UNIVERSITY OF WESTMINSTER

gRabh -

vvyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

An e-learning tool for understanding schedule
properties.

Steve Barker
Department of Computer Science, King's College, London

Paul Douglas
Cavendish School of Computer Science, University of Westminster

Copyright © [2003] IEEE. Reprinted from ITCC 2003: International Conference on
Information Technology: Computers and Communications. IEEE Press, pp. 53-59.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

An E-Learning Tool for Understanding Schedule Properties

Steve Barker,
Department of Computer Science,
King’s College, London, UK.
email: steve@dcs.kcl.ac.uk

Abstract

In this paper, we describe an e-learning tool that we
have developed to assist University students studying var-
ious modules on database systems. We use the acronym
DTST (viz. a learning tool for Database Transaction Sched-
ule Testing) to refer to our learning tool. DTST enables stu-
dents to actively construct their own learning environment,
it can respond in an individualistic way to student input, and
it has a built-in web interface that makes it widely accessi-
ble. Field tests conducted on DTST suggest that it provides
students with a different and valuable type of learning ex-
perience that traditional methods do not provide.

1. Introduction

We describe an item of educational software that we
have developed and used to help University-level students
to learn certain key notions in database transaction process-
ing. We call this piece of software DTST (viz. a learning
tool for Database Transaction Schedule Testing).

DTST is an item of educational software that is intended
to “intelligently” assist computer science students in devel-
oping their understanding of CRAS property satisfaction [2].
The term “intelligently” is interpreted by us as the capabil-
ity of responding to a student’s self-selected input by detect-
ing, diagnosing and explaining his/her errors or confirming
that his/her understanding is correct.

DTST is a learning aid that is able to respond to ques-
tions about CRAS property satisfaction in the same way
that an “expert tutor” might and provides students with a
tool for constructing their own learning experience, an at-
tractive feature that textbooks do not provide. More specif-
ically, DTST encourages students to learn about the CRAS
properties by making and testing hypotheses. This approach
appears to us to be the approach students naturally adopt to
learn about the CRAS properties. The traditional, text-based
method that we have previously used to teach the CRAS

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

Paul Douglas,

Cavendish School of Computer Science,

Westminster University, London, UK.
email: P.Douglas @wmin.ac.uk

properties does not adequately support learning by hypoth-
esis formulation and testing.

Although DTST has thus far been used to help students
to learn about CRAS property satisfaction, DTST may be
modified to provide support for students learning any part
of the Computer Science curriculum that involves reason-
ing about the consequences of the occurrences of events.

The rest of the paper is organized thus. Section II intro-
duces the CRAS properties. In Section III, the development
of DTST is discussed and some key features of the soft-
ware are outlined. Section IV gives details of the web inter-
face. In Section V, some results, produced from the forma-
tive and summative evaluations of DTST, are described and
discussed. In Section VI, conclusions are drawn, and sug-
gestions are made for further work.

Due to space limitations, in this paper we only give an
overview of our work and we sketch the main results. A
fuller set of results and a discussion of them will be pre-
sented in a forthcoming publication.

2. The CRAS Properties

The CRAS properties are conditions imposed on a sched-
ule, a sequence of interleaved read and write operations per-
formed on objects in a database. Schedule operations are
performed by a database management system (DBMS) as
part of a transaction [2].

Unfortunately, certain interleavings of the operations
from different transactions in a schedule can cause anoma-
lous behaviours (that compromise database integrity) and
can raise a number of practical difficulties (e.g., the lost up-
date problem [3]). The CRAS properties [2] solve this type
of problem by imposing constraints on the order in which
operations are performed in a schedule; satisfaction of these
constraints guarantees that schedules are correct. Moreover,
the DBMS can be configured to optimize the performance
of transaction processing.

The CRAS properties are: conflict serializability, recov-
erability, avoids cascading aborts and strictness [2].

YF]',F.

COMPUTER
SOCIETY

3. DTST: An Overview

DTST is a piece of software that enables students to test
any syntactically correct schedule they choose as input to
the system. Students also have complete freedom to choose
to investigate the satisfaction of any of the CRAS properties
by these schedules.

The software that implements DTST is written in PRO-
LOG [4]. PROLOG has been widely used for implementing
items of educational software (see, for example, [13]) and is
appropriate for developing applications, like DTST, that re-
quire that a degree of “intelligence” be captured. The fact
that the rules that define the CRAS properties can be di-
rectly translated into PROLOG was another reason for us
choosing PROLOG to implement DTST.

3.1. Our Development Methodology

Our approach to developing DTST initially involved us
adopting a phenomenographic method [11] for information
gathering on students’ understanding of concepts in trans-
action processing. By conducting ‘dialogue’ sessions with
students we identified the strategies students used to under-
stand the CRAS properties. From our review of the notes
taken at the dialogue sessions, we were able to develop a
prototype system for supporting students in learning about
CRAS property satisfaction.

As our DTST tool evolved, we made increasing use of
Gagne’s event-based model of instruction [9] to decide what
material a user of DTST should be offered and the order
in which information ought to be presented to a learner.
Following [9], when students use DTST they are reminded
what the learning task to be performed is, and what it is
they are supposed to be able to do once the learning task
has been completed. Prominence is given to the distinctive
features that need to be learned, different levels of learn-
ing guidance are supported for different types of learners,
informative feedback is given, and learning takes place in
a student-centred, interactive way, but with support avail-
able to students as and when they need it.

3.2. A Learning Session

When engaging with DTST, a user submits a schedule o
to the system and selects a CRAS property to evaluate with
respect to 0. The schedule is displayed to the user who may
then hypothesise about the satisfaction or otherwise of any
of the CRAS properties by ¢ and may test these hypothe-
ses by using DTST. Moreover, the user may request expla-
nations of the answers that DTST generates. Each operation
in o is represented by a 4-ary tuple, (o,t;,i,t5). Here, o de-
notes an operation (e.g., read or write), t; denotes a transac-
tion performing o, i denotes the data item acted upon by ¢;,

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

and t, is the time at which o is performed. In the case where
o0 is a commit or an abort, the data item is null as these oper-
ations are not performed on a data item. Hence, the output
(in italics) produced in a DTST session might be:

Your chosen schedule was:

write, trl, dataX, 1
write, trl, dataY, 2
read, tr2, dataU, 3
write, trl, dataZ, 4
write, tr2, dataZ, 5
commit, trl, null, 6
write, tr2, dataX, 7
read, tr2, dataY, 8
write, tr2, dataY, 9
commit, tr2, null, 10

An example query (chosen from a menu) on this sched-
ule is:

Correct for ACA? (i.e., the user asks “is this sched-
ule an ACA! schedule?”).

In this case, the output DTST produces is “yes”.

Thereafter, a user can ask DTST for an explanation of
this result by selecting the explain option from a menu.

All of the CRAS properties and schedules are evaluated
in a similar way and several levels of explanation are pro-
vided by DTST. DTST also includes a number of on-line
tests for students to check their understanding of the CRAS
properties. DTST is able to automatically analyse student
responses to the on-line test questions and can diagnose
misunderstandings and report them to the student.

4. The Internet Interface

We have used CGI [12] as our interface mechanism. The
principal reason for this is that it was easy to install on the
University system, with good support readily available. In
addition, CGI’s simplicity enables the applications to ig-
nore the problem of getting their output to a web server,
so no significant modifications of the fundamental applica-
tion were required.

We have used Eugene Kim’s CGIHTML package [6],
rather than something like Apache’s API, for its portabil-
ity. All development work was done on Solaris using Sun’s
Forte compiler and an Apache [1] server.

Our Prolog interpreter is XSB [14]. XSB runs on a num-
ber of platforms and has a range of interfaces. The applica-

1 Satisfaction of the ACA condition reduces the amount of work re-
quired to recover from the effects of failed transactions.

YF]',F.

COMPUTER
SOCIETY

tion programs are all written in C and use the XSB object
module to produce applications offering good performance.

The C to XSB interface offers a choice of passing XSB
the query in the form of a string, or building it within XSB’s
internal registers. As the latter method is difficult to use for
all but the simplest queries, we used the string method.? Re-
turned data is obtained from an XSB register.

Our method has been to present the user with the oppor-
tunity to enter a query at a web-site in the form of a sched-
ule expressed as a sequence of Prolog predicates. In its ba-
sic format, this information is entered into a dialog box in
an HTML form as if the user were presented with a Prolog
prompt. However, we have also experimented with a form
of interface that allows different types of operation to be se-
lected, and where only the data item and the operation had
to be entered.

Once a schedule has been entered and DTST has evalu-
ated it, additional queries are possible (see Section III). A
basic selection is available via a menu, or ad hoc queries
can be entered in the form of a standard Prolog predicate.
Moreover, there are also several pages of on-line help avail-
able in HTML format, and these can be accessed alongside
the DTST program.

The general process followed by our applications is as
follows:

1. They are called by the CGI server and passed a string
from which they extract the user’s schedule or query.

2. The user’s schedule or query is parsed to make sure
that it is syntactically correct. If not, an error message
is returned.

3. Where necessary, the user query is incorporated into a
suitable Prolog query that will be passed to XSB for
evaluation.

4. XSB is initialized and reads its pre-compiled data file;
it is then passed the constructed query.

5. The result of evaluating the query is returned directly
to the CGI server (embedded, of course, in the neces-
sary HTML, as with all data returned to the server).

A particular advantage to this method is that the inter-
face is independent of the underlying application. It is pos-
sible to build interfaces of varying levels of sophistication
that can either be web-based or local applications.

We have used C for our code because of the excellent
C library interface that XSB provides. However, there are
a variety of alternative approaches. Of particular interest in
the area of web-enabled applications is Java; the YAJXB

2 The command or query to be passed to XSB is constructed within a
normal C string buffer, and then passed to XSB via the interface mech-
anism; XSB treats it as it would treat a command entered via stdin.

3 Ultimately, we expect to develop a more advanced interface that al-
lows all data entry to be input via drop-down menus.

package [7] enables XSB applications to be accessed from
a Java environment. Conversely, the loose coupling of ap-
plication and interface means that the system could easily
be extended to accommodate additional applications. This
would allow a wider selection of DBMS properties to be
incorporated, and thus would make DTST a broader-based
learning environment (see also Section VII).

5. Evaluating DTST

In overview, we have adopted a two-phase approach to
evaluate DTST. That is, we have used a formative evalua-
tion of DTST during the development of the learning tool.
Thereafter, we conducted a summative evaluation of a pro-
totype version of DTST.

5.1. The Formative Evaluation

For the formative evaluation of DTST a formal verifica-
tion of the technically important soundness and complete-
ness properties [10] of the software was initially performed.
Thereafter, comments on the software were sought from:
three members of the teaching staff at the University of
Westminster (the “expert reviewers” [15]); a volunteer stu-
dent from the university’s MSc course in Database Systems
(the one-to-one study); and a group of six volunteer stu-
dents from the same course (the small-group testing). The
volunteer students were randomly allocated to either the
one-to-one or small-group testing (but not both). These stu-
dents were learning about the CRAS properties at the time
at which the formative evaluation of DTST was being con-
ducted.

Initial demonstrations to the three expert reviewers pro-
vided some suggestions on how DTST could be improved.
In particular, a number of recommendations were made on
improving the user interface. The suggested improvements
were made to DTST prior to us conducting the one-to-one
evaluation.

The one-to-one evaluation took place over a period of
two weeks and involved approximately 3 hours of contact
time with the student volunteer. At the first of the one-to-
one sessions, the student was introduced to DTST using a
10 minute presentation. He was provided with a quick refer-
ence guide to remind him of the basic functions supported in
the version of DTST he was to use. The student was assured
about the confidentiality of any information he might pro-
vide and the purpose of conducting the study was explained
to him. The student was also encouraged to ask questions
about DTST if he felt he needed to. Thereafter, the student
was free to use DTST to explore CRAS property satisfac-
tion using schedules of his own choice.

In the one-to-one testing, our data were gathered using
observation and informal “interviews”. This involved one

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

of the authors sitting alongside the subject and encourag-
ing him to articulate his feelings about the learning pack-
age as he was using it. The student reported that DTST
was useful in terms of helping to develop his understanding
of CRAS property satisfaction. He emphasized that DTST
was motivating to used and he repeatedly suggested that the
scope DTST provided, to enable him to investigate sched-
ules of his own choosing, was important in developing un-
derstanding. The student also suggested some useful mod-
ifications to DTST. We chose to make several of the sug-
gested changes before starting our small-group testing.

The small-group testing was performed over a four week
period (approximately 8 hours of contact time spread over
six sessions) with a set of six student volunteers (three males
and three females). The methods employed to gather data
were the same as those used for the one-to-one sessions.

Again, the power DTST provides to enable students to
investigate any schedule and CRAS property was reported
to be an attraction of the learning tool, and important in
helping students to develop their understanding of sched-
ule properties. The students also commented positively on
the internet availability of the software: although our small-
group testing was limited to that described above, all of the
students involved in the formative evaluation of DTST re-
ported that they had used the learning tool, via the web, on
several additional occasions outside of the test sessions.

The feedback collected from students engaging in the
small—group testing was used by us to develop DTST fur-
ther and prior to its summative evaluation.

5.2. Summative Evaluation of DTST

The field test of DTST was conducted with the cohort of
29 students at the University of Westminster who were tak-
ing the Database Administration (DBA) module as part of
their part-time BSc Computer Science degree programme
in the Second Semester of the 2001/2002 academic year.

Students were introduced to the version of the DTST
software to be summatively evaluated during a 2 hour tu-
torial session; the introduction was presented identically to
that used in the one-to-one and small-group testing. Follow-
ing the introductory session, DTST was used for the next
three weeks during the part-time students’ tutorial time.

In overview, there were two parts to the summative eval-
uation of DTST. Firstly, a t-test was performed on the results
of a phase test that included questions on the CRAS prop-
erties. The t-test was intended to compare the performance
of the part-time students (the experimental group) with that
of the 47 full-time DBA students (the control group) who
had used the standard module text [3], but not DTST. The
full-time students had taken the same test in the semester
before the experimental group. Secondly, a 5-point Likert
scale was used to produce data on the perceptions the part-

time students had of DTST and [3], as methods for facili-
tating understanding of the CRAS properties, and their at-
tractiveness as learning instruments. A t-test was again used
to analyse the data produced and was based on a compari-
son of the matched pairs of scores produced by each respon-
dent for DTST and [3].

Mean test scores for the part-time and full-time students
for the phase test were calculated for both the CRAS and
non-CRAS related questions to compare the performance of
the two sets of students. Because we felt that DTST might
have had an effect in encouraging learning gains, we chose
to test the alternative (directional) hypothesis that: the part-
time students performed better on the test of CRAS property
understanding than the full-time students. The correspond-
ing null hypothesis was that there was no difference in the
phase test scores produced by the two sets of students.

The analysis of our data showed that the mean test scores
(out of 12) for the full-time and part-time students on the
questions on CRAS properties were 6.52 and 8.38 respec-
tively (the corresponding standard deviations were 9.65 and
6.97, respectively). The computed t-statistic was 0.81 for 27
degrees of freedom. Hence, the directional hypothesis had
to be rejected in favour of the null hypothesis.

A comparison of the mean scores (out of 28) achieved
by the students on that part of the phase test that did not di-
rectly relate to the CRAS properties revealed that the av-
erage mark for full-time students was 16.96 whereas the
average mark for part-time students was 17.58. As such,
whereas the average score for the full-time students on the
phase test questions relating to the CRAS properties was
29% lower than the part-time students, the average mark
for the full-timers on questions not related to the CRAS
properties was only 4% lower. Although these figures do
not prove anything, they offer some suggestive evidence
that DTST might have helped students to understanding the
CRAS properties.

The combination of the statistically non-significant anal-
ysis of the phase test scores and the fact that a number
of potentially confounding variables applied in our study
meant that we were not able to draw any firm conclusions
on whether DTST had been of value in terms of helping stu-
dents understand the CRAS properties.

The Likert scale included a total of 24 statements (with
an equal number of positive and negative statements). These
items were divided into three categories. Eight of the state-
ments were intended to measure the extent to which DTST
and [3] were perceived as being of value in facilitating stu-
dent understanding of the CRAS properties, a further eight
items were intended to help to decide the extent to which
DTST and [3] were motivating to use, and the remaining
eight statements were used to collect the students’ opinions
on the value of comparable features of DTST and [3] (i.e.,
their explanations, exercises and examples). Students were

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

asked to indicate their strength of agreement/disagreement
with each statement in the Likert scale. The five options
were: strongly agree, agree, unsure, disagree and strongly
disagree.

26 responses to the Likert scale were returned. To pro-
duce the measures of student attitudes, a three-stage ap-
proach was adopted. The initial step involved “signing” the
24 items included in the Likert scale as being a positive
or negative statement about DTST or [3]. Next, the returns
were analysed using the following system: for each positive
statement a response of “strongly agree” was given a score
of 5, an “agree” response was given a score of 4, a score of
3 corresponded to an “undecided” response, “disagree” was
scored as a 2, and “strongly disagree” was scored as a 1.
Conversely, for each negative statement, a “strongly agree”
response was given a score of -5, “agree”was scored as -4,
“undecided” was recorded as a -3, “disagree” was given a
score of -2, and -1 corresponded to a “strongly agree” re-
sponse. By summing the scores for each return, a figure cor-
responding to the respondent’s attitude towards DTST and
[3] was computed. In the final step, the [3] score for each re-
spondent was subtracted from the score for DTST. This cal-
culation gave a measure of a respondent’s attitude to DTST
that is relative to their attitude towards [3].*

To analyse the information produced from the Lik-
ert scale, t-statistics were computed to compare the mean
scores for the perceptions students had of DTST and [3],
overall and for each of the three categories of items in-
cluded in the Likert scale.

In the overall measure of the two methods, the aver-
age difference in the ratings of DTST and [3] was 16.79 in
favour of DTST, and no student reported that [3] was “bet-
ter” than DTST. The t-statistic for the comparison of av-
erage differences was 2.25. This is statistically significant
at the 2% level. Not surprisingly, given the overall results,
DTST was also perceived to be “better” than [3] in all three
of the sub-categories of Likert scale items.

In terms of facilitating understanding of the CRAS prop-
erties, the average difference in scores between DTST and
[3] was 2.07, in favour of DTST, and all but four of the stu-
dents reported that DTST had been more valuable than [3]
on this measure. In the t-test comparison of the average dif-
ference in the ratings of DTST and [3], the t-statistic was
2.18. This value is significant at the 5% level.

The average difference in the rating of DTST and [3] on
motivational appeal was 10.85, and all but one student re-
ported that DTST had been more motivating to use than [3].
The t-value, of 2.51, for the comparison of average differ-
ences in ratings between DTST and [3] on motivational ap-
peal is significant at the 2% level.

4 A positive score indicates a more favourable attitude towards DTST
than [3]; a negative score represents a more favourable attitude to-
wards [3] than DTST.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 |IEEE

The average difference in scores on the value of the ex-
ercises, explanations and examples was 4.63 in favour of
DTST. The t-statistic for the average difference was 3.21,
which is significant at the 1% level.

6. Conclusions and Further Work

The results of our analysis of DTST suggest that the tool
is of value to students learning about the CRAS properties.
In future developments of DTST, we aim to support other
types of schedule properties (e.g. rigour [5]).

Although currently focussed on the CRAS properties,
extended forms of DTST are possible to support students’
learning other topics in the University-level Computer Sci-
ence curriculum (e.g., database recovery techniques and
state machines [8]). Being web-based, DTST is suitable for
use by Computer Science students taking courses in dis-
tance learning mode; investigating the use of DTST in a dis-
tance learning environment is a matter for further work.

References

[1] The Apache Software Foundation. http://www.apache.org.

[2] S. Barker. Proving properties of schedules. In Proc. IEEE
Workshop on Knowledge and Data Engineering, pages 174—
180, 1998.

[3] P. Bernstein, N. Goodman, and V. Hadzilacos. Concurrency

Control and Recovery in Database Systems. Addison Wes-

ley, 1987.

I. Bratko. PROLOG Programming for Artificial Intelligence.

Addison-Wesley, 1986.

[5]1 Y. Briebart, D. Georgakopoulos, M. Rusinkiewicz, and
A. Silbershatz. On rigorous transaction scheduling. In IEEE
Transactions on Software Engineering, 17, pages 954-960,
1991.

[6] CGIHTML. http://www.eekim.com/software/cgihtml/.

[7] S. Decker. Yajxb website. http://www-db.stanford.edu/

[8] Y. G. et al, editor. Abstract State Machines - Theory and Ap-
plications. Springer, 2000.

[9] R. M. Gagne. The Conditions of Learning. Holt, Reinhart

and Winston, 1970.

M. Genesereth and N. Nilsson. Logical Foundations of Arti-

ficial Intelligence. Morgan Kaufmann, 1987.

F. Marton and P. Ramsden. What does it take to improve

learning? Kogan Page, 1988.

NCSA: The Common

http://hoohoo.ncsa.uiuc.edu/cgi/.

J. Nichol, J. Briggs, and J. Dean. Prolog, Children and Stu-

dents. Kogan-Page, 1988.

K. Sagonas, T. Swift, D. Warren, J. Freire, and P. Rao. The

XSB System Version 2.0, Programmer’s Manual, 1999.

M. Tessmer. Planning and Conducting Formative Evalua-

tions. Kogan-Page, 1993.

[4

—

[10]
[11]
[12] Gateway — Interface.
[13]
[14]

[15]

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

