

University of Westminster Eprints
http://eprints.wmin.ac.uk

An open interface for parallelization of traffic
simulation.

Damian Igbe
Nasser Kalantery
Stephen Ijaha
Stephen Winter

Cavendish School of Computer Science, University of Westminster

Copyright © [2003] IEEE. Reprinted from 7th IEEE International Symposium on
Distributed Simulation and Real-Time Applications, 23-25 Oct 2003, Delft,
Netherlands.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

An Open Interface for Parallelization of Traffic Simulation

Damian Igbe, Nasser Kalantery, Stephen Ijaha, Stephen Winter
Centre for Parallel Computing (CPC)

University of Westminster
115 New Cavendish Street

London, W1W 6UW, United Kingdom.
{d.o.igbe | kalantn | ijahas | wintersc}@ wmin.ac.uk

Abstract

 In this paper, we present the implementation of a
parallel road traffic simulation using the concept of
Lane Cut Points (LCPs) in the Spider programming
environment. LCPs are storage buffers inserted into lane
data structures at the road network partition edges.
Vehicles enter a partition at the edges from an LCP and
exit a partition edge into an LCP at the end of every
simulation step. Spider, a parallel programming
environment, which runs on PVM, coordinates the
execution of the parallel traffic simulation.

1. Introduction

 Traffic simulators can be classified as either macro or
micro simulators based on the level of detail of the state
variables considered in the simulation. For macro
simulations, the details of the simulation entities such as
vehicles, junctions, traffic lights, intersections, driver
behaviours, lane changing are not taken into
consideration while all these are considered in micro
simulation. For example, individual vehicle movement
representation is a characteristic of typical micro-
simulators, whereas in macro simulators only traffic
flows are requested. While the macro method does not
give a good report about the behaviour of each vehicle at
any point in time, it offers simplicity of simulation and
its use of system resources are minimal. Micro
simulation, on the other hand, can give operative details
on the traffic, which is useful to the traffic engineer but
introduces more complexity in terms of programming
and requires greater computation power and storage
space.

 Large-scale micro simulation models therefore can be
time consuming when executed on single processors. A
way of speeding up the execution is to use a cluster of
workstations. A cluster presents itself as a good choice
because of its low cost, high availability and scalability.
To run on a cluster the simulator must be “parallelized”.
To parallelize the simulator, the road network data must
be partitioned and sent to each node. Necessary
exchange of data during execution requires coordinated
communication.
 In this paper, we present our experience of the
parallelization of “Madcity”, a microscopic urban traffic
simulation. Related work is introduced in section 2. The
experimental model of the parallel traffic simulation is
discussed in section 3. In section 4 the parallelization
strategy is discussed. Conclusions and further work plans
are discussed in section 5.

2. Related work

 Much research is presently aimed at parallelizing
traffic simulators. Some of the related work can be found
in Transims [1] [14], Paramics [2] [12], OSSA [10] and
Hipertrans [4] which are European Union projects and
the parallel traffic simulation based on Dynemo model
presented in [6].
 All the above-mentioned simulators are based on
microscopic modelling and their parallelization strategy,
as in our method, is by using domain decomposition
concept, where the road network is partitioned into
subnetworks and these subnetworks are executed on
different computers. This method gives better scalability
than that of functional decomposition, where a limited
number of functional components of the simulator are
executed on different computers [5].

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

3. Exprimental Madcity parallel traffic
simulation system

 The architecture of the parallel Madcity simulator is
shown in Fig. 1. The major components are discussed
below.

Figure 1. The architecture of the parallel
simulator

3.1. The Parsifal cluster

 The hardware platform is a cluster of 32 nodes
running Linux Operating system. A cluster is defined as
a collection of interconnected computers that can be used
as a single unified resource for high performance
computing [3].
 Cluster technology promises to provide the benefits of
supercomputers at a significantly lower cost. However,
extra communication overheads present on a cluster
means that achieving the desired performance may
require extensive parallel program optimisation expertise
that may not be available to an application programmer.

3.2. The Madcity microscopic simulator

 Madcity, a discrete time based microscopic simulator,
is organized around a compound data structure that
represents the road network. The road network is
modelled as a collection of interconnected junctions.
Junctions are interconnected through roads where each
road may have multiple traffic lanes. Traffic is
represented as a set of vehicle objects that use the road
network. The road network also contains representation
of traffic control equipment (e.g. traffic lights). At each
step of the simulation, each vehicle uses a set of simple
localized rules to compute its new state and new

position. In this, a vehicle must take into account its
surrounding conditions. For example, the proximity to a
slower vehicle ahead will influence the speed of the
vehicle, etc. The ability to read the surrounding
conditions is made available through the network
structure. The overall complex pattern of the urban
traffic emerges from the simple local actions of the
individual vehicles.
 From a user point of view Madcity comprises two
major components; the Graphical User Interface (GUI)
and the Simulator kernel (SIM). In addition to providing
a GUI for road network modelling, Madcity GUI also
incorporates a Network Partitioning Tool (NPT). NPT
allows the user to partition the network by assigning a
partition ID to each junction. A partition ID can then be
saved along with the rest of the road model to be used by
the SIM. This is illustrated in Fig. 2. As the figure
indicates, NPT uses junction Partition IDs at two ends of
interconnecting road to decide whether the road is to be
divided or not. If the two junctions have non-identical
Partition IDs then the road must be partitioned as “cut
across”. An issue here is where exactly the road lanes
must be cut. NPT is designed to allow the user to
explicitly position the Lane Cut Points by graphical
means. However, it also provides a default option where
a road is partitioned according to the following simple
rule; a road interconnecting two junctions is partitioned
such that each exit lane belongs to its origin sub-net.
Lane Cut Points are discussed further in section 4.1.

Figure 2. A simple 2-junction network
illustrating the use of LCP

 In Madcity, partitioning is junction based, each
junction belonging to a given sub-net. At the end of this
process each junction will have a given partition
identifier. Roads do not have explicit partition
identification. The junction data structure maintains a list
of its entire exit links.
 Junctions with identical partition IDs constitute a sub-
network. Each partition is represented with colour
coding around the junction. This ensures that partitioning
is assisted with an adequate visual interface and remains
a user-friendly process that is well integrated into the
road network model.

LCP

Application (Madcity traffic simulator)

M
id

dl
ew

ar
e Spider environment

 PVM library

 Cluster nodes

 . . .

 Linux OS

Junc. 1
Junc.2

LCP

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

 To simulate a road network, a user has to go through
the following procedures:

• Use the GUI to draw a road network and
partition the network

• Save the road network in a “network” file
• Load the network file into the SIM module
• Run the simulation, this produces a trace file
• Feed the trace file into the GUI module, which

carries out the visualisation.

These procedures are illustrated in Fig. 3 below.

Figure 3. The main simulation stages

 Fig. 4 shows a screen dump from the simulation of the
city of Hyde in UK. The visualization in this case is done
using the OSSA visualizer [10], rather than the Madcity
GUI.

Figure 4. Screen dump of the Hyde network
during a simulation

3.3. The Spider programming environment

 Spider, which is built upon PVM [13], is a cluster-
based parallel programming environment, an
implementation of the Virtual von Neumann machine [8]
that has been developed at the University of
Westminster. Spider adopts a discrete event based
approach to program parallelization [9] and supports a

synchronous mode of parallel computing which is
suitable for road traffic simulation.
 The Spider system consists of a pre-compiler unit and
a run-time kernel. The pre-compiler ensures that
application programs can be expressed in a convenient
high level language. This language is a super-set of C,
where global network control constructs have been
added to the usual repertoire of uni-processor control
statements. These include shared variable declarations
and distributed loop constructions. Using the construct
‘MultiLoop’ the user can specify a set of parallel loops.
These loops can exchange messages asynchronously
(through Mget/Mput statements) or use shared variables
to achieve an automatically synchronised communication
(through the assignment operator ‘:=‘). Spider makes use
of a logical time-stamping mechanism whereby access to
shared data is treated as a discrete event, i.e. a point in a
two dimensional space-time co-ordinate. This ensures
that transparent synchronisation is achieved without
using extra communication, a key technique by which
efficient and scalable parallel performance is obtained.
The pre-compiler accepts application programs and
produces a suitably structured code that includes explicit
calls to the run-time kernel.

Figure 5. The illustration of Spider program
stages

 The run-time kernel provides the underlying facilities
through which process creation, distribution,
communication and synchronisation are realised. These
stages are ilustrated in Fig. 5. Conceptually, the Spider
kernel resides on a cluster of workstations and provides
convenient global control abstractions and parallel
programming facilities to the user. These include virtual
global memory, virtual global clock, allocation,
distribution, creation and termination of parallel
processes. The kernel supports multiple models of
parallel computation. It supports both implicit and
explicit parallelism. It can be used to automatically

G

U

 I

Net.
file

S

 I

M

Trace
file

G

U

 I

Code in Spider
language

Spider runtime
kernel

Spider
preprocessor C

code C Compiler

Parallel
execution
code

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

parallelise a sequential loop, or create Distributed
Shared Memory and/or direct message passing
applications. It supports both synchronous and
asynchronous programming paradigms as illustrated in
Fig. 6.

Figure 6. The Spider modes of Operation

4. Parallelization strategy

The method of parallelization and the structure of the
paralel program are discussed in the following sections.

4.1. Lane Cut Points (LCPs)

 An important step in parallel processing is
decomposing the problem or data into different tasks to
be distributed to the clustered processors, for the
simultaneous executions. A consideration here is to keep
partition sizes as even as possible. These partitions are
then distributed amongst multiple nodes of the cluster for
simultaneous execution.
 Once a network is partitioned into concurrent sub-
simulations, two major runtimes issues must be dealt
with; communications and synchronisation. Assuming
that these two issues are resolved, a coordinated
execution of the whole simulation will be achieved.
However, organizing and implementing synchronisation
and communication requires expertise that an application
programmer may not necessarily possess. It would be
useful to have a mechanism whereby the parallel
coordination concerns could be separated from
application development issues, such that, two different
sets of entities could meet across a common interface
and yet be able to work independently, each in their own
familiar area. The concept of LCPs was developed to
serve such a purpose. LCP is a data structure, which
encapsulates vehicle data at the partition edges and

discrete-time synchronisation is achieved using LCP.
The LCP concept is depicted in Fig. 7.

Figure 7. The illustration of LCP concept

 In decomposing a road network into multiple sub-
networks, traffic continuity is potentially disrupted.
During runtime, when a vehicle arrives at the boundary
point in a lane, where one subnetwork ends and another
one begins, the vehicle must be transferred seamlessly to
the computing node where the vehicle can continue its
journey. This vehicle transfer must be coordinated in
time and space such that the integrity of the simulation
remains intact. The LCP interface in conjunction with
parallel coordination must meet these requirements.

4.2. The Madcity parallel co-ordinator

Figure 8. Illustration of Spider as a Madcity
parallel coordinator

 The coordinator is illustrated in Fig. 8. The madcity
cordinator is a program written in Spider language. The
cordinator defines and maps a deriving loop for each
partition of the simulation and specifies local processing
as well as exchange of non-local data that should take
place during the distributed execution. Whenever a
spider program is executed, the following steps take
place:

IMPLICIT

E
X
P
L
I
C
I
T

Synchronous Asynchronous

Distributed
Shared
memory

Direct Message
Passing

.…

Application

LCP

Spider
Parallel
coordinator

NETWORK

Application

LCP

Spider
Parallel
coordinator

Application

LCP

Spider
Parallel
coordinator

Application LCP Parallel
Coordinator

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

• The language construct “Begin” starts up copies
of the program on all available nodes of the
underlying parallel virtual machine.

• An initial handshake ensures that each of these
instances wait untill all of them have been
created and are ready to execute.

• After the handshake each instance of the spider
executes the local code untill a multiloop
statement is encountered. A key parameter in
the multilloop statement is its index range (a
multiloop can be viewed as an array of driver
loops). Using the index-range each node of the
Spider virtual machine uses a simple round
robin algorithm to decide whether one or more
statements of the multiloop maps on this code.
If so, a corresponding task frames for each
localy mapped local interface is created.

 A spider program may have one or more multiloop
specified in it. The above procedure continues untill
instances of all the declared multiloops are maped on all
the nodes of Spider Virtual Machine (SVM). This
continues until a “commit” statement is encountered.
Commit forces the SVM code into execution mode
where created task instances are run. SVM maintains a
Ready-To-Run queue (RTR) and a suspended queue for
task frame management. Whenever a task gets blocked
on an input operation, then it is moved into the
suspended queue. Tasks that are in the RTR are executed
in round-robin fashion, where a virtual time slice allows
each task to execute no more than n iterations before it is
moved to the back of the RTR queue and the task at the
head of the RTR is executed.

4.3. The structure of the parallel program

 The programming model used is SPMD (Single
Program Multiple Data). This means that the same
program image is available on all of the nodes but each
of the nodes has a different data set. The data sets in this
case are the different portions of the partitioned road
network. SPMD programs are easier to write and maps
perfectly unto the Spider programming model.
 The local program has three different phases:
 The initialisation phase. This is more of a sequential
code since it does all the necessary initialisations that
apply to all the nodes. These include issues such as:
• Reading the network graph and partition identifiers

from network file
• Sending the network data across to the nodes.
• Using the network data to find LCP positions and

creating them as required
 The local execution phase. In this phase, each node
uses its system ID to identify itself, and its portion of the
network and then starts the simulation of the road traffic.

At each simulation step:
• Each partition is simulated concurrently
• Vehicles leaving a partition are passed to the

LCP interface.
 The communication phase. In this phase, coordinator
picks up the vehicles in the LCPs and sends them across
to their respective partitions where they are inserted into
the appropriate lane for the simulation to proceed
normally. Synchronous operation is achieved by use of
Spider communication constructs at the end of every
simulation step. Vehicles leaving a partition need to be
received in their destination partition before the next
simulation step.

4.4. Advantages of LCP-based coordination

 There are four main benefits.
 1. These LCP standard interfaces provide a facility
whereby decompostion of a simulation is developed and
debugged on a single processor environment and hence
complexities of debugging in a parallel environment are
significantly reduced. It is necessary here to differentiate
between a serial simulator and the simulator making use
of the interface objects such as LCP but running on one
node. Use of the LCP library helps to develop an n=1
system that has all the features of parallel simulator.
Thus whenever vehicles, which are meant for the
neighbour partitions are leaving a partition, these
vehicles enter the LCPs and then removed from the
LCPs at the end of every simulation step. In this way, the
behaviour of the parallelized simulator can be analysed
in the n=1 version and the transition from the n=1 to the
n=k (k>=2) parallel development effort is therefore
minimised since most of the possible errors can be
debugged in the n=1 version.
 2. LCPs give the advantage of separating the
application layers from the communications/coordination
layers that is required for the parallel version of the
simulator. LCPs provide an open interface such that a
given simulation application could be coupled with
alternative communication layer and vice versa, such
that different simulations could use the same LCP
interface for parallelization purpose. To accomplish this
objective, the simulator developers need to develop their
applications to conform to the interface definitions
published in the LCP documentation.
 Also, use of LCPs can reduce the communication
overhead associated with parallel programming. Instead
of sending individual vehicles across the partitions,
vehicles meant for a particular partition can be buffered
in the LCP and all the vehicles transferred at once to
their respective partitions. Communication overhead,
which has a negative effect on the performance of a
parallel system, can therefore be minimised by use of
LCPs.

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

 3. At certain intervals, all the nodes involved in
running a program will need to exchange certain entities,
vehicles in this case. Though the use of LCPs means
that every vehicle has to be monitored to know when
they need to get into their neighbour partitions, it rather
fits into the method of microscopic simulation where the
behaviour of individual vehicle is important. LCPs fit
into this simulation model because synchronisation takes
place at the end of every simulation step, whereby
vehicles are always checked to determine their current
position and also to make such decisions as whether the
vehicles should go into or out of an LCP.
 4. Finally, LCP technology is not difficult to
implement and so individual developers can easily adapt
it to their programs.
 The fewer the number of LCPs however, the better the
performance of the simulator. For maximum efficiency,
the point at which the network partitions are made
should be to minimise the number of lanes crossing the
partition boundaries. This reduces the number of LCPs
in the network and minimises the overhead in processing
the vehicles in the LCPs at the end of every simulation
step.

5. Conclusions and future work

 This is an ongoing research effort to develop a high
performance microscopic traffic simulator. The Spider
programming environment has been described. The
concept of Lane Cut Points (LCPs) that are inserted at
the end of lanes between partitions was also introduced
and discussed. LCPs provide an open interface whereby
transformation of a sequential simulator to a parallel one
is facilitated.
 The overall aim of this project is to achieve a high
performance traffic simulator and to test the efficiency of
using Spider for parallel road traffic simulations. In due
course, the performance of this system is under
investigation.
 At the moment, partitioning of road networks is done
manually via the NPT interface. This will be augmented
with an automatic static partitioning tool, where a user
draws the road network without assigning any partition
IDs to the network but the user enters the number of
desired partitions in a configuration file. The static load
balancer will scan through the network making use of
the configuration file and assigns the partition IDs.
 In addition, since traffic simulation presents an
irregular load of traffic because of vehicles moving from
one partition to another, a way of optimising traffic
simulations is to perform load balancing dynamically. It
is therefore intended to build a dynamic load balancer
integrated into the system in the near future.

6. Acknowledgements

 This research is being carried out as part of the OSSA
(Open Framework for Simulation of Transport Strategies
and Assessment) project DGTREN GRD1-10917, within
the Competitive and Sustainable program of the
European Communities. The parallelized simulator will
be tested along other modules being developed in the
OSSA consortium by other technical partners. We would
like to thank all the other technical partners involved in
this project for their collaboration and discussions.

7. References

[1] C. Barrette, and D.J. Roberts, “The TRANSIMS micro
simulation status”, Technical report, TSA-DO/SA, Los
Alamos National Lab, New Mexico, USA, 1994.

[2] D. McArthur, The PARAMICS Model: Present and Future
Directions. Technical report, SIAS Ltd., Edinburgh, 1994.

[3] Greg Pfisters , In search of Clusters , Prentice Hall ,1998.
[4] Ijaha S.E, S.C. Winter and N.Kalantery, “HIPERTRANS -

High Performance Transport Modelling and Simulation”,
Proc, 6th Intl Europar Conf., Munich, Germany, 28 August
– 1st September, 2000.

[5] Kai Nagel and Marcus Ricket, “Parallel implementation of
the TRANSIMSmicro-simulation”
http://www.inf.ethz.ch/personal/nagel/papers/parallel/
parallel.pdf [Online: cited March 23, 2003].

[6] Matthias Schmidt, “Decomposition of a traffic flow model
for a parallel simulation”, Proc. AI, Simulation and
planning in High Autonomy Systems (AIS2000), Tucson,
USA, March 6-8, 2000.

[7] Message Passing Interface (MPI) Standards, http://www-
unix.mcs.anl.gov/mpi/index.html [Online: cited August 8,
2003].

[8] N. Kalantery, S.C. Winter and D.R. Wilson, “ From BSP
to a virtual Von Neumann Machine”, IEE journal of
Computing & Control Eng., vol 6, no 3, June 1995, pp
131-136.

[9] N. Kalantery, “A distributed event processing method for
general-purpose computation”, J. Systems Architecture,
no 44, 1998, pp 547-558.

[10] Open Framework for Simulation of Transport Strategies
and Assessment (OSSA), A European 5th Framework
Collaborative Research Project in the Competitive and
Sustainable Growth Programme, DG-TREN Project
GRD1-10917 "OSSA", http://www.ossa-ig.com/. [Online:
cited August 8, 2003].

[11] Parsifal Cluster page: http://parsifal.cpc.wmin.ac.uk/
[Online. Cited August 8, 2003].

[12] Paramics: http://www.paramics-online.com [Online: cited
August 8, 2003].

[13] Parallel Virtual Machine (PVM) Library,
http://netlib2.cs.utk.edu/pvm3 [Online: cited August 8,
2003].

[14] TRANSIMS, TRransportation Analysis and Simulation
System, http://transims.tsasa.lanl.gov [Online: cited
August 8, 2003].

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03)

1530-1990/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

