

University of Westminster Eprints
http://eprints.wmin.ac.uk

Improving quality of service in application clusters.

Sophia Corsava
Vladimir Getov
Harrow School of Computer Science

Copyright © [2003] IEEE. Reprinted from International Parallel and Distributed
Processing Symposium (IPDPS'03): proceedings, pp.253-260.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Improving Quality of Service in Application Clusters

Sophia Corsava and Vladimir Getov
Harrow School of Computer Science, University of Westminster, London, U.K.

Email: sophiac6@yahoo.com, V.S.Getov@westminster.ac.uk

Abstract. Quality of service (QoS) requirements, which
include availability, integrity, performance and
responsiveness are increasingly needed by science and
engineering applications. Rising computational demands
and data mining present a new challenge in the IT world.
As our needs for more processing, research and analysis
increase, performance and reliability degrade
exponentially. In this paper we present a software system
that manages quality of service for Unix based distributed
application clusters. Our approach is synthetic and
involves intelligent agents that make use of static and
dynamic ontologies to monitor, diagnose and correct
faults at run time, over a private network. Finally, we
provide experimental results from our pilot
implementation in a production environment.

Keywords: Application clusters, distributed applications,
quality of service, performance.

1. Introduction

Researchers, analysts, scientists and engineers, need
reliable and powerful systems. Having the ability to run
multiple analyses, experiments and realistic simulations
can lead to new and more comprehensive discoveries.
Research scientists and engineers can properly research
by performing experiments in a trial and error mode. Most
researchers are led to the wrong conclusions as they are
faced with processing problems. To overcome them, they
reduce sample populations. Alternative scenarios cannot
be investigated thoroughly and creativity cannot be fully
expressed. Delivery of processing outputs and timing get
adversely affected as well. Opportunities get lost this way
too, if it takes months to determine which is the best
processing technique for atomic energy for example. Data
mining techniques cannot be put to their full use, as by
nature they are processing intensive. The majority of
database servers cannot withstand the load of running
repeated comparisons of large data groups against a set of
possible parameters and outcomes. Processing needs to be
smooth, transparent and efficient.
 Robust, dependable infrastructures are very difficult to
maintain [1]. Complex environments are difficult and

costly to manage and, generally speaking, complexity
reduces the predictability and reliability of application
services and systems [12, 17]. Due to this complexity, it is
usually quite difficult to identify performance problems,
bottlenecks or failures promptly. Analysing collected
availability and performance data can be a time-
consuming thankless task that requires pain-staking
manual labour. Deciding upon a course of action to
resolve failures and performance problems may take
weeks and can be very costly. With the exponential
growth of distributed clusters and emerging grids, the
matching human component is simply not available [3, 4,
12]. We urgently need to reconsider the way we build
infrastructures and troubleshoot faults. Infrastructures,
(hardware, network and software) are essential
prerequisites for efficient service delivery. In this paper,
we propose a solution to these problems by introducing
the architectural framework for a fault-tolerant, self-
managing, intelligent infrastructure for Unix based
distributed application clusters.
 This paper is organized as follows. In section 2 we
discuss related work. In section 3 our building
methodology and approach, while section 4 discusses
some preliminary results from one of our implementations
at a UK-based financial customer site.

2. Related Work

Structured troubleshooting and fault correction
approaches are widely used in the application domain.
These techniques include recursive restarts [5], check
pointing [18], reboot [12] and undoing old configurations
[12]. The check-pointing technique allows applications to
recover from the last point of failure by copying on a
regular basis their status on stable storage and then
retrieving it. Application recursive restarts are based on
the principle of infrastructure-centric software design:
move intelligence from endpoints into the supporting
infrastructure. Reboot, restarts not only the application
but also the underlying operating system and undoing old
configurations involves restoring old backups and
overwriting current assumed “invalid” settings. A newer
approach is the N-layered architecture for application

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

development that allows for resiliency and better
performance [2].
 A lot of important work has been done in the areas of
fault diagnosis, performance and decision-making.
Current diagnostic methods include: the threshold
analysis, the bottleneck analysis, the what’s different
analysis and the correlation analysis [9, 10]. Closely
related to our project is also the very important work done
by John Wilkes and R. Golding on self-managing, self-
configuring storage [8, 19]. In addition, fault and/or
decision trees are commonly used to diagnose faults and
action corrective measures.
 There are a number of tools that measure performance
and monitor systems. These include BMC, HPGlance
Plus, HP Measureware, SystemEdge, Sun Management
Centre, TeamQuest, Landmark Performance Works,
Aurora Software Sarcheck, Foglight Software RAPS,
Compuware Ecotools, Datametrics Viewpoint, Metron
Athene, Network Weather Service (mostly for networks)
etc [6]. To our knowledge, there are no commercial tools
that automatically correct performance problems.

3. Building Methodology

3.1 Overview

Our approach involves:
1. Unix shell based intelligent agents that monitor,

troubleshoot and manage distributed services within
the datacentre. These agents also collect detailed
system performance/availability measurements.

2. Dedicated administration servers that act as external
agent coordinators in a high-availability failover
configuration and share a common pool of NFS
mounted disks, to avoid single points of failure.

3. A dedicated private network, where all agent-related
traffic goes through to avoid congesting the public
LAN.

4. Static and dynamic ontologies [7, 15]. These
ontologies include:
a. Index static service lists (ISSL) that contain very

basic information about each server or resource IP
address and services. They can contain up to 200
entries and are manually updated.

b. Dynamic local service profiles (DLSP) that are
generated by each agent controlled server in
regular intervals and contain information about
server hardware, software, load, capacity and
services.

c. Static local knowledge templates (SLKT) that
contain information about what the server should
be like hardware-wise, which applications it should
run, all application external and internal
dependencies and requirements (file systems, path

names, application component startup sequences,
binary location, application type, version, name, IP
address, port it listens to – if any, application
process names and numbers, etc.).

d. Dynamic global service profile lists (DGSPL) that
contain information about all running and available
services across the entire datacentre. Available
services are presented by <Server type, OS,
memory and CPUs, Application type and version,
Current Load, Users logged in, Geographical
Location, Site Name>. These lists can also be used
to present services to grids.

3.2. Assumptions

We make the following assumptions:

 All servers are Unix-based and NTP (time)
synchronized.

 For all applications participating in the
datacentre (databases, web servers etc), we have
startup and shutdown scripts.

 Specialized application developers have
provided us with tools and methodologies to test
and confirm if these applications are up and
running and available to be used, that have been
incorporated in the agent source code and
ontology definition. In addition these people
have provided us with application specific
connectivity time-out definitions.

 All ontologies, templates, files and logs
produced are flat ASCII files generated by I/O
Unix pipes, readable by most Unix tools
(operators) and human administrators.

 The maximum load a server can successfully
sustain has been provided to us by either
hardware/operating system manufacturers
combined with practical experience information
by human experts and adapted based on our own
observations.

 All communications are based on TCP/IP.
 We use the term application/service

interchangeably, as in the context of this paper,
applications are service vehicles.

 We assume that the majority of distributed
services run on physically separate Unix servers.

3.3 Intelligent agents

Intelligent agents [20] or intelliagents are Unix programs
that monitor systems and services and wherever possible
automatically correct run-time operational faults with as
little downtime as possible. They are also responsible for
collecting detailed performance, load and availability
measurements for systems and services. They can be

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

thought of as huge wrappers that can be used to
administer, maintain and troubleshoot every single
infrastructure aspect. Intelliagents use constraint-based
causal reasoning [13]. The data structures they use are flat
ASCII textual ontologies which contain minimum and
maximum software and hardware related variables, as
well as application information. Our static ontologies
represent the constraints in the reasoning. Intelliagents are
not memory resident. They are highly modular. They are
installed locally on each server they monitor, always in
the same physical location “/apps/intelliagents”. They are
“awakened” every X minutes (every 5 minutes for
example) by local to each host Unix crons. Intelliagents
do not use a relational database (to avoid corruptions and
for simplicity), they use static ontologies in the form of
static knowledge templates and service lists to generate

dynamic ones. Ontologies are being used in logic,
mathematics and Artificial Intelligence. An ontology is “a
description (like a formal specification of a program) of
the concepts and relationships that can exist for an agent
or a community of agents” [7]. The subject of ontology is
“the study of the categories of things that exist or may
exist in a domain” [15].
 All intelliagent related communication goes through the
private agent network to avoid putting any
performance/load overheads to the public LANs (see
Figure 1). All participating devices and resources in the
datacentre are connected to the private agent network and
one or more public LANs. If the private network fails,
intelliagents can automatically re-route their
communication traffic over the public LAN, using Unix
administration commands.

H O S T

P U B L I C L A N

H O S T H O S T
H O S T

I N T E L L I A G E N T P R I V A T E N E T W O R K

A D M I N I S T R A T I O N S E R V E R S

R E S O U R C E S R E S O U R C E S R E S O U R C E S

I N T E L L I A G E N T N E T W O R K

Figure 1. A hi-level view of the intelliagent private network and administration servers. All intelliagent
communications go through the private intelliagent LAN to avoid loading public LANs.

 Whenever a local intelliagent runs, it produces a flag in
the dedicated “/logs/intelliagents/intelliagent_name”
directory on the local server disk to show the status of the
run. A number of flags are produced with appropriate
naming conventions that show what happened and exactly
where the agent found a fault. Absence of these flags
means that we either have an internal intelliagent problem
or that they did not run at all. Administration servers
monitor the creation of these flags every X+5 minutes,
where X is the frequency intelliagent run, i.e. every 10
minutes (adjustable parameter). If these flags are not
there, they start troubleshooting intelliagent processes.
For each component there is one special intelliagent (such
as one for the CPU, one for the network card etc).
Whenever an agent detects an error it tries to fix it. All
intelliagents run in parallel, in a distributed manner and
do not depend on each other. At startup each intelliagent
checks to see if any other of the same type is running, if

so it exits – i.e. one can never have two backup
intelliagents running at the same time. It also removes
flags from previous runs and old local dynamic service
profiles. Intelliagents are monitored by dedicated external
administration servers to ensure correct function.
 For each application type there are customized error
categories. Application health is determined by
attempting to connect to them every Y minutes and run
basic commands (such as a get on a web server process
for example). This is essentially the way intelliagents
communicate with applications – by trying to use them
and read the resulting exit code in the Unix shell.
 Each intelliagent has 5 major parts: a) Monitoring, b)
Diagnosing, c) Self-Healing/Action/Repair, d)
Communication/Logging, e) Self-maintenance. The
monitoring part is tasked to look after one particular
system resource or aspect. Whenever the monitored
subject does not respond as expected, the diagnosing part

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

is invoked and goes through a series of tests to determine
the root of the problem. The diagnostic procedure is done
in two ways; statically and dynamically. Statically, from
parsing and examining error logs and dynamically by the
use of Unix administration commands to ensure the best
possible diagnosis. Based on these findings the self-
healing portion gets activated and starts repairing the
faults. The communication part is responsible for
communicating with other intelliagents and human
operators. It is also responsible for logging all intelliagent
activities and results.
 Self-maintenance is an integral part of all intelliagents
and every time an intelliagent runs, it looks after its
individual logs. Each of the five intelliagent parts can get
activated or deactivated either during installation or
subsequently.
 Intelliagents are classified based on their functions and
tasks. Intelliagent categories include: 1) Hardware agents
that look after hardware components (CPU, memory,
boards etc), 2) Operating system/network agents that look
after all OS and network related aspects, 3) Resource
intelliagents that are responsible for managing and
configuring resources such as disks, network cards,
virtual memory etc, 4) Application/Service intelliagents
that manage and troubleshoot local and global
application/services across the datacentre, 5) Status
intelliagents that dynamically generate status profiles for
servers, resources and services in terms of availability,
load, capacity and geographical location, and 6)
Performance intelliagents that collect performance and
availability logs. These intelliagents can suggest what
may be wrong during service degradation and have
limited troubleshooting capabilities.

3.4 Service management

Service management is handled in a what could be called
unorthodox way. Each local server in the datacentre is
responsible for “knowing” and taking care of its own
resources and services. Its local status intelliagent is
“awakened” by the Unix cron and compiles dynamically
its local DLSP.
 To confirm that local services are available on each
server, the local status intelliagent invokes local service
intelliagents who attempt to connect to local running
services and perform very simple queries (e.g. in the case
of a web server they do an http “get”, for a database they
connect and attempt to do a “select * from table name”).
Connectivity tests and timeout baselines are provided by
specialized application/service providers as discussed. If
services that should be running on that server are not
running, intelliagents start troubleshooting. Their aim is to
ensure that local services run at all times and if not restart
them. Once they achieve this, they perform the prescribed
connectivity tests again and if there is a problem they

cannot resolve they notify human administrators (usually
via email or SMS).
 Manually created ISSPs have been experimentally
proven to be the best way to maintain server information,
as datacentres do not undergo drastic reconfigurations in
terms of existing devices. We have moved the
responsibility of monitoring services to each server
locally. This has been proven to be the safest and less
“resource” expensive way to keep detailed information
about servers, services and resources. In addition
centralised management methodologies have been proven
unsuccessful in big complex environments [11, 17].

3.5 Performance intelliagents

Our performance measurement techniques were
orientated towards workgroup aggregation. We divided
our measurements into 5 main groups: 1) Operating
system, 2) Network, 3) Disks, 4) Application processes
and 5) User processes. Measurements were kept in a
special logs directory and were classified first by server
name and then by measurement group. All measurements
were recorded in ASCII text files, created by Unix pipes
through standard output redirection. We observed 1) I/O
rates on disks and network devices, 2) processes per user
name, 3) per command name and arguments, 4) per user
and command name, 5) per CPU and 6) the match
between network packets, port numbers and protocols.
 All techniques were non-intrusive as they did not load
the system they were monitoring. For each monitored
resource type or workgroup, a dedicated performance
intelliagent was responsible for collecting performance
statistics and comparing them against pre-scripted
baseline thresholds, every 10 or 15 minutes. All collected
data were manipulated as text strings. Different types of
measurements were associated together by matching their
timestamps. Measurements were ordered by timestamp
and treated as a time series to produce graphical
representations of the system performance either as a
whole or by component/workgroup. Each file produced
by persistent state processes, was managed as a circular
queue, the length of which was configurable. Every time
these intelliagents run, they produced flags to indicate
what happened. Every time, a threshold was exceeded
they notified us via email or SMS. The tools used, were
standard Unix tools such as vmstat, iostat, sar, netstat,
nfsstat, top etc [14]. To determine accurately the
behaviour of each process, we used microstate
measurements where applicable, as most modern CPUs
allow for them. The accuracy of microstate measurements
is microsecond resolution and the overhead is sub-
microsecond (units are nanoseconds). In this way we had
very accurate thread and process accounting. More about
microstate accounting can be found in [6].

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

3.6 Baselines and thresholds

Baselines were set based on the hardware configuration of
each system and the application type it was running.
These baselines were determined with the help of
hardware, operating system and application experts, who
had given us expected application performance times as
well as our own observations. Every time a baseline
setting was not proven to be correct, we adjusted it
accordingly. This happened quite often in the case of
newly installed applications primarily. Utilisation spikes
happened quite often, and in these cases we used our
performance measurements to determine what was wrong.
We had developed customised system builds for each
hardware, operating system and application type and we
made sure that all the servers in the datacentre were built
as such. This policy was proven very effective as we
avoided known pitfalls.
 The measurements we considered for the operating
systems were: 1) Memory “sr” (scan rate), “po” (page
out), page faults and free memory measurements to
determine memory shortage, 2) CPU run queue, to detect
any processes waiting to be served by any CPU, 3)
Overall CPU idle time %, 4) Blocked processes waiting
for I/O, 5) Per process CPU and memory utilization, and
6) Disk I/O and throughput. We used 30 second intervals
during I/O measurements to avoid spikes in the load. We
were interested in the asvc_t and wsvc_t values (read and
write response times).
 For the network we considered: 1) Network interface
utilisation statistics and errors, 2) Network route
utilisation, 3) NFS statistics, 4) TCP/IP bandwidth and
end-to-end round trip latency measurements, 5) Size of
incoming/outgoing network packets and TCP windows, 6)
Network connection time to live and 7) Name server
response (DNS, NIS, NIS+, LDAP).
 For databases, we used scripts that had a lot of input
from experienced database administrators. We used a
combination of Unix tools and SQL commands to
monitor and measure their performance. We considered
the following measurements: 1) Time taken for a request
to connect to the database, 2) Time taken for the request
to be served by the database, 3) Time taken for the
database to initialise, 4) Time taken for the database to
shutdown, 5) Time taken for the database backup to
complete, 6) Per process CPU and memory utilisation, 7)
Number of users connected to the database and for how
long each, 8) Memory allocated at startup, 9) Database
checkpoints and 10) Memory per transaction.
 For web servers and application GUIs we considered the
following measurements: 1) Time taken to connect to
them, 2) Time taken for the process to come back with the
results of the query, 3) Per process CPU and memory
utilization, and 4) Number of http/application connections
and for how long each.

 For distributed applications we observed the time taken
for a request to be served by the entire application from
beginning to end. Every 15 to 30 minutes we initiated a
dummy process to run through all application
components, simulating a user and measure the total
response time, in addition to the business-as-usual
requests.

4. Results

One of the sites our work was implemented was a
financial company of a UK based international customer.
Servers included SUN, HP, IBM and linux machines. The
breakdown of machines and their functions were: 100
database servers, a mixture of Oracle and Sybase
databases, running on Sun Enterprise Series 4500, and
E10Ks. 55 transaction processing servers a mixture of
E10Ks, Ultra 10s, linux, E450s, E220Rs HP K and T
series and 60 front-end application IBM SP2 servers for
user front-end financial applications. Services were
distributed across these servers. All data was residing on
local disks. The network was 100 Base/T ethernet for all
servers.
 Financial analysts used services for data-mining,
financial projections, financial model evaluations, market
data/trend simulations and analytical reports. The Load
Sharing Facility, LSF [16] application was used for
scheduling jobs against databases. Users via the
application GUI, manually selected database servers to
submit jobs or submitted them to be processed at a latter
time, using either native LSF utilities, or Unix utilities
like “cron” or “at” jobs. Computations were deployed
across different geographical sites the customer had.
Market data feeds would come in from all parts of the
world from international customer sites and other places
such as Reuters.
 The main problem the users had was that application
components were failing very often and on many
occasions errors were latent. They had no means to
automatically correct operational faults. For them
downtime meant severe financial losses as their systems
needed to be available on a 24x7 basis. Stock brokers
needed frequent access to databases, market trend analysis
reports, forecasts, projection and simulation results, to
decide how to handle end-customer investments. Because
it was a high-pressure complex environment, downtime
had big impacts on service integrity, safety and QoS.
What was happening on a regular basis was that various
application components would stop working altogether
and operators did not know where to start looking. Large
database jobs scheduled to run overnight would
frequently crash databases and calculations would not
complete. Human operators tried to resolve operational
problems and faults manually. Available services would
often become unavailable without any explanation and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

users would become increasingly frustrated. The financial
company would suffer financial losses because analysts
and researchers could not easily quantify and qualify
financial models and analyze market trends. Operators
were under immense pressure to resolve operational faults
and performance problems under difficult circumstances
and usually during the night and the end of financial
periods.
 The users used for monitoring BMC patrol and
SystemEdge [6]. The environment was highly complex
and faults (operational, performance and human errors)
would make things much worse. Experienced
administrators were “on-call” every night. Operators had
the main task of notifying system administrators about
fatal faults. There were many time-delays caused by
operators not understanding how critical a fault was, or
trying to locate the on-call people during the night. It
could take up to 2 hours at a time for a service or server
restart, as faults had to be diagnosed and that was difficult
as services were distributed. In addition, a number of
people had to be notified about the problem before any
decisive action was taken (i.e. a server reboot). Often
experts from more than one areas had to be called in
together to decide what caused the problem. If
experienced support people could not diagnose and
correct remotely a fault, they were obliged to come in to
work. The whole troubleshooting procedure (and
subsequent downtime) could take an average of 4 hours in
such cases.
 The end users were becoming increasingly frustrated as
they were having more downtime they could afford and
the failure of one of more distributed application
components would impact on service integrity. In Figure
2, one can see the detailed breakdown in hours based on
the type of errors that caused downtime at the customer
site for 1 year, before we implemented our software. Total
downtime was 550 hours from service-related faults. 345
hours caused by databases crashing in the middle of a job,
60 hours caused by human errors, 30 hours caused by
LSF errors, 40 hours from front-end user application
downtime, 10 hours caused by firewall
configuration/network errors, 50 hours from performance-
related errors and 5 hours from services being completely
unavailable (corruptions, bugs etc) and 10 hours from all
types of hardware errors. After our work was
implemented, downtime went down to 31 hours in total.
The error distribution was, 8 hours from firewall/network
related errors, 6 hours from various hardware related
errors, 2 hours from human errors, 9 hours from
performance errors, 1 hour from LSF errors, 3 hours from
service front-end errors, 2 hours from complete service
unavailability errors and 8 hours from databases crashing
in the middle of a job. Intelliagents were used to monitor,
troubleshoot and analyse distributed application services,
servers, and performance. They were also used to

automatically monitor and reschedule batch jobs if these
failed. The administration servers generated dynamic
global service profile lists per database type every 15
minutes on average. They managed the LSF job-
scheduling tool and presented the best available database
server for the batch job in a shortlist, with the best choice
always first. The LSF software was configured to allow a
finite number of scheduled jobs per database server and
user access rights were defined at the Unix, the
application/database and the LSF levels. Only specific
users would submit specific types of jobs to a pre-
determined group of database servers.

T OT AL DOW NT IM E IN HOURS IN Y E ARS 1
(before our work) AND 2 (af ter our work)

345

8

60

2

50

9

40

3

10

6

30

1

5

2

1

2

Completely Down

LSF

Front- End

FW/NW

Performance

Human

Mid- crash

Figure 2. Breakdown of errors in hours and types for
2 years before and after our work was implemented.
Provided by the customer.

 Performance problems were detected and dealt with
much faster, as performance intelliagents created
comprehensive reports about what may have caused a
performance related problem and helped narrow down
various possibilities. The same applied for operational
faults. Intelliagent error reporting mechanisms were
integrated with SystemEdge and notifications were
presented to operators from within the SystemEdge
graphical user interface. Every time a fault was dealt with
manually, we added a new troubleshooting procedure to
the intelliagent source code and updated static ontologies
accordingly when necessary.
 Despite the impressive decrease in downtime our
software was unable to take care of firewall/network and
hardware related errors as well as eradicate completely
human errors. Faults however, were detected within the
first 5 minutes of them happening (the intelliagent run
frequency), as opposed to about 1 hour during day time,
about 25 hours over the weekends and 10 hours from
overnight jobs (data provided by the customer using BMC
Patrol). The customer did not have any means to
automatically monitor, detect and correct any batch job
failures or global distributed cluster faults prior to our
work.
 Intelliagents, in addition, checked every 5 minutes, if
LSF processes were running (very often they would
crash), if databases were up and running (likewise), the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

time batch jobs had left to complete (using pre-scripted
LSF specific commands), if a batch job completed
successfully (likewise), number of LSF scheduled jobs
per database server as well as server, network and
database load. They recorded all measurements and
emailed summary reports to nominated administrators on
a daily basis, on demand and whenever a job failed.
Service intelliagents would attempt to troubleshoot and
restart crashed processes and databases and they would
notify human administrators accordingly. If jobs failed,
intelliagents residing on the administration servers
resubmitted them not based on the manual LSF settings
and rules for job submissions, but based on the
dynamically generated DGSPs. We had modified all
ontologies to include LSF specific information such as
number of jobs currently processed, jobs waiting to be
processed and job number submission limit per database
server. For this purpose we embedded LSF native
commands in the service intelliagent source code. The
reason we chose to use DGSPs, was because every time a
job crashed a database there were implicit conclusions
that the user who submitted the job manually either a) did
not select a powerful enough server, or b) selected a
server that was already overloaded, or c) the server
became overloaded later from scheduled job submission,
or there were d) random or otherwise errors potentially
responsible for database or server crashes.
 These intelliagents, were also using SLKTs to select a
server of equal or higher in power than the server that
failed, i.e. if the failed server had 4 CPUs, 4 GBs of RAM
and was a of a specific model, their selection process
would “prefer” first a server of the same model with more
CPUs and memory. Choosing “randomly” a server for
resubmitting a failed job, without any knowledge of its
past job submission history and failures, although not
ideal, significantly decreased downtime from database
crashes in the middle of a job. If intelliagents were unable
to allocate a server for job submission at all for any
reason, or if a server had crashed, they emailed human
operators to manually troubleshoot the failed machine.
 Figures 3 and 4 show respectively the average CPU and
memory utilisation per system by intelliagents as opposed
to BMC Patrol. Both cases clearly demonstrate the small
percentage of system resources used on each system.

0.33 0.3

0.5
0.58

0.47

1.1

0.2 0.17

0.045 0.047 0.043 0.045 0.045 0.046 0.046 0.0420

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Measurements every half hour for 4 hours

C
P

U
 u

tl
is

at
io

n
 %

BMC CPU

Intelliagagent CPU

Figure 3. Intelliagent average CPU utilisation as
opposed to BMC Patrol on a server at peak times.

32

46 45

37

50

58

38

51

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.60

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

Me a sure me nts e ve ry ha lf hour for 4 hours
BMC Memory

Intelliagent

Figure 4. System Memory consumed by BMC patrol
and intelliagents on the same server at peak time.

5. Conclusions and Future Work

Our approach has, experimentally, increased quality of
service for Unix-based multi-component distributed
services. From 550 hours of total downtime within a year
before any of our parts of our work were implemented,
downtime went down to 31 hours in total the next year.
 Our main conclusions can be summarized as follows. In
the case of complex multi-component applications local
application-specific detection/correction mechanisms
work much better than generic troubleshooting
approaches. The distributed manner intelliagents work
ensures that the more components an application is
consisted of, the higher the probability is it will not fail if
it is managed in this way. Agent code and ontologies are
easily maintainable and do not tax the system they look
after because of their size and simplicity. They are not
memory resident and the flags they produce pinpoint
errors accurately. Automated error detection and
correction techniques improve quality of service as errors
are picked up faster than ever before. Methodical,
structured performance measurement and collection
techniques can help resolve performance related issues
and bottlenecks more efficiently and effectively.
Administrators can generate timelines of system
behaviour and observe similar behavioural patterns. In
addition, they are notified automatically every time a
threshold is exceeded.
 Much work remains to be done, so our error detection
and correction techniques are further improved and
become more generic. We are also trying to reduce as
much as possible manual input and generate automatically
static ontologies. Performance modelling and dynamic
troubleshooting of performance-related problems need
further work. As we are not software developers, we used
Unix shell languages as the best and easiest way to test
our theories. The intelliagent source code can be
improved in that respect. Our approach, as is, at the
moment cannot cater for network or obscure logical errors
and needs manual input. It can however deal with latent
errors up to a point, by restarting failed component
applications. Extended logging of all system and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

intelliagent activities, ensure that human administrators
have comprehensive information about all infrastructure
aspects and can narrow down their search options when
they do manual troubleshooting.
 Our research continues in all these areas, in the hope that
we’ll improve our software and methodology further.
Additional future work includes integrating our agent
software with the grid technology. We hope the way
agents generate dynamic global service lists (that contain
information about all agent-enabled services) can be used
in someway in the grid resource discovery and selection
mechanisms for semantic grids. Intelliagents can manage
quality of service very effectively for any distributed Unix
application cluster, or standalone hosts by ensuring that
all service components are available in the sequence they
are meant to be. Service integrity and safety are protected
in this way, as all interdependent distributed application
components must be up and running for the distributed
service to be considered healthy. If services are
unavailable or take long to respond, intelliagents based on
pre-scripted scenarios, try to restore them. If they are
unable to do so, human administrators are notified so they
can fix the problem. In that respect, services will not have
resources vanishing unexpectedly without any
explanations. Frequent monitoring ensures that service or
server related faults are picked up and dealt with
promptly.

References

1. Avizienis, J. -C. Laprie and B. Randell. “Fundamental
concepts of dependability,” Proc. of the 3rd
Information Survivability Workshop, October 2000.

2. Chartier, Roger, “Application Architecture: An N-Tier
Approach - Part 1”, from
http://www.15seconds.com/issue/011023.htm.

3. Corsava, Sophia, Getov, Vladimir, “Self-Healing
Intelligent Infrastructure for computational clusters”,
SHAMAN workshop proceedings, ACM ISC
conference, New York, June 2002.

4. Corsava Sophia, Getov Vladimir, “Intelligent Fault-
Tolerant architecture for cluster computing”, to appear
at IASTED, PDCN03, Innsbruck, Austria, Feb 2003.

5. Candea George, Cutler James, Fox Armando, Doshi
Rushabh, Garg, Priyank, Gowda Rakesh, “Reducing
Recovery Time in a Small Recursively Restartable
System”, Proceedings of the International Conference
on Dependable Systems and Networks (DSN-2002),
Washington, D.C., June 2002.

6. Cockroft Andrew, “Sun Performance and Tuning”,
Talk, 2001.

7. Gruber, T.A. “A Translation Approach to Portable
Ontology Specifications”, 1993.

8. Golding Richard, Borowsky, Elizabeth, “Fault-tolerant
replication management in large-scale distributed
storage systems”, Proceedings 18th IEEE Symposium
on Reliable Distributed Systems, 1999.

9. Hellerstein, Joseph, “A comparison of Techniques for
Diagnosing Performance Problems in Information
Systems: Case Study and Analytic Models”, IBM
Research Division, 1994.

10. Hellerstein, J, Y. Diao, and S. Parekh, “A First-
Principles Approach to Constructing Transfer
Functions for Admission Control in Computing
Systems”, IBM T. J. Watson Research Center, To
appear in the Conference on Decision and Control,
2002.

11. Li, Ming, Tao, Wenchao, Goldberg, Daniel, Hsu
Israel, Tamir, Yuval, ``Design and Validation of
Portable Communication Infrastructure for Fault-
Tolerant Cluster Middleware,'' IEEE International
Conference on Cluster Computing, Chicago, IL,
(September 2002).

12. Patterson, D. “A new focus for a new century:
availability and maintainability >> performance,”
Keynote speech at USENIX FAST, January 2002.

13. Pearl Judea, “Reasoning with cause and effect”, IJCAI
Award Lecture, 1999.

14. Quigley, Ellie, “Unix Shells by example”, Prentice
Hall, 1999.

15. Sowa, John F., “Knowledge Representation: Logical,
Philosophical, and Computational Foundations”,
Brooks Cole Publishing Co, 2000.

16. Songnian Zhou. “LSF: load sharing in large-scale
heterogeneous distributed systems”. In Proceedings of
the Workshop on Cluster Computing, December 1992

17. Veritas Cluster Server, release 1.3.0, Veritas Software
Corporation, 2000.

18. Wong, Kenneth F. and Franklin, Mark,
“Checkpointing in Distributed Computing Systems “,
Journal of parallel and distributed computing, vol. 35,
67-75, 1996.

19. Wilkes, John and Keeton, Kimberly, ”Automating
data dependability”, 10th ACM SIGOPS European
Workshop, 2002.

20. Weiss G. “Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence”, MIT Press,
1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

