

University of Westminster Eprints
http://eprints.wmin.ac.uk

GEMLCA: grid execution management for legacy code
architecture design.

Thierry Delaitre
Ariel Goyeneche
Peter Kacsuk
Tamas Kiss
Gabor Terstyanzsky
Stephen Winter

Cavendish School of Computer Science

Copyright © [2004] IEEE. Reprinted from 30th Euromicro Conference proceedings:
31 August-3 September, 2004, Rennes, France, pp. 477-783.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

GEMLCA�: Grid Execution Management for Legacy Code Architecture Design

T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss, G.Z.Terstyanszky and S.C. Winter
Centre for Parallel Computing,

Cavendish School of Computer Science,
University of Westminster

115 New Cavendish Street, London W1W 6UW

E-mail: testbed-discuss@cpc.wmin.ac.uk

Abstract

The Grid Execution Management for Legacy Code Ar-
chitecture (GEMLCA) describes a solution for exposing and
executing legacy applications through an OGSI Grid Ser-
vice. This architecture has been introduced in a previous
paper by the same authors where the general concept was
demonstrated by creating an OGSI/GT3 version of the Mad-
City traffic simulator. In this paper, the class structure of the
architecture is described presenting each component and
describing the relationships between them. Also, the cur-
rent architecture implementation is evaluated through test
results gained by running the MadCity traffic simulator as
a C/PVM legacy application.

1. Introduction

The computational Grid aims to facilitate flexible, secure
and coordinated resource sharing between participants. In a
Grid computing environment many different hardware and
software resources have to work together seamlessly. These
resources can include legacy code programs that were origi-
nally implemented to be run on single computers or on com-
puter clusters. The deployment of these programs in a Grid
environment can be very difficult and usually require signif-
icant re-engineering of the original code.

Most recent approaches to realize the Grid, like OGSI
[1] and GT3 [2] as its first implementation, are all based on
a service-oriented architecture. One possibility offered by
service-orientation is to deploy legacy applications as Grid
services without re-engineering the original code. The Grid
Execution Management for Legacy Code Architecture [3]

�The work presented in this paper is supported by an EPSRC funded
project (Grant No.: GR/S77509/01): A proposal to evaluate OGSA/GT3
on a UK multi-site testbed.

was designed to fulfill this requirement. Any legacy appli-
cation can be offered using GEMLCA through a front-end
OGSI Grid service without modifying the original code.
The architecture offers a number of interfaces to the Grid
client in order to submit computational jobs, to check their
status, and to get the results back.

In [3], the authors described the general architecture and
demonstrated the concept by creating a GT3 version of the
MadCity parallel traffic simulator. This paper details the ar-
chitecture introducing its three-layer design and explaining
deployment files. Also, the current status of implementa-
tion is outlined and the results gained by running MadCity
through this architecture are presented and analysed. Fi-
nally, future development tasks are summarised.

2. Related works to use legacy code in Grid sys-
tems

Many large industrial and scientific applications are
available today that were written well before Grid comput-
ing or service-oriented architectures appeared. To integrate
these legacy code programs into service-oriented Grid ar-
chitectures with the smallest possible effort and best per-
formance, is a crucial point in more widespread industrial
take-up of Grid technology.

There are several research efforts aiming at automating
the transformation of legacy code into a Grid service. Most
of these solutions are based on the general framework to
transform legacy applications into Web services outlined in
[4], and use Java wrapping in order to generate stubs auto-
matically. One example for this is presented in [5], where
the authors describe a semi-automatic conversion of legacy
C code into Java using JNI (Java Native Interface). After
wrapping the native C application with the JACAW (Java-C
Automatic Wrapper) tool MEDLI (MEdiation of Data and
Legacy Code Interface) is used for data mapping in order to

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

make the code available as part of a Grid workflow.
Different approaches from wrapping are presented in [6]

and [7] but unfortunately these solutions only describe the
principles and do not give a generic tool to do the automatic
conversion.

Compared to Java wrapping GEMLCA is based on a dif-
ferent principle. It offers a front-end Grid service layer that
communicates with the client in order to pass input and out-
put parameters, and contacts a local job manager through
Globus MMJFS [2] (Master Managed Job Factory Service)
to submit the legacy computational job. To deploy a legacy
application as a Grid service there is no need for the source
code and not even for the C header files as in case of JA-
CAW. The user only has to describe the legacy parameters
in a pre-defined XML format. The legacy code can be writ-
ten in any programming languages and can be not only a
sequential but also a parallel PVM or MPI code that uses
a job manager like Condor [8] and where wrapping can be
difficult. The current implementation of GEMLCA is based
on GT3 but the architecture itself is more generic and can
be easily adapted to other service-oriented approaches like
WSRF or a pure Web services based solution.

Besides substantial advantages offered by GEMLCA it
is also important to note that, as most of the other so-
lutions, it supports decomposable or semi-decomposable
software systems where the business logic and data model
components can be separated from the user interface. The
former can then be transformed into a Grid service using
GEMLCA, and the latter have to be re-implemented, for
example as part of a Grid portal. An approach to deal with
non-decomposable legacy programs is described in [6] us-
ing screen proxies and redirecting input/output calls. How-
ever, this solution is language dependant and requires mod-
ification of the original code.

3 Grid Execution Management for Legacy
Code: General Architecture

MadCity, as many other legacy code programs, has been
developed and implemented to run on a computer cluster
and does not offer a set of OGSI complying interfaces in
order to be published and made available as a Grid Service.
One approach to achieve this is to re-engineer the legacy
code, which in many cases implies significant efforts. An-
other solution to make available existing parallel legacy
code programs as OGSI Grid services without having to re-
engineer them is supported by the Grid Execution Manage-
ment for Legacy Code Architecture (GEMLCA) proposed
in this paper.

GEMLCA can be seen as a client front-end OGSI Grid
service layer that offers a number of interfaces to submit
and check the status of computational jobs, and get the re-
sults back. As any other Grid Service, GEMLCA has an

interface described in Web Services Description Language
(WSDL) [9] that can be invoked by any Grid services client
to bind and use its functionality through Simple Object Ac-
cess protocol (SOAP) [10].

The general architecture to deploy existing legacy code
as a Grid service is presented in this paper based on OGSI
and GT3 infrastructure. However, the concept of GEMLCA
is more generic and can also be applied to other service-
oriented architectures. A similar solution is described in
[11] for Jini, where Java RMI was used as communica-
tion protocol and the Jini lookup service to connect clients
and services. Using different platforms the communica-
tion and the actual service implementation is different, but
the concept of the architecture remains the same. This
way the transition to new emerging standards like Web
Services-Resource Framework (WSRF) [12] and GT4, will
be straightforward.

As a general introduction, GEMLCA supports the fol-
lowing characteristics:

� Offers a set of OGSI interfaces, described in a WSDL
file, in order to create, run and manage Grid service
instances that offer all the legacy code program func-
tionality.

� Interacts with job managers, such as Fork, Condor,
PBS or Sun Grid Engine, allocates computing re-
sources, manages input and output data and submits
the legacy code program as a computational job.

� Administers and manages user data (input and output)
related to each legacy code job providing a multi-user
and multi-instance Grid service environment.

� Ensures that the execution of the legacy code maps to
the respective client Grid credential that requests the
code to be executed.

� Presents a reliable file transfer service to upload or
download data from the Grid service master node.

� Offers a single sign-on capability for submitting jobs,
uploading and downloading data.

� A Grid service client can be off-line waiting for com-
pute jobs to be completed, and can request jobs status
information and results any time before the GEMLCA
instance termination time expires.

� Reduces complexity for application developers by
adding a software layer to existing OGSI services and
by supporting an integrated Grid execution life-cycle
environment for multiple users/instances. The Grid ex-
ecution life cycle includes: upload of data, submission
of job, check the status of computational jobs, and get
the results back.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Figure 1 describes the GEMLCA implementation and its
life-cycle. The Condor management system is used by the
Westminster cluster as the job manager to execute legacy
parallel programs.

The scenario for submitting legacy code using the
GEMLCA architecture is composed of the following steps:

� (1) The user signs his certificates to create a Grid proxy
for authenticating to Grid services. The user Grid cre-
dential will later be delegated by GEMLCA from the
client to the Globus Master Managed Job Factory Ser-
vice (MMJFS) for the allocation of resources.

� (2 & 3) A Grid service client, using the Grid Service
Management for Legacy Code Factory, creates a num-
ber of Grid service Management for Legacy Code in-
stances giving them a lifetime.

� (4) The Grid Client, using OGSI interfaces, calls a
specific instance providing a set of input parameters
needed by the legacy code program. The instance cre-
ates a Globus Resource Specification Language (RSL)
file and a multiuser/instance environment to handle in-
put and output data.

� (5 & 6) The instance, using the RSL file, contact the
Globus MMJFS on behalf of the client. The client
credential is mapped to a specific local user using the
Grid-mapfile mechanism.

� (7, 8 & 9) If the client credential is successfully
mapped, MMJFS contacts the Condor job manager
which allocates resources and executes the parallel
legacy code in a computer cluster.

� (10) At any time after the instance is created, the client
can contact it in order to check the job status.

� (11) The Grid service instance can notify the client
about any job status change using the OGSI notifica-
tion framework if the client is on-line.

� (12 to 15) If the Grid Service instance’s time has not
expired and the job status is finished, the Grid client
contacts the Reliable File Transfer service instance to
send results back to the client.

Finally, when the Grid Service instance is destroyed, the
multi-user/instance environment is cleaned.

Figure 2 summarises the GEMLCA life-cycle on a se-
quence diagram.

4 GEMLCA class structure

GEMLCA is a three-layer architecture (Figure 3) that en-
ables any general legacy code program to be deployed as an
OGSI Grid Service. The layers can be introduced as:

� The front-end layer called Grid Services Layer is pub-
lished as a set of Grid Services which is the only ac-
cess point for a Grid client to submit jobs and retrieve
results from a legacy code program. This layer of-
fers the functionality of publishing legacy code pro-
grams already deployed on the master node server. A
Grid client can create a GLCProcess and a number of
GLCJob per process that are submitted to a job man-
ager. This allows the user extra flexibility by adding
the capability of managing several similar applications
using the same Grid service process and varying the
input parameters.

� The Internal Layer is composed of several classes that
manage the legacy code program environment and job
behaviour.

� The GT3 backend Layer that is closely related to
Globus Toolkit 3 and offers services to the Internal
Layer in order to create a Globus Resource Specifi-
cation Language file (RSL) and to submit and control
the job using a specific job manager. This layer essen-
tially extends the classes provided by Globus version 3
offering a standard interface to the Internal Layer. The
main inspiration behind this idea is to disconnect the
architecture’s main core from any third party classes,
such as GT3, offering a level of abstraction for future
releases, like GT4 and its new WSRF [12] implemen-
tation.

5 Description of GEMLCA classes

The GLCListLegacyCodePrograms class is one of the
front-end layer Grid Services that publishes a list of avail-
able legacy code programs that can be used as a Grid Ser-
vice by the GELMCA architecture. The Legacy Code List
File (LCLF) contains a list of programs published by the
front-end layer Grid Service. Each LCLF is associated with
its respective Legacy Code Definition File (LCDF).

LCDF stores data related to the legacy code program.
Among other information, this file describes the folder and
program name, the job managers that are able to support
this program, information about security and the list of user
subject certificates that can be accepted to run this program,
and the minimum and maximum number of processors re-
quired. Input and output parameters are also listed in this
file describing which ones are fixed or can be changed by
the Grid client user, and which of them are command line
or file providing default values for all the mandatory pa-
rameters. The LCDF file and parameters are represented
and managed by the GLCEnvironment and GLCParameters
classes.

Using the GLCListLegacyCodePrograms Grid Service,
a client can retrieve a list of available legacy code pro-

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Grid Service
Client Instance

Grid Service Client

Grid User
Proxy

GT3 Master Node Tomcat Server Condor Cluster

User Container OGSA
Container

MMJFS
Instance

RFT
Instance

Condor
Job

Manager Central Manager
Node

Condor Daemon

Grid
MapFileData

Grid execution
management

for legacy Code
Factory

4

7 8

10

11

Data

GridFTPServer

1

2

OGSI Grid Service
Instance

(Grid execution
management for

legacy Code)

Grid execution
management for

legacy Code
Instance

3
5

Local
FileSystem9
9 9

Node 01

Job
Process

Node 32

Job
Process

...
GridFTPServer

6

15

14

14

12
13

Figure 1. GEMLCA life-cycle.

grams. A client that meets the security requirements can
create GLCProcess instances invoking another GEMLCA
Grid Service, the GLCFactoryProcess. The factory uses the
LCDF file to create the environment and sets the default
program parameters.

A GLCProcess object represents a legacy code process in
this architecture. This process cannot be submitted to any
job manager if the environment and all the mandatory in-
put parameters have not been created. A client Grid service
can submit a job using the default parameters or change any
non-fixed parameter before submission. Any time a pro-
cess is submitted, a new GLCJob object is created using
a different environment. The process LCDF file gives the
maximum number of jobs related to one process.

The GLCJob uses the process environment and the
classes provided by the GT3 layer to create an RSL file
that is used to submit the legacy code program to a spe-
cific job manager. The GLCBasicRslFile object sets the file
skeletal description that is completed by the more specific
GLCRslFile class.

A Grid Service client can check the general process sta-
tus or a specific jobs behaviour. Also, a client can destroy a
complete process or a specific job with in the process.

6 GEMLCA Implementation

The architecture presented in the previous section is im-
plemented by deploying a secure Grid execution manage-
ment service and tested by developing a secure Grid client.
The implementation of the current development focuses on
a subset of th e architecture life-cycle and in particular on
submitting jobs by the Grid client and executing them on
the Westminster Condor pool cluster. The Grid client and
service are both implementing GT3 security and in partic-
ular GT3 security proxy delegation [13] which allows the

caller’s Grid credential to be passed from the client via the
Grid execution management service to the Master Managed
Job Factory Service. MMJFS submits the job to the Condor
pool via the Condor job manager and maps the execution of
the program to the respective Unix user login name of the
requestor’s Grid credentials by using the GT3 Grid-mapfile
mechanism.

The Grid client is currently a Java program executed by
the Java virtual machine from a Unix terminal window. The
Grid execution management service and MMJFS are de-
ployed in two separate Java servlet engine containers, and
in particular Tomcat web application contexts, hosted by a
single Tomcat server running on the Westminster GT3 mas-
ter node. The reason to configure multiple containers hosted
by the same Tomcat server is to ease the administration of a
well-maintained GT3 server for Grid services deployments
for multiple Grid developers on our GT3 master node. An-
other advantage is that each Grid developer can restart its
own web application context using the Tomcat web appli-
cation context manager without having to restart the whole
Tomcat server.

The architecture presented in the previous section re-
quires a specific job manager such as Condor, PBS or Sun
Grid Engine to be configured for submitting computational
jobs to clusters. Condor is selected as the job management
facility for the Westminster cluster and it requires the Con-
dor job manager interface to be installed and configured as
well as the GT3 master node to be configured as a submit
host to the Parsifal Condor pool. The default installation of
GT3 only installs the Fork job manager and an additional
step is required to install and configure Condor which is
bundled with GT3. However, an updated file for the Condor
job manager needs to be downloaded from the GT3 bugzilla
facility (bugid 1425) as the native system condor.pm file
contains a software fault which prevents Condor from get-

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Grid Client

Grid Client

User Proxy

Grid FTP
GLCFactoryProcess

GLCProcess

MMJFS

RTF

GridFTP

CondorJobManager

CondorDeamon

ClusterNodes
Client

Service Request

input data

Job Done

Get Result

Return Result

Get Result

output data

Polling Job Status Job Submission

Polling Job Status Result OK

Figure 2. GEMLCA sequence diagram.

ting the correct status of Condor jobs.

In order to test the architecture, the MadCity traffic sim-
ulator was deployed as a GEMLCA Grid service. The par-
allel versions of MadCity are implemented using PGRADE
[14, 17] and Spider [15] relying on PVM [16] as the mes-
sage passing interface. This therefore requires the MadCity
computational job to be submitted to the Condor pool us-
ing the PVM Universe. However, one of the issues of using
Condor with the Globus Toolkit is that there is no native
solution to set the PVM Universe in the Globus resource
specification language (RSL). The solution to set the PVM
Universe and specific Condor execution parameters is to use
a Condor hash table in the RSL file to overcome the native
RSL limitation.

The execution management Grid service uses the GT3
GramJob API to interface with MMJFS. The GramJob
event notification does not work in a Grid service for inter-
active job submission because the GramJob API has been
designed by Globus as a client API. Solutions include the
use of a separate thread for the GramJob code, using the na-
tive OGSI APIs and extend the NotificationSink portType
or use batch mode submission. Our approach is to submit
jobs in batch mode to MMJFS which does not require an

event listener to notify jobs completion.

7 Results and Future Developments

The general concept of GEMLCA is demonstrated by
deploying the MadCity traffic simulator as an OGSI Grid
service. The simulator is run through the architecture and
test results are analysed.

MadCity [17], a discrete time-based microscopic simu-
lator, was developed by the Centre of Parallel Computing at
the University of Westminster. The Simulator is organised
around a compound data structure that represents the road
network. The network file may contain several thousands of
roads and hundreds of junctions. At each step of the sim-
ulation, each vehicle uses a set of simple localised rules to
compute its new state and position taking into account its
surrounding conditions.

The performance results presented in Figure 4 were
gained by running a parallel version of the traffic simulator
implemented by P-GRADE [14] through GEMLCA. The
performance results are in the same range as presented in
[17].

Future development includes the implementation of the

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

GT3 LayerInternal LayerGrid Services Layer

+create()
+destroy()
+setLifetime()
+getLifetime()
+getStatus()
+getResults()
+submitProcess()
+getListVariableParameters()
+uploadFile()
+uploadCommanLineValue()

-processId
-owner
-processEnvironment
-status
-lifetime
-uploadCommanLineValue

GLCProcess

+createRslFile()
+addParameter()
+changeParameter()
+deleteParameter()
+setExecutable()
+setSO()
+setSI()
+setSE()

-rslName
-rslPath

GLCBasicRslFile

+SetHashTable()
+SetNodes()

GLCRslFile

+submitJob()
+destroyJob()
+getStatus()

JobManager

+submitJob()
+destroyJob()
+getStatusJob()

CondorJobManager

+submitJob()
+getStatus()
+createRunTimeEnvironment()
+destroyRunTimeEnvironment()

-Id
-processId

GLCJob

+create()
+getListVariableParameters()

+lcId
+description
-executable
-folder
-jobManager
+listParameters
-maximumJob
-minimumProcessors
-maximumProcessors
-securityType
-deployedCert
-allowedCertList

GLCEnvironment

+createProcess()

GLCFactoryProcess

+createList()
-updateList()
-destroyList()
+getEnvironment()

-listLegacyCodePrograms

GLCListLegacyCodePrograms

+createParameter()
+uploadCommanLineValue()
+uploadFile()
+cleanValue()

+name
+inputOutput
-fixed
-order
+fileComandline
-mandatory
-initialValue
+value

GLCParameters

+contained

0..*

+contains1

+used

1

+uses

1

+instantiates1

+instantiated0..*

+instantiates1
+instantiated

0..*

+set

1

+sets

1

+manages1

+managed

0..*

Figure 3. GEMLCA classes design.

full execution management Grid service life-cycle which
includes the upload and download of data prior and after
the submission and completion of jobs, the handling of data
transfer using the GT3 Reliable File Transfer (RFT) service
for the upload and download of data between file systems
located on different hosts. Future versions will also inte-
grate with the Grid Application Monitoring Infrastructure
(GAMI) [18] which includes the GRM trace collector and
the Mercury monitor service developed by SZTAKI in the
DataGrid and GridLab projects. It also envisaged that the
Grid client could be embedded into a GridSphere portlet.

8 Conclusions

There is a clear need to deploy existing legacy code
programs as OGSI Grid services. Two approaches can be
identified to solve this problem. The first solution is to re-
engineer the legacy code which in many cases implies sig-
nificant efforts. The second one is to develop a front-end
OGSI Grid service layer that contacts the target host envi-
ronment. A solution for the second approach is addressed
by the Grid Execution Management for Legacy Code Archi-
tecture (GEMLCA) which has been presented in this paper.

An initial implementation of GEMLCA addressing a subset
of the Grid service life-cycle has been developed and tested
on the Westminster Condor pool cluster with the MadCity
parallel simulator application. Future work is planned to
implement the full life-cycle of the Grid service and inte-
grate with the Grid application monitoring infrastructure.

Acknowledgements

The authors wish to acknowledge the support and contri-
butions of Damian Igbe, Agathocles Gourgoulis and Noam
Weingarten in the traffic simulation aspects, and Kreeteeraj
Sajadah and Alexandre Beaudouin in investigating and pro-
gramming GT3.

References

[1] S. Tuecke et al: Open Grid Services Infrastruc-
ture (OGSI) Version 1.0, June 2003, http:
//www.globus.org/research/papers/
Final_OGSI_Specification_V1.0.pdf

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

0

100

200

300

400

500

0 50000 100000 150000 200000 250000 300000

E
xe

cu
tio

n
tim

e

Number of cars

Simulation performance results

1 node
4 nodes
8 nodes

16 nodes

Figure 4. MadCity performance results
through GEMLCA architecture.

[2] Globus Team, Globus Toolkit, http://www.
globus.org

[3] T. Delaitre, A. Goyeneche, T. Kiss and S.C. Winter,
Publishing and Executing Parallel Legacy Code using
an OGSI Grid Service, Conference proceedings of the
2004 International Conference on Computational Sci-
ence and its Applications. Editors: A. Lagana et al.
LNCS 3044, pp. 30-36, S. Maria degli Angeli, As-
sisi(PG), Italy, 2004.

[4] D. Kuebler, and W. Eibach, ”Adapting legacy applica-
tions as Web services”, IBM DeveloperWorks,http:
//www-106.ibm.com/developerworks/
webservices/library/ws-legacy/

[5] Y. Huang, I. Taylor, D. Walker, and R. Davies, ”Wrap-
ping Legacy Codes for Grid-Based Applications”, in
Proceedings of the 17th International Parallel and Dis-
tributed Processing Symposium (Workshop on Java
for HPC), 22-26 April 2003, Nice, France. ISBN 0-
7695-1926-1

[6] T. Bodhuin, and M. Tortorella, ”Using Grid Tech-
nologies for Web-enabling Legacy Systems”, in Pro-
ceedings of the Software Technology and Engineering
Practice (STEP), The workshop Software Analysis
and Maintenance: Practices, Tools, Interoperability,
September 19-21, 2003, Amsterdam, The Nether-
lands, http://www.bauhaus-stuttgart.
de/sam/bodhuin.pdf

[7] B. Balis, M. Bubak, and M. Wegiel, ”A Framework for
Migration from Legacy Software to Grid Services”,
In Cracow Grid Workshop ’03, Cracow, Poland,
December 2003, http://www.icsr.agh.edu.
pl/˜balis/bib/legacy-cgw03.pdf

[8] D. Thain, T. Tannenbaum, and M. Livny, ”Condor
and the Grid”, in Fran Berman, Anthony J.G. Hey,
Geoffrey Fox, editors, Grid Computing: Making The
Global Infrastructure a Reality, John Wiley, 2003

[9] Web Services Description Language (WSDL) Version
1.2, http://www.w3.org/TR/wsdl12

[10] Simple Object Access Protocol (SOAP) 1.1. W3C,
Note 8, 2000 Center for telecommunication research,
Columbia University.

[11] G. Sipos, P. Kacsuk, Connecting Condor Pools into
Computational Grids by Jini, 2nd European Across
Grid Conference, Nicosia, Cyprus, January 2004,

[12] Ian Foster, et al. Modeling Stateful Resources
with Web Services, January 2004, http://www.
globus.org/wsrf/

[13] Globus Team, Message Level Security,
http://www-unix.globus.org/toolkit/
3.0beta/ogsa/docs/message_security.
html 2003.

[14] P. Kacsuk, G. Dozsa, R. Lovas: The GRADE Graphi-
cal Parallel Programming Environment, In the book:
Parallel Program Development for Cluster Comput-
ing: Methodology, Tools and Integrated Environments
(Chapter 10), Editors: C. Cunha, P. Kacsuk and S.C.
Winter, pp. 231-247, Nova Science Publishers New
York, 2001.

[15] D.Igbe, N.Kalantery, S.E Ijaha, S.C Winter, Paral-
lel Traffic Simulation in Spider Programming Envi-
ronment. In Distributed and Parallel Systems (Cluster
and Grid Computing). Edited by Peter Kacsuk et al.
Kluwer Academic Publishers, pp 165-172, 2002.

[16] A. Geist, et al. PVM: Parallel Virtual Machine, MIT
Press, 1994.

[17] A. Gourgoulis, G. Terstyansky, P. Kacsuk, S.C. Win-
ter, Creating Scalable Traffic Simulation on Clusters.
PDP2004. Conf. Proc. of the 12-th Euromicro Confer-
ence on Parallel, Distributed and Network based Pro-
cessing, La Coruna, Spain, 11-13th February, 2004,

[18] Z. Balaton and G. Gombos: Resource and Job Moni-
toring in the Grid. Proc. of EuroPar 2003 Conference,
Klagenfurt, pp. 404-411, 2003.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

	footer1:

