

University of Westminster Eprints
http://eprints.wmin.ac.uk

Design considerations of the GOQL interface.

Euclid Keramopoulos1
Philippos Pouyioutas2
Tasos Ptohos3

1Department of Informatics, T.E.I. of Thessaloniki, Greece
2Department of Computer Science, Intercollege, Nicosia, Cyprus
3Cavendish School of Computer Science

Copyright © [2004] IEEE. Reprinted from ITI 2004: 26th International Conference on
Information Technology Interfaces, 2004, pp. 361-366.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

361

Design Considerations of the GOQL Interface

Euclides Keramopoulos
Department of Informatics, TEI of Thessaloniki,
P.O. Box 14561, Thessaloniki 54101, Greece

eiiclid@,r.teithe.gr.

Philippos Pouyioutas
Department of Computer Science, Intercollege,
46 Makedonitissas Ave, Nicosia 1700, Cyprus

pouvioictas.p~intercolle~e.ac. cv

Tasos Ptohos
Cavendish School of Computer Science, University of Westminster,

tasos($wmin.ac.uk
115 New Cavendish St, London WI W 6UW. UK

Abstract. The Graphical Object Query Language
(GOQL) is a query language that complies with the
ODMG standard and which runs on top of the 0 2

DBMS. The GOQL User Interface comprises the
User’s View (UV) and the Folders Window (FW).
The UV is a graphical representation of an ODMG
database scheme, which hides from end-users most
of the perplexing details of the object-oriented
database model. The FW is a condensed version of
the W that serves as canvas upon which ad-hoc
queries are constructed. The paper addresses
principles behind the design of User Interfaces and
discusses features and characteristics of the GOQL
User Interface.

Keywords Graphical Query Languages, Query
Language, User Interfaces, OODBM

1. Introduction

The database languages evolution is strongly
related partly to the evolution of nser interfaces and
partly to the evolution of database models and
database systems in general. Until the early eighties
not much attention was paid to the attractiveness,
popularity and/or friendliness of user interfaces,
mainly because nsers of these systems were highly
trained and/or skilled professionals. As hardware
costs plummeted and computer systems found their
way into almost every aspect of life, the way
computer systems were used also evolved.
Nowadays, the majority of computer users need
only to leam how to complete simple work tasks,
whereas the problems they have to solve are
usually expressed in non-computing terms. The
change in the main type of user, from that of the
highly skilled professional to that of the computer
literate (unskilled or naive) user, meant that
computers had to “acquire” or “compensate” for

the skills that the new type of users lacked and to
make interfacing with users simpler and friendlier.
The advent of Graphical User Interfaces (GUIs),
which utilise users cognitive skills and hamess both
advances in graphics technology and increased
computing power, simplified and revolutionised the
way users interface with computers and made
computer systems accessibly to an, even larger
number of users. Nowadays, GUIs have become an
essential part of any computer system and systems
designers have come to accept that in order to
improve users’ productivity it is essential for a User
Interface to address users’ skills [I].

Herein we discuss issues related to the design
of graphical query languages and the GOQL. In
particular, we outline some of the principles and
characteristics that influenced the design of
graphical query languages; we examine some of
these features in relation to the design of the User’s
View (W) and the Folders Window (FW); we
present the design of the GOQL, which is
Graphical Query Language (GQL) that has the
same expressive power as the OQL of the ODMG
3.0 standard [2] and which is the only GQL for the
ODMG 3.0 that supports binding functions and
method parameters. We conclude by illustrating
aspects of GOQL’s User Interface.

2. Design Principles and Characteristics of
Graphical Query Languages

One of the first steps in our investigation into
the design, definition and implementation of the
GOQL was to identify and categorise principles
and/or characteristics used in the design of GQLs.
To do this we devised an analysis methodology that
utilised elements of the approach taken in [4] for an
analysis methodology on query languages and in
[5] for the survey on graphical query languages on

26th Int. Conf. lnformation Technology Interfaces /TI 2004, June 7-10, 2004, Cavtat, Croatia

http://tasos($wmin.ac.uk

362

databases. We used our methodology to consider MS-Access [24], Paradox [25], GQL [26], Business
both languages and conceptual models that involve Objects [27] and Oracle [28].
a graphical representation of data. The languages Our findingslconclusions are summarised by
and conceptual models we considered using our the table in Fig. 1; a more detailed discussion on
analysis methodology include ODMG 3.0 [2], the methodology we employed and the
UML [6,7], COADNOURDON [8] , ERM [9] and characteristicslfeatres, along with the languages
EERM [IO], AMAZE [I I], G-Log [12], GOMI and models we considered can he found in [3]
[13], Khoshafian Model [14], Kaleidoquery [15], GOQL was designed based on the findings of
PICASSO [16], Pasta-3 [17], QBD* [IS], SUPER the above investigation.
[19], Gql [20], OdeView [21], QUIVER [22,23],

Figure I. Features of Graphical Languages

3. The User’s View (UV) and the Folders
Window (FW) of GOQL

GOQL was designed to address the needs of
end-users and to provide an alternative graphical
query language to OQL. Thus, GOQL was
designed to comply fully with the features of the
object model of the ODMG 3.0 [Z] and its query
language, OQL. To achieve these, GOQL users are
presented with the User’s View (UV), which is
GOQL’s graphical representation of an underlying
ODMG database scheme and which serves as the
foundation upon which GOQL queries are
constructed. In this section we address the
importance of graphical scheme representations
and the use of metaphors in constructing these
representations.

3.1. Graphical Scheme Representations

The importance of a graphical scheme
representation of database constructs has been
recognised in the late 70’s following the proposal
and success of the entitylrelationship (ER) model
[9]. Since then graphical scheme representation has
been used for the definition of data models (EERM
[lo]) and even for the representation of data in
languages (UML [6,7]).

The main objective of graphical scheme

representation is to provide a simple and user-
friendly alternative to the way database structures
are conceptualised. The complexity and level of
detail in which graphical schemes represent
characteristics of a database scheme reflect the
technical competence of the indented target group
of users. Thus, both skilled and expert users may
find graphical schemes designed for naive users
easy (and possibly frustrating) to use, whereas
graphical schemes designed for expert users may
require expertise and level understanding that
skilled and/or naive users do not have.

We believe that most of the graphical schemes
found in literature, with the exception of
Kaleidoquery [IS] and AMAZE [1 11, are addressed
to expert users. This is because metaphors are not
used in the graphical representation of these
schemes. Moreover, all proposed schemes,
represent graphically all the technical details of the
underlying database model without trying to
hide/metaphorically present some perplexing
details that confuse non-expert users.

3.2. Desktop Metaphors

Quite frequently, in everyday life, attempts to
explain or simplify something involve employing
examples that the target audience can relate to. In
[29] it is argued that an audience can relate better to
the implications and complexity of something they

363

are familiar with.
The use of metaphors is one of the most

common teaching techniques, it is used to help
children comprehend complex concepts. The same
principle of using metaphors has also been used in
computing as a way of making users, especially the
naive ones, relate to and comprehend complex
concepts. One of the most famous metaphors used
in a software application is the turtle in LOGO
[30], where the illustration of painting by following
the movement of turtle’s tail in the dust was very
successhl, especially with children, and it helped
them learn and use LOGO more effectively.
Similarly, metaphors have been used in database
applications to make concepts of such applications
conceptually simpler to users, especially to naive
users.

In [I] it is claimed that the office environment
is one of the most suitable fields to look for
metaphors for database applications, because early
database applications used to model and store
business data that were stored as documents in
folders. Moreover, according to [31], it is
conceptually simpler for an office employee to
work with a database interface that allows himiher
to relate to pictures from hisiher work environment
(i.e. office). For example, [32] suggests that the use
of a ‘red book’ as a metaphor will be successful in
the interface design of an application that is
developed for the employees of a company where a
“real” red book is used for a specific purpose.
However, the use of metaphors requires careful
consideration, as choosing the wrong metaphor can
easily confuse users and lead them to misinterpret
the intended semantics with possibly disastrous
results.

In conclusion, a wisely selectedused metaphor
that a target audience can relate to, can
conceptually simplify complex concepts.

3.3. Graphical Scheme Design

A graphical scheme is a representation of
structures of the underlying database model.
Designers of such schemes maintain a one-to-one
correspondence between elements of the graphical
scheme and the corresponding constructs of the
underlying database scheme. An immediate
implication is that the graphical scheme
representation is constrained by the constructs of
the underlying database model and it could not
represent the database scheme of another database
model. If the graphical scheme is to he independent
of the underlying database model, the set of
metaphors used must he independent of the
structures of the underlying database model. For
example, in User’s View the metaphor folder can
be interpreted either as a class object or as an

entity. The set of metaphors that a graphical
scheme supports must cover all the different
features of the scheme’s underlying database
model. However, a subsumption relationship can he
defined between certain database models; this leads
us to believe that a graphical scheme for a database
model that subsumes a number of other models will
also cover the features of all the data model that are
subsumed by the database model for which the
graphical scheme was created. In particular, the
OODBM is a database model whose features
subsume the cfeatures of the relational, the nested
relational, the complex objects and the semantic
database models [33]. Thus, a graphical scheme
which can represent the features of the OODBM
can also represent the features of all the models it
subsumes. The User’s View is designed for the
OODBM, in this way that it can represent
constructs of all the database models that OODBM
subsumes.

Figure 2. The User’s View

3.4. The User’s View of COQL

Graphical schemes were defined to he faithful
and precise representations of an underlying
database scheme. However, the representation of
all possible details of an underlying scheme can be
overwhelming for some users, so it may be
preferable for certain details to he hidden from
certain classes of users. Hiding the underlying
scheme’s perplexing details combined with the use
of appropriate metaphors can simplify the graphical
scheme and make its use more effective for naive
users. The User’s View is such a graphical scheme.
In Fig. 2 the User’s View for a publisher’s database
is given.

3.5.GOQL and the Problem of Complex
Databases - The Condensed View

GOQL deals with the problem of representing a
complex database scheme by adopting a hybrid

364

approach, which involves the top-down approach,
the browsing approach, and the scheme
simplification approach.

Fig. 3 presents the Folders Window (FW),
which is a condensed graphical representation of
the scheme UV. It consists of a number of closed
folders, one for each of the defined classesientities.
Users can choose to 'open' any of the included
folders to examine the features of that class. By
selecting a folder the graphical scheme is moving
one level down (top down approach) for the
particular classientity. At this level relationship
browsing can allow a user to open any of the
contained relationships, whereas using selecting
elements of these relationships can allow a user to
develophavigate part of the scheme that is of
hisher interest; in other words a scheme
simplification is achieved by scheme developing,
Fig. 4. We believe that this combination of the
three approaches provides a straightforward
mechanism to browse schemes of even complex
database schemes. Users can also use this approach
to construct suhschemes of the initial scheme that
meet query requirements.

Figure 3. The Folders Window

4. GOQL Design Considerations

When designing the GOQL, we had as a target
the implementation of a graphical query language,
which would support the whole repertoire of the
OQL of ODMG 3.0 [2]. In addition, we wanted to
present expert users with a language that they could
use more productively<@ other GQLs or the
OQL, at the same time we wanted to present naive
users with a language that they would be able to
use with the least possible training. To achieve
these targets we used metaphors for the graphical
representation of the scheme and we tried to give a
visual look to the query construction that will not
trouble user with perplexing symbols and diagrams
and which will highlight important elements of a
query, using colour and special symbols, which
attract the attention of the user.

4.1. Visual Representations

In [5] eleven (11) different types of visual
representations were identified as being used in
various graphical query languages. The three more
important and commonly used visual
representations are the form based one, the diagram
based and the icon-based representation. A
Combination of two or more types of representation
results in hybrid systems. According to [SI, the
combinations adoptedused so far are: a) forms and
diagrams, b) diagrams and icons and c) forms,
diagrams and icons. Overall, hybrid systems
produce better query representations because
designers can choose the features of each
representation that will create a better and more
productive result. Furthermore, quite frequently
users are used to specific pictures from their life,
which are presented by different types of
presentation; thus, it is very difficult to illustrate
these pictures using only one type of
representation. The above led us to use forms for
the presentation of data, diagrams for the
presentation of operators and icons for the
representation of toolhars, i.e. the GOQL interface
is a hybrid one

Figure 4. The Folders Window, Scheme
Developing, and Relationship Browsing

4.2. Cognitive and Technical Aspects

GQLs are focused on specific classes of users
and this is reflected by. their design. COQL is
aimed at all types of users; thus, the GOQL's
design had to incorporate both cognitive and
technical characteristics that address the needs of
each class of users. Among the cognitive targets of
GOQL's design was to create an easy to learn
language with natural language characteristics,
which will he easily used. To achieve this, a

365

number of desktop metaphors were used, especially
for the representation of the graphical scheme. For
the representation of the various operators simple
shapes have been selected having as a criterion for
the selection the type’of the operator (unary or
binary) and the number of its operands. The overall
aim was to allow users to intuitively recognise the
semantics of the various operators and use them
accordingly.

Finally, in order to enhance the ‘readability’ of
the graphical queries, colour was used. For the
technical aspects of the design we developed a
language with a hybrid query construction
mechanism. To improve this mechanism we
incorporated in the design the majority of the
known methods of formulating a query. Moreover,
all of the GOQL‘s tools are visual formalisms, i.e.
tools, that are formally defined to be used by a
computer and which also can be visualised by users
WI.
4.3. Shape

According to [35] the shape of elements of a
language can be utilised as an effective way of
differentiating between these elements. In GOQL,
we tried to utilise the above idea to differentiate
between operators. Thus, operators were
categorised and different shapes were introduced to
represent each of the categories. Operators within
each category are identified by the category’s
symbol and a word that identifies an operator. The
shapes used are:

Hexagons: used to represent boolean operators.
Small ovals: used to represent unary operators.
Large ovals: used to represent binary operators.
Circles: used to represent sorting.

4.4. Colour

In devising a strategy for the use of colour in
GOQL, we followed the suggestions of [36, I]. In
particular, the monitor was adjusted to display only
shades of grey to check whether the used colours,
can be easily read by the majority of users and only
seven (7) colours were used to represent all the
GOQL’s features. Moreover, highly contrasting
colours that be easily recognisable / readable in a
monochrome monitor were chosen.

Furthermore, we utilised a colour convention
that we felt was intuitive as it is also used in a
similar way in other areas such as a traffidwork
environment [36, 11. In particular, red was used for
alerts, for example when function parameters have
to be provided. Green was used to indicate that all
is clear, i.e. no syntax error. Yellow was used as a
sign of caution; the draw attention action is given
by painted yellow semicircles, which indicate

where a condition has been inserted. Dark blue was
used to highlight selected items; in particular we
chose to use a dark colour to highlight projected
items and the blue colour to achieve the
differentiation for the projected items. We used
different colours to present each of the metaphors.
The colours used, which also give a nice result in a
grey scale, are:

For the folder, the turquoise green.
For the briefcase, the brown.
For the envelope, a mix of red and orange.
For the clip, the light blue.
For the background a shade of a grey was used,

which is a neutral colour, i.e. it does not make
colours painted on it to look darker or lighter; it is
friendly and unobtrusive [35]. Finally, a thin black
border is used with each of the defined tool-shapes
of GOQL to make them clearly recognisable by all
users.

5. Conclusions

The paper presented the GOQL language and
addressed the advantages of our language as
compared to other GQLs Amongst the most
important advantages of GOQL is the database
model independence that it supports and its
simplified user interface that hides any perplexing
details of the underlying model(s). The paper
discussed the principles and characteristics of
graphical query language and showed how these
were incorporated in the design and development
of GOQL. The language’s user interface, namely
the User View was presented. GOQL is fully
functioning and is running on top of the 0 2 DBMS.
Our current work involves continuous evaluation
and maintenance of the system, involving
correction of bugs and further enhancements of the
system.

References

Dix A, Finlay .I, Abowd G, Beaie R. Human
Computer Interaction, 2”d Edition. Europe:
Prentice Hall; 1998.
Cattell R G G, Bany D K editors. The Object
Database Standard: ODMG 3.0. Morgan
Kaufmann Publishers; 2000.
Keramopoulos E. The GOQL Language, PhD
Thesis, University of Westminster; 2003.
McDonald N H & McNally J P. Query
Language Feature Analysis by Usability.
Computer Languages 1982,7, 103-24.
Catarci T, Costabile M F, Levialdi S, Batini C.
Visual Query Systems for Databases: A
Survey. Journal of Visual Languages and
Computing 1997; 8(2); 215 - 60.

366

[6] Booch G, Rumbaugh J, Jacobson I. The
Unified Modeling Language User Guide.
Addison - Wesley Object Technology Series;
1998.

[7] Gomik D. UML for Data Modeling Profile.
Rational Software Wbitepapers; TP162; 2002
www-3 06.ibm. comisoftwareirationalili
braw/whiteuapers/tu I62.html[23/0 1/04].

[SI Ciad P, Yourdon E. Object-Oriented Analysis,
2 Edition. Prentice Hall; 1991.

[9] Chen P P. The Entity-Relationship Model:
toward a Unified View of Data. Joumal of
ACM Transactions on Database Systems
1976;] (I); 166-92.

[IO] Schiffer G, Scheuermann. Multiple Views and
Abstractions with an Extended-Entity
Relationship Model. Joumal of CompuJer
Languages 1979; 4; 139 - 54.

[I 11 Boyle J, Leishman S, Gray M D. From
WIMPS to 3D: The Development of AMAZE.
Joumal of Visual Languages and Computing
1996; 7(3); 291 - 319.

[12] Paredaens J, Peelman P, Tanca L. G-Log: a
Graph-based Query Language. Joumal of
IEEE Transactions on Knowledge and Data
Engineering 1995; 7(3); 436 - 53.

[I31 Jun Y S, Yo0 S I. GOMI: A Graphical User
Interface for Object-Oriented Databases.
Proceedings Int'l Conference on Object-
Oriented Interface Systems; 1995; 238 - 5 1.

[I41 Khoshafian S. Object-Oriented Databases.
John Wiley & Sons Inc; 1995.

[IS] Murray N, Paton N, Goble C. Kaleidoquery: A
Visual Query Language for Object Databases.
Proceedings 4th IFIP Working Conference on
Visual Database Systems; 1998 May 27-29;
L'Aquila, Italy; 247 - 57.

[161 Kim H, Korth H F, Silverschatz A.: PICASSO:
A Graphical Query Language. Software-
Practice and Experience 1988; 18(3); 169 -
203.

[I71 Kuntz M, Melchert R. Pasta-3's Graphical
Query Language: Direct Manipulation, Co-
operative Queries, Full Expressive Power.
Proceedings 15th Int'l Conference on Very
Large Databases; 1989; 97 - 105.

[18] Angelaccio M, Catarci T, Santucci G. QBD*:
A Graphical Query Language with Recursion.
IEEE Transaction on Software Engineering
1990; 16(10); 1150-63.

[19]Dennebouy Y, Anderson M, Auddino A,
Dupont Y, Fontana E, Gentile M, Spaccapietra
S. SUPER Visual Interfaces for Object +
Relationship Data Models. Joumal of Visual
Languages and Computing 1995; 6(1); 73 -

99.
[20] Papantonakis A. Gql, a Declarative Graphical

Query Language Based on the Functional Data
Model. PhD Thesis, Birkbeck College,
University of London; 1995.

[21] Dar S, Gehani N H, Jagadisb H V, Srinivasan
J. Queries in an Object-Oriented Graphical
Interface. Joumal of Visual Languages &
Computing 1995; 6(1); 27-52.

[22] Chavda M, Wood P T. Combining Constraints
and Data-Flow in A Visual Query Language.
Proceedings IEEE Symposium on Visual
Languages; 1997 Sep 23 - 26; Capri, Italy;
125 - 6.

[23]Chavda M, Wood PT. Towards an ODMG-
Compliant Visual Object Query Language.
Proceedings 23rd VLDB Conference; 1997;
Athens, Greece; 456 - 65.

[24] Microsoft Corporation Ltd. Microsoft
Windows 2000 Professional Resource Kit.
Microsoft Press; 2000.

[25] Borland. Paradox for Windows; 1995.
[26] SOFT TOOLRACK Ltd. GQL (Graphical

[27] Business Objects Ltd, 2003, Available
Query Language); 1995.

at:http://www.businessobjects.com/products/q
uery-report-analyskhtm

[28] Oracle Corp. Simple Strategies for Complex
Data: Oracle9i Object-Relational Technology.
An Oracle Technical White Paper; 2002.
otn. oracle.co~uroducts/database/aoolication
development/pdf/simple strat for comulex re
u f [23/01/2004].

[29] Torgny 0. Metaphor - a Working Concept.
Proceedings Contextual Design - Design in
context; 1997; Stockholm, Sweden; 3 - 14.

[30] Slack J. Turbo Pascal with Turtle Graphics.
West Publishing Company; 1990.

[3 11 Collins D. Designing Object-Oriented User
Interfaces. BenjamidCummings Publishing
Company Inc; 1995.

[32] Lovgren J. How to choose good metaphors.
Joumal of IEEE Software 1994; 1 l(3); 868.

[33] Pouyioutas P. Formalising the Extended
Object-Oriented Database Model. PhD Thesis,
Birkbeck College, University of London; 1996

[34] Harel, D. On visual Formalism.
Communication of the ACM 1988; 31(5); 514
- 30.

[35] Foley J, Van Dam A. Computer Graphics
Principles and Practice, 2"d Edition. Addison -
Wesley Publishing Company; 1990.

[36]Newman W M, Lamming M G. Interactive
System Design. Addison - Wesley Publishing
Company; 1995.

