

University of Westminster Eprints
http://eprints.wmin.ac.uk

Intelligent architecture for automatic resource
allocation in computer clusters.

Sophia Corsava
Vladimir Getov
Harrow School of Computer Science

Copyright © [2003] IEEE. Reprinted from International Parallel and Distributed
Processing Symposium (IPDPS'03): proceedings, pp.201-208.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Intelligent Architecture for Automatic Resource Allocation in
Computer Clusters

Sophia Corsava and Vladimir Getov,
Harrow School of Computer Science, University of Westminster, London, U.K.

Email: sophiac6@yahoo.com, V.S.Getov@westminster.ac.uk

Abstract. As the need for more reporting and
assessment of information increase exponentially,
computer-based applications consume resources at an
alarmingly rapid rate. Therefore, traditional techniques
for managing resource allocation, topology and systems
need urgent revision. In this paper, we present an
intelligent architecture that introduces a new strategy for
managing resource discovery, allocation and dynamic
reconfiguration at run-time. Our building methodology
involves the employment of new types of clustered systems
based on large application groupings, each having a
master cluster controller. Each controlling engine
consists of self-healing intelligent entities that can
compensate for a variety of software or hardware
problems. We also present evaluation results of extensive
experiments in a production environment, which
demonstrate the advantages of our approach.

Keywords: Cluster computing, resource allocation,
resource discovery, dynamic reconfiguration.

1. Introduction

In order to achieve the expected levels of high
availability, speed and service in the information society
era, new methods for dynamic resource provisioning,
configuration and management are urgently needed.
There are currently several ways to deal with computer
infrastructure availability and resource related issues [2,
3]. These include: 1) Small clusters consisting of
relatively small number of nodes, that run special-purpose
clustering software such as Sun Cluster, Veritas Cluster
Server, HP ServiceGuard, HACMP and Siemens
PrimeCluster. 2) Networks that can re-route and balance
traffic, and intelligent Brocade switches with Fabric OS.
3) File system clustering, disk mirroring and high-speed
WAN links amongst separate geographically sites with
replication of data volumes, with products such as EMC
SRDF, Timefinder, Geospan, and Veritas Volume
Replicator. 4) Grids – the grid technology aims to group
and present hosts, resources and services to end users
[15]. 5) IBM’s Océano project [14] – Océano’s aim is to
develop middleware and infrastructure, which provide

composition of hosting services, including monitoring of
service level agreements, dynamic resource allocation,
and high availability.
 All commercial high-availability and fault-tolerance
solutions, while largely effective if implemented
correctly, have the following disadvantages; 1) They can
only be applied on certain types of platforms such as Sun,
HP-UX, AIX, EMC, CISCO and others that are
homogeneous and usually proprietary, but not on
heterogeneous ones. 2) They are extremely expensive to
maintain and require highly specialized personnel to
support them. 3) Each one individually, cannot guarantee
100% uptime as it does not cover all aspects of the
system, and if combined they introduce a substantial
degree of complexity. When a type of fail-over occurs this
usually means that applications crash in approximately
90% of the times. 4) They are fault-tolerant but not self-
healing and most of the times non-secure. Recovery
procedures require heavy manual intervention, as they are
not fully automated. 5) They are not transparent to the
application and very often, high availability technologies
fail first and then applications subsequently crash. These
solutions require expensive and powerful servers and are
not usually implemented on workstations or low
specification systems. Very rarely we see distributed and
parallel processing architectures due to the costs incurred
and the inability of most of these methods to deal with the
latter without additional software. 6) They do not look
after application interdependencies on a large scale.
Closely related to our project is also the very important
work done by John Wilkes and R. Golding on self-
managing, self-configuring storage [5, 13].
 This paper is organised as follows. In section 2 we
discuss the intelligent infrastructure architecture. In
section 3 we focus on the strategy used by the intelligent
software to discover, allocate and manage resources,
while section 4 presents some experimental results from
our actual implementation in a production environment.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

2. Intelligent Infrastructure Overview

2.1 Intelligent Agents

Intelligent agents [12], or intelliagents are Unix programs
that monitor systems and services and wherever possible
automatically correct run-time operational faults with as
little downtime as possible. They can be thought of as
huge wrappers that can be used to administer, maintain
and troubleshoot every single infrastructure aspect. They
are highly modular and use constraint-based causal
reasoning to decide the best course of action [7]. A causal
model is a triple that encodes the truth-values of sentences
that deal with causal relationships. It includes 1) action
sentences such as A will be true if we do B, 2)
counterfactuals such as A would have been different if it
were not for B and 3) plain causal utterance such as A
may cause B OR B occurred because of A.
 Intelliagents are installed locally on each server they
monitor, always in the same physical location
“/apps/intelliagents” and are “awakened” by the local
Unix crons every X minutes (every 5 minutes for
example). Intelliagents do not use a relational database (to
avoid corruptions and for simplicity), they use static
ontologies in the form of static knowledge templates and
service lists to generate dynamic ones. Ontologies are
being used in logic, mathematics and artificial
intelligence. An ontology is a description (like a formal
specification of a program) of the concepts and
relationships that can exist for an agent or a community of
agents [4]. The subject of ontology is the study of the
categories of things that exist or may exist in a domain
[10]. Service lists are used as indexes to organise the
knowledge they have for all servers, resources and
services in the datacentre. In our experiments, the fastest
way to create these types of ontologies was to do so
manually the first time a new resource, server or service
are installed and introduced to the datacentre. Whenever
local intelliagents run they produce a dynamic ontology in
the form of dynamic local service profiles that indicate if
servers, services and resources are available for use or
not.
 Our intelliagents are mainly developed in bourne shell
and are as likely to fail as any standard system startup
script (in Unix based systems most startup/shutdown
scripts are written in bourne shell) [9]. They use Unix IPC
and exit codes to communicate with the operating system.
The reason why we used Unix shell is because it is very
easy and fast to write scripts, change them when needed
or troubleshoot them. Unix pipes produce data streams
and the multitude of standard Unix tools provides the core
set of operators. They can produce flat ASCII data
streams, which means that all operators can read each
other’s data. This allows for intermediate storage of

output results on disk and the ability to feed them back to
a process at a latter stage. Application binaries can be
called and used directly. Many applications have tools
that can be manually used to troubleshoot them or check
their status. We took advantage of these features to ensure
that intelliagents were as robust and easy to handle as
possible. In addition, we did not have to install additional
compilers that would put more load to monitored systems,
or that would compromise security in any way. Finally,
from our experience, we know that when a system is
failing or is overloaded, complicated
measurement/troubleshooting tools tend to stop working
altogether [3]. The likelihood that a bourne shell based
script would stop working, in such cases, is much less [9].
For Windows and other operating systems we used Unix
shell simulations that we installed, in order to maintain
uniformity in our source code.
 Intelliagents use 2-phase locking which is a
programming discipline that shows that no lock can be
released, before the last lock has been obtained. This
avoids them operating inconsistently. All actions are
logged and every time an intelliagent observes a problem
and takes an action, a message is sent to human operators
(usually by email). Local intelliagent source code is read
only. On each server a full intelliagent suite is running
locally. To monitor, support and maintain intelliagents,
we used external administration checkpoints that were
initiated by specially built dedicated administration
servers. On each external administration server
intelliagent originals are kept in a secure location. Human
administrators are allowed very limited access to
administration servers. Access control procedures are in
place to ensure that no modifications take place without
detection. Daily password ageing is enforced that obliges
users and administrators to change them on a daily basis.
The SSH [1] protocol is used, while all other connection
methods (such as remsh, rlogin, rsh, telnet, ftp) are
disabled by default during the server building process.
 All intelliagent related communication goes through a
private agent network to avoid putting any
performance/load overheads to public LANs. All
participating devices and resources in the datacentre are
connected to the private agent network and one or more
public LANs. If the private network fails, intelliagents can
automatically re-route their communication traffic over
the public LAN, using Unix administration commands.
 Whenever local intelliagents run, they produce flags in
the dedicated “/logs/intelliagents/intelliagent_name”
directory on the local server disk to show the status of the
run. A number of flags are produced with appropriate
naming conventions that show what happened and exactly
where agents found a fault. Absence of these flags means
that we either have an internal intelliagent problem or that
they did not run at all. Administration servers monitor the
creation of these flags every X+5 minutes, where X is the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

frequency intelliagents run, i.e. every 10 minutes
(adjustable parameter). If these flags are not there, they
start troubleshooting intelliagent processes. Whenever an
agent detects an error it tries to fix it. All intelliagents run
in parallel, in a distributed manner and do not depend on
each other. At start-up each intelliagent checks to see if
any other of the same type is running, if so it exits, i.e. we
can never have two backup intelliagents running at the
same time. It also removes flags from previous runs and
old status profiles. For each application type there are
customised error categories. Application health is
determined by attempting to connect to them every Y
minutes and run basic commands (such as a get on a web
server process for example). This is essentially the way
intelliagents communicate with applications – by trying to
use them and by examining exit codes in the Unix shell.
 Each intelliagent has 5 major parts: a) Monitoring, b)
Diagnosing, c) Self-Healing/Action/Repair, d)
Communication/Logging, and e) Self-maintenance. The
monitoring part is tasked to look after one particular
system resource or aspect. Whenever the monitored
subject does not respond as expected, the diagnosing part
is invoked and goes through a series of tests to determine
the root of the problem. The diagnostic procedure is done
in two ways, statically and dynamically. Statically, from
parsing and examining error logs and dynamically by the
use of Unix administration commands to ensure the best
possible diagnosis. Based on these findings the self-
healing portion gets activated and starts repairing the
faults. The communication part is responsible for
communicating with other intelliagents and human
operators. It is also responsible for logging all intelliagent
activities and results.
 Intelliagents are classified based on their functions and
tasks as follows: 1) Hardware agents that look after
hardware components (CPU, memory, boards, etc.). 2)
Operating system/network agents that look after OS and
network related aspects. 3) Resource intelliagents that are
responsible for managing and configuring resources such
as disks, network cards, and virtual memory. 4)
Application/Service intelliagents that manage and
troubleshoot local and global applications/services across
the data centre. 5) Status intelliagents that dynamically
generate profiles about the availability, load, capacity and
geographical location of servers, resources, and services.

2.2 Clusters

Clusters present a single image to the computing
environment [11]. One way of achieving this is by the use
of a “heartbeat” [11], which is commonly transmitted via
ethernet crossover cables or network hubs. Usually, the
size of fully-fledged production clusters in the market is
relatively small with less than 10 server nodes (2 to 8).

Commercial cluster software is consisted of the cluster
agent software and kernel modules that integrate it to the
operating system.
 The cluster agent has 4 main components – the monitor
that looks after the cluster, the cluster startup script, the
cluster stop script and the cluster clean script that stops
cleanly the cluster software. When the cluster software
detects a local problem, it decides based on pre-scripted
conditions if the problem is critical or not. Critical
problems are classified as all conditions that do not allow
the clustered component to be accessible and readily
available. All other conditions are classified as non-
critical. If a problem is non-critical the software takes no
action. If it is critical, it initiates a failover to the next
healthy available cluster node that participates in the
cluster configuration. A failover is an operation by which
common resources (such as disk sets) and individual
services are switched over automatically to a secondary
system that is identical to the failed primary one.
 One or more floating IP addresses or Virtual IP
addresses (VIP) are used for addressing clustered
resources [11]. Clusters are inherently fault-tolerant by
design as their primary function is to ensure service
continuity and high availability. However they cannot
dynamically resolve performance related problems or
allocate resources that they do not know of. In our
implementations we used the Veritas Cluster Server suite
[11], as it is one of most reliable and flexible ones.

2.3 Physical Infrastructure

To prepare the physical infrastructure for the intelligent
software, the cluster hardware infrastructure must be in
place initially. This requires two network hubs per
network segment so the private cluster network is set-up
for the cluster heartbeat to travel through it [11]. All
devices participating in the datacentre need to have the
ability to connect to the network. Each device must have
ideally 4 to 5 network interface interfaces. One is used for
the public network, 2 for the cluster heartbeat and one
interface for the agent/administration network. If one
network breaks down for any reason, traffic can
automatically be rerouted to the network part that works
[11].
 Three networks need to be in place for the intelligent
infrastructure to work, the public network whether that is
a Wide Area Network (WAN) or a Local Area Network
(LAN), the cluster private network and the
administration/agent network. All devices are clustered
per function and operating system type. Disks, tape
drives, printers, scanners, CD towers etc, are clustered
wherever possible, and addressed by service names and
virtual IP addresses (VIPs). All devices in each cluster
group have access to all application physical and logical
resources. In this way, any server can take over any

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

application function with minimal service interruption or
none at all. In cluster configurations where applications
allow for parallel processing, the common pool of
resources is accessed simultaneously by all cluster nodes.
In such cases, the loss of a server node does not result in
service loss or downtime. Performance may be affected,
however, if the application is heavily used at the time.
 Figure 1 gives a general overview of our intelligent
architecture using an example real implementation. Each
application group is clustered with many devices in each
cluster. By addressing “oracle.database.billing.com” one
is in effect addressing all devices in that group, as the VIP
can be thought of as the “index key” giving access to a
whole list of aliased IP addresses corresponding to
physical device NICs. All data reside on commonly
shared NFS disks, and are accessible by all cluster groups.
A node has one or more physical IP addresses and more
than one Virtual IP addresses can be aliased to its physical
IP addresses. For example, a service name such as
“email.services.com” is associated with the virtual IP
address of each cluster group, which makes addressing for
humans much easier [11]. In addition, if addressing is
done by service name, changing IP addresses for any
reason – fault or network expansion – is much easier.
Note that the service name can be anything. In this
example, we follow Internet naming conventions, as they
tend to be easier to remember. For each resource type,
there is a corresponding “spare.device.services.com”
pool. In these types of pools there are spare resources
(non-clustered) that can be allocated when needed.

NETWORK

TAPE.SERVICES.COM
VIP 193.113.214.59

PRINTER.SERVICES.COM
VIP 193.113.214.60

DISK.SERVICES.COM
VIP 193.113.214.61

ORACLE.DATABASE.BILLING.COM
VIP 193.113.214.56

WWW.SERVICES.COM
VIP 193.113.214.57

EMAIL.SERVICES.COM
VIP 193.113.214.58

Host Host

Host

SPARE.HOST.SERVICES.COM
VIP 193.120.121.1

SPARE.DISK.SERVICES.COM
VIP 193.130.121.1

NETWORK

Figure 1. Example architecture for the intelligent
infrastructure.

 Resource discovery is made easy with this type of
addressing. As all available devices are clustered, we only
need to know the virtual name and not specific hardware
information about each and every device. If we need for
some reason to replace an entire device or parts of it, it is
very easy to do so, as there are always other devices in the
cluster that can be addressed by the same alias name and
VIP.

 Introducing new devices to the infrastructure is equally
easy. Each new device is introduced as a new cluster node
to the corresponding device pool it belongs. Intelliagents
handle this task automatically and transparently with no
service interruption as soon as the hardware connection to
the private cluster network is established. To enhance
redundancy, clustered devices need to have as many
members as possible in the cluster. When more nodes
participate in a cluster, the probability of failure decreases
dramatically. Experiments [8] have shown that reliability
in a multi-node cluster system increases even if the
components it is consisted of are not very reliable
themselves.

2.4 Interfacing clusters with heterogeneous
operating systems

In our experiments we have used clusters running three
different operating systems – Unix, Linux and Windows.
Commercial cluster software does not work for
heterogeneous operating systems. In order to overcome
this limitation, we added modules to the cluster
intelliagent to simulate parts of the core cluster function.
As our intelliagents were developed using native
operating system tools, simulating this functionality was
not difficult. To this end, we have used the NFS protocol
to access shared disk devices where databases and other
application data were located. To create local shares if
required, amongst Windows, Unix or Linux clusters, we
used a utility called SAMBA [6]. SAMBA allows for an
NFS share interface to be created on a server running
Unix, Linux or Windows. This means that a Windows
server, for example, can access a file system on a Unix
server and vice versa. All kernels for all cluster groupings
have the same abilities to run all clustered components
and applications.
 When a cluster group has a catastrophic failure and none
of its members could function, cluster intelliagents would
go through the following steps: 1) Shutdown all
application and cluster software on the failed or failing
cluster if appropriate. 2) Probe to find out which cluster
has the capacity to run the failed application, based on
performance thresholds and utilisation. 3) On the new
cluster group, they attempted to create and bring the
application group online with administration commands -
dynamically without service interruption. 4) Finally they
inform the human operators about what happened. (If this
procedure could not be carried out by the failed hosts of
the cluster, administration servers are to be used instead).
 All data are located on commonly shared disk-sets over
the network, so there is no problem in accessing them
from various cluster groups. There are slight delays in this
design, as communications and status exchange are
carried out over the agent network. The reason we could

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

not use the cluster private network is due to the different
operating systems of the cluster groups. The total time it
takes to successfully create and bring online a new
application group on a cluster group with a different
operating system after a catastrophic failure is about 15
minutes. If intelliagents fail for any reason, human
intervention is requested.

3. Resource Intelliagents

Resources in the intelligent infrastructure are
automatically assimilated when connected to the network.
Our design is based on the fact that for each device type
there is a unique MAC address that declares the
manufacturer and device type. A text file present on all
servers contains a list of MAC addresses that correspond
to various suppliers. The owner of this file is the
administration server, which is also responsible for
distributing the file every time there is a change. An IP
scanner utility (initiated by administration servers) scans
the network and builds a dynamic ARP table. MAC
addresses and IP addresses are extracted from that table.
Agents can then determine what resource type they have
“discovered”, by matching the discovered MAC address
against those in the static list.
 Cluster intelliagents probe the private cluster network
every five minutes (adjustable parameter) to determine if
there are any new members. The appropriate cluster group
configuration is automatically downloaded to the new
member from the acting cluster master. For each resource
type there is a special intelliagent that holds all
knowledge about it. All native operating system
commands and/or specialised software that manage the
resource are included in the intelliagent source control
code. As all resources are clustered and can be accessed
by a virtual IP address or a service name as previously
discussed, resource intelliagents, do not have to waste
time probing for new resources all over the place. They
use “restricted” probing instead, saving time and
computational resources. For example, they know that if
they need resources from the disk pool, they must address
the “disk.services.com” pool and spare space on an
already used disk can be found there. If they need a
completely unused disk, they can address the
“spare.disks.services.com” pool. There are three main
reasons why resource intelliagents are invoked: 1)
Performance problems, 2) Capacity problems, and 3)
Faults.
 Performance problems can occur on a component,
device or entire cluster basis. If the entire cluster needs
additional processing power, a new cluster node is added
to it. If a device has a performance problem, another
intelliagent, the performance intelliagent, assesses the
problem and decides what type of resource(s) need to be
added or locally freed. Based on this assessment resource

agents act. If there is a failure, they probe for spare
resources in the common pool and may either come up
with unused ones or allocate partially used resources. An
example of a performance problem, is when database
disks under-perform. If performance problems have been
detected before for the same device there may be two
main reasons: either there is a hardware fault that needs to
be looked into, or these device(s) are not configured for
the load they have been sustaining. In such a scenario,
resource intelliagents reconfigure the disk layout e.g. add
more disk stripes.
 A joint performance/capacity problem, where these
intelliagents are often called to operate, is the freeing of
local “badly” used resources. In servers very often
resources are consumed without being actually needed,
usually because of coding errors, failed interactions with
other devices or inter-process communication failures.
Typical examples of these are hung network connections
the server allows to occupy its network bandwidth and
runaway dead or zombie processes in the kernel process
table. Decisions about local resource reconfiguration,
tuning and freeing, need to be very well informed.
Resource intelliagents, call upon performance
intelliagents to decide what to do in such cases.
Performance intelliagents, contain thresholds about
server, network and application performance. These
thresholds are coded in the agent ontologies. Using native
operating system tools, agents can decide if processes are
healthy or not. Very precise mechanisms are used to
determine the real cause of the performance problem.
When a decision is reached, resource intelliagents remove
these processes or connections forcefully and free local
system resources.
 As previously discussed, when the entire cluster group
suffers from performance problems, an additional node is
introduced to it. This node can be taken from the spare
pool of host resources or from another cluster if it is not
used at the time. If there is no cluster node as such, the
server that is less busy is selected for this task. The
threshold by which a cluster node is considered “free” is
if CPU utilisation, memory, I/O and network are at 1% on
average. The least busy server is determined by selecting
the node that has the smallest CPU, memory, I/O and
network utilisations in a cluster group, with a ceiling of
25% load. If none of these conditions are met, a request
for a new node installation is communicated to the human
operators.
 Let us suppose that, during a backup session, there are
not enough tape drives to complete it successfully. The
appropriate resource intelliagent will initially contact the
“tape.services.com” group in an attempt to find if there is
a spare tape device or a device that is not used at the time.
If it succeeds in finding a spare resource, it then allocates
it to the requesting agent. If it finds a device that is not
used at that point in time, it temporarily allocates it to the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

requesting agent and a time-share is arranged for the use
of this device. It invokes the backup intelliagent, which
holds all knowledge about the backup schedules using this
device which are rearranged to avoid conflicts. If,
however, it does not succeed in either case, it contacts the
spare pool of tape resources. If it finds an unused one it
invokes the cluster intelliagent which adds the tape device
to the tape cluster group. It then allocates the tape device
as requested. If there are no spare backup devices to be
allocated, an alert is sent to human operators asking for a
new tape device to be installed to the common pool of
tape devices. The cluster intelliagent will then
automatically incorporate this new device to the existing
cluster configuration. The next time frame resource
intelliagents run, they use the newly added tape device.
 If there are faults, the resource intelliagent is called to
allocate replacement resources. In such cases, the
intelliagent will probe for a usable resource and then call
the intelligent module that will initialise the resource and
introduce it to the cluster group. For the sake of this
example, let us suppose that a disk has failed. If the disk
is clustered, the clustered counterpart is used; if not, all
accesses to that disk are disabled and cluster intelliagents
are called to fail-over/stop the application(s) that are using
it locally (note that all applications are clustered and
therefore controlled by cluster intelliagents). Global
interdependencies are checked and all dependant
applications are stopped if necessary, while human
operators are informed. Agents probe for a disk with the
same size in the “spare.disk.services.com” pool. If this is
fruitless, the “disk.services.com” pool is contacted to
determine if there is spare space on an already used disk
that can be used. If that fails too, the entire network is IP
scanned and discovered IP addresses are matched against
the all manufacturers’ MAC address database.

Intelliagents connect to the discovered device (if one is
found) and confirm its type using standard administration
commands such as “format”, “ls”, etc. If an available disk
is discovered, then all is well. Otherwise human operators
are asked to install additional disks. If a new disk needs to
be installed, the agents wait for the physical install to take
place. Resource intelliagents run every X pre-scripted
time intervals and every time they check anew if the
resource is present. This approach is so computationally
inexpensive that has no impact whatsoever on
performance or network/resource utilisation. When the
new disk is detected, the appropriate intelligent disk
module is called, to initialise the disk and add it to the
appropriate disk group. This done successfully, any file
systems are configured and mounted. The backup
intelliagent is called to restore data on that disk (based on
the file systems the disk had) or, if the disk is clustered, it
starts synchronising the replacement disk from existing
data. The disk then becomes online and available. After
that, the cluster intelliagent restarts any stopped
applications and informs in detail all human operators. At
this point, interdependence and health checks resume as
normal. If at any point in this procedure, intelliagents fail,
human operators are notified to take manual action.
Figure 2 shows how the resource allocation intelliagent
functions. When a request is initiated by a hardware,
software, performance or reconfiguration incident the
resource allocation intelliagent is invoked. If it is a cluster
performance problem the resource allocation intelliagent
invokes the cluster intelliagent which dynamically adds a
new server node to the cluster. If it is a capacity problem,
additional resources are added (for example disks) or a
resource reallocation occurs by freeing used ones. The
alerting and reporting intelliagents ensure that human
operators are kept informed about everything.

R E S O U R C E
A L L O C A T I O N

R E Q U E S T

R E S O U R C E A L L O C
I N T E L L I A G E N T

C A L L C L U S T E R
I N T E L L I A G E N T T O F O R C E
F A I L O V E R T O T H E N E X T

H E A L T H Y N O D E

P E R F O R M A N C E
I N T E L L I A G E N T

A S S E S S I T

I F P E R F P R O B L E M

A D D S A D D I T I O N A L
R E S O U R C E S

I F C A P A C I T Y P R O B L E M

A R E R E S O U R C E S T H E R E ?

G I V E S I N S T R U C T I O N

O K . U S E T H E M I F
N E W O R U S E

S H A R E D O N E S .
R E C O N F I G U R E A S

A P P R O P R I A T E .
C A L L O T H E R

I N T E L L I A G E N T S
T O A C H I E V E T H I S

N O R E S O U R C E S T H E R E ?

I N F O R M H U M A N
O P E R A T O R S S O
T H E Y C A N A D D

T H E N E W
H A R D W A R E

C L U S T E R
I N T E L L I A G E N T

A D D S A N E W
N O D E F R O M T H E
C O M M O N P O O L
O F R E S O U R C E S

I F W H O L E C L U S T E R C O N F I R M E D
P R O C E S S I N G P E R F P R O B L E M

I F L O C A L I Z E D
P R O B L E M

R E C O N F I G U R E L O C A L
R E S O U R C E S ,

D Y N A M I C A L L Y C O N F I G U R E
O S K E R N E L , F R E E A N D R E -

A L L O C A T E L O C A L
R E S O U R C E S , C A L L A N Y

O T H E R R E Q U I R E D
I N T E L L I A G E N T T O H E A L

I F C R I T I C A L E R R O R

U S E I P N E T W O R K
S C A N N I N G A N D

D E T E C T T H E M O N
T H E N E T W O R K

S E A R C H C L U S T E R
H O S T D A T A B A S E

A S W E L L

U S E T E S T
C O M M A N D S A N D
S E A R C H I N M A C

A D D R E S S
D A T A B A S E T O

D E T E R M I N E W H A T
T Y P E O F D E V I C E S

T H E S E A R E

A S S I M I L A T E N E W
R E S O U R C E S B Y

C A L L I N G O T H E R
I N T E L L I A G E N T S

P R O B E F O R
N E W R E S O U R C E S

I F A G E N T E R R O R

C A L L H U M A N
O P E R A T O R S T O

F I X A T A N Y S T A G E

Figure 2. Resource Intelliagent behaviour. Intelliagents work synergistically together to allocate and manage
resources

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

4. Experimental Results

Our production experiments were completed in a data
centre consisting of about 650 servers - a mixture of Sun,
HP, Linux, and Windows machines. Before the beginning
of our project, all applications were running on standalone
servers and data resided on local disks. Applications
included web servers, databases, billing solutions, online
internet shops, WAP services, chat rooms, unified
messaging solutions with fax, email, and voice mail
mailboxes, standard email, instant messaging and GPRS.
Cluster sizes varied, ranging from 2 nodes to 150 nodes.
They were both in symmetric and asymmetric
configurations [11]. Most data resided on commonly
shared NFS disks as per the NAS architecture [5, 13].
When we started work, we rearranged all servers in
cluster groups based on operating system and
functionality. We had most data moved from local disks
to commonly shared NFS disks. Total testing period was
16 months with the intelligent infrastructure fully
operational and 16 months without it. Faults included
failing CPUs, disk corruption resulting in major database
failures, database log file systems getting full and causing
the database to stop transaction-logging and therefore
preventing user connections, user mistakes, network
failures, etc.
 As discussed, prior to our work, all applications run on
standalone servers so it was impossible to fail over to
another healthy node, or salvage any data when the server
failed completely. All efforts were concentrated on
initially bringing up the server and starting the application
in order to resume normal operation. In some cases a
server restart would clear all problems and resulting
downtime was on average 2 hours as all applications
depending on the failed one had to be manually restarted.
In addition to the faults, management had to be involved
in order to decide on a course of action. While the actual
server restart would take about 20 minutes, the whole
process of locating and informing before-hand all IT and
managerial resources and asking them to decide what to
do would take much longer – even up to 4 hours each
time. Such situations however, are totally unacceptable in
production environments where time is money.
 When our architecture was implemented on the same
systems, clusters with more than 2 nodes exhibited 100%
uptime for the entire 16 months of testing. A clustered
system consisting of 2 nodes and running a heavily used
production database supported 5,000 concurrent
connections without any downtime or performance
problems. (The same one that was unavailable for 61
hours the previous year). In the cases of failed disks hosts
automatically used the clustered disk-partner without any
service interruption.
 On another occasion, where the disk capacity was
exceeded intelliagents attempted to clear the filesystem

initially by removing unnecessary files – the capacity
however, was still low, so they proceeded to find
available disks, brought them on line and extended
automatically the file-system that was full.
 Intelliagents were also used to test the application
software responsiveness and health, by connecting to
them and running simple test commands. If it was
determined that the problem occurred because of an
application malfunction they attempted to cleanly restart
the entire or parts of the failed/failing application together
with all dependent applications.
 Figure 3 shows the significant reduction of the total
downtime after the deployment of our intelligent
infrastructure. From 2,172 hours of total downtime the
previous 16 months, we had only 8 hours of downtime in
total during the next 16 months.
 As all monitoring and remedial procedures were fully
automated, no time was spent trying to decide how to
obtain the resource, which commands to use to initialise
it, how to introduce it to the cluster configuration and how
to configure it. In addition, there were no delays trying to
locate experts from various fields so they could decide
what exactly was the problem and which type of resource
was needed (this happens mostly in performance
bottlenecks and Byzantine errors). All application
interdependencies were automatically re-adjusted and
there were no unfortunate omissions or mistakes.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Months of Operation

D
o

w
n

ti
m

e
in

 H
o

u
rs

With Self-Heal

With No-Self Heal

Figure 3. Intelligent Infrastructure: Total Downtime
from all types of failures before and after the
intelliagents.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Months of operation

D
o

w
n

ti
m

e
in

 h
o

u
rs

With Self-Heal

Without Self-Heal

Figure 4. Intelligent Infrastructure: Downtime from
resource re-allocation.

 The results in Figure 4 demonstrate that only 1 hour of
downtime was caused because of resource related

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

incidents throughout the 16 months intelliagents were
operating as opposed to 273 hours during the previous 16
months without the intelliagents installed. In fact, this
short downtime was caused by delays in physical resource
installation, when human operators had to add a new disk
for capacity reasons in month 6 of the experimental
period.

5. Conclusion and Future Directions

The proposed intelligent architecture has the following
new and/or specific characteristics: 1) It is not expensive
to implement as it is based on existing hardware and
readily available, tested technologies. In our
infrastructure, we have implemented a great deal of
human trouble-shooting techniques based on extensive
working experience in high-end commercial
environments – all actions the software takes simulate the
human system administrator ones. 2) It provides very
good scalability that extends the clustering paradigm to
high-end data centres. Any server of any hardware
configuration and specification can automatically assume
any role if it is available and has access to a common pool
of resources [5, 13]. 3) It manages application inter-
dependencies on a large scale at the platform level. 4) It
recycles and allocates various resources to running
systems if needed, with minimal service interruption, or
none at all [11]. 5) It is highly modular and the self-
healing/recovery logic can be applied to the vast majority
of operating system platforms. The software can be
written in any programming language that is appropriate
for the platform it runs on. New modules can be
integrated very easily in the engine if and when needed.
6) It increases dramatically the availability of services to
the end users and decreases the complexity of computer
resource utilisation.
 Much work remains to be done in the automated
resource allocation and discovery areas. The design we
have employed has been effective in tightly controlled
architectures, but not equally effective in other non-
structured environments. Additional work needs to be
done so that our agents can become more adaptable in
such environments. Our future work includes using
hidden Markov models in the resource
discovery/allocation areas and decision process. Our
infrastructure design has been proven successful for the
continuation of healthy, fast, and cost-effective operations
and constitutes the core of a self-healing intelligent
cluster. Any type or class of application can be supported
in this model in any environment, such as databases, web
servers, Internet, security, banking, telecommunications,
and robotics.

References

1. Barrett, Daniel J., Silverman Richard, “SSH, The Secure

Shell: The Definitive Guide”, O'Reilly & Associates,
February 2001.

2. Corsava Sophia, Getov Vladimir, “Self-Healing Intelligent
Infrastructure for Computational Clusters”, Proceedings of
SHAMAN Workshop at 16th ACM ICS, New York, June
2002.

3. Corsava Sophia, Getov Vladimir, “Intelligent Fault-
Tolerant architecture for cluster computing”, to appear at
IASTED, PDCN03, Innsbruck, Austria, Feb 2003, ACTA
Press.

4. Gruber, T.A. “A Translation Approach to Portable
Ontology Specifications”, 1993.

5. Golding Richard, Borowsky, Elizabeth, “Fault-tolerant
replication management in large-scale distributed storage
systems”, Proceedings 18th IEEE Symposium on Reliable
Distributed Systems, 1999.

6. Hal Stern, Mike Eisler, Ricardo Labiaga, “Managing NFS
and NIS”, O'Reilly & Associates, August 2001.

7. Pearl Judea, “Reasoning with cause and effect”, IJCAI
Award Lecture, 1999.

8. Papoulis, “A. Probability, Random Variables, and
Stochastic Processes”, 2nd ed. New York: McGraw-Hill,
1984.

9. Quigley, Ellie, “Unix Shells by example”, Prentice Hall,
1999.

10. Sowa, John F., “Knowledge Representation: Logical,
Philosophical, and Computational Foundations”, Brooks
Cole Publishing Co, 2000.

11. Veritas Cluster Server, release 1.3.0, Veritas Software
Corporation, 2000.

12. Weiss G. “Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence”, MIT Press, 1999.

13. Wilkes, John and Keeton, Kimberly, ”Automating data
dependability”, 10th ACM SIGOPS European Workshop,
2002.

14. http://www.research.ibm.com/oceanoproject
15. http://www.globus.org

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

