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Abstract 

    In this paper, we present the implementation of a 
parallel road traffic simulation using the concept of 
Lane Cut Points (LCPs) in the Spider programming 
environment. LCPs are storage buffers inserted into lane 
data structures at the road network partition edges. 
Vehicles enter a partition at the edges from an LCP and 
exit a partition  edge into an LCP at the end of every 
simulation step. Spider, a parallel programming 
environment, which runs on PVM, coordinates the 
execution of the parallel traffic simulation.

1. Introduction 

    Traffic simulators can be classified as either macro or 
micro simulators based on the level of detail of the state 
variables considered in the simulation. For macro 
simulations, the details of the simulation entities such as 
vehicles, junctions, traffic lights, intersections, driver 
behaviours, lane changing are not taken into 
consideration while all these are considered in micro 
simulation. For example, individual vehicle movement 
representation is a characteristic of typical micro-
simulators, whereas in macro simulators only traffic 
flows are requested. While the macro method does not 
give a good report about the behaviour of each vehicle at 
any point in time, it offers simplicity of simulation and 
its use of system resources are minimal. Micro 
simulation, on the other hand, can give operative details 
on the traffic, which is useful to the traffic engineer but 
introduces more complexity in terms of programming 
and requires greater computation power and storage 
space.  

    Large-scale micro simulation models therefore can be 
time consuming when executed on single processors. A  
way of speeding up the execution is to use a cluster of 
workstations. A cluster presents itself as a good choice  
because of its low cost, high availability and scalability. 
To run on a cluster the simulator must be “parallelized”. 
To parallelize the simulator, the road network data must 
be partitioned and sent to each node. Necessary 
exchange of data during execution requires coordinated 
communication. 
    In this paper, we present our experience of the 
parallelization of “Madcity”, a microscopic urban traffic 
simulation. Related work is introduced in section 2. The 
experimental model of the parallel traffic simulation is 
discussed in section 3. In section 4 the parallelization 
strategy is discussed. Conclusions and further work plans 
are discussed in section 5.  

2. Related work 

    Much research is presently aimed at parallelizing 
traffic simulators. Some of the related work can be found 
in Transims [1] [14], Paramics [2] [12],  OSSA [10] and 
Hipertrans [4] which are European Union projects and 
the parallel traffic simulation based on Dynemo model 
presented in [6].  
    All the above-mentioned simulators are based on 
microscopic modelling and their parallelization strategy, 
as in our method, is by using domain decomposition 
concept, where the road network is partitioned into 
subnetworks and these subnetworks are executed on 
different computers. This method gives better scalability 
than that of functional decomposition, where a limited 
number of functional components of the simulator are 
executed on different computers [5]. 
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3. Exprimental Madcity parallel traffic 
simulation system 

    The architecture of the parallel Madcity simulator is 
shown in Fig. 1. The major components are discussed 
below.

   

Figure 1.   The architecture of the parallel 
simulator

3.1. The Parsifal cluster 

    The hardware platform is a cluster of 32 nodes 
running Linux Operating system. A cluster is defined as 
a collection of interconnected computers that can be used 
as a single unified resource for high performance 
computing [3].  
    Cluster technology promises to provide the benefits of 
supercomputers at a significantly lower cost. However, 
extra communication overheads present on a cluster 
means that achieving the desired performance may 
require extensive parallel program optimisation expertise 
that may not be available to an application programmer. 

3.2. The Madcity microscopic simulator 

    Madcity, a discrete time based microscopic simulator, 
is organized around a compound data structure that 
represents the road network. The road network is 
modelled as a collection of interconnected junctions.
Junctions are interconnected through roads where each 
road may have multiple traffic lanes. Traffic is 
represented as a set of vehicle objects that use the road 
network. The road network also contains representation 
of traffic control equipment (e.g. traffic lights). At each 
step of the simulation, each vehicle uses a set of simple 
localized rules to compute its new state and new 

position. In this, a vehicle must take into account its 
surrounding conditions. For example, the proximity to a 
slower vehicle ahead will influence the speed of the 
vehicle, etc. The ability to read the surrounding 
conditions is made available through the network 
structure. The overall complex pattern of the urban 
traffic emerges from the simple local actions of the 
individual vehicles. 
    From a user point of view Madcity comprises two 
major components; the Graphical User Interface (GUI) 
and the Simulator kernel (SIM). In addition to providing 
a GUI for road network modelling, Madcity GUI also 
incorporates a Network Partitioning Tool (NPT). NPT 
allows the user to partition the network by assigning a 
partition ID to each junction. A partition ID can then be 
saved along with the rest of the road model to be used by 
the SIM. This is illustrated in Fig. 2. As the figure 
indicates, NPT uses junction Partition IDs at two ends of 
interconnecting road to decide whether the road is to be 
divided or not. If the two junctions have non-identical 
Partition IDs then the road must be partitioned as “cut 
across”. An issue here is where exactly the road lanes 
must be cut. NPT is designed to allow the user to 
explicitly position the Lane Cut Points by graphical 
means. However, it also provides a default option where 
a road is partitioned according to the following simple 
rule; a road interconnecting two junctions is partitioned 
such that each exit lane belongs to its origin sub-net. 
Lane Cut Points are discussed further in section 4.1. 

Figure 2.   A simple 2-junction network 
illustrating the use of LCP

    In Madcity, partitioning is junction based, each 
junction belonging to a given sub-net. At the end of this 
process each junction will have a given partition 
identifier. Roads do not have explicit partition 
identification. The junction data structure maintains a list 
of its entire exit links. 
    Junctions with identical partition IDs constitute a sub-
network. Each partition is represented with colour 
coding around the junction. This ensures that partitioning 
is assisted with an adequate visual interface and remains 
a user-friendly process that is well integrated into the 
road network model. 
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    To simulate a road network, a user has to go through 
the following procedures: 

• Use the GUI to draw a road network and 
partition the network 

• Save the road network in a “network” file 
• Load the network file into the SIM module 
• Run the simulation, this produces a trace file  
• Feed the trace file into the GUI module, which 

carries out the visualisation.  

These procedures are illustrated in Fig. 3 below. 

Figure  3.   The main simulation stages

    Fig. 4 shows a screen dump from the simulation of the  
city of Hyde in UK. The visualization in this case is done 
using the OSSA visualizer [10], rather than the Madcity 
GUI. 

Figure 4. Screen dump of the Hyde network 
during a simulation 

3.3. The Spider programming environment

    Spider, which is built upon PVM [13], is a cluster-
based parallel programming environment, an 
implementation of the Virtual von Neumann machine [8] 
that has been developed at the University of 
Westminster. Spider adopts a discrete event based 
approach to program parallelization [9] and supports a 

synchronous mode of parallel computing which is 
suitable for road traffic simulation.  
    The Spider system consists of a pre-compiler unit and 
a run-time kernel. The pre-compiler ensures that 
application programs can be expressed in a convenient 
high level language. This language is a super-set of C, 
where global network control constructs have been 
added to the usual repertoire of uni-processor control 
statements. These include shared variable declarations 
and distributed loop constructions.  Using the construct 
‘MultiLoop’ the user can specify a set of parallel loops. 
These loops can exchange messages asynchronously 
(through Mget/Mput statements) or use shared variables 
to achieve an automatically synchronised communication 
(through the assignment operator ‘:=‘). Spider makes use 
of a logical time-stamping mechanism whereby access to 
shared data is treated as a discrete event, i.e. a point in a 
two dimensional space-time co-ordinate. This ensures 
that transparent synchronisation is achieved without 
using extra communication, a key technique by which 
efficient and scalable parallel performance is obtained. 
The pre-compiler accepts application programs and 
produces a suitably structured code that includes explicit 
calls to the run-time kernel. 

      

Figure  5.   The illustration of Spider program 
stages

    The run-time kernel provides the underlying facilities 
through which process creation, distribution, 
communication and synchronisation are realised. These 
stages are ilustrated in Fig. 5. Conceptually, the Spider 
kernel resides on a cluster of workstations and provides 
convenient global control abstractions and parallel 
programming facilities to the user. These include virtual 
global memory, virtual global clock, allocation, 
distribution, creation and termination of parallel 
processes. The kernel supports multiple models of 
parallel computation. It supports both implicit and 
explicit parallelism. It can be used to automatically 
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parallelise a sequential loop, or create Distributed 
Shared Memory and/or direct message passing
applications. It supports both synchronous and 
asynchronous programming paradigms as illustrated in 
Fig. 6.  

Figure 6.  The Spider modes of Operation

4. Parallelization strategy

The method of parallelization and the structure of the 
paralel program are discussed in the following sections. 

4.1. Lane Cut Points (LCPs) 

    An important step in parallel processing is 
decomposing the problem or data into different tasks to 
be distributed to the clustered processors, for the 
simultaneous executions. A consideration here is to keep 
partition sizes as even as possible. These partitions are 
then distributed amongst multiple nodes of the cluster for 
simultaneous execution. 
    Once a network is partitioned into concurrent sub-
simulations, two major runtimes issues must be dealt 
with; communications and synchronisation. Assuming 
that these two issues are resolved, a coordinated 
execution of the whole simulation will be achieved. 
However, organizing and implementing synchronisation 
and communication requires expertise that an application 
programmer may not necessarily possess. It would be 
useful to have a mechanism whereby the parallel 
coordination concerns could be separated from 
application development issues, such that, two different 
sets of entities could meet across a common interface 
and yet be able to work independently, each in their own 
familiar area. The concept of LCPs was developed to 
serve such a purpose. LCP is a data structure, which 
encapsulates vehicle data at the partition edges and 

discrete-time synchronisation is achieved using LCP. 
The LCP concept is depicted in Fig. 7. 

Figure 7. The illustration of LCP concept 

    In decomposing a road network into multiple sub-
networks, traffic continuity is potentially disrupted. 
During runtime, when a vehicle arrives at the boundary 
point in a lane, where one subnetwork ends and another 
one begins, the vehicle must be transferred seamlessly to 
the computing node where the vehicle can continue its 
journey. This vehicle transfer must be coordinated in 
time and space such that the integrity of the simulation 
remains intact. The LCP interface in conjunction with 
parallel coordination must meet these requirements.

4.2. The Madcity parallel co-ordinator 

Figure 8. Illustration of Spider as a Madcity 
parallel coordinator

    The coordinator is illustrated in Fig. 8. The madcity 
cordinator is a program written in Spider language. The 
cordinator defines and maps a deriving loop for each 
partition of the simulation and specifies local processing 
as well as exchange of non-local data that should take 
place during the distributed execution. Whenever a 
spider program is executed, the following steps take 
place: 
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• The language construct “Begin” starts up copies 
of the program on all available nodes of the 
underlying parallel virtual machine. 

• An initial handshake ensures that each of these 
instances wait untill all of them have been 
created and are ready to execute. 

• After the handshake each instance of the spider 
executes the local code untill a multiloop 
statement is encountered. A key parameter in 
the multilloop statement is its index range (a 
multiloop can be viewed as an array of driver 
loops). Using the index-range each node of the 
Spider virtual machine uses a simple round 
robin algorithm to decide whether one or more 
statements of the multiloop maps on this code. 
If so, a corresponding task frames for each 
localy mapped local interface is created. 

    A spider program may have one or more multiloop 
specified in it. The above procedure continues untill  
instances of all the declared multiloops are maped on all 
the nodes of  Spider Virtual Machine (SVM). This 
continues until a “commit” statement  is encountered. 
Commit forces the SVM code into execution mode 
where created task instances are run. SVM maintains a 
Ready-To-Run queue (RTR) and a suspended queue for 
task frame management. Whenever a task gets blocked 
on an input operation, then it is moved into the 
suspended queue. Tasks that are in the RTR are executed 
in round-robin fashion, where a virtual time slice allows 
each task to execute no more than n iterations before it is 
moved to the back of the RTR queue and the task at the 
head of the RTR is executed. 
     
4.3. The structure of the parallel program 

    The programming model used is SPMD (Single 
Program Multiple Data). This means that the same 
program image is available on all of the nodes but each 
of the nodes has a different data set. The data sets in this 
case are the different portions of the partitioned road 
network. SPMD programs are easier to write and maps 
perfectly unto the Spider programming model.
    The local program has three different phases: 
    The initialisation phase. This is more of a sequential 
code since it does all the necessary initialisations that 
apply to all the nodes. These include issues such as: 
• Reading the network graph and partition identifiers 

from network file 
• Sending the network data across to the nodes. 
• Using the network data to find LCP positions and 

creating them as required 
    The local execution phase. In this phase, each node 
uses its system ID to identify itself, and its portion of the 
network and then starts the simulation of the road traffic.  

At each simulation step: 
• Each partition is simulated concurrently 
• Vehicles leaving a partition are passed to the 

LCP interface. 
    The communication phase.  In this phase, coordinator 
picks up the vehicles in the LCPs and sends them across 
to their respective partitions where they are inserted into 
the appropriate lane for the simulation to proceed 
normally. Synchronous operation is achieved by use of 
Spider communication constructs at the end of every 
simulation step. Vehicles leaving a partition need to be 
received in their destination partition before the next 
simulation step. 

4.4. Advantages of LCP-based coordination 

    There are four main benefits. 
    1. These LCP standard interfaces provide a facility 
whereby decompostion of a simulation is developed and 
debugged on a single processor environment and hence 
complexities of debugging in a parallel environment are 
significantly reduced. It is necessary here to differentiate 
between a serial simulator and the simulator making use 
of the interface objects such as LCP but running on one 
node. Use of the LCP library helps to develop an n=1  
system that has all the features of parallel simulator. 
Thus whenever vehicles, which are meant for the 
neighbour partitions are leaving a partition, these 
vehicles enter the LCPs and then removed from the 
LCPs at the end of every simulation step. In this way, the 
behaviour of the parallelized simulator can be analysed 
in the n=1 version and the transition from the n=1 to the 
n=k (k>=2) parallel development effort is therefore 
minimised since most of the possible errors can be 
debugged in the n=1 version. 
    2. LCPs give the advantage of separating the 
application layers from the communications/coordination 
layers that is required for the parallel version of the 
simulator. LCPs provide an open interface such that a 
given simulation application could be coupled with 
alternative communication layer and vice versa, such 
that different simulations could use the same LCP 
interface for parallelization purpose. To accomplish this 
objective, the simulator developers need to develop their 
applications to conform to the interface definitions 
published in the LCP documentation.  
    Also, use of LCPs can reduce the communication 
overhead associated with parallel programming. Instead 
of sending individual vehicles across the partitions, 
vehicles meant for a particular partition can be buffered 
in the LCP and all the vehicles transferred at once to 
their respective partitions. Communication overhead, 
which has a negative effect on the performance of a 
parallel system, can therefore be minimised by use of 
LCPs. 
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    3. At certain intervals, all the nodes involved in 
running a program will need to exchange certain entities, 
vehicles in this case.  Though the use of LCPs means 
that every vehicle has to be monitored to know when 
they need to get into their neighbour partitions, it rather 
fits into the method of microscopic simulation where the 
behaviour of individual vehicle is important. LCPs fit 
into this simulation model because synchronisation takes 
place at the end of every simulation step, whereby 
vehicles are always checked to determine their current 
position and also to make such decisions as whether the 
vehicles should go into or out of an LCP. 
    4. Finally, LCP technology is not difficult to 
implement and so individual developers can easily adapt 
it to their programs.  
    The fewer the number of LCPs however, the better the 
performance of the simulator. For maximum efficiency, 
the point at which the network partitions are made 
should be to minimise the number of lanes crossing the 
partition boundaries. This reduces the number of LCPs 
in the network and minimises the overhead in processing 
the vehicles in the LCPs at the end of every simulation 
step.  

5. Conclusions and future work 
    
    This is an ongoing research effort to develop a high 
performance microscopic traffic simulator. The Spider 
programming environment has been described. The 
concept of Lane Cut Points (LCPs) that are inserted at 
the end of lanes between partitions was also introduced 
and discussed. LCPs provide an open interface whereby 
transformation of a sequential simulator to a parallel one 
is facilitated. 
    The overall aim of this project is to achieve a high 
performance traffic simulator and to test the efficiency of 
using Spider for parallel road traffic simulations. In due
course, the performance of this system is under 
investigation. 
    At the moment, partitioning of road networks is done 
manually via the NPT interface. This will be augmented 
with an automatic static partitioning tool, where a user 
draws the road network without assigning any partition 
IDs to the network but the user enters the number of 
desired partitions in a configuration file. The static load 
balancer will scan through the network making use of 
the configuration file and assigns the partition IDs. 
    In addition, since traffic simulation presents an 
irregular load of traffic because of vehicles moving from 
one partition to another, a way of optimising traffic 
simulations is to perform load balancing dynamically. It 
is therefore intended to build a dynamic load balancer 
integrated into the system in the near future.
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