

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Creating scalable traffic simulation on clusters.

Agathocles Gourgoulis
Gabor Terstyansky
Peter Kacsuk
Stephen Winter

School of Informatics

Copyright © [2004] IEEE. Reprinted from the proceedings of the 12th
Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2004). IEEE, Los Alamitos, USA, pp. 60-65. ISBN
0769520839.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161113713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

 This paper describes the implementation of a transport

simulation in a parallel environment. The implementation
is based on a graphical parallel programming

environment called P-GRADE. The transport simulator,

called MadCity, simulates a specific road network of a city
and shows cars moving on the roads. To achieve

scalability of the traffic simulation, the use of templates is

necessary. This helps to control the number of
participating processes required for the simulation without

making modifications to the simulator’s source code.

Performance results are collected from four, eight and
sixteen nodes of the Parsifal cluster and compared with the

sequential execution results of the simulator. The

implementation of the transport simulator is extended
further to support the simulation of multiple cities within

the same cluster and on the Grid.

1. Introduction

 Computational simulations are becoming increasingly

important because they are the only way how some

physical processes can be studied and interpreted. These

simulations may require computational power not available

even on most powerful supercomputers. A solution is to

use multiple computers connected through a computer

network (cluster) to investigate complex simulations. The

application area that will be investigated on a computer

cluster is the urban traffic simulation.

 A cluster is a collection of interconnected stand-alone

computers connected by a high-speed local area network

that work together as a single, integrated computing

resource. It is a homogeneous entity from the software

point of view and not necessarily in hardware [1]. A

computer node in a cluster may consists of a single

processor or multiprocessor system including memory,

operating system and I/O facilities. The network interface

is responsible for transmitting and receiving messages

between nodes. The communication software is

responsible for providing efficient and reliable data

communication between the nodes and the outside world.

The cluster at the University of Westminster (UoW), called

Parsifal, is composed of 32 computers (nodes) plus a

master node [5]. If more computational power is required

that one cluster is able to offer, the use of multiple clusters

(Grid) is an option, in other words a cluster of clusters.

 A computational Grid [9] is a collection of distributed

resources and infrastructure services that can be used as a

single entity to execute large-scale applications. It enables

the sharing of a wide variety of heterogeneous resources

that are geographically distributed on the network and

make them available to users.

2. Describing the traffic simulation problem

 Traffic simulations may require computational power

not available on today’s most powerful supercomputers.

Real-time traffic simulations must provide the drivers with

information about the road network such as the travel time,

delays or accidents, route guidance systems to divert

drivers away from the congested areas, or any other kind of

assistance for their travel planning. Thus, the time that will

be spent to run a real-time simulation or to make a short-

term prediction of the following couple of minutes should

be at minimum, so that all information will be distributed

to drivers early enough to help them decide the best route

to follow.

The objectives of traffic simulation are as follows:

• To decrease the execution time by parallelising the

simulation and distributing the computation on

different nodes as shown in Figure 6.

• To test the parallelisation on the cluster and check the

work load on the nodes (using monitoring).

• To test scalability, to keep adding more nodes and

hence more resources as they are required for better

performance of the program.

• To extend the current single city simulation to

multiple city simulation using multiple clusters (Grid).

Creating Scalable Traffic Simulation on Clusters

Agathocles Gourgoulis, Gabor Terstyansky, Peter Kacsuk, Stephen Winter

Centre for Parallel Computing (CPC),

University of Westminster, London, UK

E-mail: agourg@cpc.wmin.ac.uk

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

3. Graphical development and execution

environment / P-GRADE

 We use a graphical development and execution

environment that provides an integrated set of

programming tools for development of general message-

passing applications to be run in heterogeneous computing

environments. P-GRADE offers a number of benefits such

as a Graphical User Interface (GUI) where all parallel

activities of applications are defined. Figure 2 shows the

Graphical User Interface of P-GRADE.

 The graphical environment used to implement the traffic

simulator is P-GRADE. P-GRADE (Professional

GRaphical Application Development Environment) [3] is

an integrated graphical programming environment for

development and execution of parallel programs based on

the MPI/PVM [7] message-passing programming

paradigm. It consists of several software tools, which

assists the different steps of the development process.

P-GRADE supports writing, editing, executing

(debugging, monitoring, visualizing) parallel programs.

P-GRADE based applications can be run among others on

clusters.

 Some of the most important tools [4] implemented into

the P-GRADE environment are the following: GRAPNEL

is a hybrid programming language in the sense that it uses

both graphical and textual representations to describe the

distributed application. GRP2C is a pre-compiler that

produces the C code of the graphically defined program.

DIWIDE is a distributed debugger with the ability to

debug the processes running on heterogeneous machines at

the same time. PROVE is the visualisation tool that shows

the monitoring results, etc.

 All message-passing library calls are automatically

generated by the graphical environment. Thus,

programmers are able to use predefined process

communication templates (process farms, pipeline or ring,

2D mesh and tree). Templates are the major tools for

creating scalable applications for clusters. A

communication template defines a group of processes that

have a pre-defined regular interconnection topology. The

user only has to define the actual size and all processes and

channels are created by the system automatically. The

most relevant difference between a communication

template and a simple process group is the ability to

change the number of member processes without

modifying the graphical code of the application. The user

defines the name of the template. Processes in the template

(i.e. members) are identified by indexes generated

automatically by the system. Different types of templates

use different index patterns. An index pattern always

consists of one or more non-negative integer numbers. For

instance, in case of a process farm or a pipeline, a simple

integer as a rank number is enough to identify the

members, but in case of a 2D Mesh a pair of integers is

required to identify both the row and the column positions

of processes.

4. Implementation of the simulation

4.1. MadCity simulator

 MadCity consists of two tools, the GRaphical Visualiser

(GRV) and the SIMulator (SIM). The GRaphical

Visualiser helps to design a possible road network

generating a network file that describes the road network to

be investigated. The SIMulator of MadCity is implemented

on P-GRADE. When the simulation starts, the network file

is sent to different nodes on the cluster. After the end of the

simulation, a trace file is created. This trace file is loaded

on the GRV to display the behaviour of the cars on the

roads and at junctions in a city.

 The Parsifal cluster is used to run MadCity traffic

simulator. The road network described by a network file

may contain several thousand roads and hundreds of

junctions. To simulate a city road network, a single

processor is not able to perform such a simulation within a

limited period of time because a real-time simulation and a

short-term prediction of the traffic for the next 5, 10, or

maximum 15 minutes of time are required. A solution is to

use cluster computing to run a single massively parallel

simulation to carry out traffic simulations. To achieve

parallelisation of the simulation, the network file should be

distributed to all participating nodes, and each node should

work on a particular road area.

 Thus, it is possible to allocate traffic zones (Figure 1) on

the road network in the way that each zone provides

simulation locality and allows efficient parallelisation of

the simulator. The simulation investigates a virtual road

network called “Manhattan”, and it consists of 225

junctions and 420 lanes. Performance results have been

monitored from 4, 8 and 16 nodes of Parsifal cluster and

compared with the sequential version of the simulator

Figure 1. Manhattan road network on MadCity

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

based on a single processor. Figure 1 shows the MadCity

GRV with the Manhattan network.

4.2. Template selection

 P-GRADE provides three templates that offer different

features in the cluster. The “farm” and the “2D mesh” are

not suitable for the traffic simulation. The process farm

template implements a communication pattern that is a

group of processes without any interconnections. They can

communicate only with processes outside the group but not

with other processes within the same group. In the 2D

mesh template, processes are arranged into a two

dimensional Grid where each process (i.e. grid point) is

interconnected with all of its neighbours. This approach

could be considered as an appropriate but it is too

complicated for the purposes of this simulation.

 The pipeline template is suitable to implement the traffic

simulator. A pipeline communication topology consists of

a linearly ordered set of processes where each process is

interconnected only with its neighbours. As the name

suggests, this template can be used to implement pipeline

parallelism where each member process has different task

to do on data flowing through them. In case of the traffic

simulator, all member processes perform the same task but

on different data and communicate with each other

exchanging information. Naturally, all processes in the

pipeline may as well communicate with external processes.

The user defines the code of the representative processes

and using the template attribute settings (Figure 2)

specifies the actual number of the processes that will

participate in the program execution. The size of the

template can be increased up to 100 processes, the

communication channels between neighbour processes can

be directed forward, backward or both (i.e. bi-directional

channels). Also, the channel pattern can be cyclic if the last

process is connected to the first one or acyclic otherwise.

5. Implementation and performance results of

a single city simulation

 MadCity is built on PVM (Parallel Virtual Machine) [6],

the message-passing paradigm that P-GRADE also uses.

We selected to examine the implementation of MadCity on

four, eight and sixteen nodes. Figure 2 shows the

simulation structure of MadCity (working on four nodes)

and the graphical environment of P-GRADE where the

simulation has taken place. It consists of the parent process

and the “Children” pipeline template process. The user

defines the code at the three representative processes of

which number depends on the actual “template attribute”

settings. The template attributes window of Figure 2 shows

that four children processes (SIZE = 4) will participate in

particular simulation. This number of processes can be

easily increased or decreased according to the simulation

needs by specifying the size at the template attributes

window. The network file will be distributed to every child

process to perform the simulation.

 The simulation works as follows: the parent process

sends the network file to every child process (within the

template) together with the partition ID numbers. When we

create the network file, we partition the road network

(using GRV) according to the number of nodes we are

going to use. Figure 1 shows the road network partitioned

to work on four nodes, thus the generated network file

contains four different ID numbers. Each group of shapes

(circles, squares, etc.) corresponds to a particular node.

Each child receives the same network file, but it works on

the particular part of the network file according to the ID

number it has been assigned. According to Figure 1, the

first child works on the part of the network file described

by the circles, the second child on the part described by the

squares, the third child on the diamond, and so on.

 LCPs (Lane Cut Points) manage traffic if a junction

resides on a partition boundary of a network segment.

LCPs are the points where the partition boundaries cut the

lanes. In other words, when a car is leaving a junction in a

partition of the road network described by circles and

moves to the neighbour junction of the partition described

by the squares, LCPs are used. As shown in Figure 2,

neighbour processes are communicating by exchanging the

number of cars moving to the junction of the next partition.

These cars are temporary stored in the LCP buffer and

retrieved from the neighbour node by using synchronous

communication. As a result, it simulates the continuous

Figure 2. Single city simulation on P-GRADE

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

movement of the cars on the road. The performance of the

simulation depends on the number of the LCPs. The larger

the number of LCPs leads to worse performance result of

the simulator. This is due to the additional time required

for communication between nodes. The number of LCPs

used for this experiment (on four nodes) is 15 (between

two nodes) or 60 in total for all four nodes.

 The simulation steps (STEPS) are another factor that

affects the performance of the simulation. They show how

long a car will move on the road. Each node does its

computation for a defined number of STEPS, and the

results of each node are sent back to the parent process.

The parent process collects all information from children

processes and creates a trace file. This trace file is loaded

on the graphical visualiser (GRV) that shows the road with

cars moving on it.

 The performance results that follow are based on the

“Manhattan” network that consists of 225 junctions, 420

lanes and a maximum of 300.000 cars for 500 simulation

STEPS. The results of the sequential simulation are

compared with the results of the same network type

applied on four, eight and sixteen nodes of the Parsifal

cluster.

 The use of P-GRADE was necessary to generate the

parallel version of the traffic simulation, to run the traffic

simulation and to monitor the behaviour of the simulation

execution time on the cluster. The trace files from both the

sequential and parallel simulations were collected and

loaded on the graphical visualiser (GRV) of MadCity.

 The following figures summarise the performance

measured on four, eight and sixteen nodes. The black

colour represents the computation time spent on each node

to complete its task. The grey colour represents the

communication time (the time was spent for

communication on each process).

 Figures 3 and 4 show the execution statistics of the

overall performance of the simulation on 4-nodes and

8-nodes respectively.

 The execution performance on the 8-node simulation

shows that the 8th child has smaller execution time than

other children processes. That’s because it is the only

process that works on 15 junctions, the other processes

work on 30. Figure 5 shows the total performance results

and the execution time on 16 nodes. Similarly, the 15th and

16th child processes have less execution time than other

children processes because fewer junctions have been

assigned to these nodes.

 Figure 6 shows the difference in simulation time when

the computation is executed on more than one node. As

long as we increase the number of participating nodes, the

execution time is decreasing.

P e r f o r m a n c e R e s u l t s

0

100

200

300

400

0 50000 100000 150000 200000 250000 300000

N u m b e r o f C a r s

1 node

4 node s

8 node s

16 node s

The parallel simulation has significant speedup over the

sequential execution of the simulation. The following table

Figure 3. Performance results on 4 nodes

Figure 4. Performance results on 8 nodes

Figure 5. Performance results on 16 nodes

Figure 6. Simulation performance results

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

(Table 1) shows in detail the values of execution times (in

seconds) of the above graph.

 According to the results from the graph above (Figure

6), if we want to simulate the “Manhattan” city and

provide the drivers with a short-term prediction of traffic

for the next 5 minutes, the sequential approach is not

appropriate because the time spent on simulation (6min

40sec) is greater than the required prediction time (5 min).

Running the simulation on 4 nodes, the time spent on

simulation (3min 10sec) is less than the required prediction

time, but not less enough because information should be

passed to drivers on time to make their decisions. Thus, the

appropriate simulation performance is achieved when the

simulation is running on more than 8 nodes (e.g. on 16

nodes lasts 1min).

To summarise, the performance of the simulation

depends on the following factors:

- the number of LCPs used. The larger the number of

LCPs used the worst the performance is, since there

is extra time spent for communication.

- the number of cars applied on the road network

increases the computation time.

- the number of time STEPS used is responsible for

the overall simulation time.

- the available nodes in the cluster ready to work on

assigned simulation tasks.

6. Simulation of multiple cities within the

same cluster

 The simulator is extended to simulate two different cities

within the same cluster. The difference between the two

different types of traffic simulation is that using the

multiple city simulation, we should be able to investigate

not only the behaviour of cars within a single city, but also

the traffic between two cities.

 Figure 7 shows how two cities are implemented on

P-GRADE. Once again the parent process is responsible

for distributing the network file to the templates and all

information necessary for the simulations. The pipeline

templates called “City1” and “City2” define the children

processes. On each city we can define how many children

processes will participate for the simulation of the

particular city that they belong to. Between the two cities

there is a router process that dispatches the messages that

are exchanged. These messages carry information about

the cars that travel to the neighbour city.

Figure 8 shows the performance results collected from the

simulation of the two cities. There are four processes that

work on each city. The fourth process on the second city

(City2_2) has half execution time compared with the other

execution times. It is because half the amount of junctions

has been assigned to work on that process.

7. Further work (Extending the simulation of

multiple cities towards the Grid)

 The MadCity simulator (SIM) is extended one step

further to simulate more than one city on different clusters

(University of Westminster and MTA SZTAKI). The

“multicity” simulation is implemented on P-GRADE

(Figure 9) where two cities are simulated at the same time.

 Figure 9 shows two different processes (orange colour

boxes) that will simulate three different cities (Liverpool

and Manchester) using hypothetical road networks and

Cars 1 node 4 nodes 8 nodes 16 nodes

294000 398 198 130 69

252000 340 172 113 58.8

210000 284 144 94 50.4

168000 229 116 77 42

126000 172 91 59.6 33

84000 114 62 40.3 23

42000 54 34.2 24.4 13.1

8400 11 10.3 7.1 5.5

840 5 4.8 3.6 2.8

Table 1. Performance results values

Figure 7. Simulation of two cities

Figure 8. Performance results on two cities

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

different number of cars for each city. Each process

communicates with a pipeline template (orange and white

colour boxes) that helps to increase or reduce the number

of participating nodes necessary for the simulation within a

particular cluster. Templates offer the ability to change the

number of member processes without modifying the

general code of the application. So, in case that the need of

more processes is required (e.g. 32 or more), the only thing

that should be changed is the number of member processes

inside the template instead of drawing 32 or more different

processes.

 Communication messages are exchanged between

templates and between templates and processes that

describe the behaviour of cars that are moving between the

cities. To minimise the communication time, the use of

local buffers is essential. All car information that is about

to change a city is stored in a local buffer and sent at the

end of the simulation as one message.

 The same high-level graphical environment of

P-GRADE used to develop parallel programs for clusters is

now extended towards the Grid. This environment enables

the Grid application programmer to develop a parallel

program that can be executed as a Grid job on any parallel

site of a Grid in a transparent way. P-GRADE supports the

Condor mode for job submission to the Grid. In Condor

[10] mode, P-GRADE constructs the necessary description

file containing the resource requirements of the parallel

job, and it submits the Condor job to the Condor pool. The

restriction of this mode is that it can only be used if the

submitting machine is part of a condor pool.

 To execute the multicity simulation of MadCity, the

program should start as a Condor job under P-GRADE.

Using the mapping option, two clusters can be selected to

participate for the job execution of the simulation. The

monitor system can also be used for on-line monitor and

visualisation of the job status, processes and their

interaction on all clusters simultaneously.

8. Conclusion

 The implementation of a scalable traffic simulator has

been presented. The time of the sequential simulation was

compared with the parallel execution of the simulation on

the cluster. Parallelising the simulation reduced the

execution time, so that short-term predictions of traffic can

be achieved. Templates offer the ability to create scalable

solutions, such as the traffic simulator, where the number

of participating nodes can be easily increased or reduced

without modifying the code of the simulator. P-GRADE

was a successful tool that helped to implement the

simulator, make the parallelisation and monitor the

performance of the simulation on the cluster. The

simulation of a single city was extended to the simulation

of multiple cities within the same cluster and towards the

Grid to take advantage of more computational power that

one cluster can offer.

9. References

[1] Buyya Rajkumar, High Performance Cluster Computing

Volume 1: Architectures and Systems, London, Prentice-Hall

International (UK) 1999.

[2] A. Apon, R. Buyya, H. Jin, J. Mache, “Cluster Computing in

the Classroom: Topics Guidelines, and Experiences”, 2001

[3] P. Kacsuk, “Visual Parallel Programming on SGI

Machines”. Invited paper, Proc. of the SGI Users.

Conference, Krakow, Poland, pp. 37-56, 2000.

[4] P-GRADE User’s Manual:

http://www.lpds.sztaki.hu/projects/p_grade/manual/manual_

frame.html

[5] The Centre for Parallel Computing Computational Cluster:

http://parsifal.cpc.wmin.ac.uk

[6] PVM: Parallel Virtual Machine:

http://www.csm.ornl.gov/pvm/pvm_home.html

[7] MPI – The Message Passing Interface Standard:

http://www-unix.mcs.anl.gov/mpi

[8] SZTAKI cluster:

http://www.lpds.sztaki.hu/cluster_computing/klaszterjell/ind

ex.htm

[9] Baker M., Buyya R., Laforenza D. "Grids and Grid

Technologies for the Wide-Area Distributed Computing",

2002.

[10] J. Frey, et al, “Condor-G: A Computation Management

Agent for Multi-Institutional Grids”, Proc. of the10th IEEE

Symp. on High Performance Distributed Computing

(HPDC10), 2001.

Figure 9. MultiCity on P-Grade

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 12, 2009 at 06:15 from IEEE Xplore. Restrictions apply.

