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Rigorous Analysis of Delta–Sigma Modulators for
Fractional-N PLL Frequency Synthesis

Mücahit Kozak, Member, IEEE, and İzzet Kale, Member, IEEE

Abstract—In this paper, rigorous analyses are presented for
higher order multistage noise shaping (MASH) Delta–Sigma (��)
modulators, which are built out of cascaded first-order stages,
with rational dc inputs and nonzero initial conditions. Asymptotic
statistics such as the mean, average power, and autocorrelation
of the binary quantizer error are formulated using a nonlinear
difference equation approach. An important topic of interest
considered here is the fractional- phase-locked-loop frequency
synthesis applications, where the input to the modulator has to
be a rational constant. It has been mathematically shown that,
regardless of the initial conditions, first-order and second-order
MASH��modulators with rational dc inputs cannot sufficiently
randomize the quantization error samples, and, therefore, are not
suitable for fractional- synthesis applications. An irrational
initial condition imposed on the first accumulator of a third or
higher order MASH modulator, on the other hand, annihilates the
tones throughout the whole output spectrum, and provides a very
smooth noise shaping. Simulation results are provided to support
the theoretically derived results. Implementation issues of the
irrational initial condition in the digital domain are also discussed
and investigated together with the effect of finite accumulator size
on the noise-shaping quality factor.

Index Terms—DC input, delta–sigma (��) modulators, frac-
tional- phase-locked loop (PLL), frequency synthesis, rigorous
analysis.

I. INTRODUCTION

DELTA–SIGMA ( ) modulation is an attractive means
for the implementation of high-resolution A/D and D/A

converters [1]–[3]. Although they constitute simpler circuitry,
which is less sensitive to circuit imperfections such as com-
ponent variations and mismatches, the exact analysis of
modulators is not a straightforward task, because of the se-
vere nonlinearity introduced by the single-bit quantizer [4].
A commonly employed approach that attempts to overcome
this difficulty is the linear approximation method, which in-
volves modeling the quantizer error as an additive white noise
source. Despite the fact that the linearized model can provide
reasonable results with respect to signal-to-noise ratio (SNR)
performance, it completely fails to determine the exact spectral
shaping of the modulator, which is highly likely to be discrete
and colored.
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Fig. 1. Fractional-N PLL synthesizer using�� modulation.

A more advanced linearized model for analyzing mod-
ulators is the so-called describing function method, in which
the quantizer is modeled as a linear gain (chosen in a min-
imum mean-square-error sense) followed by an input depen-
dent additive white noise source [5]. This improved model gives
crude explanations on the input dependent stability and large
amplitude limit cycle behavior of the modulators. However, it is
still an approximation in the sense that, except the fundamental
component (assuming a sinusoidal input), all other harmonics
generated by the quantizer are perfectly removed by linear fil-
ters within the modulator [4], [5]. The exact quantization noise
shaping performance of modulators is an important charac-
teristic, as in certain applications the spectral spikes contained
in the output spectrum may be strictly objectionable, for in-
stance in the fractional- phase-locked-loop (PLL) frequency
synthesis applications [6], [7].

Fractional- PLL frequency synthesizers utilize an all-dig-
ital modulator to generate accurately defined frequencies
and desired channel selection in wireless transceivers [6]–[9].
Fig. 1 illustrates such a PLL synthesizer where the output of the

modulator is used to modulate the instantaneous division
ratio of a multi-modulus frequency divider. The division ratio
alterations take place very rapidly, and in a random/pseudo-
random fashion so that the phase noise and spurious contents
are pushed to higher offset frequencies, where the existing PLL
loop filter can easily cut them off [10]. Consequently, the phase
error (analogous to the quantizer error in data conversion ap-
plications) spectrum is shaped by the high-pass noise transfer
function of the modulator, so that the phase noise in the vicinity
of the carrier (analogous to the baseband frequency in data con-
version applications) is small. This technique permits narrow
step sizes compared to the reference frequency and fast settling
times, while improving the phase noise performance of the PLL
frequency synthesizers [11]–[13].

1057-7122/04$20.00 © 2004 IEEE



KOZAK AND KALE: RIGOROUS ANALYSIS OF MODULATORS 1149

The difficulty involved in the realization of fractional- fre-
quency synthesizers is that the modulator is driven by a
worst case input, e.g. a constant input that is the desired frac-
tionality. The synthesized output frequency at the PLL, , is
given by [10], where is the in-
teger part of the division ratio of the multimodulus divider, and

, the input to the modulator, is a constant number
indicating the desired fractionality. It is a well-known fact that
constant inputs are the worst case inputs to the oversampling

modulators, as the successful operation of these modulators
relies on the assumption that the successive input samples are
uncorrelated (i.e., busy inputs), and under the static input con-
dition, this assumption is definitely violated [14]. These com-
plications are worsened in the context of fractional- synthesis,
because the modulator is implemented in the digital domain, and
due to the finite-word-length of the arithmetic, the input as well
as all the internal states are represented by rational numbers. It
is commonly observed that simple rational dc inputs to the
modulator produce purely limit cycle oscillations and tones, and
hence, no noise shaping is present at all [15], [16].

Another crucial point, is that, unlike data conversion appli-
cations, in fractional- synthesis, it is very dangerous to gen-
erate out-of-band1 limit cycles and tones as these components
are very likely to fold back to the baseband frequencies, because
of the nonlinearity in the implementation of the phase detector
[17]. Consequently, suitable modulators for fractional-
synthesis should produce tone-free output spectra throughout
the whole of the spectrum, not only in the baseband. This fact
draws attention to the importance of obtaining a very smooth
noise shaping (i.e., a noise shaping without discrete spectral
spikes throughout the whole of the spectrum) from a mod-
ulator when deployed in a fractional- synthesis application.
This requirement is the main motivation for the exact analysis of

modulators with rational dc inputs performed in this paper.
Exact analysis of the first-order modulator with dc inputs

was performed by Gray in [18], where it was shown that the
output spectrum consists of discrete spectral spikes whose loca-
tions and amplitudes are input value dependent. The technique
was then extended for the higher order multistage noise shaping
(MASH) [19] modulators in [20] and [21], using concepts
from ergodic theory. All of these exact analysis studies were
based on obtaining a nonlinear difference equation from which
the asymptotic autocorrelation function of the binary quantizer
error was determined. The results in [20] and [21] have mathe-
matically proved that in a higher order MASH modulator,
the white noise assumption for the binary quantizer error from
the last stage is indeed correct, when irrational dc inputs are em-
ployed. The same approach used for the exact analysis of MASH
modulators is also used in [22] and [23] to analyze higher order
single-stage modulators with irrational dc inputs.

All of the above-cited studies on the exact analysis of modu-
lators assume that the initial conditions in the accumulators (for

1Note that in fractional-N synthesis, the baseband frequency is defined as the
passband of the low-pass loop filter in the PLL. Out-of-band frequencies corre-
spond to the range of frequencies starting from the edge of the passband cutoff
frequency to the Nyquist frequency of the modulator. Similarly, an equivalent
oversampling ratio is also defined as the sampling rate divided by two times the
baseband frequency.

Fig. 2. Discrete-time model for first-order �� modulator.

a digital modulator) or integrators (for an analog modulator) are
zero. In fact, for the case of irrational dc inputs the asymptotic
behavior of the quantizer error is not affected by initial condi-
tions [4], [18], [20], [21]. However, when the input is a rational
constant (as it is the case in fractional- synthesis), such ini-
tial conditions may be very effective in randomizing the binary
quantizer error. It is, therefore, the aim of this paper to provide
exact analysis results for the higher order MASH modu-
lators with rational dc inputs and nonzero initial conditions. In
our analysis, we follow similar steps to those performed in [18],
[20], and [21], and make use of theorems from ergodic theory
as well as the characteristic function method combined with the
solution of the nonlinear recursive difference equation. Our re-
sults show that an irrational initial condition imposed on the
first accumulator guarantees a tone free output spectrum for a
third-order or higher order MASH modulator when driven
by rational dc inputs.

The rest of this paper is organized as follows. Section II in-
troduces the recursive nonlinear difference equations for the
first-order and higher order MASH modulators. Sec-
tion III presents theorems for the mean, average power, and
autocorrelation of the binary quantizer error sequence in the
first-order, second-order MASH, and higher order MASH
modulators. Simulation results, which justify our theoretical de-
velopments, are presented in Section IV. Implementation issues
concerning the realization of irrational initial condition in the
digital domain are discussed in Section V. Conclusions are given
in Section VI, followed by appendices that presents a synopsis
of the proofs of the theorems.

II. NONLINEAR DIFFERENCE EQUATIONS

A. First-Order Modulator

Consider a first-order modulator as shown in Fig. 2, which is
described by the following:

(2.1)

(2.2)

(2.3)

where is the initial condition on the accumulator, de-
notes the output levels of the single-bit (or binary) quantizer,
and is the quantization function. Let us define the binary
quantization error sequence such that . A
nonlinear difference equation, which relates the binary quan-
tizer error sequence to the input sequence, is stated in the
following theorem.



1150 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

Fig. 3. Discrete-time model for Lth-order MASH �� modulator.

Theorem 1: For the first-order modulator shown in
Fig. 2 with an arbitrary input for all , and an
arbitrary initial condition in the accumulator ,
the normalized binary quantization error sequence is given by

(2.4)

where is the output levels of the single-bit quantizer, and
for all .

The angle brackets in (2.4) denote the fractional part operator,
which is defined as . Similar derivations are
given in [24], and therefore, details of the proof for this theorem
are omitted here. For a dc input for all (i.e., the
input is held at a constant for all time), the normalized binary
quantizer error sequence can be written as

(2.5)
As a matter convenience, we follow the same notation as used
in [18], and define

(2.6)

(2.7)

Hence, .

B. Higher Order MASH Modulator

The discrete-time model for an th-order MASH mod-
ulator, which is formed out of first-order stages, is shown in

Fig. 3. The input to the modulator goes into the first stage, and
the negative of the binary quantizer error sequence from the first
stage is fed forward into the second stage as its input, and visa
versa. The outputs from all stages are processed by an error
cancellation network, which removes the binary quantizer error
components from all the stages except the last one [1], [2], and
[19]. The difference equations describing the th-order MASH

modulator are given as follows:

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where and ( ) are the initial condition on
the th accumulator, and the output from the th stage, respec-
tively. As is well known in the art, for an th-order MASH mod-
ulator the only noise term that appears in the output is the binary
quantizer error from the last stage [1], [19]. The reason for this
is that, as mentioned before, the quantizer error from all stages
except the last one is cancelled in the error cancellation network.
Hence, all that is needed for an exact analysis of a higher order
MASH modulator is the behavior of the binary quantizer
error from the last stage. Since every stage of the MASH
modulator is built out of the first-order ones, we can use The-
orem 1 as long as the initial condition on each of the accumu-
lators is bounded within the range . Mathematically,
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if ; ( ), then, the normalized
binary quantizer error from each stage is given by

(2.13)

Since for all and , (2.13)
is valid for due to Theorem 1, and furthermore it im-
plies that for all . With this conclusion, if

, then, (2.13) is also valid for . Sim-
ilar reasoning can be applied by induction to show that (2.13) is
valid for all stages [21]. The following theorem gives a general
description for the normalized binary quantizer error sequence
from the last stage.

Theorem 2: For an th-order MASH modulator formed out
of first-order stages with any arbitrary input for
all , and arbitrary initials conditions on the accumulators such
that , , the normalized binary
quantizer error from the last stage is given by

(2.14)

The proof of this theorem is accomplished in Appendix I.
Note that (2.14) applies to any arbitrary input and initial con-
ditions. In this paper, we consider only rational dc inputs in the
analysis, as it is the case in fractional- PLL frequency syn-
thesis applications. Once again, let for all

, and using the definition for stated in (2.6) we write

(2.15)

For simplicity purposes, we define such that
, where

(2.16)

The nonlinear difference equations in (2.5) and (2.15) indi-
cate that the normalized binary quantizer error sequence has a
bias of 1/2 from which the fractional part of a summation, which
is composed of the th-order and th-order discrete-time
integrated versions of the dc input and the initial condition on

the th accumulator, respectively, is subtracted. These equations
will later be used in Appendix II to derive the statistics of the
binary quantizer error sequence.

III. STATISTICS OF QUANTIZER ERROR SEQUENCE

A. First-Order Modulator

This section presents a theorem for the mean value, average
power, and autocorrelation function of the binary quantizer error
sequence in the first-order modulator with a rational con-
stant input and arbitrary initial condition on the accumulator.
Before presenting the theorem, it is useful to explicitly state the
assumptions made throughout this section.

• The input to the modulator is a constant,
for all . This assumption is required, because

in fractional- PLL frequency synthesis applications the
input to the modulator is a constant.

• The normalized dc input to the modulator is a rational
number (i.e., is a rational number). Note that this
assumption implies that is also a rational number (see
(2.6)), and therefore, can be given by where
and are relatively prime integer numbers. This assump-
tion is required, because in fractional- PLL frequency
synthesis applications, the modulator is implemented
in the digital domain where the dc input value can only be
represented as a rational fraction of the quantization step
size.

• The initial condition on the accumulator is arbitrary (it can
be either rational or irrational). Later, we shall see in the
case of higher order MASH modulators that it is re-
quired that the initial condition on the first accumulator be
an irrational fraction of the quantization step size. For the
first-order modulator case, such a restrictive assump-
tion is not required, and the results of the following the-
orem are valid for both rational and irrational initial con-
ditions.

Theorem 3: Consider the first-order modulator as shown
in Fig. 2 employing single-bit quantization with output levels

, and having an arbitrary initial condition on the accumulator
such that . Assume that the input to the mod-
ulator is a constant such that for all ,
where is a rational number. The mean value, average
power, and autocorrelation of the normalized binary quantizer
error sequence are, respectively, given by

(3.1)

(3.2)

and

(3.3)
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where
= , and can be written as ,
where and are relatively prime integer numbers;
= , where the operator denotes the
smallest integer greater than or equal to .

The proof of the theorem is given in Appendix II. Note that
Theorem 3 states that the mean value of the normalized binary
quantizer error sequence is not zero. It also indicates that the
average power is not 1/12. Furthermore, the autocorrelation is
nonzero for nonzero lag indexes, implying strong periodic com-
ponents in the output spectrum. By virtue of Theorem 3, in the
first-order modulator, it is not possible to obtain a quantizer
error sequence that is uniformly distributed.

As mentioned before, the first-order modulator was ana-
lyzed before for the rational dc input case with a zero initial con-
dition on the accumulator [18]. For zero initial condition (i.e.,

and ), the formulas given in (3.1)–(3.3) reduce to
, , and

, which are identical to the equations
derived in [18, eqs. 3.11a, 3.11b, and 3.14], respectively. The-
orem 3 is an extension of the previous results presented in [18]
with an arbitrary initial condition on the accumulator.

B. Higher Order MASH Modulators

As in the previous section, before presenting the theorems
for higher order MASH modulators, we explicitly state the
assumptions made throughout this subsection.

• The input to the modulator is a constant,
for all . This assumption is required, because

in Fractional- PLL frequency synthesis applications the
input to the modulator is a constant.

• The normalized dc input to the modulator is a rational
number (i.e., is a rational number), implying that

is a rational number (see (2.6)), and thus can be given by
, where and are relatively prime integer

numbers. This assumption is essential due to the use of an
all-digital modulator in Fractional- PLL frequency
synthesis applications.

• The initial condition on the first accumulator is an irra-
tional fraction of the quantization step size arbitrary (i.e.,

is an irrational number). This assumption is re-
quired, because in the derivation of the statistics of the bi-
nary quantizer error sequence we shall make use of a result
from ergodic theory of mathematics that requires some
form of irrationality. Unfortunately, a general analysis as
for the first-order modulator case does not easily ex-
tend to the higher order MASH modulators. There-
fore, the results of the following theorems are only valid
for the irrational initial condition case.

Theorem 4: Consider the second-order MASH modu-
lator employing single-bit quantization with output levels ,
and arbitrary initials conditions on the accumulators such that

; ( ). Assume that the input to the
modulator is a constant such that for
all , where is a rational number. Further assume that

is an irrational number. The mean value, average

power, and autocorrelation of the normalized binary quantizer
error sequence from the second stage are, respectively, given
by

(3.4)

(3.5)

and

(3.6)

where
= , and can be written as ,
where and are relatively prime integer numbers;
=

when and
when and
when and
when and

where represents the greatest common
divisor of positive integer numbers and ;
= .

The proof of the theorem is given in Appendix II. Note that
the Theorem 4 states that in a second-order MASH modu-
lator, the quantizer error sequence from the second stage is not
uniformly distributed, even with an irrational initial condition.
This fact is evident by (3.6), where autocorrelation function has
nonzero values for nonzero lag indexes. Therefore, the quanti-
zation error sequence appearing at the output of a second-order
MASH modulator is not white. This behavior is due to the
lack of sufficient memory in the accumulation of quantization
error sequence.

Theorem 5: Consider the th-order (where ) MASH
modulator as shown in Fig. 3 employing single-bit

quantization with output levels , and arbitrary initials
conditions on the accumulators such that

. Assume that the input to the modulator is
a constant such that for all , where

is a rational number. Further assume that is
an irrational number. The mean value, average power, and au-
tocorrelation of the normalized binary quantizer error sequence
from the last stage are, respectively, given by

(3.7)

(3.8)

(3.9)

The proof if this theorem is presented in Appendix II. Expres-
sions (3.7)–(3.9) show that in a higher order MASH mod-
ulator (where ), the binary quantizer error sequence from
the last stage has a mean value of zero, an average power of 1/12,
and an autocorrelation function which is zero for all nonzero
lag indexes. Thus, the quantizer error sequence is uniformly dis-
tributed and statistically independent of the input, which is com-
pletely consistent with the white noise assumption.
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Fig. 4. Autocorrelation function for the binary quantizer error in the first-
order modulator with 0.1 dc input. (a) v = 0:60684258354180. (b) v =

�0:60684258354180.

IV. SIMULATION RESULTS

In order to verify our theoretical results, we have undertaken
extensive simulations on modulators employing single-bit
quantization with output levels . A time-domain difference-
equation simulation is run for number of ouput samples
from which the sample mean, average power, and autocorre-
lation function of the quantizer error sequence are obtained.
Figs. 4–7 show the simulated autocorrelation function of the bi-
nary quantizer error sequence along with its analytically derived
expression, for various modulators, dc input values, and ini-
tial conditions. The simulated mean value and the average power
are also listed on top of these plots.

As seen from these plots, the theory and simulation are in
exact agreement justifying the derived formulas. Fig. 4(a) and
(b) illustrate the autocorrelation function of the binary quantizer
error sequence in the first-order modulator with a positive
and negative initial condition, respectively, where .
Figs. 5 and 6 show the autocorrelation function in the second-
order 1–1 MASH modulator for various dc input value and
initial condition combinations. These figures justify the validity
of the formulas in (3.4)–(3.6). Fig. 7(a) and (b) depict that the

Fig. 5. Autocorrelation function for the binary quantizer error in the 1–1
MASH modulator. (a) X = 0:1, v = 0:60684258354180 and v = 0.
(b) X = 0:1, v = 0:60684258354180 and v = 0:2.

binary quantizer error sequence from the last stage of the 1–1–1
and 1–1–1–1 MASH modulator, respectively, has identical
first- and second-order statistics as a uniformly distributed white
noise, as predicted by (3.7)–(3.9).

Note that only and lag indexes are shown in
Fig. 4–7 for clarity. Fig. 8(a) demonstrates the difference be-
tween the theoretically derived and simulated autocorrelation
function of the binary quantizer error in the first-order modu-
lator for the case shown in Fig. 4(a). This very small (of the order
of ) discrepancy between the simulated and the analyti-
cally calculated autocorrelation may be attributable to possible
numerical inaccuracies and/or drifts in the simulation software
environment. The difference between the analytically calculated
and simulated autocorrelation function in the second-order 1–1
MASH modulator for the case of Fig. 5(a) is shown in Fig. 8(b).
This difference (of the order of ) is mainly a result of
the finite number of samples that can be obtained from a digital
simulation of modulators.
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Fig. 6. Autocorrelation function for the binary quantizer error in the 1–1
MASH modulator. (a) X = �0:1, v = 0:95012928514718 and
v = 0. (b) X = �0:5, v = �0:23113851357429 and v = 0:2.

V. DIGITAL REALIZATION OF IRRATIONAL INITIAL CONDITION

In Section III, it is shown that the third-order or higher
order MASH modulators provide tone free output spec-
trum, when an irrational initial condition is used in the first
accumulator. However, as mentioned before, in fractional-
frequency synthesis applications, the modulator is implemented
in the digital domain, and one might rightly consider how the
irrational conditional could be realized in the digital domain.
The answer to this question relies on the fact that a rational
number, which is represented by a ratio of two relatively prime
integer numbers, will tend to an irrational number when the
number in the denominator is made very large [18]. This fact
suggests that, provided the dynamic range of the accumulators
is sufficiently large, an odd2 number initial condition can still
act as an irrational number in fixed-point implementations.

2Note that here the reason for choosing an odd number is to represent the
initial condition by a ratio of two relatively prime integer numbers, with the
largest possible denominator.

Fig. 7. Autocorrelation function for the binary quantizer error in the 1–1–1
and 1–1–1–1 MASH modulators. (a) X = 0:1, v = 0:60684258354180,
v = 0 and v = 0. (b) X = �0:8, v = �0:48598246870930,
v = 0, v = 0 and v = 0.

Another point, which should also be considered here, is that
the formulas presented in Section III for the mean value of
the binary quantizer error sequence is for infinite time (see
Appendix II). This means that if the data were infinitely long,
the mean value of the binary quantizer error would approach
zero (i.e., the mean value of the output would approach the
value of the constant input). However, the fractional- PLL
frequency synthesizer should settle to the desired frequency
within a specified finite time (which is the settling time of the
synthesizer). This implies that the number of samples that can
be taken from the output of the MASH modulator is large,
but limited. Arbitrarily choosing a large odd number for the
initial condition in the first accumulator, therefore, may result
in relatively large error between the mean value of the output
and the constant input. This yields a relatively large frequency
error in the synthesized PLL output. In order to minimize these
frequency deviations, it is desirable to utilize the minimum odd
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Fig. 8. Difference between simulated and theoretically calculated autocorrelation function. (a) First-order modulator of Fig. 4(a). (b) Second-order 1–1 MASH
of Fig. 5(a).

number, which is “1,” in the first accumulator as the initial
condition. This is accomplished by setting “1” LSB in the
first accumulator each time the circuit is reset [9]. A digital
implementation of the 1–1–1 MASH modulator with the
“1” LSB initial condition in the first accumulator is depicted
in Fig. 9 [25], [26]. The effect of “1” LSB irrational initial
condition was previously observed and successfully utilized
to achieve a low spurious performance in [9]. The findings
and results reported in this paper have rigorously explained
this complex behavior, which was empirically found after the
painful experiences of the designers, that reported in the past
[9] with some intuitive reasoning and without mathematical
justification.

Fig. 10 presents output noise spectra (dc input removed) of
the three, four and five-stage MASH modulators, where the
dynamic range of accumulators was set to 20-bit, and “1” LSB
irrational initial condition is used in the first accumulator. These
spectra are obtained from the fixed-point simulations, where 16
units of 50% overlapping modified periodograms, each with a
32K length, are used to estimate the power spectral density. The
results clearly indicate the effect of “1” LSB initial condition,
as no tones are observed throughout the whole spectrum. Also
observe that the noise power as well as its spectral distribution
is uniform across dc input values, which indicates the linear op-
eration of modulators, despite the severe nonlinearity intro-
duced by single-bit quantization.
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Fig. 9. Digital implementation of the 1–1–1 MASH �� modulator.

Fig. 10. Output noise spectra for MASH modulators from 20-bit fixed-point simulation. (a) Three-stage. (b) Four-stage. (c) Five-stage.
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In order to investigate the effect of “1” LSB initial condition
for various accumulation sizes, here a new measure called noise-
shaping quality (NSQ) factor is introduced. The NSQ factor of
an th-order modulator is defined as follows:

(5.1)

where SAD stands for “the sum of absolute differences in power
between the measured output quantization noise and the theo-
retical noise shaping performance of the modulator,” and TP is
“the total power in the noise transfer function.” Mathematically,
this is written as

(5.2)

where is the sampling frequency of the modulator,
is the noise-shaping transfer function, and

is the power-spectral density of the quantizer error se-
quence. The NSQ factor gives an indication of how closely dis-
tributed the output quantization noise spectrum is with respect
to the theoretical noise shaping performance of the modulator.

It is clear, however, from the definition stated in (5.2) that for
a white noise quantizer error, the value of NSQ does not equal
to unity (in fact it is much smaller than unity). This means that
the maximum achievable NSQ factor for a real modulator is lim-
ited to that of the truly white noise. Therefore, before extensive
fixed-point simulations are undertaken, it is required that the
NSQ factor of a white noise is determined and all the raw NSQ
measurements are normalized to this value. It can be shown
that for an ideal white noise quantizer error the NSQ factor is

, which is the variance of the white noise [27].
The effect of the finite accumulation size on the NSQ factor

is illustrated in Fig. 11, where the solid, dotted, and dashed lines
correspond to the third-, fourth-, and fifth-order MASH
modulator. Also note that in each of these fixed-point simula-
tions, “1” LSB of the first accumulator was set at the beginning
of the start-up. Panel (a) of this figure was obtained by aver-
aging the NSQ factors over the worst ten inputs (i.e., was
traced from 0 to 1 with 0.1 increments), while the NSQ simula-
tions in panel (b) were averaged over all the specified inputs in
a Fractional- synthesis application.3

The relatively low value of the NSQ at a low number of bits
is a result of the huge truncation error in the internal states.
Four- and five-stage modulators, however, demonstrate almost
perfect operation (e.g., they produce quantizer error which is
really close to white noise), when the number of bits in the im-
plementation is higher than 16. As shown in Fig. 11(a), in the
three-stage modulator, as the accumulator dynamic range is in-
creased the NSQ factor begins to deteriorate. The reason for this
behavior is that when the number of bits is large the third ac-
cumulator does not experience sufficient activity near the LSB
positions, resulting in the tonal/structured output spectra. We
conclude that fourth-order and higher order modulators, on the

3We assumed that f = 20 MHz and the desired frequency step was
f = 200 kHz, which is typical [10]. The dc input in this case, therefore,
was traced from 0 to 1 with 0.01 increments.

Fig. 11. Plot of the NSQ factors of third-, fourth-, and fifth-order MASH��
modulators (with the “1” LSB in the first accumulator set) for different number
of accumulation size. (a) Averaged over worst ten dc inputs. (b) Averaged over
all specified dc inputs.

other hand, are more robust with respect to the digital imple-
mentation of the “1” LSB irrational initial condition.

VI. CONCLUSION

In this paper, rigorous analyses of modulators with ra-
tional dc inputs and nonzero initial conditions are performed.
Our theoretical results were verified through extensive simula-
tions. It is concluded that for a first-order modulator the bi-
nary quantizer error exhibits a purely discrete power spectrum,
and consequently the white noise assumption is strictly violated.
Neither the first nor the second moments comply with the white
noise assumption. The second-order 1–1 MASH modulator
produces the same first order statistics as those of the white
noise, when an irrational initial condition is imposed on the first
accumulator, but it still fails to generate an uncorrelated quan-
tizer error sequence. It has been proved that the quantizer error
sequence from the second stage is colored, as its autocorrelation
function is not an impulse. The most important conclusion that
can be drawn from this paper is the following statement: “When
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the number of stages in a MASH modulator is greater than
or equal to 3 ( ), an irrational initial condition on the first
accumulator produces a binary quantizer error sequence from
the last stage that is a uniformly distributed identical distribu-
tion random process.” This is because in this case the sample
mean, average power and autocorrelation are the same as those
produced by a white noise. Additionally, the quantizer error se-
quence is uncorrelated with the dc input.

Digital implementation of the irrationality is also discussed
in this paper. Specifically, a new measure metric, NSQ, is de-
fined for assessing the modulator performance under nonideal
conditions. It has been shown that, compared to the third-order
MASH modulator, fourth-order or higher order MASH
modulators are more robust in terms of the digital approxima-
tion of the “1” LSB irrational initial condition when fixed-point
arithmetic is used.

It should also be noted that, with the mathematical tools in
our hand, the analysis performed for the higher order MASH
modulators were restricted only to irrational initial condition on
the first accumulator. The reason for this is that results from er-
godic theory (i.e., Weyl’s Theorem) require assumptions with
respect to the irrationality of some of the input or system pa-
rameters. Unfortunately, the analysis technique performed for
the first-order modulator does not easily apply to that of
the higher order ones.

It is well known that modulators are nonlinear chaotic
systems, and two infinitesimally small different initial condi-
tions may result in completely divergent outputs. This paper,
however, presents important results that rigorously prove the
effectiveness of the irrational initial condition in terms of the
tonality performance.

APPENDIX I
PROOF OF THEOREM 2

The proof is by induction on . Assume that ; then,
(2.14) coincides with (2.13). Now, assume that (2.14) holds for

, and write using (2.13)

(7.1)
Inserting (2.14) into (7.1) we obtain the first equation shown
at the bottom of the page. Simple algebraic manipulation on the
the equation yields (7.2), shown at the bottom of the page, which
complies with (2.14). The theorem is proved.

APPENDIX II
PROOF OF MAIN RESULTS

A. Preliminaries

Our primary goal is to evaluate the sample mean, average
power, and autocorrelation of the binary quantizer error
sequence. For a stationary ergodic random process
( ), the sample mean, average power and auto-cor-
relation are, respectively, defined by

(8.1)

(8.2)

and

(8.3)

if the limits exist. Let us define another ergodic random process
such that . Observe that the statistics of
can be recovered from those of as follows:

(8.4)

(8.5)

and

(8.6)

The following theorem, which states important facts on the dis-
tribution of the fractional numbers, is well known in the ergodic
theory, and will play a fundamental role throughout our higher
order MASH analysis, as it did in [20]–[23].

Weyl’s Theorem [28]: Let
be a polynomial with real coefficients. If among

at least one of them, except the constant term
, is an irrational number, then for any Riemann integrable

function the following equality holds:

(8.7)

For the purpose of later use, several useful properties of the
modulo 1 arithmetic are also given here. Let and be real

(7.2)
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numbers. It follows from the definition of the fractional operator
that

(8.8)

where the indicator function is defined as

if
otherwise

(8.9)

with where .

B. Proof of the Theorem 3

In this section, a synopsis of the proof of Theorem 3 is pre-
sented. A complete proof is given in [27], therefore much of the
details are omitted in this paper, for the sake of brevity. Before
proceeding to proving the theorem, it is appropriate to restate
the assumptions made on the input to the modulator.

• The input to the modulator is a constant
for all .

• The normalized dc input to the modulator is a rational
number (i.e., is a rational number). Note that this
assumption implies that is also a rational number [see
(2.6)], and therefore can be given by , where
and are relatively prime integer numbers.

Our goal is to derive expressions for the mean, variance,
and autocorrelation of the intermediate sequence given in
(2.7) using (8.1)–(8.3), from which the statistics of the normal-
ized binary quantizer error sequence can be recovered using
(8.4)–(8.6). First note that with the assumption ,
where and are relatively prime integer numbers, is
a periodic sequence with a period of [see (2.7)], and thus,
the infinite summation in (8.1) reduces to a finite summation.
Using this fact and employing the property in (8.8), the sample
mean of can be written as

(8.10)

Before proceeding further, we shall note the following lemma
adopted from [18].

Lemma 1 [18]: If where and are rela-
tively prime integer numbers, then the collection of numbers

corresponds to the same col-
lection of numbers .

See [18] for a proof of the above lemma. Let us momentarily
assume that , which leads to . Ap-
plying Lemma 1 to (8.10), we get the following expression:

(8.11)

The above expression can be evaluated when the appropriate
limits are used for the conditional summation (rightmost term)
such that

(8.12)

where is the smallest integer greater than or equal to . As
a matter of convenience, let us define .
With this definition

(8.13)

By substituting (8.13) into (8.4), we obtain an expression for the
mean value of the normalized binary quantizer error sequence,
which is given as

(8.14)

The second moment of is given by

(8.15)

Combining (8.15) with (8.8), and using Lemma 1 results in

(8.16)

By expanding the square term in (8.16), and after some algebraic
manipulations, one can achieve

(8.17)

Hence, the average power of the binary quantizer error sequence
is found using (8.5), (8.13) and (8.17) followed by simple alge-
braic manipulations

(8.18)

The autocorrelation function of sequence is given by

(8.19)

Using (8.8), the above expression can be written as

(8.20)

The rightmost term in (8.20) is evaluated as [27]

(8.21)

Substituting (8.21), (8.17), and (8.13) into (8.20), we obtain

(8.22)
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which, in conjuction with (8.6) and (8.13), gives an expression
for the autocorrelation function of the binary quantizer error se-
quence that is given by

(8.23)

This proves the theorem.
Note that in the analysis performed here, it was assumed that

. Similar procedures, however, can be undertaken to ex-
tend these results for the negative initial condition by using the
fact that when . The details
are omitted here for the sake of brevity. Nevertheless, the results
are the same for negative initial condition, and consequently the
formulas in (8.14), (8.18), and (8.23) are still valid. This fact
is justified by computer simulations given in Section IV (see
Fig. 4). It should also be emphasized that the above development
does not put any restriction on the nature of the initial condition,
hence the results are valid for both rational and irrational initial
condition.

C. Proof of Theorem 4

In order to evaluate the moments of the normalized binary
quantizer error sequence in a MASH modulator, one needs
to determine a closed form for the nested sums in (2.16). In
achieving this, we follow similar notations used in [21] and
[23]. Let represents “generically” a polynomial of
degree in . The qualifier “generically” indicates that
represents any polynomial with degree [21]. Effectively, one
can write for any positive integer numbers and with

(8.24)

where and are two real numbers with . Similarly, we
define and to represent generic polynomials of de-
gree with all rational and irrational coefficients, respectively.
Note that (8.24) is also valid for rational and irrational polyno-
mials. We continue by noting a lemma from [21].

Lemma 2: The th-order sum of the constant of “1” is a poly-
nomial of degree with all rational coefficients. Mathemati-
cally

(8.25)

See [21] for proof of this lemma. With the aid of Lemma 2, a
closed form for the nested summation in (2.16) is given by

(8.26)

Using (8.26) and (8.1), the mean value of the sequence is
given by

(8.27)

Throughout the developments in this subsection, we consider
the case where the constant input is a rational fraction of the
quantizer step size (i.e., is rational), and the initial condition
on the first accumulator is an irrational fraction of the quantizer
step size (i.e., is irrational). With this irrational initial
condition assumption, the infinite limit in (8.27) is evaluated
with the aid of Weyl’s Theorem stated in (8.7). Applying (8.24)
to (8.27), and using (8.7), one can write

(8.28)
provided . Note that the Weyl’s Theorem can only be
utilized when , because we need an irrational polynomial
of degree at least one. Similarly, the second moment of is
written as:

(8.29)
if . The sample mean and average power of the binary
quantizer error sequence from the last stage directly follows
from (8.4) and (8.5), respectively

(8.30)

Note that (8.30) is valid for any . However, the autocorre-
lation of the binary quantizer error sequence in a second-order
MASH modulator needs some special treatments; there-
fore, the results for the autocorrelation function significantly
differs from the third-order or higher order ( ) case.

Using (2.16) and (8.3), the autocorrelation of is given
by (8.31) at the bottom of the page. In order to be able to eval-
uate the above limit, we make use of the characteristic function
method as described in [21], [27]. Therefore, the autocorrela-
tion of can be written as

(8.32)

where are the Fourier series coefficients of the periodic
function , and are given by [4]

(8.33)

is the joint characteristic function of sequence,
and defined as ( and are integer numbers) [21], as shown

(8.31)



KOZAK AND KALE: RIGOROUS ANALYSIS OF MODULATORS 1161

in (8.34) at the bottom of the page. An application of Weyl’s
Theorem to (8.34) results in

and integer
otherwise.

(8.35)

Substituting (8.35) and (8.33) into (8.32), results in (8.36)
shown at the bottom of the page. Recall that [29]

(8.37)

Using (8.37) in (8.36), and after simplifications, we get (8.38),
shown at the bottom of the page. In order to evaluate the above
expression, one needs to determine the set of integer numbers

, which makes an integer. Note that by virtue of our ra-
tional dc input assumption, is given by a ratio of two inte-
gers numbers such that , where and are rela-
tively prime numbers with . The set of integer num-
bers which makes (where ) is then given by

, where is a positive integer number
which is a function of and , and is given by the following
relationship:

when and

when and

when and

when and

(8.39)

where represents the greatest common divisor of
positive integer numbers and . The proof of (8.39) can be ac-
complished by using results from the elementary number theory,
and therefore the details are omitted [27]. Using (8.39), we can
write the following equality:

for and . We note here a useful identity found
in [29, eq. A360]

(8.40)

where . Let us call
, then using

(8.40), (8.38), (8.28), and (8.6) the autocorrelation of the binary
quantizer error sequence from the second stage can be found as

(8.41)

Hence, the theorem is proved.

D. Proof of Theorem 5

Note that (8.30) is valid for any . Therefore, to prove
Theorem 5, all we need to derive is an expression for the auto-
correlation of the binary quantizer error sequence from the last
stage. To this effect, we again utilize the characteristic function
method [21] as discussed in Appendix II. Using the Fourier se-
ries representation for the modulo 1 operator, the autocorrela-
tion of is given by

(8.42)

where the joint characteristic function of sequence is de-
fined as follows:

(8.43)

The above expression can be evaluated using the following
lemma [27].

Lemma 3 [27]: Consider an irrational polynomial
of degree in . For all integer numbers , and , the
following equality holds:

if
if
if

(8.44)

(8.34)

and integer
(8.36)

and integer
(8.38)



1162 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004

By making use of Weyl’s Theorem and Lemma 3, one can
evaluate (8.43) as

and
otherwise.

(8.45)

Note that in the above development, in order to be able to utilize
Weyl’s Theorem the order of the MASH modulator must be
at least three (i.e., ). When , (8.45) is no longer
valid thus this case needs special treatment as was performed
in Appendix II-C. The autocorrelation of the binary quantizer
error sequence from the last stage can be found by substituting
(8.45) and (8.33) into (8.42), and making use of (8.6), (8.37),
and (8.28), to arrive at

(8.46)

This proves the theorem!
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