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Abstract. As the need for more reporting and 
assessment of information increase exponentially, 
computer-based applications consume resources at an 
alarmingly rapid rate. Therefore, traditional techniques 
for managing resource allocation, topology and systems 
need urgent revision. In this paper, we present an 
intelligent architecture that introduces a new strategy for 
managing resource discovery, allocation and dynamic 
reconfiguration at run-time. Our building methodology 
involves the employment of new types of clustered systems 
based on large application groupings, each having a 
master cluster controller. Each controlling engine 
consists of self-healing intelligent entities that can 
compensate for a variety of software or hardware 
problems. We also present evaluation results of extensive 
experiments in a production environment, which 
demonstrate the advantages of our approach. 
 
Keywords: Cluster computing, resource allocation, 
resource discovery, dynamic reconfiguration. 
 
1. Introduction 
 
In order to achieve the expected levels of high 
availability, speed and service in the information society 
era, new methods for dynamic resource provisioning, 
configuration and management are urgently needed. 
There are currently several ways to deal with computer 
infrastructure availability and resource related issues [2, 
3]. These include: 1) Small clusters consisting of 
relatively small number of nodes, that run special-purpose 
clustering software such as Sun Cluster, Veritas Cluster 
Server, HP ServiceGuard, HACMP and Siemens 
PrimeCluster. 2) Networks that can re-route and balance 
traffic, and intelligent Brocade switches with Fabric OS. 
3) File system clustering, disk mirroring and high-speed 
WAN links amongst separate geographically sites with 
replication of data volumes, with products such as EMC 
SRDF, Timefinder, Geospan, and Veritas Volume 
Replicator. 4) Grids – the grid technology aims to group 
and present hosts, resources and services to end users 
[15]. 5) IBM’s Océano project [14] – Océano’s aim is to 
develop middleware and infrastructure, which provide 

composition of hosting services, including monitoring of 
service level agreements, dynamic resource allocation, 
and high availability. 
  All commercial high-availability and fault-tolerance 
solutions, while largely effective if implemented 
correctly, have the following disadvantages; 1) They can 
only be applied on certain types of platforms such as Sun, 
HP-UX, AIX, EMC, CISCO and others that are 
homogeneous and usually proprietary, but not on 
heterogeneous ones. 2) They are extremely expensive to 
maintain and require highly specialized personnel to 
support them. 3) Each one individually, cannot guarantee 
100% uptime as it does not cover all aspects of the 
system, and if combined they introduce a substantial 
degree of complexity. When a type of fail-over occurs this 
usually means that applications crash in approximately 
90% of the times. 4) They are fault-tolerant but not self-
healing and most of the times non-secure. Recovery 
procedures require heavy manual intervention, as they are 
not fully automated. 5) They are not transparent to the 
application and very often, high availability technologies 
fail first and then applications subsequently crash. These 
solutions require expensive and powerful servers and are 
not usually implemented on workstations or low 
specification systems. Very rarely we see distributed and 
parallel processing architectures due to the costs incurred 
and the inability of most of these methods to deal with the 
latter without additional software. 6) They do not look 
after application interdependencies on a large scale. 
Closely related to our project is also the very important 
work done by John Wilkes and R. Golding on self-
managing, self-configuring storage [5, 13]. 
  This paper is organised as follows. In section 2 we 
discuss the intelligent infrastructure architecture. In 
section 3 we focus on the strategy used by the intelligent 
software to discover, allocate and manage resources, 
while section 4 presents some experimental results from 
our actual implementation in a production environment. 
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2. Intelligent Infrastructure Overview 

2.1 Intelligent Agents  
 
Intelligent agents [12], or intelliagents are Unix programs 
that monitor systems and services and wherever possible 
automatically correct run-time operational faults with as 
little downtime as possible. They can be thought of as 
huge wrappers that can be used to administer, maintain 
and troubleshoot every single infrastructure aspect. They 
are highly modular and use constraint-based causal 
reasoning to decide the best course of action [7]. A causal 
model is a triple that encodes the truth-values of sentences 
that deal with causal relationships. It includes 1) action 
sentences such as A will be true if we do B, 2) 
counterfactuals such as A would have been different if it 
were not for B and 3) plain causal utterance such as A 
may cause B OR B occurred because of A. 
  Intelliagents are installed locally on each server they 
monitor, always in the same physical location 
“/apps/intelliagents” and are “awakened” by the local 
Unix crons every X minutes (every 5 minutes for 
example). Intelliagents do not use a relational database (to 
avoid corruptions and for simplicity), they use static 
ontologies in the form of static knowledge templates and 
service lists to generate dynamic ones. Ontologies are 
being used in logic, mathematics and artificial 
intelligence. An ontology is a description (like a formal 
specification of a program) of the concepts and 
relationships that can exist for an agent or a community of 
agents [4]. The subject of ontology is the study of the 
categories of things that exist or may exist in a domain 
[10]. Service lists are used as indexes to organise the 
knowledge they have for all servers, resources and 
services in the datacentre. In our experiments, the fastest 
way to create these types of ontologies was to do so 
manually the first time a new resource, server or service 
are installed and introduced to the datacentre. Whenever 
local intelliagents run they produce a dynamic ontology in 
the form of dynamic local service profiles that indicate if 
servers, services and resources are available for use or 
not. 
  Our intelliagents are mainly developed in bourne shell 
and are as likely to fail as any standard system startup 
script (in Unix based systems most startup/shutdown 
scripts are written in bourne shell) [9]. They use Unix IPC 
and exit codes to communicate with the operating system. 
The reason why we used Unix shell is because it is very 
easy and fast to write scripts, change them when needed 
or troubleshoot them. Unix pipes produce data streams 
and the multitude of standard Unix tools provides the core 
set of operators. They can produce flat ASCII data 
streams, which means that all operators can read each 
other’s data. This allows for intermediate storage of 

output results on disk and the ability to feed them back to 
a process at a latter stage. Application binaries can be 
called and used directly. Many applications have tools 
that can be manually used to troubleshoot them or check 
their status. We took advantage of these features to ensure 
that intelliagents were as robust and easy to handle as 
possible. In addition, we did not have to install additional 
compilers that would put more load to monitored systems, 
or that would compromise security in any way. Finally, 
from our experience, we know that when a system is 
failing or is overloaded, complicated 
measurement/troubleshooting tools tend to stop working 
altogether [3]. The likelihood that a bourne shell based 
script would stop working, in such cases, is much less [9]. 
For Windows and other operating systems we used Unix 
shell simulations that we installed, in order to maintain 
uniformity in our source code. 
  Intelliagents use 2-phase locking which is a 
programming discipline that shows that no lock can be 
released, before the last lock has been obtained. This 
avoids them operating inconsistently. All actions are 
logged and every time an intelliagent observes a problem 
and takes an action, a message is sent to human operators 
(usually by email). Local intelliagent source code is read 
only. On each server a full intelliagent suite is running 
locally. To monitor, support and maintain intelliagents, 
we used external administration checkpoints that were 
initiated by specially built dedicated administration 
servers. On each external administration server 
intelliagent originals are kept in a secure location. Human 
administrators are allowed very limited access to 
administration servers. Access control procedures are in 
place to ensure that no modifications take place without 
detection. Daily password ageing is enforced that obliges 
users and administrators to change them on a daily basis. 
The SSH [1] protocol is used, while all other connection 
methods (such as remsh, rlogin, rsh, telnet, ftp) are 
disabled by default during the server building process. 
  All intelliagent related communication goes through a 
private agent network to avoid putting any 
performance/load overheads to public LANs. All 
participating devices and resources in the datacentre are 
connected to the private agent network and one or more 
public LANs. If the private network fails, intelliagents can 
automatically re-route their communication traffic over 
the public LAN, using Unix administration commands. 
  Whenever local intelliagents run, they produce flags in 
the dedicated “/logs/intelliagents/intelliagent_name” 
directory on the local server disk to show the status of the 
run. A number of flags are produced with appropriate 
naming conventions that show what happened and exactly 
where agents found a fault. Absence of these flags means 
that we either have an internal intelliagent problem or that 
they did not run at all. Administration servers monitor the 
creation of these flags every X+5 minutes, where X is the 
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frequency intelliagents run, i.e. every 10 minutes 
(adjustable parameter). If these flags are not there, they 
start troubleshooting intelliagent processes. Whenever an 
agent detects an error it tries to fix it. All intelliagents run 
in parallel, in a distributed manner and do not depend on 
each other. At start-up each intelliagent checks to see if 
any other of the same type is running, if so it exits, i.e. we 
can never have two backup intelliagents running at the 
same time. It also removes flags from previous runs and 
old status profiles. For each application type there are 
customised error categories. Application health is 
determined by attempting to connect to them every Y 
minutes and run basic commands (such as a get on a web 
server process for example). This is essentially the way 
intelliagents communicate with applications – by trying to 
use them and by examining exit codes in the Unix shell. 
  Each intelliagent has 5 major parts: a) Monitoring, b) 
Diagnosing, c) Self-Healing/Action/Repair, d) 
Communication/Logging, and e) Self-maintenance. The 
monitoring part is tasked to look after one particular 
system resource or aspect. Whenever the monitored 
subject does not respond as expected, the diagnosing part 
is invoked and goes through a series of tests to determine 
the root of the problem. The diagnostic procedure is done 
in two ways, statically and dynamically. Statically, from 
parsing and examining error logs and dynamically by the 
use of Unix administration commands to ensure the best 
possible diagnosis. Based on these findings the self-
healing portion gets activated and starts repairing the 
faults. The communication part is responsible for 
communicating with other intelliagents and human 
operators. It is also responsible for logging all intelliagent 
activities and results. 
  Intelliagents are classified based on their functions and 
tasks as follows: 1) Hardware agents that look after 
hardware components (CPU, memory, boards, etc.). 2) 
Operating system/network agents that look after OS and 
network related aspects. 3) Resource intelliagents that are 
responsible for managing and configuring resources such 
as disks, network cards, and virtual memory. 4) 
Application/Service intelliagents that manage and 
troubleshoot local and global applications/services across 
the data centre. 5) Status intelliagents that dynamically 
generate profiles about the availability, load, capacity and 
geographical location of servers, resources, and services. 
 

2.2 Clusters 
 
Clusters present a single image to the computing 
environment [11]. One way of achieving this is by the use 
of a “heartbeat” [11], which is commonly transmitted via 
ethernet crossover cables or network hubs. Usually, the 
size of fully-fledged production clusters in the market is 
relatively small with less than 10 server nodes (2 to 8). 

Commercial cluster software is consisted of the cluster 
agent software and kernel modules that integrate it to the 
operating system. 
  The cluster agent has 4 main components – the monitor 
that looks after the cluster, the cluster startup script, the 
cluster stop script and the cluster clean script that stops 
cleanly the cluster software. When the cluster software 
detects a local problem, it decides based on pre-scripted 
conditions if the problem is critical or not. Critical 
problems are classified as all conditions that do not allow 
the clustered component to be accessible and readily 
available. All other conditions are classified as non-
critical. If a problem is non-critical the software takes no 
action. If it is critical, it initiates a failover to the next 
healthy available cluster node that participates in the 
cluster configuration. A failover is an operation by which 
common resources (such as disk sets) and individual 
services are switched over automatically to a secondary 
system that is identical to the failed primary one. 
  One or more floating IP addresses or Virtual IP 
addresses (VIP) are used for addressing clustered 
resources [11]. Clusters are inherently fault-tolerant by 
design as their primary function is to ensure service 
continuity and high availability. However they cannot 
dynamically resolve performance related problems or 
allocate resources that they do not know of. In our 
implementations we used the Veritas Cluster Server suite 
[11], as it is one of most reliable and flexible ones. 

2.3 Physical Infrastructure 
 
To prepare the physical infrastructure for the intelligent 
software, the cluster hardware infrastructure must be in 
place initially. This requires two network hubs per 
network segment so the private cluster network is set-up 
for the cluster heartbeat to travel through it [11]. All 
devices participating in the datacentre need to have the 
ability to connect to the network. Each device must have 
ideally 4 to 5 network interface interfaces. One is used for 
the public network, 2 for the cluster heartbeat and one 
interface for the agent/administration network. If one 
network breaks down for any reason, traffic can 
automatically be rerouted to the network part that works 
[11]. 
  Three networks need to be in place for the intelligent 
infrastructure to work, the public network whether that is 
a Wide Area Network (WAN) or a Local Area Network 
(LAN), the cluster private network and the 
administration/agent network. All devices are clustered 
per function and operating system type. Disks, tape 
drives, printers, scanners, CD towers etc, are clustered 
wherever possible, and addressed by service names and 
virtual IP addresses (VIPs). All devices in each cluster 
group have access to all application physical and logical 
resources. In this way, any server can take over any 
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application function with minimal service interruption or 
none at all. In cluster configurations where applications 
allow for parallel processing, the common pool of 
resources is accessed simultaneously by all cluster nodes. 
In such cases, the loss of a server node does not result in 
service loss or downtime. Performance may be affected, 
however, if the application is heavily used at the time. 
  Figure 1 gives a general overview of our intelligent 
architecture using an example real implementation. Each 
application group is clustered with many devices in each 
cluster. By addressing “oracle.database.billing.com” one 
is in effect addressing all devices in that group, as the VIP 
can be thought of as the “index key” giving access to a 
whole list of aliased IP addresses corresponding to 
physical device NICs. All data reside on commonly 
shared NFS disks, and are accessible by all cluster groups. 
A node has one or more physical IP addresses and more 
than one Virtual IP addresses can be aliased to its physical 
IP addresses. For example, a service name such as 
“email.services.com” is associated with the virtual IP 
address of each cluster group, which makes addressing for 
humans much easier [11]. In addition, if addressing is 
done by service name, changing IP addresses for any 
reason – fault or network expansion – is much easier. 
Note that the service name can be anything. In this 
example, we follow Internet naming conventions, as they 
tend to be easier to remember. For each resource type, 
there is a corresponding “spare.device.services.com” 
pool. In these types of pools there are spare resources 
(non-clustered) that can be allocated when needed. 

NETWORK

TAPE.SERVICES.COM
VIP 193.113.214.59

PRINTER.SERVICES.COM
VIP 193.113.214.60

DISK.SERVICES.COM
VIP 193.113.214.61

ORACLE.DATABASE.BILLING.COM
VIP 193.113.214.56

WWW.SERVICES.COM
VIP 193.113.214.57

EMAIL.SERVICES.COM
VIP 193.113.214.58

Host Host

Host

SPARE.HOST.SERVICES.COM
VIP 193.120.121.1

SPARE.DISK.SERVICES.COM
VIP 193.130.121.1

NETWORK

 
Figure 1. Example architecture for the intelligent 
infrastructure.  
 
  Resource discovery is made easy with this type of 
addressing. As all available devices are clustered, we only 
need to know the virtual name and not specific hardware 
information about each and every device. If we need for 
some reason to replace an entire device or parts of it, it is 
very easy to do so, as there are always other devices in the 
cluster that can be addressed by the same alias name and 
VIP. 

  Introducing new devices to the infrastructure is equally 
easy. Each new device is introduced as a new cluster node 
to the corresponding device pool it belongs. Intelliagents 
handle this task automatically and transparently with no 
service interruption as soon as the hardware connection to 
the private cluster network is established. To enhance 
redundancy, clustered devices need to have as many 
members as possible in the cluster. When more nodes 
participate in a cluster, the probability of failure decreases 
dramatically. Experiments [8] have shown that reliability 
in a multi-node cluster system increases even if the 
components it is consisted of are not very reliable 
themselves. 

2.4 Interfacing clusters with heterogeneous 
operating systems 
 
In our experiments we have used clusters running three 
different operating systems – Unix, Linux and Windows. 
Commercial cluster software does not work for 
heterogeneous operating systems. In order to overcome 
this limitation, we added modules to the cluster 
intelliagent to simulate parts of the core cluster function. 
As our intelliagents were developed using native 
operating system tools, simulating this functionality was 
not difficult. To this end, we have used the NFS protocol 
to access shared disk devices where databases and other 
application data were located. To create local shares if 
required, amongst Windows, Unix or Linux clusters, we 
used a utility called SAMBA [6]. SAMBA allows for an 
NFS share interface to be created on a server running 
Unix, Linux or Windows. This means that a Windows 
server, for example, can access a file system on a Unix 
server and vice versa. All kernels for all cluster groupings 
have the same abilities to run all clustered components 
and applications. 
  When a cluster group has a catastrophic failure and none 
of its members could function, cluster intelliagents would 
go through the following steps: 1) Shutdown all 
application and cluster software on the failed or failing 
cluster if appropriate. 2) Probe to find out which cluster 
has the capacity to run the failed application, based on 
performance thresholds and utilisation. 3) On the new 
cluster group, they attempted to create and bring the 
application group online with administration commands - 
dynamically without service interruption. 4) Finally they 
inform the human operators about what happened. (If this 
procedure could not be carried out by the failed hosts of 
the cluster, administration servers are to be used instead). 
  All data are located on commonly shared disk-sets over 
the network, so there is no problem in accessing them 
from various cluster groups. There are slight delays in this 
design, as communications and status exchange are 
carried out over the agent network. The reason we could 
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not use the cluster private network is due to the different 
operating systems of the cluster groups. The total time it 
takes to successfully create and bring online a new 
application group on a cluster group with a different 
operating system after a catastrophic failure is about 15 
minutes. If intelliagents fail for any reason, human 
intervention is requested. 
 
3. Resource Intelliagents 
 
Resources in the intelligent infrastructure are 
automatically assimilated when connected to the network. 
Our design is based on the fact that for each device type 
there is a unique MAC address that declares the 
manufacturer and device type. A text file present on all 
servers contains a list of MAC addresses that correspond 
to various suppliers. The owner of this file is the 
administration server, which is also responsible for 
distributing the file every time there is a change. An IP 
scanner utility (initiated by administration servers) scans 
the network and builds a dynamic ARP table. MAC 
addresses and IP addresses are extracted from that table. 
Agents can then determine what resource type they have 
“discovered”, by matching the discovered MAC address 
against those in the static list. 
  Cluster intelliagents probe the private cluster network 
every five minutes (adjustable parameter) to determine if 
there are any new members. The appropriate cluster group 
configuration is automatically downloaded to the new 
member from the acting cluster master. For each resource 
type there is a special intelliagent that holds all 
knowledge about it. All native operating system 
commands and/or specialised software that manage the 
resource are included in the intelliagent source control 
code. As all resources are clustered and can be accessed 
by a virtual IP address or a service name as previously 
discussed, resource intelliagents, do not have to waste 
time probing for new resources all over the place. They 
use “restricted” probing instead, saving time and 
computational resources. For example, they know that if 
they need resources from the disk pool, they must address 
the “disk.services.com” pool and spare space on an 
already used disk can be found there. If they need a 
completely unused disk, they can address the 
“spare.disks.services.com” pool. There are three main 
reasons why resource intelliagents are invoked: 1) 
Performance problems, 2) Capacity problems, and 3) 
Faults. 
  Performance problems can occur on a component, 
device or entire cluster basis. If the entire cluster needs 
additional processing power, a new cluster node is added 
to it. If a device has a performance problem, another 
intelliagent, the performance intelliagent, assesses the 
problem and decides what type of resource(s) need to be 
added or locally freed. Based on this assessment resource 

agents act. If there is a failure, they probe for spare 
resources in the common pool and may either come up 
with unused ones or allocate partially used resources. An 
example of a performance problem, is when database 
disks under-perform. If performance problems have been 
detected before for the same device there may be two 
main reasons: either there is a hardware fault that needs to 
be looked into, or these device(s) are not configured for 
the load they have been sustaining. In such a scenario, 
resource intelliagents reconfigure the disk layout e.g. add 
more disk stripes. 
  A joint performance/capacity problem, where these 
intelliagents are often called to operate, is the freeing of 
local “badly” used resources. In servers very often 
resources are consumed without being actually needed, 
usually because of coding errors, failed interactions with 
other devices or inter-process communication failures. 
Typical examples of these are hung network connections 
the server allows to occupy its network bandwidth and 
runaway dead or zombie processes in the kernel process 
table. Decisions about local resource reconfiguration, 
tuning and freeing, need to be very well informed. 
Resource intelliagents, call upon performance 
intelliagents to decide what to do in such cases. 
Performance intelliagents, contain thresholds about 
server, network and application performance. These 
thresholds are coded in the agent ontologies. Using native 
operating system tools, agents can decide if processes are 
healthy or not. Very precise mechanisms are used to 
determine the real cause of the performance problem. 
When a decision is reached, resource intelliagents remove 
these processes or connections forcefully and free local 
system resources. 
  As previously discussed, when the entire cluster group 
suffers from performance problems, an additional node is 
introduced to it. This node can be taken from the spare 
pool of host resources or from another cluster if it is not 
used at the time. If there is no cluster node as such, the 
server that is less busy is selected for this task. The 
threshold by which a cluster node is considered “free” is 
if CPU utilisation, memory, I/O and network are at 1% on 
average. The least busy server is determined by selecting 
the node that has the smallest CPU, memory, I/O and 
network utilisations in a cluster group, with a ceiling of 
25% load. If none of these conditions are met, a request 
for a new node installation is communicated to the human 
operators. 
  Let us suppose that, during a backup session, there are 
not enough tape drives to complete it successfully. The 
appropriate resource intelliagent will initially contact the 
“tape.services.com” group in an attempt to find if there is 
a spare tape device or a device that is not used at the time. 
If it succeeds in finding a spare resource, it then allocates 
it to the requesting agent. If it finds a device that is not 
used at that point in time, it temporarily allocates it to the 
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requesting agent and a time-share is arranged for the use 
of this device. It invokes the backup intelliagent, which 
holds all knowledge about the backup schedules using this 
device which are rearranged to avoid conflicts. If, 
however, it does not succeed in either case, it contacts the 
spare pool of tape resources. If it finds an unused one it 
invokes the cluster intelliagent which adds the tape device 
to the tape cluster group. It then allocates the tape device 
as requested. If there are no spare backup devices to be 
allocated, an alert is sent to human operators asking for a 
new tape device to be installed to the common pool of 
tape devices. The cluster intelliagent will then 
automatically incorporate this new device to the existing 
cluster configuration. The next time frame resource 
intelliagents run, they use the newly added tape device. 
  If there are faults, the resource intelliagent is called to 
allocate replacement resources. In such cases, the 
intelliagent will probe for a usable resource and then call 
the intelligent module that will initialise the resource and 
introduce it to the cluster group. For the sake of this 
example, let us suppose that a disk has failed. If the disk 
is clustered, the clustered counterpart is used; if not, all 
accesses to that disk are disabled and cluster intelliagents 
are called to fail-over/stop the application(s) that are using 
it locally (note that all applications are clustered and 
therefore controlled by cluster intelliagents). Global 
interdependencies are checked and all dependant 
applications are stopped if necessary, while human 
operators are informed. Agents probe for a disk with the 
same size in the “spare.disk.services.com” pool. If this is 
fruitless, the “disk.services.com” pool is contacted to 
determine if there is spare space on an already used disk 
that can be used. If that fails too, the entire network is IP 
scanned and discovered IP addresses are matched against 
the all manufacturers’ MAC address database. 

Intelliagents connect to the discovered device (if one is 
found) and confirm its type using standard administration 
commands such as “format”, “ls”, etc. If an available disk 
is discovered, then all is well. Otherwise human operators 
are asked to install additional disks. If a new disk needs to 
be installed, the agents wait for the physical install to take 
place. Resource intelliagents run every X pre-scripted 
time intervals and every time they check anew if the 
resource is present. This approach is so computationally 
inexpensive that has no impact whatsoever on 
performance or network/resource utilisation. When the 
new disk is detected, the appropriate intelligent disk 
module is called, to initialise the disk and add it to the 
appropriate disk group. This done successfully, any file 
systems are configured and mounted. The backup 
intelliagent is called to restore data on that disk (based on 
the file systems the disk had) or, if the disk is clustered, it 
starts synchronising the replacement disk from existing 
data. The disk then becomes online and available. After 
that, the cluster intelliagent restarts any stopped 
applications and informs in detail all human operators. At 
this point, interdependence and health checks resume as 
normal. If at any point in this procedure, intelliagents fail, 
human operators are notified to take manual action. 
Figure 2 shows how the resource allocation intelliagent 
functions. When a request is initiated by a hardware, 
software, performance or reconfiguration incident the 
resource allocation intelliagent is invoked. If it is a cluster 
performance problem the resource allocation intelliagent 
invokes the cluster intelliagent which dynamically adds a 
new server node to the cluster. If it is a capacity problem, 
additional resources are added (for example disks) or a 
resource reallocation occurs by freeing used ones. The 
alerting and reporting intelliagents ensure that human 
operators are kept informed about everything. 
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Figure 2. Resource Intelliagent behaviour. Intelliagents work synergistically together to allocate and manage 
resources
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4. Experimental Results 
 
Our production experiments were completed in a data 
centre consisting of about 650 servers - a mixture of Sun, 
HP, Linux, and Windows machines. Before the beginning 
of our project, all applications were running on standalone 
servers and data resided on local disks. Applications 
included web servers, databases, billing solutions, online 
internet shops, WAP services, chat rooms, unified 
messaging solutions with fax, email, and voice mail 
mailboxes, standard email, instant messaging and GPRS. 
Cluster sizes varied, ranging from 2 nodes to 150 nodes. 
They were both in symmetric and asymmetric 
configurations [11]. Most data resided on commonly 
shared NFS disks as per the NAS architecture [5, 13]. 
When we started work, we rearranged all servers in 
cluster groups based on operating system and 
functionality. We had most data moved from local disks 
to commonly shared NFS disks. Total testing period was 
16 months with the intelligent infrastructure fully 
operational and 16 months without it. Faults included 
failing CPUs, disk corruption resulting in major database 
failures, database log file systems getting full and causing 
the database to stop transaction-logging and therefore 
preventing user connections, user mistakes, network 
failures, etc. 
  As discussed, prior to our work, all applications run on 
standalone servers so it was impossible to fail over to 
another healthy node, or salvage any data when the server 
failed completely. All efforts were concentrated on 
initially bringing up the server and starting the application 
in order to resume normal operation. In some cases a 
server restart would clear all problems and resulting 
downtime was on average 2 hours as all applications 
depending on the failed one had to be manually restarted. 
In addition to the faults, management had to be involved 
in order to decide on a course of action. While the actual 
server restart would take about 20 minutes, the whole 
process of locating and informing before-hand all IT and 
managerial resources and asking them to decide what to 
do would take much longer – even up to 4 hours each 
time. Such situations however, are totally unacceptable in 
production environments where time is money. 
  When our architecture was implemented on the same 
systems, clusters with more than 2 nodes exhibited 100% 
uptime for the entire 16 months of testing. A clustered 
system consisting of 2 nodes and running a heavily used 
production database supported 5,000 concurrent 
connections without any downtime or performance 
problems. (The same one that was unavailable for 61 
hours the previous year). In the cases of failed disks hosts 
automatically used the clustered disk-partner without any 
service interruption. 
  On another occasion, where the disk capacity was 
exceeded intelliagents attempted to clear the filesystem 

initially by removing unnecessary files – the capacity 
however, was still low, so they proceeded to find 
available disks, brought them on line and extended 
automatically the file-system that was full. 
  Intelliagents were also used to test the application 
software responsiveness and health, by connecting to 
them and running simple test commands. If it was 
determined that the problem occurred because of an 
application malfunction they attempted to cleanly restart 
the entire or parts of the failed/failing application together 
with all dependent applications. 
  Figure 3 shows the significant reduction of the total 
downtime after the deployment of our intelligent 
infrastructure. From 2,172 hours of total downtime the 
previous 16 months, we had only 8 hours of downtime in 
total during the next 16 months. 
  As all monitoring and remedial procedures were fully 
automated, no time was spent trying to decide how to 
obtain the resource, which commands to use to initialise 
it, how to introduce it to the cluster configuration and how 
to configure it. In addition, there were no delays trying to 
locate experts from various fields so they could decide 
what exactly was the problem and which type of resource 
was needed (this happens mostly in performance 
bottlenecks and Byzantine errors). All application 
interdependencies were automatically re-adjusted and 
there were no unfortunate omissions or mistakes. 
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Figure 3. Intelligent Infrastructure: Total Downtime 
from all types of failures before and after the 
intelliagents. 
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Figure 4. Intelligent Infrastructure: Downtime from 
resource re-allocation. 
 
  The results in Figure 4 demonstrate that only 1 hour of 
downtime was caused because of resource related 
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incidents throughout the 16 months intelliagents were 
operating as opposed to 273 hours during the previous 16 
months without the intelliagents installed. In fact, this 
short downtime was caused by delays in physical resource 
installation, when human operators had to add a new disk 
for capacity reasons in month 6 of the experimental 
period. 
 
 
5. Conclusion and Future Directions 
 
The proposed intelligent architecture has the following 
new and/or specific characteristics: 1) It is not expensive 
to implement as it is based on existing hardware and 
readily available, tested technologies. In our 
infrastructure, we have implemented a great deal of 
human trouble-shooting techniques based on extensive 
working experience in high-end commercial 
environments – all actions the software takes simulate the 
human system administrator ones. 2) It provides very 
good scalability that extends the clustering paradigm to 
high-end data centres. Any server of any hardware 
configuration and specification can automatically assume 
any role if it is available and has access to a common pool 
of resources [5, 13]. 3) It manages application inter-
dependencies on a large scale at the platform level. 4) It 
recycles and allocates various resources to running 
systems if needed, with minimal service interruption, or 
none at all [11]. 5) It is highly modular and the self-
healing/recovery logic can be applied to the vast majority 
of operating system platforms. The software can be 
written in any programming language that is appropriate 
for the platform it runs on. New modules can be 
integrated very easily in the engine if and when needed. 
6) It increases dramatically the availability of services to 
the end users and decreases the complexity of computer 
resource utilisation. 
  Much work remains to be done in the automated 
resource allocation and discovery areas. The design we 
have employed has been effective in tightly controlled 
architectures, but not equally effective in other non-
structured environments. Additional work needs to be 
done so that our agents can become more adaptable in 
such environments. Our future work includes using 
hidden Markov models in the resource 
discovery/allocation areas and decision process. Our 
infrastructure design has been proven successful for the 
continuation of healthy, fast, and cost-effective operations 
and constitutes the core of a self-healing intelligent 
cluster. Any type or class of application can be supported 
in this model in any environment, such as databases, web 
servers, Internet, security, banking, telecommunications, 
and robotics. 
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