

University of Westminster Eprints
http://eprints.wmin.ac.uk

A clausal resolution for extended computation tree
logic ECTL.

Alexander Bolotov
Harrow School of Computer Science

Copyright © [2003] IEEE. Reprinted from Proceedings of the Combined Tenth
International Symposium on Temporal Representation and Reasoning and the Fourth
International Conference on Temporal Logic: TIME-ICTL 2003 Cairns, Queensland,
Australia, 8-10 July 2003, pp.107-117.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

A Clausal Resolution Method for Extended Computation Tree Logic ECTL

Alexander Bolotov
Harrow School of Computer Science,

University of Westminster, HA1 3TP, UK
A.Bolotov@wmin.ac.uk

Abstract

A temporal clausal resolution method was originally
developed for linear time temporal logic and further ex-
tended to the branching-time framework of Computation
Tree Logic (CTL). In this paper, following our general idea
to expand the applicability of this efficient method to more
expressive formalisms useful in a variety of applications
in computer science and AI requiring branching time log-
ics, we define a clausal resolution technique for Extended
Computation Tree Logic (ECTL). The branching-time tem-
poral logic ECTL is strictly more expressive than CTL, in
allowing fairness operators. The key elements of the reso-
lution method for ECTL, namely the clausal normal form,
the concepts of step resolution and a temporal resolution,
are introduced and justified with respect to this new frame-
work. Although in developing these components we incor-
porate many of the techniques defined for CTL, we need
novel mechanisms in order to capture fairness together with
the limit closure property of the underlying tree models.
We accompany our presentation of the relevant techniques
by examples of the application of the temporal resolution
method. Finally, we provide a correctness argument and
consider future work discussing an extension of the method
yet further, to the logic CTL*, the most powerful logic of
this class.

1 Introduction

A Computation Tree Logic (CTL), first proposed in [6],
and its extensions have shown to play a significant role in
potential applications [8]. CTL does not permit boolean
combinations of formulae with temporal operators or their
nesting. Two combinations of future time temporal oper-
ators � (‘sometime’) and (‘always’), are useful in ex-
pressing fairness [7]: � � (� is true along the path of the
computation except possible some finite initial interval of it)
and �� (� is true along the computation path at infinitely

many moments of time).

The logic ECTL (Extended CTL [9]) bridges this gap in
CTL expressiveness, admitting simple fairness constraints.
While ECTL is strictly more expressive than CTL, their
syntactic and semantic features have much in common.

In [2, 3] a clausal resolution approach to CTL has been
developed, extending the original definition of the method
for the linear-time case [11]. In this paper, following
our general aim to expand the applicability of the method
to more expressive formalisms, we define it for the logic
ECTL. As a normal form for ECTL we utilise the Sep-
arated Normal Form developed for CTL formulae, called
SNF���. This enables us to apply the resolution technique
defined over SNF��� as the refutation technique for ECTL
formulae.

The main contribution of this paper is the extension of
the set of rules used to translate CTL formulae into SNF���
by a novel transformation technique to cope with ECTL
fairness. SNF��� can be used for more expressive for-
malisms, such as ECTL: in translating CTL or ECTL for-
mulae into our normal form, similarly to the linear time case
[4], we derive propositional formulae that are existentially
quantified, and to utilise the normal form as part of a proof,
we effectively skolemize them producing temporal formu-
lae without any quantification.

The structure of the paper is as follows. In �2 we outline
the syntax and semantics of ECTL and those properties of
ECTL syntax and semantics that are important for our anal-
ysis. In �3 we review SNF���. The translation algorithm,
novel transformation technique to cope with fairness as well
and main rules, which are used in the example transforma-
tion, are given in �4. We conclude this section providing
an example and the correctness argument. In �5 we outline
the temporal resolution method defined over SNF��� and
apply it to a set of SNF��� clauses (previously obtained
in �4.2). Finally, in �6, we draw conclusions and discuss
future work.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

2 Syntax and Semantics of ECTL

In the language of ECTL we extend the language of
linear-time temporal logic, which uses future time (al-
ways), � (sometime), � (next time), � (until) and �
(unless), by path quantifiers A (on all future paths) and E
(on some future path). In the syntax of ECTL we distinguish
state (�) and path (�) formulae, such that well formed for-
mulae are state formulae. These are inductively defined be-
low (where � is a formula of classical propositional logic)

� ��� ��� � ��� � ��� � �����A� �E�
� ��� ����� ���� � ���� �� ���� �

Examples of ECTL formulae are
A� �� A ��� E� � and E �� (where
� is any ECTL formula), which express the fairness
properties.

We interpret a well-formed ECTL formula in a tree-like
model structure � � ������	, where � is a set of states,
�
 � � � is a binary relation over �, and � is an inter-
pretation function mapping atomic propositional symbols
to truth values at each state. A path, ��� , over �, is a se-
quence of states ��� ����� ���� 	 	 	 such that for all
 � �,
��� � �����
 �. A path ��� is called a fullpath. Given a
path ��� and a state ��
 ��� � �� �
� we term a finite sub-
sequence ���� �� � � ��� ����� 	 	 	 � �� of ��� a prefix of a path
��� and an infinite sub-sequence �� � ����� ����� 	 	 	 of ��� a
suffix of a path ��� abbreviated �
����� � ���.

We assume that an ECTL model � satisfies the follow-
ing conditions: (i) There is a designated state, ��
 �, a root
of a structure (i.e. for all
� ��� � ��� �
 �); (ii) Every state
belongs to some fullpath and should have a successor state;
(iii) Tree structures are of at most countable branching; (iv)
Every path is isomorphic to �.

Below, we define a relation ‘��’, which evaluates well-
formed ECTL formulae at a state �� in a model�, omitting
standard cases for Booleans.

��� ��	 �� � iff �
 ������ ��� ������ �	

��� ��	 �� A� iff ��� ���	 ��� � ��� ���	 �� �	

��� ��	 �� E� iff �	��� �
���� ���

���	 �	�� ��� ���	 �� �	

��� ���	 �� � iff ��� ��	 �� �� ��� ����� �����
� �	

��� ���	 �� � iff ��� ���	 ��
 ��� � �� � �

�	�� ��� �
����� � ���	 �� �	

��� ���	 ���� iff �	��� �
���� ��
 ���

���	 �	�� � �
 ��� ��� �
����� � ���	 �� �	

��� ���	 �� �� iff ��� �
����� � �����	 �� �	

��� ���	 �� �� � iff �	��� �
���� ��
 ��� ���	

�	�� � �
 ��� ��� �
����� � ���	 �� � ���

��� ���	 ��
 ��� � �� � � � �
 �	��

��� �
����� � ���	 �� �	

��� ���	 �� �� � iff ��� ���	 �� � ��

��� ���	 �� �� �	

Definition 1 [Satisfiability] A well-formed ECTL formula,
�, is satisfiable if, and only if, there exists a model� such
that ��� ��	 �� �.

Definition 2 [Validity] A well-formed ECTL formula, �,
is valid if, and only if, it is satisfied in every possible model.

2.1 Closure properties of ECTL models

When trees are considered as models for distributed sys-
tems, paths through a tree are viewed as computations.
The natural requirements for such models would be suffix
and fusion closures. The former means that every suffix
of a path is itself a path. The latter requires that a sys-
tem, following the prefix of a computation �, at any point
��
 �, is able to follow any computation ��� originating
from �� . Finally, we might require that if a system follows
a computation for an arbitrarily long time, then it can fol-
low a computation forever. This corresponds to limit clo-
sure property, meaning that for any fullpath ��� and any
paths ��� � ��� � 	 	 	 such that ��� has the prefix ���� �� �, ���

has the prefix ��� � ���, ��� has the prefix ���� ���, etc, and
� �
 � � � �, the following holds (see Figure 1): there
exists an infinite path ��� that is a limit of the prefixes
���� �� �� ��� � ���� ���� ���� 	 	 	.

�� �� �� ���
��

���
���

���

����

����

����

����

����

����

Figure 1. Limit closure

We assume that tree-like models of ECTL are suffix, fusion
and limit closed.

2.2 Some useful features of ECTL

Here we summarize those features of ECTL that are im-
portant in our analysis and, thus, will affect both the trans-
lation of ECTL formulae to the normal form and the clausal
resolution method.

Fairness Constraints. Validity of the following equiva-
lences can be easily shown:

A �� � A A��� E� � � E�E � (1)

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

Therefore, A �� and E� � have their CTL counter-
parts. However, E �� and A� � have no analogues
in CTL [7]. Note that in the case of E �, the � opera-
tor is in the scope of the operator, which is a maximal
fixpoint prefixed by the ‘E’ quantifier. In the second case,
the operator is in the scope of the � operator, which
is a minimal fixpoint and is prefixed by the ‘A’ quantifier.
These nestings of temporal operators would significantly af-
fect the renaming of the embedded paths subformulae in the
corresponding ECTL fairness constraints.

As an example, let us consider the following satisfiable
ECTL formula

A� � � E E��� (2)

A model, �, for this formula (see Figure 1) can
be derived as follows. Let for the states along ��� ,
the following holds: � � � � �� � � � �
�� � � �; let � be satisfied at �	
���� � ��� and also at
�	
���� � ������ �	
�
�� � ������ �	
���� � ������ � � �. Fi-
nally, let ����� ����� ����� � � � along paths ��
� �� � � �,
respectively, satisfy ��.
Note that if we change the first conjunct of formula (2) to
A�A � then the whole formula becomes unsatisfiable.

Notation.

� In the rest of the paper, let T abbreviate any unary and
T� any binary temporal operator and P either of path
quantifiers.

� Any formula of the type PT or PT� is called a ba-
sic CTL modality. A class of basic ECTL modalities
consists of basic CTL modalities, enriched by ECTL
fairness constrains, P � and P� .

� Given a CTL formula � , we will abbreviate the ex-
pression “a state subformula �� with a path quantifier
as its main operator” by P-embedded subformula of � .

� A literal is a proposition or its negations.

Managing embedded state subformulae. For an ECTL
formula � , we define a notion of the degree of nesting of its
path quantifiers, denoted ��� �, as follows

Definition 3 (Degree of path quantifier nesting)

1. � is a purely classical formula: ��� � � �;

2. � � T�����T���, and ��, �� are purely classical
formulae: ��T��� � ����T���� � �;

3. � � ������ � ����� � ����� � ���T�����T����:
if ����� � � and ����� � � then ������ �
��T��� � � and ���� � ��� � ���� �
��� � ���� � ��� � ����T���� �
���������� ������;

4. � � P��: if ����� � � then ��P��� � �� �.

Emerson and Sistla [10] showed that any CTL� for-
mula � can be transformed into � � such that ��� �� � �.
This can be achieved by a continuous renaming of the P-
embedded state subformulae. The result is obviously valid
for the logic ECTL, and below we introduce a correspond-
ing recursive procedure ���.

Definition 4 (Reduction of the path quantifier nesting)
Given an ECTL formula � such that ���� � �, the follow-
ing procedure reduces the nesting of path quantifiers in � to
the degree 2: ������ � A ��� 	 �����������������,
where �� is the designated P-embedded state subformula
of �, �� is a new proposition and �������� is a result of
the replacement of �� in � by ��. If ���� � � then the
procedure terminates.

For example, given � � A��E ��� � A�A ��
we can obtain ������ � A ��� 	 A �� � A ��� 	
A���� � A ��� 	 E ���� �A���� � ���.

Proposition 1 [Correctness of the Reduction procedure]
For any ECTL formula �,
�� ��� �� � if, and only if,
there exists a model
��� such that
��� ��� �� ������,
where ��� is introduced in Definition 4 [10].

Negation Normal Form for ECTL. Using the standard
technique we can translate an ECTL formula � into its
negation normal form, NNF������� [7].

Proposition 2 [Correctness of NNF����] For any
ECTL formula, �, the following holds:
�� ��� ��
� iff
�� ��� �� 		
�������.

Fixpoint characterization of basic CTL modalities. Our
translation to SNF��� and temporal resolution rules are es-
sentially based upon the fixpoint characterizations of basic
CTL modalities (see [5]). The corresponding definitions are
given below, where maximal fixpoint operator is abbrevi-
ated by “�” and minimal fixpoint operator by “�”:

E � � ���� � E ���
A � � ���� �A ���

E��� � � �!� � �� � E �!��
A��� � � �"� � �� � A �"��

(3)

E�� � �#�� � E �#�
A�� � �$�� � A �$�

E��
 � � �%� � �� � E �%��
A��
 � � �Æ� � �� � A �Æ��

(4)

Branching Factor. Below we recall some results on in-
terpreting CTL-type branching time logics over so called
canonical models. We will formulate these general results
in relation to the logic ECTL, noting that they cover all
CTL-type logics, including CTL�.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

Definition 5 (Branching degree of a state) The num-
ber of immediate successors of a state � in a tree structure
is called a branching degree of �.

Definition 6 (Branching factor of a tree structure)
Given a set � � ���� ��� � � ��, of the branching degrees

of the states of a tree structure, the maximal �� �� � �� is
called a branching factor of this tree structure.

As we have already mentioned, we assume that underly-
ing tree models are of at most countable branching. How-
ever, following ([7], page 1011) trees with arbitrary, even
uncountable, branching, “as far as our branching temporal
logic are concerned, are indistinguishable from trees with
finite, even bounded, branching”.

Now, following [12], given that an ECTL model struc-
ture � has its branching factor at most �, there exists a �-
ary tree canonical model �� such that for any formula � ,
� satisfies � if, and only if, �� satisfies � . Informally, a
canonical model is an unwinding of an arbitrary model �
into an infinite tree � [12].

Definition 7 (Tree canonical model) Let � � ����� be
a �-ary infinite tree such that ��� denotes the set ��� � � � ��,
and

� � � ���
� is a set of states, with the root being an empty

string �

� � � ���� ����� � ���
�
� � � ����, where �� �� � ���� is

a set of successors of a state �.

Now, given an alphabet � � �����, a canonical tree
model for ECTL is of the form 	�� �
, where � �
����

�
� �� 	� such that 	 � ���

�
�� ����� is a function

which assigns truth values to the atomic propositions in
each state.

Proposition 3 given below collects the results given in
[12] (Lemma 3.4 and Lemma 3.5, pages 144-145).

Proposition 3 (Existence of a canonical model for ECTL)

� If an ECTL formula � has a model
 whose branch-
ing factor is � � then � has a tree canonical model
	�� �
, where � � ����

�
� ���� ����� � ���

�
� � �

����� 	�.

� If an ECTL formula � containing � (existential) path
quantifiers has a model, then it has an �� 	 ��-ary
canonical model.

We will essentially use these results for the formulation
of the transformation rule managing ECTL fairness con-
straints, namely, formulae that contain A� .

3 Normal Form for ECTL

As a normal form for ECTL we utilise a clausal normal
form, defined for the logic CTL, SNF���, which has been
developed in [1, 3]. Identifying the core operators, P �and
P�, we are able to generate formulae relevant to either the
first state in a model, or to all subsequent states in a model.
Transforming ECTL formulae into SNF��� we aim to re-
move all other, unwanted, modalities A �A
 � � � �. Addi-
tionally, to preserve a specific path context during the trans-
lation, we incorporate indices.

Indices. The language for indices is based on the set of
terms

����� � �	�
� 	�
� 	�
� 		����
� 		����
� 		����
 � � ��

where �� �� � � � � denote constants. Thus, E
��� means that

 holds on some path labelled as 	�
. A designated type of
indices in SNF��� are indices of the type 	����	
�
 which
represents a limit closure of 	�	

. All formulae of SNF���
of the type � � E �� or � � E��, where � is a purely
classical expression, are labelled with some index.

The SNF��� language is obtained from the ECTL lan-
guage by omitting the
 and � operators, and adding
classically defined constants ���� and ����� , and a new
operator, ����� (‘at the initial moment of time’) defined as
	�� ��
 �� ����� iff � �
.

Definition 8 (Separated Normal Form SNF�	
)
SNF��� is a set of formulae

A

��
�

��� � ���

�

where each of the clauses �� � �� is further restricted as
below, each ��, �� or � is a literal, ���� or ����� and
	�	

 � ��� is some index.

����� �

��
���

�� an Initial Clause

��
���

�� � A �

�
� ��
���

��

�
� an A step clause

��
���

�� � E �

�
� ��
���

��

�
�

�����

a E step clause

��
���

�� � A�� an A sometime clause

��
���

�� � E����������� a E sometime clause

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

Interpreting SNF���. An initial SNF��� clause,
����� � � , is understood as “� is satisfied at the initial
state of some model �”. Any other SNF��� clause is in-
terpreted taking also into account that it occurs in the scope
of A .

�����

���

�� � � �� � ���� �

Model for A ��� A ��� and

A ��� E ��������

Figure 2. Interpretation of step clauses.

Thus, a clause A �� � A ��� (a model for which is
given in Figure 2) is interpreted as “for any fullpath � and
any state �� � � �� � ��, if � is satisfied at a state �� then �
must be satisfied at the moment, next to ��, along each path
which starts from ��”.

A clause A �� � E �������� (see Figure 2) is under-
stood as “for any fullpath � and any state �� � � �� � ��,
if � is satisfied at a state �� then � must be satisfied at the
moment, next to ��, along some path associated with �����
which departs from ��”.

Finally, A �� � E������������ (see Figure 3) has the
following meaning “for any fullpath � and any state �� �
� �� � ��, if � is satisfied at a state �� then � must be
satisfied at some state, say �� �� � ��, along some path
	�� associated with the limit closure of ����� which departs
from ��”.

4 Transformation of ECTL formulae into
SNF���

As SNF��� is a part of the resolution technique, to check
validity of an ECTL formula
, we first negate the latter
and translate �
 into its Negation Normal Form, deriving
� �NNF������
�. Now we introduce the transformation
procedure

� � �����������

to be applied to �, where �� and �� are described respec-
tively by the steps 1-2 and 3-7 below.
1. Anchor � to ����� and apply the initial renaming rule
obtaining A ������ � ��� � A ��� � ��, where ��
is a new proposition.

�� �� E�����������

�����

Diagram 2: SNF��� E� Clauses

�� �� �

	��

Figure 3. Interpretation of sometime clauses.

2. Apply equations (1) and then procedure
�� (see Defi-
nition 4) to �. Thus, we derive a set of constraints of the
following structure

A

�
������� � ��� �

�
�

��
�	�

��� � ���

�
�
�
�

where �� is a proposition, �� is either a purely classical
formula or if �� contains an ECTL modality then the degree
of nesting of path quantifiers in �� is 1.

Let us call a formula
 in pre-clause form if ���
� �

 i.e. it is of the form �� � �� where �� is a literal,
or conjunction of literals, or ����� , �� is either a purely
classical formula or �� � PT�� or �� � P ��� or
�� � P� �� or �� � P����T�����, and �� , ��� and
��� are purely classical formulae.
3. For every pre-clause �� � �� , we obtain the following
conditions. If �� contains a basic CTL modality then

	 If �� � PT�� and PT is not P �then �� is a literal,

else �� is a purely classical formula.

	 If �� � P ��� or �� � P� �� then �� is a
literal,

	 If �� � P����T���� � then ��� and ��� are literals.

This can be achieved by continuous renaming of the em-
bedded classical subformulae by auxiliary propositions to-
gether with some classical transformations.
4. Label each pre-clause containing the E �modality by
an unique index ������ � ��� and any other pre-clause con-
taining the E quantifier by an unique index ���������� �
���. Let LIST IND be a list of all indices introduced during
this labelling.
5. Transform pre-clauses containing E � and A� .

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

6. Remove all unwanted basic CTL modalities.
7. Derive the desired form of SNF��� clauses. At this
final stage we transform pre-clauses �� � �� , where �� is
either P ��� or a purely classical formula:

� for every pre-clause�� � P ��� , we obtain the struc-
ture where P �applies either to a literal or to disjunc-
tion of literals. This can be achieved, again, by renam-
ing of the embedded classical subformulae, translating
�� into conjunctive normal form (CNF), and distribut-
ing P �over conjunction, together with some classical
transformations.

� for every remaining purely classical pre-clause �� �
�� , we apply a number of procedures including those
that are used in classical logic in transforming formu-
lae to CNF, some simplifications and the introduction
of a temporal context (see below).

4.1 Transformation rules towards SNF���

In the transformation procedure � outlined above, the
first stage, the procedure ��, except for the application of
equations (1) at step 2, is taken from the translation of CTL
formulae to SNF��� [1]. In the procedure �� we introduce
novel techniques to cope with ECTL fairness constraints
that do not have their CTL counterparts. Here we describe
these techniques and recall some of those rules that will be
used in our example given in �4.2. For the full set of rules
preserved from the CTL the reader is referred to [1, 3].
In the presentation below we omit the outer ‘A ’ connec-
tive that surrounds the conjunction of pre-clauses (note that
any pre-clause is also a clause) and, for convenience, con-
sider a set of pre-clauses rather than the conjunction. Ex-
pressions � and � will abbreviate purely classical formu-
lae.

Indices. Recall that at step 4 of the transformation pro-
cedure, we introduce labelling of the SNF��� pre-clauses
containing the E quantifier: here we first label every pre-
clause � � E �� by an unique index ������, indicating a
‘direction’ in which � is satisfied, given that � is satisfied.
Secondly, with any other pre-clause containing the E quan-
tifier we associate an unique index ����������. The justifi-
cation of the latter labelling is based upon fixpoint charac-
terization of basic CTL modalities E �E� and E� (see
equations (3) and (4)).
Assume that a pre-clause � � E � has been derived at
some stage of the transformation procedure. Since E � is
a maximal fixpoint of the equation ���� � E ���, we can
represent this recursion by the following set of constraints:

� � � � �

� � E ��� � �������
(5)

where we introduce a new proposition, �, and require that
the conjunction ��� also occurs at those moments where �
itself is satisfied. The second constraint, � � E ��� � ��,
represents a loop in �, i.e.the situation, where � occurs from
some point at all subsequent states along some path in the
model (given that � is satisifed at that point).

Now, labelling � � E ��� � �� by a new index, �����,
and noting that pre-clauses are in the scope of the outer
A , we can show that � � E � is satisfiable in some
model, �, if, and only if, there is a model �� which sat-
isfies both formulae in (5). Here we present a proof estab-
lishing that if � � E � is satisfiable in a model � then
there is a model �� which satisfies both formulae in (5).

The satisfiability of pre-clause � � E � in a model
� would mean

‘for any fullpath 	 and any state
� 	 	 ��
 ��,
if ���
�� �� � then ���
�� �� E �.’

Choose arbitrarily a fullpath � (see Figure 4).

���

�� �

�

�� �
�� �

���

�� �� �

�����

���	�����

��

��

Figure 4. Labelling ECTL formulae: the
�

index

If � is never satisfied along � then let �� be the same
as � except for a new proposition � such that � is false
everywhere along �. Thus, we obtain

���� 	� �� �� � �� � ���,

���� 	� �� ��� E ��� � ��������

regardless of the indices since the left hand side of each
implication is false. Alternatively, let
� 	 � be the first
moment along � satisfying � . In this case, we define a

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

model �� to be the same as � except for a new propo-
sition � such that for a path ��� (associated with �����),
for any state �� � ��� , if � � � then ���� ��� �� � else
���� ��� ��� �. Now we derive that �� , the successor of
�� on path ��� , satisfies � � �. Due to the fusion closure
property, there is a fullpath ���� ��� Æ��� , where ‘Æ’ is a con-
catenation of ���� ��� and ��� . Thus, setting in the condi-
tions for � � E �� that � � ���� ��� Æ ��� and 	 �
,
we conclude that ��� ��� �� E ��� � �������. Therefore,
there is a path ��� associated with ����� such that there
is a state, next to ��, say ��, on this path, which satisfies
� � �. Continuing to reason in this way, according to the
limit closure property, we must have in the model a path,
��
������, going through the states ��� �� � �� � � � Each state
along ��
������ satisfies � � �. Therefore, we have identi-
fied a path which satisfies E �, which enables us to label
pre-clause � � E � by ��
������. Note also that this
justifies that �� � E ��� � ������ indeed represents a
loop in � on the path ��
������. Searching for loops is
essential for application of resolution rules, see 	5.

Providing analogous reasoning, we can justify the la-
belling of pre-clauses containing E
 , taking into account
their definitions as maximal fixpoints, and the labelling of
pre-clauses containing E� and E� modalities based upon
their definitions as minimal fixpoints.

Obviously, this representations of basic CTL modalities
as sets of pre-clauses allows us to formulate corresponding
rules to substitute basic CTL modalities by their fixpoint
definitions. Thus, given � � E ����������, we apply
equation (5) to remove the E modality as follows (in for-
mulation of the rules below � is a new proposition):
Removal of E

� � E ����������

� � � � �

� � E ��� � �������

Other removal rules for basic CTL modalities are:

Removal of E�

� � E��� �����������

� � � � �� � ��
� � E ��� � �� � ��������
� � E�����������

Removal of E

� � E��
 �����������

� � � � �� � ��
� � E ��� � �� � ��������

Managing embedded path subformulae in ECTL. The
rules to rename purely path formulae embedded in ECTL
fairness constraints are based upon our analysis of the prob-
lematic variety of nesting of temporal operators in ECTL

(see 	2.2). Thus, when renaming �� within E �� or
� within A� � by a new variable �, we must be sure

that � and � in the former case, and � and �� in the
latter case, occur along the same path. Second, we must
establish a link between satisfiability of � and�� (�),
i.e.any state in a model which satisfies � should also satisfy
�� (�). These observations have led us to the follow-
ing formulation of the renaming rules.

Renaming: the E � case.

� � E �����������

� � E ����������

� � E�����������

Applying this rule, the label, ��
������ introduced for
the premise at stage 4 of the transformation procedure, is
preserved for both components of the conclusion.

Things are much more difficult when we deal with the
A� constraint. Recall that once we have provided the
labelling of formulae at stage 4 of the transformation pro-
cedure, the number of indices is equal to the number of dif-
ferent E pre-clauses. Now we use this information about
the number of existential path quantifiers based upon proof
of Proposition 3 [12], namely, from the fact that “one needs
only sufficient paths from each state of a model to satisfy
all the existential path formulae that have to be true in that
state. Moreover the number of existential state formulae
that can appear in a formula is bounded by the number of
path quantifiers in that formula.”

Let the number of indices in LIST IND be � ��
 ��
and let ������� � � � ������ � ��� be the constants occur-
ring in these indices. If for some index ����� � LIST IND
we do not have ��
������ � LIST IND then we upgrade
LIST IND by ��
������ (which can be easily justified).

Now, based on Proposition 3, we rename the � sub-
formula of A� � as follows.

Renaming: the A� case.

�� � � � �� � � �

� � A� �

� � E�����������

� � E ����������

� � A� �

� � E�������������

�� � E �����������

� � �

� � E�������������

�� � E �����������

where � is the number of indices in LIST IND and
�� ��� � � � � �� are new propositions.

Now we present another useful rule, called ‘Temporising’,
which allows us to introduce a temporal context, rewriting
into SNF� purely classical formulae of the type �� � .

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

Temporising

� � �

����� � �� ��

���� � A ���� � ���

Finally, we utilize two rules allowing us to distribute the
A �and E �modalities over conjunction. In the latter rule,
which will be used in our example, we again, incorporate
indices.

Distributing A �and E �over conjunction

� � A ��� ���

� � A ��

� � A ��

� � E ��� ������������
� � E �����������

� � E �����������

In the rule for E �, given that the premise of the rule
is labelled by ���������, we preserve this label for both
conclusions, thus, assuring that they refer to the same path.

4.2 Example Transformation

As an example we translate into SNF��� the following
ECTL validity:

A� �� A�� (6)

To check that (6) is valid we negate it, obtaining
��A� �� A��� and derive the Negation Normal Form
of (6), A� � � E ��. Following the translation algo-
rithm, we derive steps 0–2, where � is a new proposition,
and split conjunction on the right hand side of the formula
at step 2, obtaining steps 3–4.

�� ����� � A� � � E �� ��������� 	� �����

�� ����� � � ��
��	��� �
������

�� � � A� � � E �� ��
��	��� �
������

�� � � A� � ���� �� ���������
�� � � E �� ���� �� ���������

At this stage we first label pre-clause 4 by a new label, ���
and then rename � in 3, introducing a new variable, �.

�� � � E��������� ���� �
�� � � E �������� ���� �

Now we must first apply the E removal rule to 4, intro-
ducing a new variable, 	, thus, deriving steps 7 and 8 below,
and then remove the E modality from 6 deriving 9–10
below (and introducing a new variable,
).

	� � � �� � 	 ���� �� �
����� �� E

� 	 � E ���� � 	���� ���� �� �
����� �� E
�� � � � �
 ���� �
���
 � E ��� �
���� ���� �

Now note that steps 7 and 9 are purely classical expressions.
Here, first splitting conjunctions on the right hand side of
these formulae, and then introducing a temporal context in-
corporating the rule Temporising, we derive the steps below:

��� ����� � �� � �� ���� 	
��� ���� � A ���� � ��� ���� 	
��� ����� � �� � 	 ���� 	
��� ���� � A ���� � 	� ���� 	
��� ����� � �� � � ���� �
��� ���� � A ���� � �� ���� �
�	� ����� � �� �
 ���� �
�
� ���� � A ���� �
� ���� �

Finally, we distribute the E �operator over conjunction in
steps 8 and 10, preserving the labelling:

��� 	 � E ������ ����

��� 	 � E �	��� ����

���
 � E ����� ���� ��
���
 � E �
��� ���� ��

The normal form of the given ECTL formula is represented
by clauses 1, 5, 11–22.

4.3 Correctness of the Transformation of ECTL
formulae into SNF���

We first show that an ECTL formula � is satisfiable, if
and only if, ���
 � is satisfiable (Lemma 1). Next, we will
establish that the transformation procedure �� preserves sat-
isfiability (Lemma 2).

Lemma 1 An ECTL formula, �, is satisfiable if, and only
if, ����� is satisfiable.

PROOF: Since procedure �� is taken from the translation of
CTL formulae to SNF���, proof of Lemma 1 simply re-
peats stages of the corresponding proof for CTL [1], taking
into account Proposition 1, Proposition 2, and equivalences
(1). (END)

Lemma 2 Given a SNF��� formula �, if ����� is satisfi-
able then so is ���������.

Recall that

� a formula � in pre-clause form is of the form �� �
�� , where �� is a literal or ����� , �� is either a purely
classical formula or �� � PT�� or �� � P ���
or �� � P� �� or �� � P����T���� �, and �� ,
��� and ��� are purely classical formulae.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

� any SNF��� clause is also a formula in a pre-clause
form.

We must show that any step of the transformation proce-
dure �� preserves satisfiability.

Proposition 4 Let � be a model such that ��� ��� ����
�

A ��

�
� A �, where each �� and � are in a pre-

clause form.
Then there exists a model �� such that ���� ��� ����
�

A ��

�
� A ��, where each �� is in a pre-clause

form and �� is a result of one step of the transformation
�����.

Since � � �� � �� is in a pre-clause form, then
we must consider the cases, corresponding to possible ap-
plications of ���A ��. These cases correspond to the
stages 3–7 of the transformation algorithm described in �4.
Here we outline the proof for the cases which represent
the core transformation technique of the paper, i.e. where
� � E �� (Case 1) and � � A� � (Case 2), omit-
ting other cases, as proof of Proposition 4 for them again
repeats stages of the corresponding proof for CTL [1].
Case 1. Here we apply �� in the following way (� is a new
proposition).

���A �� � E �������������
���A �� � E ������������
���A �� � E�������������

Let � be a model which satisfies the condition of Proposi-
tion 4 in this case:

��� ��� ��

��
�

A ��

�
� A �� �

E ������������
We show that there exists a model �� such that the follow-
ing holds:

(a) ���� ��� ��

��
�

A ��

�

(b) ���� ��� �� A �� � E �����������

(c) ���� ��� �� A �� � E������������

In the corresponding proof we obtain a model �� from �
by letting a new proposition � to be satisfied in the relevant
places and then establishing the conditions (a) – (c) taking
into account the interpretation of the E clauses labelled with
the ‘	
’ type indices.
Case 2. Here we apply �� in the following way

���A �� � A� ���
���A �� � E���������������
���A ��� � E �������������
� � �

���A �� � E���������������
���A ��� � E �������������

Again, the corresponding proof shows that given a
model � which satisfies the condition of Proposition 4
in this case, there exists a model �� which satisfies its
conclusions. Here, we derive �� from � based upon
Proposition 3, first labelling paths of �� by the indices
�	
�������� � � � � �	
������� and then by relevant labelling
of the states of� by new propositions ��� ��� � � � � ��. The
result follows taking into account the interpretation of the E
clauses labelled with the ‘	
’ type indices. Note also that,
once the labelling at stage 4 of the transformation procedure
has been provided, no more new indices will appear in the
proof. (END)

5 The Temporal Resolution Method

Having provided the translation of ECTL formulae
into SNF���, we represent all temporal statements within
ECTL as sets of clauses. Now, in order to achieve a refu-
tation, we incorporate two types of resolution rules already
defined in [1, 3]: step resolution (SRES) and temporal res-
olution (TRES). Here we give only those step and temporal
resolution rules which are used in the example refutation.
For a detailed description of the resolution technique de-
fined over SNF��� see [1, 3].

Step Resolution Rules. Step resolution is used between
formulae that refer to the same initial moment of time or
same next moment along some or all paths. In the formula-
tion of the SRES rules below
 is a literal.

SRES 1

����� �
 �

����� � � � 	

����� �
 ��

SRES 2

� � E ��
 �
������
� � A ��� � 	
�

�� ��� � E ��
 ��������

Temporal Resolution Rules. The basic idea of invoking
temporal resolution is to resolve a set of formulae charac-
terizing a loop in
, a set of SNF��� clauses indicating a
situation when
 occurs at all future moments along every
(an A-loop in
) or some path (a E-loop in
) from a par-
ticular point in an ECTL model, together with the clause
containing�	
 [2]. Below we formulate the TRES 4 rule.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

TRES 4

� � E �E ����������
� � E������������
� � E��� �������������

Here the first premise is the abbreviation for the E loop in �

given that � is satisfied.
Correctness of the transformation of ECTL formulae into

SNF��� (�4.3) together with the termination and correct-
ness of the resolution method defined over SNF��� (shown
in [1, 3]) enables us to apply the latter as the refutation
method for ECTL.
Example Refutation. We apply the resolution method
to the set of SNF��� clauses obtained for ECTL formula
A� � � A�� (formula (6) in section �4.2). We com-
mence the proof presenting at steps 1–8 only those clauses
that are involved into the resolution refutation in the fol-
lowing order: initial clauses, step clauses and, finally, any
sometime clauses.

�� ����� � �

�� ����� � �� � �

�� ����� � �� � ��

�� ����� � �� � �

�� ���� � A ���� � ��
�� � � E ������
�� � � E �����
	� � � E���������

Now, applying step resolution rules we obtain steps 9-12.

� ����� � �� �� � SRES 1
��� ����� � � �� � SRES 1
��� ����� � �� ��
 SRES 1
��� � � E ������ �� � SRES 2

As clauses 7 and 12 represent a E loop in ��: � �

E E ����������, we apply the TRES 4 rule to resolve this
loop and clause 8, obtaining 13.

��� � � E���� ��������� �� ��� 	 TRES 4

At this stage we remove E� , and use only one of the
conclusions of this rule. This gives us a purely classical
formula on step 14 below, where � is a new variable.

��� � � � � �� � � ��� ������� �� E�

Now, applying some classical transformations together
with the temporising rule, we derive 15, and finally, a chain
of applications of the SRES 1 gives us the terminating
clause ����� � ����� .

��� ����� � �� � � � �� ��� classical, Temp.
��� ����� � ����� �� ��� ��� �� SRES 1

6 Conclusions and Future Work

We have described the extension of the clausal reso-
lution method to the useful branching-time logic ECTL.
One of the obvious benefits of using the clausal resolution
technique is the possibility of invoking a variety of well-
developed methods and refinements used in the framework
of classical logic. The algorithm to search for loops needed
for temporal resolution has been introduced in [2]. With the
proof that SNF��� can be served as the normal form for
ECTL, the algorithm becomes fully functional for the latter.
Taking into account these observations, we define a future
task to refine this algorithm, and having analysed the com-
plexity of the clausal resolution method for both logics, CTL
and ECTL, to develop corresponding prototype systems.

We believe that a number of techniques explored in this
paper will be useful in developing the resolution method for
the extensions of ECTL to ECTL� and CTL�:
(1). The method of identifying different types of nesting of
temporal operators understood as minimal or maximal fix-
points. We have shown that in the ‘bad’ nesting, a temporal
operator defined as a maximal fixpoint is prefixed by a ‘E’
quantifier or a temporal operator defined as a minimal fix-
point is prefixed by a ‘A’ quantifier.
(2) The technique of analysing formulae which have some
structural similarity but have different satisfiability charac-
teristics. For example, a ‘tiny’ change of the CTL� formula
A�� ��� E ���� to A��E �� � E ���� makes the lat-
ter unsatisfiable. Thus, in developing the required transfor-
mation rules it will be useful to have a test-bench of such
ECTL� and CTL� formulae which will also be an effective
method of testing the correlation of the transformation rules
under development and the desired resolution procedure.

Acknowledgements We would like to thank Michael
Fisher, Clare Dixon and Mark Reynolds for useful discus-
sions during the preliminary work on the paper, Renate
Schmidt for valuable comments on the relevant material in
the author’s PhD thesis, and anonymous referees for cor-
rections and suggestions on improving the quality of this
paper.

References

[1] A. Bolotov. Clausal Resolution for Branching-Time Tempo-
ral Logic. PhD thesis, Department of Computing and Math-
ematics, The Manchester Metropolitan University, 2000.

[2] A. Bolotov and C. Dixon. Resolution for Branching Time
Temporal Logics: Applying the Temporal Resolution Rule.
In Proceedings of the 7th International Conference on Tem-
poral Representation and Reasoning (TIME2000), pages
163–172, Cape Breton, Nova Scotia, Canada, 2000. IEEE
Computer Society.

[3] A. Bolotov and M. Fisher. A Clausal Resolution Method for
CTL Branching Time Temporal Logic. Journal of Exper-

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

imental and Theoretical Artificial Intelligence., 11:77–93,
1999.

[4] A. Bolotov, M. Fisher, and C. Dixon. On the Relationship
between ‘w’-automata and Temporal Logic Normal Form.
Journal of Logic and Computation, 12:561–581, 2002.

[5] J. Bradfield. and C. Stirling. Modal logics and mu-calculi. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, pages 293–330. Elsevier, North-Holland,
2001.

[6] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronisation skeletons using branching time tempo-
ral logic. In Logic of Programs. Proceedings of Workshop,
volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer, 1981.

[7] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence: Volume B, Formal Models and Semantics., pages 996–
1072. Elsevier, 1990.

[8] E. A. Emerson. Automated reasoning about reactive sys-
tems. In Logics for Concurrency: Structures Versus Au-
tomata, Proc. of International Workshop, volume 1043
of Lecture Notes in Computer Science, pages 41–101.
Springer, 1996.

[9] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not
never” revisited: On branching versus linear time temporal
logic. JACM, 33(1):151–178, 1986.

[10] E. A. Emerson and A. P. Sistla. Deciding full branching time
logic. In STOC 1984, Proceedings of, pages 14–24, 1984.

[11] M. Fisher. A Resolution Method for Temporal Logic. In
Proc. of the XII International Joint Conference on Artificial
Intelligence (IJCAI), pages 99–104, 1991.

[12] P. Wolper. On the relation of programs and computations to
models of temporal logic. In L. Bolc and A. Szalas, editors,
Time and Logic, a computational approach, chapter 3, pages
131–178. UCL Press Limited, 1995.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

