinkiewicz A, Sheth A,
editors. Management of Heterogeneous and
Autonomous Database Systems, Morgan
Kaufman Publishers Inc., San Francisco,
1999.

http://iava.sun.com/products/eib/docsIO.html

httd/iava.sun.com/i2ee/tutorial/l 3-
fcs/doc/GettinpStarted.htm
http://www.oointbase.com/support/releaseno

[4] Bukhres 0, Elmagarmid AK, Editors.

[1 11Enterprise JavaBeans Specification

[12]EJB Reference Implementation available at

-11,
[I31 Fong J. Converting Relational to Obiect-
~~

Oriented Databases, ACMSlGMOD Record
1997, 26(1), 53-58.

[I41 Garcia-Molina H, Hammer J, Ireland K,
Papakonstantinou Y, Ulamn JD, Widom J.
Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS, In
Proceedings of the AAA1 Symposium on
Information Gathering, Stanford CA, 1995,
61-64.

[ISIGoh CH, Madnick ME, Siege1 MD. Context
Interchange: Overcoming the Challenges of
Large Scale Interoperable Database Systems

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

http://iava.sun.com/products/eib/docsIO.html
http://www.oointbase.com/support/releaseno

166

in Dynamic Environments, In: N. Adam, B.
Bhargava, Y . Yesha editors. Proceedings of
the 3rd International Conference on
Information and Knowledge Management,
ACM Press, 1994, 337-346.

[I61 Hull R. Managing Semantic Heterogeneity
in Databases: A Theoretical Perspective,
ACM/PODS 1999, or htta://www-
dbxsearch. bell-labs.com/user/hull/~ods97-
tutorial.html .
http://www.iso.ch/iso/en/CatalopueListPape.

[I71 IS0 standards available at

CataioeueList .
[IS] Jacobson I, Booch G , Rumbaugh I. The

Unified Software Development Process.
Reading, MA: Addison Wesley; ACM Press,
1999.

[19] Juric R, Juric J. Applying Component Based
Modeling in the Process of Evaluation of
Medicinal Products, in Proceedings of the
5th lntemational Conference on Integrated
Design and Process Technology, 2002,
Pasadena, CA.

Architecture to Support Interoperability in
Multiple Database Systems. In Proceedings
of the 22"d IASTED International
Conference on Software Engineering,
February 2004, Innsbruck, Austria.

[21] Juric R, Martin N. D E E and Migration
from Relational to 00 Databases, In: Kalpic
D, Hljuz-Dobric V, editors. Proceedings of
the 20th International Conference on
Information Technology Interfaces;l998 Jun,
Pula Croatia. Zagreb: SRCE University
Computing Centre, University of Zagreb;
1998, p. 323-334.

[22] Kirk T, Levy AY, Sagiv Y , Srivastava D.
The information Manifold. Proceedings of
the AAA1 '95 spring symposium on
Information gathering from Heterogeneous
Distributed Environment, p.85-91.

Interoperability of Multiple Autonomous
Databases, ACM Computing Surveys, 1990,

[20] Juric R, Kuljis J, Paul R. A Software

[23] Litwin L, Mark L, Roussopoulos N.

22(3), 267-293.
[24] Liu L. Pu C. Query Processing in DIOM,

IEEE Quarterly Bulletin on Data
Engineering, Special Issue on Improving
Query Responsiveness, 20(3) 1997.

Distributed Database Systems, Prentice Hall
Inc., 1999.

[25] Oszu TM, Valrudrez P. Principles of

[26] PointBase Developers Guide, available at
http://Dointbase.com/suoDort/releasenotes.ht
in I

[27]Ramanathan S, Hodges J. Extraction of 00
Structures from Existing Relational
Databases, SIGMOD Record 1997, 26(1),
59-64.

[28] Roth MT, Schwarz P. Don't Scrap it, Wrap
it! A Wrapper Architecture for Data Sources,
Proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997, 226-275.

[29] Shetsh A.P, Larson JS. Federated Database
Systems for Managing Distributed,
Heterogeneous and Autonomous Databases,
ACM Computing Survey, 1990, 22(3), 183-
236.

[30] Shaw M, Garland D. Software Architecture,
Perspectives on an Emerging Discipline,
Prentice Hall, Inc., 1996.

[31] Soudi A, Nachouki G, Briand H. Relational
Database Reverse Engineering: A
Knowledge-Based Approach, In:
Proceedings of the 3rd International
Conference on Object Oriented Information
Systems, London, UK, 1996, 180-194.

Engineering: Extraction of an IF02 Schema,
in 1995.

[33] Szypersky C. Component Software-Beyond
Object-Oriented Programming, Addison
Wesley, 1998.

Architecture of the Future Information
Systems, IEEE Computer, 25(3), 1992, 38-
48.

Information, SICMOD Record, 22(2), 1993,
434-431.

Mediation and Ontologies, Workshop on
Heterogeneous Co-operative Knowledge-
Eases, ICOT, Tokyo, Vol. W3, 33-48.

Conceptual basis for Mediation services,
IEEE Expert, 1997.

[32] Soutou C. Relational Database Reverse

[34] Wiederhold G . Mediators in the

[35] Wiederhold G . Intelligent lntegration of

[36] Wiederhold G (1994) Interoperation,

[37] Wiederhold G , Genesreth M. The

[38] Wiederhold G . Mediation to deal with
Heterogeneous Data Sources, 1999 -
httP://www -
db.stanford.edu/oub/aio/l999/Interopdocfi es .

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 11:16:41 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.ch/iso/en/CatalopueListPape
http://Dointbase.com/suoDort/releasenotes.ht
httP://www

