

University of Westminster Eprints
http://eprints.wmin.ac.uk

A logic programming e-learning tool for teaching database
dependency theory.

Paul Douglas
School of Informatics, University of Westminster

Steve Barker
King’s College, London

This is an electronic version of a paper published in the Proceedings of the
First International Workshop on Teaching Logic Programming: TeachLP 2004,
Saint Malo, September 8–9, 2004. The paper was originally published in
Linköping Electronic Conference Proceedings, 12, pp. 71-80 by Linköping
University Electronic Press and is available online at:

http://www.ep.liu.se/ecp/012/006/

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

A Logic Programming E-Learning Tool For

Teaching Database Dependency Theory

Paul Douglas

University of Westminster, London, UK

P.Douglas@wmin.ac.uk

Steve Barker

King’s College, London, UK

steve@dcs.kcl.ac.uk

Abstract

In this paper, we describe an “intelligent” tool for helping to teach the
principles of database design. The software that we present uses PROLOG
to implement a teaching tool with which students can explore the concepts of
dependency theory, and the normalization process. Students are able to con-
struct their own learning environment and can develop their understanding
of the material at a pace that is controlled by the individual student.

1 Introduction

We describe a tool that we have developed and have used to help university-level
students to learn certain essential notions in database schema design, specifically
the normalization [1] process, which is based on the underlying concept of depen-
dency theory [1]. We regard the learning tool as a piece of intelligent software,
where the term “intelligent” is interpreted by us as the capability of responding
to a student’s input (in the form of a database design problem chosen by the
student) with a solution based entirely on that input. There are no “standard”
problems or solutions provided with the software, and the software is able to
explain each step of the solution process if the student chooses to exploit this
option. It follows that the software is capable of providing either a quick check
of a student’s own work, or a fuller teaching facility.

PROLOG is used for the implementation of the software to provide the capa-
bility of checking a student’s work and either confirming that the work is correct,
or indicating why it is not. PROLOG has been widely used for implementing
items of educational software (see, for example, [2] and [3]) and is appropriate for
the teaching tool that we have developed because it permits a rule-engine to be
exploited to intelligently interpret and respond to student inputs. The database

71

design algorithms that we have chosen to implement also have a natural transla-
tion into PROLOG code.

A number of excellent textbooks on dependency theory already exist. Nev-
ertheless, although textbooks can offer very good coverage of the material on
dependency theory, they offer only limited forms of interactivity and limited
scope for students to test their own understanding of database design principles.
Many textbooks provide no practical exercises and, even when they do, these
exercises are often limited in size and sophistication. Moreover, textbooks that
do provide exercises do not necessarily provide “solutions”, so students cannot
determine whether they were able to “solve” the problems.

Some courses that teach relational databases take the approach that the use
of a schema design tool will almost always deliver a schema that is in third normal
form (3NF) [1], and that teaching dependency theory is not really necessary (see,
for example, [4]). However, we disagree with this point of view. There are many
aspects of relational database technology that are directly related to the data
dependencies that exist within a database, and students cannot properly consider
these issues without a proper understanding of dependency theory. The use of
design tools also suggests that a relational database schema has been somehow
finalized once it has been put into third normal form, leaving students with
even less understanding of normal forms beyond 3NF. Students will not be able
to critically evaluate alternative designs, or make informed choices about levels
of normalization, if they do not understand the principles upon which design
decisions have been based. Functional dependencies [1] are also important for a
proper understanding of the concepts of candidate keys, superkeys, constraints,
and the theoretical foundations of relational database systems.

The PROLOG programs that we have developed are able to lead a student
through the process of decomposing relations to satisfy the requirements of a
particular normal form for database design. The tool is able to explain the
steps that are being taken to generate a decomposition, and can thus provide a
solution to a given decomposition problem whilst also providing an explanation
about how it was achieved. A fairly simple interface program written in Java
allows the students to enter un-normalized relations and go through the steps of
normalizing the relations to a “higher” normal form without having to interact
directly with PROLOG themselves. In this way, students are able to compare not
only a solution to a problem with their own, but to see a whole method for the
problem worked out, step by step, and to call on a textual explanation facility at
any point at which they do not understand the processes that have taken place.
Because our tool enables students to freely select inputs, it enables them to work
on problems of their own devising, at a level of difficulty exactly appropriate to
their own level of understanding.

72

The remainder of this paper is organized as follows. In Section 2, a number of
preliminary issues are discussed. In Section 3, the implementation of the teaching
tool is described. In Section 4, a sample user session is described. In Section 5,
the evaluation of the software is considered. Finally, conclusions and suggestions
for further work are given in Section 6.

We assume that the reader has a knowledge of the basic notions and notations
that are typically used in discussions on dependency theory; otherwise, we suggest
[1] for all necessary background information.

2 Preliminaries

Our approach to developing our learning tool for database design initially in-
volved us adopting a phenomenographic method [5] for information gathering
on students’ understanding of concepts in dependency theory. By conducting
‘dialogue’ sessions with students we identified the strategies students used to un-
derstand the basic concepts. From our review of the notes taken at the dialogue
sessions, we were able to develop a prototype system for supporting students in
learning about dependency theory.

As the software evolved, we made increasing use of Gagne’s event-based model
of instruction [6] to decide what material a user of the tool should be offered and
the order in which information ought to be presented to a learner. Thus, different
levels of learning guidance are available to meet the requirements of an individual
student, and learning takes place in a student-centred, interactive way.

In overview, our learning tool includes implementations of the following algo-
rithms. We use Ullman’s FD-closure algorithm [1]; we use Beeri and Honeyman’s
algorithm [7] for checking dependency-preservation after decomposition; we use
Loizou and Thanisch’s approach [8] for checking for a lossless-join decomposition;
we use Ullman’s method for finding a minimal cover for a set of FDs [1]; we use
Gottlob’s method [9] for computing a cover for the projection of a set of FDs onto
a subschema of the decomposition; and we use Luchessi and Osborn’s key find-
ing algorithm [10] to identify candidate keys. For the decomposition algorithms,
we used the proposal in Ullman [1] for generating 3NF schemes, and Tsou and
Fischer’s approach [11] for generating BCNF schemes.

In our approach, an n-ary relational scheme of the form

R(A1, . . . , An)

where R is the name of the relation and A1, . . . , An is a set of attributes is
represented in our PROLOG implementation by using a list: [A1, . . . , An].

Moreover, given a functional dependency of the form:

73

A1, . . . , Am → B1, . . . , Bn

where Ai (i ∈ {1, ..,m}) and Bj (i ∈ {1, .., n}) are attributes, we use pairs of
lists and define an operator for →, to wit:

[A1, . . . , Am]→ [B1, . . . , Bn]

3 Implementation

Our implementation of the database design tool includes a GUI that sits on top
of the PROLOG implementation of the database design algorithms.

The interface is intended to be simple to use; it is menu-based and all data
that is entered is case-insensitive. Users are prompted throughout a session for
the correct data to enter, and can return to the main menu at any time. It is
possible to enter multiple schemas, save them, and return to them later within a
session. Sessions can also be retained in a file, and can therefore be suspended
and resumed.

The interface program is written in Java. Java has many advantages for this
kind of application. It is widely used, it has comprehensive Internet support (see
below), and it is easy to access applications written in a variety of other languages
(through the Java Native Interface (JNI) mechanism).

We use XSB-Prolog [12] to implement the main logic programs that implement
the database design algorithms. XSB runs on a number of platforms and offers
excellent performance that has been demonstrated to be far superior to that of
traditional Prolog-based systems [13].

Calls to XSB from the interface program are handled by the YAJXB [14]
package. YAJXB makes use of Java’s JNI mechanism to invoke methods in the
C interface library package supplied by XSB. It also handles all of the data
type conversions that are needed when passing data between C and Prolog-based
applications. YAJXB effectively provides all the functionality of the C package
within a Java environment.

Although we have used YAJXB in our implementation, we note that a num-
ber of alternative options exist. Amongst the options that we considered were
Interprolog, a Java-based Prolog interpreter (e.g., JavaLog), or a Sockets-based,
direct communication approach. Unfortunately, each of these approaches has its
own distinct drawbacks when compared with the approach that we adopted. In-
terprolog does work with XSB, so we could still take advantage of the latter’s
performance capabilities. However, Interprolog is primarily a Windows-based ap-
plication. All of our development was done on a Sun Sparc/Solaris system; YA-
JXB, though primarily configured for Linux, compiles easily on Solaris. JavaLog

74

was discounted because we felt that it did not offer sufficient flexibility compared
with XSB. Finally, using sockets would give us a less portable application be-
cause it would involve considerably more application-specific coding. Overall, we
felt that the straightforwardness of the YAJXB interface makes it preferable to
the Interprolog approach so far as interfacing with XSB is concerned. Moreover,
XSB’s highly developed status and excellent performance make it more desirable
in this context than a Java/Prolog hybrid.

The C library allows the full functionality of XSB to be used. A variety of
methods for passing Prolog-style goal clauses to XSB exists. However, we gener-
ally found that the string method worked well. This method involves constructing
a string σ in a Java String type variable, and using the xsb command string func-
tion (or similar) to pass σ to XSB. This approach allows any string that could
be entered as a command when using XSB interactively to be passed to XSB by
the interface program. YAJXB creates an interface object; the precise method of
doing this is a call like:

i=core.xsb command string (command.toString());

where the assignment, as one would expect, handles the returned error code.
Variations on this method allow for the return of data where relevant.

4 A Learning Session

Users invoke the software by using the Java JRE. On invoking the software, the
system will respond with the opening menu:

main menu

1. Enter a Schema

2. Help

3. Exit

Enter Choice (1-3):

The “help” option gives some general guidance on how to use the system;
the “exit” option terminates the program. Having invoked the system, the user
will normally enter a schema. The system will first prompt the user to enter the
names of the attributes:

75

Enter attribute names, using spaces to separate them.

Names must be single characters or strings:

If the required schema attributes are (a, b, c, d) then the user will respond, to
the request for input, with something like:

a b c d

The next step is for the functional dependencies to be entered. The user
is first prompted to enter a determinant, then its dependent attributes. The
process will be repeated for each determinant. The system loops around these
input processes until a blank line is entered: for each determinant the user is
repeatedly prompted to enter another dependent attribute until a blank line is
entered; the user is then invited to enter another determinant, and this process
in turn repeats until a blank line is entered. For example, for the functional
dependency a→ bc we have:

Enter a determinant

If multivalued, use spaces as separators: a

Enter a dependent attribute

If multivalued, use spaces as separators: b

Enter a dependent attribute

If multivalued, use spaces as separators: c

Enter another dependent attribute

(return to end):

. . .

When the process of describing functional dependencies is complete, the
system will respond with a display of the information entered and another menu.
All functional dependencies are displayed in right reduced form i.e., with a single
set of attributes on the right-hand side of an FD. For example:

Your schema has attributes: [a,b,c,d]

and FDs: [a]→[b], [a]→[c], [c]→[d]

choose an option:

76

1. 3NF decomposition

2. BCNF decomposition

3. Help

4. Exit

Enter Choice (1-4):

The “exit” option returns the user to the previous menu; the “help” option
gives some general information about the decomposition process. The example
that follows gives some sample output if 3NF decomposition is selected from the
menu:

Finding a minimal cover

At each step, enter ? for help or CR to continue. . .

. . .checking right reduction

. . .checking left irreducibility

. . .checking redundant FDs

Decomposing. . .

. . .checking lossless join property

The following 3NF subschemata

give the dependency preserving

decomposition of your schema:

t 1

[a,b,c]

one key: [a]

t 2

[c,d]

one key: [c]

Having generated the 3NF decomposition, the user can then return to the
main menu, and either enter another schema, or exit the system.

5 Evaluating The Software

Our database design teaching and learning tool has been formatively evaluated.
For the formative evaluation, we sought comments from several colleagues in-
volved in teaching database management at the University of Westminster; these

77

were our “expert reviewers” [15]). We additionally worked with a small group of
post-graduate students who were learning about dependency theory at the time
at which they used the software; these students tested the software during tuto-
rials over two consecutive weeks, and in several additional sessions. A number of
suggestions made by the expert reviewers and the volunteer students were used to
make minor modifications to our initial design e.g., modifications of the interface.

We then conducted a program of small-group testing with some final year
undergraduate students who were also studying dependency theory as part of
a database design module. We gathered feedback about the software by using
observations and informal “interviews”. This involved one of the authors sitting
with the students and asking them to articulate their feelings about the software,
and asking the students to complete a questionnaire at the end of the trial period,
which asked them how, in general, they had found the software to use, and how
they felt it compared with the traditional textbook alternative.

The students all reported that the software was useful in terms of helping
to develop their understanding of dependency theory, and all agreed that the
facility for testing their own solutions to normalization problems was motivating
to use and important in developing understanding. They were unanimous in
concluding that the tool was a major improvement, in terms of carrying out
practical exercises, over the textbook.

It is not perhaps surprising that the overall feedback was so positive. Using
something new is always more interesting and students like to use computers.
Because of our desire to get the feedback, the students probably found the tuto-
rials relating to the dependency theory material a more positive experience than
those provided to support the rest of the module (the use of a couple of volun-
teer helpers from the earlier post-graduate test group resulted in a much higher
staff-student ratio than usual).

6 Conclusions and Further Work

We have developed a teaching and learning tool for helping university students
to learn some aspects of dependency theory. The results of discussions with the
students who have used the software suggest that the tool is of value to students
learning about dependency theory. However, much more extensive testing of
the software will be necessary (e.g., a summative evaluation) before any firm
conclusions can be drawn about its educational value.

There are several ways in which the tool could be further developed. In
particular, we plan to produce a web-based interface, which will make the tool
both easier to use, and more widely accessible. It would additionally enable us to

78

improve the availability of the explanation facility, which could be read in pop-up
help windows at all stages of the normalization process. We also intend to develop
our tool to assist students in their learning of multivalued and join dependencies
and the normal forms that are associated with these types of dependencies.

7 References

[1] J. Ullman, Principles of Database and Knowledge-base Systems, Computer
Science Press, 1989.

[2] Yazdani, M., New Horizons in Educational Computing, Chichester: Ellis
Horwood, 1983.

[3] Nichol, J., Briggs, J., and Dean, J., Prolog, Children and Students, London:
Kogan-Page, 1988.

[4] B. Byrne, Top Down Approaches to Database Design Tend to Produce Fully
Normalised Designs Anyway, Proceedings of TLAD, 2003.

[5] F. Marton and P. Ramsden, What does it take to improve learning?,
Improving Learning: New Perspectives, Kogan Page, 1988.

[6] R. M. Gagne, The Conditions of Learning, Holt, Reinhart and Winston, 1970.

[7] C. Beeri and P. Honeyman, Preserving Functional Dependencies, SIAM
Journal of Computing, 10(3), 1981.

[8] G. Loizou and P. Thanisch, Testing a Dependency-preserving Decomposition
for Losslessness, Information Systems, 8(1), 1983.

[9] G. Gottlob, Computing Covers for Embedded Functional Dependencies,
PODS, 1987.

[10] C. Lucchesi and S. Osborn, Candidate Keys for Relations, Journal of
Computer and System Sciences, 17(2), 1978.

[11] D. Tsou and P. Fischer, Decomposition of a Relation Scheme into Boyce-
Codd Normal Form, SIGACT News 14(3), 1982.

79

[12] K Sagonas, T. Swift, D. Warren, J. Freire and P. Rao., The XSB System
Version 2.0, Programmer’s Manual, 1999.

[13] K Sagonas, T. Swift, and D. Warren., XSB as an Efficient Deductive
Database Engine, ACM SIGMOD Proceedings, 1994.

[14] S. Decker, Yet Another Java XSB Bridge, http://www-
db.stanford.edu/%7Estefan/rdf/yajxb/

[15] M. Tessmer, Planning and Conducting Formative Evaluations, Kogan-Page,
1993.

80

